1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint32_t regidx = (uintptr_t)key; 218 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 219 220 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 221 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 222 /* The value array need not be initialized at this point */ 223 cpu->cpreg_array_len++; 224 } 225 } 226 227 static void count_cpreg(gpointer key, gpointer opaque) 228 { 229 ARMCPU *cpu = opaque; 230 const ARMCPRegInfo *ri; 231 232 ri = g_hash_table_lookup(cpu->cp_regs, key); 233 234 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 235 cpu->cpreg_array_len++; 236 } 237 } 238 239 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 240 { 241 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 242 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 243 244 if (aidx > bidx) { 245 return 1; 246 } 247 if (aidx < bidx) { 248 return -1; 249 } 250 return 0; 251 } 252 253 void init_cpreg_list(ARMCPU *cpu) 254 { 255 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 256 * Note that we require cpreg_tuples[] to be sorted by key ID. 257 */ 258 GList *keys; 259 int arraylen; 260 261 keys = g_hash_table_get_keys(cpu->cp_regs); 262 keys = g_list_sort(keys, cpreg_key_compare); 263 264 cpu->cpreg_array_len = 0; 265 266 g_list_foreach(keys, count_cpreg, cpu); 267 268 arraylen = cpu->cpreg_array_len; 269 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 270 cpu->cpreg_values = g_new(uint64_t, arraylen); 271 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 272 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 273 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 274 cpu->cpreg_array_len = 0; 275 276 g_list_foreach(keys, add_cpreg_to_list, cpu); 277 278 assert(cpu->cpreg_array_len == arraylen); 279 280 g_list_free(keys); 281 } 282 283 /* 284 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 285 */ 286 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (!is_a64(env) && arm_current_el(env) == 3 && 291 arm_is_secure_below_el3(env)) { 292 return CP_ACCESS_TRAP_UNCATEGORIZED; 293 } 294 return CP_ACCESS_OK; 295 } 296 297 /* Some secure-only AArch32 registers trap to EL3 if used from 298 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 299 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 300 * We assume that the .access field is set to PL1_RW. 301 */ 302 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 303 const ARMCPRegInfo *ri, 304 bool isread) 305 { 306 if (arm_current_el(env) == 3) { 307 return CP_ACCESS_OK; 308 } 309 if (arm_is_secure_below_el3(env)) { 310 if (env->cp15.scr_el3 & SCR_EEL2) { 311 return CP_ACCESS_TRAP_EL2; 312 } 313 return CP_ACCESS_TRAP_EL3; 314 } 315 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 316 return CP_ACCESS_TRAP_UNCATEGORIZED; 317 } 318 319 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 320 { 321 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 322 } 323 324 /* Check for traps to "powerdown debug" registers, which are controlled 325 * by MDCR.TDOSA 326 */ 327 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 328 bool isread) 329 { 330 int el = arm_current_el(env); 331 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 332 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 333 (arm_hcr_el2_eff(env) & HCR_TGE); 334 335 if (el < 2 && mdcr_el2_tdosa) { 336 return CP_ACCESS_TRAP_EL2; 337 } 338 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 339 return CP_ACCESS_TRAP_EL3; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps to "debug ROM" registers, which are controlled 345 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 346 */ 347 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 348 bool isread) 349 { 350 int el = arm_current_el(env); 351 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 352 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 353 (arm_hcr_el2_eff(env) & HCR_TGE); 354 355 if (el < 2 && mdcr_el2_tdra) { 356 return CP_ACCESS_TRAP_EL2; 357 } 358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 359 return CP_ACCESS_TRAP_EL3; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps to general debug registers, which are controlled 365 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 366 */ 367 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 368 bool isread) 369 { 370 int el = arm_current_el(env); 371 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 372 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 373 (arm_hcr_el2_eff(env) & HCR_TGE); 374 375 if (el < 2 && mdcr_el2_tda) { 376 return CP_ACCESS_TRAP_EL2; 377 } 378 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 379 return CP_ACCESS_TRAP_EL3; 380 } 381 return CP_ACCESS_OK; 382 } 383 384 /* Check for traps to performance monitor registers, which are controlled 385 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 386 */ 387 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 388 bool isread) 389 { 390 int el = arm_current_el(env); 391 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 392 393 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 394 return CP_ACCESS_TRAP_EL2; 395 } 396 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 397 return CP_ACCESS_TRAP_EL3; 398 } 399 return CP_ACCESS_OK; 400 } 401 402 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 403 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 404 bool isread) 405 { 406 if (arm_current_el(env) == 1) { 407 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 408 if (arm_hcr_el2_eff(env) & trap) { 409 return CP_ACCESS_TRAP_EL2; 410 } 411 } 412 return CP_ACCESS_OK; 413 } 414 415 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 416 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 417 bool isread) 418 { 419 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 426 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 430 return CP_ACCESS_TRAP_EL2; 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 436 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 437 bool isread) 438 { 439 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 440 return CP_ACCESS_TRAP_EL2; 441 } 442 return CP_ACCESS_OK; 443 } 444 445 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 446 { 447 ARMCPU *cpu = env_archcpu(env); 448 449 raw_write(env, ri, value); 450 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 451 } 452 453 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 454 { 455 ARMCPU *cpu = env_archcpu(env); 456 457 if (raw_read(env, ri) != value) { 458 /* Unlike real hardware the qemu TLB uses virtual addresses, 459 * not modified virtual addresses, so this causes a TLB flush. 460 */ 461 tlb_flush(CPU(cpu)); 462 raw_write(env, ri, value); 463 } 464 } 465 466 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 467 uint64_t value) 468 { 469 ARMCPU *cpu = env_archcpu(env); 470 471 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 472 && !extended_addresses_enabled(env)) { 473 /* For VMSA (when not using the LPAE long descriptor page table 474 * format) this register includes the ASID, so do a TLB flush. 475 * For PMSA it is purely a process ID and no action is needed. 476 */ 477 tlb_flush(CPU(cpu)); 478 } 479 raw_write(env, ri, value); 480 } 481 482 /* IS variants of TLB operations must affect all cores */ 483 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 CPUState *cs = env_cpu(env); 487 488 tlb_flush_all_cpus_synced(cs); 489 } 490 491 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 492 uint64_t value) 493 { 494 CPUState *cs = env_cpu(env); 495 496 tlb_flush_all_cpus_synced(cs); 497 } 498 499 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 505 } 506 507 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 508 uint64_t value) 509 { 510 CPUState *cs = env_cpu(env); 511 512 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 513 } 514 515 /* 516 * Non-IS variants of TLB operations are upgraded to 517 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 518 * force broadcast of these operations. 519 */ 520 static bool tlb_force_broadcast(CPUARMState *env) 521 { 522 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 523 } 524 525 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate all (TLBIALL) */ 529 CPUState *cs = env_cpu(env); 530 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_all_cpus_synced(cs); 533 } else { 534 tlb_flush(cs); 535 } 536 } 537 538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 542 CPUState *cs = env_cpu(env); 543 544 value &= TARGET_PAGE_MASK; 545 if (tlb_force_broadcast(env)) { 546 tlb_flush_page_all_cpus_synced(cs, value); 547 } else { 548 tlb_flush_page(cs, value); 549 } 550 } 551 552 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 /* Invalidate by ASID (TLBIASID) */ 556 CPUState *cs = env_cpu(env); 557 558 if (tlb_force_broadcast(env)) { 559 tlb_flush_all_cpus_synced(cs); 560 } else { 561 tlb_flush(cs); 562 } 563 } 564 565 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 569 CPUState *cs = env_cpu(env); 570 571 value &= TARGET_PAGE_MASK; 572 if (tlb_force_broadcast(env)) { 573 tlb_flush_page_all_cpus_synced(cs, value); 574 } else { 575 tlb_flush_page(cs, value); 576 } 577 } 578 579 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 CPUState *cs = env_cpu(env); 583 584 tlb_flush_by_mmuidx(cs, 585 ARMMMUIdxBit_E10_1 | 586 ARMMMUIdxBit_E10_1_PAN | 587 ARMMMUIdxBit_E10_0); 588 } 589 590 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 CPUState *cs = env_cpu(env); 594 595 tlb_flush_by_mmuidx_all_cpus_synced(cs, 596 ARMMMUIdxBit_E10_1 | 597 ARMMMUIdxBit_E10_1_PAN | 598 ARMMMUIdxBit_E10_0); 599 } 600 601 602 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 603 uint64_t value) 604 { 605 CPUState *cs = env_cpu(env); 606 607 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 608 } 609 610 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 CPUState *cs = env_cpu(env); 614 615 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 616 } 617 618 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 619 uint64_t value) 620 { 621 CPUState *cs = env_cpu(env); 622 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 623 624 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 625 } 626 627 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 CPUState *cs = env_cpu(env); 631 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 632 633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 634 ARMMMUIdxBit_E2); 635 } 636 637 static const ARMCPRegInfo cp_reginfo[] = { 638 /* Define the secure and non-secure FCSE identifier CP registers 639 * separately because there is no secure bank in V8 (no _EL3). This allows 640 * the secure register to be properly reset and migrated. There is also no 641 * v8 EL1 version of the register so the non-secure instance stands alone. 642 */ 643 { .name = "FCSEIDR", 644 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 645 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 646 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 647 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 648 { .name = "FCSEIDR_S", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 /* Define the secure and non-secure context identifier CP registers 654 * separately because there is no secure bank in V8 (no _EL3). This allows 655 * the secure register to be properly reset and migrated. In the 656 * non-secure case, the 32-bit register will have reset and migration 657 * disabled during registration as it is handled by the 64-bit instance. 658 */ 659 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 660 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 661 .access = PL1_RW, .accessfn = access_tvm_trvm, 662 .secure = ARM_CP_SECSTATE_NS, 663 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 664 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 665 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 666 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 667 .access = PL1_RW, .accessfn = access_tvm_trvm, 668 .secure = ARM_CP_SECSTATE_S, 669 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 670 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 671 }; 672 673 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 674 /* NB: Some of these registers exist in v8 but with more precise 675 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 676 */ 677 /* MMU Domain access control / MPU write buffer control */ 678 { .name = "DACR", 679 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 680 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 681 .writefn = dacr_write, .raw_writefn = raw_write, 682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 683 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 684 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 685 * For v6 and v5, these mappings are overly broad. 686 */ 687 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 689 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 690 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 691 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 692 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 /* Cache maintenance ops; some of this space may be overridden later. */ 696 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 697 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 698 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 699 }; 700 701 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 702 /* Not all pre-v6 cores implemented this WFI, so this is slightly 703 * over-broad. 704 */ 705 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 706 .access = PL1_W, .type = ARM_CP_WFI }, 707 }; 708 709 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 710 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 711 * is UNPREDICTABLE; we choose to NOP as most implementations do). 712 */ 713 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 714 .access = PL1_W, .type = ARM_CP_WFI }, 715 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 716 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 717 * OMAPCP will override this space. 718 */ 719 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 720 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 721 .resetvalue = 0 }, 722 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 723 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 724 .resetvalue = 0 }, 725 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 726 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 727 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 728 .resetvalue = 0 }, 729 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 730 * implementing it as RAZ means the "debug architecture version" bits 731 * will read as a reserved value, which should cause Linux to not try 732 * to use the debug hardware. 733 */ 734 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 735 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 736 /* MMU TLB control. Note that the wildcarding means we cover not just 737 * the unified TLB ops but also the dside/iside/inner-shareable variants. 738 */ 739 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 752 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 753 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 754 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 755 }; 756 757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 758 uint64_t value) 759 { 760 uint32_t mask = 0; 761 762 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 763 if (!arm_feature(env, ARM_FEATURE_V8)) { 764 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 765 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 766 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 767 */ 768 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 769 /* VFP coprocessor: cp10 & cp11 [23:20] */ 770 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 771 772 if (!arm_feature(env, ARM_FEATURE_NEON)) { 773 /* ASEDIS [31] bit is RAO/WI */ 774 value |= (1 << 31); 775 } 776 777 /* VFPv3 and upwards with NEON implement 32 double precision 778 * registers (D0-D31). 779 */ 780 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 781 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 782 value |= (1 << 30); 783 } 784 } 785 value &= mask; 786 } 787 788 /* 789 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 790 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 791 */ 792 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 793 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 794 value &= ~(0xf << 20); 795 value |= env->cp15.cpacr_el1 & (0xf << 20); 796 } 797 798 env->cp15.cpacr_el1 = value; 799 } 800 801 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 802 { 803 /* 804 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 805 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 806 */ 807 uint64_t value = env->cp15.cpacr_el1; 808 809 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 810 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 811 value &= ~(0xf << 20); 812 } 813 return value; 814 } 815 816 817 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 818 { 819 /* Call cpacr_write() so that we reset with the correct RAO bits set 820 * for our CPU features. 821 */ 822 cpacr_write(env, ri, 0); 823 } 824 825 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 826 bool isread) 827 { 828 if (arm_feature(env, ARM_FEATURE_V8)) { 829 /* Check if CPACR accesses are to be trapped to EL2 */ 830 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 831 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 832 return CP_ACCESS_TRAP_EL2; 833 /* Check if CPACR accesses are to be trapped to EL3 */ 834 } else if (arm_current_el(env) < 3 && 835 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 836 return CP_ACCESS_TRAP_EL3; 837 } 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 844 bool isread) 845 { 846 /* Check if CPTR accesses are set to trap to EL3 */ 847 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 848 return CP_ACCESS_TRAP_EL3; 849 } 850 851 return CP_ACCESS_OK; 852 } 853 854 static const ARMCPRegInfo v6_cp_reginfo[] = { 855 /* prefetch by MVA in v6, NOP in v7 */ 856 { .name = "MVA_prefetch", 857 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 858 .access = PL1_W, .type = ARM_CP_NOP }, 859 /* We need to break the TB after ISB to execute self-modifying code 860 * correctly and also to take any pending interrupts immediately. 861 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 862 */ 863 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 864 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 865 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 866 .access = PL0_W, .type = ARM_CP_NOP }, 867 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 868 .access = PL0_W, .type = ARM_CP_NOP }, 869 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 870 .access = PL1_RW, .accessfn = access_tvm_trvm, 871 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 872 offsetof(CPUARMState, cp15.ifar_ns) }, 873 .resetvalue = 0, }, 874 /* Watchpoint Fault Address Register : should actually only be present 875 * for 1136, 1176, 11MPCore. 876 */ 877 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 878 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 879 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 880 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 881 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 882 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 883 }; 884 885 typedef struct pm_event { 886 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 887 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 888 bool (*supported)(CPUARMState *); 889 /* 890 * Retrieve the current count of the underlying event. The programmed 891 * counters hold a difference from the return value from this function 892 */ 893 uint64_t (*get_count)(CPUARMState *); 894 /* 895 * Return how many nanoseconds it will take (at a minimum) for count events 896 * to occur. A negative value indicates the counter will never overflow, or 897 * that the counter has otherwise arranged for the overflow bit to be set 898 * and the PMU interrupt to be raised on overflow. 899 */ 900 int64_t (*ns_per_count)(uint64_t); 901 } pm_event; 902 903 static bool event_always_supported(CPUARMState *env) 904 { 905 return true; 906 } 907 908 static uint64_t swinc_get_count(CPUARMState *env) 909 { 910 /* 911 * SW_INCR events are written directly to the pmevcntr's by writes to 912 * PMSWINC, so there is no underlying count maintained by the PMU itself 913 */ 914 return 0; 915 } 916 917 static int64_t swinc_ns_per(uint64_t ignored) 918 { 919 return -1; 920 } 921 922 /* 923 * Return the underlying cycle count for the PMU cycle counters. If we're in 924 * usermode, simply return 0. 925 */ 926 static uint64_t cycles_get_count(CPUARMState *env) 927 { 928 #ifndef CONFIG_USER_ONLY 929 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 #else 932 return cpu_get_host_ticks(); 933 #endif 934 } 935 936 #ifndef CONFIG_USER_ONLY 937 static int64_t cycles_ns_per(uint64_t cycles) 938 { 939 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 940 } 941 942 static bool instructions_supported(CPUARMState *env) 943 { 944 return icount_enabled() == 1; /* Precise instruction counting */ 945 } 946 947 static uint64_t instructions_get_count(CPUARMState *env) 948 { 949 return (uint64_t)icount_get_raw(); 950 } 951 952 static int64_t instructions_ns_per(uint64_t icount) 953 { 954 return icount_to_ns((int64_t)icount); 955 } 956 #endif 957 958 static bool pmu_8_1_events_supported(CPUARMState *env) 959 { 960 /* For events which are supported in any v8.1 PMU */ 961 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 962 } 963 964 static bool pmu_8_4_events_supported(CPUARMState *env) 965 { 966 /* For events which are supported in any v8.1 PMU */ 967 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 968 } 969 970 static uint64_t zero_event_get_count(CPUARMState *env) 971 { 972 /* For events which on QEMU never fire, so their count is always zero */ 973 return 0; 974 } 975 976 static int64_t zero_event_ns_per(uint64_t cycles) 977 { 978 /* An event which never fires can never overflow */ 979 return -1; 980 } 981 982 static const pm_event pm_events[] = { 983 { .number = 0x000, /* SW_INCR */ 984 .supported = event_always_supported, 985 .get_count = swinc_get_count, 986 .ns_per_count = swinc_ns_per, 987 }, 988 #ifndef CONFIG_USER_ONLY 989 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 990 .supported = instructions_supported, 991 .get_count = instructions_get_count, 992 .ns_per_count = instructions_ns_per, 993 }, 994 { .number = 0x011, /* CPU_CYCLES, Cycle */ 995 .supported = event_always_supported, 996 .get_count = cycles_get_count, 997 .ns_per_count = cycles_ns_per, 998 }, 999 #endif 1000 { .number = 0x023, /* STALL_FRONTEND */ 1001 .supported = pmu_8_1_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 { .number = 0x024, /* STALL_BACKEND */ 1006 .supported = pmu_8_1_events_supported, 1007 .get_count = zero_event_get_count, 1008 .ns_per_count = zero_event_ns_per, 1009 }, 1010 { .number = 0x03c, /* STALL */ 1011 .supported = pmu_8_4_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 }; 1016 1017 /* 1018 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1019 * events (i.e. the statistical profiling extension), this implementation 1020 * should first be updated to something sparse instead of the current 1021 * supported_event_map[] array. 1022 */ 1023 #define MAX_EVENT_ID 0x3c 1024 #define UNSUPPORTED_EVENT UINT16_MAX 1025 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1026 1027 /* 1028 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1029 * of ARM event numbers to indices in our pm_events array. 1030 * 1031 * Note: Events in the 0x40XX range are not currently supported. 1032 */ 1033 void pmu_init(ARMCPU *cpu) 1034 { 1035 unsigned int i; 1036 1037 /* 1038 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1039 * events to them 1040 */ 1041 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1042 supported_event_map[i] = UNSUPPORTED_EVENT; 1043 } 1044 cpu->pmceid0 = 0; 1045 cpu->pmceid1 = 0; 1046 1047 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1048 const pm_event *cnt = &pm_events[i]; 1049 assert(cnt->number <= MAX_EVENT_ID); 1050 /* We do not currently support events in the 0x40xx range */ 1051 assert(cnt->number <= 0x3f); 1052 1053 if (cnt->supported(&cpu->env)) { 1054 supported_event_map[cnt->number] = i; 1055 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1056 if (cnt->number & 0x20) { 1057 cpu->pmceid1 |= event_mask; 1058 } else { 1059 cpu->pmceid0 |= event_mask; 1060 } 1061 } 1062 } 1063 } 1064 1065 /* 1066 * Check at runtime whether a PMU event is supported for the current machine 1067 */ 1068 static bool event_supported(uint16_t number) 1069 { 1070 if (number > MAX_EVENT_ID) { 1071 return false; 1072 } 1073 return supported_event_map[number] != UNSUPPORTED_EVENT; 1074 } 1075 1076 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1077 bool isread) 1078 { 1079 /* Performance monitor registers user accessibility is controlled 1080 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1081 * trapping to EL2 or EL3 for other accesses. 1082 */ 1083 int el = arm_current_el(env); 1084 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1085 1086 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1087 return CP_ACCESS_TRAP; 1088 } 1089 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1090 return CP_ACCESS_TRAP_EL2; 1091 } 1092 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1093 return CP_ACCESS_TRAP_EL3; 1094 } 1095 1096 return CP_ACCESS_OK; 1097 } 1098 1099 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1100 const ARMCPRegInfo *ri, 1101 bool isread) 1102 { 1103 /* ER: event counter read trap control */ 1104 if (arm_feature(env, ARM_FEATURE_V8) 1105 && arm_current_el(env) == 0 1106 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1107 && isread) { 1108 return CP_ACCESS_OK; 1109 } 1110 1111 return pmreg_access(env, ri, isread); 1112 } 1113 1114 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1115 const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* SW: software increment write trap control */ 1119 if (arm_feature(env, ARM_FEATURE_V8) 1120 && arm_current_el(env) == 0 1121 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1122 && !isread) { 1123 return CP_ACCESS_OK; 1124 } 1125 1126 return pmreg_access(env, ri, isread); 1127 } 1128 1129 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1130 const ARMCPRegInfo *ri, 1131 bool isread) 1132 { 1133 /* ER: event counter read trap control */ 1134 if (arm_feature(env, ARM_FEATURE_V8) 1135 && arm_current_el(env) == 0 1136 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1137 return CP_ACCESS_OK; 1138 } 1139 1140 return pmreg_access(env, ri, isread); 1141 } 1142 1143 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1144 const ARMCPRegInfo *ri, 1145 bool isread) 1146 { 1147 /* CR: cycle counter read trap control */ 1148 if (arm_feature(env, ARM_FEATURE_V8) 1149 && arm_current_el(env) == 0 1150 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1151 && isread) { 1152 return CP_ACCESS_OK; 1153 } 1154 1155 return pmreg_access(env, ri, isread); 1156 } 1157 1158 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1159 * the current EL, security state, and register configuration. 1160 */ 1161 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1162 { 1163 uint64_t filter; 1164 bool e, p, u, nsk, nsu, nsh, m; 1165 bool enabled, prohibited, filtered; 1166 bool secure = arm_is_secure(env); 1167 int el = arm_current_el(env); 1168 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1169 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1170 1171 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1172 return false; 1173 } 1174 1175 if (!arm_feature(env, ARM_FEATURE_EL2) || 1176 (counter < hpmn || counter == 31)) { 1177 e = env->cp15.c9_pmcr & PMCRE; 1178 } else { 1179 e = mdcr_el2 & MDCR_HPME; 1180 } 1181 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1182 1183 if (!secure) { 1184 if (el == 2 && (counter < hpmn || counter == 31)) { 1185 prohibited = mdcr_el2 & MDCR_HPMD; 1186 } else { 1187 prohibited = false; 1188 } 1189 } else { 1190 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1191 !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (prohibited && counter == 31) { 1195 prohibited = env->cp15.c9_pmcr & PMCRDP; 1196 } 1197 1198 if (counter == 31) { 1199 filter = env->cp15.pmccfiltr_el0; 1200 } else { 1201 filter = env->cp15.c14_pmevtyper[counter]; 1202 } 1203 1204 p = filter & PMXEVTYPER_P; 1205 u = filter & PMXEVTYPER_U; 1206 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1207 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1208 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1209 m = arm_el_is_aa64(env, 1) && 1210 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1211 1212 if (el == 0) { 1213 filtered = secure ? u : u != nsu; 1214 } else if (el == 1) { 1215 filtered = secure ? p : p != nsk; 1216 } else if (el == 2) { 1217 filtered = !nsh; 1218 } else { /* EL3 */ 1219 filtered = m != p; 1220 } 1221 1222 if (counter != 31) { 1223 /* 1224 * If not checking PMCCNTR, ensure the counter is setup to an event we 1225 * support 1226 */ 1227 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1228 if (!event_supported(event)) { 1229 return false; 1230 } 1231 } 1232 1233 return enabled && !prohibited && !filtered; 1234 } 1235 1236 static void pmu_update_irq(CPUARMState *env) 1237 { 1238 ARMCPU *cpu = env_archcpu(env); 1239 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1240 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1241 } 1242 1243 /* 1244 * Ensure c15_ccnt is the guest-visible count so that operations such as 1245 * enabling/disabling the counter or filtering, modifying the count itself, 1246 * etc. can be done logically. This is essentially a no-op if the counter is 1247 * not enabled at the time of the call. 1248 */ 1249 static void pmccntr_op_start(CPUARMState *env) 1250 { 1251 uint64_t cycles = cycles_get_count(env); 1252 1253 if (pmu_counter_enabled(env, 31)) { 1254 uint64_t eff_cycles = cycles; 1255 if (env->cp15.c9_pmcr & PMCRD) { 1256 /* Increment once every 64 processor clock cycles */ 1257 eff_cycles /= 64; 1258 } 1259 1260 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1261 1262 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1263 1ull << 63 : 1ull << 31; 1264 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1265 env->cp15.c9_pmovsr |= (1 << 31); 1266 pmu_update_irq(env); 1267 } 1268 1269 env->cp15.c15_ccnt = new_pmccntr; 1270 } 1271 env->cp15.c15_ccnt_delta = cycles; 1272 } 1273 1274 /* 1275 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1276 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1277 * pmccntr_op_start. 1278 */ 1279 static void pmccntr_op_finish(CPUARMState *env) 1280 { 1281 if (pmu_counter_enabled(env, 31)) { 1282 #ifndef CONFIG_USER_ONLY 1283 /* Calculate when the counter will next overflow */ 1284 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1285 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1286 remaining_cycles = (uint32_t)remaining_cycles; 1287 } 1288 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1289 1290 if (overflow_in > 0) { 1291 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1292 overflow_in; 1293 ARMCPU *cpu = env_archcpu(env); 1294 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1295 } 1296 #endif 1297 1298 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1299 if (env->cp15.c9_pmcr & PMCRD) { 1300 /* Increment once every 64 processor clock cycles */ 1301 prev_cycles /= 64; 1302 } 1303 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1304 } 1305 } 1306 1307 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1308 { 1309 1310 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1311 uint64_t count = 0; 1312 if (event_supported(event)) { 1313 uint16_t event_idx = supported_event_map[event]; 1314 count = pm_events[event_idx].get_count(env); 1315 } 1316 1317 if (pmu_counter_enabled(env, counter)) { 1318 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1319 1320 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1321 env->cp15.c9_pmovsr |= (1 << counter); 1322 pmu_update_irq(env); 1323 } 1324 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1325 } 1326 env->cp15.c14_pmevcntr_delta[counter] = count; 1327 } 1328 1329 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1330 { 1331 if (pmu_counter_enabled(env, counter)) { 1332 #ifndef CONFIG_USER_ONLY 1333 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1334 uint16_t event_idx = supported_event_map[event]; 1335 uint64_t delta = UINT32_MAX - 1336 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1337 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1341 overflow_in; 1342 ARMCPU *cpu = env_archcpu(env); 1343 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1344 } 1345 #endif 1346 1347 env->cp15.c14_pmevcntr_delta[counter] -= 1348 env->cp15.c14_pmevcntr[counter]; 1349 } 1350 } 1351 1352 void pmu_op_start(CPUARMState *env) 1353 { 1354 unsigned int i; 1355 pmccntr_op_start(env); 1356 for (i = 0; i < pmu_num_counters(env); i++) { 1357 pmevcntr_op_start(env, i); 1358 } 1359 } 1360 1361 void pmu_op_finish(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_finish(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_finish(env, i); 1367 } 1368 } 1369 1370 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1371 { 1372 pmu_op_start(&cpu->env); 1373 } 1374 1375 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1376 { 1377 pmu_op_finish(&cpu->env); 1378 } 1379 1380 void arm_pmu_timer_cb(void *opaque) 1381 { 1382 ARMCPU *cpu = opaque; 1383 1384 /* 1385 * Update all the counter values based on the current underlying counts, 1386 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1387 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1388 * counter may expire. 1389 */ 1390 pmu_op_start(&cpu->env); 1391 pmu_op_finish(&cpu->env); 1392 } 1393 1394 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1395 uint64_t value) 1396 { 1397 pmu_op_start(env); 1398 1399 if (value & PMCRC) { 1400 /* The counter has been reset */ 1401 env->cp15.c15_ccnt = 0; 1402 } 1403 1404 if (value & PMCRP) { 1405 unsigned int i; 1406 for (i = 0; i < pmu_num_counters(env); i++) { 1407 env->cp15.c14_pmevcntr[i] = 0; 1408 } 1409 } 1410 1411 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1412 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1413 1414 pmu_op_finish(env); 1415 } 1416 1417 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1418 uint64_t value) 1419 { 1420 unsigned int i; 1421 for (i = 0; i < pmu_num_counters(env); i++) { 1422 /* Increment a counter's count iff: */ 1423 if ((value & (1 << i)) && /* counter's bit is set */ 1424 /* counter is enabled and not filtered */ 1425 pmu_counter_enabled(env, i) && 1426 /* counter is SW_INCR */ 1427 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1428 pmevcntr_op_start(env, i); 1429 1430 /* 1431 * Detect if this write causes an overflow since we can't predict 1432 * PMSWINC overflows like we can for other events 1433 */ 1434 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1435 1436 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1437 env->cp15.c9_pmovsr |= (1 << i); 1438 pmu_update_irq(env); 1439 } 1440 1441 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1442 1443 pmevcntr_op_finish(env, i); 1444 } 1445 } 1446 } 1447 1448 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1449 { 1450 uint64_t ret; 1451 pmccntr_op_start(env); 1452 ret = env->cp15.c15_ccnt; 1453 pmccntr_op_finish(env); 1454 return ret; 1455 } 1456 1457 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1458 uint64_t value) 1459 { 1460 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1461 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1462 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1463 * accessed. 1464 */ 1465 env->cp15.c9_pmselr = value & 0x1f; 1466 } 1467 1468 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1469 uint64_t value) 1470 { 1471 pmccntr_op_start(env); 1472 env->cp15.c15_ccnt = value; 1473 pmccntr_op_finish(env); 1474 } 1475 1476 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 uint64_t cur_val = pmccntr_read(env, NULL); 1480 1481 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1482 } 1483 1484 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 pmccntr_op_start(env); 1488 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1489 pmccntr_op_finish(env); 1490 } 1491 1492 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 pmccntr_op_start(env); 1496 /* M is not accessible from AArch32 */ 1497 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1498 (value & PMCCFILTR); 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1503 { 1504 /* M is not visible in AArch32 */ 1505 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1506 } 1507 1508 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1509 uint64_t value) 1510 { 1511 value &= pmu_counter_mask(env); 1512 env->cp15.c9_pmcnten |= value; 1513 } 1514 1515 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1516 uint64_t value) 1517 { 1518 value &= pmu_counter_mask(env); 1519 env->cp15.c9_pmcnten &= ~value; 1520 } 1521 1522 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 value &= pmu_counter_mask(env); 1526 env->cp15.c9_pmovsr &= ~value; 1527 pmu_update_irq(env); 1528 } 1529 1530 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 value &= pmu_counter_mask(env); 1534 env->cp15.c9_pmovsr |= value; 1535 pmu_update_irq(env); 1536 } 1537 1538 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value, const uint8_t counter) 1540 { 1541 if (counter == 31) { 1542 pmccfiltr_write(env, ri, value); 1543 } else if (counter < pmu_num_counters(env)) { 1544 pmevcntr_op_start(env, counter); 1545 1546 /* 1547 * If this counter's event type is changing, store the current 1548 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1549 * pmevcntr_op_finish has the correct baseline when it converts back to 1550 * a delta. 1551 */ 1552 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1553 PMXEVTYPER_EVTCOUNT; 1554 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1555 if (old_event != new_event) { 1556 uint64_t count = 0; 1557 if (event_supported(new_event)) { 1558 uint16_t event_idx = supported_event_map[new_event]; 1559 count = pm_events[event_idx].get_count(env); 1560 } 1561 env->cp15.c14_pmevcntr_delta[counter] = count; 1562 } 1563 1564 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1565 pmevcntr_op_finish(env, counter); 1566 } 1567 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1568 * PMSELR value is equal to or greater than the number of implemented 1569 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1570 */ 1571 } 1572 1573 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1574 const uint8_t counter) 1575 { 1576 if (counter == 31) { 1577 return env->cp15.pmccfiltr_el0; 1578 } else if (counter < pmu_num_counters(env)) { 1579 return env->cp15.c14_pmevtyper[counter]; 1580 } else { 1581 /* 1582 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1583 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1584 */ 1585 return 0; 1586 } 1587 } 1588 1589 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1593 pmevtyper_write(env, ri, value, counter); 1594 } 1595 1596 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1597 uint64_t value) 1598 { 1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1600 env->cp15.c14_pmevtyper[counter] = value; 1601 1602 /* 1603 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1604 * pmu_op_finish calls when loading saved state for a migration. Because 1605 * we're potentially updating the type of event here, the value written to 1606 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1607 * different counter type. Therefore, we need to set this value to the 1608 * current count for the counter type we're writing so that pmu_op_finish 1609 * has the correct count for its calculation. 1610 */ 1611 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1612 if (event_supported(event)) { 1613 uint16_t event_idx = supported_event_map[event]; 1614 env->cp15.c14_pmevcntr_delta[counter] = 1615 pm_events[event_idx].get_count(env); 1616 } 1617 } 1618 1619 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1620 { 1621 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1622 return pmevtyper_read(env, ri, counter); 1623 } 1624 1625 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value) 1627 { 1628 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1629 } 1630 1631 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1634 } 1635 1636 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1637 uint64_t value, uint8_t counter) 1638 { 1639 if (counter < pmu_num_counters(env)) { 1640 pmevcntr_op_start(env, counter); 1641 env->cp15.c14_pmevcntr[counter] = value; 1642 pmevcntr_op_finish(env, counter); 1643 } 1644 /* 1645 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1646 * are CONSTRAINED UNPREDICTABLE. 1647 */ 1648 } 1649 1650 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1651 uint8_t counter) 1652 { 1653 if (counter < pmu_num_counters(env)) { 1654 uint64_t ret; 1655 pmevcntr_op_start(env, counter); 1656 ret = env->cp15.c14_pmevcntr[counter]; 1657 pmevcntr_op_finish(env, counter); 1658 return ret; 1659 } else { 1660 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1661 * are CONSTRAINED UNPREDICTABLE. */ 1662 return 0; 1663 } 1664 } 1665 1666 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1667 uint64_t value) 1668 { 1669 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1670 pmevcntr_write(env, ri, value, counter); 1671 } 1672 1673 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1674 { 1675 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1676 return pmevcntr_read(env, ri, counter); 1677 } 1678 1679 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1680 uint64_t value) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 assert(counter < pmu_num_counters(env)); 1684 env->cp15.c14_pmevcntr[counter] = value; 1685 pmevcntr_write(env, ri, value, counter); 1686 } 1687 1688 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 assert(counter < pmu_num_counters(env)); 1692 return env->cp15.c14_pmevcntr[counter]; 1693 } 1694 1695 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1696 uint64_t value) 1697 { 1698 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1699 } 1700 1701 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1702 { 1703 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1704 } 1705 1706 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 if (arm_feature(env, ARM_FEATURE_V8)) { 1710 env->cp15.c9_pmuserenr = value & 0xf; 1711 } else { 1712 env->cp15.c9_pmuserenr = value & 1; 1713 } 1714 } 1715 1716 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 /* We have no event counters so only the C bit can be changed */ 1720 value &= pmu_counter_mask(env); 1721 env->cp15.c9_pminten |= value; 1722 pmu_update_irq(env); 1723 } 1724 1725 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 value &= pmu_counter_mask(env); 1729 env->cp15.c9_pminten &= ~value; 1730 pmu_update_irq(env); 1731 } 1732 1733 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* Note that even though the AArch64 view of this register has bits 1737 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1738 * architectural requirements for bits which are RES0 only in some 1739 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1740 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1741 */ 1742 raw_write(env, ri, value & ~0x1FULL); 1743 } 1744 1745 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1746 { 1747 /* Begin with base v8.0 state. */ 1748 uint32_t valid_mask = 0x3fff; 1749 ARMCPU *cpu = env_archcpu(env); 1750 1751 if (ri->state == ARM_CP_STATE_AA64) { 1752 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1753 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1754 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1755 } 1756 valid_mask &= ~SCR_NET; 1757 1758 if (cpu_isar_feature(aa64_ras, cpu)) { 1759 valid_mask |= SCR_TERR; 1760 } 1761 if (cpu_isar_feature(aa64_lor, cpu)) { 1762 valid_mask |= SCR_TLOR; 1763 } 1764 if (cpu_isar_feature(aa64_pauth, cpu)) { 1765 valid_mask |= SCR_API | SCR_APK; 1766 } 1767 if (cpu_isar_feature(aa64_sel2, cpu)) { 1768 valid_mask |= SCR_EEL2; 1769 } 1770 if (cpu_isar_feature(aa64_mte, cpu)) { 1771 valid_mask |= SCR_ATA; 1772 } 1773 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1774 valid_mask |= SCR_ENSCXT; 1775 } 1776 } else { 1777 valid_mask &= ~(SCR_RW | SCR_ST); 1778 if (cpu_isar_feature(aa32_ras, cpu)) { 1779 valid_mask |= SCR_TERR; 1780 } 1781 } 1782 1783 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1784 valid_mask &= ~SCR_HCE; 1785 1786 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1787 * supported if EL2 exists. The bit is UNK/SBZP when 1788 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1789 * when EL2 is unavailable. 1790 * On ARMv8, this bit is always available. 1791 */ 1792 if (arm_feature(env, ARM_FEATURE_V7) && 1793 !arm_feature(env, ARM_FEATURE_V8)) { 1794 valid_mask &= ~SCR_SMD; 1795 } 1796 } 1797 1798 /* Clear all-context RES0 bits. */ 1799 value &= valid_mask; 1800 raw_write(env, ri, value); 1801 } 1802 1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1804 { 1805 /* 1806 * scr_write will set the RES1 bits on an AArch64-only CPU. 1807 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1808 */ 1809 scr_write(env, ri, 0); 1810 } 1811 1812 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1813 const ARMCPRegInfo *ri, 1814 bool isread) 1815 { 1816 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1817 return CP_ACCESS_TRAP_EL2; 1818 } 1819 1820 return CP_ACCESS_OK; 1821 } 1822 1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1824 { 1825 ARMCPU *cpu = env_archcpu(env); 1826 1827 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1828 * bank 1829 */ 1830 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1831 ri->secure & ARM_CP_SECSTATE_S); 1832 1833 return cpu->ccsidr[index]; 1834 } 1835 1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1837 uint64_t value) 1838 { 1839 raw_write(env, ri, value & 0xf); 1840 } 1841 1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1843 { 1844 CPUState *cs = env_cpu(env); 1845 bool el1 = arm_current_el(env) == 1; 1846 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1847 uint64_t ret = 0; 1848 1849 if (hcr_el2 & HCR_IMO) { 1850 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1851 ret |= CPSR_I; 1852 } 1853 } else { 1854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1855 ret |= CPSR_I; 1856 } 1857 } 1858 1859 if (hcr_el2 & HCR_FMO) { 1860 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1861 ret |= CPSR_F; 1862 } 1863 } else { 1864 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1865 ret |= CPSR_F; 1866 } 1867 } 1868 1869 if (hcr_el2 & HCR_AMO) { 1870 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1871 ret |= CPSR_A; 1872 } 1873 } 1874 1875 return ret; 1876 } 1877 1878 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1879 bool isread) 1880 { 1881 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1882 return CP_ACCESS_TRAP_EL2; 1883 } 1884 1885 return CP_ACCESS_OK; 1886 } 1887 1888 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1889 bool isread) 1890 { 1891 if (arm_feature(env, ARM_FEATURE_V8)) { 1892 return access_aa64_tid1(env, ri, isread); 1893 } 1894 1895 return CP_ACCESS_OK; 1896 } 1897 1898 static const ARMCPRegInfo v7_cp_reginfo[] = { 1899 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1900 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1901 .access = PL1_W, .type = ARM_CP_NOP }, 1902 /* Performance monitors are implementation defined in v7, 1903 * but with an ARM recommended set of registers, which we 1904 * follow. 1905 * 1906 * Performance registers fall into three categories: 1907 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1908 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1909 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1910 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1911 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1912 */ 1913 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1914 .access = PL0_RW, .type = ARM_CP_ALIAS, 1915 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1916 .writefn = pmcntenset_write, 1917 .accessfn = pmreg_access, 1918 .raw_writefn = raw_write }, 1919 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1920 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1921 .access = PL0_RW, .accessfn = pmreg_access, 1922 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1923 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1924 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1925 .access = PL0_RW, 1926 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1927 .accessfn = pmreg_access, 1928 .writefn = pmcntenclr_write, 1929 .type = ARM_CP_ALIAS }, 1930 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1931 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1932 .access = PL0_RW, .accessfn = pmreg_access, 1933 .type = ARM_CP_ALIAS, 1934 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1935 .writefn = pmcntenclr_write }, 1936 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1937 .access = PL0_RW, .type = ARM_CP_IO, 1938 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1939 .accessfn = pmreg_access, 1940 .writefn = pmovsr_write, 1941 .raw_writefn = raw_write }, 1942 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1944 .access = PL0_RW, .accessfn = pmreg_access, 1945 .type = ARM_CP_ALIAS | ARM_CP_IO, 1946 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1947 .writefn = pmovsr_write, 1948 .raw_writefn = raw_write }, 1949 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1950 .access = PL0_W, .accessfn = pmreg_access_swinc, 1951 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1952 .writefn = pmswinc_write }, 1953 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1955 .access = PL0_W, .accessfn = pmreg_access_swinc, 1956 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1957 .writefn = pmswinc_write }, 1958 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1959 .access = PL0_RW, .type = ARM_CP_ALIAS, 1960 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1961 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1962 .raw_writefn = raw_write}, 1963 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1964 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1965 .access = PL0_RW, .accessfn = pmreg_access_selr, 1966 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1967 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1968 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1969 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1970 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1971 .accessfn = pmreg_access_ccntr }, 1972 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1973 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1974 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1975 .type = ARM_CP_IO, 1976 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1977 .readfn = pmccntr_read, .writefn = pmccntr_write, 1978 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1979 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1980 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1981 .access = PL0_RW, .accessfn = pmreg_access, 1982 .type = ARM_CP_ALIAS | ARM_CP_IO, 1983 .resetvalue = 0, }, 1984 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1986 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1987 .access = PL0_RW, .accessfn = pmreg_access, 1988 .type = ARM_CP_IO, 1989 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1990 .resetvalue = 0, }, 1991 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access, 1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1995 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access, 1999 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2000 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2002 .accessfn = pmreg_access_xevcntr, 2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2004 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2006 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2007 .accessfn = pmreg_access_xevcntr, 2008 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2009 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2010 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2011 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2012 .resetvalue = 0, 2013 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2014 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2015 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2016 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2017 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2018 .resetvalue = 0, 2019 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2020 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2021 .access = PL1_RW, .accessfn = access_tpm, 2022 .type = ARM_CP_ALIAS | ARM_CP_IO, 2023 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2024 .resetvalue = 0, 2025 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2026 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2027 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2028 .access = PL1_RW, .accessfn = access_tpm, 2029 .type = ARM_CP_IO, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2031 .writefn = pmintenset_write, .raw_writefn = raw_write, 2032 .resetvalue = 0x0 }, 2033 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2034 .access = PL1_RW, .accessfn = access_tpm, 2035 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2037 .writefn = pmintenclr_write, }, 2038 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2039 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2040 .access = PL1_RW, .accessfn = access_tpm, 2041 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2042 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2043 .writefn = pmintenclr_write }, 2044 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2046 .access = PL1_R, 2047 .accessfn = access_aa64_tid2, 2048 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2049 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2050 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2051 .access = PL1_RW, 2052 .accessfn = access_aa64_tid2, 2053 .writefn = csselr_write, .resetvalue = 0, 2054 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2055 offsetof(CPUARMState, cp15.csselr_ns) } }, 2056 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2057 * just RAZ for all cores: 2058 */ 2059 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2060 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2061 .access = PL1_R, .type = ARM_CP_CONST, 2062 .accessfn = access_aa64_tid1, 2063 .resetvalue = 0 }, 2064 /* Auxiliary fault status registers: these also are IMPDEF, and we 2065 * choose to RAZ/WI for all cores. 2066 */ 2067 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2072 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2073 .access = PL1_RW, .accessfn = access_tvm_trvm, 2074 .type = ARM_CP_CONST, .resetvalue = 0 }, 2075 /* MAIR can just read-as-written because we don't implement caches 2076 * and so don't need to care about memory attributes. 2077 */ 2078 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2080 .access = PL1_RW, .accessfn = access_tvm_trvm, 2081 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2082 .resetvalue = 0 }, 2083 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2084 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2085 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2086 .resetvalue = 0 }, 2087 /* For non-long-descriptor page tables these are PRRR and NMRR; 2088 * regardless they still act as reads-as-written for QEMU. 2089 */ 2090 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2091 * allows them to assign the correct fieldoffset based on the endianness 2092 * handled in the field definitions. 2093 */ 2094 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2095 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2096 .access = PL1_RW, .accessfn = access_tvm_trvm, 2097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2098 offsetof(CPUARMState, cp15.mair0_ns) }, 2099 .resetfn = arm_cp_reset_ignore }, 2100 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2101 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2102 .access = PL1_RW, .accessfn = access_tvm_trvm, 2103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2104 offsetof(CPUARMState, cp15.mair1_ns) }, 2105 .resetfn = arm_cp_reset_ignore }, 2106 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2108 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2109 /* 32 bit ITLB invalidates */ 2110 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2111 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2112 .writefn = tlbiall_write }, 2113 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2114 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2115 .writefn = tlbimva_write }, 2116 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiasid_write }, 2119 /* 32 bit DTLB invalidates */ 2120 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2121 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2122 .writefn = tlbiall_write }, 2123 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2124 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2125 .writefn = tlbimva_write }, 2126 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiasid_write }, 2129 /* 32 bit TLB invalidates */ 2130 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2132 .writefn = tlbiall_write }, 2133 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2135 .writefn = tlbimva_write }, 2136 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2138 .writefn = tlbiasid_write }, 2139 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2141 .writefn = tlbimvaa_write }, 2142 }; 2143 2144 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2145 /* 32 bit TLB invalidates, Inner Shareable */ 2146 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbiall_is_write }, 2149 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbimva_is_write }, 2152 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbiasid_is_write }, 2155 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2157 .writefn = tlbimvaa_is_write }, 2158 }; 2159 2160 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2161 /* PMOVSSET is not implemented in v7 before v7ve */ 2162 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2163 .access = PL0_RW, .accessfn = pmreg_access, 2164 .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2166 .writefn = pmovsset_write, 2167 .raw_writefn = raw_write }, 2168 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2170 .access = PL0_RW, .accessfn = pmreg_access, 2171 .type = ARM_CP_ALIAS | ARM_CP_IO, 2172 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2173 .writefn = pmovsset_write, 2174 .raw_writefn = raw_write }, 2175 }; 2176 2177 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2178 uint64_t value) 2179 { 2180 value &= 1; 2181 env->teecr = value; 2182 } 2183 2184 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2185 bool isread) 2186 { 2187 /* 2188 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2189 * at all, so we don't need to check whether we're v8A. 2190 */ 2191 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2192 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2193 return CP_ACCESS_TRAP_EL2; 2194 } 2195 return CP_ACCESS_OK; 2196 } 2197 2198 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2199 bool isread) 2200 { 2201 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2202 return CP_ACCESS_TRAP; 2203 } 2204 return teecr_access(env, ri, isread); 2205 } 2206 2207 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2208 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2209 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2210 .resetvalue = 0, 2211 .writefn = teecr_write, .accessfn = teecr_access }, 2212 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2213 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2214 .accessfn = teehbr_access, .resetvalue = 0 }, 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 }; 2247 2248 #ifndef CONFIG_USER_ONLY 2249 2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2251 bool isread) 2252 { 2253 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2254 * Writable only at the highest implemented exception level. 2255 */ 2256 int el = arm_current_el(env); 2257 uint64_t hcr; 2258 uint32_t cntkctl; 2259 2260 switch (el) { 2261 case 0: 2262 hcr = arm_hcr_el2_eff(env); 2263 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2264 cntkctl = env->cp15.cnthctl_el2; 2265 } else { 2266 cntkctl = env->cp15.c14_cntkctl; 2267 } 2268 if (!extract32(cntkctl, 0, 2)) { 2269 return CP_ACCESS_TRAP; 2270 } 2271 break; 2272 case 1: 2273 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2274 arm_is_secure_below_el3(env)) { 2275 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2276 return CP_ACCESS_TRAP_UNCATEGORIZED; 2277 } 2278 break; 2279 case 2: 2280 case 3: 2281 break; 2282 } 2283 2284 if (!isread && el < arm_highest_el(env)) { 2285 return CP_ACCESS_TRAP_UNCATEGORIZED; 2286 } 2287 2288 return CP_ACCESS_OK; 2289 } 2290 2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2292 bool isread) 2293 { 2294 unsigned int cur_el = arm_current_el(env); 2295 bool has_el2 = arm_is_el2_enabled(env); 2296 uint64_t hcr = arm_hcr_el2_eff(env); 2297 2298 switch (cur_el) { 2299 case 0: 2300 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2301 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2302 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2303 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2304 } 2305 2306 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2307 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2308 return CP_ACCESS_TRAP; 2309 } 2310 2311 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2312 if (hcr & HCR_E2H) { 2313 if (timeridx == GTIMER_PHYS && 2314 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 } else { 2318 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2319 if (has_el2 && timeridx == GTIMER_PHYS && 2320 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2321 return CP_ACCESS_TRAP_EL2; 2322 } 2323 } 2324 break; 2325 2326 case 1: 2327 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2328 if (has_el2 && timeridx == GTIMER_PHYS && 2329 (hcr & HCR_E2H 2330 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2331 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 break; 2335 } 2336 return CP_ACCESS_OK; 2337 } 2338 2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2340 bool isread) 2341 { 2342 unsigned int cur_el = arm_current_el(env); 2343 bool has_el2 = arm_is_el2_enabled(env); 2344 uint64_t hcr = arm_hcr_el2_eff(env); 2345 2346 switch (cur_el) { 2347 case 0: 2348 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2349 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2350 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2351 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2352 } 2353 2354 /* 2355 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2356 * EL0 if EL0[PV]TEN is zero. 2357 */ 2358 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 /* fall through */ 2362 2363 case 1: 2364 if (has_el2 && timeridx == GTIMER_PHYS) { 2365 if (hcr & HCR_E2H) { 2366 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2367 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2368 return CP_ACCESS_TRAP_EL2; 2369 } 2370 } else { 2371 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2372 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2373 return CP_ACCESS_TRAP_EL2; 2374 } 2375 } 2376 } 2377 break; 2378 } 2379 return CP_ACCESS_OK; 2380 } 2381 2382 static CPAccessResult gt_pct_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 return gt_counter_access(env, GTIMER_PHYS, isread); 2387 } 2388 2389 static CPAccessResult gt_vct_access(CPUARMState *env, 2390 const ARMCPRegInfo *ri, 2391 bool isread) 2392 { 2393 return gt_counter_access(env, GTIMER_VIRT, isread); 2394 } 2395 2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2397 bool isread) 2398 { 2399 return gt_timer_access(env, GTIMER_PHYS, isread); 2400 } 2401 2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2403 bool isread) 2404 { 2405 return gt_timer_access(env, GTIMER_VIRT, isread); 2406 } 2407 2408 static CPAccessResult gt_stimer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* The AArch64 register view of the secure physical timer is 2413 * always accessible from EL3, and configurably accessible from 2414 * Secure EL1. 2415 */ 2416 switch (arm_current_el(env)) { 2417 case 1: 2418 if (!arm_is_secure(env)) { 2419 return CP_ACCESS_TRAP; 2420 } 2421 if (!(env->cp15.scr_el3 & SCR_ST)) { 2422 return CP_ACCESS_TRAP_EL3; 2423 } 2424 return CP_ACCESS_OK; 2425 case 0: 2426 case 2: 2427 return CP_ACCESS_TRAP; 2428 case 3: 2429 return CP_ACCESS_OK; 2430 default: 2431 g_assert_not_reached(); 2432 } 2433 } 2434 2435 static uint64_t gt_get_countervalue(CPUARMState *env) 2436 { 2437 ARMCPU *cpu = env_archcpu(env); 2438 2439 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2440 } 2441 2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2443 { 2444 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2445 2446 if (gt->ctl & 1) { 2447 /* Timer enabled: calculate and set current ISTATUS, irq, and 2448 * reset timer to when ISTATUS next has to change 2449 */ 2450 uint64_t offset = timeridx == GTIMER_VIRT ? 2451 cpu->env.cp15.cntvoff_el2 : 0; 2452 uint64_t count = gt_get_countervalue(&cpu->env); 2453 /* Note that this must be unsigned 64 bit arithmetic: */ 2454 int istatus = count - offset >= gt->cval; 2455 uint64_t nexttick; 2456 int irqstate; 2457 2458 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2459 2460 irqstate = (istatus && !(gt->ctl & 2)); 2461 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2462 2463 if (istatus) { 2464 /* Next transition is when count rolls back over to zero */ 2465 nexttick = UINT64_MAX; 2466 } else { 2467 /* Next transition is when we hit cval */ 2468 nexttick = gt->cval + offset; 2469 } 2470 /* Note that the desired next expiry time might be beyond the 2471 * signed-64-bit range of a QEMUTimer -- in this case we just 2472 * set the timer for as far in the future as possible. When the 2473 * timer expires we will reset the timer for any remaining period. 2474 */ 2475 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2476 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2477 } else { 2478 timer_mod(cpu->gt_timer[timeridx], nexttick); 2479 } 2480 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2481 } else { 2482 /* Timer disabled: ISTATUS and timer output always clear */ 2483 gt->ctl &= ~4; 2484 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2485 timer_del(cpu->gt_timer[timeridx]); 2486 trace_arm_gt_recalc_disabled(timeridx); 2487 } 2488 } 2489 2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2491 int timeridx) 2492 { 2493 ARMCPU *cpu = env_archcpu(env); 2494 2495 timer_del(cpu->gt_timer[timeridx]); 2496 } 2497 2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return gt_get_countervalue(env); 2501 } 2502 2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2504 { 2505 uint64_t hcr; 2506 2507 switch (arm_current_el(env)) { 2508 case 2: 2509 hcr = arm_hcr_el2_eff(env); 2510 if (hcr & HCR_E2H) { 2511 return 0; 2512 } 2513 break; 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 return 0; 2518 } 2519 break; 2520 } 2521 2522 return env->cp15.cntvoff_el2; 2523 } 2524 2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2526 { 2527 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2528 } 2529 2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2531 int timeridx, 2532 uint64_t value) 2533 { 2534 trace_arm_gt_cval_write(timeridx, value); 2535 env->cp15.c14_timer[timeridx].cval = value; 2536 gt_recalc_timer(env_archcpu(env), timeridx); 2537 } 2538 2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2540 int timeridx) 2541 { 2542 uint64_t offset = 0; 2543 2544 switch (timeridx) { 2545 case GTIMER_VIRT: 2546 case GTIMER_HYPVIRT: 2547 offset = gt_virt_cnt_offset(env); 2548 break; 2549 } 2550 2551 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2552 (gt_get_countervalue(env) - offset)); 2553 } 2554 2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx, 2557 uint64_t value) 2558 { 2559 uint64_t offset = 0; 2560 2561 switch (timeridx) { 2562 case GTIMER_VIRT: 2563 case GTIMER_HYPVIRT: 2564 offset = gt_virt_cnt_offset(env); 2565 break; 2566 } 2567 2568 trace_arm_gt_tval_write(timeridx, value); 2569 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2570 sextract64(value, 0, 32); 2571 gt_recalc_timer(env_archcpu(env), timeridx); 2572 } 2573 2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2575 int timeridx, 2576 uint64_t value) 2577 { 2578 ARMCPU *cpu = env_archcpu(env); 2579 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2580 2581 trace_arm_gt_ctl_write(timeridx, value); 2582 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2583 if ((oldval ^ value) & 1) { 2584 /* Enable toggled */ 2585 gt_recalc_timer(cpu, timeridx); 2586 } else if ((oldval ^ value) & 2) { 2587 /* IMASK toggled: don't need to recalculate, 2588 * just set the interrupt line based on ISTATUS 2589 */ 2590 int irqstate = (oldval & 4) && !(value & 2); 2591 2592 trace_arm_gt_imask_toggle(timeridx, irqstate); 2593 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2594 } 2595 } 2596 2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2598 { 2599 gt_timer_reset(env, ri, GTIMER_PHYS); 2600 } 2601 2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2603 uint64_t value) 2604 { 2605 gt_cval_write(env, ri, GTIMER_PHYS, value); 2606 } 2607 2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2609 { 2610 return gt_tval_read(env, ri, GTIMER_PHYS); 2611 } 2612 2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2614 uint64_t value) 2615 { 2616 gt_tval_write(env, ri, GTIMER_PHYS, value); 2617 } 2618 2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2620 uint64_t value) 2621 { 2622 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2623 } 2624 2625 static int gt_phys_redir_timeridx(CPUARMState *env) 2626 { 2627 switch (arm_mmu_idx(env)) { 2628 case ARMMMUIdx_E20_0: 2629 case ARMMMUIdx_E20_2: 2630 case ARMMMUIdx_E20_2_PAN: 2631 case ARMMMUIdx_SE20_0: 2632 case ARMMMUIdx_SE20_2: 2633 case ARMMMUIdx_SE20_2_PAN: 2634 return GTIMER_HYP; 2635 default: 2636 return GTIMER_PHYS; 2637 } 2638 } 2639 2640 static int gt_virt_redir_timeridx(CPUARMState *env) 2641 { 2642 switch (arm_mmu_idx(env)) { 2643 case ARMMMUIdx_E20_0: 2644 case ARMMMUIdx_E20_2: 2645 case ARMMMUIdx_E20_2_PAN: 2646 case ARMMMUIdx_SE20_0: 2647 case ARMMMUIdx_SE20_2: 2648 case ARMMMUIdx_SE20_2_PAN: 2649 return GTIMER_HYPVIRT; 2650 default: 2651 return GTIMER_VIRT; 2652 } 2653 } 2654 2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2656 const ARMCPRegInfo *ri) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 return env->cp15.c14_timer[timeridx].cval; 2660 } 2661 2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 gt_cval_write(env, ri, timeridx, value); 2667 } 2668 2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2670 const ARMCPRegInfo *ri) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 return gt_tval_read(env, ri, timeridx); 2674 } 2675 2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 gt_tval_write(env, ri, timeridx, value); 2681 } 2682 2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2684 const ARMCPRegInfo *ri) 2685 { 2686 int timeridx = gt_phys_redir_timeridx(env); 2687 return env->cp15.c14_timer[timeridx].ctl; 2688 } 2689 2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2691 uint64_t value) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 gt_ctl_write(env, ri, timeridx, value); 2695 } 2696 2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2698 { 2699 gt_timer_reset(env, ri, GTIMER_VIRT); 2700 } 2701 2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2703 uint64_t value) 2704 { 2705 gt_cval_write(env, ri, GTIMER_VIRT, value); 2706 } 2707 2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2709 { 2710 return gt_tval_read(env, ri, GTIMER_VIRT); 2711 } 2712 2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2714 uint64_t value) 2715 { 2716 gt_tval_write(env, ri, GTIMER_VIRT, value); 2717 } 2718 2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2723 } 2724 2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 ARMCPU *cpu = env_archcpu(env); 2729 2730 trace_arm_gt_cntvoff_write(value); 2731 raw_write(env, ri, value); 2732 gt_recalc_timer(cpu, GTIMER_VIRT); 2733 } 2734 2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2736 const ARMCPRegInfo *ri) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 return env->cp15.c14_timer[timeridx].cval; 2740 } 2741 2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 gt_cval_write(env, ri, timeridx, value); 2747 } 2748 2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2750 const ARMCPRegInfo *ri) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 return gt_tval_read(env, ri, timeridx); 2754 } 2755 2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 gt_tval_write(env, ri, timeridx, value); 2761 } 2762 2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2764 const ARMCPRegInfo *ri) 2765 { 2766 int timeridx = gt_virt_redir_timeridx(env); 2767 return env->cp15.c14_timer[timeridx].ctl; 2768 } 2769 2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2771 uint64_t value) 2772 { 2773 int timeridx = gt_virt_redir_timeridx(env); 2774 gt_ctl_write(env, ri, timeridx, value); 2775 } 2776 2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 gt_timer_reset(env, ri, GTIMER_HYP); 2780 } 2781 2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 uint64_t value) 2784 { 2785 gt_cval_write(env, ri, GTIMER_HYP, value); 2786 } 2787 2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2789 { 2790 return gt_tval_read(env, ri, GTIMER_HYP); 2791 } 2792 2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 gt_tval_write(env, ri, GTIMER_HYP, value); 2797 } 2798 2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 gt_ctl_write(env, ri, GTIMER_HYP, value); 2803 } 2804 2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 gt_timer_reset(env, ri, GTIMER_SEC); 2808 } 2809 2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 uint64_t value) 2812 { 2813 gt_cval_write(env, ri, GTIMER_SEC, value); 2814 } 2815 2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 return gt_tval_read(env, ri, GTIMER_SEC); 2819 } 2820 2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_tval_write(env, ri, GTIMER_SEC, value); 2825 } 2826 2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 uint64_t value) 2829 { 2830 gt_ctl_write(env, ri, GTIMER_SEC, value); 2831 } 2832 2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2836 } 2837 2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2842 } 2843 2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2847 } 2848 2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2853 } 2854 2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2859 } 2860 2861 void arm_gt_ptimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_PHYS); 2866 } 2867 2868 void arm_gt_vtimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_VIRT); 2873 } 2874 2875 void arm_gt_htimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_HYP); 2880 } 2881 2882 void arm_gt_stimer_cb(void *opaque) 2883 { 2884 ARMCPU *cpu = opaque; 2885 2886 gt_recalc_timer(cpu, GTIMER_SEC); 2887 } 2888 2889 void arm_gt_hvtimer_cb(void *opaque) 2890 { 2891 ARMCPU *cpu = opaque; 2892 2893 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2894 } 2895 2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2897 { 2898 ARMCPU *cpu = env_archcpu(env); 2899 2900 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2901 } 2902 2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2904 /* Note that CNTFRQ is purely reads-as-written for the benefit 2905 * of software; writing it doesn't actually change the timer frequency. 2906 * Our reset value matches the fixed frequency we implement the timer at. 2907 */ 2908 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2909 .type = ARM_CP_ALIAS, 2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2912 }, 2913 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2917 .resetfn = arm_gt_cntfrq_reset, 2918 }, 2919 /* overall control: mostly access permissions */ 2920 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2922 .access = PL1_RW, 2923 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2924 .resetvalue = 0, 2925 }, 2926 /* per-timer control */ 2927 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2928 .secure = ARM_CP_SECSTATE_NS, 2929 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2930 .accessfn = gt_ptimer_access, 2931 .fieldoffset = offsetoflow32(CPUARMState, 2932 cp15.c14_timer[GTIMER_PHYS].ctl), 2933 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2934 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2935 }, 2936 { .name = "CNTP_CTL_S", 2937 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2938 .secure = ARM_CP_SECSTATE_S, 2939 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2940 .accessfn = gt_ptimer_access, 2941 .fieldoffset = offsetoflow32(CPUARMState, 2942 cp15.c14_timer[GTIMER_SEC].ctl), 2943 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2944 }, 2945 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2947 .type = ARM_CP_IO, .access = PL0_RW, 2948 .accessfn = gt_ptimer_access, 2949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2950 .resetvalue = 0, 2951 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2952 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2953 }, 2954 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_vtimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_VIRT].ctl), 2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2961 }, 2962 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2964 .type = ARM_CP_IO, .access = PL0_RW, 2965 .accessfn = gt_vtimer_access, 2966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2967 .resetvalue = 0, 2968 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2969 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2970 }, 2971 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2972 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2973 .secure = ARM_CP_SECSTATE_NS, 2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2975 .accessfn = gt_ptimer_access, 2976 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2977 }, 2978 { .name = "CNTP_TVAL_S", 2979 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2980 .secure = ARM_CP_SECSTATE_S, 2981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2982 .accessfn = gt_ptimer_access, 2983 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2984 }, 2985 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2988 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2989 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2990 }, 2991 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2993 .accessfn = gt_vtimer_access, 2994 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2995 }, 2996 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2999 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3001 }, 3002 /* The counter itself */ 3003 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3004 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3005 .accessfn = gt_pct_access, 3006 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3007 }, 3008 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3010 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3011 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3012 }, 3013 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3014 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3015 .accessfn = gt_vct_access, 3016 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3017 }, 3018 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3020 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3022 }, 3023 /* Comparison value, indicating when the timer goes off */ 3024 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3025 .secure = ARM_CP_SECSTATE_NS, 3026 .access = PL0_RW, 3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3029 .accessfn = gt_ptimer_access, 3030 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3031 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3032 }, 3033 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3034 .secure = ARM_CP_SECSTATE_S, 3035 .access = PL0_RW, 3036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3038 .accessfn = gt_ptimer_access, 3039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3040 }, 3041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3043 .access = PL0_RW, 3044 .type = ARM_CP_IO, 3045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3046 .resetvalue = 0, .accessfn = gt_ptimer_access, 3047 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3048 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3049 }, 3050 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3054 .accessfn = gt_vtimer_access, 3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3057 }, 3058 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3060 .access = PL0_RW, 3061 .type = ARM_CP_IO, 3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3063 .resetvalue = 0, .accessfn = gt_vtimer_access, 3064 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3065 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3066 }, 3067 /* Secure timer -- this is actually restricted to only EL3 3068 * and configurably Secure-EL1 via the accessfn. 3069 */ 3070 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3073 .accessfn = gt_stimer_access, 3074 .readfn = gt_sec_tval_read, 3075 .writefn = gt_sec_tval_write, 3076 .resetfn = gt_sec_timer_reset, 3077 }, 3078 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3079 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3080 .type = ARM_CP_IO, .access = PL1_RW, 3081 .accessfn = gt_stimer_access, 3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3083 .resetvalue = 0, 3084 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3085 }, 3086 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3088 .type = ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3091 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3092 }, 3093 }; 3094 3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3096 bool isread) 3097 { 3098 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3099 return CP_ACCESS_TRAP; 3100 } 3101 return CP_ACCESS_OK; 3102 } 3103 3104 #else 3105 3106 /* In user-mode most of the generic timer registers are inaccessible 3107 * however modern kernels (4.12+) allow access to cntvct_el0 3108 */ 3109 3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3111 { 3112 ARMCPU *cpu = env_archcpu(env); 3113 3114 /* Currently we have no support for QEMUTimer in linux-user so we 3115 * can't call gt_get_countervalue(env), instead we directly 3116 * call the lower level functions. 3117 */ 3118 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3119 } 3120 3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3122 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3124 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3125 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3126 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3127 }, 3128 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3130 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3131 .readfn = gt_virt_cnt_read, 3132 }, 3133 }; 3134 3135 #endif 3136 3137 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3138 { 3139 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3140 raw_write(env, ri, value); 3141 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3142 raw_write(env, ri, value & 0xfffff6ff); 3143 } else { 3144 raw_write(env, ri, value & 0xfffff1ff); 3145 } 3146 } 3147 3148 #ifndef CONFIG_USER_ONLY 3149 /* get_phys_addr() isn't present for user-mode-only targets */ 3150 3151 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3152 bool isread) 3153 { 3154 if (ri->opc2 & 4) { 3155 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3156 * Secure EL1 (which can only happen if EL3 is AArch64). 3157 * They are simply UNDEF if executed from NS EL1. 3158 * They function normally from EL2 or EL3. 3159 */ 3160 if (arm_current_el(env) == 1) { 3161 if (arm_is_secure_below_el3(env)) { 3162 if (env->cp15.scr_el3 & SCR_EEL2) { 3163 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3164 } 3165 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3166 } 3167 return CP_ACCESS_TRAP_UNCATEGORIZED; 3168 } 3169 } 3170 return CP_ACCESS_OK; 3171 } 3172 3173 #ifdef CONFIG_TCG 3174 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3175 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3176 { 3177 hwaddr phys_addr; 3178 target_ulong page_size; 3179 int prot; 3180 bool ret; 3181 uint64_t par64; 3182 bool format64 = false; 3183 MemTxAttrs attrs = {}; 3184 ARMMMUFaultInfo fi = {}; 3185 ARMCacheAttrs cacheattrs = {}; 3186 3187 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3188 &prot, &page_size, &fi, &cacheattrs); 3189 3190 /* 3191 * ATS operations only do S1 or S1+S2 translations, so we never 3192 * have to deal with the ARMCacheAttrs format for S2 only. 3193 */ 3194 assert(!cacheattrs.is_s2_format); 3195 3196 if (ret) { 3197 /* 3198 * Some kinds of translation fault must cause exceptions rather 3199 * than being reported in the PAR. 3200 */ 3201 int current_el = arm_current_el(env); 3202 int target_el; 3203 uint32_t syn, fsr, fsc; 3204 bool take_exc = false; 3205 3206 if (fi.s1ptw && current_el == 1 3207 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3208 /* 3209 * Synchronous stage 2 fault on an access made as part of the 3210 * translation table walk for AT S1E0* or AT S1E1* insn 3211 * executed from NS EL1. If this is a synchronous external abort 3212 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3213 * to EL3. Otherwise the fault is taken as an exception to EL2, 3214 * and HPFAR_EL2 holds the faulting IPA. 3215 */ 3216 if (fi.type == ARMFault_SyncExternalOnWalk && 3217 (env->cp15.scr_el3 & SCR_EA)) { 3218 target_el = 3; 3219 } else { 3220 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3221 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3222 env->cp15.hpfar_el2 |= HPFAR_NS; 3223 } 3224 target_el = 2; 3225 } 3226 take_exc = true; 3227 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3228 /* 3229 * Synchronous external aborts during a translation table walk 3230 * are taken as Data Abort exceptions. 3231 */ 3232 if (fi.stage2) { 3233 if (current_el == 3) { 3234 target_el = 3; 3235 } else { 3236 target_el = 2; 3237 } 3238 } else { 3239 target_el = exception_target_el(env); 3240 } 3241 take_exc = true; 3242 } 3243 3244 if (take_exc) { 3245 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3246 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3247 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3248 fsr = arm_fi_to_lfsc(&fi); 3249 fsc = extract32(fsr, 0, 6); 3250 } else { 3251 fsr = arm_fi_to_sfsc(&fi); 3252 fsc = 0x3f; 3253 } 3254 /* 3255 * Report exception with ESR indicating a fault due to a 3256 * translation table walk for a cache maintenance instruction. 3257 */ 3258 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3259 fi.ea, 1, fi.s1ptw, 1, fsc); 3260 env->exception.vaddress = value; 3261 env->exception.fsr = fsr; 3262 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3263 } 3264 } 3265 3266 if (is_a64(env)) { 3267 format64 = true; 3268 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3269 /* 3270 * ATS1Cxx: 3271 * * TTBCR.EAE determines whether the result is returned using the 3272 * 32-bit or the 64-bit PAR format 3273 * * Instructions executed in Hyp mode always use the 64bit format 3274 * 3275 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3276 * * The Non-secure TTBCR.EAE bit is set to 1 3277 * * The implementation includes EL2, and the value of HCR.VM is 1 3278 * 3279 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3280 * 3281 * ATS1Hx always uses the 64bit format. 3282 */ 3283 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3284 3285 if (arm_feature(env, ARM_FEATURE_EL2)) { 3286 if (mmu_idx == ARMMMUIdx_E10_0 || 3287 mmu_idx == ARMMMUIdx_E10_1 || 3288 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3289 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3290 } else { 3291 format64 |= arm_current_el(env) == 2; 3292 } 3293 } 3294 } 3295 3296 if (format64) { 3297 /* Create a 64-bit PAR */ 3298 par64 = (1 << 11); /* LPAE bit always set */ 3299 if (!ret) { 3300 par64 |= phys_addr & ~0xfffULL; 3301 if (!attrs.secure) { 3302 par64 |= (1 << 9); /* NS */ 3303 } 3304 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3305 par64 |= cacheattrs.shareability << 7; /* SH */ 3306 } else { 3307 uint32_t fsr = arm_fi_to_lfsc(&fi); 3308 3309 par64 |= 1; /* F */ 3310 par64 |= (fsr & 0x3f) << 1; /* FS */ 3311 if (fi.stage2) { 3312 par64 |= (1 << 9); /* S */ 3313 } 3314 if (fi.s1ptw) { 3315 par64 |= (1 << 8); /* PTW */ 3316 } 3317 } 3318 } else { 3319 /* fsr is a DFSR/IFSR value for the short descriptor 3320 * translation table format (with WnR always clear). 3321 * Convert it to a 32-bit PAR. 3322 */ 3323 if (!ret) { 3324 /* We do not set any attribute bits in the PAR */ 3325 if (page_size == (1 << 24) 3326 && arm_feature(env, ARM_FEATURE_V7)) { 3327 par64 = (phys_addr & 0xff000000) | (1 << 1); 3328 } else { 3329 par64 = phys_addr & 0xfffff000; 3330 } 3331 if (!attrs.secure) { 3332 par64 |= (1 << 9); /* NS */ 3333 } 3334 } else { 3335 uint32_t fsr = arm_fi_to_sfsc(&fi); 3336 3337 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3338 ((fsr & 0xf) << 1) | 1; 3339 } 3340 } 3341 return par64; 3342 } 3343 #endif /* CONFIG_TCG */ 3344 3345 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3346 { 3347 #ifdef CONFIG_TCG 3348 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3349 uint64_t par64; 3350 ARMMMUIdx mmu_idx; 3351 int el = arm_current_el(env); 3352 bool secure = arm_is_secure_below_el3(env); 3353 3354 switch (ri->opc2 & 6) { 3355 case 0: 3356 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3357 switch (el) { 3358 case 3: 3359 mmu_idx = ARMMMUIdx_SE3; 3360 break; 3361 case 2: 3362 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3363 /* fall through */ 3364 case 1: 3365 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3366 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3367 : ARMMMUIdx_Stage1_E1_PAN); 3368 } else { 3369 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3370 } 3371 break; 3372 default: 3373 g_assert_not_reached(); 3374 } 3375 break; 3376 case 2: 3377 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3378 switch (el) { 3379 case 3: 3380 mmu_idx = ARMMMUIdx_SE10_0; 3381 break; 3382 case 2: 3383 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3384 mmu_idx = ARMMMUIdx_Stage1_E0; 3385 break; 3386 case 1: 3387 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3388 break; 3389 default: 3390 g_assert_not_reached(); 3391 } 3392 break; 3393 case 4: 3394 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3395 mmu_idx = ARMMMUIdx_E10_1; 3396 break; 3397 case 6: 3398 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3399 mmu_idx = ARMMMUIdx_E10_0; 3400 break; 3401 default: 3402 g_assert_not_reached(); 3403 } 3404 3405 par64 = do_ats_write(env, value, access_type, mmu_idx); 3406 3407 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3408 #else 3409 /* Handled by hardware accelerator. */ 3410 g_assert_not_reached(); 3411 #endif /* CONFIG_TCG */ 3412 } 3413 3414 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3415 uint64_t value) 3416 { 3417 #ifdef CONFIG_TCG 3418 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3419 uint64_t par64; 3420 3421 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3422 3423 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3424 #else 3425 /* Handled by hardware accelerator. */ 3426 g_assert_not_reached(); 3427 #endif /* CONFIG_TCG */ 3428 } 3429 3430 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3431 bool isread) 3432 { 3433 if (arm_current_el(env) == 3 && 3434 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3435 return CP_ACCESS_TRAP; 3436 } 3437 return CP_ACCESS_OK; 3438 } 3439 3440 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3441 uint64_t value) 3442 { 3443 #ifdef CONFIG_TCG 3444 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3445 ARMMMUIdx mmu_idx; 3446 int secure = arm_is_secure_below_el3(env); 3447 3448 switch (ri->opc2 & 6) { 3449 case 0: 3450 switch (ri->opc1) { 3451 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3452 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3453 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3454 : ARMMMUIdx_Stage1_E1_PAN); 3455 } else { 3456 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3457 } 3458 break; 3459 case 4: /* AT S1E2R, AT S1E2W */ 3460 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3461 break; 3462 case 6: /* AT S1E3R, AT S1E3W */ 3463 mmu_idx = ARMMMUIdx_SE3; 3464 break; 3465 default: 3466 g_assert_not_reached(); 3467 } 3468 break; 3469 case 2: /* AT S1E0R, AT S1E0W */ 3470 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3471 break; 3472 case 4: /* AT S12E1R, AT S12E1W */ 3473 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3474 break; 3475 case 6: /* AT S12E0R, AT S12E0W */ 3476 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3477 break; 3478 default: 3479 g_assert_not_reached(); 3480 } 3481 3482 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3483 #else 3484 /* Handled by hardware accelerator. */ 3485 g_assert_not_reached(); 3486 #endif /* CONFIG_TCG */ 3487 } 3488 #endif 3489 3490 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3491 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3492 .access = PL1_RW, .resetvalue = 0, 3493 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3494 offsetoflow32(CPUARMState, cp15.par_ns) }, 3495 .writefn = par_write }, 3496 #ifndef CONFIG_USER_ONLY 3497 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3498 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3499 .access = PL1_W, .accessfn = ats_access, 3500 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3501 #endif 3502 }; 3503 3504 /* Return basic MPU access permission bits. */ 3505 static uint32_t simple_mpu_ap_bits(uint32_t val) 3506 { 3507 uint32_t ret; 3508 uint32_t mask; 3509 int i; 3510 ret = 0; 3511 mask = 3; 3512 for (i = 0; i < 16; i += 2) { 3513 ret |= (val >> i) & mask; 3514 mask <<= 2; 3515 } 3516 return ret; 3517 } 3518 3519 /* Pad basic MPU access permission bits to extended format. */ 3520 static uint32_t extended_mpu_ap_bits(uint32_t val) 3521 { 3522 uint32_t ret; 3523 uint32_t mask; 3524 int i; 3525 ret = 0; 3526 mask = 3; 3527 for (i = 0; i < 16; i += 2) { 3528 ret |= (val & mask) << i; 3529 mask <<= 2; 3530 } 3531 return ret; 3532 } 3533 3534 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3535 uint64_t value) 3536 { 3537 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3538 } 3539 3540 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3541 { 3542 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3543 } 3544 3545 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3546 uint64_t value) 3547 { 3548 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3549 } 3550 3551 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3552 { 3553 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3554 } 3555 3556 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3557 { 3558 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3559 3560 if (!u32p) { 3561 return 0; 3562 } 3563 3564 u32p += env->pmsav7.rnr[M_REG_NS]; 3565 return *u32p; 3566 } 3567 3568 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3569 uint64_t value) 3570 { 3571 ARMCPU *cpu = env_archcpu(env); 3572 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3573 3574 if (!u32p) { 3575 return; 3576 } 3577 3578 u32p += env->pmsav7.rnr[M_REG_NS]; 3579 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3580 *u32p = value; 3581 } 3582 3583 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3584 uint64_t value) 3585 { 3586 ARMCPU *cpu = env_archcpu(env); 3587 uint32_t nrgs = cpu->pmsav7_dregion; 3588 3589 if (value >= nrgs) { 3590 qemu_log_mask(LOG_GUEST_ERROR, 3591 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3592 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3593 return; 3594 } 3595 3596 raw_write(env, ri, value); 3597 } 3598 3599 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3600 /* Reset for all these registers is handled in arm_cpu_reset(), 3601 * because the PMSAv7 is also used by M-profile CPUs, which do 3602 * not register cpregs but still need the state to be reset. 3603 */ 3604 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3605 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3606 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3607 .readfn = pmsav7_read, .writefn = pmsav7_write, 3608 .resetfn = arm_cp_reset_ignore }, 3609 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3610 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3611 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3612 .readfn = pmsav7_read, .writefn = pmsav7_write, 3613 .resetfn = arm_cp_reset_ignore }, 3614 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3615 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3616 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3617 .readfn = pmsav7_read, .writefn = pmsav7_write, 3618 .resetfn = arm_cp_reset_ignore }, 3619 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3620 .access = PL1_RW, 3621 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3622 .writefn = pmsav7_rgnr_write, 3623 .resetfn = arm_cp_reset_ignore }, 3624 }; 3625 3626 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3627 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3628 .access = PL1_RW, .type = ARM_CP_ALIAS, 3629 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3630 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3631 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3632 .access = PL1_RW, .type = ARM_CP_ALIAS, 3633 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3634 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3635 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3636 .access = PL1_RW, 3637 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3638 .resetvalue = 0, }, 3639 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3640 .access = PL1_RW, 3641 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3642 .resetvalue = 0, }, 3643 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3644 .access = PL1_RW, 3645 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3646 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3647 .access = PL1_RW, 3648 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3649 /* Protection region base and size registers */ 3650 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3651 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3652 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3653 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3656 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3659 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3662 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3665 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3666 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3667 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3668 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3669 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3670 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3671 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3672 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3673 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3674 }; 3675 3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 TCR *tcr = raw_ptr(env, ri); 3680 int maskshift = extract32(value, 0, 3); 3681 3682 if (!arm_feature(env, ARM_FEATURE_V8)) { 3683 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3684 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3685 * using Long-desciptor translation table format */ 3686 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3687 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3688 /* In an implementation that includes the Security Extensions 3689 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3690 * Short-descriptor translation table format. 3691 */ 3692 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3693 } else { 3694 value &= TTBCR_N; 3695 } 3696 } 3697 3698 /* Update the masks corresponding to the TCR bank being written 3699 * Note that we always calculate mask and base_mask, but 3700 * they are only used for short-descriptor tables (ie if EAE is 0); 3701 * for long-descriptor tables the TCR fields are used differently 3702 * and the mask and base_mask values are meaningless. 3703 */ 3704 tcr->raw_tcr = value; 3705 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3706 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3707 } 3708 3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3710 uint64_t value) 3711 { 3712 ARMCPU *cpu = env_archcpu(env); 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3716 /* With LPAE the TTBCR could result in a change of ASID 3717 * via the TTBCR.A1 bit, so do a TLB flush. 3718 */ 3719 tlb_flush(CPU(cpu)); 3720 } 3721 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3722 value = deposit64(tcr->raw_tcr, 0, 32, value); 3723 vmsa_ttbcr_raw_write(env, ri, value); 3724 } 3725 3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3727 { 3728 TCR *tcr = raw_ptr(env, ri); 3729 3730 /* Reset both the TCR as well as the masks corresponding to the bank of 3731 * the TCR being reset. 3732 */ 3733 tcr->raw_tcr = 0; 3734 tcr->mask = 0; 3735 tcr->base_mask = 0xffffc000u; 3736 } 3737 3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3739 uint64_t value) 3740 { 3741 ARMCPU *cpu = env_archcpu(env); 3742 TCR *tcr = raw_ptr(env, ri); 3743 3744 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3745 tlb_flush(CPU(cpu)); 3746 tcr->raw_tcr = value; 3747 } 3748 3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3753 if (cpreg_field_is_64bit(ri) && 3754 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3755 ARMCPU *cpu = env_archcpu(env); 3756 tlb_flush(CPU(cpu)); 3757 } 3758 raw_write(env, ri, value); 3759 } 3760 3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 /* 3765 * If we are running with E2&0 regime, then an ASID is active. 3766 * Flush if that might be changing. Note we're not checking 3767 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3768 * holds the active ASID, only checking the field that might. 3769 */ 3770 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3771 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3772 uint16_t mask = ARMMMUIdxBit_E20_2 | 3773 ARMMMUIdxBit_E20_2_PAN | 3774 ARMMMUIdxBit_E20_0; 3775 3776 if (arm_is_secure_below_el3(env)) { 3777 mask >>= ARM_MMU_IDX_A_NS; 3778 } 3779 3780 tlb_flush_by_mmuidx(env_cpu(env), mask); 3781 } 3782 raw_write(env, ri, value); 3783 } 3784 3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 CPUState *cs = CPU(cpu); 3790 3791 /* 3792 * A change in VMID to the stage2 page table (Stage2) invalidates 3793 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3794 */ 3795 if (raw_read(env, ri) != value) { 3796 uint16_t mask = ARMMMUIdxBit_E10_1 | 3797 ARMMMUIdxBit_E10_1_PAN | 3798 ARMMMUIdxBit_E10_0; 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 mask >>= ARM_MMU_IDX_A_NS; 3802 } 3803 3804 tlb_flush_by_mmuidx(cs, mask); 3805 raw_write(env, ri, value); 3806 } 3807 } 3808 3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3811 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3812 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3813 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3814 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3816 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3817 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3818 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3819 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3820 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3821 offsetof(CPUARMState, cp15.dfar_ns) } }, 3822 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3824 .access = PL1_RW, .accessfn = access_tvm_trvm, 3825 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3826 .resetvalue = 0, }, 3827 }; 3828 3829 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3830 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3831 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3832 .access = PL1_RW, .accessfn = access_tvm_trvm, 3833 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3834 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3836 .access = PL1_RW, .accessfn = access_tvm_trvm, 3837 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3839 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3840 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3842 .access = PL1_RW, .accessfn = access_tvm_trvm, 3843 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3844 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3845 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3846 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3847 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3848 .access = PL1_RW, .accessfn = access_tvm_trvm, 3849 .writefn = vmsa_tcr_el12_write, 3850 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3851 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3852 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3853 .access = PL1_RW, .accessfn = access_tvm_trvm, 3854 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3855 .raw_writefn = vmsa_ttbcr_raw_write, 3856 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3857 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3858 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3859 }; 3860 3861 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3862 * qemu tlbs nor adjusting cached masks. 3863 */ 3864 static const ARMCPRegInfo ttbcr2_reginfo = { 3865 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3866 .access = PL1_RW, .accessfn = access_tvm_trvm, 3867 .type = ARM_CP_ALIAS, 3868 .bank_fieldoffsets = { 3869 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3870 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3871 }, 3872 }; 3873 3874 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 env->cp15.c15_ticonfig = value & 0xe7; 3878 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3879 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3880 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3881 } 3882 3883 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3884 uint64_t value) 3885 { 3886 env->cp15.c15_threadid = value & 0xffff; 3887 } 3888 3889 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3890 uint64_t value) 3891 { 3892 /* Wait-for-interrupt (deprecated) */ 3893 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3894 } 3895 3896 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3897 uint64_t value) 3898 { 3899 /* On OMAP there are registers indicating the max/min index of dcache lines 3900 * containing a dirty line; cache flush operations have to reset these. 3901 */ 3902 env->cp15.c15_i_max = 0x000; 3903 env->cp15.c15_i_min = 0xff0; 3904 } 3905 3906 static const ARMCPRegInfo omap_cp_reginfo[] = { 3907 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3909 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3910 .resetvalue = 0, }, 3911 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3912 .access = PL1_RW, .type = ARM_CP_NOP }, 3913 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3916 .writefn = omap_ticonfig_write }, 3917 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3918 .access = PL1_RW, 3919 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3920 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3921 .access = PL1_RW, .resetvalue = 0xff0, 3922 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3923 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3924 .access = PL1_RW, 3925 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3926 .writefn = omap_threadid_write }, 3927 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3928 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3929 .type = ARM_CP_NO_RAW, 3930 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3931 /* TODO: Peripheral port remap register: 3932 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3933 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3934 * when MMU is off. 3935 */ 3936 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3937 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3938 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3939 .writefn = omap_cachemaint_write }, 3940 { .name = "C9", .cp = 15, .crn = 9, 3941 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3942 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3943 }; 3944 3945 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3946 uint64_t value) 3947 { 3948 env->cp15.c15_cpar = value & 0x3fff; 3949 } 3950 3951 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3952 { .name = "XSCALE_CPAR", 3953 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3954 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3955 .writefn = xscale_cpar_write, }, 3956 { .name = "XSCALE_AUXCR", 3957 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3958 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3959 .resetvalue = 0, }, 3960 /* XScale specific cache-lockdown: since we have no cache we NOP these 3961 * and hope the guest does not really rely on cache behaviour. 3962 */ 3963 { .name = "XSCALE_LOCK_ICACHE_LINE", 3964 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3965 .access = PL1_W, .type = ARM_CP_NOP }, 3966 { .name = "XSCALE_UNLOCK_ICACHE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_DCACHE_LOCK", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3971 .access = PL1_RW, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_UNLOCK_DCACHE", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3974 .access = PL1_W, .type = ARM_CP_NOP }, 3975 }; 3976 3977 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3978 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3979 * implementation of this implementation-defined space. 3980 * Ideally this should eventually disappear in favour of actually 3981 * implementing the correct behaviour for all cores. 3982 */ 3983 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3984 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3985 .access = PL1_RW, 3986 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3987 .resetvalue = 0 }, 3988 }; 3989 3990 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3991 /* Cache status: RAZ because we have no cache so it's always clean */ 3992 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3993 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3994 .resetvalue = 0 }, 3995 }; 3996 3997 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3998 /* We never have a a block transfer operation in progress */ 3999 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4000 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4001 .resetvalue = 0 }, 4002 /* The cache ops themselves: these all NOP for QEMU */ 4003 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4004 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4005 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4006 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4007 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4008 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4009 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4010 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4012 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4014 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 }; 4016 4017 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4018 /* The cache test-and-clean instructions always return (1 << 30) 4019 * to indicate that there are no dirty cache lines. 4020 */ 4021 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4022 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4023 .resetvalue = (1 << 30) }, 4024 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4025 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4026 .resetvalue = (1 << 30) }, 4027 }; 4028 4029 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4030 /* Ignore ReadBuffer accesses */ 4031 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4032 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4033 .access = PL1_RW, .resetvalue = 0, 4034 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4035 }; 4036 4037 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4038 { 4039 unsigned int cur_el = arm_current_el(env); 4040 4041 if (arm_is_el2_enabled(env) && cur_el == 1) { 4042 return env->cp15.vpidr_el2; 4043 } 4044 return raw_read(env, ri); 4045 } 4046 4047 static uint64_t mpidr_read_val(CPUARMState *env) 4048 { 4049 ARMCPU *cpu = env_archcpu(env); 4050 uint64_t mpidr = cpu->mp_affinity; 4051 4052 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4053 mpidr |= (1U << 31); 4054 /* Cores which are uniprocessor (non-coherent) 4055 * but still implement the MP extensions set 4056 * bit 30. (For instance, Cortex-R5). 4057 */ 4058 if (cpu->mp_is_up) { 4059 mpidr |= (1u << 30); 4060 } 4061 } 4062 return mpidr; 4063 } 4064 4065 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4066 { 4067 unsigned int cur_el = arm_current_el(env); 4068 4069 if (arm_is_el2_enabled(env) && cur_el == 1) { 4070 return env->cp15.vmpidr_el2; 4071 } 4072 return mpidr_read_val(env); 4073 } 4074 4075 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4076 /* NOP AMAIR0/1 */ 4077 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4078 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4079 .access = PL1_RW, .accessfn = access_tvm_trvm, 4080 .type = ARM_CP_CONST, .resetvalue = 0 }, 4081 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4082 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4083 .access = PL1_RW, .accessfn = access_tvm_trvm, 4084 .type = ARM_CP_CONST, .resetvalue = 0 }, 4085 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4086 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4087 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4088 offsetof(CPUARMState, cp15.par_ns)} }, 4089 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4090 .access = PL1_RW, .accessfn = access_tvm_trvm, 4091 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4093 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4094 .writefn = vmsa_ttbr_write, }, 4095 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4096 .access = PL1_RW, .accessfn = access_tvm_trvm, 4097 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4099 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4100 .writefn = vmsa_ttbr_write, }, 4101 }; 4102 4103 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4104 { 4105 return vfp_get_fpcr(env); 4106 } 4107 4108 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4109 uint64_t value) 4110 { 4111 vfp_set_fpcr(env, value); 4112 } 4113 4114 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4115 { 4116 return vfp_get_fpsr(env); 4117 } 4118 4119 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4120 uint64_t value) 4121 { 4122 vfp_set_fpsr(env, value); 4123 } 4124 4125 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4126 bool isread) 4127 { 4128 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4129 return CP_ACCESS_TRAP; 4130 } 4131 return CP_ACCESS_OK; 4132 } 4133 4134 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 env->daif = value & PSTATE_DAIF; 4138 } 4139 4140 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4141 { 4142 return env->pstate & PSTATE_PAN; 4143 } 4144 4145 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4146 uint64_t value) 4147 { 4148 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4149 } 4150 4151 static const ARMCPRegInfo pan_reginfo = { 4152 .name = "PAN", .state = ARM_CP_STATE_AA64, 4153 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4154 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4155 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4156 }; 4157 4158 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4159 { 4160 return env->pstate & PSTATE_UAO; 4161 } 4162 4163 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4164 uint64_t value) 4165 { 4166 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4167 } 4168 4169 static const ARMCPRegInfo uao_reginfo = { 4170 .name = "UAO", .state = ARM_CP_STATE_AA64, 4171 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4172 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4173 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4174 }; 4175 4176 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4177 { 4178 return env->pstate & PSTATE_DIT; 4179 } 4180 4181 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4182 uint64_t value) 4183 { 4184 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4185 } 4186 4187 static const ARMCPRegInfo dit_reginfo = { 4188 .name = "DIT", .state = ARM_CP_STATE_AA64, 4189 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4190 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4191 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4192 }; 4193 4194 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4195 { 4196 return env->pstate & PSTATE_SSBS; 4197 } 4198 4199 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4200 uint64_t value) 4201 { 4202 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4203 } 4204 4205 static const ARMCPRegInfo ssbs_reginfo = { 4206 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4207 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4208 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4209 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4210 }; 4211 4212 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4213 const ARMCPRegInfo *ri, 4214 bool isread) 4215 { 4216 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4217 switch (arm_current_el(env)) { 4218 case 0: 4219 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4220 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4221 return CP_ACCESS_TRAP; 4222 } 4223 /* fall through */ 4224 case 1: 4225 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4226 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4227 return CP_ACCESS_TRAP_EL2; 4228 } 4229 break; 4230 } 4231 return CP_ACCESS_OK; 4232 } 4233 4234 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4235 const ARMCPRegInfo *ri, 4236 bool isread) 4237 { 4238 /* Cache invalidate/clean to Point of Unification... */ 4239 switch (arm_current_el(env)) { 4240 case 0: 4241 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4242 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4243 return CP_ACCESS_TRAP; 4244 } 4245 /* fall through */ 4246 case 1: 4247 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4248 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4249 return CP_ACCESS_TRAP_EL2; 4250 } 4251 break; 4252 } 4253 return CP_ACCESS_OK; 4254 } 4255 4256 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4257 * Page D4-1736 (DDI0487A.b) 4258 */ 4259 4260 static int vae1_tlbmask(CPUARMState *env) 4261 { 4262 uint64_t hcr = arm_hcr_el2_eff(env); 4263 uint16_t mask; 4264 4265 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4266 mask = ARMMMUIdxBit_E20_2 | 4267 ARMMMUIdxBit_E20_2_PAN | 4268 ARMMMUIdxBit_E20_0; 4269 } else { 4270 mask = ARMMMUIdxBit_E10_1 | 4271 ARMMMUIdxBit_E10_1_PAN | 4272 ARMMMUIdxBit_E10_0; 4273 } 4274 4275 if (arm_is_secure_below_el3(env)) { 4276 mask >>= ARM_MMU_IDX_A_NS; 4277 } 4278 4279 return mask; 4280 } 4281 4282 /* Return 56 if TBI is enabled, 64 otherwise. */ 4283 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4284 uint64_t addr) 4285 { 4286 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4287 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4288 int select = extract64(addr, 55, 1); 4289 4290 return (tbi >> select) & 1 ? 56 : 64; 4291 } 4292 4293 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4294 { 4295 uint64_t hcr = arm_hcr_el2_eff(env); 4296 ARMMMUIdx mmu_idx; 4297 4298 /* Only the regime of the mmu_idx below is significant. */ 4299 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4300 mmu_idx = ARMMMUIdx_E20_0; 4301 } else { 4302 mmu_idx = ARMMMUIdx_E10_0; 4303 } 4304 4305 if (arm_is_secure_below_el3(env)) { 4306 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4307 } 4308 4309 return tlbbits_for_regime(env, mmu_idx, addr); 4310 } 4311 4312 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4313 uint64_t value) 4314 { 4315 CPUState *cs = env_cpu(env); 4316 int mask = vae1_tlbmask(env); 4317 4318 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4319 } 4320 4321 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4322 uint64_t value) 4323 { 4324 CPUState *cs = env_cpu(env); 4325 int mask = vae1_tlbmask(env); 4326 4327 if (tlb_force_broadcast(env)) { 4328 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4329 } else { 4330 tlb_flush_by_mmuidx(cs, mask); 4331 } 4332 } 4333 4334 static int alle1_tlbmask(CPUARMState *env) 4335 { 4336 /* 4337 * Note that the 'ALL' scope must invalidate both stage 1 and 4338 * stage 2 translations, whereas most other scopes only invalidate 4339 * stage 1 translations. 4340 */ 4341 if (arm_is_secure_below_el3(env)) { 4342 return ARMMMUIdxBit_SE10_1 | 4343 ARMMMUIdxBit_SE10_1_PAN | 4344 ARMMMUIdxBit_SE10_0; 4345 } else { 4346 return ARMMMUIdxBit_E10_1 | 4347 ARMMMUIdxBit_E10_1_PAN | 4348 ARMMMUIdxBit_E10_0; 4349 } 4350 } 4351 4352 static int e2_tlbmask(CPUARMState *env) 4353 { 4354 if (arm_is_secure_below_el3(env)) { 4355 return ARMMMUIdxBit_SE20_0 | 4356 ARMMMUIdxBit_SE20_2 | 4357 ARMMMUIdxBit_SE20_2_PAN | 4358 ARMMMUIdxBit_SE2; 4359 } else { 4360 return ARMMMUIdxBit_E20_0 | 4361 ARMMMUIdxBit_E20_2 | 4362 ARMMMUIdxBit_E20_2_PAN | 4363 ARMMMUIdxBit_E2; 4364 } 4365 } 4366 4367 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4368 uint64_t value) 4369 { 4370 CPUState *cs = env_cpu(env); 4371 int mask = alle1_tlbmask(env); 4372 4373 tlb_flush_by_mmuidx(cs, mask); 4374 } 4375 4376 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4377 uint64_t value) 4378 { 4379 CPUState *cs = env_cpu(env); 4380 int mask = e2_tlbmask(env); 4381 4382 tlb_flush_by_mmuidx(cs, mask); 4383 } 4384 4385 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4386 uint64_t value) 4387 { 4388 ARMCPU *cpu = env_archcpu(env); 4389 CPUState *cs = CPU(cpu); 4390 4391 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4392 } 4393 4394 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 CPUState *cs = env_cpu(env); 4398 int mask = alle1_tlbmask(env); 4399 4400 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4401 } 4402 4403 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 CPUState *cs = env_cpu(env); 4407 int mask = e2_tlbmask(env); 4408 4409 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4410 } 4411 4412 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4413 uint64_t value) 4414 { 4415 CPUState *cs = env_cpu(env); 4416 4417 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4418 } 4419 4420 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 /* Invalidate by VA, EL2 4424 * Currently handles both VAE2 and VALE2, since we don't support 4425 * flush-last-level-only. 4426 */ 4427 CPUState *cs = env_cpu(env); 4428 int mask = e2_tlbmask(env); 4429 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4430 4431 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4432 } 4433 4434 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4435 uint64_t value) 4436 { 4437 /* Invalidate by VA, EL3 4438 * Currently handles both VAE3 and VALE3, since we don't support 4439 * flush-last-level-only. 4440 */ 4441 ARMCPU *cpu = env_archcpu(env); 4442 CPUState *cs = CPU(cpu); 4443 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4444 4445 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4446 } 4447 4448 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4449 uint64_t value) 4450 { 4451 CPUState *cs = env_cpu(env); 4452 int mask = vae1_tlbmask(env); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 int bits = vae1_tlbbits(env, pageaddr); 4455 4456 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4457 } 4458 4459 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4460 uint64_t value) 4461 { 4462 /* Invalidate by VA, EL1&0 (AArch64 version). 4463 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4464 * since we don't support flush-for-specific-ASID-only or 4465 * flush-last-level-only. 4466 */ 4467 CPUState *cs = env_cpu(env); 4468 int mask = vae1_tlbmask(env); 4469 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4470 int bits = vae1_tlbbits(env, pageaddr); 4471 4472 if (tlb_force_broadcast(env)) { 4473 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4474 } else { 4475 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4476 } 4477 } 4478 4479 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4480 uint64_t value) 4481 { 4482 CPUState *cs = env_cpu(env); 4483 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4484 bool secure = arm_is_secure_below_el3(env); 4485 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4486 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4487 pageaddr); 4488 4489 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4490 } 4491 4492 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4493 uint64_t value) 4494 { 4495 CPUState *cs = env_cpu(env); 4496 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4497 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4498 4499 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4500 ARMMMUIdxBit_SE3, bits); 4501 } 4502 4503 #ifdef TARGET_AARCH64 4504 typedef struct { 4505 uint64_t base; 4506 uint64_t length; 4507 } TLBIRange; 4508 4509 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4510 uint64_t value) 4511 { 4512 unsigned int page_size_granule, page_shift, num, scale, exponent; 4513 /* Extract one bit to represent the va selector in use. */ 4514 uint64_t select = sextract64(value, 36, 1); 4515 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4516 TLBIRange ret = { }; 4517 4518 page_size_granule = extract64(value, 46, 2); 4519 4520 /* The granule encoded in value must match the granule in use. */ 4521 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4522 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4523 page_size_granule); 4524 return ret; 4525 } 4526 4527 page_shift = (page_size_granule - 1) * 2 + 12; 4528 num = extract64(value, 39, 5); 4529 scale = extract64(value, 44, 2); 4530 exponent = (5 * scale) + 1; 4531 4532 ret.length = (num + 1) << (exponent + page_shift); 4533 4534 if (param.select) { 4535 ret.base = sextract64(value, 0, 37); 4536 } else { 4537 ret.base = extract64(value, 0, 37); 4538 } 4539 if (param.ds) { 4540 /* 4541 * With DS=1, BaseADDR is always shifted 16 so that it is able 4542 * to address all 52 va bits. The input address is perforce 4543 * aligned on a 64k boundary regardless of translation granule. 4544 */ 4545 page_shift = 16; 4546 } 4547 ret.base <<= page_shift; 4548 4549 return ret; 4550 } 4551 4552 static void do_rvae_write(CPUARMState *env, uint64_t value, 4553 int idxmap, bool synced) 4554 { 4555 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4556 TLBIRange range; 4557 int bits; 4558 4559 range = tlbi_aa64_get_range(env, one_idx, value); 4560 bits = tlbbits_for_regime(env, one_idx, range.base); 4561 4562 if (synced) { 4563 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4564 range.base, 4565 range.length, 4566 idxmap, 4567 bits); 4568 } else { 4569 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4570 range.length, idxmap, bits); 4571 } 4572 } 4573 4574 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4575 const ARMCPRegInfo *ri, 4576 uint64_t value) 4577 { 4578 /* 4579 * Invalidate by VA range, EL1&0. 4580 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4581 * since we don't support flush-for-specific-ASID-only or 4582 * flush-last-level-only. 4583 */ 4584 4585 do_rvae_write(env, value, vae1_tlbmask(env), 4586 tlb_force_broadcast(env)); 4587 } 4588 4589 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4590 const ARMCPRegInfo *ri, 4591 uint64_t value) 4592 { 4593 /* 4594 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4595 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4596 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4597 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4598 * shareable specific flushes. 4599 */ 4600 4601 do_rvae_write(env, value, vae1_tlbmask(env), true); 4602 } 4603 4604 static int vae2_tlbmask(CPUARMState *env) 4605 { 4606 return (arm_is_secure_below_el3(env) 4607 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4608 } 4609 4610 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4611 const ARMCPRegInfo *ri, 4612 uint64_t value) 4613 { 4614 /* 4615 * Invalidate by VA range, EL2. 4616 * Currently handles all of RVAE2 and RVALE2, 4617 * since we don't support flush-for-specific-ASID-only or 4618 * flush-last-level-only. 4619 */ 4620 4621 do_rvae_write(env, value, vae2_tlbmask(env), 4622 tlb_force_broadcast(env)); 4623 4624 4625 } 4626 4627 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4628 const ARMCPRegInfo *ri, 4629 uint64_t value) 4630 { 4631 /* 4632 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4633 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4634 * since we don't support flush-for-specific-ASID-only, 4635 * flush-last-level-only or inner/outer shareable specific flushes. 4636 */ 4637 4638 do_rvae_write(env, value, vae2_tlbmask(env), true); 4639 4640 } 4641 4642 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4643 const ARMCPRegInfo *ri, 4644 uint64_t value) 4645 { 4646 /* 4647 * Invalidate by VA range, EL3. 4648 * Currently handles all of RVAE3 and RVALE3, 4649 * since we don't support flush-for-specific-ASID-only or 4650 * flush-last-level-only. 4651 */ 4652 4653 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4654 tlb_force_broadcast(env)); 4655 } 4656 4657 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4658 const ARMCPRegInfo *ri, 4659 uint64_t value) 4660 { 4661 /* 4662 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4663 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4664 * since we don't support flush-for-specific-ASID-only, 4665 * flush-last-level-only or inner/outer specific flushes. 4666 */ 4667 4668 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4669 } 4670 #endif 4671 4672 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4673 bool isread) 4674 { 4675 int cur_el = arm_current_el(env); 4676 4677 if (cur_el < 2) { 4678 uint64_t hcr = arm_hcr_el2_eff(env); 4679 4680 if (cur_el == 0) { 4681 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4682 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4683 return CP_ACCESS_TRAP_EL2; 4684 } 4685 } else { 4686 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4687 return CP_ACCESS_TRAP; 4688 } 4689 if (hcr & HCR_TDZ) { 4690 return CP_ACCESS_TRAP_EL2; 4691 } 4692 } 4693 } else if (hcr & HCR_TDZ) { 4694 return CP_ACCESS_TRAP_EL2; 4695 } 4696 } 4697 return CP_ACCESS_OK; 4698 } 4699 4700 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4701 { 4702 ARMCPU *cpu = env_archcpu(env); 4703 int dzp_bit = 1 << 4; 4704 4705 /* DZP indicates whether DC ZVA access is allowed */ 4706 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4707 dzp_bit = 0; 4708 } 4709 return cpu->dcz_blocksize | dzp_bit; 4710 } 4711 4712 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4713 bool isread) 4714 { 4715 if (!(env->pstate & PSTATE_SP)) { 4716 /* Access to SP_EL0 is undefined if it's being used as 4717 * the stack pointer. 4718 */ 4719 return CP_ACCESS_TRAP_UNCATEGORIZED; 4720 } 4721 return CP_ACCESS_OK; 4722 } 4723 4724 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4725 { 4726 return env->pstate & PSTATE_SP; 4727 } 4728 4729 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4730 { 4731 update_spsel(env, val); 4732 } 4733 4734 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4735 uint64_t value) 4736 { 4737 ARMCPU *cpu = env_archcpu(env); 4738 4739 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4740 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4741 value &= ~SCTLR_M; 4742 } 4743 4744 /* ??? Lots of these bits are not implemented. */ 4745 4746 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4747 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4748 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4749 } else { 4750 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4751 SCTLR_ATA0 | SCTLR_ATA); 4752 } 4753 } 4754 4755 if (raw_read(env, ri) == value) { 4756 /* Skip the TLB flush if nothing actually changed; Linux likes 4757 * to do a lot of pointless SCTLR writes. 4758 */ 4759 return; 4760 } 4761 4762 raw_write(env, ri, value); 4763 4764 /* This may enable/disable the MMU, so do a TLB flush. */ 4765 tlb_flush(CPU(cpu)); 4766 4767 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4768 /* 4769 * Normally we would always end the TB on an SCTLR write; see the 4770 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4771 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4772 * of hflags from the translator, so do it here. 4773 */ 4774 arm_rebuild_hflags(env); 4775 } 4776 } 4777 4778 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4779 uint64_t value) 4780 { 4781 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4782 } 4783 4784 static const ARMCPRegInfo v8_cp_reginfo[] = { 4785 /* Minimal set of EL0-visible registers. This will need to be expanded 4786 * significantly for system emulation of AArch64 CPUs. 4787 */ 4788 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4789 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4790 .access = PL0_RW, .type = ARM_CP_NZCV }, 4791 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4793 .type = ARM_CP_NO_RAW, 4794 .access = PL0_RW, .accessfn = aa64_daif_access, 4795 .fieldoffset = offsetof(CPUARMState, daif), 4796 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4797 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4798 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4799 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4800 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4801 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4803 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4804 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4805 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4806 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4807 .access = PL0_R, .type = ARM_CP_NO_RAW, 4808 .readfn = aa64_dczid_read }, 4809 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4811 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4812 #ifndef CONFIG_USER_ONLY 4813 /* Avoid overhead of an access check that always passes in user-mode */ 4814 .accessfn = aa64_zva_access, 4815 #endif 4816 }, 4817 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4818 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4819 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4820 /* Cache ops: all NOPs since we don't emulate caches */ 4821 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4822 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4823 .access = PL1_W, .type = ARM_CP_NOP, 4824 .accessfn = aa64_cacheop_pou_access }, 4825 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4827 .access = PL1_W, .type = ARM_CP_NOP, 4828 .accessfn = aa64_cacheop_pou_access }, 4829 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4831 .access = PL0_W, .type = ARM_CP_NOP, 4832 .accessfn = aa64_cacheop_pou_access }, 4833 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4835 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4836 .type = ARM_CP_NOP }, 4837 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4839 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4840 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4842 .access = PL0_W, .type = ARM_CP_NOP, 4843 .accessfn = aa64_cacheop_poc_access }, 4844 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4846 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4847 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4849 .access = PL0_W, .type = ARM_CP_NOP, 4850 .accessfn = aa64_cacheop_pou_access }, 4851 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4853 .access = PL0_W, .type = ARM_CP_NOP, 4854 .accessfn = aa64_cacheop_poc_access }, 4855 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4857 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4858 /* TLBI operations */ 4859 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4861 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4862 .writefn = tlbi_aa64_vmalle1is_write }, 4863 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4865 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4866 .writefn = tlbi_aa64_vae1is_write }, 4867 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4869 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4870 .writefn = tlbi_aa64_vmalle1is_write }, 4871 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4873 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4874 .writefn = tlbi_aa64_vae1is_write }, 4875 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4877 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4878 .writefn = tlbi_aa64_vae1is_write }, 4879 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4881 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4882 .writefn = tlbi_aa64_vae1is_write }, 4883 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4885 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4886 .writefn = tlbi_aa64_vmalle1_write }, 4887 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4889 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4890 .writefn = tlbi_aa64_vae1_write }, 4891 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4893 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4894 .writefn = tlbi_aa64_vmalle1_write }, 4895 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4897 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4898 .writefn = tlbi_aa64_vae1_write }, 4899 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4901 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4902 .writefn = tlbi_aa64_vae1_write }, 4903 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4905 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4906 .writefn = tlbi_aa64_vae1_write }, 4907 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4909 .access = PL2_W, .type = ARM_CP_NOP }, 4910 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4912 .access = PL2_W, .type = ARM_CP_NOP }, 4913 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4915 .access = PL2_W, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_alle1is_write }, 4917 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4919 .access = PL2_W, .type = ARM_CP_NO_RAW, 4920 .writefn = tlbi_aa64_alle1is_write }, 4921 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4923 .access = PL2_W, .type = ARM_CP_NOP }, 4924 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4926 .access = PL2_W, .type = ARM_CP_NOP }, 4927 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4929 .access = PL2_W, .type = ARM_CP_NO_RAW, 4930 .writefn = tlbi_aa64_alle1_write }, 4931 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4933 .access = PL2_W, .type = ARM_CP_NO_RAW, 4934 .writefn = tlbi_aa64_alle1is_write }, 4935 #ifndef CONFIG_USER_ONLY 4936 /* 64 bit address translation operations */ 4937 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4939 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4940 .writefn = ats_write64 }, 4941 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4943 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4944 .writefn = ats_write64 }, 4945 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4947 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4948 .writefn = ats_write64 }, 4949 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4951 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4952 .writefn = ats_write64 }, 4953 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4955 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4956 .writefn = ats_write64 }, 4957 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4959 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4960 .writefn = ats_write64 }, 4961 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4963 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4964 .writefn = ats_write64 }, 4965 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4967 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4968 .writefn = ats_write64 }, 4969 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4970 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4972 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4973 .writefn = ats_write64 }, 4974 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4976 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4977 .writefn = ats_write64 }, 4978 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4979 .type = ARM_CP_ALIAS, 4980 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4981 .access = PL1_RW, .resetvalue = 0, 4982 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4983 .writefn = par_write }, 4984 #endif 4985 /* TLB invalidate last level of translation table walk */ 4986 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4987 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4988 .writefn = tlbimva_is_write }, 4989 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4990 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4991 .writefn = tlbimvaa_is_write }, 4992 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4993 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4994 .writefn = tlbimva_write }, 4995 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4996 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4997 .writefn = tlbimvaa_write }, 4998 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4999 .type = ARM_CP_NO_RAW, .access = PL2_W, 5000 .writefn = tlbimva_hyp_write }, 5001 { .name = "TLBIMVALHIS", 5002 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5003 .type = ARM_CP_NO_RAW, .access = PL2_W, 5004 .writefn = tlbimva_hyp_is_write }, 5005 { .name = "TLBIIPAS2", 5006 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5007 .type = ARM_CP_NOP, .access = PL2_W }, 5008 { .name = "TLBIIPAS2IS", 5009 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5010 .type = ARM_CP_NOP, .access = PL2_W }, 5011 { .name = "TLBIIPAS2L", 5012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5013 .type = ARM_CP_NOP, .access = PL2_W }, 5014 { .name = "TLBIIPAS2LIS", 5015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5016 .type = ARM_CP_NOP, .access = PL2_W }, 5017 /* 32 bit cache operations */ 5018 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5019 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5020 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5021 .type = ARM_CP_NOP, .access = PL1_W }, 5022 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5023 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5024 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5025 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5026 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5027 .type = ARM_CP_NOP, .access = PL1_W }, 5028 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5029 .type = ARM_CP_NOP, .access = PL1_W }, 5030 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5031 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5032 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5033 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5034 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5035 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5036 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5037 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5038 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5039 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5040 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5042 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5044 /* MMU Domain access control / MPU write buffer control */ 5045 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5046 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5047 .writefn = dacr_write, .raw_writefn = raw_write, 5048 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5049 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5050 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5051 .type = ARM_CP_ALIAS, 5052 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5053 .access = PL1_RW, 5054 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5055 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5056 .type = ARM_CP_ALIAS, 5057 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5058 .access = PL1_RW, 5059 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5060 /* We rely on the access checks not allowing the guest to write to the 5061 * state field when SPSel indicates that it's being used as the stack 5062 * pointer. 5063 */ 5064 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5065 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5066 .access = PL1_RW, .accessfn = sp_el0_access, 5067 .type = ARM_CP_ALIAS, 5068 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5069 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5071 .access = PL2_RW, .type = ARM_CP_ALIAS, 5072 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5073 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5075 .type = ARM_CP_NO_RAW, 5076 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5077 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5079 .access = PL2_RW, 5080 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5081 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5082 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5084 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5085 .writefn = dacr_write, .raw_writefn = raw_write, 5086 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5087 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5088 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5089 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5090 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5091 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5092 .type = ARM_CP_ALIAS, 5093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5094 .access = PL2_RW, 5095 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5096 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5097 .type = ARM_CP_ALIAS, 5098 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5099 .access = PL2_RW, 5100 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5101 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5102 .type = ARM_CP_ALIAS, 5103 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5104 .access = PL2_RW, 5105 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5106 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5107 .type = ARM_CP_ALIAS, 5108 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5109 .access = PL2_RW, 5110 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5111 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5112 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5113 .resetvalue = 0, 5114 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5115 { .name = "SDCR", .type = ARM_CP_ALIAS, 5116 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5117 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5118 .writefn = sdcr_write, 5119 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5120 }; 5121 5122 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5123 { 5124 ARMCPU *cpu = env_archcpu(env); 5125 5126 if (arm_feature(env, ARM_FEATURE_V8)) { 5127 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5128 } else { 5129 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5130 } 5131 5132 if (arm_feature(env, ARM_FEATURE_EL3)) { 5133 valid_mask &= ~HCR_HCD; 5134 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5135 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5136 * However, if we're using the SMC PSCI conduit then QEMU is 5137 * effectively acting like EL3 firmware and so the guest at 5138 * EL2 should retain the ability to prevent EL1 from being 5139 * able to make SMC calls into the ersatz firmware, so in 5140 * that case HCR.TSC should be read/write. 5141 */ 5142 valid_mask &= ~HCR_TSC; 5143 } 5144 5145 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5146 if (cpu_isar_feature(aa64_vh, cpu)) { 5147 valid_mask |= HCR_E2H; 5148 } 5149 if (cpu_isar_feature(aa64_ras, cpu)) { 5150 valid_mask |= HCR_TERR | HCR_TEA; 5151 } 5152 if (cpu_isar_feature(aa64_lor, cpu)) { 5153 valid_mask |= HCR_TLOR; 5154 } 5155 if (cpu_isar_feature(aa64_pauth, cpu)) { 5156 valid_mask |= HCR_API | HCR_APK; 5157 } 5158 if (cpu_isar_feature(aa64_mte, cpu)) { 5159 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5160 } 5161 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5162 valid_mask |= HCR_ENSCXT; 5163 } 5164 if (cpu_isar_feature(aa64_fwb, cpu)) { 5165 valid_mask |= HCR_FWB; 5166 } 5167 } 5168 5169 /* Clear RES0 bits. */ 5170 value &= valid_mask; 5171 5172 /* 5173 * These bits change the MMU setup: 5174 * HCR_VM enables stage 2 translation 5175 * HCR_PTW forbids certain page-table setups 5176 * HCR_DC disables stage1 and enables stage2 translation 5177 * HCR_DCT enables tagging on (disabled) stage1 translation 5178 * HCR_FWB changes the interpretation of stage2 descriptor bits 5179 */ 5180 if ((env->cp15.hcr_el2 ^ value) & 5181 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5182 tlb_flush(CPU(cpu)); 5183 } 5184 env->cp15.hcr_el2 = value; 5185 5186 /* 5187 * Updates to VI and VF require us to update the status of 5188 * virtual interrupts, which are the logical OR of these bits 5189 * and the state of the input lines from the GIC. (This requires 5190 * that we have the iothread lock, which is done by marking the 5191 * reginfo structs as ARM_CP_IO.) 5192 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5193 * possible for it to be taken immediately, because VIRQ and 5194 * VFIQ are masked unless running at EL0 or EL1, and HCR 5195 * can only be written at EL2. 5196 */ 5197 g_assert(qemu_mutex_iothread_locked()); 5198 arm_cpu_update_virq(cpu); 5199 arm_cpu_update_vfiq(cpu); 5200 arm_cpu_update_vserr(cpu); 5201 } 5202 5203 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5204 { 5205 do_hcr_write(env, value, 0); 5206 } 5207 5208 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5209 uint64_t value) 5210 { 5211 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5212 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5213 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5214 } 5215 5216 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5217 uint64_t value) 5218 { 5219 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5220 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5221 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5222 } 5223 5224 /* 5225 * Return the effective value of HCR_EL2. 5226 * Bits that are not included here: 5227 * RW (read from SCR_EL3.RW as needed) 5228 */ 5229 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5230 { 5231 uint64_t ret = env->cp15.hcr_el2; 5232 5233 if (!arm_is_el2_enabled(env)) { 5234 /* 5235 * "This register has no effect if EL2 is not enabled in the 5236 * current Security state". This is ARMv8.4-SecEL2 speak for 5237 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5238 * 5239 * Prior to that, the language was "In an implementation that 5240 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5241 * as if this field is 0 for all purposes other than a direct 5242 * read or write access of HCR_EL2". With lots of enumeration 5243 * on a per-field basis. In current QEMU, this is condition 5244 * is arm_is_secure_below_el3. 5245 * 5246 * Since the v8.4 language applies to the entire register, and 5247 * appears to be backward compatible, use that. 5248 */ 5249 return 0; 5250 } 5251 5252 /* 5253 * For a cpu that supports both aarch64 and aarch32, we can set bits 5254 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5255 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5256 */ 5257 if (!arm_el_is_aa64(env, 2)) { 5258 uint64_t aa32_valid; 5259 5260 /* 5261 * These bits are up-to-date as of ARMv8.6. 5262 * For HCR, it's easiest to list just the 2 bits that are invalid. 5263 * For HCR2, list those that are valid. 5264 */ 5265 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5266 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5267 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5268 ret &= aa32_valid; 5269 } 5270 5271 if (ret & HCR_TGE) { 5272 /* These bits are up-to-date as of ARMv8.6. */ 5273 if (ret & HCR_E2H) { 5274 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5275 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5276 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5277 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5278 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5279 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5280 } else { 5281 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5282 } 5283 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5284 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5285 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5286 HCR_TLOR); 5287 } 5288 5289 return ret; 5290 } 5291 5292 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5293 uint64_t value) 5294 { 5295 /* 5296 * For A-profile AArch32 EL3, if NSACR.CP10 5297 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5298 */ 5299 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5300 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5301 value &= ~(0x3 << 10); 5302 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5303 } 5304 env->cp15.cptr_el[2] = value; 5305 } 5306 5307 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5308 { 5309 /* 5310 * For A-profile AArch32 EL3, if NSACR.CP10 5311 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5312 */ 5313 uint64_t value = env->cp15.cptr_el[2]; 5314 5315 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5316 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5317 value |= 0x3 << 10; 5318 } 5319 return value; 5320 } 5321 5322 static const ARMCPRegInfo el2_cp_reginfo[] = { 5323 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5324 .type = ARM_CP_IO, 5325 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5326 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5327 .writefn = hcr_write }, 5328 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5329 .type = ARM_CP_ALIAS | ARM_CP_IO, 5330 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5331 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5332 .writefn = hcr_writelow }, 5333 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5334 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5335 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5336 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5337 .type = ARM_CP_ALIAS, 5338 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5339 .access = PL2_RW, 5340 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5341 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5342 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5343 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5344 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5345 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5346 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5347 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5348 .type = ARM_CP_ALIAS, 5349 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5350 .access = PL2_RW, 5351 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5352 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5353 .type = ARM_CP_ALIAS, 5354 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5355 .access = PL2_RW, 5356 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5357 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5358 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5359 .access = PL2_RW, .writefn = vbar_write, 5360 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5361 .resetvalue = 0 }, 5362 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5363 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5364 .access = PL3_RW, .type = ARM_CP_ALIAS, 5365 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5366 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5367 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5368 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5369 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5370 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5371 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5372 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5373 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5374 .resetvalue = 0 }, 5375 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5376 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5377 .access = PL2_RW, .type = ARM_CP_ALIAS, 5378 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5379 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5380 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5381 .access = PL2_RW, .type = ARM_CP_CONST, 5382 .resetvalue = 0 }, 5383 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5384 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5385 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5386 .access = PL2_RW, .type = ARM_CP_CONST, 5387 .resetvalue = 0 }, 5388 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5389 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5390 .access = PL2_RW, .type = ARM_CP_CONST, 5391 .resetvalue = 0 }, 5392 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5393 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5394 .access = PL2_RW, .type = ARM_CP_CONST, 5395 .resetvalue = 0 }, 5396 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5397 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5398 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5399 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5400 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5401 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5402 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5403 .type = ARM_CP_ALIAS, 5404 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5405 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5406 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5407 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5408 .access = PL2_RW, 5409 /* no .writefn needed as this can't cause an ASID change; 5410 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5411 */ 5412 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5413 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5414 .cp = 15, .opc1 = 6, .crm = 2, 5415 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5416 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5417 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5418 .writefn = vttbr_write }, 5419 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5420 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5421 .access = PL2_RW, .writefn = vttbr_write, 5422 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5423 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5424 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5425 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5426 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5427 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5428 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5429 .access = PL2_RW, .resetvalue = 0, 5430 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5431 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5432 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5433 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5434 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5435 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5436 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5437 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5438 { .name = "TLBIALLNSNH", 5439 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5440 .type = ARM_CP_NO_RAW, .access = PL2_W, 5441 .writefn = tlbiall_nsnh_write }, 5442 { .name = "TLBIALLNSNHIS", 5443 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5444 .type = ARM_CP_NO_RAW, .access = PL2_W, 5445 .writefn = tlbiall_nsnh_is_write }, 5446 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5447 .type = ARM_CP_NO_RAW, .access = PL2_W, 5448 .writefn = tlbiall_hyp_write }, 5449 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5450 .type = ARM_CP_NO_RAW, .access = PL2_W, 5451 .writefn = tlbiall_hyp_is_write }, 5452 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5453 .type = ARM_CP_NO_RAW, .access = PL2_W, 5454 .writefn = tlbimva_hyp_write }, 5455 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5456 .type = ARM_CP_NO_RAW, .access = PL2_W, 5457 .writefn = tlbimva_hyp_is_write }, 5458 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5459 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5460 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5461 .writefn = tlbi_aa64_alle2_write }, 5462 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5464 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5465 .writefn = tlbi_aa64_vae2_write }, 5466 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5468 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5469 .writefn = tlbi_aa64_vae2_write }, 5470 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5472 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5473 .writefn = tlbi_aa64_alle2is_write }, 5474 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5476 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5477 .writefn = tlbi_aa64_vae2is_write }, 5478 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5480 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5481 .writefn = tlbi_aa64_vae2is_write }, 5482 #ifndef CONFIG_USER_ONLY 5483 /* Unlike the other EL2-related AT operations, these must 5484 * UNDEF from EL3 if EL2 is not implemented, which is why we 5485 * define them here rather than with the rest of the AT ops. 5486 */ 5487 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5488 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5489 .access = PL2_W, .accessfn = at_s1e2_access, 5490 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5491 .writefn = ats_write64 }, 5492 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5494 .access = PL2_W, .accessfn = at_s1e2_access, 5495 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5496 .writefn = ats_write64 }, 5497 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5498 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5499 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5500 * to behave as if SCR.NS was 1. 5501 */ 5502 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5503 .access = PL2_W, 5504 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5505 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5506 .access = PL2_W, 5507 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5508 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5509 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5510 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5511 * reset values as IMPDEF. We choose to reset to 3 to comply with 5512 * both ARMv7 and ARMv8. 5513 */ 5514 .access = PL2_RW, .resetvalue = 3, 5515 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5516 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5517 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5518 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5519 .writefn = gt_cntvoff_write, 5520 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5521 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5522 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5523 .writefn = gt_cntvoff_write, 5524 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5525 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5527 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5528 .type = ARM_CP_IO, .access = PL2_RW, 5529 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5530 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5531 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5532 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5533 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5534 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5535 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5536 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5537 .resetfn = gt_hyp_timer_reset, 5538 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5539 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5540 .type = ARM_CP_IO, 5541 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5542 .access = PL2_RW, 5543 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5544 .resetvalue = 0, 5545 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5546 #endif 5547 /* The only field of MDCR_EL2 that has a defined architectural reset value 5548 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5549 */ 5550 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5552 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5553 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5554 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5555 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5556 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5557 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5558 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5560 .access = PL2_RW, 5561 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5562 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5563 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5564 .access = PL2_RW, 5565 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5566 }; 5567 5568 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5569 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5570 .type = ARM_CP_ALIAS | ARM_CP_IO, 5571 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5572 .access = PL2_RW, 5573 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5574 .writefn = hcr_writehigh }, 5575 }; 5576 5577 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5578 bool isread) 5579 { 5580 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5581 return CP_ACCESS_OK; 5582 } 5583 return CP_ACCESS_TRAP_UNCATEGORIZED; 5584 } 5585 5586 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5587 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5588 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5589 .access = PL2_RW, .accessfn = sel2_access, 5590 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5591 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5593 .access = PL2_RW, .accessfn = sel2_access, 5594 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5595 }; 5596 5597 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5598 bool isread) 5599 { 5600 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5601 * At Secure EL1 it traps to EL3 or EL2. 5602 */ 5603 if (arm_current_el(env) == 3) { 5604 return CP_ACCESS_OK; 5605 } 5606 if (arm_is_secure_below_el3(env)) { 5607 if (env->cp15.scr_el3 & SCR_EEL2) { 5608 return CP_ACCESS_TRAP_EL2; 5609 } 5610 return CP_ACCESS_TRAP_EL3; 5611 } 5612 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5613 if (isread) { 5614 return CP_ACCESS_OK; 5615 } 5616 return CP_ACCESS_TRAP_UNCATEGORIZED; 5617 } 5618 5619 static const ARMCPRegInfo el3_cp_reginfo[] = { 5620 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5621 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5622 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5623 .resetfn = scr_reset, .writefn = scr_write }, 5624 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5625 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5626 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5627 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5628 .writefn = scr_write }, 5629 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5630 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5631 .access = PL3_RW, .resetvalue = 0, 5632 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5633 { .name = "SDER", 5634 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5635 .access = PL3_RW, .resetvalue = 0, 5636 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5637 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5638 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5639 .writefn = vbar_write, .resetvalue = 0, 5640 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5641 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5642 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5643 .access = PL3_RW, .resetvalue = 0, 5644 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5645 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5646 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5647 .access = PL3_RW, 5648 /* no .writefn needed as this can't cause an ASID change; 5649 * we must provide a .raw_writefn and .resetfn because we handle 5650 * reset and migration for the AArch32 TTBCR(S), which might be 5651 * using mask and base_mask. 5652 */ 5653 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5654 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5655 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5656 .type = ARM_CP_ALIAS, 5657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5658 .access = PL3_RW, 5659 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5660 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5661 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5662 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5663 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5664 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5665 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5666 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5667 .type = ARM_CP_ALIAS, 5668 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5669 .access = PL3_RW, 5670 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5671 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5672 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5673 .access = PL3_RW, .writefn = vbar_write, 5674 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5675 .resetvalue = 0 }, 5676 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5677 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5678 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5679 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5680 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5682 .access = PL3_RW, .resetvalue = 0, 5683 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5684 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5686 .access = PL3_RW, .type = ARM_CP_CONST, 5687 .resetvalue = 0 }, 5688 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5689 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5690 .access = PL3_RW, .type = ARM_CP_CONST, 5691 .resetvalue = 0 }, 5692 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5693 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5694 .access = PL3_RW, .type = ARM_CP_CONST, 5695 .resetvalue = 0 }, 5696 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5697 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5698 .access = PL3_W, .type = ARM_CP_NO_RAW, 5699 .writefn = tlbi_aa64_alle3is_write }, 5700 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5701 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5702 .access = PL3_W, .type = ARM_CP_NO_RAW, 5703 .writefn = tlbi_aa64_vae3is_write }, 5704 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5706 .access = PL3_W, .type = ARM_CP_NO_RAW, 5707 .writefn = tlbi_aa64_vae3is_write }, 5708 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5710 .access = PL3_W, .type = ARM_CP_NO_RAW, 5711 .writefn = tlbi_aa64_alle3_write }, 5712 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5714 .access = PL3_W, .type = ARM_CP_NO_RAW, 5715 .writefn = tlbi_aa64_vae3_write }, 5716 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5717 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5718 .access = PL3_W, .type = ARM_CP_NO_RAW, 5719 .writefn = tlbi_aa64_vae3_write }, 5720 }; 5721 5722 #ifndef CONFIG_USER_ONLY 5723 /* Test if system register redirection is to occur in the current state. */ 5724 static bool redirect_for_e2h(CPUARMState *env) 5725 { 5726 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5727 } 5728 5729 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5730 { 5731 CPReadFn *readfn; 5732 5733 if (redirect_for_e2h(env)) { 5734 /* Switch to the saved EL2 version of the register. */ 5735 ri = ri->opaque; 5736 readfn = ri->readfn; 5737 } else { 5738 readfn = ri->orig_readfn; 5739 } 5740 if (readfn == NULL) { 5741 readfn = raw_read; 5742 } 5743 return readfn(env, ri); 5744 } 5745 5746 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5747 uint64_t value) 5748 { 5749 CPWriteFn *writefn; 5750 5751 if (redirect_for_e2h(env)) { 5752 /* Switch to the saved EL2 version of the register. */ 5753 ri = ri->opaque; 5754 writefn = ri->writefn; 5755 } else { 5756 writefn = ri->orig_writefn; 5757 } 5758 if (writefn == NULL) { 5759 writefn = raw_write; 5760 } 5761 writefn(env, ri, value); 5762 } 5763 5764 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5765 { 5766 struct E2HAlias { 5767 uint32_t src_key, dst_key, new_key; 5768 const char *src_name, *dst_name, *new_name; 5769 bool (*feature)(const ARMISARegisters *id); 5770 }; 5771 5772 #define K(op0, op1, crn, crm, op2) \ 5773 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5774 5775 static const struct E2HAlias aliases[] = { 5776 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5777 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5778 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5779 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5780 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5781 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5782 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5783 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5784 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5785 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5786 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5787 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5788 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5789 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5790 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5791 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5792 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5793 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5794 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5795 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5796 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5797 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5798 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5799 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5800 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5801 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5802 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5803 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5804 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5805 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5806 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5807 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5808 5809 /* 5810 * Note that redirection of ZCR is mentioned in the description 5811 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5812 * not in the summary table. 5813 */ 5814 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5815 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5816 5817 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5818 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5819 5820 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5821 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5822 isar_feature_aa64_scxtnum }, 5823 5824 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5825 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5826 }; 5827 #undef K 5828 5829 size_t i; 5830 5831 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5832 const struct E2HAlias *a = &aliases[i]; 5833 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5834 bool ok; 5835 5836 if (a->feature && !a->feature(&cpu->isar)) { 5837 continue; 5838 } 5839 5840 src_reg = g_hash_table_lookup(cpu->cp_regs, 5841 (gpointer)(uintptr_t)a->src_key); 5842 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5843 (gpointer)(uintptr_t)a->dst_key); 5844 g_assert(src_reg != NULL); 5845 g_assert(dst_reg != NULL); 5846 5847 /* Cross-compare names to detect typos in the keys. */ 5848 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5849 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5850 5851 /* None of the core system registers use opaque; we will. */ 5852 g_assert(src_reg->opaque == NULL); 5853 5854 /* Create alias before redirection so we dup the right data. */ 5855 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5856 5857 new_reg->name = a->new_name; 5858 new_reg->type |= ARM_CP_ALIAS; 5859 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5860 new_reg->access &= PL2_RW | PL3_RW; 5861 5862 ok = g_hash_table_insert(cpu->cp_regs, 5863 (gpointer)(uintptr_t)a->new_key, new_reg); 5864 g_assert(ok); 5865 5866 src_reg->opaque = dst_reg; 5867 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5868 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5869 if (!src_reg->raw_readfn) { 5870 src_reg->raw_readfn = raw_read; 5871 } 5872 if (!src_reg->raw_writefn) { 5873 src_reg->raw_writefn = raw_write; 5874 } 5875 src_reg->readfn = el2_e2h_read; 5876 src_reg->writefn = el2_e2h_write; 5877 } 5878 } 5879 #endif 5880 5881 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5882 bool isread) 5883 { 5884 int cur_el = arm_current_el(env); 5885 5886 if (cur_el < 2) { 5887 uint64_t hcr = arm_hcr_el2_eff(env); 5888 5889 if (cur_el == 0) { 5890 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5891 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5892 return CP_ACCESS_TRAP_EL2; 5893 } 5894 } else { 5895 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5896 return CP_ACCESS_TRAP; 5897 } 5898 if (hcr & HCR_TID2) { 5899 return CP_ACCESS_TRAP_EL2; 5900 } 5901 } 5902 } else if (hcr & HCR_TID2) { 5903 return CP_ACCESS_TRAP_EL2; 5904 } 5905 } 5906 5907 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5908 return CP_ACCESS_TRAP_EL2; 5909 } 5910 5911 return CP_ACCESS_OK; 5912 } 5913 5914 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5915 uint64_t value) 5916 { 5917 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5918 * read via a bit in OSLSR_EL1. 5919 */ 5920 int oslock; 5921 5922 if (ri->state == ARM_CP_STATE_AA32) { 5923 oslock = (value == 0xC5ACCE55); 5924 } else { 5925 oslock = value & 1; 5926 } 5927 5928 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5929 } 5930 5931 static const ARMCPRegInfo debug_cp_reginfo[] = { 5932 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5933 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5934 * unlike DBGDRAR it is never accessible from EL0. 5935 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5936 * accessor. 5937 */ 5938 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5939 .access = PL0_R, .accessfn = access_tdra, 5940 .type = ARM_CP_CONST, .resetvalue = 0 }, 5941 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5942 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5943 .access = PL1_R, .accessfn = access_tdra, 5944 .type = ARM_CP_CONST, .resetvalue = 0 }, 5945 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5946 .access = PL0_R, .accessfn = access_tdra, 5947 .type = ARM_CP_CONST, .resetvalue = 0 }, 5948 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5949 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5950 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5951 .access = PL1_RW, .accessfn = access_tda, 5952 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5953 .resetvalue = 0 }, 5954 /* 5955 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 5956 * Debug Communication Channel is not implemented. 5957 */ 5958 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 5959 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 5960 .access = PL0_R, .accessfn = access_tda, 5961 .type = ARM_CP_CONST, .resetvalue = 0 }, 5962 /* 5963 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 5964 * it is unlikely a guest will care. 5965 * We don't implement the configurable EL0 access. 5966 */ 5967 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 5968 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5969 .type = ARM_CP_ALIAS, 5970 .access = PL1_R, .accessfn = access_tda, 5971 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5972 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5973 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5974 .access = PL1_W, .type = ARM_CP_NO_RAW, 5975 .accessfn = access_tdosa, 5976 .writefn = oslar_write }, 5977 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5978 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5979 .access = PL1_R, .resetvalue = 10, 5980 .accessfn = access_tdosa, 5981 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5982 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5983 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5984 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5985 .access = PL1_RW, .accessfn = access_tdosa, 5986 .type = ARM_CP_NOP }, 5987 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5988 * implement vector catch debug events yet. 5989 */ 5990 { .name = "DBGVCR", 5991 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5992 .access = PL1_RW, .accessfn = access_tda, 5993 .type = ARM_CP_NOP }, 5994 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5995 * to save and restore a 32-bit guest's DBGVCR) 5996 */ 5997 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5998 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5999 .access = PL2_RW, .accessfn = access_tda, 6000 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 6001 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6002 * Channel but Linux may try to access this register. The 32-bit 6003 * alias is DBGDCCINT. 6004 */ 6005 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6006 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6007 .access = PL1_RW, .accessfn = access_tda, 6008 .type = ARM_CP_NOP }, 6009 }; 6010 6011 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6012 /* 64 bit access versions of the (dummy) debug registers */ 6013 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6014 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6015 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6016 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6017 }; 6018 6019 /* 6020 * Check for traps to RAS registers, which are controlled 6021 * by HCR_EL2.TERR and SCR_EL3.TERR. 6022 */ 6023 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6024 bool isread) 6025 { 6026 int el = arm_current_el(env); 6027 6028 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6029 return CP_ACCESS_TRAP_EL2; 6030 } 6031 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6032 return CP_ACCESS_TRAP_EL3; 6033 } 6034 return CP_ACCESS_OK; 6035 } 6036 6037 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6038 { 6039 int el = arm_current_el(env); 6040 6041 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6042 return env->cp15.vdisr_el2; 6043 } 6044 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6045 return 0; /* RAZ/WI */ 6046 } 6047 return env->cp15.disr_el1; 6048 } 6049 6050 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6051 { 6052 int el = arm_current_el(env); 6053 6054 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6055 env->cp15.vdisr_el2 = val; 6056 return; 6057 } 6058 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6059 return; /* RAZ/WI */ 6060 } 6061 env->cp15.disr_el1 = val; 6062 } 6063 6064 /* 6065 * Minimal RAS implementation with no Error Records. 6066 * Which means that all of the Error Record registers: 6067 * ERXADDR_EL1 6068 * ERXCTLR_EL1 6069 * ERXFR_EL1 6070 * ERXMISC0_EL1 6071 * ERXMISC1_EL1 6072 * ERXMISC2_EL1 6073 * ERXMISC3_EL1 6074 * ERXPFGCDN_EL1 (RASv1p1) 6075 * ERXPFGCTL_EL1 (RASv1p1) 6076 * ERXPFGF_EL1 (RASv1p1) 6077 * ERXSTATUS_EL1 6078 * and 6079 * ERRSELR_EL1 6080 * may generate UNDEFINED, which is the effect we get by not 6081 * listing them at all. 6082 */ 6083 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6084 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6085 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6086 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6087 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6088 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6089 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6090 .access = PL1_R, .accessfn = access_terr, 6091 .type = ARM_CP_CONST, .resetvalue = 0 }, 6092 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6093 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6094 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6095 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6096 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6097 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6098 }; 6099 6100 /* Return the exception level to which exceptions should be taken 6101 * via SVEAccessTrap. If an exception should be routed through 6102 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6103 * take care of raising that exception. 6104 * C.f. the ARM pseudocode function CheckSVEEnabled. 6105 */ 6106 int sve_exception_el(CPUARMState *env, int el) 6107 { 6108 #ifndef CONFIG_USER_ONLY 6109 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6110 6111 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6112 /* Check CPACR.ZEN. */ 6113 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6114 case 1: 6115 if (el != 0) { 6116 break; 6117 } 6118 /* fall through */ 6119 case 0: 6120 case 2: 6121 /* route_to_el2 */ 6122 return hcr_el2 & HCR_TGE ? 2 : 1; 6123 } 6124 6125 /* Check CPACR.FPEN. */ 6126 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6127 case 1: 6128 if (el != 0) { 6129 break; 6130 } 6131 /* fall through */ 6132 case 0: 6133 case 2: 6134 return 0; 6135 } 6136 } 6137 6138 /* 6139 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6140 */ 6141 if (el <= 2) { 6142 if (hcr_el2 & HCR_E2H) { 6143 /* Check CPTR_EL2.ZEN. */ 6144 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6145 case 1: 6146 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6147 break; 6148 } 6149 /* fall through */ 6150 case 0: 6151 case 2: 6152 return 2; 6153 } 6154 6155 /* Check CPTR_EL2.FPEN. */ 6156 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6157 case 1: 6158 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6159 break; 6160 } 6161 /* fall through */ 6162 case 0: 6163 case 2: 6164 return 0; 6165 } 6166 } else if (arm_is_el2_enabled(env)) { 6167 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6168 return 2; 6169 } 6170 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6171 return 0; 6172 } 6173 } 6174 } 6175 6176 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6177 if (arm_feature(env, ARM_FEATURE_EL3) 6178 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6179 return 3; 6180 } 6181 #endif 6182 return 0; 6183 } 6184 6185 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6186 { 6187 uint32_t end_len; 6188 6189 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6190 end_len = start_len; 6191 6192 if (!test_bit(start_len, cpu->sve_vq_map)) { 6193 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6194 assert(end_len < start_len); 6195 } 6196 return end_len; 6197 } 6198 6199 /* 6200 * Given that SVE is enabled, return the vector length for EL. 6201 */ 6202 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6203 { 6204 ARMCPU *cpu = env_archcpu(env); 6205 uint32_t zcr_len = cpu->sve_max_vq - 1; 6206 6207 if (el <= 1 && 6208 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6209 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6210 } 6211 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6212 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6213 } 6214 if (arm_feature(env, ARM_FEATURE_EL3)) { 6215 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6216 } 6217 6218 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6219 } 6220 6221 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6222 uint64_t value) 6223 { 6224 int cur_el = arm_current_el(env); 6225 int old_len = sve_zcr_len_for_el(env, cur_el); 6226 int new_len; 6227 6228 /* Bits other than [3:0] are RAZ/WI. */ 6229 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6230 raw_write(env, ri, value & 0xf); 6231 6232 /* 6233 * Because we arrived here, we know both FP and SVE are enabled; 6234 * otherwise we would have trapped access to the ZCR_ELn register. 6235 */ 6236 new_len = sve_zcr_len_for_el(env, cur_el); 6237 if (new_len < old_len) { 6238 aarch64_sve_narrow_vq(env, new_len + 1); 6239 } 6240 } 6241 6242 static const ARMCPRegInfo zcr_reginfo[] = { 6243 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6244 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6245 .access = PL1_RW, .type = ARM_CP_SVE, 6246 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6247 .writefn = zcr_write, .raw_writefn = raw_write }, 6248 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6249 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6250 .access = PL2_RW, .type = ARM_CP_SVE, 6251 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6252 .writefn = zcr_write, .raw_writefn = raw_write }, 6253 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6254 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6255 .access = PL3_RW, .type = ARM_CP_SVE, 6256 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6257 .writefn = zcr_write, .raw_writefn = raw_write }, 6258 }; 6259 6260 void hw_watchpoint_update(ARMCPU *cpu, int n) 6261 { 6262 CPUARMState *env = &cpu->env; 6263 vaddr len = 0; 6264 vaddr wvr = env->cp15.dbgwvr[n]; 6265 uint64_t wcr = env->cp15.dbgwcr[n]; 6266 int mask; 6267 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6268 6269 if (env->cpu_watchpoint[n]) { 6270 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6271 env->cpu_watchpoint[n] = NULL; 6272 } 6273 6274 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6275 /* E bit clear : watchpoint disabled */ 6276 return; 6277 } 6278 6279 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6280 case 0: 6281 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6282 return; 6283 case 1: 6284 flags |= BP_MEM_READ; 6285 break; 6286 case 2: 6287 flags |= BP_MEM_WRITE; 6288 break; 6289 case 3: 6290 flags |= BP_MEM_ACCESS; 6291 break; 6292 } 6293 6294 /* Attempts to use both MASK and BAS fields simultaneously are 6295 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6296 * thus generating a watchpoint for every byte in the masked region. 6297 */ 6298 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6299 if (mask == 1 || mask == 2) { 6300 /* Reserved values of MASK; we must act as if the mask value was 6301 * some non-reserved value, or as if the watchpoint were disabled. 6302 * We choose the latter. 6303 */ 6304 return; 6305 } else if (mask) { 6306 /* Watchpoint covers an aligned area up to 2GB in size */ 6307 len = 1ULL << mask; 6308 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6309 * whether the watchpoint fires when the unmasked bits match; we opt 6310 * to generate the exceptions. 6311 */ 6312 wvr &= ~(len - 1); 6313 } else { 6314 /* Watchpoint covers bytes defined by the byte address select bits */ 6315 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6316 int basstart; 6317 6318 if (extract64(wvr, 2, 1)) { 6319 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6320 * ignored, and BAS[3:0] define which bytes to watch. 6321 */ 6322 bas &= 0xf; 6323 } 6324 6325 if (bas == 0) { 6326 /* This must act as if the watchpoint is disabled */ 6327 return; 6328 } 6329 6330 /* The BAS bits are supposed to be programmed to indicate a contiguous 6331 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6332 * we fire for each byte in the word/doubleword addressed by the WVR. 6333 * We choose to ignore any non-zero bits after the first range of 1s. 6334 */ 6335 basstart = ctz32(bas); 6336 len = cto32(bas >> basstart); 6337 wvr += basstart; 6338 } 6339 6340 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6341 &env->cpu_watchpoint[n]); 6342 } 6343 6344 void hw_watchpoint_update_all(ARMCPU *cpu) 6345 { 6346 int i; 6347 CPUARMState *env = &cpu->env; 6348 6349 /* Completely clear out existing QEMU watchpoints and our array, to 6350 * avoid possible stale entries following migration load. 6351 */ 6352 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6353 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6354 6355 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6356 hw_watchpoint_update(cpu, i); 6357 } 6358 } 6359 6360 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6361 uint64_t value) 6362 { 6363 ARMCPU *cpu = env_archcpu(env); 6364 int i = ri->crm; 6365 6366 /* 6367 * Bits [1:0] are RES0. 6368 * 6369 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6370 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6371 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6372 * whether the RESS bits are ignored when comparing an address. 6373 * 6374 * Therefore we are allowed to compare the entire register, which lets 6375 * us avoid considering whether or not FEAT_LVA is actually enabled. 6376 */ 6377 value &= ~3ULL; 6378 6379 raw_write(env, ri, value); 6380 hw_watchpoint_update(cpu, i); 6381 } 6382 6383 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6384 uint64_t value) 6385 { 6386 ARMCPU *cpu = env_archcpu(env); 6387 int i = ri->crm; 6388 6389 raw_write(env, ri, value); 6390 hw_watchpoint_update(cpu, i); 6391 } 6392 6393 void hw_breakpoint_update(ARMCPU *cpu, int n) 6394 { 6395 CPUARMState *env = &cpu->env; 6396 uint64_t bvr = env->cp15.dbgbvr[n]; 6397 uint64_t bcr = env->cp15.dbgbcr[n]; 6398 vaddr addr; 6399 int bt; 6400 int flags = BP_CPU; 6401 6402 if (env->cpu_breakpoint[n]) { 6403 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6404 env->cpu_breakpoint[n] = NULL; 6405 } 6406 6407 if (!extract64(bcr, 0, 1)) { 6408 /* E bit clear : watchpoint disabled */ 6409 return; 6410 } 6411 6412 bt = extract64(bcr, 20, 4); 6413 6414 switch (bt) { 6415 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6416 case 5: /* linked address mismatch (reserved if AArch64) */ 6417 qemu_log_mask(LOG_UNIMP, 6418 "arm: address mismatch breakpoint types not implemented\n"); 6419 return; 6420 case 0: /* unlinked address match */ 6421 case 1: /* linked address match */ 6422 { 6423 /* 6424 * Bits [1:0] are RES0. 6425 * 6426 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6427 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6428 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6429 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6430 * whether the RESS bits are ignored when comparing an address. 6431 * Therefore we are allowed to compare the entire register, which 6432 * lets us avoid considering whether FEAT_LVA is actually enabled. 6433 * 6434 * The BAS field is used to allow setting breakpoints on 16-bit 6435 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6436 * a bp will fire if the addresses covered by the bp and the addresses 6437 * covered by the insn overlap but the insn doesn't start at the 6438 * start of the bp address range. We choose to require the insn and 6439 * the bp to have the same address. The constraints on writing to 6440 * BAS enforced in dbgbcr_write mean we have only four cases: 6441 * 0b0000 => no breakpoint 6442 * 0b0011 => breakpoint on addr 6443 * 0b1100 => breakpoint on addr + 2 6444 * 0b1111 => breakpoint on addr 6445 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6446 */ 6447 int bas = extract64(bcr, 5, 4); 6448 addr = bvr & ~3ULL; 6449 if (bas == 0) { 6450 return; 6451 } 6452 if (bas == 0xc) { 6453 addr += 2; 6454 } 6455 break; 6456 } 6457 case 2: /* unlinked context ID match */ 6458 case 8: /* unlinked VMID match (reserved if no EL2) */ 6459 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6460 qemu_log_mask(LOG_UNIMP, 6461 "arm: unlinked context breakpoint types not implemented\n"); 6462 return; 6463 case 9: /* linked VMID match (reserved if no EL2) */ 6464 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6465 case 3: /* linked context ID match */ 6466 default: 6467 /* We must generate no events for Linked context matches (unless 6468 * they are linked to by some other bp/wp, which is handled in 6469 * updates for the linking bp/wp). We choose to also generate no events 6470 * for reserved values. 6471 */ 6472 return; 6473 } 6474 6475 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6476 } 6477 6478 void hw_breakpoint_update_all(ARMCPU *cpu) 6479 { 6480 int i; 6481 CPUARMState *env = &cpu->env; 6482 6483 /* Completely clear out existing QEMU breakpoints and our array, to 6484 * avoid possible stale entries following migration load. 6485 */ 6486 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6487 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6488 6489 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6490 hw_breakpoint_update(cpu, i); 6491 } 6492 } 6493 6494 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6495 uint64_t value) 6496 { 6497 ARMCPU *cpu = env_archcpu(env); 6498 int i = ri->crm; 6499 6500 raw_write(env, ri, value); 6501 hw_breakpoint_update(cpu, i); 6502 } 6503 6504 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6505 uint64_t value) 6506 { 6507 ARMCPU *cpu = env_archcpu(env); 6508 int i = ri->crm; 6509 6510 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6511 * copy of BAS[0]. 6512 */ 6513 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6514 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6515 6516 raw_write(env, ri, value); 6517 hw_breakpoint_update(cpu, i); 6518 } 6519 6520 static void define_debug_regs(ARMCPU *cpu) 6521 { 6522 /* Define v7 and v8 architectural debug registers. 6523 * These are just dummy implementations for now. 6524 */ 6525 int i; 6526 int wrps, brps, ctx_cmps; 6527 6528 /* 6529 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6530 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6531 * the register must not exist for this cpu. 6532 */ 6533 if (cpu->isar.dbgdidr != 0) { 6534 ARMCPRegInfo dbgdidr = { 6535 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6536 .opc1 = 0, .opc2 = 0, 6537 .access = PL0_R, .accessfn = access_tda, 6538 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6539 }; 6540 define_one_arm_cp_reg(cpu, &dbgdidr); 6541 } 6542 6543 /* Note that all these register fields hold "number of Xs minus 1". */ 6544 brps = arm_num_brps(cpu); 6545 wrps = arm_num_wrps(cpu); 6546 ctx_cmps = arm_num_ctx_cmps(cpu); 6547 6548 assert(ctx_cmps <= brps); 6549 6550 define_arm_cp_regs(cpu, debug_cp_reginfo); 6551 6552 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6553 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6554 } 6555 6556 for (i = 0; i < brps; i++) { 6557 ARMCPRegInfo dbgregs[] = { 6558 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6559 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6560 .access = PL1_RW, .accessfn = access_tda, 6561 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6562 .writefn = dbgbvr_write, .raw_writefn = raw_write 6563 }, 6564 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6565 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6566 .access = PL1_RW, .accessfn = access_tda, 6567 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6568 .writefn = dbgbcr_write, .raw_writefn = raw_write 6569 }, 6570 }; 6571 define_arm_cp_regs(cpu, dbgregs); 6572 } 6573 6574 for (i = 0; i < wrps; i++) { 6575 ARMCPRegInfo dbgregs[] = { 6576 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6577 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6578 .access = PL1_RW, .accessfn = access_tda, 6579 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6580 .writefn = dbgwvr_write, .raw_writefn = raw_write 6581 }, 6582 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6583 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6584 .access = PL1_RW, .accessfn = access_tda, 6585 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6586 .writefn = dbgwcr_write, .raw_writefn = raw_write 6587 }, 6588 }; 6589 define_arm_cp_regs(cpu, dbgregs); 6590 } 6591 } 6592 6593 static void define_pmu_regs(ARMCPU *cpu) 6594 { 6595 /* 6596 * v7 performance monitor control register: same implementor 6597 * field as main ID register, and we implement four counters in 6598 * addition to the cycle count register. 6599 */ 6600 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6601 ARMCPRegInfo pmcr = { 6602 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6603 .access = PL0_RW, 6604 .type = ARM_CP_IO | ARM_CP_ALIAS, 6605 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6606 .accessfn = pmreg_access, .writefn = pmcr_write, 6607 .raw_writefn = raw_write, 6608 }; 6609 ARMCPRegInfo pmcr64 = { 6610 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6611 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6612 .access = PL0_RW, .accessfn = pmreg_access, 6613 .type = ARM_CP_IO, 6614 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6615 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6616 PMCRLC, 6617 .writefn = pmcr_write, .raw_writefn = raw_write, 6618 }; 6619 define_one_arm_cp_reg(cpu, &pmcr); 6620 define_one_arm_cp_reg(cpu, &pmcr64); 6621 for (i = 0; i < pmcrn; i++) { 6622 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6623 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6624 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6625 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6626 ARMCPRegInfo pmev_regs[] = { 6627 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6628 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6629 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6630 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6631 .accessfn = pmreg_access_xevcntr }, 6632 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6633 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6634 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6635 .type = ARM_CP_IO, 6636 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6637 .raw_readfn = pmevcntr_rawread, 6638 .raw_writefn = pmevcntr_rawwrite }, 6639 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6640 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6641 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6642 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6643 .accessfn = pmreg_access }, 6644 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6645 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6646 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6647 .type = ARM_CP_IO, 6648 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6649 .raw_writefn = pmevtyper_rawwrite }, 6650 }; 6651 define_arm_cp_regs(cpu, pmev_regs); 6652 g_free(pmevcntr_name); 6653 g_free(pmevcntr_el0_name); 6654 g_free(pmevtyper_name); 6655 g_free(pmevtyper_el0_name); 6656 } 6657 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6658 ARMCPRegInfo v81_pmu_regs[] = { 6659 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6660 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6661 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6662 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6663 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6664 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6665 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6666 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6667 }; 6668 define_arm_cp_regs(cpu, v81_pmu_regs); 6669 } 6670 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6671 static const ARMCPRegInfo v84_pmmir = { 6672 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6673 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6674 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6675 .resetvalue = 0 6676 }; 6677 define_one_arm_cp_reg(cpu, &v84_pmmir); 6678 } 6679 } 6680 6681 /* We don't know until after realize whether there's a GICv3 6682 * attached, and that is what registers the gicv3 sysregs. 6683 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6684 * at runtime. 6685 */ 6686 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6687 { 6688 ARMCPU *cpu = env_archcpu(env); 6689 uint64_t pfr1 = cpu->isar.id_pfr1; 6690 6691 if (env->gicv3state) { 6692 pfr1 |= 1 << 28; 6693 } 6694 return pfr1; 6695 } 6696 6697 #ifndef CONFIG_USER_ONLY 6698 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6699 { 6700 ARMCPU *cpu = env_archcpu(env); 6701 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6702 6703 if (env->gicv3state) { 6704 pfr0 |= 1 << 24; 6705 } 6706 return pfr0; 6707 } 6708 #endif 6709 6710 /* Shared logic between LORID and the rest of the LOR* registers. 6711 * Secure state exclusion has already been dealt with. 6712 */ 6713 static CPAccessResult access_lor_ns(CPUARMState *env, 6714 const ARMCPRegInfo *ri, bool isread) 6715 { 6716 int el = arm_current_el(env); 6717 6718 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6719 return CP_ACCESS_TRAP_EL2; 6720 } 6721 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6722 return CP_ACCESS_TRAP_EL3; 6723 } 6724 return CP_ACCESS_OK; 6725 } 6726 6727 static CPAccessResult access_lor_other(CPUARMState *env, 6728 const ARMCPRegInfo *ri, bool isread) 6729 { 6730 if (arm_is_secure_below_el3(env)) { 6731 /* Access denied in secure mode. */ 6732 return CP_ACCESS_TRAP; 6733 } 6734 return access_lor_ns(env, ri, isread); 6735 } 6736 6737 /* 6738 * A trivial implementation of ARMv8.1-LOR leaves all of these 6739 * registers fixed at 0, which indicates that there are zero 6740 * supported Limited Ordering regions. 6741 */ 6742 static const ARMCPRegInfo lor_reginfo[] = { 6743 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6745 .access = PL1_RW, .accessfn = access_lor_other, 6746 .type = ARM_CP_CONST, .resetvalue = 0 }, 6747 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6749 .access = PL1_RW, .accessfn = access_lor_other, 6750 .type = ARM_CP_CONST, .resetvalue = 0 }, 6751 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6753 .access = PL1_RW, .accessfn = access_lor_other, 6754 .type = ARM_CP_CONST, .resetvalue = 0 }, 6755 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6757 .access = PL1_RW, .accessfn = access_lor_other, 6758 .type = ARM_CP_CONST, .resetvalue = 0 }, 6759 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6761 .access = PL1_R, .accessfn = access_lor_ns, 6762 .type = ARM_CP_CONST, .resetvalue = 0 }, 6763 }; 6764 6765 #ifdef TARGET_AARCH64 6766 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6767 bool isread) 6768 { 6769 int el = arm_current_el(env); 6770 6771 if (el < 2 && 6772 arm_feature(env, ARM_FEATURE_EL2) && 6773 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6774 return CP_ACCESS_TRAP_EL2; 6775 } 6776 if (el < 3 && 6777 arm_feature(env, ARM_FEATURE_EL3) && 6778 !(env->cp15.scr_el3 & SCR_APK)) { 6779 return CP_ACCESS_TRAP_EL3; 6780 } 6781 return CP_ACCESS_OK; 6782 } 6783 6784 static const ARMCPRegInfo pauth_reginfo[] = { 6785 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6786 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6787 .access = PL1_RW, .accessfn = access_pauth, 6788 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6789 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6791 .access = PL1_RW, .accessfn = access_pauth, 6792 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6793 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6795 .access = PL1_RW, .accessfn = access_pauth, 6796 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6797 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6799 .access = PL1_RW, .accessfn = access_pauth, 6800 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6801 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6803 .access = PL1_RW, .accessfn = access_pauth, 6804 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6805 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6807 .access = PL1_RW, .accessfn = access_pauth, 6808 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6809 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6811 .access = PL1_RW, .accessfn = access_pauth, 6812 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6813 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6814 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6815 .access = PL1_RW, .accessfn = access_pauth, 6816 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6817 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6819 .access = PL1_RW, .accessfn = access_pauth, 6820 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6821 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6822 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6823 .access = PL1_RW, .accessfn = access_pauth, 6824 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6825 }; 6826 6827 static const ARMCPRegInfo tlbirange_reginfo[] = { 6828 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6829 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6830 .access = PL1_W, .type = ARM_CP_NO_RAW, 6831 .writefn = tlbi_aa64_rvae1is_write }, 6832 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6833 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6834 .access = PL1_W, .type = ARM_CP_NO_RAW, 6835 .writefn = tlbi_aa64_rvae1is_write }, 6836 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6838 .access = PL1_W, .type = ARM_CP_NO_RAW, 6839 .writefn = tlbi_aa64_rvae1is_write }, 6840 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6842 .access = PL1_W, .type = ARM_CP_NO_RAW, 6843 .writefn = tlbi_aa64_rvae1is_write }, 6844 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6846 .access = PL1_W, .type = ARM_CP_NO_RAW, 6847 .writefn = tlbi_aa64_rvae1is_write }, 6848 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6850 .access = PL1_W, .type = ARM_CP_NO_RAW, 6851 .writefn = tlbi_aa64_rvae1is_write }, 6852 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6854 .access = PL1_W, .type = ARM_CP_NO_RAW, 6855 .writefn = tlbi_aa64_rvae1is_write }, 6856 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6858 .access = PL1_W, .type = ARM_CP_NO_RAW, 6859 .writefn = tlbi_aa64_rvae1is_write }, 6860 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6862 .access = PL1_W, .type = ARM_CP_NO_RAW, 6863 .writefn = tlbi_aa64_rvae1_write }, 6864 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6866 .access = PL1_W, .type = ARM_CP_NO_RAW, 6867 .writefn = tlbi_aa64_rvae1_write }, 6868 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6870 .access = PL1_W, .type = ARM_CP_NO_RAW, 6871 .writefn = tlbi_aa64_rvae1_write }, 6872 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6874 .access = PL1_W, .type = ARM_CP_NO_RAW, 6875 .writefn = tlbi_aa64_rvae1_write }, 6876 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6878 .access = PL2_W, .type = ARM_CP_NOP }, 6879 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6881 .access = PL2_W, .type = ARM_CP_NOP }, 6882 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6884 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6885 .writefn = tlbi_aa64_rvae2is_write }, 6886 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6888 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6889 .writefn = tlbi_aa64_rvae2is_write }, 6890 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6892 .access = PL2_W, .type = ARM_CP_NOP }, 6893 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6895 .access = PL2_W, .type = ARM_CP_NOP }, 6896 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6897 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6898 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6899 .writefn = tlbi_aa64_rvae2is_write }, 6900 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6902 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6903 .writefn = tlbi_aa64_rvae2is_write }, 6904 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6906 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6907 .writefn = tlbi_aa64_rvae2_write }, 6908 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6910 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6911 .writefn = tlbi_aa64_rvae2_write }, 6912 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6914 .access = PL3_W, .type = ARM_CP_NO_RAW, 6915 .writefn = tlbi_aa64_rvae3is_write }, 6916 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6918 .access = PL3_W, .type = ARM_CP_NO_RAW, 6919 .writefn = tlbi_aa64_rvae3is_write }, 6920 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6922 .access = PL3_W, .type = ARM_CP_NO_RAW, 6923 .writefn = tlbi_aa64_rvae3is_write }, 6924 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6926 .access = PL3_W, .type = ARM_CP_NO_RAW, 6927 .writefn = tlbi_aa64_rvae3is_write }, 6928 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6930 .access = PL3_W, .type = ARM_CP_NO_RAW, 6931 .writefn = tlbi_aa64_rvae3_write }, 6932 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6934 .access = PL3_W, .type = ARM_CP_NO_RAW, 6935 .writefn = tlbi_aa64_rvae3_write }, 6936 }; 6937 6938 static const ARMCPRegInfo tlbios_reginfo[] = { 6939 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6941 .access = PL1_W, .type = ARM_CP_NO_RAW, 6942 .writefn = tlbi_aa64_vmalle1is_write }, 6943 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6944 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6945 .access = PL1_W, .type = ARM_CP_NO_RAW, 6946 .writefn = tlbi_aa64_vae1is_write }, 6947 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6949 .access = PL1_W, .type = ARM_CP_NO_RAW, 6950 .writefn = tlbi_aa64_vmalle1is_write }, 6951 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6953 .access = PL1_W, .type = ARM_CP_NO_RAW, 6954 .writefn = tlbi_aa64_vae1is_write }, 6955 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6957 .access = PL1_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_vae1is_write }, 6959 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6961 .access = PL1_W, .type = ARM_CP_NO_RAW, 6962 .writefn = tlbi_aa64_vae1is_write }, 6963 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6965 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6966 .writefn = tlbi_aa64_alle2is_write }, 6967 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6968 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6969 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6970 .writefn = tlbi_aa64_vae2is_write }, 6971 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6973 .access = PL2_W, .type = ARM_CP_NO_RAW, 6974 .writefn = tlbi_aa64_alle1is_write }, 6975 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6976 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6978 .writefn = tlbi_aa64_vae2is_write }, 6979 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6981 .access = PL2_W, .type = ARM_CP_NO_RAW, 6982 .writefn = tlbi_aa64_alle1is_write }, 6983 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6984 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6985 .access = PL2_W, .type = ARM_CP_NOP }, 6986 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6988 .access = PL2_W, .type = ARM_CP_NOP }, 6989 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6991 .access = PL2_W, .type = ARM_CP_NOP }, 6992 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6994 .access = PL2_W, .type = ARM_CP_NOP }, 6995 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6996 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6997 .access = PL3_W, .type = ARM_CP_NO_RAW, 6998 .writefn = tlbi_aa64_alle3is_write }, 6999 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7000 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7001 .access = PL3_W, .type = ARM_CP_NO_RAW, 7002 .writefn = tlbi_aa64_vae3is_write }, 7003 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7004 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7005 .access = PL3_W, .type = ARM_CP_NO_RAW, 7006 .writefn = tlbi_aa64_vae3is_write }, 7007 }; 7008 7009 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7010 { 7011 Error *err = NULL; 7012 uint64_t ret; 7013 7014 /* Success sets NZCV = 0000. */ 7015 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7016 7017 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7018 /* 7019 * ??? Failed, for unknown reasons in the crypto subsystem. 7020 * The best we can do is log the reason and return the 7021 * timed-out indication to the guest. There is no reason 7022 * we know to expect this failure to be transitory, so the 7023 * guest may well hang retrying the operation. 7024 */ 7025 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7026 ri->name, error_get_pretty(err)); 7027 error_free(err); 7028 7029 env->ZF = 0; /* NZCF = 0100 */ 7030 return 0; 7031 } 7032 return ret; 7033 } 7034 7035 /* We do not support re-seeding, so the two registers operate the same. */ 7036 static const ARMCPRegInfo rndr_reginfo[] = { 7037 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7038 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7039 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7040 .access = PL0_R, .readfn = rndr_readfn }, 7041 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7042 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7043 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7044 .access = PL0_R, .readfn = rndr_readfn }, 7045 }; 7046 7047 #ifndef CONFIG_USER_ONLY 7048 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7049 uint64_t value) 7050 { 7051 ARMCPU *cpu = env_archcpu(env); 7052 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7053 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7054 uint64_t vaddr_in = (uint64_t) value; 7055 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7056 void *haddr; 7057 int mem_idx = cpu_mmu_index(env, false); 7058 7059 /* This won't be crossing page boundaries */ 7060 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7061 if (haddr) { 7062 7063 ram_addr_t offset; 7064 MemoryRegion *mr; 7065 7066 /* RCU lock is already being held */ 7067 mr = memory_region_from_host(haddr, &offset); 7068 7069 if (mr) { 7070 memory_region_writeback(mr, offset, dline_size); 7071 } 7072 } 7073 } 7074 7075 static const ARMCPRegInfo dcpop_reg[] = { 7076 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7078 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7079 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7080 }; 7081 7082 static const ARMCPRegInfo dcpodp_reg[] = { 7083 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7085 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7086 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7087 }; 7088 #endif /*CONFIG_USER_ONLY*/ 7089 7090 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7091 bool isread) 7092 { 7093 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7094 return CP_ACCESS_TRAP_EL2; 7095 } 7096 7097 return CP_ACCESS_OK; 7098 } 7099 7100 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7101 bool isread) 7102 { 7103 int el = arm_current_el(env); 7104 7105 if (el < 2 && arm_is_el2_enabled(env)) { 7106 uint64_t hcr = arm_hcr_el2_eff(env); 7107 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7108 return CP_ACCESS_TRAP_EL2; 7109 } 7110 } 7111 if (el < 3 && 7112 arm_feature(env, ARM_FEATURE_EL3) && 7113 !(env->cp15.scr_el3 & SCR_ATA)) { 7114 return CP_ACCESS_TRAP_EL3; 7115 } 7116 return CP_ACCESS_OK; 7117 } 7118 7119 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7120 { 7121 return env->pstate & PSTATE_TCO; 7122 } 7123 7124 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7125 { 7126 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7127 } 7128 7129 static const ARMCPRegInfo mte_reginfo[] = { 7130 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7131 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7132 .access = PL1_RW, .accessfn = access_mte, 7133 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7134 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7136 .access = PL1_RW, .accessfn = access_mte, 7137 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7138 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7140 .access = PL2_RW, .accessfn = access_mte, 7141 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7142 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7143 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7144 .access = PL3_RW, 7145 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7146 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7147 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7148 .access = PL1_RW, .accessfn = access_mte, 7149 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7150 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7152 .access = PL1_RW, .accessfn = access_mte, 7153 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7154 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7156 .access = PL1_R, .accessfn = access_aa64_tid5, 7157 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7158 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7160 .type = ARM_CP_NO_RAW, 7161 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7162 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7163 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7164 .type = ARM_CP_NOP, .access = PL1_W, 7165 .accessfn = aa64_cacheop_poc_access }, 7166 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7167 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7168 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7169 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7170 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7171 .type = ARM_CP_NOP, .access = PL1_W, 7172 .accessfn = aa64_cacheop_poc_access }, 7173 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7174 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7175 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7176 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7177 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7178 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7179 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7180 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7181 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7182 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7183 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7184 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7185 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7186 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7187 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7188 }; 7189 7190 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7191 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7192 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7193 .type = ARM_CP_CONST, .access = PL0_RW, }, 7194 }; 7195 7196 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7197 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7198 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7199 .type = ARM_CP_NOP, .access = PL0_W, 7200 .accessfn = aa64_cacheop_poc_access }, 7201 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7203 .type = ARM_CP_NOP, .access = PL0_W, 7204 .accessfn = aa64_cacheop_poc_access }, 7205 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7207 .type = ARM_CP_NOP, .access = PL0_W, 7208 .accessfn = aa64_cacheop_poc_access }, 7209 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7211 .type = ARM_CP_NOP, .access = PL0_W, 7212 .accessfn = aa64_cacheop_poc_access }, 7213 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7215 .type = ARM_CP_NOP, .access = PL0_W, 7216 .accessfn = aa64_cacheop_poc_access }, 7217 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7219 .type = ARM_CP_NOP, .access = PL0_W, 7220 .accessfn = aa64_cacheop_poc_access }, 7221 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7223 .type = ARM_CP_NOP, .access = PL0_W, 7224 .accessfn = aa64_cacheop_poc_access }, 7225 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7227 .type = ARM_CP_NOP, .access = PL0_W, 7228 .accessfn = aa64_cacheop_poc_access }, 7229 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7231 .access = PL0_W, .type = ARM_CP_DC_GVA, 7232 #ifndef CONFIG_USER_ONLY 7233 /* Avoid overhead of an access check that always passes in user-mode */ 7234 .accessfn = aa64_zva_access, 7235 #endif 7236 }, 7237 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7239 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7240 #ifndef CONFIG_USER_ONLY 7241 /* Avoid overhead of an access check that always passes in user-mode */ 7242 .accessfn = aa64_zva_access, 7243 #endif 7244 }, 7245 }; 7246 7247 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7248 bool isread) 7249 { 7250 uint64_t hcr = arm_hcr_el2_eff(env); 7251 int el = arm_current_el(env); 7252 7253 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7254 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7255 if (hcr & HCR_TGE) { 7256 return CP_ACCESS_TRAP_EL2; 7257 } 7258 return CP_ACCESS_TRAP; 7259 } 7260 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7261 return CP_ACCESS_TRAP_EL2; 7262 } 7263 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7264 return CP_ACCESS_TRAP_EL2; 7265 } 7266 if (el < 3 7267 && arm_feature(env, ARM_FEATURE_EL3) 7268 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7269 return CP_ACCESS_TRAP_EL3; 7270 } 7271 return CP_ACCESS_OK; 7272 } 7273 7274 static const ARMCPRegInfo scxtnum_reginfo[] = { 7275 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7277 .access = PL0_RW, .accessfn = access_scxtnum, 7278 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7279 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7281 .access = PL1_RW, .accessfn = access_scxtnum, 7282 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7283 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7285 .access = PL2_RW, .accessfn = access_scxtnum, 7286 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7287 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7289 .access = PL3_RW, 7290 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7291 }; 7292 #endif /* TARGET_AARCH64 */ 7293 7294 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7295 bool isread) 7296 { 7297 int el = arm_current_el(env); 7298 7299 if (el == 0) { 7300 uint64_t sctlr = arm_sctlr(env, el); 7301 if (!(sctlr & SCTLR_EnRCTX)) { 7302 return CP_ACCESS_TRAP; 7303 } 7304 } else if (el == 1) { 7305 uint64_t hcr = arm_hcr_el2_eff(env); 7306 if (hcr & HCR_NV) { 7307 return CP_ACCESS_TRAP_EL2; 7308 } 7309 } 7310 return CP_ACCESS_OK; 7311 } 7312 7313 static const ARMCPRegInfo predinv_reginfo[] = { 7314 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7315 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7316 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7317 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7318 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7319 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7320 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7321 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7322 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7323 /* 7324 * Note the AArch32 opcodes have a different OPC1. 7325 */ 7326 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7327 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7328 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7329 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7330 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7331 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7332 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7333 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7334 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7335 }; 7336 7337 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7338 { 7339 /* Read the high 32 bits of the current CCSIDR */ 7340 return extract64(ccsidr_read(env, ri), 32, 32); 7341 } 7342 7343 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7344 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7345 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7346 .access = PL1_R, 7347 .accessfn = access_aa64_tid2, 7348 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7349 }; 7350 7351 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7352 bool isread) 7353 { 7354 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7355 return CP_ACCESS_TRAP_EL2; 7356 } 7357 7358 return CP_ACCESS_OK; 7359 } 7360 7361 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7362 bool isread) 7363 { 7364 if (arm_feature(env, ARM_FEATURE_V8)) { 7365 return access_aa64_tid3(env, ri, isread); 7366 } 7367 7368 return CP_ACCESS_OK; 7369 } 7370 7371 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7372 bool isread) 7373 { 7374 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7375 return CP_ACCESS_TRAP_EL2; 7376 } 7377 7378 return CP_ACCESS_OK; 7379 } 7380 7381 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7382 const ARMCPRegInfo *ri, bool isread) 7383 { 7384 /* 7385 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7386 * in v7A, not in v8A. 7387 */ 7388 if (!arm_feature(env, ARM_FEATURE_V8) && 7389 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7390 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7391 return CP_ACCESS_TRAP_EL2; 7392 } 7393 return CP_ACCESS_OK; 7394 } 7395 7396 static const ARMCPRegInfo jazelle_regs[] = { 7397 { .name = "JIDR", 7398 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7399 .access = PL1_R, .accessfn = access_jazelle, 7400 .type = ARM_CP_CONST, .resetvalue = 0 }, 7401 { .name = "JOSCR", 7402 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7403 .accessfn = access_joscr_jmcr, 7404 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7405 { .name = "JMCR", 7406 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7407 .accessfn = access_joscr_jmcr, 7408 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7409 }; 7410 7411 static const ARMCPRegInfo contextidr_el2 = { 7412 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7414 .access = PL2_RW, 7415 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7416 }; 7417 7418 static const ARMCPRegInfo vhe_reginfo[] = { 7419 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7421 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7422 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7423 #ifndef CONFIG_USER_ONLY 7424 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7425 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7426 .fieldoffset = 7427 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7428 .type = ARM_CP_IO, .access = PL2_RW, 7429 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7430 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7431 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7432 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7433 .resetfn = gt_hv_timer_reset, 7434 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7435 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7436 .type = ARM_CP_IO, 7437 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7438 .access = PL2_RW, 7439 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7440 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7441 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7443 .type = ARM_CP_IO | ARM_CP_ALIAS, 7444 .access = PL2_RW, .accessfn = e2h_access, 7445 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7446 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7447 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7449 .type = ARM_CP_IO | ARM_CP_ALIAS, 7450 .access = PL2_RW, .accessfn = e2h_access, 7451 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7452 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7453 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7455 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7456 .access = PL2_RW, .accessfn = e2h_access, 7457 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7458 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7460 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7461 .access = PL2_RW, .accessfn = e2h_access, 7462 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7463 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7464 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7465 .type = ARM_CP_IO | ARM_CP_ALIAS, 7466 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7467 .access = PL2_RW, .accessfn = e2h_access, 7468 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7469 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7471 .type = ARM_CP_IO | ARM_CP_ALIAS, 7472 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7473 .access = PL2_RW, .accessfn = e2h_access, 7474 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7475 #endif 7476 }; 7477 7478 #ifndef CONFIG_USER_ONLY 7479 static const ARMCPRegInfo ats1e1_reginfo[] = { 7480 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7482 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7483 .writefn = ats_write64 }, 7484 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7485 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7486 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7487 .writefn = ats_write64 }, 7488 }; 7489 7490 static const ARMCPRegInfo ats1cp_reginfo[] = { 7491 { .name = "ATS1CPRP", 7492 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7493 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7494 .writefn = ats_write }, 7495 { .name = "ATS1CPWP", 7496 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7497 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7498 .writefn = ats_write }, 7499 }; 7500 #endif 7501 7502 /* 7503 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7504 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7505 * is non-zero, which is never for ARMv7, optionally in ARMv8 7506 * and mandatorily for ARMv8.2 and up. 7507 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7508 * implementation is RAZ/WI we can ignore this detail, as we 7509 * do for ACTLR. 7510 */ 7511 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7512 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7513 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7514 .access = PL1_RW, .accessfn = access_tacr, 7515 .type = ARM_CP_CONST, .resetvalue = 0 }, 7516 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7517 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7518 .access = PL2_RW, .type = ARM_CP_CONST, 7519 .resetvalue = 0 }, 7520 }; 7521 7522 void register_cp_regs_for_features(ARMCPU *cpu) 7523 { 7524 /* Register all the coprocessor registers based on feature bits */ 7525 CPUARMState *env = &cpu->env; 7526 if (arm_feature(env, ARM_FEATURE_M)) { 7527 /* M profile has no coprocessor registers */ 7528 return; 7529 } 7530 7531 define_arm_cp_regs(cpu, cp_reginfo); 7532 if (!arm_feature(env, ARM_FEATURE_V8)) { 7533 /* Must go early as it is full of wildcards that may be 7534 * overridden by later definitions. 7535 */ 7536 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7537 } 7538 7539 if (arm_feature(env, ARM_FEATURE_V6)) { 7540 /* The ID registers all have impdef reset values */ 7541 ARMCPRegInfo v6_idregs[] = { 7542 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7544 .access = PL1_R, .type = ARM_CP_CONST, 7545 .accessfn = access_aa32_tid3, 7546 .resetvalue = cpu->isar.id_pfr0 }, 7547 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7548 * the value of the GIC field until after we define these regs. 7549 */ 7550 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7552 .access = PL1_R, .type = ARM_CP_NO_RAW, 7553 .accessfn = access_aa32_tid3, 7554 .readfn = id_pfr1_read, 7555 .writefn = arm_cp_write_ignore }, 7556 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7558 .access = PL1_R, .type = ARM_CP_CONST, 7559 .accessfn = access_aa32_tid3, 7560 .resetvalue = cpu->isar.id_dfr0 }, 7561 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7563 .access = PL1_R, .type = ARM_CP_CONST, 7564 .accessfn = access_aa32_tid3, 7565 .resetvalue = cpu->id_afr0 }, 7566 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7568 .access = PL1_R, .type = ARM_CP_CONST, 7569 .accessfn = access_aa32_tid3, 7570 .resetvalue = cpu->isar.id_mmfr0 }, 7571 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7573 .access = PL1_R, .type = ARM_CP_CONST, 7574 .accessfn = access_aa32_tid3, 7575 .resetvalue = cpu->isar.id_mmfr1 }, 7576 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7578 .access = PL1_R, .type = ARM_CP_CONST, 7579 .accessfn = access_aa32_tid3, 7580 .resetvalue = cpu->isar.id_mmfr2 }, 7581 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7583 .access = PL1_R, .type = ARM_CP_CONST, 7584 .accessfn = access_aa32_tid3, 7585 .resetvalue = cpu->isar.id_mmfr3 }, 7586 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7588 .access = PL1_R, .type = ARM_CP_CONST, 7589 .accessfn = access_aa32_tid3, 7590 .resetvalue = cpu->isar.id_isar0 }, 7591 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7593 .access = PL1_R, .type = ARM_CP_CONST, 7594 .accessfn = access_aa32_tid3, 7595 .resetvalue = cpu->isar.id_isar1 }, 7596 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7598 .access = PL1_R, .type = ARM_CP_CONST, 7599 .accessfn = access_aa32_tid3, 7600 .resetvalue = cpu->isar.id_isar2 }, 7601 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7603 .access = PL1_R, .type = ARM_CP_CONST, 7604 .accessfn = access_aa32_tid3, 7605 .resetvalue = cpu->isar.id_isar3 }, 7606 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7608 .access = PL1_R, .type = ARM_CP_CONST, 7609 .accessfn = access_aa32_tid3, 7610 .resetvalue = cpu->isar.id_isar4 }, 7611 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7613 .access = PL1_R, .type = ARM_CP_CONST, 7614 .accessfn = access_aa32_tid3, 7615 .resetvalue = cpu->isar.id_isar5 }, 7616 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa32_tid3, 7620 .resetvalue = cpu->isar.id_mmfr4 }, 7621 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa32_tid3, 7625 .resetvalue = cpu->isar.id_isar6 }, 7626 }; 7627 define_arm_cp_regs(cpu, v6_idregs); 7628 define_arm_cp_regs(cpu, v6_cp_reginfo); 7629 } else { 7630 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7631 } 7632 if (arm_feature(env, ARM_FEATURE_V6K)) { 7633 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7634 } 7635 if (arm_feature(env, ARM_FEATURE_V7MP) && 7636 !arm_feature(env, ARM_FEATURE_PMSA)) { 7637 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7638 } 7639 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7640 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7641 } 7642 if (arm_feature(env, ARM_FEATURE_V7)) { 7643 ARMCPRegInfo clidr = { 7644 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7645 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7646 .access = PL1_R, .type = ARM_CP_CONST, 7647 .accessfn = access_aa64_tid2, 7648 .resetvalue = cpu->clidr 7649 }; 7650 define_one_arm_cp_reg(cpu, &clidr); 7651 define_arm_cp_regs(cpu, v7_cp_reginfo); 7652 define_debug_regs(cpu); 7653 define_pmu_regs(cpu); 7654 } else { 7655 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7656 } 7657 if (arm_feature(env, ARM_FEATURE_V8)) { 7658 /* AArch64 ID registers, which all have impdef reset values. 7659 * Note that within the ID register ranges the unused slots 7660 * must all RAZ, not UNDEF; future architecture versions may 7661 * define new registers here. 7662 */ 7663 ARMCPRegInfo v8_idregs[] = { 7664 /* 7665 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7666 * emulation because we don't know the right value for the 7667 * GIC field until after we define these regs. 7668 */ 7669 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7671 .access = PL1_R, 7672 #ifdef CONFIG_USER_ONLY 7673 .type = ARM_CP_CONST, 7674 .resetvalue = cpu->isar.id_aa64pfr0 7675 #else 7676 .type = ARM_CP_NO_RAW, 7677 .accessfn = access_aa64_tid3, 7678 .readfn = id_aa64pfr0_read, 7679 .writefn = arm_cp_write_ignore 7680 #endif 7681 }, 7682 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7684 .access = PL1_R, .type = ARM_CP_CONST, 7685 .accessfn = access_aa64_tid3, 7686 .resetvalue = cpu->isar.id_aa64pfr1}, 7687 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7689 .access = PL1_R, .type = ARM_CP_CONST, 7690 .accessfn = access_aa64_tid3, 7691 .resetvalue = 0 }, 7692 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7693 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7694 .access = PL1_R, .type = ARM_CP_CONST, 7695 .accessfn = access_aa64_tid3, 7696 .resetvalue = 0 }, 7697 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7699 .access = PL1_R, .type = ARM_CP_CONST, 7700 .accessfn = access_aa64_tid3, 7701 .resetvalue = cpu->isar.id_aa64zfr0 }, 7702 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7704 .access = PL1_R, .type = ARM_CP_CONST, 7705 .accessfn = access_aa64_tid3, 7706 .resetvalue = 0 }, 7707 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7709 .access = PL1_R, .type = ARM_CP_CONST, 7710 .accessfn = access_aa64_tid3, 7711 .resetvalue = 0 }, 7712 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7713 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7714 .access = PL1_R, .type = ARM_CP_CONST, 7715 .accessfn = access_aa64_tid3, 7716 .resetvalue = 0 }, 7717 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7719 .access = PL1_R, .type = ARM_CP_CONST, 7720 .accessfn = access_aa64_tid3, 7721 .resetvalue = cpu->isar.id_aa64dfr0 }, 7722 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7724 .access = PL1_R, .type = ARM_CP_CONST, 7725 .accessfn = access_aa64_tid3, 7726 .resetvalue = cpu->isar.id_aa64dfr1 }, 7727 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7729 .access = PL1_R, .type = ARM_CP_CONST, 7730 .accessfn = access_aa64_tid3, 7731 .resetvalue = 0 }, 7732 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7733 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7734 .access = PL1_R, .type = ARM_CP_CONST, 7735 .accessfn = access_aa64_tid3, 7736 .resetvalue = 0 }, 7737 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7739 .access = PL1_R, .type = ARM_CP_CONST, 7740 .accessfn = access_aa64_tid3, 7741 .resetvalue = cpu->id_aa64afr0 }, 7742 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7744 .access = PL1_R, .type = ARM_CP_CONST, 7745 .accessfn = access_aa64_tid3, 7746 .resetvalue = cpu->id_aa64afr1 }, 7747 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7749 .access = PL1_R, .type = ARM_CP_CONST, 7750 .accessfn = access_aa64_tid3, 7751 .resetvalue = 0 }, 7752 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7753 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7754 .access = PL1_R, .type = ARM_CP_CONST, 7755 .accessfn = access_aa64_tid3, 7756 .resetvalue = 0 }, 7757 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7759 .access = PL1_R, .type = ARM_CP_CONST, 7760 .accessfn = access_aa64_tid3, 7761 .resetvalue = cpu->isar.id_aa64isar0 }, 7762 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7764 .access = PL1_R, .type = ARM_CP_CONST, 7765 .accessfn = access_aa64_tid3, 7766 .resetvalue = cpu->isar.id_aa64isar1 }, 7767 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7769 .access = PL1_R, .type = ARM_CP_CONST, 7770 .accessfn = access_aa64_tid3, 7771 .resetvalue = 0 }, 7772 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7774 .access = PL1_R, .type = ARM_CP_CONST, 7775 .accessfn = access_aa64_tid3, 7776 .resetvalue = 0 }, 7777 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7779 .access = PL1_R, .type = ARM_CP_CONST, 7780 .accessfn = access_aa64_tid3, 7781 .resetvalue = 0 }, 7782 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7784 .access = PL1_R, .type = ARM_CP_CONST, 7785 .accessfn = access_aa64_tid3, 7786 .resetvalue = 0 }, 7787 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7789 .access = PL1_R, .type = ARM_CP_CONST, 7790 .accessfn = access_aa64_tid3, 7791 .resetvalue = 0 }, 7792 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7794 .access = PL1_R, .type = ARM_CP_CONST, 7795 .accessfn = access_aa64_tid3, 7796 .resetvalue = 0 }, 7797 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7799 .access = PL1_R, .type = ARM_CP_CONST, 7800 .accessfn = access_aa64_tid3, 7801 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7802 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7804 .access = PL1_R, .type = ARM_CP_CONST, 7805 .accessfn = access_aa64_tid3, 7806 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7807 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7809 .access = PL1_R, .type = ARM_CP_CONST, 7810 .accessfn = access_aa64_tid3, 7811 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7812 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7814 .access = PL1_R, .type = ARM_CP_CONST, 7815 .accessfn = access_aa64_tid3, 7816 .resetvalue = 0 }, 7817 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7819 .access = PL1_R, .type = ARM_CP_CONST, 7820 .accessfn = access_aa64_tid3, 7821 .resetvalue = 0 }, 7822 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7824 .access = PL1_R, .type = ARM_CP_CONST, 7825 .accessfn = access_aa64_tid3, 7826 .resetvalue = 0 }, 7827 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7829 .access = PL1_R, .type = ARM_CP_CONST, 7830 .accessfn = access_aa64_tid3, 7831 .resetvalue = 0 }, 7832 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7834 .access = PL1_R, .type = ARM_CP_CONST, 7835 .accessfn = access_aa64_tid3, 7836 .resetvalue = 0 }, 7837 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7839 .access = PL1_R, .type = ARM_CP_CONST, 7840 .accessfn = access_aa64_tid3, 7841 .resetvalue = cpu->isar.mvfr0 }, 7842 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7844 .access = PL1_R, .type = ARM_CP_CONST, 7845 .accessfn = access_aa64_tid3, 7846 .resetvalue = cpu->isar.mvfr1 }, 7847 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7849 .access = PL1_R, .type = ARM_CP_CONST, 7850 .accessfn = access_aa64_tid3, 7851 .resetvalue = cpu->isar.mvfr2 }, 7852 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7854 .access = PL1_R, .type = ARM_CP_CONST, 7855 .accessfn = access_aa64_tid3, 7856 .resetvalue = 0 }, 7857 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7858 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7859 .access = PL1_R, .type = ARM_CP_CONST, 7860 .accessfn = access_aa64_tid3, 7861 .resetvalue = cpu->isar.id_pfr2 }, 7862 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7864 .access = PL1_R, .type = ARM_CP_CONST, 7865 .accessfn = access_aa64_tid3, 7866 .resetvalue = 0 }, 7867 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7869 .access = PL1_R, .type = ARM_CP_CONST, 7870 .accessfn = access_aa64_tid3, 7871 .resetvalue = 0 }, 7872 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7873 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7874 .access = PL1_R, .type = ARM_CP_CONST, 7875 .accessfn = access_aa64_tid3, 7876 .resetvalue = 0 }, 7877 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7878 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7879 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7880 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7881 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7882 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7883 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7884 .resetvalue = cpu->pmceid0 }, 7885 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7886 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7887 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7888 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7889 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7891 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7892 .resetvalue = cpu->pmceid1 }, 7893 }; 7894 #ifdef CONFIG_USER_ONLY 7895 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7896 { .name = "ID_AA64PFR0_EL1", 7897 .exported_bits = 0x000f000f00ff0000, 7898 .fixed_bits = 0x0000000000000011 }, 7899 { .name = "ID_AA64PFR1_EL1", 7900 .exported_bits = 0x00000000000000f0 }, 7901 { .name = "ID_AA64PFR*_EL1_RESERVED", 7902 .is_glob = true }, 7903 { .name = "ID_AA64ZFR0_EL1" }, 7904 { .name = "ID_AA64MMFR0_EL1", 7905 .fixed_bits = 0x00000000ff000000 }, 7906 { .name = "ID_AA64MMFR1_EL1" }, 7907 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7908 .is_glob = true }, 7909 { .name = "ID_AA64DFR0_EL1", 7910 .fixed_bits = 0x0000000000000006 }, 7911 { .name = "ID_AA64DFR1_EL1" }, 7912 { .name = "ID_AA64DFR*_EL1_RESERVED", 7913 .is_glob = true }, 7914 { .name = "ID_AA64AFR*", 7915 .is_glob = true }, 7916 { .name = "ID_AA64ISAR0_EL1", 7917 .exported_bits = 0x00fffffff0fffff0 }, 7918 { .name = "ID_AA64ISAR1_EL1", 7919 .exported_bits = 0x000000f0ffffffff }, 7920 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7921 .is_glob = true }, 7922 }; 7923 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7924 #endif 7925 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7926 if (!arm_feature(env, ARM_FEATURE_EL3) && 7927 !arm_feature(env, ARM_FEATURE_EL2)) { 7928 ARMCPRegInfo rvbar = { 7929 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7930 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7931 .access = PL1_R, 7932 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7933 }; 7934 define_one_arm_cp_reg(cpu, &rvbar); 7935 } 7936 define_arm_cp_regs(cpu, v8_idregs); 7937 define_arm_cp_regs(cpu, v8_cp_reginfo); 7938 } 7939 7940 /* 7941 * Register the base EL2 cpregs. 7942 * Pre v8, these registers are implemented only as part of the 7943 * Virtualization Extensions (EL2 present). Beginning with v8, 7944 * if EL2 is missing but EL3 is enabled, mostly these become 7945 * RES0 from EL3, with some specific exceptions. 7946 */ 7947 if (arm_feature(env, ARM_FEATURE_EL2) 7948 || (arm_feature(env, ARM_FEATURE_EL3) 7949 && arm_feature(env, ARM_FEATURE_V8))) { 7950 uint64_t vmpidr_def = mpidr_read_val(env); 7951 ARMCPRegInfo vpidr_regs[] = { 7952 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7953 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7954 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7955 .resetvalue = cpu->midr, 7956 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7957 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7958 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7960 .access = PL2_RW, .resetvalue = cpu->midr, 7961 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7962 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7963 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7964 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7965 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7966 .resetvalue = vmpidr_def, 7967 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7968 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7969 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7970 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7971 .access = PL2_RW, .resetvalue = vmpidr_def, 7972 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7973 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7974 }; 7975 define_arm_cp_regs(cpu, vpidr_regs); 7976 define_arm_cp_regs(cpu, el2_cp_reginfo); 7977 if (arm_feature(env, ARM_FEATURE_V8)) { 7978 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7979 } 7980 if (cpu_isar_feature(aa64_sel2, cpu)) { 7981 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7982 } 7983 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7984 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7985 ARMCPRegInfo rvbar = { 7986 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7987 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7988 .access = PL2_R, 7989 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7990 }; 7991 define_one_arm_cp_reg(cpu, &rvbar); 7992 } 7993 } 7994 7995 /* Register the base EL3 cpregs. */ 7996 if (arm_feature(env, ARM_FEATURE_EL3)) { 7997 define_arm_cp_regs(cpu, el3_cp_reginfo); 7998 ARMCPRegInfo el3_regs[] = { 7999 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8000 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8001 .access = PL3_R, 8002 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8003 }, 8004 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8005 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8006 .access = PL3_RW, 8007 .raw_writefn = raw_write, .writefn = sctlr_write, 8008 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8009 .resetvalue = cpu->reset_sctlr }, 8010 }; 8011 8012 define_arm_cp_regs(cpu, el3_regs); 8013 } 8014 /* The behaviour of NSACR is sufficiently various that we don't 8015 * try to describe it in a single reginfo: 8016 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8017 * reads as constant 0xc00 from NS EL1 and NS EL2 8018 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8019 * if v7 without EL3, register doesn't exist 8020 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8021 */ 8022 if (arm_feature(env, ARM_FEATURE_EL3)) { 8023 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8024 static const ARMCPRegInfo nsacr = { 8025 .name = "NSACR", .type = ARM_CP_CONST, 8026 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8027 .access = PL1_RW, .accessfn = nsacr_access, 8028 .resetvalue = 0xc00 8029 }; 8030 define_one_arm_cp_reg(cpu, &nsacr); 8031 } else { 8032 static const ARMCPRegInfo nsacr = { 8033 .name = "NSACR", 8034 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8035 .access = PL3_RW | PL1_R, 8036 .resetvalue = 0, 8037 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8038 }; 8039 define_one_arm_cp_reg(cpu, &nsacr); 8040 } 8041 } else { 8042 if (arm_feature(env, ARM_FEATURE_V8)) { 8043 static const ARMCPRegInfo nsacr = { 8044 .name = "NSACR", .type = ARM_CP_CONST, 8045 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8046 .access = PL1_R, 8047 .resetvalue = 0xc00 8048 }; 8049 define_one_arm_cp_reg(cpu, &nsacr); 8050 } 8051 } 8052 8053 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8054 if (arm_feature(env, ARM_FEATURE_V6)) { 8055 /* PMSAv6 not implemented */ 8056 assert(arm_feature(env, ARM_FEATURE_V7)); 8057 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8058 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8059 } else { 8060 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8061 } 8062 } else { 8063 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8064 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8065 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8066 if (cpu_isar_feature(aa32_hpd, cpu)) { 8067 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8068 } 8069 } 8070 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8071 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8072 } 8073 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8074 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8075 } 8076 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8077 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8078 } 8079 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8080 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8081 } 8082 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8083 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8084 } 8085 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8086 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8087 } 8088 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8089 define_arm_cp_regs(cpu, omap_cp_reginfo); 8090 } 8091 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8092 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8093 } 8094 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8095 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8096 } 8097 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8098 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8099 } 8100 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8101 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8102 } 8103 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8104 define_arm_cp_regs(cpu, jazelle_regs); 8105 } 8106 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8107 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8108 * be read-only (ie write causes UNDEF exception). 8109 */ 8110 { 8111 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8112 /* Pre-v8 MIDR space. 8113 * Note that the MIDR isn't a simple constant register because 8114 * of the TI925 behaviour where writes to another register can 8115 * cause the MIDR value to change. 8116 * 8117 * Unimplemented registers in the c15 0 0 0 space default to 8118 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8119 * and friends override accordingly. 8120 */ 8121 { .name = "MIDR", 8122 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8123 .access = PL1_R, .resetvalue = cpu->midr, 8124 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8125 .readfn = midr_read, 8126 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8127 .type = ARM_CP_OVERRIDE }, 8128 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8129 { .name = "DUMMY", 8130 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8131 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8132 { .name = "DUMMY", 8133 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8134 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8135 { .name = "DUMMY", 8136 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8137 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8138 { .name = "DUMMY", 8139 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8140 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8141 { .name = "DUMMY", 8142 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8143 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8144 }; 8145 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8146 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8148 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8149 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8150 .readfn = midr_read }, 8151 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8152 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8153 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8154 .access = PL1_R, .resetvalue = cpu->midr }, 8155 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8156 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8157 .access = PL1_R, .resetvalue = cpu->midr }, 8158 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8160 .access = PL1_R, 8161 .accessfn = access_aa64_tid1, 8162 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8163 }; 8164 ARMCPRegInfo id_cp_reginfo[] = { 8165 /* These are common to v8 and pre-v8 */ 8166 { .name = "CTR", 8167 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8168 .access = PL1_R, .accessfn = ctr_el0_access, 8169 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8170 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8171 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8172 .access = PL0_R, .accessfn = ctr_el0_access, 8173 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8174 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8175 { .name = "TCMTR", 8176 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8177 .access = PL1_R, 8178 .accessfn = access_aa32_tid1, 8179 .type = ARM_CP_CONST, .resetvalue = 0 }, 8180 }; 8181 /* TLBTR is specific to VMSA */ 8182 ARMCPRegInfo id_tlbtr_reginfo = { 8183 .name = "TLBTR", 8184 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8185 .access = PL1_R, 8186 .accessfn = access_aa32_tid1, 8187 .type = ARM_CP_CONST, .resetvalue = 0, 8188 }; 8189 /* MPUIR is specific to PMSA V6+ */ 8190 ARMCPRegInfo id_mpuir_reginfo = { 8191 .name = "MPUIR", 8192 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8193 .access = PL1_R, .type = ARM_CP_CONST, 8194 .resetvalue = cpu->pmsav7_dregion << 8 8195 }; 8196 static const ARMCPRegInfo crn0_wi_reginfo = { 8197 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8198 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8199 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8200 }; 8201 #ifdef CONFIG_USER_ONLY 8202 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8203 { .name = "MIDR_EL1", 8204 .exported_bits = 0x00000000ffffffff }, 8205 { .name = "REVIDR_EL1" }, 8206 }; 8207 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8208 #endif 8209 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8210 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8211 size_t i; 8212 /* Register the blanket "writes ignored" value first to cover the 8213 * whole space. Then update the specific ID registers to allow write 8214 * access, so that they ignore writes rather than causing them to 8215 * UNDEF. 8216 */ 8217 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8218 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8219 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8220 } 8221 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8222 id_cp_reginfo[i].access = PL1_RW; 8223 } 8224 id_mpuir_reginfo.access = PL1_RW; 8225 id_tlbtr_reginfo.access = PL1_RW; 8226 } 8227 if (arm_feature(env, ARM_FEATURE_V8)) { 8228 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8229 } else { 8230 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8231 } 8232 define_arm_cp_regs(cpu, id_cp_reginfo); 8233 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8234 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8235 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8236 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8237 } 8238 } 8239 8240 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8241 ARMCPRegInfo mpidr_cp_reginfo[] = { 8242 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8243 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8244 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8245 }; 8246 #ifdef CONFIG_USER_ONLY 8247 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8248 { .name = "MPIDR_EL1", 8249 .fixed_bits = 0x0000000080000000 }, 8250 }; 8251 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8252 #endif 8253 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8254 } 8255 8256 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8257 ARMCPRegInfo auxcr_reginfo[] = { 8258 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8259 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8260 .access = PL1_RW, .accessfn = access_tacr, 8261 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8262 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8263 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8264 .access = PL2_RW, .type = ARM_CP_CONST, 8265 .resetvalue = 0 }, 8266 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8267 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8268 .access = PL3_RW, .type = ARM_CP_CONST, 8269 .resetvalue = 0 }, 8270 }; 8271 define_arm_cp_regs(cpu, auxcr_reginfo); 8272 if (cpu_isar_feature(aa32_ac2, cpu)) { 8273 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8274 } 8275 } 8276 8277 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8278 /* 8279 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8280 * There are two flavours: 8281 * (1) older 32-bit only cores have a simple 32-bit CBAR 8282 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8283 * 32-bit register visible to AArch32 at a different encoding 8284 * to the "flavour 1" register and with the bits rearranged to 8285 * be able to squash a 64-bit address into the 32-bit view. 8286 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8287 * in future if we support AArch32-only configs of some of the 8288 * AArch64 cores we might need to add a specific feature flag 8289 * to indicate cores with "flavour 2" CBAR. 8290 */ 8291 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8292 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8293 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8294 | extract64(cpu->reset_cbar, 32, 12); 8295 ARMCPRegInfo cbar_reginfo[] = { 8296 { .name = "CBAR", 8297 .type = ARM_CP_CONST, 8298 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8299 .access = PL1_R, .resetvalue = cbar32 }, 8300 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8301 .type = ARM_CP_CONST, 8302 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8303 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8304 }; 8305 /* We don't implement a r/w 64 bit CBAR currently */ 8306 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8307 define_arm_cp_regs(cpu, cbar_reginfo); 8308 } else { 8309 ARMCPRegInfo cbar = { 8310 .name = "CBAR", 8311 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8312 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8313 .fieldoffset = offsetof(CPUARMState, 8314 cp15.c15_config_base_address) 8315 }; 8316 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8317 cbar.access = PL1_R; 8318 cbar.fieldoffset = 0; 8319 cbar.type = ARM_CP_CONST; 8320 } 8321 define_one_arm_cp_reg(cpu, &cbar); 8322 } 8323 } 8324 8325 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8326 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8327 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8328 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8329 .access = PL1_RW, .writefn = vbar_write, 8330 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8331 offsetof(CPUARMState, cp15.vbar_ns) }, 8332 .resetvalue = 0 }, 8333 }; 8334 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8335 } 8336 8337 /* Generic registers whose values depend on the implementation */ 8338 { 8339 ARMCPRegInfo sctlr = { 8340 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8341 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8342 .access = PL1_RW, .accessfn = access_tvm_trvm, 8343 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8344 offsetof(CPUARMState, cp15.sctlr_ns) }, 8345 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8346 .raw_writefn = raw_write, 8347 }; 8348 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8349 /* Normally we would always end the TB on an SCTLR write, but Linux 8350 * arch/arm/mach-pxa/sleep.S expects two instructions following 8351 * an MMU enable to execute from cache. Imitate this behaviour. 8352 */ 8353 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8354 } 8355 define_one_arm_cp_reg(cpu, &sctlr); 8356 } 8357 8358 if (cpu_isar_feature(aa64_lor, cpu)) { 8359 define_arm_cp_regs(cpu, lor_reginfo); 8360 } 8361 if (cpu_isar_feature(aa64_pan, cpu)) { 8362 define_one_arm_cp_reg(cpu, &pan_reginfo); 8363 } 8364 #ifndef CONFIG_USER_ONLY 8365 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8366 define_arm_cp_regs(cpu, ats1e1_reginfo); 8367 } 8368 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8369 define_arm_cp_regs(cpu, ats1cp_reginfo); 8370 } 8371 #endif 8372 if (cpu_isar_feature(aa64_uao, cpu)) { 8373 define_one_arm_cp_reg(cpu, &uao_reginfo); 8374 } 8375 8376 if (cpu_isar_feature(aa64_dit, cpu)) { 8377 define_one_arm_cp_reg(cpu, &dit_reginfo); 8378 } 8379 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8380 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8381 } 8382 if (cpu_isar_feature(any_ras, cpu)) { 8383 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8384 } 8385 8386 if (cpu_isar_feature(aa64_vh, cpu) || 8387 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8388 define_one_arm_cp_reg(cpu, &contextidr_el2); 8389 } 8390 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8391 define_arm_cp_regs(cpu, vhe_reginfo); 8392 } 8393 8394 if (cpu_isar_feature(aa64_sve, cpu)) { 8395 define_arm_cp_regs(cpu, zcr_reginfo); 8396 } 8397 8398 #ifdef TARGET_AARCH64 8399 if (cpu_isar_feature(aa64_pauth, cpu)) { 8400 define_arm_cp_regs(cpu, pauth_reginfo); 8401 } 8402 if (cpu_isar_feature(aa64_rndr, cpu)) { 8403 define_arm_cp_regs(cpu, rndr_reginfo); 8404 } 8405 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8406 define_arm_cp_regs(cpu, tlbirange_reginfo); 8407 } 8408 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8409 define_arm_cp_regs(cpu, tlbios_reginfo); 8410 } 8411 #ifndef CONFIG_USER_ONLY 8412 /* Data Cache clean instructions up to PoP */ 8413 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8414 define_one_arm_cp_reg(cpu, dcpop_reg); 8415 8416 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8417 define_one_arm_cp_reg(cpu, dcpodp_reg); 8418 } 8419 } 8420 #endif /*CONFIG_USER_ONLY*/ 8421 8422 /* 8423 * If full MTE is enabled, add all of the system registers. 8424 * If only "instructions available at EL0" are enabled, 8425 * then define only a RAZ/WI version of PSTATE.TCO. 8426 */ 8427 if (cpu_isar_feature(aa64_mte, cpu)) { 8428 define_arm_cp_regs(cpu, mte_reginfo); 8429 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8430 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8431 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8432 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8433 } 8434 8435 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8436 define_arm_cp_regs(cpu, scxtnum_reginfo); 8437 } 8438 #endif 8439 8440 if (cpu_isar_feature(any_predinv, cpu)) { 8441 define_arm_cp_regs(cpu, predinv_reginfo); 8442 } 8443 8444 if (cpu_isar_feature(any_ccidx, cpu)) { 8445 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8446 } 8447 8448 #ifndef CONFIG_USER_ONLY 8449 /* 8450 * Register redirections and aliases must be done last, 8451 * after the registers from the other extensions have been defined. 8452 */ 8453 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8454 define_arm_vh_e2h_redirects_aliases(cpu); 8455 } 8456 #endif 8457 } 8458 8459 /* Sort alphabetically by type name, except for "any". */ 8460 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8461 { 8462 ObjectClass *class_a = (ObjectClass *)a; 8463 ObjectClass *class_b = (ObjectClass *)b; 8464 const char *name_a, *name_b; 8465 8466 name_a = object_class_get_name(class_a); 8467 name_b = object_class_get_name(class_b); 8468 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8469 return 1; 8470 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8471 return -1; 8472 } else { 8473 return strcmp(name_a, name_b); 8474 } 8475 } 8476 8477 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8478 { 8479 ObjectClass *oc = data; 8480 const char *typename; 8481 char *name; 8482 8483 typename = object_class_get_name(oc); 8484 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8485 qemu_printf(" %s\n", name); 8486 g_free(name); 8487 } 8488 8489 void arm_cpu_list(void) 8490 { 8491 GSList *list; 8492 8493 list = object_class_get_list(TYPE_ARM_CPU, false); 8494 list = g_slist_sort(list, arm_cpu_list_compare); 8495 qemu_printf("Available CPUs:\n"); 8496 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8497 g_slist_free(list); 8498 } 8499 8500 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8501 { 8502 ObjectClass *oc = data; 8503 CpuDefinitionInfoList **cpu_list = user_data; 8504 CpuDefinitionInfo *info; 8505 const char *typename; 8506 8507 typename = object_class_get_name(oc); 8508 info = g_malloc0(sizeof(*info)); 8509 info->name = g_strndup(typename, 8510 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8511 info->q_typename = g_strdup(typename); 8512 8513 QAPI_LIST_PREPEND(*cpu_list, info); 8514 } 8515 8516 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8517 { 8518 CpuDefinitionInfoList *cpu_list = NULL; 8519 GSList *list; 8520 8521 list = object_class_get_list(TYPE_ARM_CPU, false); 8522 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8523 g_slist_free(list); 8524 8525 return cpu_list; 8526 } 8527 8528 /* 8529 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8530 * add a single reginfo struct to the hash table. 8531 */ 8532 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8533 void *opaque, CPState state, 8534 CPSecureState secstate, 8535 int crm, int opc1, int opc2, 8536 const char *name) 8537 { 8538 CPUARMState *env = &cpu->env; 8539 uint32_t key; 8540 ARMCPRegInfo *r2; 8541 bool is64 = r->type & ARM_CP_64BIT; 8542 bool ns = secstate & ARM_CP_SECSTATE_NS; 8543 int cp = r->cp; 8544 size_t name_len; 8545 bool make_const; 8546 8547 switch (state) { 8548 case ARM_CP_STATE_AA32: 8549 /* We assume it is a cp15 register if the .cp field is left unset. */ 8550 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8551 cp = 15; 8552 } 8553 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8554 break; 8555 case ARM_CP_STATE_AA64: 8556 /* 8557 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8558 * cp == 0 as equivalent to the value for "standard guest-visible 8559 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8560 * in their AArch64 view (the .cp value may be non-zero for the 8561 * benefit of the AArch32 view). 8562 */ 8563 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8564 cp = CP_REG_ARM64_SYSREG_CP; 8565 } 8566 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8567 break; 8568 default: 8569 g_assert_not_reached(); 8570 } 8571 8572 /* Overriding of an existing definition must be explicitly requested. */ 8573 if (!(r->type & ARM_CP_OVERRIDE)) { 8574 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8575 if (oldreg) { 8576 assert(oldreg->type & ARM_CP_OVERRIDE); 8577 } 8578 } 8579 8580 /* 8581 * Eliminate registers that are not present because the EL is missing. 8582 * Doing this here makes it easier to put all registers for a given 8583 * feature into the same ARMCPRegInfo array and define them all at once. 8584 */ 8585 make_const = false; 8586 if (arm_feature(env, ARM_FEATURE_EL3)) { 8587 /* 8588 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8589 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8590 */ 8591 int min_el = ctz32(r->access) / 2; 8592 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8593 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8594 return; 8595 } 8596 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8597 } 8598 } else { 8599 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8600 ? PL2_RW : PL1_RW); 8601 if ((r->access & max_el) == 0) { 8602 return; 8603 } 8604 } 8605 8606 /* Combine cpreg and name into one allocation. */ 8607 name_len = strlen(name) + 1; 8608 r2 = g_malloc(sizeof(*r2) + name_len); 8609 *r2 = *r; 8610 r2->name = memcpy(r2 + 1, name, name_len); 8611 8612 /* 8613 * Update fields to match the instantiation, overwiting wildcards 8614 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8615 */ 8616 r2->cp = cp; 8617 r2->crm = crm; 8618 r2->opc1 = opc1; 8619 r2->opc2 = opc2; 8620 r2->state = state; 8621 r2->secure = secstate; 8622 if (opaque) { 8623 r2->opaque = opaque; 8624 } 8625 8626 if (make_const) { 8627 /* This should not have been a very special register to begin. */ 8628 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8629 assert(old_special == 0 || old_special == ARM_CP_NOP); 8630 /* 8631 * Set the special function to CONST, retaining the other flags. 8632 * This is important for e.g. ARM_CP_SVE so that we still 8633 * take the SVE trap if CPTR_EL3.EZ == 0. 8634 */ 8635 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8636 /* 8637 * Usually, these registers become RES0, but there are a few 8638 * special cases like VPIDR_EL2 which have a constant non-zero 8639 * value with writes ignored. 8640 */ 8641 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8642 r2->resetvalue = 0; 8643 } 8644 /* 8645 * ARM_CP_CONST has precedence, so removing the callbacks and 8646 * offsets are not strictly necessary, but it is potentially 8647 * less confusing to debug later. 8648 */ 8649 r2->readfn = NULL; 8650 r2->writefn = NULL; 8651 r2->raw_readfn = NULL; 8652 r2->raw_writefn = NULL; 8653 r2->resetfn = NULL; 8654 r2->fieldoffset = 0; 8655 r2->bank_fieldoffsets[0] = 0; 8656 r2->bank_fieldoffsets[1] = 0; 8657 } else { 8658 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8659 8660 if (isbanked) { 8661 /* 8662 * Register is banked (using both entries in array). 8663 * Overwriting fieldoffset as the array is only used to define 8664 * banked registers but later only fieldoffset is used. 8665 */ 8666 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8667 } 8668 if (state == ARM_CP_STATE_AA32) { 8669 if (isbanked) { 8670 /* 8671 * If the register is banked then we don't need to migrate or 8672 * reset the 32-bit instance in certain cases: 8673 * 8674 * 1) If the register has both 32-bit and 64-bit instances 8675 * then we can count on the 64-bit instance taking care 8676 * of the non-secure bank. 8677 * 2) If ARMv8 is enabled then we can count on a 64-bit 8678 * version taking care of the secure bank. This requires 8679 * that separate 32 and 64-bit definitions are provided. 8680 */ 8681 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8682 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8683 r2->type |= ARM_CP_ALIAS; 8684 } 8685 } else if ((secstate != r->secure) && !ns) { 8686 /* 8687 * The register is not banked so we only want to allow 8688 * migration of the non-secure instance. 8689 */ 8690 r2->type |= ARM_CP_ALIAS; 8691 } 8692 8693 if (HOST_BIG_ENDIAN && 8694 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8695 r2->fieldoffset += sizeof(uint32_t); 8696 } 8697 } 8698 } 8699 8700 /* 8701 * By convention, for wildcarded registers only the first 8702 * entry is used for migration; the others are marked as 8703 * ALIAS so we don't try to transfer the register 8704 * multiple times. Special registers (ie NOP/WFI) are 8705 * never migratable and not even raw-accessible. 8706 */ 8707 if (r2->type & ARM_CP_SPECIAL_MASK) { 8708 r2->type |= ARM_CP_NO_RAW; 8709 } 8710 if (((r->crm == CP_ANY) && crm != 0) || 8711 ((r->opc1 == CP_ANY) && opc1 != 0) || 8712 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8713 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8714 } 8715 8716 /* 8717 * Check that raw accesses are either forbidden or handled. Note that 8718 * we can't assert this earlier because the setup of fieldoffset for 8719 * banked registers has to be done first. 8720 */ 8721 if (!(r2->type & ARM_CP_NO_RAW)) { 8722 assert(!raw_accessors_invalid(r2)); 8723 } 8724 8725 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8726 } 8727 8728 8729 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8730 const ARMCPRegInfo *r, void *opaque) 8731 { 8732 /* Define implementations of coprocessor registers. 8733 * We store these in a hashtable because typically 8734 * there are less than 150 registers in a space which 8735 * is 16*16*16*8*8 = 262144 in size. 8736 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8737 * If a register is defined twice then the second definition is 8738 * used, so this can be used to define some generic registers and 8739 * then override them with implementation specific variations. 8740 * At least one of the original and the second definition should 8741 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8742 * against accidental use. 8743 * 8744 * The state field defines whether the register is to be 8745 * visible in the AArch32 or AArch64 execution state. If the 8746 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8747 * reginfo structure for the AArch32 view, which sees the lower 8748 * 32 bits of the 64 bit register. 8749 * 8750 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8751 * be wildcarded. AArch64 registers are always considered to be 64 8752 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8753 * the register, if any. 8754 */ 8755 int crm, opc1, opc2; 8756 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8757 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8758 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8759 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8760 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8761 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8762 CPState state; 8763 8764 /* 64 bit registers have only CRm and Opc1 fields */ 8765 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8766 /* op0 only exists in the AArch64 encodings */ 8767 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8768 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8769 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8770 /* 8771 * This API is only for Arm's system coprocessors (14 and 15) or 8772 * (M-profile or v7A-and-earlier only) for implementation defined 8773 * coprocessors in the range 0..7. Our decode assumes this, since 8774 * 8..13 can be used for other insns including VFP and Neon. See 8775 * valid_cp() in translate.c. Assert here that we haven't tried 8776 * to use an invalid coprocessor number. 8777 */ 8778 switch (r->state) { 8779 case ARM_CP_STATE_BOTH: 8780 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8781 if (r->cp == 0) { 8782 break; 8783 } 8784 /* fall through */ 8785 case ARM_CP_STATE_AA32: 8786 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8787 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8788 assert(r->cp >= 14 && r->cp <= 15); 8789 } else { 8790 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8791 } 8792 break; 8793 case ARM_CP_STATE_AA64: 8794 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8795 break; 8796 default: 8797 g_assert_not_reached(); 8798 } 8799 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8800 * encodes a minimum access level for the register. We roll this 8801 * runtime check into our general permission check code, so check 8802 * here that the reginfo's specified permissions are strict enough 8803 * to encompass the generic architectural permission check. 8804 */ 8805 if (r->state != ARM_CP_STATE_AA32) { 8806 CPAccessRights mask; 8807 switch (r->opc1) { 8808 case 0: 8809 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8810 mask = PL0U_R | PL1_RW; 8811 break; 8812 case 1: case 2: 8813 /* min_EL EL1 */ 8814 mask = PL1_RW; 8815 break; 8816 case 3: 8817 /* min_EL EL0 */ 8818 mask = PL0_RW; 8819 break; 8820 case 4: 8821 case 5: 8822 /* min_EL EL2 */ 8823 mask = PL2_RW; 8824 break; 8825 case 6: 8826 /* min_EL EL3 */ 8827 mask = PL3_RW; 8828 break; 8829 case 7: 8830 /* min_EL EL1, secure mode only (we don't check the latter) */ 8831 mask = PL1_RW; 8832 break; 8833 default: 8834 /* broken reginfo with out-of-range opc1 */ 8835 g_assert_not_reached(); 8836 } 8837 /* assert our permissions are not too lax (stricter is fine) */ 8838 assert((r->access & ~mask) == 0); 8839 } 8840 8841 /* Check that the register definition has enough info to handle 8842 * reads and writes if they are permitted. 8843 */ 8844 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8845 if (r->access & PL3_R) { 8846 assert((r->fieldoffset || 8847 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8848 r->readfn); 8849 } 8850 if (r->access & PL3_W) { 8851 assert((r->fieldoffset || 8852 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8853 r->writefn); 8854 } 8855 } 8856 8857 for (crm = crmmin; crm <= crmmax; crm++) { 8858 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8859 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8860 for (state = ARM_CP_STATE_AA32; 8861 state <= ARM_CP_STATE_AA64; state++) { 8862 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8863 continue; 8864 } 8865 if (state == ARM_CP_STATE_AA32) { 8866 /* Under AArch32 CP registers can be common 8867 * (same for secure and non-secure world) or banked. 8868 */ 8869 char *name; 8870 8871 switch (r->secure) { 8872 case ARM_CP_SECSTATE_S: 8873 case ARM_CP_SECSTATE_NS: 8874 add_cpreg_to_hashtable(cpu, r, opaque, state, 8875 r->secure, crm, opc1, opc2, 8876 r->name); 8877 break; 8878 case ARM_CP_SECSTATE_BOTH: 8879 name = g_strdup_printf("%s_S", r->name); 8880 add_cpreg_to_hashtable(cpu, r, opaque, state, 8881 ARM_CP_SECSTATE_S, 8882 crm, opc1, opc2, name); 8883 g_free(name); 8884 add_cpreg_to_hashtable(cpu, r, opaque, state, 8885 ARM_CP_SECSTATE_NS, 8886 crm, opc1, opc2, r->name); 8887 break; 8888 default: 8889 g_assert_not_reached(); 8890 } 8891 } else { 8892 /* AArch64 registers get mapped to non-secure instance 8893 * of AArch32 */ 8894 add_cpreg_to_hashtable(cpu, r, opaque, state, 8895 ARM_CP_SECSTATE_NS, 8896 crm, opc1, opc2, r->name); 8897 } 8898 } 8899 } 8900 } 8901 } 8902 } 8903 8904 /* Define a whole list of registers */ 8905 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8906 void *opaque, size_t len) 8907 { 8908 size_t i; 8909 for (i = 0; i < len; ++i) { 8910 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8911 } 8912 } 8913 8914 /* 8915 * Modify ARMCPRegInfo for access from userspace. 8916 * 8917 * This is a data driven modification directed by 8918 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8919 * user-space cannot alter any values and dynamic values pertaining to 8920 * execution state are hidden from user space view anyway. 8921 */ 8922 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8923 const ARMCPRegUserSpaceInfo *mods, 8924 size_t mods_len) 8925 { 8926 for (size_t mi = 0; mi < mods_len; ++mi) { 8927 const ARMCPRegUserSpaceInfo *m = mods + mi; 8928 GPatternSpec *pat = NULL; 8929 8930 if (m->is_glob) { 8931 pat = g_pattern_spec_new(m->name); 8932 } 8933 for (size_t ri = 0; ri < regs_len; ++ri) { 8934 ARMCPRegInfo *r = regs + ri; 8935 8936 if (pat && g_pattern_match_string(pat, r->name)) { 8937 r->type = ARM_CP_CONST; 8938 r->access = PL0U_R; 8939 r->resetvalue = 0; 8940 /* continue */ 8941 } else if (strcmp(r->name, m->name) == 0) { 8942 r->type = ARM_CP_CONST; 8943 r->access = PL0U_R; 8944 r->resetvalue &= m->exported_bits; 8945 r->resetvalue |= m->fixed_bits; 8946 break; 8947 } 8948 } 8949 if (pat) { 8950 g_pattern_spec_free(pat); 8951 } 8952 } 8953 } 8954 8955 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8956 { 8957 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8958 } 8959 8960 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8961 uint64_t value) 8962 { 8963 /* Helper coprocessor write function for write-ignore registers */ 8964 } 8965 8966 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8967 { 8968 /* Helper coprocessor write function for read-as-zero registers */ 8969 return 0; 8970 } 8971 8972 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8973 { 8974 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8975 } 8976 8977 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8978 { 8979 /* Return true if it is not valid for us to switch to 8980 * this CPU mode (ie all the UNPREDICTABLE cases in 8981 * the ARM ARM CPSRWriteByInstr pseudocode). 8982 */ 8983 8984 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8985 if (write_type == CPSRWriteByInstr && 8986 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8987 mode == ARM_CPU_MODE_HYP)) { 8988 return 1; 8989 } 8990 8991 switch (mode) { 8992 case ARM_CPU_MODE_USR: 8993 return 0; 8994 case ARM_CPU_MODE_SYS: 8995 case ARM_CPU_MODE_SVC: 8996 case ARM_CPU_MODE_ABT: 8997 case ARM_CPU_MODE_UND: 8998 case ARM_CPU_MODE_IRQ: 8999 case ARM_CPU_MODE_FIQ: 9000 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9001 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9002 */ 9003 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9004 * and CPS are treated as illegal mode changes. 9005 */ 9006 if (write_type == CPSRWriteByInstr && 9007 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9008 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9009 return 1; 9010 } 9011 return 0; 9012 case ARM_CPU_MODE_HYP: 9013 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9014 case ARM_CPU_MODE_MON: 9015 return arm_current_el(env) < 3; 9016 default: 9017 return 1; 9018 } 9019 } 9020 9021 uint32_t cpsr_read(CPUARMState *env) 9022 { 9023 int ZF; 9024 ZF = (env->ZF == 0); 9025 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9026 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9027 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9028 | ((env->condexec_bits & 0xfc) << 8) 9029 | (env->GE << 16) | (env->daif & CPSR_AIF); 9030 } 9031 9032 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9033 CPSRWriteType write_type) 9034 { 9035 uint32_t changed_daif; 9036 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9037 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9038 9039 if (mask & CPSR_NZCV) { 9040 env->ZF = (~val) & CPSR_Z; 9041 env->NF = val; 9042 env->CF = (val >> 29) & 1; 9043 env->VF = (val << 3) & 0x80000000; 9044 } 9045 if (mask & CPSR_Q) 9046 env->QF = ((val & CPSR_Q) != 0); 9047 if (mask & CPSR_T) 9048 env->thumb = ((val & CPSR_T) != 0); 9049 if (mask & CPSR_IT_0_1) { 9050 env->condexec_bits &= ~3; 9051 env->condexec_bits |= (val >> 25) & 3; 9052 } 9053 if (mask & CPSR_IT_2_7) { 9054 env->condexec_bits &= 3; 9055 env->condexec_bits |= (val >> 8) & 0xfc; 9056 } 9057 if (mask & CPSR_GE) { 9058 env->GE = (val >> 16) & 0xf; 9059 } 9060 9061 /* In a V7 implementation that includes the security extensions but does 9062 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9063 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9064 * bits respectively. 9065 * 9066 * In a V8 implementation, it is permitted for privileged software to 9067 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9068 */ 9069 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9070 arm_feature(env, ARM_FEATURE_EL3) && 9071 !arm_feature(env, ARM_FEATURE_EL2) && 9072 !arm_is_secure(env)) { 9073 9074 changed_daif = (env->daif ^ val) & mask; 9075 9076 if (changed_daif & CPSR_A) { 9077 /* Check to see if we are allowed to change the masking of async 9078 * abort exceptions from a non-secure state. 9079 */ 9080 if (!(env->cp15.scr_el3 & SCR_AW)) { 9081 qemu_log_mask(LOG_GUEST_ERROR, 9082 "Ignoring attempt to switch CPSR_A flag from " 9083 "non-secure world with SCR.AW bit clear\n"); 9084 mask &= ~CPSR_A; 9085 } 9086 } 9087 9088 if (changed_daif & CPSR_F) { 9089 /* Check to see if we are allowed to change the masking of FIQ 9090 * exceptions from a non-secure state. 9091 */ 9092 if (!(env->cp15.scr_el3 & SCR_FW)) { 9093 qemu_log_mask(LOG_GUEST_ERROR, 9094 "Ignoring attempt to switch CPSR_F flag from " 9095 "non-secure world with SCR.FW bit clear\n"); 9096 mask &= ~CPSR_F; 9097 } 9098 9099 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9100 * If this bit is set software is not allowed to mask 9101 * FIQs, but is allowed to set CPSR_F to 0. 9102 */ 9103 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9104 (val & CPSR_F)) { 9105 qemu_log_mask(LOG_GUEST_ERROR, 9106 "Ignoring attempt to enable CPSR_F flag " 9107 "(non-maskable FIQ [NMFI] support enabled)\n"); 9108 mask &= ~CPSR_F; 9109 } 9110 } 9111 } 9112 9113 env->daif &= ~(CPSR_AIF & mask); 9114 env->daif |= val & CPSR_AIF & mask; 9115 9116 if (write_type != CPSRWriteRaw && 9117 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9118 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9119 /* Note that we can only get here in USR mode if this is a 9120 * gdb stub write; for this case we follow the architectural 9121 * behaviour for guest writes in USR mode of ignoring an attempt 9122 * to switch mode. (Those are caught by translate.c for writes 9123 * triggered by guest instructions.) 9124 */ 9125 mask &= ~CPSR_M; 9126 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9127 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9128 * v7, and has defined behaviour in v8: 9129 * + leave CPSR.M untouched 9130 * + allow changes to the other CPSR fields 9131 * + set PSTATE.IL 9132 * For user changes via the GDB stub, we don't set PSTATE.IL, 9133 * as this would be unnecessarily harsh for a user error. 9134 */ 9135 mask &= ~CPSR_M; 9136 if (write_type != CPSRWriteByGDBStub && 9137 arm_feature(env, ARM_FEATURE_V8)) { 9138 mask |= CPSR_IL; 9139 val |= CPSR_IL; 9140 } 9141 qemu_log_mask(LOG_GUEST_ERROR, 9142 "Illegal AArch32 mode switch attempt from %s to %s\n", 9143 aarch32_mode_name(env->uncached_cpsr), 9144 aarch32_mode_name(val)); 9145 } else { 9146 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9147 write_type == CPSRWriteExceptionReturn ? 9148 "Exception return from AArch32" : 9149 "AArch32 mode switch from", 9150 aarch32_mode_name(env->uncached_cpsr), 9151 aarch32_mode_name(val), env->regs[15]); 9152 switch_mode(env, val & CPSR_M); 9153 } 9154 } 9155 mask &= ~CACHED_CPSR_BITS; 9156 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9157 if (rebuild_hflags) { 9158 arm_rebuild_hflags(env); 9159 } 9160 } 9161 9162 /* Sign/zero extend */ 9163 uint32_t HELPER(sxtb16)(uint32_t x) 9164 { 9165 uint32_t res; 9166 res = (uint16_t)(int8_t)x; 9167 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9168 return res; 9169 } 9170 9171 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9172 { 9173 /* 9174 * Take a division-by-zero exception if necessary; otherwise return 9175 * to get the usual non-trapping division behaviour (result of 0) 9176 */ 9177 if (arm_feature(env, ARM_FEATURE_M) 9178 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9179 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9180 } 9181 } 9182 9183 uint32_t HELPER(uxtb16)(uint32_t x) 9184 { 9185 uint32_t res; 9186 res = (uint16_t)(uint8_t)x; 9187 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9188 return res; 9189 } 9190 9191 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9192 { 9193 if (den == 0) { 9194 handle_possible_div0_trap(env, GETPC()); 9195 return 0; 9196 } 9197 if (num == INT_MIN && den == -1) { 9198 return INT_MIN; 9199 } 9200 return num / den; 9201 } 9202 9203 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9204 { 9205 if (den == 0) { 9206 handle_possible_div0_trap(env, GETPC()); 9207 return 0; 9208 } 9209 return num / den; 9210 } 9211 9212 uint32_t HELPER(rbit)(uint32_t x) 9213 { 9214 return revbit32(x); 9215 } 9216 9217 #ifdef CONFIG_USER_ONLY 9218 9219 static void switch_mode(CPUARMState *env, int mode) 9220 { 9221 ARMCPU *cpu = env_archcpu(env); 9222 9223 if (mode != ARM_CPU_MODE_USR) { 9224 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9225 } 9226 } 9227 9228 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9229 uint32_t cur_el, bool secure) 9230 { 9231 return 1; 9232 } 9233 9234 void aarch64_sync_64_to_32(CPUARMState *env) 9235 { 9236 g_assert_not_reached(); 9237 } 9238 9239 #else 9240 9241 static void switch_mode(CPUARMState *env, int mode) 9242 { 9243 int old_mode; 9244 int i; 9245 9246 old_mode = env->uncached_cpsr & CPSR_M; 9247 if (mode == old_mode) 9248 return; 9249 9250 if (old_mode == ARM_CPU_MODE_FIQ) { 9251 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9252 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9253 } else if (mode == ARM_CPU_MODE_FIQ) { 9254 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9255 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9256 } 9257 9258 i = bank_number(old_mode); 9259 env->banked_r13[i] = env->regs[13]; 9260 env->banked_spsr[i] = env->spsr; 9261 9262 i = bank_number(mode); 9263 env->regs[13] = env->banked_r13[i]; 9264 env->spsr = env->banked_spsr[i]; 9265 9266 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9267 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9268 } 9269 9270 /* Physical Interrupt Target EL Lookup Table 9271 * 9272 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9273 * 9274 * The below multi-dimensional table is used for looking up the target 9275 * exception level given numerous condition criteria. Specifically, the 9276 * target EL is based on SCR and HCR routing controls as well as the 9277 * currently executing EL and secure state. 9278 * 9279 * Dimensions: 9280 * target_el_table[2][2][2][2][2][4] 9281 * | | | | | +--- Current EL 9282 * | | | | +------ Non-secure(0)/Secure(1) 9283 * | | | +--------- HCR mask override 9284 * | | +------------ SCR exec state control 9285 * | +--------------- SCR mask override 9286 * +------------------ 32-bit(0)/64-bit(1) EL3 9287 * 9288 * The table values are as such: 9289 * 0-3 = EL0-EL3 9290 * -1 = Cannot occur 9291 * 9292 * The ARM ARM target EL table includes entries indicating that an "exception 9293 * is not taken". The two cases where this is applicable are: 9294 * 1) An exception is taken from EL3 but the SCR does not have the exception 9295 * routed to EL3. 9296 * 2) An exception is taken from EL2 but the HCR does not have the exception 9297 * routed to EL2. 9298 * In these two cases, the below table contain a target of EL1. This value is 9299 * returned as it is expected that the consumer of the table data will check 9300 * for "target EL >= current EL" to ensure the exception is not taken. 9301 * 9302 * SCR HCR 9303 * 64 EA AMO From 9304 * BIT IRQ IMO Non-secure Secure 9305 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9306 */ 9307 static const int8_t target_el_table[2][2][2][2][2][4] = { 9308 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9309 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9310 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9311 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9312 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9313 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9314 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9315 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9316 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9317 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9318 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9319 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9320 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9321 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9322 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9323 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9324 }; 9325 9326 /* 9327 * Determine the target EL for physical exceptions 9328 */ 9329 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9330 uint32_t cur_el, bool secure) 9331 { 9332 CPUARMState *env = cs->env_ptr; 9333 bool rw; 9334 bool scr; 9335 bool hcr; 9336 int target_el; 9337 /* Is the highest EL AArch64? */ 9338 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9339 uint64_t hcr_el2; 9340 9341 if (arm_feature(env, ARM_FEATURE_EL3)) { 9342 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9343 } else { 9344 /* Either EL2 is the highest EL (and so the EL2 register width 9345 * is given by is64); or there is no EL2 or EL3, in which case 9346 * the value of 'rw' does not affect the table lookup anyway. 9347 */ 9348 rw = is64; 9349 } 9350 9351 hcr_el2 = arm_hcr_el2_eff(env); 9352 switch (excp_idx) { 9353 case EXCP_IRQ: 9354 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9355 hcr = hcr_el2 & HCR_IMO; 9356 break; 9357 case EXCP_FIQ: 9358 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9359 hcr = hcr_el2 & HCR_FMO; 9360 break; 9361 default: 9362 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9363 hcr = hcr_el2 & HCR_AMO; 9364 break; 9365 }; 9366 9367 /* 9368 * For these purposes, TGE and AMO/IMO/FMO both force the 9369 * interrupt to EL2. Fold TGE into the bit extracted above. 9370 */ 9371 hcr |= (hcr_el2 & HCR_TGE) != 0; 9372 9373 /* Perform a table-lookup for the target EL given the current state */ 9374 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9375 9376 assert(target_el > 0); 9377 9378 return target_el; 9379 } 9380 9381 void arm_log_exception(CPUState *cs) 9382 { 9383 int idx = cs->exception_index; 9384 9385 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9386 const char *exc = NULL; 9387 static const char * const excnames[] = { 9388 [EXCP_UDEF] = "Undefined Instruction", 9389 [EXCP_SWI] = "SVC", 9390 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9391 [EXCP_DATA_ABORT] = "Data Abort", 9392 [EXCP_IRQ] = "IRQ", 9393 [EXCP_FIQ] = "FIQ", 9394 [EXCP_BKPT] = "Breakpoint", 9395 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9396 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9397 [EXCP_HVC] = "Hypervisor Call", 9398 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9399 [EXCP_SMC] = "Secure Monitor Call", 9400 [EXCP_VIRQ] = "Virtual IRQ", 9401 [EXCP_VFIQ] = "Virtual FIQ", 9402 [EXCP_SEMIHOST] = "Semihosting call", 9403 [EXCP_NOCP] = "v7M NOCP UsageFault", 9404 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9405 [EXCP_STKOF] = "v8M STKOF UsageFault", 9406 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9407 [EXCP_LSERR] = "v8M LSERR UsageFault", 9408 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9409 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9410 [EXCP_VSERR] = "Virtual SERR", 9411 }; 9412 9413 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9414 exc = excnames[idx]; 9415 } 9416 if (!exc) { 9417 exc = "unknown"; 9418 } 9419 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9420 idx, exc, cs->cpu_index); 9421 } 9422 } 9423 9424 /* 9425 * Function used to synchronize QEMU's AArch64 register set with AArch32 9426 * register set. This is necessary when switching between AArch32 and AArch64 9427 * execution state. 9428 */ 9429 void aarch64_sync_32_to_64(CPUARMState *env) 9430 { 9431 int i; 9432 uint32_t mode = env->uncached_cpsr & CPSR_M; 9433 9434 /* We can blanket copy R[0:7] to X[0:7] */ 9435 for (i = 0; i < 8; i++) { 9436 env->xregs[i] = env->regs[i]; 9437 } 9438 9439 /* 9440 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9441 * Otherwise, they come from the banked user regs. 9442 */ 9443 if (mode == ARM_CPU_MODE_FIQ) { 9444 for (i = 8; i < 13; i++) { 9445 env->xregs[i] = env->usr_regs[i - 8]; 9446 } 9447 } else { 9448 for (i = 8; i < 13; i++) { 9449 env->xregs[i] = env->regs[i]; 9450 } 9451 } 9452 9453 /* 9454 * Registers x13-x23 are the various mode SP and FP registers. Registers 9455 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9456 * from the mode banked register. 9457 */ 9458 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9459 env->xregs[13] = env->regs[13]; 9460 env->xregs[14] = env->regs[14]; 9461 } else { 9462 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9463 /* HYP is an exception in that it is copied from r14 */ 9464 if (mode == ARM_CPU_MODE_HYP) { 9465 env->xregs[14] = env->regs[14]; 9466 } else { 9467 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9468 } 9469 } 9470 9471 if (mode == ARM_CPU_MODE_HYP) { 9472 env->xregs[15] = env->regs[13]; 9473 } else { 9474 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9475 } 9476 9477 if (mode == ARM_CPU_MODE_IRQ) { 9478 env->xregs[16] = env->regs[14]; 9479 env->xregs[17] = env->regs[13]; 9480 } else { 9481 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9482 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9483 } 9484 9485 if (mode == ARM_CPU_MODE_SVC) { 9486 env->xregs[18] = env->regs[14]; 9487 env->xregs[19] = env->regs[13]; 9488 } else { 9489 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9490 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9491 } 9492 9493 if (mode == ARM_CPU_MODE_ABT) { 9494 env->xregs[20] = env->regs[14]; 9495 env->xregs[21] = env->regs[13]; 9496 } else { 9497 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9498 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9499 } 9500 9501 if (mode == ARM_CPU_MODE_UND) { 9502 env->xregs[22] = env->regs[14]; 9503 env->xregs[23] = env->regs[13]; 9504 } else { 9505 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9506 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9507 } 9508 9509 /* 9510 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9511 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9512 * FIQ bank for r8-r14. 9513 */ 9514 if (mode == ARM_CPU_MODE_FIQ) { 9515 for (i = 24; i < 31; i++) { 9516 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9517 } 9518 } else { 9519 for (i = 24; i < 29; i++) { 9520 env->xregs[i] = env->fiq_regs[i - 24]; 9521 } 9522 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9523 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9524 } 9525 9526 env->pc = env->regs[15]; 9527 } 9528 9529 /* 9530 * Function used to synchronize QEMU's AArch32 register set with AArch64 9531 * register set. This is necessary when switching between AArch32 and AArch64 9532 * execution state. 9533 */ 9534 void aarch64_sync_64_to_32(CPUARMState *env) 9535 { 9536 int i; 9537 uint32_t mode = env->uncached_cpsr & CPSR_M; 9538 9539 /* We can blanket copy X[0:7] to R[0:7] */ 9540 for (i = 0; i < 8; i++) { 9541 env->regs[i] = env->xregs[i]; 9542 } 9543 9544 /* 9545 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9546 * Otherwise, we copy x8-x12 into the banked user regs. 9547 */ 9548 if (mode == ARM_CPU_MODE_FIQ) { 9549 for (i = 8; i < 13; i++) { 9550 env->usr_regs[i - 8] = env->xregs[i]; 9551 } 9552 } else { 9553 for (i = 8; i < 13; i++) { 9554 env->regs[i] = env->xregs[i]; 9555 } 9556 } 9557 9558 /* 9559 * Registers r13 & r14 depend on the current mode. 9560 * If we are in a given mode, we copy the corresponding x registers to r13 9561 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9562 * for the mode. 9563 */ 9564 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9565 env->regs[13] = env->xregs[13]; 9566 env->regs[14] = env->xregs[14]; 9567 } else { 9568 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9569 9570 /* 9571 * HYP is an exception in that it does not have its own banked r14 but 9572 * shares the USR r14 9573 */ 9574 if (mode == ARM_CPU_MODE_HYP) { 9575 env->regs[14] = env->xregs[14]; 9576 } else { 9577 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9578 } 9579 } 9580 9581 if (mode == ARM_CPU_MODE_HYP) { 9582 env->regs[13] = env->xregs[15]; 9583 } else { 9584 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9585 } 9586 9587 if (mode == ARM_CPU_MODE_IRQ) { 9588 env->regs[14] = env->xregs[16]; 9589 env->regs[13] = env->xregs[17]; 9590 } else { 9591 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9592 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9593 } 9594 9595 if (mode == ARM_CPU_MODE_SVC) { 9596 env->regs[14] = env->xregs[18]; 9597 env->regs[13] = env->xregs[19]; 9598 } else { 9599 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9600 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9601 } 9602 9603 if (mode == ARM_CPU_MODE_ABT) { 9604 env->regs[14] = env->xregs[20]; 9605 env->regs[13] = env->xregs[21]; 9606 } else { 9607 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9608 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9609 } 9610 9611 if (mode == ARM_CPU_MODE_UND) { 9612 env->regs[14] = env->xregs[22]; 9613 env->regs[13] = env->xregs[23]; 9614 } else { 9615 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9616 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9617 } 9618 9619 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9620 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9621 * FIQ bank for r8-r14. 9622 */ 9623 if (mode == ARM_CPU_MODE_FIQ) { 9624 for (i = 24; i < 31; i++) { 9625 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9626 } 9627 } else { 9628 for (i = 24; i < 29; i++) { 9629 env->fiq_regs[i - 24] = env->xregs[i]; 9630 } 9631 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9632 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9633 } 9634 9635 env->regs[15] = env->pc; 9636 } 9637 9638 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9639 uint32_t mask, uint32_t offset, 9640 uint32_t newpc) 9641 { 9642 int new_el; 9643 9644 /* Change the CPU state so as to actually take the exception. */ 9645 switch_mode(env, new_mode); 9646 9647 /* 9648 * For exceptions taken to AArch32 we must clear the SS bit in both 9649 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9650 */ 9651 env->pstate &= ~PSTATE_SS; 9652 env->spsr = cpsr_read(env); 9653 /* Clear IT bits. */ 9654 env->condexec_bits = 0; 9655 /* Switch to the new mode, and to the correct instruction set. */ 9656 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9657 9658 /* This must be after mode switching. */ 9659 new_el = arm_current_el(env); 9660 9661 /* Set new mode endianness */ 9662 env->uncached_cpsr &= ~CPSR_E; 9663 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9664 env->uncached_cpsr |= CPSR_E; 9665 } 9666 /* J and IL must always be cleared for exception entry */ 9667 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9668 env->daif |= mask; 9669 9670 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9671 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9672 env->uncached_cpsr |= CPSR_SSBS; 9673 } else { 9674 env->uncached_cpsr &= ~CPSR_SSBS; 9675 } 9676 } 9677 9678 if (new_mode == ARM_CPU_MODE_HYP) { 9679 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9680 env->elr_el[2] = env->regs[15]; 9681 } else { 9682 /* CPSR.PAN is normally preserved preserved unless... */ 9683 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9684 switch (new_el) { 9685 case 3: 9686 if (!arm_is_secure_below_el3(env)) { 9687 /* ... the target is EL3, from non-secure state. */ 9688 env->uncached_cpsr &= ~CPSR_PAN; 9689 break; 9690 } 9691 /* ... the target is EL3, from secure state ... */ 9692 /* fall through */ 9693 case 1: 9694 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9695 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9696 env->uncached_cpsr |= CPSR_PAN; 9697 } 9698 break; 9699 } 9700 } 9701 /* 9702 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9703 * and we should just guard the thumb mode on V4 9704 */ 9705 if (arm_feature(env, ARM_FEATURE_V4T)) { 9706 env->thumb = 9707 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9708 } 9709 env->regs[14] = env->regs[15] + offset; 9710 } 9711 env->regs[15] = newpc; 9712 arm_rebuild_hflags(env); 9713 } 9714 9715 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9716 { 9717 /* 9718 * Handle exception entry to Hyp mode; this is sufficiently 9719 * different to entry to other AArch32 modes that we handle it 9720 * separately here. 9721 * 9722 * The vector table entry used is always the 0x14 Hyp mode entry point, 9723 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9724 * The offset applied to the preferred return address is always zero 9725 * (see DDI0487C.a section G1.12.3). 9726 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9727 */ 9728 uint32_t addr, mask; 9729 ARMCPU *cpu = ARM_CPU(cs); 9730 CPUARMState *env = &cpu->env; 9731 9732 switch (cs->exception_index) { 9733 case EXCP_UDEF: 9734 addr = 0x04; 9735 break; 9736 case EXCP_SWI: 9737 addr = 0x08; 9738 break; 9739 case EXCP_BKPT: 9740 /* Fall through to prefetch abort. */ 9741 case EXCP_PREFETCH_ABORT: 9742 env->cp15.ifar_s = env->exception.vaddress; 9743 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9744 (uint32_t)env->exception.vaddress); 9745 addr = 0x0c; 9746 break; 9747 case EXCP_DATA_ABORT: 9748 env->cp15.dfar_s = env->exception.vaddress; 9749 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9750 (uint32_t)env->exception.vaddress); 9751 addr = 0x10; 9752 break; 9753 case EXCP_IRQ: 9754 addr = 0x18; 9755 break; 9756 case EXCP_FIQ: 9757 addr = 0x1c; 9758 break; 9759 case EXCP_HVC: 9760 addr = 0x08; 9761 break; 9762 case EXCP_HYP_TRAP: 9763 addr = 0x14; 9764 break; 9765 default: 9766 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9767 } 9768 9769 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9770 if (!arm_feature(env, ARM_FEATURE_V8)) { 9771 /* 9772 * QEMU syndrome values are v8-style. v7 has the IL bit 9773 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9774 * If this is a v7 CPU, squash the IL bit in those cases. 9775 */ 9776 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9777 (cs->exception_index == EXCP_DATA_ABORT && 9778 !(env->exception.syndrome & ARM_EL_ISV)) || 9779 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9780 env->exception.syndrome &= ~ARM_EL_IL; 9781 } 9782 } 9783 env->cp15.esr_el[2] = env->exception.syndrome; 9784 } 9785 9786 if (arm_current_el(env) != 2 && addr < 0x14) { 9787 addr = 0x14; 9788 } 9789 9790 mask = 0; 9791 if (!(env->cp15.scr_el3 & SCR_EA)) { 9792 mask |= CPSR_A; 9793 } 9794 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9795 mask |= CPSR_I; 9796 } 9797 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9798 mask |= CPSR_F; 9799 } 9800 9801 addr += env->cp15.hvbar; 9802 9803 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9804 } 9805 9806 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9807 { 9808 ARMCPU *cpu = ARM_CPU(cs); 9809 CPUARMState *env = &cpu->env; 9810 uint32_t addr; 9811 uint32_t mask; 9812 int new_mode; 9813 uint32_t offset; 9814 uint32_t moe; 9815 9816 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9817 switch (syn_get_ec(env->exception.syndrome)) { 9818 case EC_BREAKPOINT: 9819 case EC_BREAKPOINT_SAME_EL: 9820 moe = 1; 9821 break; 9822 case EC_WATCHPOINT: 9823 case EC_WATCHPOINT_SAME_EL: 9824 moe = 10; 9825 break; 9826 case EC_AA32_BKPT: 9827 moe = 3; 9828 break; 9829 case EC_VECTORCATCH: 9830 moe = 5; 9831 break; 9832 default: 9833 moe = 0; 9834 break; 9835 } 9836 9837 if (moe) { 9838 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9839 } 9840 9841 if (env->exception.target_el == 2) { 9842 arm_cpu_do_interrupt_aarch32_hyp(cs); 9843 return; 9844 } 9845 9846 switch (cs->exception_index) { 9847 case EXCP_UDEF: 9848 new_mode = ARM_CPU_MODE_UND; 9849 addr = 0x04; 9850 mask = CPSR_I; 9851 if (env->thumb) 9852 offset = 2; 9853 else 9854 offset = 4; 9855 break; 9856 case EXCP_SWI: 9857 new_mode = ARM_CPU_MODE_SVC; 9858 addr = 0x08; 9859 mask = CPSR_I; 9860 /* The PC already points to the next instruction. */ 9861 offset = 0; 9862 break; 9863 case EXCP_BKPT: 9864 /* Fall through to prefetch abort. */ 9865 case EXCP_PREFETCH_ABORT: 9866 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9867 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9868 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9869 env->exception.fsr, (uint32_t)env->exception.vaddress); 9870 new_mode = ARM_CPU_MODE_ABT; 9871 addr = 0x0c; 9872 mask = CPSR_A | CPSR_I; 9873 offset = 4; 9874 break; 9875 case EXCP_DATA_ABORT: 9876 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9877 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9878 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9879 env->exception.fsr, 9880 (uint32_t)env->exception.vaddress); 9881 new_mode = ARM_CPU_MODE_ABT; 9882 addr = 0x10; 9883 mask = CPSR_A | CPSR_I; 9884 offset = 8; 9885 break; 9886 case EXCP_IRQ: 9887 new_mode = ARM_CPU_MODE_IRQ; 9888 addr = 0x18; 9889 /* Disable IRQ and imprecise data aborts. */ 9890 mask = CPSR_A | CPSR_I; 9891 offset = 4; 9892 if (env->cp15.scr_el3 & SCR_IRQ) { 9893 /* IRQ routed to monitor mode */ 9894 new_mode = ARM_CPU_MODE_MON; 9895 mask |= CPSR_F; 9896 } 9897 break; 9898 case EXCP_FIQ: 9899 new_mode = ARM_CPU_MODE_FIQ; 9900 addr = 0x1c; 9901 /* Disable FIQ, IRQ and imprecise data aborts. */ 9902 mask = CPSR_A | CPSR_I | CPSR_F; 9903 if (env->cp15.scr_el3 & SCR_FIQ) { 9904 /* FIQ routed to monitor mode */ 9905 new_mode = ARM_CPU_MODE_MON; 9906 } 9907 offset = 4; 9908 break; 9909 case EXCP_VIRQ: 9910 new_mode = ARM_CPU_MODE_IRQ; 9911 addr = 0x18; 9912 /* Disable IRQ and imprecise data aborts. */ 9913 mask = CPSR_A | CPSR_I; 9914 offset = 4; 9915 break; 9916 case EXCP_VFIQ: 9917 new_mode = ARM_CPU_MODE_FIQ; 9918 addr = 0x1c; 9919 /* Disable FIQ, IRQ and imprecise data aborts. */ 9920 mask = CPSR_A | CPSR_I | CPSR_F; 9921 offset = 4; 9922 break; 9923 case EXCP_VSERR: 9924 { 9925 /* 9926 * Note that this is reported as a data abort, but the DFAR 9927 * has an UNKNOWN value. Construct the SError syndrome from 9928 * AET and ExT fields. 9929 */ 9930 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9931 9932 if (extended_addresses_enabled(env)) { 9933 env->exception.fsr = arm_fi_to_lfsc(&fi); 9934 } else { 9935 env->exception.fsr = arm_fi_to_sfsc(&fi); 9936 } 9937 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9938 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9939 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9940 env->exception.fsr); 9941 9942 new_mode = ARM_CPU_MODE_ABT; 9943 addr = 0x10; 9944 mask = CPSR_A | CPSR_I; 9945 offset = 8; 9946 } 9947 break; 9948 case EXCP_SMC: 9949 new_mode = ARM_CPU_MODE_MON; 9950 addr = 0x08; 9951 mask = CPSR_A | CPSR_I | CPSR_F; 9952 offset = 0; 9953 break; 9954 default: 9955 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9956 return; /* Never happens. Keep compiler happy. */ 9957 } 9958 9959 if (new_mode == ARM_CPU_MODE_MON) { 9960 addr += env->cp15.mvbar; 9961 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9962 /* High vectors. When enabled, base address cannot be remapped. */ 9963 addr += 0xffff0000; 9964 } else { 9965 /* ARM v7 architectures provide a vector base address register to remap 9966 * the interrupt vector table. 9967 * This register is only followed in non-monitor mode, and is banked. 9968 * Note: only bits 31:5 are valid. 9969 */ 9970 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9971 } 9972 9973 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9974 env->cp15.scr_el3 &= ~SCR_NS; 9975 } 9976 9977 take_aarch32_exception(env, new_mode, mask, offset, addr); 9978 } 9979 9980 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9981 { 9982 /* 9983 * Return the register number of the AArch64 view of the AArch32 9984 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9985 * be that of the AArch32 mode the exception came from. 9986 */ 9987 int mode = env->uncached_cpsr & CPSR_M; 9988 9989 switch (aarch32_reg) { 9990 case 0 ... 7: 9991 return aarch32_reg; 9992 case 8 ... 12: 9993 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9994 case 13: 9995 switch (mode) { 9996 case ARM_CPU_MODE_USR: 9997 case ARM_CPU_MODE_SYS: 9998 return 13; 9999 case ARM_CPU_MODE_HYP: 10000 return 15; 10001 case ARM_CPU_MODE_IRQ: 10002 return 17; 10003 case ARM_CPU_MODE_SVC: 10004 return 19; 10005 case ARM_CPU_MODE_ABT: 10006 return 21; 10007 case ARM_CPU_MODE_UND: 10008 return 23; 10009 case ARM_CPU_MODE_FIQ: 10010 return 29; 10011 default: 10012 g_assert_not_reached(); 10013 } 10014 case 14: 10015 switch (mode) { 10016 case ARM_CPU_MODE_USR: 10017 case ARM_CPU_MODE_SYS: 10018 case ARM_CPU_MODE_HYP: 10019 return 14; 10020 case ARM_CPU_MODE_IRQ: 10021 return 16; 10022 case ARM_CPU_MODE_SVC: 10023 return 18; 10024 case ARM_CPU_MODE_ABT: 10025 return 20; 10026 case ARM_CPU_MODE_UND: 10027 return 22; 10028 case ARM_CPU_MODE_FIQ: 10029 return 30; 10030 default: 10031 g_assert_not_reached(); 10032 } 10033 case 15: 10034 return 31; 10035 default: 10036 g_assert_not_reached(); 10037 } 10038 } 10039 10040 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10041 { 10042 uint32_t ret = cpsr_read(env); 10043 10044 /* Move DIT to the correct location for SPSR_ELx */ 10045 if (ret & CPSR_DIT) { 10046 ret &= ~CPSR_DIT; 10047 ret |= PSTATE_DIT; 10048 } 10049 /* Merge PSTATE.SS into SPSR_ELx */ 10050 ret |= env->pstate & PSTATE_SS; 10051 10052 return ret; 10053 } 10054 10055 /* Handle exception entry to a target EL which is using AArch64 */ 10056 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10057 { 10058 ARMCPU *cpu = ARM_CPU(cs); 10059 CPUARMState *env = &cpu->env; 10060 unsigned int new_el = env->exception.target_el; 10061 target_ulong addr = env->cp15.vbar_el[new_el]; 10062 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10063 unsigned int old_mode; 10064 unsigned int cur_el = arm_current_el(env); 10065 int rt; 10066 10067 /* 10068 * Note that new_el can never be 0. If cur_el is 0, then 10069 * el0_a64 is is_a64(), else el0_a64 is ignored. 10070 */ 10071 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10072 10073 if (cur_el < new_el) { 10074 /* Entry vector offset depends on whether the implemented EL 10075 * immediately lower than the target level is using AArch32 or AArch64 10076 */ 10077 bool is_aa64; 10078 uint64_t hcr; 10079 10080 switch (new_el) { 10081 case 3: 10082 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10083 break; 10084 case 2: 10085 hcr = arm_hcr_el2_eff(env); 10086 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10087 is_aa64 = (hcr & HCR_RW) != 0; 10088 break; 10089 } 10090 /* fall through */ 10091 case 1: 10092 is_aa64 = is_a64(env); 10093 break; 10094 default: 10095 g_assert_not_reached(); 10096 } 10097 10098 if (is_aa64) { 10099 addr += 0x400; 10100 } else { 10101 addr += 0x600; 10102 } 10103 } else if (pstate_read(env) & PSTATE_SP) { 10104 addr += 0x200; 10105 } 10106 10107 switch (cs->exception_index) { 10108 case EXCP_PREFETCH_ABORT: 10109 case EXCP_DATA_ABORT: 10110 env->cp15.far_el[new_el] = env->exception.vaddress; 10111 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10112 env->cp15.far_el[new_el]); 10113 /* fall through */ 10114 case EXCP_BKPT: 10115 case EXCP_UDEF: 10116 case EXCP_SWI: 10117 case EXCP_HVC: 10118 case EXCP_HYP_TRAP: 10119 case EXCP_SMC: 10120 switch (syn_get_ec(env->exception.syndrome)) { 10121 case EC_ADVSIMDFPACCESSTRAP: 10122 /* 10123 * QEMU internal FP/SIMD syndromes from AArch32 include the 10124 * TA and coproc fields which are only exposed if the exception 10125 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10126 * AArch64 format syndrome. 10127 */ 10128 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10129 break; 10130 case EC_CP14RTTRAP: 10131 case EC_CP15RTTRAP: 10132 case EC_CP14DTTRAP: 10133 /* 10134 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10135 * the raw register field from the insn; when taking this to 10136 * AArch64 we must convert it to the AArch64 view of the register 10137 * number. Notice that we read a 4-bit AArch32 register number and 10138 * write back a 5-bit AArch64 one. 10139 */ 10140 rt = extract32(env->exception.syndrome, 5, 4); 10141 rt = aarch64_regnum(env, rt); 10142 env->exception.syndrome = deposit32(env->exception.syndrome, 10143 5, 5, rt); 10144 break; 10145 case EC_CP15RRTTRAP: 10146 case EC_CP14RRTTRAP: 10147 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10148 rt = extract32(env->exception.syndrome, 5, 4); 10149 rt = aarch64_regnum(env, rt); 10150 env->exception.syndrome = deposit32(env->exception.syndrome, 10151 5, 5, rt); 10152 rt = extract32(env->exception.syndrome, 10, 4); 10153 rt = aarch64_regnum(env, rt); 10154 env->exception.syndrome = deposit32(env->exception.syndrome, 10155 10, 5, rt); 10156 break; 10157 } 10158 env->cp15.esr_el[new_el] = env->exception.syndrome; 10159 break; 10160 case EXCP_IRQ: 10161 case EXCP_VIRQ: 10162 addr += 0x80; 10163 break; 10164 case EXCP_FIQ: 10165 case EXCP_VFIQ: 10166 addr += 0x100; 10167 break; 10168 case EXCP_VSERR: 10169 addr += 0x180; 10170 /* Construct the SError syndrome from IDS and ISS fields. */ 10171 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10172 env->cp15.esr_el[new_el] = env->exception.syndrome; 10173 break; 10174 default: 10175 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10176 } 10177 10178 if (is_a64(env)) { 10179 old_mode = pstate_read(env); 10180 aarch64_save_sp(env, arm_current_el(env)); 10181 env->elr_el[new_el] = env->pc; 10182 } else { 10183 old_mode = cpsr_read_for_spsr_elx(env); 10184 env->elr_el[new_el] = env->regs[15]; 10185 10186 aarch64_sync_32_to_64(env); 10187 10188 env->condexec_bits = 0; 10189 } 10190 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10191 10192 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10193 env->elr_el[new_el]); 10194 10195 if (cpu_isar_feature(aa64_pan, cpu)) { 10196 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10197 new_mode |= old_mode & PSTATE_PAN; 10198 switch (new_el) { 10199 case 2: 10200 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10201 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10202 != (HCR_E2H | HCR_TGE)) { 10203 break; 10204 } 10205 /* fall through */ 10206 case 1: 10207 /* ... the target is EL1 ... */ 10208 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10209 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10210 new_mode |= PSTATE_PAN; 10211 } 10212 break; 10213 } 10214 } 10215 if (cpu_isar_feature(aa64_mte, cpu)) { 10216 new_mode |= PSTATE_TCO; 10217 } 10218 10219 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10220 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10221 new_mode |= PSTATE_SSBS; 10222 } else { 10223 new_mode &= ~PSTATE_SSBS; 10224 } 10225 } 10226 10227 pstate_write(env, PSTATE_DAIF | new_mode); 10228 env->aarch64 = true; 10229 aarch64_restore_sp(env, new_el); 10230 helper_rebuild_hflags_a64(env, new_el); 10231 10232 env->pc = addr; 10233 10234 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10235 new_el, env->pc, pstate_read(env)); 10236 } 10237 10238 /* 10239 * Do semihosting call and set the appropriate return value. All the 10240 * permission and validity checks have been done at translate time. 10241 * 10242 * We only see semihosting exceptions in TCG only as they are not 10243 * trapped to the hypervisor in KVM. 10244 */ 10245 #ifdef CONFIG_TCG 10246 static void handle_semihosting(CPUState *cs) 10247 { 10248 ARMCPU *cpu = ARM_CPU(cs); 10249 CPUARMState *env = &cpu->env; 10250 10251 if (is_a64(env)) { 10252 qemu_log_mask(CPU_LOG_INT, 10253 "...handling as semihosting call 0x%" PRIx64 "\n", 10254 env->xregs[0]); 10255 env->xregs[0] = do_common_semihosting(cs); 10256 env->pc += 4; 10257 } else { 10258 qemu_log_mask(CPU_LOG_INT, 10259 "...handling as semihosting call 0x%x\n", 10260 env->regs[0]); 10261 env->regs[0] = do_common_semihosting(cs); 10262 env->regs[15] += env->thumb ? 2 : 4; 10263 } 10264 } 10265 #endif 10266 10267 /* Handle a CPU exception for A and R profile CPUs. 10268 * Do any appropriate logging, handle PSCI calls, and then hand off 10269 * to the AArch64-entry or AArch32-entry function depending on the 10270 * target exception level's register width. 10271 * 10272 * Note: this is used for both TCG (as the do_interrupt tcg op), 10273 * and KVM to re-inject guest debug exceptions, and to 10274 * inject a Synchronous-External-Abort. 10275 */ 10276 void arm_cpu_do_interrupt(CPUState *cs) 10277 { 10278 ARMCPU *cpu = ARM_CPU(cs); 10279 CPUARMState *env = &cpu->env; 10280 unsigned int new_el = env->exception.target_el; 10281 10282 assert(!arm_feature(env, ARM_FEATURE_M)); 10283 10284 arm_log_exception(cs); 10285 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10286 new_el); 10287 if (qemu_loglevel_mask(CPU_LOG_INT) 10288 && !excp_is_internal(cs->exception_index)) { 10289 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10290 syn_get_ec(env->exception.syndrome), 10291 env->exception.syndrome); 10292 } 10293 10294 if (arm_is_psci_call(cpu, cs->exception_index)) { 10295 arm_handle_psci_call(cpu); 10296 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10297 return; 10298 } 10299 10300 /* 10301 * Semihosting semantics depend on the register width of the code 10302 * that caused the exception, not the target exception level, so 10303 * must be handled here. 10304 */ 10305 #ifdef CONFIG_TCG 10306 if (cs->exception_index == EXCP_SEMIHOST) { 10307 handle_semihosting(cs); 10308 return; 10309 } 10310 #endif 10311 10312 /* Hooks may change global state so BQL should be held, also the 10313 * BQL needs to be held for any modification of 10314 * cs->interrupt_request. 10315 */ 10316 g_assert(qemu_mutex_iothread_locked()); 10317 10318 arm_call_pre_el_change_hook(cpu); 10319 10320 assert(!excp_is_internal(cs->exception_index)); 10321 if (arm_el_is_aa64(env, new_el)) { 10322 arm_cpu_do_interrupt_aarch64(cs); 10323 } else { 10324 arm_cpu_do_interrupt_aarch32(cs); 10325 } 10326 10327 arm_call_el_change_hook(cpu); 10328 10329 if (!kvm_enabled()) { 10330 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10331 } 10332 } 10333 #endif /* !CONFIG_USER_ONLY */ 10334 10335 uint64_t arm_sctlr(CPUARMState *env, int el) 10336 { 10337 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10338 if (el == 0) { 10339 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10340 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10341 ? 2 : 1; 10342 } 10343 return env->cp15.sctlr_el[el]; 10344 } 10345 10346 /* Return the SCTLR value which controls this address translation regime */ 10347 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10348 { 10349 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10350 } 10351 10352 #ifndef CONFIG_USER_ONLY 10353 10354 /* Return true if the specified stage of address translation is disabled */ 10355 static inline bool regime_translation_disabled(CPUARMState *env, 10356 ARMMMUIdx mmu_idx) 10357 { 10358 uint64_t hcr_el2; 10359 10360 if (arm_feature(env, ARM_FEATURE_M)) { 10361 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10362 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10363 case R_V7M_MPU_CTRL_ENABLE_MASK: 10364 /* Enabled, but not for HardFault and NMI */ 10365 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10366 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10367 /* Enabled for all cases */ 10368 return false; 10369 case 0: 10370 default: 10371 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10372 * we warned about that in armv7m_nvic.c when the guest set it. 10373 */ 10374 return true; 10375 } 10376 } 10377 10378 hcr_el2 = arm_hcr_el2_eff(env); 10379 10380 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10381 /* HCR.DC means HCR.VM behaves as 1 */ 10382 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10383 } 10384 10385 if (hcr_el2 & HCR_TGE) { 10386 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10387 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10388 return true; 10389 } 10390 } 10391 10392 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10393 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10394 return true; 10395 } 10396 10397 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10398 } 10399 10400 static inline bool regime_translation_big_endian(CPUARMState *env, 10401 ARMMMUIdx mmu_idx) 10402 { 10403 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10404 } 10405 10406 /* Return the TTBR associated with this translation regime */ 10407 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10408 int ttbrn) 10409 { 10410 if (mmu_idx == ARMMMUIdx_Stage2) { 10411 return env->cp15.vttbr_el2; 10412 } 10413 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10414 return env->cp15.vsttbr_el2; 10415 } 10416 if (ttbrn == 0) { 10417 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10418 } else { 10419 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10420 } 10421 } 10422 10423 #endif /* !CONFIG_USER_ONLY */ 10424 10425 /* Convert a possible stage1+2 MMU index into the appropriate 10426 * stage 1 MMU index 10427 */ 10428 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10429 { 10430 switch (mmu_idx) { 10431 case ARMMMUIdx_SE10_0: 10432 return ARMMMUIdx_Stage1_SE0; 10433 case ARMMMUIdx_SE10_1: 10434 return ARMMMUIdx_Stage1_SE1; 10435 case ARMMMUIdx_SE10_1_PAN: 10436 return ARMMMUIdx_Stage1_SE1_PAN; 10437 case ARMMMUIdx_E10_0: 10438 return ARMMMUIdx_Stage1_E0; 10439 case ARMMMUIdx_E10_1: 10440 return ARMMMUIdx_Stage1_E1; 10441 case ARMMMUIdx_E10_1_PAN: 10442 return ARMMMUIdx_Stage1_E1_PAN; 10443 default: 10444 return mmu_idx; 10445 } 10446 } 10447 10448 /* Return true if the translation regime is using LPAE format page tables */ 10449 static inline bool regime_using_lpae_format(CPUARMState *env, 10450 ARMMMUIdx mmu_idx) 10451 { 10452 int el = regime_el(env, mmu_idx); 10453 if (el == 2 || arm_el_is_aa64(env, el)) { 10454 return true; 10455 } 10456 if (arm_feature(env, ARM_FEATURE_LPAE) 10457 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10458 return true; 10459 } 10460 return false; 10461 } 10462 10463 /* Returns true if the stage 1 translation regime is using LPAE format page 10464 * tables. Used when raising alignment exceptions, whose FSR changes depending 10465 * on whether the long or short descriptor format is in use. */ 10466 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10467 { 10468 mmu_idx = stage_1_mmu_idx(mmu_idx); 10469 10470 return regime_using_lpae_format(env, mmu_idx); 10471 } 10472 10473 #ifndef CONFIG_USER_ONLY 10474 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10475 { 10476 switch (mmu_idx) { 10477 case ARMMMUIdx_SE10_0: 10478 case ARMMMUIdx_E20_0: 10479 case ARMMMUIdx_SE20_0: 10480 case ARMMMUIdx_Stage1_E0: 10481 case ARMMMUIdx_Stage1_SE0: 10482 case ARMMMUIdx_MUser: 10483 case ARMMMUIdx_MSUser: 10484 case ARMMMUIdx_MUserNegPri: 10485 case ARMMMUIdx_MSUserNegPri: 10486 return true; 10487 default: 10488 return false; 10489 case ARMMMUIdx_E10_0: 10490 case ARMMMUIdx_E10_1: 10491 case ARMMMUIdx_E10_1_PAN: 10492 g_assert_not_reached(); 10493 } 10494 } 10495 10496 /* Translate section/page access permissions to page 10497 * R/W protection flags 10498 * 10499 * @env: CPUARMState 10500 * @mmu_idx: MMU index indicating required translation regime 10501 * @ap: The 3-bit access permissions (AP[2:0]) 10502 * @domain_prot: The 2-bit domain access permissions 10503 */ 10504 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10505 int ap, int domain_prot) 10506 { 10507 bool is_user = regime_is_user(env, mmu_idx); 10508 10509 if (domain_prot == 3) { 10510 return PAGE_READ | PAGE_WRITE; 10511 } 10512 10513 switch (ap) { 10514 case 0: 10515 if (arm_feature(env, ARM_FEATURE_V7)) { 10516 return 0; 10517 } 10518 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10519 case SCTLR_S: 10520 return is_user ? 0 : PAGE_READ; 10521 case SCTLR_R: 10522 return PAGE_READ; 10523 default: 10524 return 0; 10525 } 10526 case 1: 10527 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10528 case 2: 10529 if (is_user) { 10530 return PAGE_READ; 10531 } else { 10532 return PAGE_READ | PAGE_WRITE; 10533 } 10534 case 3: 10535 return PAGE_READ | PAGE_WRITE; 10536 case 4: /* Reserved. */ 10537 return 0; 10538 case 5: 10539 return is_user ? 0 : PAGE_READ; 10540 case 6: 10541 return PAGE_READ; 10542 case 7: 10543 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10544 return 0; 10545 } 10546 return PAGE_READ; 10547 default: 10548 g_assert_not_reached(); 10549 } 10550 } 10551 10552 /* Translate section/page access permissions to page 10553 * R/W protection flags. 10554 * 10555 * @ap: The 2-bit simple AP (AP[2:1]) 10556 * @is_user: TRUE if accessing from PL0 10557 */ 10558 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10559 { 10560 switch (ap) { 10561 case 0: 10562 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10563 case 1: 10564 return PAGE_READ | PAGE_WRITE; 10565 case 2: 10566 return is_user ? 0 : PAGE_READ; 10567 case 3: 10568 return PAGE_READ; 10569 default: 10570 g_assert_not_reached(); 10571 } 10572 } 10573 10574 static inline int 10575 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10576 { 10577 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10578 } 10579 10580 /* Translate S2 section/page access permissions to protection flags 10581 * 10582 * @env: CPUARMState 10583 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10584 * @xn: XN (execute-never) bits 10585 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10586 */ 10587 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10588 { 10589 int prot = 0; 10590 10591 if (s2ap & 1) { 10592 prot |= PAGE_READ; 10593 } 10594 if (s2ap & 2) { 10595 prot |= PAGE_WRITE; 10596 } 10597 10598 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10599 switch (xn) { 10600 case 0: 10601 prot |= PAGE_EXEC; 10602 break; 10603 case 1: 10604 if (s1_is_el0) { 10605 prot |= PAGE_EXEC; 10606 } 10607 break; 10608 case 2: 10609 break; 10610 case 3: 10611 if (!s1_is_el0) { 10612 prot |= PAGE_EXEC; 10613 } 10614 break; 10615 default: 10616 g_assert_not_reached(); 10617 } 10618 } else { 10619 if (!extract32(xn, 1, 1)) { 10620 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10621 prot |= PAGE_EXEC; 10622 } 10623 } 10624 } 10625 return prot; 10626 } 10627 10628 /* Translate section/page access permissions to protection flags 10629 * 10630 * @env: CPUARMState 10631 * @mmu_idx: MMU index indicating required translation regime 10632 * @is_aa64: TRUE if AArch64 10633 * @ap: The 2-bit simple AP (AP[2:1]) 10634 * @ns: NS (non-secure) bit 10635 * @xn: XN (execute-never) bit 10636 * @pxn: PXN (privileged execute-never) bit 10637 */ 10638 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10639 int ap, int ns, int xn, int pxn) 10640 { 10641 bool is_user = regime_is_user(env, mmu_idx); 10642 int prot_rw, user_rw; 10643 bool have_wxn; 10644 int wxn = 0; 10645 10646 assert(mmu_idx != ARMMMUIdx_Stage2); 10647 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10648 10649 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10650 if (is_user) { 10651 prot_rw = user_rw; 10652 } else { 10653 if (user_rw && regime_is_pan(env, mmu_idx)) { 10654 /* PAN forbids data accesses but doesn't affect insn fetch */ 10655 prot_rw = 0; 10656 } else { 10657 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10658 } 10659 } 10660 10661 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10662 return prot_rw; 10663 } 10664 10665 /* TODO have_wxn should be replaced with 10666 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10667 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10668 * compatible processors have EL2, which is required for [U]WXN. 10669 */ 10670 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10671 10672 if (have_wxn) { 10673 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10674 } 10675 10676 if (is_aa64) { 10677 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10678 xn = pxn || (user_rw & PAGE_WRITE); 10679 } 10680 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10681 switch (regime_el(env, mmu_idx)) { 10682 case 1: 10683 case 3: 10684 if (is_user) { 10685 xn = xn || !(user_rw & PAGE_READ); 10686 } else { 10687 int uwxn = 0; 10688 if (have_wxn) { 10689 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10690 } 10691 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10692 (uwxn && (user_rw & PAGE_WRITE)); 10693 } 10694 break; 10695 case 2: 10696 break; 10697 } 10698 } else { 10699 xn = wxn = 0; 10700 } 10701 10702 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10703 return prot_rw; 10704 } 10705 return prot_rw | PAGE_EXEC; 10706 } 10707 10708 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10709 uint32_t *table, uint32_t address) 10710 { 10711 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10712 TCR *tcr = regime_tcr(env, mmu_idx); 10713 10714 if (address & tcr->mask) { 10715 if (tcr->raw_tcr & TTBCR_PD1) { 10716 /* Translation table walk disabled for TTBR1 */ 10717 return false; 10718 } 10719 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10720 } else { 10721 if (tcr->raw_tcr & TTBCR_PD0) { 10722 /* Translation table walk disabled for TTBR0 */ 10723 return false; 10724 } 10725 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10726 } 10727 *table |= (address >> 18) & 0x3ffc; 10728 return true; 10729 } 10730 10731 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs) 10732 { 10733 /* 10734 * For an S1 page table walk, the stage 1 attributes are always 10735 * some form of "this is Normal memory". The combined S1+S2 10736 * attributes are therefore only Device if stage 2 specifies Device. 10737 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 10738 * ie when cacheattrs.attrs bits [3:2] are 0b00. 10739 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 10740 * when cacheattrs.attrs bit [2] is 0. 10741 */ 10742 assert(cacheattrs.is_s2_format); 10743 if (arm_hcr_el2_eff(env) & HCR_FWB) { 10744 return (cacheattrs.attrs & 0x4) == 0; 10745 } else { 10746 return (cacheattrs.attrs & 0xc) == 0; 10747 } 10748 } 10749 10750 /* Translate a S1 pagetable walk through S2 if needed. */ 10751 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10752 hwaddr addr, bool *is_secure, 10753 ARMMMUFaultInfo *fi) 10754 { 10755 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10756 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10757 target_ulong s2size; 10758 hwaddr s2pa; 10759 int s2prot; 10760 int ret; 10761 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10762 : ARMMMUIdx_Stage2; 10763 ARMCacheAttrs cacheattrs = {}; 10764 MemTxAttrs txattrs = {}; 10765 10766 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10767 &s2pa, &txattrs, &s2prot, &s2size, fi, 10768 &cacheattrs); 10769 if (ret) { 10770 assert(fi->type != ARMFault_None); 10771 fi->s2addr = addr; 10772 fi->stage2 = true; 10773 fi->s1ptw = true; 10774 fi->s1ns = !*is_secure; 10775 return ~0; 10776 } 10777 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10778 ptw_attrs_are_device(env, cacheattrs)) { 10779 /* 10780 * PTW set and S1 walk touched S2 Device memory: 10781 * generate Permission fault. 10782 */ 10783 fi->type = ARMFault_Permission; 10784 fi->s2addr = addr; 10785 fi->stage2 = true; 10786 fi->s1ptw = true; 10787 fi->s1ns = !*is_secure; 10788 return ~0; 10789 } 10790 10791 if (arm_is_secure_below_el3(env)) { 10792 /* Check if page table walk is to secure or non-secure PA space. */ 10793 if (*is_secure) { 10794 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10795 } else { 10796 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10797 } 10798 } else { 10799 assert(!*is_secure); 10800 } 10801 10802 addr = s2pa; 10803 } 10804 return addr; 10805 } 10806 10807 /* All loads done in the course of a page table walk go through here. */ 10808 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10809 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10810 { 10811 ARMCPU *cpu = ARM_CPU(cs); 10812 CPUARMState *env = &cpu->env; 10813 MemTxAttrs attrs = {}; 10814 MemTxResult result = MEMTX_OK; 10815 AddressSpace *as; 10816 uint32_t data; 10817 10818 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10819 attrs.secure = is_secure; 10820 as = arm_addressspace(cs, attrs); 10821 if (fi->s1ptw) { 10822 return 0; 10823 } 10824 if (regime_translation_big_endian(env, mmu_idx)) { 10825 data = address_space_ldl_be(as, addr, attrs, &result); 10826 } else { 10827 data = address_space_ldl_le(as, addr, attrs, &result); 10828 } 10829 if (result == MEMTX_OK) { 10830 return data; 10831 } 10832 fi->type = ARMFault_SyncExternalOnWalk; 10833 fi->ea = arm_extabort_type(result); 10834 return 0; 10835 } 10836 10837 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10838 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10839 { 10840 ARMCPU *cpu = ARM_CPU(cs); 10841 CPUARMState *env = &cpu->env; 10842 MemTxAttrs attrs = {}; 10843 MemTxResult result = MEMTX_OK; 10844 AddressSpace *as; 10845 uint64_t data; 10846 10847 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10848 attrs.secure = is_secure; 10849 as = arm_addressspace(cs, attrs); 10850 if (fi->s1ptw) { 10851 return 0; 10852 } 10853 if (regime_translation_big_endian(env, mmu_idx)) { 10854 data = address_space_ldq_be(as, addr, attrs, &result); 10855 } else { 10856 data = address_space_ldq_le(as, addr, attrs, &result); 10857 } 10858 if (result == MEMTX_OK) { 10859 return data; 10860 } 10861 fi->type = ARMFault_SyncExternalOnWalk; 10862 fi->ea = arm_extabort_type(result); 10863 return 0; 10864 } 10865 10866 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10867 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10868 hwaddr *phys_ptr, int *prot, 10869 target_ulong *page_size, 10870 ARMMMUFaultInfo *fi) 10871 { 10872 CPUState *cs = env_cpu(env); 10873 int level = 1; 10874 uint32_t table; 10875 uint32_t desc; 10876 int type; 10877 int ap; 10878 int domain = 0; 10879 int domain_prot; 10880 hwaddr phys_addr; 10881 uint32_t dacr; 10882 10883 /* Pagetable walk. */ 10884 /* Lookup l1 descriptor. */ 10885 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10886 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10887 fi->type = ARMFault_Translation; 10888 goto do_fault; 10889 } 10890 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10891 mmu_idx, fi); 10892 if (fi->type != ARMFault_None) { 10893 goto do_fault; 10894 } 10895 type = (desc & 3); 10896 domain = (desc >> 5) & 0x0f; 10897 if (regime_el(env, mmu_idx) == 1) { 10898 dacr = env->cp15.dacr_ns; 10899 } else { 10900 dacr = env->cp15.dacr_s; 10901 } 10902 domain_prot = (dacr >> (domain * 2)) & 3; 10903 if (type == 0) { 10904 /* Section translation fault. */ 10905 fi->type = ARMFault_Translation; 10906 goto do_fault; 10907 } 10908 if (type != 2) { 10909 level = 2; 10910 } 10911 if (domain_prot == 0 || domain_prot == 2) { 10912 fi->type = ARMFault_Domain; 10913 goto do_fault; 10914 } 10915 if (type == 2) { 10916 /* 1Mb section. */ 10917 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10918 ap = (desc >> 10) & 3; 10919 *page_size = 1024 * 1024; 10920 } else { 10921 /* Lookup l2 entry. */ 10922 if (type == 1) { 10923 /* Coarse pagetable. */ 10924 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10925 } else { 10926 /* Fine pagetable. */ 10927 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10928 } 10929 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10930 mmu_idx, fi); 10931 if (fi->type != ARMFault_None) { 10932 goto do_fault; 10933 } 10934 switch (desc & 3) { 10935 case 0: /* Page translation fault. */ 10936 fi->type = ARMFault_Translation; 10937 goto do_fault; 10938 case 1: /* 64k page. */ 10939 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10940 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10941 *page_size = 0x10000; 10942 break; 10943 case 2: /* 4k page. */ 10944 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10945 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10946 *page_size = 0x1000; 10947 break; 10948 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10949 if (type == 1) { 10950 /* ARMv6/XScale extended small page format */ 10951 if (arm_feature(env, ARM_FEATURE_XSCALE) 10952 || arm_feature(env, ARM_FEATURE_V6)) { 10953 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10954 *page_size = 0x1000; 10955 } else { 10956 /* UNPREDICTABLE in ARMv5; we choose to take a 10957 * page translation fault. 10958 */ 10959 fi->type = ARMFault_Translation; 10960 goto do_fault; 10961 } 10962 } else { 10963 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10964 *page_size = 0x400; 10965 } 10966 ap = (desc >> 4) & 3; 10967 break; 10968 default: 10969 /* Never happens, but compiler isn't smart enough to tell. */ 10970 g_assert_not_reached(); 10971 } 10972 } 10973 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10974 *prot |= *prot ? PAGE_EXEC : 0; 10975 if (!(*prot & (1 << access_type))) { 10976 /* Access permission fault. */ 10977 fi->type = ARMFault_Permission; 10978 goto do_fault; 10979 } 10980 *phys_ptr = phys_addr; 10981 return false; 10982 do_fault: 10983 fi->domain = domain; 10984 fi->level = level; 10985 return true; 10986 } 10987 10988 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10989 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10990 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10991 target_ulong *page_size, ARMMMUFaultInfo *fi) 10992 { 10993 CPUState *cs = env_cpu(env); 10994 ARMCPU *cpu = env_archcpu(env); 10995 int level = 1; 10996 uint32_t table; 10997 uint32_t desc; 10998 uint32_t xn; 10999 uint32_t pxn = 0; 11000 int type; 11001 int ap; 11002 int domain = 0; 11003 int domain_prot; 11004 hwaddr phys_addr; 11005 uint32_t dacr; 11006 bool ns; 11007 11008 /* Pagetable walk. */ 11009 /* Lookup l1 descriptor. */ 11010 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11011 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11012 fi->type = ARMFault_Translation; 11013 goto do_fault; 11014 } 11015 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11016 mmu_idx, fi); 11017 if (fi->type != ARMFault_None) { 11018 goto do_fault; 11019 } 11020 type = (desc & 3); 11021 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 11022 /* Section translation fault, or attempt to use the encoding 11023 * which is Reserved on implementations without PXN. 11024 */ 11025 fi->type = ARMFault_Translation; 11026 goto do_fault; 11027 } 11028 if ((type == 1) || !(desc & (1 << 18))) { 11029 /* Page or Section. */ 11030 domain = (desc >> 5) & 0x0f; 11031 } 11032 if (regime_el(env, mmu_idx) == 1) { 11033 dacr = env->cp15.dacr_ns; 11034 } else { 11035 dacr = env->cp15.dacr_s; 11036 } 11037 if (type == 1) { 11038 level = 2; 11039 } 11040 domain_prot = (dacr >> (domain * 2)) & 3; 11041 if (domain_prot == 0 || domain_prot == 2) { 11042 /* Section or Page domain fault */ 11043 fi->type = ARMFault_Domain; 11044 goto do_fault; 11045 } 11046 if (type != 1) { 11047 if (desc & (1 << 18)) { 11048 /* Supersection. */ 11049 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11050 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11051 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11052 *page_size = 0x1000000; 11053 } else { 11054 /* Section. */ 11055 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11056 *page_size = 0x100000; 11057 } 11058 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11059 xn = desc & (1 << 4); 11060 pxn = desc & 1; 11061 ns = extract32(desc, 19, 1); 11062 } else { 11063 if (cpu_isar_feature(aa32_pxn, cpu)) { 11064 pxn = (desc >> 2) & 1; 11065 } 11066 ns = extract32(desc, 3, 1); 11067 /* Lookup l2 entry. */ 11068 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11069 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11070 mmu_idx, fi); 11071 if (fi->type != ARMFault_None) { 11072 goto do_fault; 11073 } 11074 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11075 switch (desc & 3) { 11076 case 0: /* Page translation fault. */ 11077 fi->type = ARMFault_Translation; 11078 goto do_fault; 11079 case 1: /* 64k page. */ 11080 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11081 xn = desc & (1 << 15); 11082 *page_size = 0x10000; 11083 break; 11084 case 2: case 3: /* 4k page. */ 11085 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11086 xn = desc & 1; 11087 *page_size = 0x1000; 11088 break; 11089 default: 11090 /* Never happens, but compiler isn't smart enough to tell. */ 11091 g_assert_not_reached(); 11092 } 11093 } 11094 if (domain_prot == 3) { 11095 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11096 } else { 11097 if (pxn && !regime_is_user(env, mmu_idx)) { 11098 xn = 1; 11099 } 11100 if (xn && access_type == MMU_INST_FETCH) { 11101 fi->type = ARMFault_Permission; 11102 goto do_fault; 11103 } 11104 11105 if (arm_feature(env, ARM_FEATURE_V6K) && 11106 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11107 /* The simplified model uses AP[0] as an access control bit. */ 11108 if ((ap & 1) == 0) { 11109 /* Access flag fault. */ 11110 fi->type = ARMFault_AccessFlag; 11111 goto do_fault; 11112 } 11113 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11114 } else { 11115 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11116 } 11117 if (*prot && !xn) { 11118 *prot |= PAGE_EXEC; 11119 } 11120 if (!(*prot & (1 << access_type))) { 11121 /* Access permission fault. */ 11122 fi->type = ARMFault_Permission; 11123 goto do_fault; 11124 } 11125 } 11126 if (ns) { 11127 /* The NS bit will (as required by the architecture) have no effect if 11128 * the CPU doesn't support TZ or this is a non-secure translation 11129 * regime, because the attribute will already be non-secure. 11130 */ 11131 attrs->secure = false; 11132 } 11133 *phys_ptr = phys_addr; 11134 return false; 11135 do_fault: 11136 fi->domain = domain; 11137 fi->level = level; 11138 return true; 11139 } 11140 11141 /* 11142 * check_s2_mmu_setup 11143 * @cpu: ARMCPU 11144 * @is_aa64: True if the translation regime is in AArch64 state 11145 * @startlevel: Suggested starting level 11146 * @inputsize: Bitsize of IPAs 11147 * @stride: Page-table stride (See the ARM ARM) 11148 * 11149 * Returns true if the suggested S2 translation parameters are OK and 11150 * false otherwise. 11151 */ 11152 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11153 int inputsize, int stride, int outputsize) 11154 { 11155 const int grainsize = stride + 3; 11156 int startsizecheck; 11157 11158 /* 11159 * Negative levels are usually not allowed... 11160 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11161 * begins with level -1. Note that previous feature tests will have 11162 * eliminated this combination if it is not enabled. 11163 */ 11164 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11165 return false; 11166 } 11167 11168 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11169 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11170 return false; 11171 } 11172 11173 if (is_aa64) { 11174 switch (stride) { 11175 case 13: /* 64KB Pages. */ 11176 if (level == 0 || (level == 1 && outputsize <= 42)) { 11177 return false; 11178 } 11179 break; 11180 case 11: /* 16KB Pages. */ 11181 if (level == 0 || (level == 1 && outputsize <= 40)) { 11182 return false; 11183 } 11184 break; 11185 case 9: /* 4KB Pages. */ 11186 if (level == 0 && outputsize <= 42) { 11187 return false; 11188 } 11189 break; 11190 default: 11191 g_assert_not_reached(); 11192 } 11193 11194 /* Inputsize checks. */ 11195 if (inputsize > outputsize && 11196 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11197 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11198 return false; 11199 } 11200 } else { 11201 /* AArch32 only supports 4KB pages. Assert on that. */ 11202 assert(stride == 9); 11203 11204 if (level == 0) { 11205 return false; 11206 } 11207 } 11208 return true; 11209 } 11210 11211 /* Translate from the 4-bit stage 2 representation of 11212 * memory attributes (without cache-allocation hints) to 11213 * the 8-bit representation of the stage 1 MAIR registers 11214 * (which includes allocation hints). 11215 * 11216 * ref: shared/translation/attrs/S2AttrDecode() 11217 * .../S2ConvertAttrsHints() 11218 */ 11219 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11220 { 11221 uint8_t hiattr = extract32(s2attrs, 2, 2); 11222 uint8_t loattr = extract32(s2attrs, 0, 2); 11223 uint8_t hihint = 0, lohint = 0; 11224 11225 if (hiattr != 0) { /* normal memory */ 11226 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11227 hiattr = loattr = 1; /* non-cacheable */ 11228 } else { 11229 if (hiattr != 1) { /* Write-through or write-back */ 11230 hihint = 3; /* RW allocate */ 11231 } 11232 if (loattr != 1) { /* Write-through or write-back */ 11233 lohint = 3; /* RW allocate */ 11234 } 11235 } 11236 } 11237 11238 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11239 } 11240 #endif /* !CONFIG_USER_ONLY */ 11241 11242 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11243 static const uint8_t pamax_map[] = { 11244 [0] = 32, 11245 [1] = 36, 11246 [2] = 40, 11247 [3] = 42, 11248 [4] = 44, 11249 [5] = 48, 11250 [6] = 52, 11251 }; 11252 11253 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11254 unsigned int arm_pamax(ARMCPU *cpu) 11255 { 11256 unsigned int parange = 11257 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11258 11259 /* 11260 * id_aa64mmfr0 is a read-only register so values outside of the 11261 * supported mappings can be considered an implementation error. 11262 */ 11263 assert(parange < ARRAY_SIZE(pamax_map)); 11264 return pamax_map[parange]; 11265 } 11266 11267 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11268 { 11269 if (regime_has_2_ranges(mmu_idx)) { 11270 return extract64(tcr, 37, 2); 11271 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11272 return 0; /* VTCR_EL2 */ 11273 } else { 11274 /* Replicate the single TBI bit so we always have 2 bits. */ 11275 return extract32(tcr, 20, 1) * 3; 11276 } 11277 } 11278 11279 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11280 { 11281 if (regime_has_2_ranges(mmu_idx)) { 11282 return extract64(tcr, 51, 2); 11283 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11284 return 0; /* VTCR_EL2 */ 11285 } else { 11286 /* Replicate the single TBID bit so we always have 2 bits. */ 11287 return extract32(tcr, 29, 1) * 3; 11288 } 11289 } 11290 11291 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11292 { 11293 if (regime_has_2_ranges(mmu_idx)) { 11294 return extract64(tcr, 57, 2); 11295 } else { 11296 /* Replicate the single TCMA bit so we always have 2 bits. */ 11297 return extract32(tcr, 30, 1) * 3; 11298 } 11299 } 11300 11301 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11302 ARMMMUIdx mmu_idx, bool data) 11303 { 11304 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11305 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11306 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11307 ARMCPU *cpu = env_archcpu(env); 11308 11309 if (!regime_has_2_ranges(mmu_idx)) { 11310 select = 0; 11311 tsz = extract32(tcr, 0, 6); 11312 using64k = extract32(tcr, 14, 1); 11313 using16k = extract32(tcr, 15, 1); 11314 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11315 /* VTCR_EL2 */ 11316 hpd = false; 11317 } else { 11318 hpd = extract32(tcr, 24, 1); 11319 } 11320 epd = false; 11321 sh = extract32(tcr, 12, 2); 11322 ps = extract32(tcr, 16, 3); 11323 ds = extract64(tcr, 32, 1); 11324 } else { 11325 /* 11326 * Bit 55 is always between the two regions, and is canonical for 11327 * determining if address tagging is enabled. 11328 */ 11329 select = extract64(va, 55, 1); 11330 if (!select) { 11331 tsz = extract32(tcr, 0, 6); 11332 epd = extract32(tcr, 7, 1); 11333 sh = extract32(tcr, 12, 2); 11334 using64k = extract32(tcr, 14, 1); 11335 using16k = extract32(tcr, 15, 1); 11336 hpd = extract64(tcr, 41, 1); 11337 } else { 11338 int tg = extract32(tcr, 30, 2); 11339 using16k = tg == 1; 11340 using64k = tg == 3; 11341 tsz = extract32(tcr, 16, 6); 11342 epd = extract32(tcr, 23, 1); 11343 sh = extract32(tcr, 28, 2); 11344 hpd = extract64(tcr, 42, 1); 11345 } 11346 ps = extract64(tcr, 32, 3); 11347 ds = extract64(tcr, 59, 1); 11348 } 11349 11350 if (cpu_isar_feature(aa64_st, cpu)) { 11351 max_tsz = 48 - using64k; 11352 } else { 11353 max_tsz = 39; 11354 } 11355 11356 /* 11357 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11358 * adjust the effective value of DS, as documented. 11359 */ 11360 min_tsz = 16; 11361 if (using64k) { 11362 if (cpu_isar_feature(aa64_lva, cpu)) { 11363 min_tsz = 12; 11364 } 11365 ds = false; 11366 } else if (ds) { 11367 switch (mmu_idx) { 11368 case ARMMMUIdx_Stage2: 11369 case ARMMMUIdx_Stage2_S: 11370 if (using16k) { 11371 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11372 } else { 11373 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11374 } 11375 break; 11376 default: 11377 if (using16k) { 11378 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11379 } else { 11380 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11381 } 11382 break; 11383 } 11384 if (ds) { 11385 min_tsz = 12; 11386 } 11387 } 11388 11389 if (tsz > max_tsz) { 11390 tsz = max_tsz; 11391 tsz_oob = true; 11392 } else if (tsz < min_tsz) { 11393 tsz = min_tsz; 11394 tsz_oob = true; 11395 } else { 11396 tsz_oob = false; 11397 } 11398 11399 /* Present TBI as a composite with TBID. */ 11400 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11401 if (!data) { 11402 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11403 } 11404 tbi = (tbi >> select) & 1; 11405 11406 return (ARMVAParameters) { 11407 .tsz = tsz, 11408 .ps = ps, 11409 .sh = sh, 11410 .select = select, 11411 .tbi = tbi, 11412 .epd = epd, 11413 .hpd = hpd, 11414 .using16k = using16k, 11415 .using64k = using64k, 11416 .tsz_oob = tsz_oob, 11417 .ds = ds, 11418 }; 11419 } 11420 11421 #ifndef CONFIG_USER_ONLY 11422 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11423 ARMMMUIdx mmu_idx) 11424 { 11425 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11426 uint32_t el = regime_el(env, mmu_idx); 11427 int select, tsz; 11428 bool epd, hpd; 11429 11430 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11431 11432 if (mmu_idx == ARMMMUIdx_Stage2) { 11433 /* VTCR */ 11434 bool sext = extract32(tcr, 4, 1); 11435 bool sign = extract32(tcr, 3, 1); 11436 11437 /* 11438 * If the sign-extend bit is not the same as t0sz[3], the result 11439 * is unpredictable. Flag this as a guest error. 11440 */ 11441 if (sign != sext) { 11442 qemu_log_mask(LOG_GUEST_ERROR, 11443 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11444 } 11445 tsz = sextract32(tcr, 0, 4) + 8; 11446 select = 0; 11447 hpd = false; 11448 epd = false; 11449 } else if (el == 2) { 11450 /* HTCR */ 11451 tsz = extract32(tcr, 0, 3); 11452 select = 0; 11453 hpd = extract64(tcr, 24, 1); 11454 epd = false; 11455 } else { 11456 int t0sz = extract32(tcr, 0, 3); 11457 int t1sz = extract32(tcr, 16, 3); 11458 11459 if (t1sz == 0) { 11460 select = va > (0xffffffffu >> t0sz); 11461 } else { 11462 /* Note that we will detect errors later. */ 11463 select = va >= ~(0xffffffffu >> t1sz); 11464 } 11465 if (!select) { 11466 tsz = t0sz; 11467 epd = extract32(tcr, 7, 1); 11468 hpd = extract64(tcr, 41, 1); 11469 } else { 11470 tsz = t1sz; 11471 epd = extract32(tcr, 23, 1); 11472 hpd = extract64(tcr, 42, 1); 11473 } 11474 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11475 hpd &= extract32(tcr, 6, 1); 11476 } 11477 11478 return (ARMVAParameters) { 11479 .tsz = tsz, 11480 .select = select, 11481 .epd = epd, 11482 .hpd = hpd, 11483 }; 11484 } 11485 11486 /** 11487 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11488 * 11489 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11490 * prot and page_size may not be filled in, and the populated fsr value provides 11491 * information on why the translation aborted, in the format of a long-format 11492 * DFSR/IFSR fault register, with the following caveats: 11493 * * the WnR bit is never set (the caller must do this). 11494 * 11495 * @env: CPUARMState 11496 * @address: virtual address to get physical address for 11497 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11498 * @mmu_idx: MMU index indicating required translation regime 11499 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11500 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11501 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11502 * @phys_ptr: set to the physical address corresponding to the virtual address 11503 * @attrs: set to the memory transaction attributes to use 11504 * @prot: set to the permissions for the page containing phys_ptr 11505 * @page_size_ptr: set to the size of the page containing phys_ptr 11506 * @fi: set to fault info if the translation fails 11507 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11508 */ 11509 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11510 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11511 bool s1_is_el0, 11512 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11513 target_ulong *page_size_ptr, 11514 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11515 { 11516 ARMCPU *cpu = env_archcpu(env); 11517 CPUState *cs = CPU(cpu); 11518 /* Read an LPAE long-descriptor translation table. */ 11519 ARMFaultType fault_type = ARMFault_Translation; 11520 uint32_t level; 11521 ARMVAParameters param; 11522 uint64_t ttbr; 11523 hwaddr descaddr, indexmask, indexmask_grainsize; 11524 uint32_t tableattrs; 11525 target_ulong page_size; 11526 uint32_t attrs; 11527 int32_t stride; 11528 int addrsize, inputsize, outputsize; 11529 TCR *tcr = regime_tcr(env, mmu_idx); 11530 int ap, ns, xn, pxn; 11531 uint32_t el = regime_el(env, mmu_idx); 11532 uint64_t descaddrmask; 11533 bool aarch64 = arm_el_is_aa64(env, el); 11534 bool guarded = false; 11535 11536 /* TODO: This code does not support shareability levels. */ 11537 if (aarch64) { 11538 int ps; 11539 11540 param = aa64_va_parameters(env, address, mmu_idx, 11541 access_type != MMU_INST_FETCH); 11542 level = 0; 11543 11544 /* 11545 * If TxSZ is programmed to a value larger than the maximum, 11546 * or smaller than the effective minimum, it is IMPLEMENTATION 11547 * DEFINED whether we behave as if the field were programmed 11548 * within bounds, or if a level 0 Translation fault is generated. 11549 * 11550 * With FEAT_LVA, fault on less than minimum becomes required, 11551 * so our choice is to always raise the fault. 11552 */ 11553 if (param.tsz_oob) { 11554 fault_type = ARMFault_Translation; 11555 goto do_fault; 11556 } 11557 11558 addrsize = 64 - 8 * param.tbi; 11559 inputsize = 64 - param.tsz; 11560 11561 /* 11562 * Bound PS by PARANGE to find the effective output address size. 11563 * ID_AA64MMFR0 is a read-only register so values outside of the 11564 * supported mappings can be considered an implementation error. 11565 */ 11566 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11567 ps = MIN(ps, param.ps); 11568 assert(ps < ARRAY_SIZE(pamax_map)); 11569 outputsize = pamax_map[ps]; 11570 } else { 11571 param = aa32_va_parameters(env, address, mmu_idx); 11572 level = 1; 11573 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11574 inputsize = addrsize - param.tsz; 11575 outputsize = 40; 11576 } 11577 11578 /* 11579 * We determined the region when collecting the parameters, but we 11580 * have not yet validated that the address is valid for the region. 11581 * Extract the top bits and verify that they all match select. 11582 * 11583 * For aa32, if inputsize == addrsize, then we have selected the 11584 * region by exclusion in aa32_va_parameters and there is no more 11585 * validation to do here. 11586 */ 11587 if (inputsize < addrsize) { 11588 target_ulong top_bits = sextract64(address, inputsize, 11589 addrsize - inputsize); 11590 if (-top_bits != param.select) { 11591 /* The gap between the two regions is a Translation fault */ 11592 fault_type = ARMFault_Translation; 11593 goto do_fault; 11594 } 11595 } 11596 11597 if (param.using64k) { 11598 stride = 13; 11599 } else if (param.using16k) { 11600 stride = 11; 11601 } else { 11602 stride = 9; 11603 } 11604 11605 /* Note that QEMU ignores shareability and cacheability attributes, 11606 * so we don't need to do anything with the SH, ORGN, IRGN fields 11607 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11608 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11609 * implement any ASID-like capability so we can ignore it (instead 11610 * we will always flush the TLB any time the ASID is changed). 11611 */ 11612 ttbr = regime_ttbr(env, mmu_idx, param.select); 11613 11614 /* Here we should have set up all the parameters for the translation: 11615 * inputsize, ttbr, epd, stride, tbi 11616 */ 11617 11618 if (param.epd) { 11619 /* Translation table walk disabled => Translation fault on TLB miss 11620 * Note: This is always 0 on 64-bit EL2 and EL3. 11621 */ 11622 goto do_fault; 11623 } 11624 11625 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11626 /* The starting level depends on the virtual address size (which can 11627 * be up to 48 bits) and the translation granule size. It indicates 11628 * the number of strides (stride bits at a time) needed to 11629 * consume the bits of the input address. In the pseudocode this is: 11630 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11631 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11632 * our 'stride + 3' and 'stride' is our 'stride'. 11633 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11634 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11635 * = 4 - (inputsize - 4) / stride; 11636 */ 11637 level = 4 - (inputsize - 4) / stride; 11638 } else { 11639 /* For stage 2 translations the starting level is specified by the 11640 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11641 */ 11642 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11643 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11644 uint32_t startlevel; 11645 bool ok; 11646 11647 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11648 if (param.ds && stride == 9 && sl2) { 11649 if (sl0 != 0) { 11650 level = 0; 11651 fault_type = ARMFault_Translation; 11652 goto do_fault; 11653 } 11654 startlevel = -1; 11655 } else if (!aarch64 || stride == 9) { 11656 /* AArch32 or 4KB pages */ 11657 startlevel = 2 - sl0; 11658 11659 if (cpu_isar_feature(aa64_st, cpu)) { 11660 startlevel &= 3; 11661 } 11662 } else { 11663 /* 16KB or 64KB pages */ 11664 startlevel = 3 - sl0; 11665 } 11666 11667 /* Check that the starting level is valid. */ 11668 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11669 inputsize, stride, outputsize); 11670 if (!ok) { 11671 fault_type = ARMFault_Translation; 11672 goto do_fault; 11673 } 11674 level = startlevel; 11675 } 11676 11677 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11678 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11679 11680 /* Now we can extract the actual base address from the TTBR */ 11681 descaddr = extract64(ttbr, 0, 48); 11682 11683 /* 11684 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11685 * 11686 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11687 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11688 * but we've just cleared the bits above 47, so simplify the test. 11689 */ 11690 if (outputsize > 48) { 11691 descaddr |= extract64(ttbr, 2, 4) << 48; 11692 } else if (descaddr >> outputsize) { 11693 level = 0; 11694 fault_type = ARMFault_AddressSize; 11695 goto do_fault; 11696 } 11697 11698 /* 11699 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11700 * and also to mask out CnP (bit 0) which could validly be non-zero. 11701 */ 11702 descaddr &= ~indexmask; 11703 11704 /* 11705 * For AArch32, the address field in the descriptor goes up to bit 39 11706 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11707 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11708 * bits as part of the address, which will be checked via outputsize. 11709 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11710 * the highest bits of a 52-bit output are placed elsewhere. 11711 */ 11712 if (param.ds) { 11713 descaddrmask = MAKE_64BIT_MASK(0, 50); 11714 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11715 descaddrmask = MAKE_64BIT_MASK(0, 48); 11716 } else { 11717 descaddrmask = MAKE_64BIT_MASK(0, 40); 11718 } 11719 descaddrmask &= ~indexmask_grainsize; 11720 11721 /* Secure accesses start with the page table in secure memory and 11722 * can be downgraded to non-secure at any step. Non-secure accesses 11723 * remain non-secure. We implement this by just ORing in the NSTable/NS 11724 * bits at each step. 11725 */ 11726 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11727 for (;;) { 11728 uint64_t descriptor; 11729 bool nstable; 11730 11731 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11732 descaddr &= ~7ULL; 11733 nstable = extract32(tableattrs, 4, 1); 11734 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11735 if (fi->type != ARMFault_None) { 11736 goto do_fault; 11737 } 11738 11739 if (!(descriptor & 1) || 11740 (!(descriptor & 2) && (level == 3))) { 11741 /* Invalid, or the Reserved level 3 encoding */ 11742 goto do_fault; 11743 } 11744 11745 descaddr = descriptor & descaddrmask; 11746 11747 /* 11748 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11749 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11750 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11751 * raise AddressSizeFault. 11752 */ 11753 if (outputsize > 48) { 11754 if (param.ds) { 11755 descaddr |= extract64(descriptor, 8, 2) << 50; 11756 } else { 11757 descaddr |= extract64(descriptor, 12, 4) << 48; 11758 } 11759 } else if (descaddr >> outputsize) { 11760 fault_type = ARMFault_AddressSize; 11761 goto do_fault; 11762 } 11763 11764 if ((descriptor & 2) && (level < 3)) { 11765 /* Table entry. The top five bits are attributes which may 11766 * propagate down through lower levels of the table (and 11767 * which are all arranged so that 0 means "no effect", so 11768 * we can gather them up by ORing in the bits at each level). 11769 */ 11770 tableattrs |= extract64(descriptor, 59, 5); 11771 level++; 11772 indexmask = indexmask_grainsize; 11773 continue; 11774 } 11775 /* 11776 * Block entry at level 1 or 2, or page entry at level 3. 11777 * These are basically the same thing, although the number 11778 * of bits we pull in from the vaddr varies. Note that although 11779 * descaddrmask masks enough of the low bits of the descriptor 11780 * to give a correct page or table address, the address field 11781 * in a block descriptor is smaller; so we need to explicitly 11782 * clear the lower bits here before ORing in the low vaddr bits. 11783 */ 11784 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11785 descaddr &= ~(page_size - 1); 11786 descaddr |= (address & (page_size - 1)); 11787 /* Extract attributes from the descriptor */ 11788 attrs = extract64(descriptor, 2, 10) 11789 | (extract64(descriptor, 52, 12) << 10); 11790 11791 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11792 /* Stage 2 table descriptors do not include any attribute fields */ 11793 break; 11794 } 11795 /* Merge in attributes from table descriptors */ 11796 attrs |= nstable << 3; /* NS */ 11797 guarded = extract64(descriptor, 50, 1); /* GP */ 11798 if (param.hpd) { 11799 /* HPD disables all the table attributes except NSTable. */ 11800 break; 11801 } 11802 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11803 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11804 * means "force PL1 access only", which means forcing AP[1] to 0. 11805 */ 11806 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11807 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11808 break; 11809 } 11810 /* Here descaddr is the final physical address, and attributes 11811 * are all in attrs. 11812 */ 11813 fault_type = ARMFault_AccessFlag; 11814 if ((attrs & (1 << 8)) == 0) { 11815 /* Access flag */ 11816 goto do_fault; 11817 } 11818 11819 ap = extract32(attrs, 4, 2); 11820 11821 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11822 ns = mmu_idx == ARMMMUIdx_Stage2; 11823 xn = extract32(attrs, 11, 2); 11824 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11825 } else { 11826 ns = extract32(attrs, 3, 1); 11827 xn = extract32(attrs, 12, 1); 11828 pxn = extract32(attrs, 11, 1); 11829 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11830 } 11831 11832 fault_type = ARMFault_Permission; 11833 if (!(*prot & (1 << access_type))) { 11834 goto do_fault; 11835 } 11836 11837 if (ns) { 11838 /* The NS bit will (as required by the architecture) have no effect if 11839 * the CPU doesn't support TZ or this is a non-secure translation 11840 * regime, because the attribute will already be non-secure. 11841 */ 11842 txattrs->secure = false; 11843 } 11844 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11845 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11846 arm_tlb_bti_gp(txattrs) = true; 11847 } 11848 11849 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11850 cacheattrs->is_s2_format = true; 11851 cacheattrs->attrs = extract32(attrs, 0, 4); 11852 } else { 11853 /* Index into MAIR registers for cache attributes */ 11854 uint8_t attrindx = extract32(attrs, 0, 3); 11855 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11856 assert(attrindx <= 7); 11857 cacheattrs->is_s2_format = false; 11858 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11859 } 11860 11861 /* 11862 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11863 * was re-purposed for output address bits. The SH attribute in 11864 * that case comes from TCR_ELx, which we extracted earlier. 11865 */ 11866 if (param.ds) { 11867 cacheattrs->shareability = param.sh; 11868 } else { 11869 cacheattrs->shareability = extract32(attrs, 6, 2); 11870 } 11871 11872 *phys_ptr = descaddr; 11873 *page_size_ptr = page_size; 11874 return false; 11875 11876 do_fault: 11877 fi->type = fault_type; 11878 fi->level = level; 11879 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11880 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11881 mmu_idx == ARMMMUIdx_Stage2_S); 11882 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11883 return true; 11884 } 11885 11886 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11887 ARMMMUIdx mmu_idx, 11888 int32_t address, int *prot) 11889 { 11890 if (!arm_feature(env, ARM_FEATURE_M)) { 11891 *prot = PAGE_READ | PAGE_WRITE; 11892 switch (address) { 11893 case 0xF0000000 ... 0xFFFFFFFF: 11894 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11895 /* hivecs execing is ok */ 11896 *prot |= PAGE_EXEC; 11897 } 11898 break; 11899 case 0x00000000 ... 0x7FFFFFFF: 11900 *prot |= PAGE_EXEC; 11901 break; 11902 } 11903 } else { 11904 /* Default system address map for M profile cores. 11905 * The architecture specifies which regions are execute-never; 11906 * at the MPU level no other checks are defined. 11907 */ 11908 switch (address) { 11909 case 0x00000000 ... 0x1fffffff: /* ROM */ 11910 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11911 case 0x60000000 ... 0x7fffffff: /* RAM */ 11912 case 0x80000000 ... 0x9fffffff: /* RAM */ 11913 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11914 break; 11915 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11916 case 0xa0000000 ... 0xbfffffff: /* Device */ 11917 case 0xc0000000 ... 0xdfffffff: /* Device */ 11918 case 0xe0000000 ... 0xffffffff: /* System */ 11919 *prot = PAGE_READ | PAGE_WRITE; 11920 break; 11921 default: 11922 g_assert_not_reached(); 11923 } 11924 } 11925 } 11926 11927 static bool pmsav7_use_background_region(ARMCPU *cpu, 11928 ARMMMUIdx mmu_idx, bool is_user) 11929 { 11930 /* Return true if we should use the default memory map as a 11931 * "background" region if there are no hits against any MPU regions. 11932 */ 11933 CPUARMState *env = &cpu->env; 11934 11935 if (is_user) { 11936 return false; 11937 } 11938 11939 if (arm_feature(env, ARM_FEATURE_M)) { 11940 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11941 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11942 } else { 11943 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11944 } 11945 } 11946 11947 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11948 { 11949 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11950 return arm_feature(env, ARM_FEATURE_M) && 11951 extract32(address, 20, 12) == 0xe00; 11952 } 11953 11954 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11955 { 11956 /* True if address is in the M profile system region 11957 * 0xe0000000 - 0xffffffff 11958 */ 11959 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11960 } 11961 11962 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11963 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11964 hwaddr *phys_ptr, int *prot, 11965 target_ulong *page_size, 11966 ARMMMUFaultInfo *fi) 11967 { 11968 ARMCPU *cpu = env_archcpu(env); 11969 int n; 11970 bool is_user = regime_is_user(env, mmu_idx); 11971 11972 *phys_ptr = address; 11973 *page_size = TARGET_PAGE_SIZE; 11974 *prot = 0; 11975 11976 if (regime_translation_disabled(env, mmu_idx) || 11977 m_is_ppb_region(env, address)) { 11978 /* MPU disabled or M profile PPB access: use default memory map. 11979 * The other case which uses the default memory map in the 11980 * v7M ARM ARM pseudocode is exception vector reads from the vector 11981 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11982 * which always does a direct read using address_space_ldl(), rather 11983 * than going via this function, so we don't need to check that here. 11984 */ 11985 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11986 } else { /* MPU enabled */ 11987 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11988 /* region search */ 11989 uint32_t base = env->pmsav7.drbar[n]; 11990 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11991 uint32_t rmask; 11992 bool srdis = false; 11993 11994 if (!(env->pmsav7.drsr[n] & 0x1)) { 11995 continue; 11996 } 11997 11998 if (!rsize) { 11999 qemu_log_mask(LOG_GUEST_ERROR, 12000 "DRSR[%d]: Rsize field cannot be 0\n", n); 12001 continue; 12002 } 12003 rsize++; 12004 rmask = (1ull << rsize) - 1; 12005 12006 if (base & rmask) { 12007 qemu_log_mask(LOG_GUEST_ERROR, 12008 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 12009 "to DRSR region size, mask = 0x%" PRIx32 "\n", 12010 n, base, rmask); 12011 continue; 12012 } 12013 12014 if (address < base || address > base + rmask) { 12015 /* 12016 * Address not in this region. We must check whether the 12017 * region covers addresses in the same page as our address. 12018 * In that case we must not report a size that covers the 12019 * whole page for a subsequent hit against a different MPU 12020 * region or the background region, because it would result in 12021 * incorrect TLB hits for subsequent accesses to addresses that 12022 * are in this MPU region. 12023 */ 12024 if (ranges_overlap(base, rmask, 12025 address & TARGET_PAGE_MASK, 12026 TARGET_PAGE_SIZE)) { 12027 *page_size = 1; 12028 } 12029 continue; 12030 } 12031 12032 /* Region matched */ 12033 12034 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 12035 int i, snd; 12036 uint32_t srdis_mask; 12037 12038 rsize -= 3; /* sub region size (power of 2) */ 12039 snd = ((address - base) >> rsize) & 0x7; 12040 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 12041 12042 srdis_mask = srdis ? 0x3 : 0x0; 12043 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 12044 /* This will check in groups of 2, 4 and then 8, whether 12045 * the subregion bits are consistent. rsize is incremented 12046 * back up to give the region size, considering consistent 12047 * adjacent subregions as one region. Stop testing if rsize 12048 * is already big enough for an entire QEMU page. 12049 */ 12050 int snd_rounded = snd & ~(i - 1); 12051 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 12052 snd_rounded + 8, i); 12053 if (srdis_mask ^ srdis_multi) { 12054 break; 12055 } 12056 srdis_mask = (srdis_mask << i) | srdis_mask; 12057 rsize++; 12058 } 12059 } 12060 if (srdis) { 12061 continue; 12062 } 12063 if (rsize < TARGET_PAGE_BITS) { 12064 *page_size = 1 << rsize; 12065 } 12066 break; 12067 } 12068 12069 if (n == -1) { /* no hits */ 12070 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12071 /* background fault */ 12072 fi->type = ARMFault_Background; 12073 return true; 12074 } 12075 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12076 } else { /* a MPU hit! */ 12077 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12078 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12079 12080 if (m_is_system_region(env, address)) { 12081 /* System space is always execute never */ 12082 xn = 1; 12083 } 12084 12085 if (is_user) { /* User mode AP bit decoding */ 12086 switch (ap) { 12087 case 0: 12088 case 1: 12089 case 5: 12090 break; /* no access */ 12091 case 3: 12092 *prot |= PAGE_WRITE; 12093 /* fall through */ 12094 case 2: 12095 case 6: 12096 *prot |= PAGE_READ | PAGE_EXEC; 12097 break; 12098 case 7: 12099 /* for v7M, same as 6; for R profile a reserved value */ 12100 if (arm_feature(env, ARM_FEATURE_M)) { 12101 *prot |= PAGE_READ | PAGE_EXEC; 12102 break; 12103 } 12104 /* fall through */ 12105 default: 12106 qemu_log_mask(LOG_GUEST_ERROR, 12107 "DRACR[%d]: Bad value for AP bits: 0x%" 12108 PRIx32 "\n", n, ap); 12109 } 12110 } else { /* Priv. mode AP bits decoding */ 12111 switch (ap) { 12112 case 0: 12113 break; /* no access */ 12114 case 1: 12115 case 2: 12116 case 3: 12117 *prot |= PAGE_WRITE; 12118 /* fall through */ 12119 case 5: 12120 case 6: 12121 *prot |= PAGE_READ | PAGE_EXEC; 12122 break; 12123 case 7: 12124 /* for v7M, same as 6; for R profile a reserved value */ 12125 if (arm_feature(env, ARM_FEATURE_M)) { 12126 *prot |= PAGE_READ | PAGE_EXEC; 12127 break; 12128 } 12129 /* fall through */ 12130 default: 12131 qemu_log_mask(LOG_GUEST_ERROR, 12132 "DRACR[%d]: Bad value for AP bits: 0x%" 12133 PRIx32 "\n", n, ap); 12134 } 12135 } 12136 12137 /* execute never */ 12138 if (xn) { 12139 *prot &= ~PAGE_EXEC; 12140 } 12141 } 12142 } 12143 12144 fi->type = ARMFault_Permission; 12145 fi->level = 1; 12146 return !(*prot & (1 << access_type)); 12147 } 12148 12149 static bool v8m_is_sau_exempt(CPUARMState *env, 12150 uint32_t address, MMUAccessType access_type) 12151 { 12152 /* The architecture specifies that certain address ranges are 12153 * exempt from v8M SAU/IDAU checks. 12154 */ 12155 return 12156 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12157 (address >= 0xe0000000 && address <= 0xe0002fff) || 12158 (address >= 0xe000e000 && address <= 0xe000efff) || 12159 (address >= 0xe002e000 && address <= 0xe002efff) || 12160 (address >= 0xe0040000 && address <= 0xe0041fff) || 12161 (address >= 0xe00ff000 && address <= 0xe00fffff); 12162 } 12163 12164 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12165 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12166 V8M_SAttributes *sattrs) 12167 { 12168 /* Look up the security attributes for this address. Compare the 12169 * pseudocode SecurityCheck() function. 12170 * We assume the caller has zero-initialized *sattrs. 12171 */ 12172 ARMCPU *cpu = env_archcpu(env); 12173 int r; 12174 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12175 int idau_region = IREGION_NOTVALID; 12176 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12177 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12178 12179 if (cpu->idau) { 12180 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12181 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12182 12183 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12184 &idau_nsc); 12185 } 12186 12187 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12188 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12189 return; 12190 } 12191 12192 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12193 sattrs->ns = !regime_is_secure(env, mmu_idx); 12194 return; 12195 } 12196 12197 if (idau_region != IREGION_NOTVALID) { 12198 sattrs->irvalid = true; 12199 sattrs->iregion = idau_region; 12200 } 12201 12202 switch (env->sau.ctrl & 3) { 12203 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12204 break; 12205 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12206 sattrs->ns = true; 12207 break; 12208 default: /* SAU.ENABLE == 1 */ 12209 for (r = 0; r < cpu->sau_sregion; r++) { 12210 if (env->sau.rlar[r] & 1) { 12211 uint32_t base = env->sau.rbar[r] & ~0x1f; 12212 uint32_t limit = env->sau.rlar[r] | 0x1f; 12213 12214 if (base <= address && limit >= address) { 12215 if (base > addr_page_base || limit < addr_page_limit) { 12216 sattrs->subpage = true; 12217 } 12218 if (sattrs->srvalid) { 12219 /* If we hit in more than one region then we must report 12220 * as Secure, not NS-Callable, with no valid region 12221 * number info. 12222 */ 12223 sattrs->ns = false; 12224 sattrs->nsc = false; 12225 sattrs->sregion = 0; 12226 sattrs->srvalid = false; 12227 break; 12228 } else { 12229 if (env->sau.rlar[r] & 2) { 12230 sattrs->nsc = true; 12231 } else { 12232 sattrs->ns = true; 12233 } 12234 sattrs->srvalid = true; 12235 sattrs->sregion = r; 12236 } 12237 } else { 12238 /* 12239 * Address not in this region. We must check whether the 12240 * region covers addresses in the same page as our address. 12241 * In that case we must not report a size that covers the 12242 * whole page for a subsequent hit against a different MPU 12243 * region or the background region, because it would result 12244 * in incorrect TLB hits for subsequent accesses to 12245 * addresses that are in this MPU region. 12246 */ 12247 if (limit >= base && 12248 ranges_overlap(base, limit - base + 1, 12249 addr_page_base, 12250 TARGET_PAGE_SIZE)) { 12251 sattrs->subpage = true; 12252 } 12253 } 12254 } 12255 } 12256 break; 12257 } 12258 12259 /* 12260 * The IDAU will override the SAU lookup results if it specifies 12261 * higher security than the SAU does. 12262 */ 12263 if (!idau_ns) { 12264 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12265 sattrs->ns = false; 12266 sattrs->nsc = idau_nsc; 12267 } 12268 } 12269 } 12270 12271 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12272 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12273 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12274 int *prot, bool *is_subpage, 12275 ARMMMUFaultInfo *fi, uint32_t *mregion) 12276 { 12277 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12278 * that a full phys-to-virt translation does). 12279 * mregion is (if not NULL) set to the region number which matched, 12280 * or -1 if no region number is returned (MPU off, address did not 12281 * hit a region, address hit in multiple regions). 12282 * We set is_subpage to true if the region hit doesn't cover the 12283 * entire TARGET_PAGE the address is within. 12284 */ 12285 ARMCPU *cpu = env_archcpu(env); 12286 bool is_user = regime_is_user(env, mmu_idx); 12287 uint32_t secure = regime_is_secure(env, mmu_idx); 12288 int n; 12289 int matchregion = -1; 12290 bool hit = false; 12291 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12292 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12293 12294 *is_subpage = false; 12295 *phys_ptr = address; 12296 *prot = 0; 12297 if (mregion) { 12298 *mregion = -1; 12299 } 12300 12301 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12302 * was an exception vector read from the vector table (which is always 12303 * done using the default system address map), because those accesses 12304 * are done in arm_v7m_load_vector(), which always does a direct 12305 * read using address_space_ldl(), rather than going via this function. 12306 */ 12307 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12308 hit = true; 12309 } else if (m_is_ppb_region(env, address)) { 12310 hit = true; 12311 } else { 12312 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12313 hit = true; 12314 } 12315 12316 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12317 /* region search */ 12318 /* Note that the base address is bits [31:5] from the register 12319 * with bits [4:0] all zeroes, but the limit address is bits 12320 * [31:5] from the register with bits [4:0] all ones. 12321 */ 12322 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12323 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12324 12325 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12326 /* Region disabled */ 12327 continue; 12328 } 12329 12330 if (address < base || address > limit) { 12331 /* 12332 * Address not in this region. We must check whether the 12333 * region covers addresses in the same page as our address. 12334 * In that case we must not report a size that covers the 12335 * whole page for a subsequent hit against a different MPU 12336 * region or the background region, because it would result in 12337 * incorrect TLB hits for subsequent accesses to addresses that 12338 * are in this MPU region. 12339 */ 12340 if (limit >= base && 12341 ranges_overlap(base, limit - base + 1, 12342 addr_page_base, 12343 TARGET_PAGE_SIZE)) { 12344 *is_subpage = true; 12345 } 12346 continue; 12347 } 12348 12349 if (base > addr_page_base || limit < addr_page_limit) { 12350 *is_subpage = true; 12351 } 12352 12353 if (matchregion != -1) { 12354 /* Multiple regions match -- always a failure (unlike 12355 * PMSAv7 where highest-numbered-region wins) 12356 */ 12357 fi->type = ARMFault_Permission; 12358 fi->level = 1; 12359 return true; 12360 } 12361 12362 matchregion = n; 12363 hit = true; 12364 } 12365 } 12366 12367 if (!hit) { 12368 /* background fault */ 12369 fi->type = ARMFault_Background; 12370 return true; 12371 } 12372 12373 if (matchregion == -1) { 12374 /* hit using the background region */ 12375 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12376 } else { 12377 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12378 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12379 bool pxn = false; 12380 12381 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12382 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12383 } 12384 12385 if (m_is_system_region(env, address)) { 12386 /* System space is always execute never */ 12387 xn = 1; 12388 } 12389 12390 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12391 if (*prot && !xn && !(pxn && !is_user)) { 12392 *prot |= PAGE_EXEC; 12393 } 12394 /* We don't need to look the attribute up in the MAIR0/MAIR1 12395 * registers because that only tells us about cacheability. 12396 */ 12397 if (mregion) { 12398 *mregion = matchregion; 12399 } 12400 } 12401 12402 fi->type = ARMFault_Permission; 12403 fi->level = 1; 12404 return !(*prot & (1 << access_type)); 12405 } 12406 12407 12408 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12409 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12410 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12411 int *prot, target_ulong *page_size, 12412 ARMMMUFaultInfo *fi) 12413 { 12414 uint32_t secure = regime_is_secure(env, mmu_idx); 12415 V8M_SAttributes sattrs = {}; 12416 bool ret; 12417 bool mpu_is_subpage; 12418 12419 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12420 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12421 if (access_type == MMU_INST_FETCH) { 12422 /* Instruction fetches always use the MMU bank and the 12423 * transaction attribute determined by the fetch address, 12424 * regardless of CPU state. This is painful for QEMU 12425 * to handle, because it would mean we need to encode 12426 * into the mmu_idx not just the (user, negpri) information 12427 * for the current security state but also that for the 12428 * other security state, which would balloon the number 12429 * of mmu_idx values needed alarmingly. 12430 * Fortunately we can avoid this because it's not actually 12431 * possible to arbitrarily execute code from memory with 12432 * the wrong security attribute: it will always generate 12433 * an exception of some kind or another, apart from the 12434 * special case of an NS CPU executing an SG instruction 12435 * in S&NSC memory. So we always just fail the translation 12436 * here and sort things out in the exception handler 12437 * (including possibly emulating an SG instruction). 12438 */ 12439 if (sattrs.ns != !secure) { 12440 if (sattrs.nsc) { 12441 fi->type = ARMFault_QEMU_NSCExec; 12442 } else { 12443 fi->type = ARMFault_QEMU_SFault; 12444 } 12445 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12446 *phys_ptr = address; 12447 *prot = 0; 12448 return true; 12449 } 12450 } else { 12451 /* For data accesses we always use the MMU bank indicated 12452 * by the current CPU state, but the security attributes 12453 * might downgrade a secure access to nonsecure. 12454 */ 12455 if (sattrs.ns) { 12456 txattrs->secure = false; 12457 } else if (!secure) { 12458 /* NS access to S memory must fault. 12459 * Architecturally we should first check whether the 12460 * MPU information for this address indicates that we 12461 * are doing an unaligned access to Device memory, which 12462 * should generate a UsageFault instead. QEMU does not 12463 * currently check for that kind of unaligned access though. 12464 * If we added it we would need to do so as a special case 12465 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12466 */ 12467 fi->type = ARMFault_QEMU_SFault; 12468 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12469 *phys_ptr = address; 12470 *prot = 0; 12471 return true; 12472 } 12473 } 12474 } 12475 12476 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12477 txattrs, prot, &mpu_is_subpage, fi, NULL); 12478 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12479 return ret; 12480 } 12481 12482 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12483 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12484 hwaddr *phys_ptr, int *prot, 12485 ARMMMUFaultInfo *fi) 12486 { 12487 int n; 12488 uint32_t mask; 12489 uint32_t base; 12490 bool is_user = regime_is_user(env, mmu_idx); 12491 12492 if (regime_translation_disabled(env, mmu_idx)) { 12493 /* MPU disabled. */ 12494 *phys_ptr = address; 12495 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12496 return false; 12497 } 12498 12499 *phys_ptr = address; 12500 for (n = 7; n >= 0; n--) { 12501 base = env->cp15.c6_region[n]; 12502 if ((base & 1) == 0) { 12503 continue; 12504 } 12505 mask = 1 << ((base >> 1) & 0x1f); 12506 /* Keep this shift separate from the above to avoid an 12507 (undefined) << 32. */ 12508 mask = (mask << 1) - 1; 12509 if (((base ^ address) & ~mask) == 0) { 12510 break; 12511 } 12512 } 12513 if (n < 0) { 12514 fi->type = ARMFault_Background; 12515 return true; 12516 } 12517 12518 if (access_type == MMU_INST_FETCH) { 12519 mask = env->cp15.pmsav5_insn_ap; 12520 } else { 12521 mask = env->cp15.pmsav5_data_ap; 12522 } 12523 mask = (mask >> (n * 4)) & 0xf; 12524 switch (mask) { 12525 case 0: 12526 fi->type = ARMFault_Permission; 12527 fi->level = 1; 12528 return true; 12529 case 1: 12530 if (is_user) { 12531 fi->type = ARMFault_Permission; 12532 fi->level = 1; 12533 return true; 12534 } 12535 *prot = PAGE_READ | PAGE_WRITE; 12536 break; 12537 case 2: 12538 *prot = PAGE_READ; 12539 if (!is_user) { 12540 *prot |= PAGE_WRITE; 12541 } 12542 break; 12543 case 3: 12544 *prot = PAGE_READ | PAGE_WRITE; 12545 break; 12546 case 5: 12547 if (is_user) { 12548 fi->type = ARMFault_Permission; 12549 fi->level = 1; 12550 return true; 12551 } 12552 *prot = PAGE_READ; 12553 break; 12554 case 6: 12555 *prot = PAGE_READ; 12556 break; 12557 default: 12558 /* Bad permission. */ 12559 fi->type = ARMFault_Permission; 12560 fi->level = 1; 12561 return true; 12562 } 12563 *prot |= PAGE_EXEC; 12564 return false; 12565 } 12566 12567 /* Combine either inner or outer cacheability attributes for normal 12568 * memory, according to table D4-42 and pseudocode procedure 12569 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12570 * 12571 * NB: only stage 1 includes allocation hints (RW bits), leading to 12572 * some asymmetry. 12573 */ 12574 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12575 { 12576 if (s1 == 4 || s2 == 4) { 12577 /* non-cacheable has precedence */ 12578 return 4; 12579 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12580 /* stage 1 write-through takes precedence */ 12581 return s1; 12582 } else if (extract32(s2, 2, 2) == 2) { 12583 /* stage 2 write-through takes precedence, but the allocation hint 12584 * is still taken from stage 1 12585 */ 12586 return (2 << 2) | extract32(s1, 0, 2); 12587 } else { /* write-back */ 12588 return s1; 12589 } 12590 } 12591 12592 /* 12593 * Combine the memory type and cacheability attributes of 12594 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 12595 * combined attributes in MAIR_EL1 format. 12596 */ 12597 static uint8_t combined_attrs_nofwb(CPUARMState *env, 12598 ARMCacheAttrs s1, ARMCacheAttrs s2) 12599 { 12600 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 12601 12602 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs); 12603 12604 s1lo = extract32(s1.attrs, 0, 4); 12605 s2lo = extract32(s2_mair_attrs, 0, 4); 12606 s1hi = extract32(s1.attrs, 4, 4); 12607 s2hi = extract32(s2_mair_attrs, 4, 4); 12608 12609 /* Combine memory type and cacheability attributes */ 12610 if (s1hi == 0 || s2hi == 0) { 12611 /* Device has precedence over normal */ 12612 if (s1lo == 0 || s2lo == 0) { 12613 /* nGnRnE has precedence over anything */ 12614 ret_attrs = 0; 12615 } else if (s1lo == 4 || s2lo == 4) { 12616 /* non-Reordering has precedence over Reordering */ 12617 ret_attrs = 4; /* nGnRE */ 12618 } else if (s1lo == 8 || s2lo == 8) { 12619 /* non-Gathering has precedence over Gathering */ 12620 ret_attrs = 8; /* nGRE */ 12621 } else { 12622 ret_attrs = 0xc; /* GRE */ 12623 } 12624 } else { /* Normal memory */ 12625 /* Outer/inner cacheability combine independently */ 12626 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12627 | combine_cacheattr_nibble(s1lo, s2lo); 12628 } 12629 return ret_attrs; 12630 } 12631 12632 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 12633 { 12634 /* 12635 * Given the 4 bits specifying the outer or inner cacheability 12636 * in MAIR format, return a value specifying Normal Write-Back, 12637 * with the allocation and transient hints taken from the input 12638 * if the input specified some kind of cacheable attribute. 12639 */ 12640 if (attr == 0 || attr == 4) { 12641 /* 12642 * 0 == an UNPREDICTABLE encoding 12643 * 4 == Non-cacheable 12644 * Either way, force Write-Back RW allocate non-transient 12645 */ 12646 return 0xf; 12647 } 12648 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 12649 return attr | 4; 12650 } 12651 12652 /* 12653 * Combine the memory type and cacheability attributes of 12654 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 12655 * combined attributes in MAIR_EL1 format. 12656 */ 12657 static uint8_t combined_attrs_fwb(CPUARMState *env, 12658 ARMCacheAttrs s1, ARMCacheAttrs s2) 12659 { 12660 switch (s2.attrs) { 12661 case 7: 12662 /* Use stage 1 attributes */ 12663 return s1.attrs; 12664 case 6: 12665 /* 12666 * Force Normal Write-Back. Note that if S1 is Normal cacheable 12667 * then we take the allocation hints from it; otherwise it is 12668 * RW allocate, non-transient. 12669 */ 12670 if ((s1.attrs & 0xf0) == 0) { 12671 /* S1 is Device */ 12672 return 0xff; 12673 } 12674 /* Need to check the Inner and Outer nibbles separately */ 12675 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 12676 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 12677 case 5: 12678 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 12679 if ((s1.attrs & 0xf0) == 0) { 12680 return s1.attrs; 12681 } 12682 return 0x44; 12683 case 0 ... 3: 12684 /* Force Device, of subtype specified by S2 */ 12685 return s2.attrs << 2; 12686 default: 12687 /* 12688 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 12689 * arbitrarily force Device. 12690 */ 12691 return 0; 12692 } 12693 } 12694 12695 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12696 * and CombineS1S2Desc() 12697 * 12698 * @env: CPUARMState 12699 * @s1: Attributes from stage 1 walk 12700 * @s2: Attributes from stage 2 walk 12701 */ 12702 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env, 12703 ARMCacheAttrs s1, ARMCacheAttrs s2) 12704 { 12705 ARMCacheAttrs ret; 12706 bool tagged = false; 12707 12708 assert(s2.is_s2_format && !s1.is_s2_format); 12709 ret.is_s2_format = false; 12710 12711 if (s1.attrs == 0xf0) { 12712 tagged = true; 12713 s1.attrs = 0xff; 12714 } 12715 12716 /* Combine shareability attributes (table D4-43) */ 12717 if (s1.shareability == 2 || s2.shareability == 2) { 12718 /* if either are outer-shareable, the result is outer-shareable */ 12719 ret.shareability = 2; 12720 } else if (s1.shareability == 3 || s2.shareability == 3) { 12721 /* if either are inner-shareable, the result is inner-shareable */ 12722 ret.shareability = 3; 12723 } else { 12724 /* both non-shareable */ 12725 ret.shareability = 0; 12726 } 12727 12728 /* Combine memory type and cacheability attributes */ 12729 if (arm_hcr_el2_eff(env) & HCR_FWB) { 12730 ret.attrs = combined_attrs_fwb(env, s1, s2); 12731 } else { 12732 ret.attrs = combined_attrs_nofwb(env, s1, s2); 12733 } 12734 12735 /* 12736 * Any location for which the resultant memory type is any 12737 * type of Device memory is always treated as Outer Shareable. 12738 * Any location for which the resultant memory type is Normal 12739 * Inner Non-cacheable, Outer Non-cacheable is always treated 12740 * as Outer Shareable. 12741 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 12742 */ 12743 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 12744 ret.shareability = 2; 12745 } 12746 12747 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12748 if (tagged && ret.attrs == 0xff) { 12749 ret.attrs = 0xf0; 12750 } 12751 12752 return ret; 12753 } 12754 12755 12756 /* get_phys_addr - get the physical address for this virtual address 12757 * 12758 * Find the physical address corresponding to the given virtual address, 12759 * by doing a translation table walk on MMU based systems or using the 12760 * MPU state on MPU based systems. 12761 * 12762 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12763 * prot and page_size may not be filled in, and the populated fsr value provides 12764 * information on why the translation aborted, in the format of a 12765 * DFSR/IFSR fault register, with the following caveats: 12766 * * we honour the short vs long DFSR format differences. 12767 * * the WnR bit is never set (the caller must do this). 12768 * * for PSMAv5 based systems we don't bother to return a full FSR format 12769 * value. 12770 * 12771 * @env: CPUARMState 12772 * @address: virtual address to get physical address for 12773 * @access_type: 0 for read, 1 for write, 2 for execute 12774 * @mmu_idx: MMU index indicating required translation regime 12775 * @phys_ptr: set to the physical address corresponding to the virtual address 12776 * @attrs: set to the memory transaction attributes to use 12777 * @prot: set to the permissions for the page containing phys_ptr 12778 * @page_size: set to the size of the page containing phys_ptr 12779 * @fi: set to fault info if the translation fails 12780 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12781 */ 12782 bool get_phys_addr(CPUARMState *env, target_ulong address, 12783 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12784 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12785 target_ulong *page_size, 12786 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12787 { 12788 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12789 12790 if (mmu_idx != s1_mmu_idx) { 12791 /* Call ourselves recursively to do the stage 1 and then stage 2 12792 * translations if mmu_idx is a two-stage regime. 12793 */ 12794 if (arm_feature(env, ARM_FEATURE_EL2)) { 12795 hwaddr ipa; 12796 int s2_prot; 12797 int ret; 12798 bool ipa_secure; 12799 ARMCacheAttrs cacheattrs2 = {}; 12800 ARMMMUIdx s2_mmu_idx; 12801 bool is_el0; 12802 12803 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12804 attrs, prot, page_size, fi, cacheattrs); 12805 12806 /* If S1 fails or S2 is disabled, return early. */ 12807 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12808 *phys_ptr = ipa; 12809 return ret; 12810 } 12811 12812 ipa_secure = attrs->secure; 12813 if (arm_is_secure_below_el3(env)) { 12814 if (ipa_secure) { 12815 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12816 } else { 12817 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12818 } 12819 } else { 12820 assert(!ipa_secure); 12821 } 12822 12823 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12824 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12825 12826 /* S1 is done. Now do S2 translation. */ 12827 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12828 phys_ptr, attrs, &s2_prot, 12829 page_size, fi, &cacheattrs2); 12830 fi->s2addr = ipa; 12831 /* Combine the S1 and S2 perms. */ 12832 *prot &= s2_prot; 12833 12834 /* If S2 fails, return early. */ 12835 if (ret) { 12836 return ret; 12837 } 12838 12839 /* Combine the S1 and S2 cache attributes. */ 12840 if (arm_hcr_el2_eff(env) & HCR_DC) { 12841 /* 12842 * HCR.DC forces the first stage attributes to 12843 * Normal Non-Shareable, 12844 * Inner Write-Back Read-Allocate Write-Allocate, 12845 * Outer Write-Back Read-Allocate Write-Allocate. 12846 * Do not overwrite Tagged within attrs. 12847 */ 12848 if (cacheattrs->attrs != 0xf0) { 12849 cacheattrs->attrs = 0xff; 12850 } 12851 cacheattrs->shareability = 0; 12852 } 12853 *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2); 12854 12855 /* Check if IPA translates to secure or non-secure PA space. */ 12856 if (arm_is_secure_below_el3(env)) { 12857 if (ipa_secure) { 12858 attrs->secure = 12859 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12860 } else { 12861 attrs->secure = 12862 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12863 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12864 } 12865 } 12866 return 0; 12867 } else { 12868 /* 12869 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12870 */ 12871 mmu_idx = stage_1_mmu_idx(mmu_idx); 12872 } 12873 } 12874 12875 /* The page table entries may downgrade secure to non-secure, but 12876 * cannot upgrade an non-secure translation regime's attributes 12877 * to secure. 12878 */ 12879 attrs->secure = regime_is_secure(env, mmu_idx); 12880 attrs->user = regime_is_user(env, mmu_idx); 12881 12882 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12883 * In v7 and earlier it affects all stage 1 translations. 12884 */ 12885 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12886 && !arm_feature(env, ARM_FEATURE_V8)) { 12887 if (regime_el(env, mmu_idx) == 3) { 12888 address += env->cp15.fcseidr_s; 12889 } else { 12890 address += env->cp15.fcseidr_ns; 12891 } 12892 } 12893 12894 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12895 bool ret; 12896 *page_size = TARGET_PAGE_SIZE; 12897 12898 if (arm_feature(env, ARM_FEATURE_V8)) { 12899 /* PMSAv8 */ 12900 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12901 phys_ptr, attrs, prot, page_size, fi); 12902 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12903 /* PMSAv7 */ 12904 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12905 phys_ptr, prot, page_size, fi); 12906 } else { 12907 /* Pre-v7 MPU */ 12908 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12909 phys_ptr, prot, fi); 12910 } 12911 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12912 " mmu_idx %u -> %s (prot %c%c%c)\n", 12913 access_type == MMU_DATA_LOAD ? "reading" : 12914 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12915 (uint32_t)address, mmu_idx, 12916 ret ? "Miss" : "Hit", 12917 *prot & PAGE_READ ? 'r' : '-', 12918 *prot & PAGE_WRITE ? 'w' : '-', 12919 *prot & PAGE_EXEC ? 'x' : '-'); 12920 12921 return ret; 12922 } 12923 12924 /* Definitely a real MMU, not an MPU */ 12925 12926 if (regime_translation_disabled(env, mmu_idx)) { 12927 uint64_t hcr; 12928 uint8_t memattr; 12929 12930 /* 12931 * MMU disabled. S1 addresses within aa64 translation regimes are 12932 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12933 */ 12934 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12935 int r_el = regime_el(env, mmu_idx); 12936 if (arm_el_is_aa64(env, r_el)) { 12937 int pamax = arm_pamax(env_archcpu(env)); 12938 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12939 int addrtop, tbi; 12940 12941 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12942 if (access_type == MMU_INST_FETCH) { 12943 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12944 } 12945 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12946 addrtop = (tbi ? 55 : 63); 12947 12948 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12949 fi->type = ARMFault_AddressSize; 12950 fi->level = 0; 12951 fi->stage2 = false; 12952 return 1; 12953 } 12954 12955 /* 12956 * When TBI is disabled, we've just validated that all of the 12957 * bits above PAMax are zero, so logically we only need to 12958 * clear the top byte for TBI. But it's clearer to follow 12959 * the pseudocode set of addrdesc.paddress. 12960 */ 12961 address = extract64(address, 0, 52); 12962 } 12963 } 12964 *phys_ptr = address; 12965 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12966 *page_size = TARGET_PAGE_SIZE; 12967 12968 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12969 hcr = arm_hcr_el2_eff(env); 12970 cacheattrs->shareability = 0; 12971 cacheattrs->is_s2_format = false; 12972 if (hcr & HCR_DC) { 12973 if (hcr & HCR_DCT) { 12974 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12975 } else { 12976 memattr = 0xff; /* Normal, WB, RWA */ 12977 } 12978 } else if (access_type == MMU_INST_FETCH) { 12979 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12980 memattr = 0xee; /* Normal, WT, RA, NT */ 12981 } else { 12982 memattr = 0x44; /* Normal, NC, No */ 12983 } 12984 cacheattrs->shareability = 2; /* outer sharable */ 12985 } else { 12986 memattr = 0x00; /* Device, nGnRnE */ 12987 } 12988 cacheattrs->attrs = memattr; 12989 return 0; 12990 } 12991 12992 if (regime_using_lpae_format(env, mmu_idx)) { 12993 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12994 phys_ptr, attrs, prot, page_size, 12995 fi, cacheattrs); 12996 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12997 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12998 phys_ptr, attrs, prot, page_size, fi); 12999 } else { 13000 return get_phys_addr_v5(env, address, access_type, mmu_idx, 13001 phys_ptr, prot, page_size, fi); 13002 } 13003 } 13004 13005 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 13006 MemTxAttrs *attrs) 13007 { 13008 ARMCPU *cpu = ARM_CPU(cs); 13009 CPUARMState *env = &cpu->env; 13010 hwaddr phys_addr; 13011 target_ulong page_size; 13012 int prot; 13013 bool ret; 13014 ARMMMUFaultInfo fi = {}; 13015 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 13016 ARMCacheAttrs cacheattrs = {}; 13017 13018 *attrs = (MemTxAttrs) {}; 13019 13020 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 13021 attrs, &prot, &page_size, &fi, &cacheattrs); 13022 13023 if (ret) { 13024 return -1; 13025 } 13026 return phys_addr; 13027 } 13028 13029 #endif 13030 13031 /* Note that signed overflow is undefined in C. The following routines are 13032 careful to use unsigned types where modulo arithmetic is required. 13033 Failure to do so _will_ break on newer gcc. */ 13034 13035 /* Signed saturating arithmetic. */ 13036 13037 /* Perform 16-bit signed saturating addition. */ 13038 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 13039 { 13040 uint16_t res; 13041 13042 res = a + b; 13043 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 13044 if (a & 0x8000) 13045 res = 0x8000; 13046 else 13047 res = 0x7fff; 13048 } 13049 return res; 13050 } 13051 13052 /* Perform 8-bit signed saturating addition. */ 13053 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 13054 { 13055 uint8_t res; 13056 13057 res = a + b; 13058 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 13059 if (a & 0x80) 13060 res = 0x80; 13061 else 13062 res = 0x7f; 13063 } 13064 return res; 13065 } 13066 13067 /* Perform 16-bit signed saturating subtraction. */ 13068 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 13069 { 13070 uint16_t res; 13071 13072 res = a - b; 13073 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 13074 if (a & 0x8000) 13075 res = 0x8000; 13076 else 13077 res = 0x7fff; 13078 } 13079 return res; 13080 } 13081 13082 /* Perform 8-bit signed saturating subtraction. */ 13083 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 13084 { 13085 uint8_t res; 13086 13087 res = a - b; 13088 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 13089 if (a & 0x80) 13090 res = 0x80; 13091 else 13092 res = 0x7f; 13093 } 13094 return res; 13095 } 13096 13097 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 13098 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 13099 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 13100 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 13101 #define PFX q 13102 13103 #include "op_addsub.h" 13104 13105 /* Unsigned saturating arithmetic. */ 13106 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 13107 { 13108 uint16_t res; 13109 res = a + b; 13110 if (res < a) 13111 res = 0xffff; 13112 return res; 13113 } 13114 13115 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 13116 { 13117 if (a > b) 13118 return a - b; 13119 else 13120 return 0; 13121 } 13122 13123 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 13124 { 13125 uint8_t res; 13126 res = a + b; 13127 if (res < a) 13128 res = 0xff; 13129 return res; 13130 } 13131 13132 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 13133 { 13134 if (a > b) 13135 return a - b; 13136 else 13137 return 0; 13138 } 13139 13140 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 13141 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 13142 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 13143 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 13144 #define PFX uq 13145 13146 #include "op_addsub.h" 13147 13148 /* Signed modulo arithmetic. */ 13149 #define SARITH16(a, b, n, op) do { \ 13150 int32_t sum; \ 13151 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 13152 RESULT(sum, n, 16); \ 13153 if (sum >= 0) \ 13154 ge |= 3 << (n * 2); \ 13155 } while(0) 13156 13157 #define SARITH8(a, b, n, op) do { \ 13158 int32_t sum; \ 13159 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13160 RESULT(sum, n, 8); \ 13161 if (sum >= 0) \ 13162 ge |= 1 << n; \ 13163 } while(0) 13164 13165 13166 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13167 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13168 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13169 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13170 #define PFX s 13171 #define ARITH_GE 13172 13173 #include "op_addsub.h" 13174 13175 /* Unsigned modulo arithmetic. */ 13176 #define ADD16(a, b, n) do { \ 13177 uint32_t sum; \ 13178 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13179 RESULT(sum, n, 16); \ 13180 if ((sum >> 16) == 1) \ 13181 ge |= 3 << (n * 2); \ 13182 } while(0) 13183 13184 #define ADD8(a, b, n) do { \ 13185 uint32_t sum; \ 13186 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13187 RESULT(sum, n, 8); \ 13188 if ((sum >> 8) == 1) \ 13189 ge |= 1 << n; \ 13190 } while(0) 13191 13192 #define SUB16(a, b, n) do { \ 13193 uint32_t sum; \ 13194 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13195 RESULT(sum, n, 16); \ 13196 if ((sum >> 16) == 0) \ 13197 ge |= 3 << (n * 2); \ 13198 } while(0) 13199 13200 #define SUB8(a, b, n) do { \ 13201 uint32_t sum; \ 13202 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13203 RESULT(sum, n, 8); \ 13204 if ((sum >> 8) == 0) \ 13205 ge |= 1 << n; \ 13206 } while(0) 13207 13208 #define PFX u 13209 #define ARITH_GE 13210 13211 #include "op_addsub.h" 13212 13213 /* Halved signed arithmetic. */ 13214 #define ADD16(a, b, n) \ 13215 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13216 #define SUB16(a, b, n) \ 13217 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13218 #define ADD8(a, b, n) \ 13219 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13220 #define SUB8(a, b, n) \ 13221 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13222 #define PFX sh 13223 13224 #include "op_addsub.h" 13225 13226 /* Halved unsigned arithmetic. */ 13227 #define ADD16(a, b, n) \ 13228 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13229 #define SUB16(a, b, n) \ 13230 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13231 #define ADD8(a, b, n) \ 13232 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13233 #define SUB8(a, b, n) \ 13234 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13235 #define PFX uh 13236 13237 #include "op_addsub.h" 13238 13239 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13240 { 13241 if (a > b) 13242 return a - b; 13243 else 13244 return b - a; 13245 } 13246 13247 /* Unsigned sum of absolute byte differences. */ 13248 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13249 { 13250 uint32_t sum; 13251 sum = do_usad(a, b); 13252 sum += do_usad(a >> 8, b >> 8); 13253 sum += do_usad(a >> 16, b >> 16); 13254 sum += do_usad(a >> 24, b >> 24); 13255 return sum; 13256 } 13257 13258 /* For ARMv6 SEL instruction. */ 13259 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13260 { 13261 uint32_t mask; 13262 13263 mask = 0; 13264 if (flags & 1) 13265 mask |= 0xff; 13266 if (flags & 2) 13267 mask |= 0xff00; 13268 if (flags & 4) 13269 mask |= 0xff0000; 13270 if (flags & 8) 13271 mask |= 0xff000000; 13272 return (a & mask) | (b & ~mask); 13273 } 13274 13275 /* CRC helpers. 13276 * The upper bytes of val (above the number specified by 'bytes') must have 13277 * been zeroed out by the caller. 13278 */ 13279 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13280 { 13281 uint8_t buf[4]; 13282 13283 stl_le_p(buf, val); 13284 13285 /* zlib crc32 converts the accumulator and output to one's complement. */ 13286 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13287 } 13288 13289 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13290 { 13291 uint8_t buf[4]; 13292 13293 stl_le_p(buf, val); 13294 13295 /* Linux crc32c converts the output to one's complement. */ 13296 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13297 } 13298 13299 /* Return the exception level to which FP-disabled exceptions should 13300 * be taken, or 0 if FP is enabled. 13301 */ 13302 int fp_exception_el(CPUARMState *env, int cur_el) 13303 { 13304 #ifndef CONFIG_USER_ONLY 13305 uint64_t hcr_el2; 13306 13307 /* CPACR and the CPTR registers don't exist before v6, so FP is 13308 * always accessible 13309 */ 13310 if (!arm_feature(env, ARM_FEATURE_V6)) { 13311 return 0; 13312 } 13313 13314 if (arm_feature(env, ARM_FEATURE_M)) { 13315 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13316 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13317 return 1; 13318 } 13319 13320 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13321 if (!extract32(env->v7m.nsacr, 10, 1)) { 13322 /* FP insns cause a NOCP UsageFault taken to Secure */ 13323 return 3; 13324 } 13325 } 13326 13327 return 0; 13328 } 13329 13330 hcr_el2 = arm_hcr_el2_eff(env); 13331 13332 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13333 * 0, 2 : trap EL0 and EL1/PL1 accesses 13334 * 1 : trap only EL0 accesses 13335 * 3 : trap no accesses 13336 * This register is ignored if E2H+TGE are both set. 13337 */ 13338 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13339 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13340 13341 switch (fpen) { 13342 case 0: 13343 case 2: 13344 if (cur_el == 0 || cur_el == 1) { 13345 /* Trap to PL1, which might be EL1 or EL3 */ 13346 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13347 return 3; 13348 } 13349 return 1; 13350 } 13351 if (cur_el == 3 && !is_a64(env)) { 13352 /* Secure PL1 running at EL3 */ 13353 return 3; 13354 } 13355 break; 13356 case 1: 13357 if (cur_el == 0) { 13358 return 1; 13359 } 13360 break; 13361 case 3: 13362 break; 13363 } 13364 } 13365 13366 /* 13367 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13368 * to control non-secure access to the FPU. It doesn't have any 13369 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13370 */ 13371 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13372 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13373 if (!extract32(env->cp15.nsacr, 10, 1)) { 13374 /* FP insns act as UNDEF */ 13375 return cur_el == 2 ? 2 : 1; 13376 } 13377 } 13378 13379 /* 13380 * CPTR_EL2 is present in v7VE or v8, and changes format 13381 * with HCR_EL2.E2H (regardless of TGE). 13382 */ 13383 if (cur_el <= 2) { 13384 if (hcr_el2 & HCR_E2H) { 13385 /* Check CPTR_EL2.FPEN. */ 13386 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13387 case 1: 13388 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13389 break; 13390 } 13391 /* fall through */ 13392 case 0: 13393 case 2: 13394 return 2; 13395 } 13396 } else if (arm_is_el2_enabled(env)) { 13397 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13398 return 2; 13399 } 13400 } 13401 } 13402 13403 /* CPTR_EL3 : present in v8 */ 13404 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13405 /* Trap all FP ops to EL3 */ 13406 return 3; 13407 } 13408 #endif 13409 return 0; 13410 } 13411 13412 /* Return the exception level we're running at if this is our mmu_idx */ 13413 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13414 { 13415 if (mmu_idx & ARM_MMU_IDX_M) { 13416 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13417 } 13418 13419 switch (mmu_idx) { 13420 case ARMMMUIdx_E10_0: 13421 case ARMMMUIdx_E20_0: 13422 case ARMMMUIdx_SE10_0: 13423 case ARMMMUIdx_SE20_0: 13424 return 0; 13425 case ARMMMUIdx_E10_1: 13426 case ARMMMUIdx_E10_1_PAN: 13427 case ARMMMUIdx_SE10_1: 13428 case ARMMMUIdx_SE10_1_PAN: 13429 return 1; 13430 case ARMMMUIdx_E2: 13431 case ARMMMUIdx_E20_2: 13432 case ARMMMUIdx_E20_2_PAN: 13433 case ARMMMUIdx_SE2: 13434 case ARMMMUIdx_SE20_2: 13435 case ARMMMUIdx_SE20_2_PAN: 13436 return 2; 13437 case ARMMMUIdx_SE3: 13438 return 3; 13439 default: 13440 g_assert_not_reached(); 13441 } 13442 } 13443 13444 #ifndef CONFIG_TCG 13445 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13446 { 13447 g_assert_not_reached(); 13448 } 13449 #endif 13450 13451 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13452 { 13453 ARMMMUIdx idx; 13454 uint64_t hcr; 13455 13456 if (arm_feature(env, ARM_FEATURE_M)) { 13457 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13458 } 13459 13460 /* See ARM pseudo-function ELIsInHost. */ 13461 switch (el) { 13462 case 0: 13463 hcr = arm_hcr_el2_eff(env); 13464 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13465 idx = ARMMMUIdx_E20_0; 13466 } else { 13467 idx = ARMMMUIdx_E10_0; 13468 } 13469 break; 13470 case 1: 13471 if (env->pstate & PSTATE_PAN) { 13472 idx = ARMMMUIdx_E10_1_PAN; 13473 } else { 13474 idx = ARMMMUIdx_E10_1; 13475 } 13476 break; 13477 case 2: 13478 /* Note that TGE does not apply at EL2. */ 13479 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13480 if (env->pstate & PSTATE_PAN) { 13481 idx = ARMMMUIdx_E20_2_PAN; 13482 } else { 13483 idx = ARMMMUIdx_E20_2; 13484 } 13485 } else { 13486 idx = ARMMMUIdx_E2; 13487 } 13488 break; 13489 case 3: 13490 return ARMMMUIdx_SE3; 13491 default: 13492 g_assert_not_reached(); 13493 } 13494 13495 if (arm_is_secure_below_el3(env)) { 13496 idx &= ~ARM_MMU_IDX_A_NS; 13497 } 13498 13499 return idx; 13500 } 13501 13502 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13503 { 13504 return arm_mmu_idx_el(env, arm_current_el(env)); 13505 } 13506 13507 #ifndef CONFIG_USER_ONLY 13508 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13509 { 13510 return stage_1_mmu_idx(arm_mmu_idx(env)); 13511 } 13512 #endif 13513 13514 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13515 ARMMMUIdx mmu_idx, 13516 CPUARMTBFlags flags) 13517 { 13518 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13519 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13520 13521 if (arm_singlestep_active(env)) { 13522 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13523 } 13524 return flags; 13525 } 13526 13527 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13528 ARMMMUIdx mmu_idx, 13529 CPUARMTBFlags flags) 13530 { 13531 bool sctlr_b = arm_sctlr_b(env); 13532 13533 if (sctlr_b) { 13534 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13535 } 13536 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13537 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13538 } 13539 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13540 13541 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13542 } 13543 13544 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13545 ARMMMUIdx mmu_idx) 13546 { 13547 CPUARMTBFlags flags = {}; 13548 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13549 13550 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13551 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13552 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13553 } 13554 13555 if (arm_v7m_is_handler_mode(env)) { 13556 DP_TBFLAG_M32(flags, HANDLER, 1); 13557 } 13558 13559 /* 13560 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13561 * is suppressing them because the requested execution priority 13562 * is less than 0. 13563 */ 13564 if (arm_feature(env, ARM_FEATURE_V8) && 13565 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13566 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13567 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13568 } 13569 13570 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13571 } 13572 13573 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13574 { 13575 CPUARMTBFlags flags = {}; 13576 13577 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13578 return flags; 13579 } 13580 13581 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13582 ARMMMUIdx mmu_idx) 13583 { 13584 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13585 int el = arm_current_el(env); 13586 13587 if (arm_sctlr(env, el) & SCTLR_A) { 13588 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13589 } 13590 13591 if (arm_el_is_aa64(env, 1)) { 13592 DP_TBFLAG_A32(flags, VFPEN, 1); 13593 } 13594 13595 if (el < 2 && env->cp15.hstr_el2 && 13596 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13597 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13598 } 13599 13600 if (env->uncached_cpsr & CPSR_IL) { 13601 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13602 } 13603 13604 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13605 } 13606 13607 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13608 ARMMMUIdx mmu_idx) 13609 { 13610 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13611 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13612 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13613 uint64_t sctlr; 13614 int tbii, tbid; 13615 13616 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13617 13618 /* Get control bits for tagged addresses. */ 13619 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13620 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13621 13622 DP_TBFLAG_A64(flags, TBII, tbii); 13623 DP_TBFLAG_A64(flags, TBID, tbid); 13624 13625 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13626 int sve_el = sve_exception_el(env, el); 13627 uint32_t zcr_len; 13628 13629 /* 13630 * If SVE is disabled, but FP is enabled, 13631 * then the effective len is 0. 13632 */ 13633 if (sve_el != 0 && fp_el == 0) { 13634 zcr_len = 0; 13635 } else { 13636 zcr_len = sve_zcr_len_for_el(env, el); 13637 } 13638 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13639 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13640 } 13641 13642 sctlr = regime_sctlr(env, stage1); 13643 13644 if (sctlr & SCTLR_A) { 13645 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13646 } 13647 13648 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13649 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13650 } 13651 13652 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13653 /* 13654 * In order to save space in flags, we record only whether 13655 * pauth is "inactive", meaning all insns are implemented as 13656 * a nop, or "active" when some action must be performed. 13657 * The decision of which action to take is left to a helper. 13658 */ 13659 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13660 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13661 } 13662 } 13663 13664 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13665 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13666 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13667 DP_TBFLAG_A64(flags, BT, 1); 13668 } 13669 } 13670 13671 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13672 if (!(env->pstate & PSTATE_UAO)) { 13673 switch (mmu_idx) { 13674 case ARMMMUIdx_E10_1: 13675 case ARMMMUIdx_E10_1_PAN: 13676 case ARMMMUIdx_SE10_1: 13677 case ARMMMUIdx_SE10_1_PAN: 13678 /* TODO: ARMv8.3-NV */ 13679 DP_TBFLAG_A64(flags, UNPRIV, 1); 13680 break; 13681 case ARMMMUIdx_E20_2: 13682 case ARMMMUIdx_E20_2_PAN: 13683 case ARMMMUIdx_SE20_2: 13684 case ARMMMUIdx_SE20_2_PAN: 13685 /* 13686 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13687 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13688 */ 13689 if (env->cp15.hcr_el2 & HCR_TGE) { 13690 DP_TBFLAG_A64(flags, UNPRIV, 1); 13691 } 13692 break; 13693 default: 13694 break; 13695 } 13696 } 13697 13698 if (env->pstate & PSTATE_IL) { 13699 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13700 } 13701 13702 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13703 /* 13704 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13705 * if all accesses must be Unchecked: 13706 * 1) If no TBI, then there are no tags in the address to check, 13707 * 2) If Tag Check Override, then all accesses are Unchecked, 13708 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13709 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13710 */ 13711 if (allocation_tag_access_enabled(env, el, sctlr)) { 13712 DP_TBFLAG_A64(flags, ATA, 1); 13713 if (tbid 13714 && !(env->pstate & PSTATE_TCO) 13715 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13716 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13717 } 13718 } 13719 /* And again for unprivileged accesses, if required. */ 13720 if (EX_TBFLAG_A64(flags, UNPRIV) 13721 && tbid 13722 && !(env->pstate & PSTATE_TCO) 13723 && (sctlr & SCTLR_TCF0) 13724 && allocation_tag_access_enabled(env, 0, sctlr)) { 13725 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13726 } 13727 /* Cache TCMA as well as TBI. */ 13728 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13729 } 13730 13731 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13732 } 13733 13734 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13735 { 13736 int el = arm_current_el(env); 13737 int fp_el = fp_exception_el(env, el); 13738 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13739 13740 if (is_a64(env)) { 13741 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13742 } else if (arm_feature(env, ARM_FEATURE_M)) { 13743 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13744 } else { 13745 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13746 } 13747 } 13748 13749 void arm_rebuild_hflags(CPUARMState *env) 13750 { 13751 env->hflags = rebuild_hflags_internal(env); 13752 } 13753 13754 /* 13755 * If we have triggered a EL state change we can't rely on the 13756 * translator having passed it to us, we need to recompute. 13757 */ 13758 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13759 { 13760 int el = arm_current_el(env); 13761 int fp_el = fp_exception_el(env, el); 13762 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13763 13764 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13765 } 13766 13767 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13768 { 13769 int fp_el = fp_exception_el(env, el); 13770 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13771 13772 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13773 } 13774 13775 /* 13776 * If we have triggered a EL state change we can't rely on the 13777 * translator having passed it to us, we need to recompute. 13778 */ 13779 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13780 { 13781 int el = arm_current_el(env); 13782 int fp_el = fp_exception_el(env, el); 13783 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13784 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13785 } 13786 13787 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13788 { 13789 int fp_el = fp_exception_el(env, el); 13790 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13791 13792 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13793 } 13794 13795 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13796 { 13797 int fp_el = fp_exception_el(env, el); 13798 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13799 13800 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13801 } 13802 13803 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13804 { 13805 #ifdef CONFIG_DEBUG_TCG 13806 CPUARMTBFlags c = env->hflags; 13807 CPUARMTBFlags r = rebuild_hflags_internal(env); 13808 13809 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13810 fprintf(stderr, "TCG hflags mismatch " 13811 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13812 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13813 c.flags, c.flags2, r.flags, r.flags2); 13814 abort(); 13815 } 13816 #endif 13817 } 13818 13819 static bool mve_no_pred(CPUARMState *env) 13820 { 13821 /* 13822 * Return true if there is definitely no predication of MVE 13823 * instructions by VPR or LTPSIZE. (Returning false even if there 13824 * isn't any predication is OK; generated code will just be 13825 * a little worse.) 13826 * If the CPU does not implement MVE then this TB flag is always 0. 13827 * 13828 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13829 * logic in gen_update_fp_context() needs to be updated to match. 13830 * 13831 * We do not include the effect of the ECI bits here -- they are 13832 * tracked in other TB flags. This simplifies the logic for 13833 * "when did we emit code that changes the MVE_NO_PRED TB flag 13834 * and thus need to end the TB?". 13835 */ 13836 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13837 return false; 13838 } 13839 if (env->v7m.vpr) { 13840 return false; 13841 } 13842 if (env->v7m.ltpsize < 4) { 13843 return false; 13844 } 13845 return true; 13846 } 13847 13848 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13849 target_ulong *cs_base, uint32_t *pflags) 13850 { 13851 CPUARMTBFlags flags; 13852 13853 assert_hflags_rebuild_correctly(env); 13854 flags = env->hflags; 13855 13856 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13857 *pc = env->pc; 13858 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13859 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13860 } 13861 } else { 13862 *pc = env->regs[15]; 13863 13864 if (arm_feature(env, ARM_FEATURE_M)) { 13865 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13866 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13867 != env->v7m.secure) { 13868 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13869 } 13870 13871 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13872 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13873 (env->v7m.secure && 13874 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13875 /* 13876 * ASPEN is set, but FPCA/SFPA indicate that there is no 13877 * active FP context; we must create a new FP context before 13878 * executing any FP insn. 13879 */ 13880 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13881 } 13882 13883 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13884 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13885 DP_TBFLAG_M32(flags, LSPACT, 1); 13886 } 13887 13888 if (mve_no_pred(env)) { 13889 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13890 } 13891 } else { 13892 /* 13893 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13894 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13895 */ 13896 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13897 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13898 } else { 13899 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13900 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13901 } 13902 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13903 DP_TBFLAG_A32(flags, VFPEN, 1); 13904 } 13905 } 13906 13907 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13908 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13909 } 13910 13911 /* 13912 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13913 * states defined in the ARM ARM for software singlestep: 13914 * SS_ACTIVE PSTATE.SS State 13915 * 0 x Inactive (the TB flag for SS is always 0) 13916 * 1 0 Active-pending 13917 * 1 1 Active-not-pending 13918 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13919 */ 13920 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13921 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13922 } 13923 13924 *pflags = flags.flags; 13925 *cs_base = flags.flags2; 13926 } 13927 13928 #ifdef TARGET_AARCH64 13929 /* 13930 * The manual says that when SVE is enabled and VQ is widened the 13931 * implementation is allowed to zero the previously inaccessible 13932 * portion of the registers. The corollary to that is that when 13933 * SVE is enabled and VQ is narrowed we are also allowed to zero 13934 * the now inaccessible portion of the registers. 13935 * 13936 * The intent of this is that no predicate bit beyond VQ is ever set. 13937 * Which means that some operations on predicate registers themselves 13938 * may operate on full uint64_t or even unrolled across the maximum 13939 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13940 * may well be cheaper than conditionals to restrict the operation 13941 * to the relevant portion of a uint16_t[16]. 13942 */ 13943 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13944 { 13945 int i, j; 13946 uint64_t pmask; 13947 13948 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13949 assert(vq <= env_archcpu(env)->sve_max_vq); 13950 13951 /* Zap the high bits of the zregs. */ 13952 for (i = 0; i < 32; i++) { 13953 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13954 } 13955 13956 /* Zap the high bits of the pregs and ffr. */ 13957 pmask = 0; 13958 if (vq & 3) { 13959 pmask = ~(-1ULL << (16 * (vq & 3))); 13960 } 13961 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13962 for (i = 0; i < 17; ++i) { 13963 env->vfp.pregs[i].p[j] &= pmask; 13964 } 13965 pmask = 0; 13966 } 13967 } 13968 13969 /* 13970 * Notice a change in SVE vector size when changing EL. 13971 */ 13972 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13973 int new_el, bool el0_a64) 13974 { 13975 ARMCPU *cpu = env_archcpu(env); 13976 int old_len, new_len; 13977 bool old_a64, new_a64; 13978 13979 /* Nothing to do if no SVE. */ 13980 if (!cpu_isar_feature(aa64_sve, cpu)) { 13981 return; 13982 } 13983 13984 /* Nothing to do if FP is disabled in either EL. */ 13985 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13986 return; 13987 } 13988 13989 /* 13990 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13991 * at ELx, or not available because the EL is in AArch32 state, then 13992 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13993 * has an effective value of 0". 13994 * 13995 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13996 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13997 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13998 * we already have the correct register contents when encountering the 13999 * vq0->vq0 transition between EL0->EL1. 14000 */ 14001 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 14002 old_len = (old_a64 && !sve_exception_el(env, old_el) 14003 ? sve_zcr_len_for_el(env, old_el) : 0); 14004 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 14005 new_len = (new_a64 && !sve_exception_el(env, new_el) 14006 ? sve_zcr_len_for_el(env, new_el) : 0); 14007 14008 /* When changing vector length, clear inaccessible state. */ 14009 if (new_len < old_len) { 14010 aarch64_sve_narrow_vq(env, new_len + 1); 14011 } 14012 } 14013 #endif 14014