1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (hpmn != 0 && counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } 1859 if (cpu_isar_feature(aa64_mte, cpu)) { 1860 valid_mask |= SCR_ATA; 1861 } 1862 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1863 valid_mask |= SCR_ENSCXT; 1864 } 1865 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1866 valid_mask |= SCR_EASE | SCR_NMEA; 1867 } 1868 if (cpu_isar_feature(aa64_sme, cpu)) { 1869 valid_mask |= SCR_ENTP2; 1870 } 1871 if (cpu_isar_feature(aa64_hcx, cpu)) { 1872 valid_mask |= SCR_HXEN; 1873 } 1874 if (cpu_isar_feature(aa64_fgt, cpu)) { 1875 valid_mask |= SCR_FGTEN; 1876 } 1877 } else { 1878 valid_mask &= ~(SCR_RW | SCR_ST); 1879 if (cpu_isar_feature(aa32_ras, cpu)) { 1880 valid_mask |= SCR_TERR; 1881 } 1882 } 1883 1884 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1885 valid_mask &= ~SCR_HCE; 1886 1887 /* 1888 * On ARMv7, SMD (or SCD as it is called in v7) is only 1889 * supported if EL2 exists. The bit is UNK/SBZP when 1890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1891 * when EL2 is unavailable. 1892 * On ARMv8, this bit is always available. 1893 */ 1894 if (arm_feature(env, ARM_FEATURE_V7) && 1895 !arm_feature(env, ARM_FEATURE_V8)) { 1896 valid_mask &= ~SCR_SMD; 1897 } 1898 } 1899 1900 /* Clear all-context RES0 bits. */ 1901 value &= valid_mask; 1902 changed = env->cp15.scr_el3 ^ value; 1903 env->cp15.scr_el3 = value; 1904 1905 /* 1906 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1907 * we must invalidate all TLBs below EL3. 1908 */ 1909 if (changed & SCR_NS) { 1910 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1911 ARMMMUIdxBit_E20_0 | 1912 ARMMMUIdxBit_E10_1 | 1913 ARMMMUIdxBit_E20_2 | 1914 ARMMMUIdxBit_E10_1_PAN | 1915 ARMMMUIdxBit_E20_2_PAN | 1916 ARMMMUIdxBit_E2)); 1917 } 1918 } 1919 1920 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1921 { 1922 /* 1923 * scr_write will set the RES1 bits on an AArch64-only CPU. 1924 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1925 */ 1926 scr_write(env, ri, 0); 1927 } 1928 1929 static CPAccessResult access_tid4(CPUARMState *env, 1930 const ARMCPRegInfo *ri, 1931 bool isread) 1932 { 1933 if (arm_current_el(env) == 1 && 1934 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1935 return CP_ACCESS_TRAP_EL2; 1936 } 1937 1938 return CP_ACCESS_OK; 1939 } 1940 1941 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1942 { 1943 ARMCPU *cpu = env_archcpu(env); 1944 1945 /* 1946 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1947 * bank 1948 */ 1949 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1950 ri->secure & ARM_CP_SECSTATE_S); 1951 1952 return cpu->ccsidr[index]; 1953 } 1954 1955 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 raw_write(env, ri, value & 0xf); 1959 } 1960 1961 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1962 { 1963 CPUState *cs = env_cpu(env); 1964 bool el1 = arm_current_el(env) == 1; 1965 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1966 uint64_t ret = 0; 1967 1968 if (hcr_el2 & HCR_IMO) { 1969 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1970 ret |= CPSR_I; 1971 } 1972 } else { 1973 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1974 ret |= CPSR_I; 1975 } 1976 } 1977 1978 if (hcr_el2 & HCR_FMO) { 1979 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1980 ret |= CPSR_F; 1981 } 1982 } else { 1983 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1984 ret |= CPSR_F; 1985 } 1986 } 1987 1988 if (hcr_el2 & HCR_AMO) { 1989 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1990 ret |= CPSR_A; 1991 } 1992 } 1993 1994 return ret; 1995 } 1996 1997 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1998 bool isread) 1999 { 2000 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2001 return CP_ACCESS_TRAP_EL2; 2002 } 2003 2004 return CP_ACCESS_OK; 2005 } 2006 2007 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2008 bool isread) 2009 { 2010 if (arm_feature(env, ARM_FEATURE_V8)) { 2011 return access_aa64_tid1(env, ri, isread); 2012 } 2013 2014 return CP_ACCESS_OK; 2015 } 2016 2017 static const ARMCPRegInfo v7_cp_reginfo[] = { 2018 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2019 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2020 .access = PL1_W, .type = ARM_CP_NOP }, 2021 /* 2022 * Performance monitors are implementation defined in v7, 2023 * but with an ARM recommended set of registers, which we 2024 * follow. 2025 * 2026 * Performance registers fall into three categories: 2027 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2028 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2029 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2030 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2031 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2032 */ 2033 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2034 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2035 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2036 .writefn = pmcntenset_write, 2037 .accessfn = pmreg_access, 2038 .fgt = FGT_PMCNTEN, 2039 .raw_writefn = raw_write }, 2040 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2042 .access = PL0_RW, .accessfn = pmreg_access, 2043 .fgt = FGT_PMCNTEN, 2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2045 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2046 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2047 .access = PL0_RW, 2048 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2049 .accessfn = pmreg_access, 2050 .fgt = FGT_PMCNTEN, 2051 .writefn = pmcntenclr_write, 2052 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2053 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2054 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2055 .access = PL0_RW, .accessfn = pmreg_access, 2056 .fgt = FGT_PMCNTEN, 2057 .type = ARM_CP_ALIAS | ARM_CP_IO, 2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2059 .writefn = pmcntenclr_write }, 2060 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2061 .access = PL0_RW, .type = ARM_CP_IO, 2062 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2063 .accessfn = pmreg_access, 2064 .fgt = FGT_PMOVS, 2065 .writefn = pmovsr_write, 2066 .raw_writefn = raw_write }, 2067 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2069 .access = PL0_RW, .accessfn = pmreg_access, 2070 .fgt = FGT_PMOVS, 2071 .type = ARM_CP_ALIAS | ARM_CP_IO, 2072 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2073 .writefn = pmovsr_write, 2074 .raw_writefn = raw_write }, 2075 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2076 .access = PL0_W, .accessfn = pmreg_access_swinc, 2077 .fgt = FGT_PMSWINC_EL0, 2078 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2079 .writefn = pmswinc_write }, 2080 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2082 .access = PL0_W, .accessfn = pmreg_access_swinc, 2083 .fgt = FGT_PMSWINC_EL0, 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .writefn = pmswinc_write }, 2086 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2087 .access = PL0_RW, .type = ARM_CP_ALIAS, 2088 .fgt = FGT_PMSELR_EL0, 2089 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2090 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2091 .raw_writefn = raw_write}, 2092 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2094 .access = PL0_RW, .accessfn = pmreg_access_selr, 2095 .fgt = FGT_PMSELR_EL0, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2097 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2098 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2099 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fgt = FGT_PMCCNTR_EL0, 2101 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2102 .accessfn = pmreg_access_ccntr }, 2103 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2105 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2106 .fgt = FGT_PMCCNTR_EL0, 2107 .type = ARM_CP_IO, 2108 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2109 .readfn = pmccntr_read, .writefn = pmccntr_write, 2110 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2111 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2112 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2113 .access = PL0_RW, .accessfn = pmreg_access, 2114 .fgt = FGT_PMCCFILTR_EL0, 2115 .type = ARM_CP_ALIAS | ARM_CP_IO, 2116 .resetvalue = 0, }, 2117 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2119 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCCFILTR_EL0, 2122 .type = ARM_CP_IO, 2123 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2124 .resetvalue = 0, }, 2125 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2126 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2127 .accessfn = pmreg_access, 2128 .fgt = FGT_PMEVTYPERN_EL0, 2129 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2130 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2131 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2133 .accessfn = pmreg_access, 2134 .fgt = FGT_PMEVTYPERN_EL0, 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2136 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2137 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2138 .accessfn = pmreg_access_xevcntr, 2139 .fgt = FGT_PMEVCNTRN_EL0, 2140 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2141 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .fgt = FGT_PMEVCNTRN_EL0, 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2147 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2148 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2149 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2150 .resetvalue = 0, 2151 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2152 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2155 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2156 .resetvalue = 0, 2157 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2158 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2159 .access = PL1_RW, .accessfn = access_tpm, 2160 .fgt = FGT_PMINTEN, 2161 .type = ARM_CP_ALIAS | ARM_CP_IO, 2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2163 .resetvalue = 0, 2164 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2165 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2166 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2167 .access = PL1_RW, .accessfn = access_tpm, 2168 .fgt = FGT_PMINTEN, 2169 .type = ARM_CP_IO, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2171 .writefn = pmintenset_write, .raw_writefn = raw_write, 2172 .resetvalue = 0x0 }, 2173 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2174 .access = PL1_RW, .accessfn = access_tpm, 2175 .fgt = FGT_PMINTEN, 2176 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2178 .writefn = pmintenclr_write, }, 2179 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2181 .access = PL1_RW, .accessfn = access_tpm, 2182 .fgt = FGT_PMINTEN, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2185 .writefn = pmintenclr_write }, 2186 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2187 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2188 .access = PL1_R, 2189 .accessfn = access_tid4, 2190 .fgt = FGT_CCSIDR_EL1, 2191 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2192 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2194 .access = PL1_RW, 2195 .accessfn = access_tid4, 2196 .fgt = FGT_CSSELR_EL1, 2197 .writefn = csselr_write, .resetvalue = 0, 2198 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2199 offsetof(CPUARMState, cp15.csselr_ns) } }, 2200 /* 2201 * Auxiliary ID register: this actually has an IMPDEF value but for now 2202 * just RAZ for all cores: 2203 */ 2204 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2205 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2206 .access = PL1_R, .type = ARM_CP_CONST, 2207 .accessfn = access_aa64_tid1, 2208 .fgt = FGT_AIDR_EL1, 2209 .resetvalue = 0 }, 2210 /* 2211 * Auxiliary fault status registers: these also are IMPDEF, and we 2212 * choose to RAZ/WI for all cores. 2213 */ 2214 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2215 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2216 .access = PL1_RW, .accessfn = access_tvm_trvm, 2217 .fgt = FGT_AFSR0_EL1, 2218 .type = ARM_CP_CONST, .resetvalue = 0 }, 2219 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2220 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2221 .access = PL1_RW, .accessfn = access_tvm_trvm, 2222 .fgt = FGT_AFSR1_EL1, 2223 .type = ARM_CP_CONST, .resetvalue = 0 }, 2224 /* 2225 * MAIR can just read-as-written because we don't implement caches 2226 * and so don't need to care about memory attributes. 2227 */ 2228 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2229 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2230 .access = PL1_RW, .accessfn = access_tvm_trvm, 2231 .fgt = FGT_MAIR_EL1, 2232 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2233 .resetvalue = 0 }, 2234 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2236 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2237 .resetvalue = 0 }, 2238 /* 2239 * For non-long-descriptor page tables these are PRRR and NMRR; 2240 * regardless they still act as reads-as-written for QEMU. 2241 */ 2242 /* 2243 * MAIR0/1 are defined separately from their 64-bit counterpart which 2244 * allows them to assign the correct fieldoffset based on the endianness 2245 * handled in the field definitions. 2246 */ 2247 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2248 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2249 .access = PL1_RW, .accessfn = access_tvm_trvm, 2250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2251 offsetof(CPUARMState, cp15.mair0_ns) }, 2252 .resetfn = arm_cp_reset_ignore }, 2253 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2255 .access = PL1_RW, .accessfn = access_tvm_trvm, 2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2257 offsetof(CPUARMState, cp15.mair1_ns) }, 2258 .resetfn = arm_cp_reset_ignore }, 2259 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2260 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2261 .fgt = FGT_ISR_EL1, 2262 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2263 /* 32 bit ITLB invalidates */ 2264 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2265 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2266 .writefn = tlbiall_write }, 2267 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2268 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2269 .writefn = tlbimva_write }, 2270 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2272 .writefn = tlbiasid_write }, 2273 /* 32 bit DTLB invalidates */ 2274 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2276 .writefn = tlbiall_write }, 2277 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2279 .writefn = tlbimva_write }, 2280 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2282 .writefn = tlbiasid_write }, 2283 /* 32 bit TLB invalidates */ 2284 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2286 .writefn = tlbiall_write }, 2287 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2289 .writefn = tlbimva_write }, 2290 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbiasid_write }, 2293 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbimvaa_write }, 2296 }; 2297 2298 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2299 /* 32 bit TLB invalidates, Inner Shareable */ 2300 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2302 .writefn = tlbiall_is_write }, 2303 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2305 .writefn = tlbimva_is_write }, 2306 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2308 .writefn = tlbiasid_is_write }, 2309 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2311 .writefn = tlbimvaa_is_write }, 2312 }; 2313 2314 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2315 /* PMOVSSET is not implemented in v7 before v7ve */ 2316 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2317 .access = PL0_RW, .accessfn = pmreg_access, 2318 .fgt = FGT_PMOVS, 2319 .type = ARM_CP_ALIAS | ARM_CP_IO, 2320 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2321 .writefn = pmovsset_write, 2322 .raw_writefn = raw_write }, 2323 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2325 .access = PL0_RW, .accessfn = pmreg_access, 2326 .fgt = FGT_PMOVS, 2327 .type = ARM_CP_ALIAS | ARM_CP_IO, 2328 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2329 .writefn = pmovsset_write, 2330 .raw_writefn = raw_write }, 2331 }; 2332 2333 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2334 uint64_t value) 2335 { 2336 value &= 1; 2337 env->teecr = value; 2338 } 2339 2340 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2341 bool isread) 2342 { 2343 /* 2344 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2345 * at all, so we don't need to check whether we're v8A. 2346 */ 2347 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2348 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2349 return CP_ACCESS_TRAP_EL2; 2350 } 2351 return CP_ACCESS_OK; 2352 } 2353 2354 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2355 bool isread) 2356 { 2357 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2358 return CP_ACCESS_TRAP; 2359 } 2360 return teecr_access(env, ri, isread); 2361 } 2362 2363 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2364 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2365 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2366 .resetvalue = 0, 2367 .writefn = teecr_write, .accessfn = teecr_access }, 2368 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2369 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2370 .accessfn = teehbr_access, .resetvalue = 0 }, 2371 }; 2372 2373 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2374 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2375 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2376 .access = PL0_RW, 2377 .fgt = FGT_TPIDR_EL0, 2378 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2379 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2380 .access = PL0_RW, 2381 .fgt = FGT_TPIDR_EL0, 2382 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2383 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2384 .resetfn = arm_cp_reset_ignore }, 2385 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2386 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2387 .access = PL0_R | PL1_W, 2388 .fgt = FGT_TPIDRRO_EL0, 2389 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2390 .resetvalue = 0}, 2391 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2392 .access = PL0_R | PL1_W, 2393 .fgt = FGT_TPIDRRO_EL0, 2394 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2395 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2396 .resetfn = arm_cp_reset_ignore }, 2397 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2398 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2399 .access = PL1_RW, 2400 .fgt = FGT_TPIDR_EL1, 2401 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2402 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2403 .access = PL1_RW, 2404 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2405 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2406 .resetvalue = 0 }, 2407 }; 2408 2409 #ifndef CONFIG_USER_ONLY 2410 2411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2412 bool isread) 2413 { 2414 /* 2415 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2416 * Writable only at the highest implemented exception level. 2417 */ 2418 int el = arm_current_el(env); 2419 uint64_t hcr; 2420 uint32_t cntkctl; 2421 2422 switch (el) { 2423 case 0: 2424 hcr = arm_hcr_el2_eff(env); 2425 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2426 cntkctl = env->cp15.cnthctl_el2; 2427 } else { 2428 cntkctl = env->cp15.c14_cntkctl; 2429 } 2430 if (!extract32(cntkctl, 0, 2)) { 2431 return CP_ACCESS_TRAP; 2432 } 2433 break; 2434 case 1: 2435 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2436 arm_is_secure_below_el3(env)) { 2437 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2438 return CP_ACCESS_TRAP_UNCATEGORIZED; 2439 } 2440 break; 2441 case 2: 2442 case 3: 2443 break; 2444 } 2445 2446 if (!isread && el < arm_highest_el(env)) { 2447 return CP_ACCESS_TRAP_UNCATEGORIZED; 2448 } 2449 2450 return CP_ACCESS_OK; 2451 } 2452 2453 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2454 bool isread) 2455 { 2456 unsigned int cur_el = arm_current_el(env); 2457 bool has_el2 = arm_is_el2_enabled(env); 2458 uint64_t hcr = arm_hcr_el2_eff(env); 2459 2460 switch (cur_el) { 2461 case 0: 2462 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2463 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2464 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2465 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2466 } 2467 2468 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2469 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2470 return CP_ACCESS_TRAP; 2471 } 2472 2473 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2474 if (hcr & HCR_E2H) { 2475 if (timeridx == GTIMER_PHYS && 2476 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2477 return CP_ACCESS_TRAP_EL2; 2478 } 2479 } else { 2480 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2481 if (has_el2 && timeridx == GTIMER_PHYS && 2482 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2483 return CP_ACCESS_TRAP_EL2; 2484 } 2485 } 2486 break; 2487 2488 case 1: 2489 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2490 if (has_el2 && timeridx == GTIMER_PHYS && 2491 (hcr & HCR_E2H 2492 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2493 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2494 return CP_ACCESS_TRAP_EL2; 2495 } 2496 break; 2497 } 2498 return CP_ACCESS_OK; 2499 } 2500 2501 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2502 bool isread) 2503 { 2504 unsigned int cur_el = arm_current_el(env); 2505 bool has_el2 = arm_is_el2_enabled(env); 2506 uint64_t hcr = arm_hcr_el2_eff(env); 2507 2508 switch (cur_el) { 2509 case 0: 2510 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2511 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2512 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2513 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2514 } 2515 2516 /* 2517 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2518 * EL0 if EL0[PV]TEN is zero. 2519 */ 2520 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2521 return CP_ACCESS_TRAP; 2522 } 2523 /* fall through */ 2524 2525 case 1: 2526 if (has_el2 && timeridx == GTIMER_PHYS) { 2527 if (hcr & HCR_E2H) { 2528 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2529 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2530 return CP_ACCESS_TRAP_EL2; 2531 } 2532 } else { 2533 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2534 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2535 return CP_ACCESS_TRAP_EL2; 2536 } 2537 } 2538 } 2539 break; 2540 } 2541 return CP_ACCESS_OK; 2542 } 2543 2544 static CPAccessResult gt_pct_access(CPUARMState *env, 2545 const ARMCPRegInfo *ri, 2546 bool isread) 2547 { 2548 return gt_counter_access(env, GTIMER_PHYS, isread); 2549 } 2550 2551 static CPAccessResult gt_vct_access(CPUARMState *env, 2552 const ARMCPRegInfo *ri, 2553 bool isread) 2554 { 2555 return gt_counter_access(env, GTIMER_VIRT, isread); 2556 } 2557 2558 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2559 bool isread) 2560 { 2561 return gt_timer_access(env, GTIMER_PHYS, isread); 2562 } 2563 2564 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2565 bool isread) 2566 { 2567 return gt_timer_access(env, GTIMER_VIRT, isread); 2568 } 2569 2570 static CPAccessResult gt_stimer_access(CPUARMState *env, 2571 const ARMCPRegInfo *ri, 2572 bool isread) 2573 { 2574 /* 2575 * The AArch64 register view of the secure physical timer is 2576 * always accessible from EL3, and configurably accessible from 2577 * Secure EL1. 2578 */ 2579 switch (arm_current_el(env)) { 2580 case 1: 2581 if (!arm_is_secure(env)) { 2582 return CP_ACCESS_TRAP; 2583 } 2584 if (!(env->cp15.scr_el3 & SCR_ST)) { 2585 return CP_ACCESS_TRAP_EL3; 2586 } 2587 return CP_ACCESS_OK; 2588 case 0: 2589 case 2: 2590 return CP_ACCESS_TRAP; 2591 case 3: 2592 return CP_ACCESS_OK; 2593 default: 2594 g_assert_not_reached(); 2595 } 2596 } 2597 2598 static uint64_t gt_get_countervalue(CPUARMState *env) 2599 { 2600 ARMCPU *cpu = env_archcpu(env); 2601 2602 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2603 } 2604 2605 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2606 { 2607 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2608 2609 if (gt->ctl & 1) { 2610 /* 2611 * Timer enabled: calculate and set current ISTATUS, irq, and 2612 * reset timer to when ISTATUS next has to change 2613 */ 2614 uint64_t offset = timeridx == GTIMER_VIRT ? 2615 cpu->env.cp15.cntvoff_el2 : 0; 2616 uint64_t count = gt_get_countervalue(&cpu->env); 2617 /* Note that this must be unsigned 64 bit arithmetic: */ 2618 int istatus = count - offset >= gt->cval; 2619 uint64_t nexttick; 2620 int irqstate; 2621 2622 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2623 2624 irqstate = (istatus && !(gt->ctl & 2)); 2625 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2626 2627 if (istatus) { 2628 /* Next transition is when count rolls back over to zero */ 2629 nexttick = UINT64_MAX; 2630 } else { 2631 /* Next transition is when we hit cval */ 2632 nexttick = gt->cval + offset; 2633 } 2634 /* 2635 * Note that the desired next expiry time might be beyond the 2636 * signed-64-bit range of a QEMUTimer -- in this case we just 2637 * set the timer for as far in the future as possible. When the 2638 * timer expires we will reset the timer for any remaining period. 2639 */ 2640 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2641 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2642 } else { 2643 timer_mod(cpu->gt_timer[timeridx], nexttick); 2644 } 2645 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2646 } else { 2647 /* Timer disabled: ISTATUS and timer output always clear */ 2648 gt->ctl &= ~4; 2649 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2650 timer_del(cpu->gt_timer[timeridx]); 2651 trace_arm_gt_recalc_disabled(timeridx); 2652 } 2653 } 2654 2655 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2656 int timeridx) 2657 { 2658 ARMCPU *cpu = env_archcpu(env); 2659 2660 timer_del(cpu->gt_timer[timeridx]); 2661 } 2662 2663 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2664 { 2665 return gt_get_countervalue(env); 2666 } 2667 2668 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2669 { 2670 uint64_t hcr; 2671 2672 switch (arm_current_el(env)) { 2673 case 2: 2674 hcr = arm_hcr_el2_eff(env); 2675 if (hcr & HCR_E2H) { 2676 return 0; 2677 } 2678 break; 2679 case 0: 2680 hcr = arm_hcr_el2_eff(env); 2681 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2682 return 0; 2683 } 2684 break; 2685 } 2686 2687 return env->cp15.cntvoff_el2; 2688 } 2689 2690 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2691 { 2692 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2693 } 2694 2695 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2696 int timeridx, 2697 uint64_t value) 2698 { 2699 trace_arm_gt_cval_write(timeridx, value); 2700 env->cp15.c14_timer[timeridx].cval = value; 2701 gt_recalc_timer(env_archcpu(env), timeridx); 2702 } 2703 2704 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2705 int timeridx) 2706 { 2707 uint64_t offset = 0; 2708 2709 switch (timeridx) { 2710 case GTIMER_VIRT: 2711 case GTIMER_HYPVIRT: 2712 offset = gt_virt_cnt_offset(env); 2713 break; 2714 } 2715 2716 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2717 (gt_get_countervalue(env) - offset)); 2718 } 2719 2720 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 int timeridx, 2722 uint64_t value) 2723 { 2724 uint64_t offset = 0; 2725 2726 switch (timeridx) { 2727 case GTIMER_VIRT: 2728 case GTIMER_HYPVIRT: 2729 offset = gt_virt_cnt_offset(env); 2730 break; 2731 } 2732 2733 trace_arm_gt_tval_write(timeridx, value); 2734 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2735 sextract64(value, 0, 32); 2736 gt_recalc_timer(env_archcpu(env), timeridx); 2737 } 2738 2739 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2740 int timeridx, 2741 uint64_t value) 2742 { 2743 ARMCPU *cpu = env_archcpu(env); 2744 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2745 2746 trace_arm_gt_ctl_write(timeridx, value); 2747 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2748 if ((oldval ^ value) & 1) { 2749 /* Enable toggled */ 2750 gt_recalc_timer(cpu, timeridx); 2751 } else if ((oldval ^ value) & 2) { 2752 /* 2753 * IMASK toggled: don't need to recalculate, 2754 * just set the interrupt line based on ISTATUS 2755 */ 2756 int irqstate = (oldval & 4) && !(value & 2); 2757 2758 trace_arm_gt_imask_toggle(timeridx, irqstate); 2759 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2760 } 2761 } 2762 2763 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2764 { 2765 gt_timer_reset(env, ri, GTIMER_PHYS); 2766 } 2767 2768 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2769 uint64_t value) 2770 { 2771 gt_cval_write(env, ri, GTIMER_PHYS, value); 2772 } 2773 2774 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2775 { 2776 return gt_tval_read(env, ri, GTIMER_PHYS); 2777 } 2778 2779 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2780 uint64_t value) 2781 { 2782 gt_tval_write(env, ri, GTIMER_PHYS, value); 2783 } 2784 2785 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value) 2787 { 2788 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2789 } 2790 2791 static int gt_phys_redir_timeridx(CPUARMState *env) 2792 { 2793 switch (arm_mmu_idx(env)) { 2794 case ARMMMUIdx_E20_0: 2795 case ARMMMUIdx_E20_2: 2796 case ARMMMUIdx_E20_2_PAN: 2797 return GTIMER_HYP; 2798 default: 2799 return GTIMER_PHYS; 2800 } 2801 } 2802 2803 static int gt_virt_redir_timeridx(CPUARMState *env) 2804 { 2805 switch (arm_mmu_idx(env)) { 2806 case ARMMMUIdx_E20_0: 2807 case ARMMMUIdx_E20_2: 2808 case ARMMMUIdx_E20_2_PAN: 2809 return GTIMER_HYPVIRT; 2810 default: 2811 return GTIMER_VIRT; 2812 } 2813 } 2814 2815 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2816 const ARMCPRegInfo *ri) 2817 { 2818 int timeridx = gt_phys_redir_timeridx(env); 2819 return env->cp15.c14_timer[timeridx].cval; 2820 } 2821 2822 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 int timeridx = gt_phys_redir_timeridx(env); 2826 gt_cval_write(env, ri, timeridx, value); 2827 } 2828 2829 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2830 const ARMCPRegInfo *ri) 2831 { 2832 int timeridx = gt_phys_redir_timeridx(env); 2833 return gt_tval_read(env, ri, timeridx); 2834 } 2835 2836 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2837 uint64_t value) 2838 { 2839 int timeridx = gt_phys_redir_timeridx(env); 2840 gt_tval_write(env, ri, timeridx, value); 2841 } 2842 2843 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2844 const ARMCPRegInfo *ri) 2845 { 2846 int timeridx = gt_phys_redir_timeridx(env); 2847 return env->cp15.c14_timer[timeridx].ctl; 2848 } 2849 2850 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 int timeridx = gt_phys_redir_timeridx(env); 2854 gt_ctl_write(env, ri, timeridx, value); 2855 } 2856 2857 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2858 { 2859 gt_timer_reset(env, ri, GTIMER_VIRT); 2860 } 2861 2862 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2863 uint64_t value) 2864 { 2865 gt_cval_write(env, ri, GTIMER_VIRT, value); 2866 } 2867 2868 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2869 { 2870 return gt_tval_read(env, ri, GTIMER_VIRT); 2871 } 2872 2873 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2874 uint64_t value) 2875 { 2876 gt_tval_write(env, ri, GTIMER_VIRT, value); 2877 } 2878 2879 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2880 uint64_t value) 2881 { 2882 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2883 } 2884 2885 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2886 uint64_t value) 2887 { 2888 ARMCPU *cpu = env_archcpu(env); 2889 2890 trace_arm_gt_cntvoff_write(value); 2891 raw_write(env, ri, value); 2892 gt_recalc_timer(cpu, GTIMER_VIRT); 2893 } 2894 2895 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2896 const ARMCPRegInfo *ri) 2897 { 2898 int timeridx = gt_virt_redir_timeridx(env); 2899 return env->cp15.c14_timer[timeridx].cval; 2900 } 2901 2902 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value) 2904 { 2905 int timeridx = gt_virt_redir_timeridx(env); 2906 gt_cval_write(env, ri, timeridx, value); 2907 } 2908 2909 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2910 const ARMCPRegInfo *ri) 2911 { 2912 int timeridx = gt_virt_redir_timeridx(env); 2913 return gt_tval_read(env, ri, timeridx); 2914 } 2915 2916 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 int timeridx = gt_virt_redir_timeridx(env); 2920 gt_tval_write(env, ri, timeridx, value); 2921 } 2922 2923 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2924 const ARMCPRegInfo *ri) 2925 { 2926 int timeridx = gt_virt_redir_timeridx(env); 2927 return env->cp15.c14_timer[timeridx].ctl; 2928 } 2929 2930 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 int timeridx = gt_virt_redir_timeridx(env); 2934 gt_ctl_write(env, ri, timeridx, value); 2935 } 2936 2937 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2938 { 2939 gt_timer_reset(env, ri, GTIMER_HYP); 2940 } 2941 2942 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2943 uint64_t value) 2944 { 2945 gt_cval_write(env, ri, GTIMER_HYP, value); 2946 } 2947 2948 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2949 { 2950 return gt_tval_read(env, ri, GTIMER_HYP); 2951 } 2952 2953 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2954 uint64_t value) 2955 { 2956 gt_tval_write(env, ri, GTIMER_HYP, value); 2957 } 2958 2959 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2960 uint64_t value) 2961 { 2962 gt_ctl_write(env, ri, GTIMER_HYP, value); 2963 } 2964 2965 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2966 { 2967 gt_timer_reset(env, ri, GTIMER_SEC); 2968 } 2969 2970 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2971 uint64_t value) 2972 { 2973 gt_cval_write(env, ri, GTIMER_SEC, value); 2974 } 2975 2976 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2977 { 2978 return gt_tval_read(env, ri, GTIMER_SEC); 2979 } 2980 2981 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 gt_tval_write(env, ri, GTIMER_SEC, value); 2985 } 2986 2987 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 gt_ctl_write(env, ri, GTIMER_SEC, value); 2991 } 2992 2993 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2994 { 2995 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2996 } 2997 2998 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2999 uint64_t value) 3000 { 3001 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3002 } 3003 3004 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3005 { 3006 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3007 } 3008 3009 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3013 } 3014 3015 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3019 } 3020 3021 void arm_gt_ptimer_cb(void *opaque) 3022 { 3023 ARMCPU *cpu = opaque; 3024 3025 gt_recalc_timer(cpu, GTIMER_PHYS); 3026 } 3027 3028 void arm_gt_vtimer_cb(void *opaque) 3029 { 3030 ARMCPU *cpu = opaque; 3031 3032 gt_recalc_timer(cpu, GTIMER_VIRT); 3033 } 3034 3035 void arm_gt_htimer_cb(void *opaque) 3036 { 3037 ARMCPU *cpu = opaque; 3038 3039 gt_recalc_timer(cpu, GTIMER_HYP); 3040 } 3041 3042 void arm_gt_stimer_cb(void *opaque) 3043 { 3044 ARMCPU *cpu = opaque; 3045 3046 gt_recalc_timer(cpu, GTIMER_SEC); 3047 } 3048 3049 void arm_gt_hvtimer_cb(void *opaque) 3050 { 3051 ARMCPU *cpu = opaque; 3052 3053 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3054 } 3055 3056 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3057 { 3058 ARMCPU *cpu = env_archcpu(env); 3059 3060 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3061 } 3062 3063 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3064 /* 3065 * Note that CNTFRQ is purely reads-as-written for the benefit 3066 * of software; writing it doesn't actually change the timer frequency. 3067 * Our reset value matches the fixed frequency we implement the timer at. 3068 */ 3069 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3070 .type = ARM_CP_ALIAS, 3071 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3072 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3073 }, 3074 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3076 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3077 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3078 .resetfn = arm_gt_cntfrq_reset, 3079 }, 3080 /* overall control: mostly access permissions */ 3081 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3082 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3083 .access = PL1_RW, 3084 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3085 .resetvalue = 0, 3086 }, 3087 /* per-timer control */ 3088 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3089 .secure = ARM_CP_SECSTATE_NS, 3090 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3091 .accessfn = gt_ptimer_access, 3092 .fieldoffset = offsetoflow32(CPUARMState, 3093 cp15.c14_timer[GTIMER_PHYS].ctl), 3094 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3095 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3096 }, 3097 { .name = "CNTP_CTL_S", 3098 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3099 .secure = ARM_CP_SECSTATE_S, 3100 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3101 .accessfn = gt_ptimer_access, 3102 .fieldoffset = offsetoflow32(CPUARMState, 3103 cp15.c14_timer[GTIMER_SEC].ctl), 3104 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3105 }, 3106 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3107 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3108 .type = ARM_CP_IO, .access = PL0_RW, 3109 .accessfn = gt_ptimer_access, 3110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3111 .resetvalue = 0, 3112 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3113 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3114 }, 3115 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3116 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3117 .accessfn = gt_vtimer_access, 3118 .fieldoffset = offsetoflow32(CPUARMState, 3119 cp15.c14_timer[GTIMER_VIRT].ctl), 3120 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3121 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3122 }, 3123 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3125 .type = ARM_CP_IO, .access = PL0_RW, 3126 .accessfn = gt_vtimer_access, 3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3128 .resetvalue = 0, 3129 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3130 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3131 }, 3132 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3133 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3134 .secure = ARM_CP_SECSTATE_NS, 3135 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3136 .accessfn = gt_ptimer_access, 3137 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3138 }, 3139 { .name = "CNTP_TVAL_S", 3140 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3141 .secure = ARM_CP_SECSTATE_S, 3142 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3143 .accessfn = gt_ptimer_access, 3144 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3145 }, 3146 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3147 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3149 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3150 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3151 }, 3152 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3153 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3154 .accessfn = gt_vtimer_access, 3155 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3156 }, 3157 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3160 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3162 }, 3163 /* The counter itself */ 3164 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3165 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3166 .accessfn = gt_pct_access, 3167 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3168 }, 3169 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3171 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3172 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3173 }, 3174 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3175 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3176 .accessfn = gt_vct_access, 3177 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3178 }, 3179 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3181 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3182 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3183 }, 3184 /* Comparison value, indicating when the timer goes off */ 3185 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3186 .secure = ARM_CP_SECSTATE_NS, 3187 .access = PL0_RW, 3188 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3190 .accessfn = gt_ptimer_access, 3191 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3192 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3193 }, 3194 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3195 .secure = ARM_CP_SECSTATE_S, 3196 .access = PL0_RW, 3197 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3199 .accessfn = gt_ptimer_access, 3200 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3201 }, 3202 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3204 .access = PL0_RW, 3205 .type = ARM_CP_IO, 3206 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3207 .resetvalue = 0, .accessfn = gt_ptimer_access, 3208 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3209 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3210 }, 3211 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3212 .access = PL0_RW, 3213 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3214 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3215 .accessfn = gt_vtimer_access, 3216 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3217 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3218 }, 3219 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3220 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3221 .access = PL0_RW, 3222 .type = ARM_CP_IO, 3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3224 .resetvalue = 0, .accessfn = gt_vtimer_access, 3225 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3226 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3227 }, 3228 /* 3229 * Secure timer -- this is actually restricted to only EL3 3230 * and configurably Secure-EL1 via the accessfn. 3231 */ 3232 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3233 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3235 .accessfn = gt_stimer_access, 3236 .readfn = gt_sec_tval_read, 3237 .writefn = gt_sec_tval_write, 3238 .resetfn = gt_sec_timer_reset, 3239 }, 3240 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3241 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3242 .type = ARM_CP_IO, .access = PL1_RW, 3243 .accessfn = gt_stimer_access, 3244 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3245 .resetvalue = 0, 3246 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3247 }, 3248 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3249 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3250 .type = ARM_CP_IO, .access = PL1_RW, 3251 .accessfn = gt_stimer_access, 3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3253 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3254 }, 3255 }; 3256 3257 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3258 bool isread) 3259 { 3260 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3261 return CP_ACCESS_TRAP; 3262 } 3263 return CP_ACCESS_OK; 3264 } 3265 3266 #else 3267 3268 /* 3269 * In user-mode most of the generic timer registers are inaccessible 3270 * however modern kernels (4.12+) allow access to cntvct_el0 3271 */ 3272 3273 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3274 { 3275 ARMCPU *cpu = env_archcpu(env); 3276 3277 /* 3278 * Currently we have no support for QEMUTimer in linux-user so we 3279 * can't call gt_get_countervalue(env), instead we directly 3280 * call the lower level functions. 3281 */ 3282 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3283 } 3284 3285 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3286 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3288 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3290 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3291 }, 3292 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3294 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3295 .readfn = gt_virt_cnt_read, 3296 }, 3297 }; 3298 3299 #endif 3300 3301 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3302 { 3303 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3304 raw_write(env, ri, value); 3305 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3306 raw_write(env, ri, value & 0xfffff6ff); 3307 } else { 3308 raw_write(env, ri, value & 0xfffff1ff); 3309 } 3310 } 3311 3312 #ifndef CONFIG_USER_ONLY 3313 /* get_phys_addr() isn't present for user-mode-only targets */ 3314 3315 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3316 bool isread) 3317 { 3318 if (ri->opc2 & 4) { 3319 /* 3320 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3321 * Secure EL1 (which can only happen if EL3 is AArch64). 3322 * They are simply UNDEF if executed from NS EL1. 3323 * They function normally from EL2 or EL3. 3324 */ 3325 if (arm_current_el(env) == 1) { 3326 if (arm_is_secure_below_el3(env)) { 3327 if (env->cp15.scr_el3 & SCR_EEL2) { 3328 return CP_ACCESS_TRAP_EL2; 3329 } 3330 return CP_ACCESS_TRAP_EL3; 3331 } 3332 return CP_ACCESS_TRAP_UNCATEGORIZED; 3333 } 3334 } 3335 return CP_ACCESS_OK; 3336 } 3337 3338 #ifdef CONFIG_TCG 3339 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3340 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3341 bool is_secure) 3342 { 3343 bool ret; 3344 uint64_t par64; 3345 bool format64 = false; 3346 ARMMMUFaultInfo fi = {}; 3347 GetPhysAddrResult res = {}; 3348 3349 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3350 is_secure, &res, &fi); 3351 3352 /* 3353 * ATS operations only do S1 or S1+S2 translations, so we never 3354 * have to deal with the ARMCacheAttrs format for S2 only. 3355 */ 3356 assert(!res.cacheattrs.is_s2_format); 3357 3358 if (ret) { 3359 /* 3360 * Some kinds of translation fault must cause exceptions rather 3361 * than being reported in the PAR. 3362 */ 3363 int current_el = arm_current_el(env); 3364 int target_el; 3365 uint32_t syn, fsr, fsc; 3366 bool take_exc = false; 3367 3368 if (fi.s1ptw && current_el == 1 3369 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3370 /* 3371 * Synchronous stage 2 fault on an access made as part of the 3372 * translation table walk for AT S1E0* or AT S1E1* insn 3373 * executed from NS EL1. If this is a synchronous external abort 3374 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3375 * to EL3. Otherwise the fault is taken as an exception to EL2, 3376 * and HPFAR_EL2 holds the faulting IPA. 3377 */ 3378 if (fi.type == ARMFault_SyncExternalOnWalk && 3379 (env->cp15.scr_el3 & SCR_EA)) { 3380 target_el = 3; 3381 } else { 3382 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3383 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3384 env->cp15.hpfar_el2 |= HPFAR_NS; 3385 } 3386 target_el = 2; 3387 } 3388 take_exc = true; 3389 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3390 /* 3391 * Synchronous external aborts during a translation table walk 3392 * are taken as Data Abort exceptions. 3393 */ 3394 if (fi.stage2) { 3395 if (current_el == 3) { 3396 target_el = 3; 3397 } else { 3398 target_el = 2; 3399 } 3400 } else { 3401 target_el = exception_target_el(env); 3402 } 3403 take_exc = true; 3404 } 3405 3406 if (take_exc) { 3407 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3408 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3409 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3410 fsr = arm_fi_to_lfsc(&fi); 3411 fsc = extract32(fsr, 0, 6); 3412 } else { 3413 fsr = arm_fi_to_sfsc(&fi); 3414 fsc = 0x3f; 3415 } 3416 /* 3417 * Report exception with ESR indicating a fault due to a 3418 * translation table walk for a cache maintenance instruction. 3419 */ 3420 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3421 fi.ea, 1, fi.s1ptw, 1, fsc); 3422 env->exception.vaddress = value; 3423 env->exception.fsr = fsr; 3424 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3425 } 3426 } 3427 3428 if (is_a64(env)) { 3429 format64 = true; 3430 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3431 /* 3432 * ATS1Cxx: 3433 * * TTBCR.EAE determines whether the result is returned using the 3434 * 32-bit or the 64-bit PAR format 3435 * * Instructions executed in Hyp mode always use the 64bit format 3436 * 3437 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3438 * * The Non-secure TTBCR.EAE bit is set to 1 3439 * * The implementation includes EL2, and the value of HCR.VM is 1 3440 * 3441 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3442 * 3443 * ATS1Hx always uses the 64bit format. 3444 */ 3445 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3446 3447 if (arm_feature(env, ARM_FEATURE_EL2)) { 3448 if (mmu_idx == ARMMMUIdx_E10_0 || 3449 mmu_idx == ARMMMUIdx_E10_1 || 3450 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3451 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3452 } else { 3453 format64 |= arm_current_el(env) == 2; 3454 } 3455 } 3456 } 3457 3458 if (format64) { 3459 /* Create a 64-bit PAR */ 3460 par64 = (1 << 11); /* LPAE bit always set */ 3461 if (!ret) { 3462 par64 |= res.f.phys_addr & ~0xfffULL; 3463 if (!res.f.attrs.secure) { 3464 par64 |= (1 << 9); /* NS */ 3465 } 3466 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3467 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3468 } else { 3469 uint32_t fsr = arm_fi_to_lfsc(&fi); 3470 3471 par64 |= 1; /* F */ 3472 par64 |= (fsr & 0x3f) << 1; /* FS */ 3473 if (fi.stage2) { 3474 par64 |= (1 << 9); /* S */ 3475 } 3476 if (fi.s1ptw) { 3477 par64 |= (1 << 8); /* PTW */ 3478 } 3479 } 3480 } else { 3481 /* 3482 * fsr is a DFSR/IFSR value for the short descriptor 3483 * translation table format (with WnR always clear). 3484 * Convert it to a 32-bit PAR. 3485 */ 3486 if (!ret) { 3487 /* We do not set any attribute bits in the PAR */ 3488 if (res.f.lg_page_size == 24 3489 && arm_feature(env, ARM_FEATURE_V7)) { 3490 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3491 } else { 3492 par64 = res.f.phys_addr & 0xfffff000; 3493 } 3494 if (!res.f.attrs.secure) { 3495 par64 |= (1 << 9); /* NS */ 3496 } 3497 } else { 3498 uint32_t fsr = arm_fi_to_sfsc(&fi); 3499 3500 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3501 ((fsr & 0xf) << 1) | 1; 3502 } 3503 } 3504 return par64; 3505 } 3506 #endif /* CONFIG_TCG */ 3507 3508 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3509 { 3510 #ifdef CONFIG_TCG 3511 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3512 uint64_t par64; 3513 ARMMMUIdx mmu_idx; 3514 int el = arm_current_el(env); 3515 bool secure = arm_is_secure_below_el3(env); 3516 3517 switch (ri->opc2 & 6) { 3518 case 0: 3519 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3520 switch (el) { 3521 case 3: 3522 mmu_idx = ARMMMUIdx_E3; 3523 secure = true; 3524 break; 3525 case 2: 3526 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3527 /* fall through */ 3528 case 1: 3529 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3530 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3531 } else { 3532 mmu_idx = ARMMMUIdx_Stage1_E1; 3533 } 3534 break; 3535 default: 3536 g_assert_not_reached(); 3537 } 3538 break; 3539 case 2: 3540 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3541 switch (el) { 3542 case 3: 3543 mmu_idx = ARMMMUIdx_E10_0; 3544 secure = true; 3545 break; 3546 case 2: 3547 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3548 mmu_idx = ARMMMUIdx_Stage1_E0; 3549 break; 3550 case 1: 3551 mmu_idx = ARMMMUIdx_Stage1_E0; 3552 break; 3553 default: 3554 g_assert_not_reached(); 3555 } 3556 break; 3557 case 4: 3558 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3559 mmu_idx = ARMMMUIdx_E10_1; 3560 secure = false; 3561 break; 3562 case 6: 3563 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3564 mmu_idx = ARMMMUIdx_E10_0; 3565 secure = false; 3566 break; 3567 default: 3568 g_assert_not_reached(); 3569 } 3570 3571 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3572 3573 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3574 #else 3575 /* Handled by hardware accelerator. */ 3576 g_assert_not_reached(); 3577 #endif /* CONFIG_TCG */ 3578 } 3579 3580 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 #ifdef CONFIG_TCG 3584 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3585 uint64_t par64; 3586 3587 /* There is no SecureEL2 for AArch32. */ 3588 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3589 3590 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3591 #else 3592 /* Handled by hardware accelerator. */ 3593 g_assert_not_reached(); 3594 #endif /* CONFIG_TCG */ 3595 } 3596 3597 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3598 bool isread) 3599 { 3600 if (arm_current_el(env) == 3 && 3601 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3602 return CP_ACCESS_TRAP; 3603 } 3604 return CP_ACCESS_OK; 3605 } 3606 3607 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3608 uint64_t value) 3609 { 3610 #ifdef CONFIG_TCG 3611 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3612 ARMMMUIdx mmu_idx; 3613 int secure = arm_is_secure_below_el3(env); 3614 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3615 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3616 3617 switch (ri->opc2 & 6) { 3618 case 0: 3619 switch (ri->opc1) { 3620 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3621 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3622 mmu_idx = regime_e20 ? 3623 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3624 } else { 3625 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3626 } 3627 break; 3628 case 4: /* AT S1E2R, AT S1E2W */ 3629 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3630 break; 3631 case 6: /* AT S1E3R, AT S1E3W */ 3632 mmu_idx = ARMMMUIdx_E3; 3633 secure = true; 3634 break; 3635 default: 3636 g_assert_not_reached(); 3637 } 3638 break; 3639 case 2: /* AT S1E0R, AT S1E0W */ 3640 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3641 break; 3642 case 4: /* AT S12E1R, AT S12E1W */ 3643 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3644 break; 3645 case 6: /* AT S12E0R, AT S12E0W */ 3646 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3647 break; 3648 default: 3649 g_assert_not_reached(); 3650 } 3651 3652 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3653 mmu_idx, secure); 3654 #else 3655 /* Handled by hardware accelerator. */ 3656 g_assert_not_reached(); 3657 #endif /* CONFIG_TCG */ 3658 } 3659 #endif 3660 3661 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3662 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3663 .access = PL1_RW, .resetvalue = 0, 3664 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3665 offsetoflow32(CPUARMState, cp15.par_ns) }, 3666 .writefn = par_write }, 3667 #ifndef CONFIG_USER_ONLY 3668 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3669 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3670 .access = PL1_W, .accessfn = ats_access, 3671 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3672 #endif 3673 }; 3674 3675 /* Return basic MPU access permission bits. */ 3676 static uint32_t simple_mpu_ap_bits(uint32_t val) 3677 { 3678 uint32_t ret; 3679 uint32_t mask; 3680 int i; 3681 ret = 0; 3682 mask = 3; 3683 for (i = 0; i < 16; i += 2) { 3684 ret |= (val >> i) & mask; 3685 mask <<= 2; 3686 } 3687 return ret; 3688 } 3689 3690 /* Pad basic MPU access permission bits to extended format. */ 3691 static uint32_t extended_mpu_ap_bits(uint32_t val) 3692 { 3693 uint32_t ret; 3694 uint32_t mask; 3695 int i; 3696 ret = 0; 3697 mask = 3; 3698 for (i = 0; i < 16; i += 2) { 3699 ret |= (val & mask) << i; 3700 mask <<= 2; 3701 } 3702 return ret; 3703 } 3704 3705 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3706 uint64_t value) 3707 { 3708 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3709 } 3710 3711 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3712 { 3713 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3714 } 3715 3716 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3717 uint64_t value) 3718 { 3719 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3720 } 3721 3722 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3723 { 3724 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3725 } 3726 3727 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3728 { 3729 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3730 3731 if (!u32p) { 3732 return 0; 3733 } 3734 3735 u32p += env->pmsav7.rnr[M_REG_NS]; 3736 return *u32p; 3737 } 3738 3739 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3740 uint64_t value) 3741 { 3742 ARMCPU *cpu = env_archcpu(env); 3743 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3744 3745 if (!u32p) { 3746 return; 3747 } 3748 3749 u32p += env->pmsav7.rnr[M_REG_NS]; 3750 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3751 *u32p = value; 3752 } 3753 3754 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3755 uint64_t value) 3756 { 3757 ARMCPU *cpu = env_archcpu(env); 3758 uint32_t nrgs = cpu->pmsav7_dregion; 3759 3760 if (value >= nrgs) { 3761 qemu_log_mask(LOG_GUEST_ERROR, 3762 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3763 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3764 return; 3765 } 3766 3767 raw_write(env, ri, value); 3768 } 3769 3770 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3771 uint64_t value) 3772 { 3773 ARMCPU *cpu = env_archcpu(env); 3774 3775 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3776 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3777 } 3778 3779 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3780 { 3781 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3782 } 3783 3784 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 ARMCPU *cpu = env_archcpu(env); 3788 3789 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3790 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3791 } 3792 3793 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3794 { 3795 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3796 } 3797 3798 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3799 uint64_t value) 3800 { 3801 ARMCPU *cpu = env_archcpu(env); 3802 3803 /* 3804 * Ignore writes that would select not implemented region. 3805 * This is architecturally UNPREDICTABLE. 3806 */ 3807 if (value >= cpu->pmsav7_dregion) { 3808 return; 3809 } 3810 3811 env->pmsav7.rnr[M_REG_NS] = value; 3812 } 3813 3814 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3815 uint64_t value) 3816 { 3817 ARMCPU *cpu = env_archcpu(env); 3818 3819 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3820 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3821 } 3822 3823 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3824 { 3825 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3826 } 3827 3828 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3829 uint64_t value) 3830 { 3831 ARMCPU *cpu = env_archcpu(env); 3832 3833 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3834 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3835 } 3836 3837 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3838 { 3839 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3840 } 3841 3842 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3843 uint64_t value) 3844 { 3845 uint32_t n; 3846 uint32_t bit; 3847 ARMCPU *cpu = env_archcpu(env); 3848 3849 /* Ignore writes to unimplemented regions */ 3850 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3851 value &= MAKE_64BIT_MASK(0, rmax); 3852 3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3854 3855 /* Register alias is only valid for first 32 indexes */ 3856 for (n = 0; n < rmax; ++n) { 3857 bit = extract32(value, n, 1); 3858 env->pmsav8.hprlar[n] = deposit32( 3859 env->pmsav8.hprlar[n], 0, 1, bit); 3860 } 3861 } 3862 3863 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3864 { 3865 uint32_t n; 3866 uint32_t result = 0x0; 3867 ARMCPU *cpu = env_archcpu(env); 3868 3869 /* Register alias is only valid for first 32 indexes */ 3870 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3871 if (env->pmsav8.hprlar[n] & 0x1) { 3872 result |= (0x1 << n); 3873 } 3874 } 3875 return result; 3876 } 3877 3878 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3879 uint64_t value) 3880 { 3881 ARMCPU *cpu = env_archcpu(env); 3882 3883 /* 3884 * Ignore writes that would select not implemented region. 3885 * This is architecturally UNPREDICTABLE. 3886 */ 3887 if (value >= cpu->pmsav8r_hdregion) { 3888 return; 3889 } 3890 3891 env->pmsav8.hprselr = value; 3892 } 3893 3894 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3895 uint64_t value) 3896 { 3897 ARMCPU *cpu = env_archcpu(env); 3898 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3899 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3900 3901 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3902 3903 if (ri->opc1 & 4) { 3904 if (index >= cpu->pmsav8r_hdregion) { 3905 return; 3906 } 3907 if (ri->opc2 & 0x1) { 3908 env->pmsav8.hprlar[index] = value; 3909 } else { 3910 env->pmsav8.hprbar[index] = value; 3911 } 3912 } else { 3913 if (index >= cpu->pmsav7_dregion) { 3914 return; 3915 } 3916 if (ri->opc2 & 0x1) { 3917 env->pmsav8.rlar[M_REG_NS][index] = value; 3918 } else { 3919 env->pmsav8.rbar[M_REG_NS][index] = value; 3920 } 3921 } 3922 } 3923 3924 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3925 { 3926 ARMCPU *cpu = env_archcpu(env); 3927 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3928 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3929 3930 if (ri->opc1 & 4) { 3931 if (index >= cpu->pmsav8r_hdregion) { 3932 return 0x0; 3933 } 3934 if (ri->opc2 & 0x1) { 3935 return env->pmsav8.hprlar[index]; 3936 } else { 3937 return env->pmsav8.hprbar[index]; 3938 } 3939 } else { 3940 if (index >= cpu->pmsav7_dregion) { 3941 return 0x0; 3942 } 3943 if (ri->opc2 & 0x1) { 3944 return env->pmsav8.rlar[M_REG_NS][index]; 3945 } else { 3946 return env->pmsav8.rbar[M_REG_NS][index]; 3947 } 3948 } 3949 } 3950 3951 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3952 { .name = "PRBAR", 3953 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3954 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3955 .accessfn = access_tvm_trvm, 3956 .readfn = prbar_read, .writefn = prbar_write }, 3957 { .name = "PRLAR", 3958 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3959 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3960 .accessfn = access_tvm_trvm, 3961 .readfn = prlar_read, .writefn = prlar_write }, 3962 { .name = "PRSELR", .resetvalue = 0, 3963 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3964 .access = PL1_RW, .accessfn = access_tvm_trvm, 3965 .writefn = prselr_write, 3966 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3967 { .name = "HPRBAR", .resetvalue = 0, 3968 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3969 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3970 .readfn = hprbar_read, .writefn = hprbar_write }, 3971 { .name = "HPRLAR", 3972 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3973 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3974 .readfn = hprlar_read, .writefn = hprlar_write }, 3975 { .name = "HPRSELR", .resetvalue = 0, 3976 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3977 .access = PL2_RW, 3978 .writefn = hprselr_write, 3979 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3980 { .name = "HPRENR", 3981 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3982 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3983 .readfn = hprenr_read, .writefn = hprenr_write }, 3984 }; 3985 3986 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3987 /* 3988 * Reset for all these registers is handled in arm_cpu_reset(), 3989 * because the PMSAv7 is also used by M-profile CPUs, which do 3990 * not register cpregs but still need the state to be reset. 3991 */ 3992 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3993 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3994 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3995 .readfn = pmsav7_read, .writefn = pmsav7_write, 3996 .resetfn = arm_cp_reset_ignore }, 3997 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3998 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3999 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4000 .readfn = pmsav7_read, .writefn = pmsav7_write, 4001 .resetfn = arm_cp_reset_ignore }, 4002 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4003 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4004 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4005 .readfn = pmsav7_read, .writefn = pmsav7_write, 4006 .resetfn = arm_cp_reset_ignore }, 4007 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4008 .access = PL1_RW, 4009 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4010 .writefn = pmsav7_rgnr_write, 4011 .resetfn = arm_cp_reset_ignore }, 4012 }; 4013 4014 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4015 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4016 .access = PL1_RW, .type = ARM_CP_ALIAS, 4017 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4018 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4019 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4020 .access = PL1_RW, .type = ARM_CP_ALIAS, 4021 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4022 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4023 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4024 .access = PL1_RW, 4025 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4026 .resetvalue = 0, }, 4027 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4028 .access = PL1_RW, 4029 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4030 .resetvalue = 0, }, 4031 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4032 .access = PL1_RW, 4033 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4034 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4035 .access = PL1_RW, 4036 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4037 /* Protection region base and size registers */ 4038 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4039 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4040 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4041 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4042 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4043 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4044 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4045 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4046 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4047 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4048 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4049 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4050 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4051 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4052 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4053 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4054 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4055 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4056 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4057 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4058 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4059 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4060 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4061 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4062 }; 4063 4064 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4065 uint64_t value) 4066 { 4067 ARMCPU *cpu = env_archcpu(env); 4068 4069 if (!arm_feature(env, ARM_FEATURE_V8)) { 4070 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4071 /* 4072 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4073 * using Long-descriptor translation table format 4074 */ 4075 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4076 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4077 /* 4078 * In an implementation that includes the Security Extensions 4079 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4080 * Short-descriptor translation table format. 4081 */ 4082 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4083 } else { 4084 value &= TTBCR_N; 4085 } 4086 } 4087 4088 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4089 /* 4090 * With LPAE the TTBCR could result in a change of ASID 4091 * via the TTBCR.A1 bit, so do a TLB flush. 4092 */ 4093 tlb_flush(CPU(cpu)); 4094 } 4095 raw_write(env, ri, value); 4096 } 4097 4098 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4099 uint64_t value) 4100 { 4101 ARMCPU *cpu = env_archcpu(env); 4102 4103 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4104 tlb_flush(CPU(cpu)); 4105 raw_write(env, ri, value); 4106 } 4107 4108 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4109 uint64_t value) 4110 { 4111 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4112 if (cpreg_field_is_64bit(ri) && 4113 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4114 ARMCPU *cpu = env_archcpu(env); 4115 tlb_flush(CPU(cpu)); 4116 } 4117 raw_write(env, ri, value); 4118 } 4119 4120 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4121 uint64_t value) 4122 { 4123 /* 4124 * If we are running with E2&0 regime, then an ASID is active. 4125 * Flush if that might be changing. Note we're not checking 4126 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4127 * holds the active ASID, only checking the field that might. 4128 */ 4129 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4130 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4131 uint16_t mask = ARMMMUIdxBit_E20_2 | 4132 ARMMMUIdxBit_E20_2_PAN | 4133 ARMMMUIdxBit_E20_0; 4134 tlb_flush_by_mmuidx(env_cpu(env), mask); 4135 } 4136 raw_write(env, ri, value); 4137 } 4138 4139 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4140 uint64_t value) 4141 { 4142 ARMCPU *cpu = env_archcpu(env); 4143 CPUState *cs = CPU(cpu); 4144 4145 /* 4146 * A change in VMID to the stage2 page table (Stage2) invalidates 4147 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4148 */ 4149 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4150 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4151 } 4152 raw_write(env, ri, value); 4153 } 4154 4155 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4156 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4157 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4158 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4159 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4160 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4161 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4162 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4163 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4164 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4165 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4166 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4167 offsetof(CPUARMState, cp15.dfar_ns) } }, 4168 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4169 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4170 .access = PL1_RW, .accessfn = access_tvm_trvm, 4171 .fgt = FGT_FAR_EL1, 4172 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4173 .resetvalue = 0, }, 4174 }; 4175 4176 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4177 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4178 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4179 .access = PL1_RW, .accessfn = access_tvm_trvm, 4180 .fgt = FGT_ESR_EL1, 4181 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4182 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4183 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4184 .access = PL1_RW, .accessfn = access_tvm_trvm, 4185 .fgt = FGT_TTBR0_EL1, 4186 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4187 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4188 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4189 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4190 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4191 .access = PL1_RW, .accessfn = access_tvm_trvm, 4192 .fgt = FGT_TTBR1_EL1, 4193 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4194 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4195 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4196 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4197 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4198 .access = PL1_RW, .accessfn = access_tvm_trvm, 4199 .fgt = FGT_TCR_EL1, 4200 .writefn = vmsa_tcr_el12_write, 4201 .raw_writefn = raw_write, 4202 .resetvalue = 0, 4203 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4204 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4205 .access = PL1_RW, .accessfn = access_tvm_trvm, 4206 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4207 .raw_writefn = raw_write, 4208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4209 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4210 }; 4211 4212 /* 4213 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4214 * qemu tlbs nor adjusting cached masks. 4215 */ 4216 static const ARMCPRegInfo ttbcr2_reginfo = { 4217 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4218 .access = PL1_RW, .accessfn = access_tvm_trvm, 4219 .type = ARM_CP_ALIAS, 4220 .bank_fieldoffsets = { 4221 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4222 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4223 }, 4224 }; 4225 4226 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4227 uint64_t value) 4228 { 4229 env->cp15.c15_ticonfig = value & 0xe7; 4230 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4231 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4232 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4233 } 4234 4235 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4236 uint64_t value) 4237 { 4238 env->cp15.c15_threadid = value & 0xffff; 4239 } 4240 4241 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4242 uint64_t value) 4243 { 4244 /* Wait-for-interrupt (deprecated) */ 4245 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4246 } 4247 4248 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4249 uint64_t value) 4250 { 4251 /* 4252 * On OMAP there are registers indicating the max/min index of dcache lines 4253 * containing a dirty line; cache flush operations have to reset these. 4254 */ 4255 env->cp15.c15_i_max = 0x000; 4256 env->cp15.c15_i_min = 0xff0; 4257 } 4258 4259 static const ARMCPRegInfo omap_cp_reginfo[] = { 4260 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4261 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4262 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4263 .resetvalue = 0, }, 4264 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4265 .access = PL1_RW, .type = ARM_CP_NOP }, 4266 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4267 .access = PL1_RW, 4268 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4269 .writefn = omap_ticonfig_write }, 4270 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4271 .access = PL1_RW, 4272 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4273 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4274 .access = PL1_RW, .resetvalue = 0xff0, 4275 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4276 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4277 .access = PL1_RW, 4278 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4279 .writefn = omap_threadid_write }, 4280 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4281 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4282 .type = ARM_CP_NO_RAW, 4283 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4284 /* 4285 * TODO: Peripheral port remap register: 4286 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4287 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4288 * when MMU is off. 4289 */ 4290 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4291 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4292 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4293 .writefn = omap_cachemaint_write }, 4294 { .name = "C9", .cp = 15, .crn = 9, 4295 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4296 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4297 }; 4298 4299 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4300 uint64_t value) 4301 { 4302 env->cp15.c15_cpar = value & 0x3fff; 4303 } 4304 4305 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4306 { .name = "XSCALE_CPAR", 4307 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4308 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4309 .writefn = xscale_cpar_write, }, 4310 { .name = "XSCALE_AUXCR", 4311 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4312 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4313 .resetvalue = 0, }, 4314 /* 4315 * XScale specific cache-lockdown: since we have no cache we NOP these 4316 * and hope the guest does not really rely on cache behaviour. 4317 */ 4318 { .name = "XSCALE_LOCK_ICACHE_LINE", 4319 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4320 .access = PL1_W, .type = ARM_CP_NOP }, 4321 { .name = "XSCALE_UNLOCK_ICACHE", 4322 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4323 .access = PL1_W, .type = ARM_CP_NOP }, 4324 { .name = "XSCALE_DCACHE_LOCK", 4325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4326 .access = PL1_RW, .type = ARM_CP_NOP }, 4327 { .name = "XSCALE_UNLOCK_DCACHE", 4328 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4329 .access = PL1_W, .type = ARM_CP_NOP }, 4330 }; 4331 4332 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4333 /* 4334 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4335 * implementation of this implementation-defined space. 4336 * Ideally this should eventually disappear in favour of actually 4337 * implementing the correct behaviour for all cores. 4338 */ 4339 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4340 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4341 .access = PL1_RW, 4342 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4343 .resetvalue = 0 }, 4344 }; 4345 4346 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4347 /* Cache status: RAZ because we have no cache so it's always clean */ 4348 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4349 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4350 .resetvalue = 0 }, 4351 }; 4352 4353 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4354 /* We never have a block transfer operation in progress */ 4355 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4356 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4357 .resetvalue = 0 }, 4358 /* The cache ops themselves: these all NOP for QEMU */ 4359 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4360 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4361 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4362 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4363 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4364 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4365 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4366 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4367 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4368 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4369 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4370 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4371 }; 4372 4373 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4374 /* 4375 * The cache test-and-clean instructions always return (1 << 30) 4376 * to indicate that there are no dirty cache lines. 4377 */ 4378 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4379 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4380 .resetvalue = (1 << 30) }, 4381 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4382 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4383 .resetvalue = (1 << 30) }, 4384 }; 4385 4386 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4387 /* Ignore ReadBuffer accesses */ 4388 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4389 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4390 .access = PL1_RW, .resetvalue = 0, 4391 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4392 }; 4393 4394 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4395 { 4396 unsigned int cur_el = arm_current_el(env); 4397 4398 if (arm_is_el2_enabled(env) && cur_el == 1) { 4399 return env->cp15.vpidr_el2; 4400 } 4401 return raw_read(env, ri); 4402 } 4403 4404 static uint64_t mpidr_read_val(CPUARMState *env) 4405 { 4406 ARMCPU *cpu = env_archcpu(env); 4407 uint64_t mpidr = cpu->mp_affinity; 4408 4409 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4410 mpidr |= (1U << 31); 4411 /* 4412 * Cores which are uniprocessor (non-coherent) 4413 * but still implement the MP extensions set 4414 * bit 30. (For instance, Cortex-R5). 4415 */ 4416 if (cpu->mp_is_up) { 4417 mpidr |= (1u << 30); 4418 } 4419 } 4420 return mpidr; 4421 } 4422 4423 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4424 { 4425 unsigned int cur_el = arm_current_el(env); 4426 4427 if (arm_is_el2_enabled(env) && cur_el == 1) { 4428 return env->cp15.vmpidr_el2; 4429 } 4430 return mpidr_read_val(env); 4431 } 4432 4433 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4434 /* NOP AMAIR0/1 */ 4435 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4436 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4437 .access = PL1_RW, .accessfn = access_tvm_trvm, 4438 .fgt = FGT_AMAIR_EL1, 4439 .type = ARM_CP_CONST, .resetvalue = 0 }, 4440 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4441 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4442 .access = PL1_RW, .accessfn = access_tvm_trvm, 4443 .type = ARM_CP_CONST, .resetvalue = 0 }, 4444 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4445 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4446 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4447 offsetof(CPUARMState, cp15.par_ns)} }, 4448 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4449 .access = PL1_RW, .accessfn = access_tvm_trvm, 4450 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4452 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4453 .writefn = vmsa_ttbr_write, }, 4454 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4455 .access = PL1_RW, .accessfn = access_tvm_trvm, 4456 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4458 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4459 .writefn = vmsa_ttbr_write, }, 4460 }; 4461 4462 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4463 { 4464 return vfp_get_fpcr(env); 4465 } 4466 4467 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4468 uint64_t value) 4469 { 4470 vfp_set_fpcr(env, value); 4471 } 4472 4473 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4474 { 4475 return vfp_get_fpsr(env); 4476 } 4477 4478 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4479 uint64_t value) 4480 { 4481 vfp_set_fpsr(env, value); 4482 } 4483 4484 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4485 bool isread) 4486 { 4487 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4488 return CP_ACCESS_TRAP; 4489 } 4490 return CP_ACCESS_OK; 4491 } 4492 4493 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4494 uint64_t value) 4495 { 4496 env->daif = value & PSTATE_DAIF; 4497 } 4498 4499 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4500 { 4501 return env->pstate & PSTATE_PAN; 4502 } 4503 4504 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4505 uint64_t value) 4506 { 4507 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4508 } 4509 4510 static const ARMCPRegInfo pan_reginfo = { 4511 .name = "PAN", .state = ARM_CP_STATE_AA64, 4512 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4513 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4514 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4515 }; 4516 4517 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4518 { 4519 return env->pstate & PSTATE_UAO; 4520 } 4521 4522 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4523 uint64_t value) 4524 { 4525 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4526 } 4527 4528 static const ARMCPRegInfo uao_reginfo = { 4529 .name = "UAO", .state = ARM_CP_STATE_AA64, 4530 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4531 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4532 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4533 }; 4534 4535 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4536 { 4537 return env->pstate & PSTATE_DIT; 4538 } 4539 4540 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4541 uint64_t value) 4542 { 4543 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4544 } 4545 4546 static const ARMCPRegInfo dit_reginfo = { 4547 .name = "DIT", .state = ARM_CP_STATE_AA64, 4548 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4549 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4550 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4551 }; 4552 4553 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4554 { 4555 return env->pstate & PSTATE_SSBS; 4556 } 4557 4558 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4559 uint64_t value) 4560 { 4561 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4562 } 4563 4564 static const ARMCPRegInfo ssbs_reginfo = { 4565 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4566 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4567 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4568 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4569 }; 4570 4571 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4572 const ARMCPRegInfo *ri, 4573 bool isread) 4574 { 4575 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4576 switch (arm_current_el(env)) { 4577 case 0: 4578 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4579 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4580 return CP_ACCESS_TRAP; 4581 } 4582 /* fall through */ 4583 case 1: 4584 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4585 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4586 return CP_ACCESS_TRAP_EL2; 4587 } 4588 break; 4589 } 4590 return CP_ACCESS_OK; 4591 } 4592 4593 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4594 { 4595 /* Cache invalidate/clean to Point of Unification... */ 4596 switch (arm_current_el(env)) { 4597 case 0: 4598 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4599 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4600 return CP_ACCESS_TRAP; 4601 } 4602 /* fall through */ 4603 case 1: 4604 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4605 if (arm_hcr_el2_eff(env) & hcrflags) { 4606 return CP_ACCESS_TRAP_EL2; 4607 } 4608 break; 4609 } 4610 return CP_ACCESS_OK; 4611 } 4612 4613 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4614 bool isread) 4615 { 4616 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4617 } 4618 4619 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4620 bool isread) 4621 { 4622 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4623 } 4624 4625 /* 4626 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4627 * Page D4-1736 (DDI0487A.b) 4628 */ 4629 4630 static int vae1_tlbmask(CPUARMState *env) 4631 { 4632 uint64_t hcr = arm_hcr_el2_eff(env); 4633 uint16_t mask; 4634 4635 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4636 mask = ARMMMUIdxBit_E20_2 | 4637 ARMMMUIdxBit_E20_2_PAN | 4638 ARMMMUIdxBit_E20_0; 4639 } else { 4640 mask = ARMMMUIdxBit_E10_1 | 4641 ARMMMUIdxBit_E10_1_PAN | 4642 ARMMMUIdxBit_E10_0; 4643 } 4644 return mask; 4645 } 4646 4647 /* Return 56 if TBI is enabled, 64 otherwise. */ 4648 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4649 uint64_t addr) 4650 { 4651 uint64_t tcr = regime_tcr(env, mmu_idx); 4652 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4653 int select = extract64(addr, 55, 1); 4654 4655 return (tbi >> select) & 1 ? 56 : 64; 4656 } 4657 4658 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4659 { 4660 uint64_t hcr = arm_hcr_el2_eff(env); 4661 ARMMMUIdx mmu_idx; 4662 4663 /* Only the regime of the mmu_idx below is significant. */ 4664 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4665 mmu_idx = ARMMMUIdx_E20_0; 4666 } else { 4667 mmu_idx = ARMMMUIdx_E10_0; 4668 } 4669 4670 return tlbbits_for_regime(env, mmu_idx, addr); 4671 } 4672 4673 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4674 uint64_t value) 4675 { 4676 CPUState *cs = env_cpu(env); 4677 int mask = vae1_tlbmask(env); 4678 4679 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4680 } 4681 4682 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4683 uint64_t value) 4684 { 4685 CPUState *cs = env_cpu(env); 4686 int mask = vae1_tlbmask(env); 4687 4688 if (tlb_force_broadcast(env)) { 4689 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4690 } else { 4691 tlb_flush_by_mmuidx(cs, mask); 4692 } 4693 } 4694 4695 static int e2_tlbmask(CPUARMState *env) 4696 { 4697 return (ARMMMUIdxBit_E20_0 | 4698 ARMMMUIdxBit_E20_2 | 4699 ARMMMUIdxBit_E20_2_PAN | 4700 ARMMMUIdxBit_E2); 4701 } 4702 4703 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4704 uint64_t value) 4705 { 4706 CPUState *cs = env_cpu(env); 4707 int mask = alle1_tlbmask(env); 4708 4709 tlb_flush_by_mmuidx(cs, mask); 4710 } 4711 4712 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4713 uint64_t value) 4714 { 4715 CPUState *cs = env_cpu(env); 4716 int mask = e2_tlbmask(env); 4717 4718 tlb_flush_by_mmuidx(cs, mask); 4719 } 4720 4721 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4722 uint64_t value) 4723 { 4724 ARMCPU *cpu = env_archcpu(env); 4725 CPUState *cs = CPU(cpu); 4726 4727 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4728 } 4729 4730 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4731 uint64_t value) 4732 { 4733 CPUState *cs = env_cpu(env); 4734 int mask = alle1_tlbmask(env); 4735 4736 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4737 } 4738 4739 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4740 uint64_t value) 4741 { 4742 CPUState *cs = env_cpu(env); 4743 int mask = e2_tlbmask(env); 4744 4745 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4746 } 4747 4748 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4749 uint64_t value) 4750 { 4751 CPUState *cs = env_cpu(env); 4752 4753 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4754 } 4755 4756 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4757 uint64_t value) 4758 { 4759 /* 4760 * Invalidate by VA, EL2 4761 * Currently handles both VAE2 and VALE2, since we don't support 4762 * flush-last-level-only. 4763 */ 4764 CPUState *cs = env_cpu(env); 4765 int mask = e2_tlbmask(env); 4766 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4767 4768 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4769 } 4770 4771 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4772 uint64_t value) 4773 { 4774 /* 4775 * Invalidate by VA, EL3 4776 * Currently handles both VAE3 and VALE3, since we don't support 4777 * flush-last-level-only. 4778 */ 4779 ARMCPU *cpu = env_archcpu(env); 4780 CPUState *cs = CPU(cpu); 4781 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4782 4783 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4784 } 4785 4786 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4787 uint64_t value) 4788 { 4789 CPUState *cs = env_cpu(env); 4790 int mask = vae1_tlbmask(env); 4791 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4792 int bits = vae1_tlbbits(env, pageaddr); 4793 4794 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4795 } 4796 4797 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4798 uint64_t value) 4799 { 4800 /* 4801 * Invalidate by VA, EL1&0 (AArch64 version). 4802 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4803 * since we don't support flush-for-specific-ASID-only or 4804 * flush-last-level-only. 4805 */ 4806 CPUState *cs = env_cpu(env); 4807 int mask = vae1_tlbmask(env); 4808 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4809 int bits = vae1_tlbbits(env, pageaddr); 4810 4811 if (tlb_force_broadcast(env)) { 4812 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4813 } else { 4814 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4815 } 4816 } 4817 4818 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4819 uint64_t value) 4820 { 4821 CPUState *cs = env_cpu(env); 4822 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4823 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4824 4825 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4826 ARMMMUIdxBit_E2, bits); 4827 } 4828 4829 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4830 uint64_t value) 4831 { 4832 CPUState *cs = env_cpu(env); 4833 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4834 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4835 4836 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4837 ARMMMUIdxBit_E3, bits); 4838 } 4839 4840 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4841 { 4842 /* 4843 * The MSB of value is the NS field, which only applies if SEL2 4844 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4845 */ 4846 return (value >= 0 4847 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4848 && arm_is_secure_below_el3(env) 4849 ? ARMMMUIdxBit_Stage2_S 4850 : ARMMMUIdxBit_Stage2); 4851 } 4852 4853 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4854 uint64_t value) 4855 { 4856 CPUState *cs = env_cpu(env); 4857 int mask = ipas2e1_tlbmask(env, value); 4858 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4859 4860 if (tlb_force_broadcast(env)) { 4861 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4862 } else { 4863 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4864 } 4865 } 4866 4867 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4868 uint64_t value) 4869 { 4870 CPUState *cs = env_cpu(env); 4871 int mask = ipas2e1_tlbmask(env, value); 4872 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4873 4874 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4875 } 4876 4877 #ifdef TARGET_AARCH64 4878 typedef struct { 4879 uint64_t base; 4880 uint64_t length; 4881 } TLBIRange; 4882 4883 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4884 { 4885 /* 4886 * Note that the TLBI range TG field encoding differs from both 4887 * TG0 and TG1 encodings. 4888 */ 4889 switch (tg) { 4890 case 1: 4891 return Gran4K; 4892 case 2: 4893 return Gran16K; 4894 case 3: 4895 return Gran64K; 4896 default: 4897 return GranInvalid; 4898 } 4899 } 4900 4901 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4902 uint64_t value) 4903 { 4904 unsigned int page_size_granule, page_shift, num, scale, exponent; 4905 /* Extract one bit to represent the va selector in use. */ 4906 uint64_t select = sextract64(value, 36, 1); 4907 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 4908 TLBIRange ret = { }; 4909 ARMGranuleSize gran; 4910 4911 page_size_granule = extract64(value, 46, 2); 4912 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4913 4914 /* The granule encoded in value must match the granule in use. */ 4915 if (gran != param.gran) { 4916 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4917 page_size_granule); 4918 return ret; 4919 } 4920 4921 page_shift = arm_granule_bits(gran); 4922 num = extract64(value, 39, 5); 4923 scale = extract64(value, 44, 2); 4924 exponent = (5 * scale) + 1; 4925 4926 ret.length = (num + 1) << (exponent + page_shift); 4927 4928 if (param.select) { 4929 ret.base = sextract64(value, 0, 37); 4930 } else { 4931 ret.base = extract64(value, 0, 37); 4932 } 4933 if (param.ds) { 4934 /* 4935 * With DS=1, BaseADDR is always shifted 16 so that it is able 4936 * to address all 52 va bits. The input address is perforce 4937 * aligned on a 64k boundary regardless of translation granule. 4938 */ 4939 page_shift = 16; 4940 } 4941 ret.base <<= page_shift; 4942 4943 return ret; 4944 } 4945 4946 static void do_rvae_write(CPUARMState *env, uint64_t value, 4947 int idxmap, bool synced) 4948 { 4949 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4950 TLBIRange range; 4951 int bits; 4952 4953 range = tlbi_aa64_get_range(env, one_idx, value); 4954 bits = tlbbits_for_regime(env, one_idx, range.base); 4955 4956 if (synced) { 4957 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4958 range.base, 4959 range.length, 4960 idxmap, 4961 bits); 4962 } else { 4963 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4964 range.length, idxmap, bits); 4965 } 4966 } 4967 4968 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4969 const ARMCPRegInfo *ri, 4970 uint64_t value) 4971 { 4972 /* 4973 * Invalidate by VA range, EL1&0. 4974 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4975 * since we don't support flush-for-specific-ASID-only or 4976 * flush-last-level-only. 4977 */ 4978 4979 do_rvae_write(env, value, vae1_tlbmask(env), 4980 tlb_force_broadcast(env)); 4981 } 4982 4983 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4984 const ARMCPRegInfo *ri, 4985 uint64_t value) 4986 { 4987 /* 4988 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4989 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4990 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4991 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4992 * shareable specific flushes. 4993 */ 4994 4995 do_rvae_write(env, value, vae1_tlbmask(env), true); 4996 } 4997 4998 static int vae2_tlbmask(CPUARMState *env) 4999 { 5000 return ARMMMUIdxBit_E2; 5001 } 5002 5003 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5004 const ARMCPRegInfo *ri, 5005 uint64_t value) 5006 { 5007 /* 5008 * Invalidate by VA range, EL2. 5009 * Currently handles all of RVAE2 and RVALE2, 5010 * since we don't support flush-for-specific-ASID-only or 5011 * flush-last-level-only. 5012 */ 5013 5014 do_rvae_write(env, value, vae2_tlbmask(env), 5015 tlb_force_broadcast(env)); 5016 5017 5018 } 5019 5020 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5021 const ARMCPRegInfo *ri, 5022 uint64_t value) 5023 { 5024 /* 5025 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5026 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5027 * since we don't support flush-for-specific-ASID-only, 5028 * flush-last-level-only or inner/outer shareable specific flushes. 5029 */ 5030 5031 do_rvae_write(env, value, vae2_tlbmask(env), true); 5032 5033 } 5034 5035 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5036 const ARMCPRegInfo *ri, 5037 uint64_t value) 5038 { 5039 /* 5040 * Invalidate by VA range, EL3. 5041 * Currently handles all of RVAE3 and RVALE3, 5042 * since we don't support flush-for-specific-ASID-only or 5043 * flush-last-level-only. 5044 */ 5045 5046 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5047 } 5048 5049 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5050 const ARMCPRegInfo *ri, 5051 uint64_t value) 5052 { 5053 /* 5054 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5055 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5056 * since we don't support flush-for-specific-ASID-only, 5057 * flush-last-level-only or inner/outer specific flushes. 5058 */ 5059 5060 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5061 } 5062 5063 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5064 uint64_t value) 5065 { 5066 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5067 tlb_force_broadcast(env)); 5068 } 5069 5070 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5071 const ARMCPRegInfo *ri, 5072 uint64_t value) 5073 { 5074 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5075 } 5076 #endif 5077 5078 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5079 bool isread) 5080 { 5081 int cur_el = arm_current_el(env); 5082 5083 if (cur_el < 2) { 5084 uint64_t hcr = arm_hcr_el2_eff(env); 5085 5086 if (cur_el == 0) { 5087 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5088 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5089 return CP_ACCESS_TRAP_EL2; 5090 } 5091 } else { 5092 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5093 return CP_ACCESS_TRAP; 5094 } 5095 if (hcr & HCR_TDZ) { 5096 return CP_ACCESS_TRAP_EL2; 5097 } 5098 } 5099 } else if (hcr & HCR_TDZ) { 5100 return CP_ACCESS_TRAP_EL2; 5101 } 5102 } 5103 return CP_ACCESS_OK; 5104 } 5105 5106 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5107 { 5108 ARMCPU *cpu = env_archcpu(env); 5109 int dzp_bit = 1 << 4; 5110 5111 /* DZP indicates whether DC ZVA access is allowed */ 5112 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5113 dzp_bit = 0; 5114 } 5115 return cpu->dcz_blocksize | dzp_bit; 5116 } 5117 5118 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5119 bool isread) 5120 { 5121 if (!(env->pstate & PSTATE_SP)) { 5122 /* 5123 * Access to SP_EL0 is undefined if it's being used as 5124 * the stack pointer. 5125 */ 5126 return CP_ACCESS_TRAP_UNCATEGORIZED; 5127 } 5128 return CP_ACCESS_OK; 5129 } 5130 5131 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5132 { 5133 return env->pstate & PSTATE_SP; 5134 } 5135 5136 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5137 { 5138 update_spsel(env, val); 5139 } 5140 5141 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5142 uint64_t value) 5143 { 5144 ARMCPU *cpu = env_archcpu(env); 5145 5146 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5147 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5148 value &= ~SCTLR_M; 5149 } 5150 5151 /* ??? Lots of these bits are not implemented. */ 5152 5153 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5154 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5155 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5156 } else { 5157 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5158 SCTLR_ATA0 | SCTLR_ATA); 5159 } 5160 } 5161 5162 if (raw_read(env, ri) == value) { 5163 /* 5164 * Skip the TLB flush if nothing actually changed; Linux likes 5165 * to do a lot of pointless SCTLR writes. 5166 */ 5167 return; 5168 } 5169 5170 raw_write(env, ri, value); 5171 5172 /* This may enable/disable the MMU, so do a TLB flush. */ 5173 tlb_flush(CPU(cpu)); 5174 5175 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5176 /* 5177 * Normally we would always end the TB on an SCTLR write; see the 5178 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5179 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5180 * of hflags from the translator, so do it here. 5181 */ 5182 arm_rebuild_hflags(env); 5183 } 5184 } 5185 5186 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5187 uint64_t value) 5188 { 5189 /* 5190 * Some MDCR_EL3 bits affect whether PMU counters are running: 5191 * if we are trying to change any of those then we must 5192 * bracket this update with PMU start/finish calls. 5193 */ 5194 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5195 5196 if (pmu_op) { 5197 pmu_op_start(env); 5198 } 5199 env->cp15.mdcr_el3 = value; 5200 if (pmu_op) { 5201 pmu_op_finish(env); 5202 } 5203 } 5204 5205 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5206 uint64_t value) 5207 { 5208 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5209 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5210 } 5211 5212 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5213 uint64_t value) 5214 { 5215 /* 5216 * Some MDCR_EL2 bits affect whether PMU counters are running: 5217 * if we are trying to change any of those then we must 5218 * bracket this update with PMU start/finish calls. 5219 */ 5220 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5221 5222 if (pmu_op) { 5223 pmu_op_start(env); 5224 } 5225 env->cp15.mdcr_el2 = value; 5226 if (pmu_op) { 5227 pmu_op_finish(env); 5228 } 5229 } 5230 5231 static const ARMCPRegInfo v8_cp_reginfo[] = { 5232 /* 5233 * Minimal set of EL0-visible registers. This will need to be expanded 5234 * significantly for system emulation of AArch64 CPUs. 5235 */ 5236 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5237 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5238 .access = PL0_RW, .type = ARM_CP_NZCV }, 5239 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5240 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5241 .type = ARM_CP_NO_RAW, 5242 .access = PL0_RW, .accessfn = aa64_daif_access, 5243 .fieldoffset = offsetof(CPUARMState, daif), 5244 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5245 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5246 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5247 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5248 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5249 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5250 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5251 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5252 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5253 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5254 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5255 .access = PL0_R, .type = ARM_CP_NO_RAW, 5256 .fgt = FGT_DCZID_EL0, 5257 .readfn = aa64_dczid_read }, 5258 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5260 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5261 #ifndef CONFIG_USER_ONLY 5262 /* Avoid overhead of an access check that always passes in user-mode */ 5263 .accessfn = aa64_zva_access, 5264 .fgt = FGT_DCZVA, 5265 #endif 5266 }, 5267 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5268 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5269 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5270 /* Cache ops: all NOPs since we don't emulate caches */ 5271 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5272 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5273 .access = PL1_W, .type = ARM_CP_NOP, 5274 .fgt = FGT_ICIALLUIS, 5275 .accessfn = access_ticab }, 5276 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5277 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5278 .access = PL1_W, .type = ARM_CP_NOP, 5279 .fgt = FGT_ICIALLU, 5280 .accessfn = access_tocu }, 5281 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5283 .access = PL0_W, .type = ARM_CP_NOP, 5284 .fgt = FGT_ICIVAU, 5285 .accessfn = access_tocu }, 5286 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5287 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5288 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5289 .fgt = FGT_DCIVAC, 5290 .type = ARM_CP_NOP }, 5291 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5292 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5293 .fgt = FGT_DCISW, 5294 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5295 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5296 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5297 .access = PL0_W, .type = ARM_CP_NOP, 5298 .fgt = FGT_DCCVAC, 5299 .accessfn = aa64_cacheop_poc_access }, 5300 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5301 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5302 .fgt = FGT_DCCSW, 5303 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5304 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5306 .access = PL0_W, .type = ARM_CP_NOP, 5307 .fgt = FGT_DCCVAU, 5308 .accessfn = access_tocu }, 5309 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5311 .access = PL0_W, .type = ARM_CP_NOP, 5312 .fgt = FGT_DCCIVAC, 5313 .accessfn = aa64_cacheop_poc_access }, 5314 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5315 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5316 .fgt = FGT_DCCISW, 5317 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5318 /* TLBI operations */ 5319 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5321 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5322 .fgt = FGT_TLBIVMALLE1IS, 5323 .writefn = tlbi_aa64_vmalle1is_write }, 5324 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5325 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5326 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5327 .fgt = FGT_TLBIVAE1IS, 5328 .writefn = tlbi_aa64_vae1is_write }, 5329 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5330 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5331 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5332 .fgt = FGT_TLBIASIDE1IS, 5333 .writefn = tlbi_aa64_vmalle1is_write }, 5334 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5335 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5336 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5337 .fgt = FGT_TLBIVAAE1IS, 5338 .writefn = tlbi_aa64_vae1is_write }, 5339 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5341 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5342 .fgt = FGT_TLBIVALE1IS, 5343 .writefn = tlbi_aa64_vae1is_write }, 5344 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5345 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5346 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5347 .fgt = FGT_TLBIVAALE1IS, 5348 .writefn = tlbi_aa64_vae1is_write }, 5349 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5350 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5351 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5352 .fgt = FGT_TLBIVMALLE1, 5353 .writefn = tlbi_aa64_vmalle1_write }, 5354 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5355 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5356 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5357 .fgt = FGT_TLBIVAE1, 5358 .writefn = tlbi_aa64_vae1_write }, 5359 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5361 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5362 .fgt = FGT_TLBIASIDE1, 5363 .writefn = tlbi_aa64_vmalle1_write }, 5364 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5366 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5367 .fgt = FGT_TLBIVAAE1, 5368 .writefn = tlbi_aa64_vae1_write }, 5369 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5370 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5371 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5372 .fgt = FGT_TLBIVALE1, 5373 .writefn = tlbi_aa64_vae1_write }, 5374 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5375 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5376 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5377 .fgt = FGT_TLBIVAALE1, 5378 .writefn = tlbi_aa64_vae1_write }, 5379 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5381 .access = PL2_W, .type = ARM_CP_NO_RAW, 5382 .writefn = tlbi_aa64_ipas2e1is_write }, 5383 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5385 .access = PL2_W, .type = ARM_CP_NO_RAW, 5386 .writefn = tlbi_aa64_ipas2e1is_write }, 5387 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5389 .access = PL2_W, .type = ARM_CP_NO_RAW, 5390 .writefn = tlbi_aa64_alle1is_write }, 5391 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5393 .access = PL2_W, .type = ARM_CP_NO_RAW, 5394 .writefn = tlbi_aa64_alle1is_write }, 5395 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5397 .access = PL2_W, .type = ARM_CP_NO_RAW, 5398 .writefn = tlbi_aa64_ipas2e1_write }, 5399 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5400 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5401 .access = PL2_W, .type = ARM_CP_NO_RAW, 5402 .writefn = tlbi_aa64_ipas2e1_write }, 5403 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5405 .access = PL2_W, .type = ARM_CP_NO_RAW, 5406 .writefn = tlbi_aa64_alle1_write }, 5407 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5409 .access = PL2_W, .type = ARM_CP_NO_RAW, 5410 .writefn = tlbi_aa64_alle1is_write }, 5411 #ifndef CONFIG_USER_ONLY 5412 /* 64 bit address translation operations */ 5413 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5416 .fgt = FGT_ATS1E1R, 5417 .writefn = ats_write64 }, 5418 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5419 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5420 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5421 .fgt = FGT_ATS1E1W, 5422 .writefn = ats_write64 }, 5423 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5424 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5425 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5426 .fgt = FGT_ATS1E0R, 5427 .writefn = ats_write64 }, 5428 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5429 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5430 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5431 .fgt = FGT_ATS1E0W, 5432 .writefn = ats_write64 }, 5433 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5434 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5436 .writefn = ats_write64 }, 5437 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5438 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5440 .writefn = ats_write64 }, 5441 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5442 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5444 .writefn = ats_write64 }, 5445 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5446 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5447 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5448 .writefn = ats_write64 }, 5449 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5450 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5451 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5452 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5453 .writefn = ats_write64 }, 5454 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5455 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5456 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5457 .writefn = ats_write64 }, 5458 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5459 .type = ARM_CP_ALIAS, 5460 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5461 .access = PL1_RW, .resetvalue = 0, 5462 .fgt = FGT_PAR_EL1, 5463 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5464 .writefn = par_write }, 5465 #endif 5466 /* TLB invalidate last level of translation table walk */ 5467 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5468 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5469 .writefn = tlbimva_is_write }, 5470 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5471 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5472 .writefn = tlbimvaa_is_write }, 5473 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5474 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5475 .writefn = tlbimva_write }, 5476 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5477 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5478 .writefn = tlbimvaa_write }, 5479 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5480 .type = ARM_CP_NO_RAW, .access = PL2_W, 5481 .writefn = tlbimva_hyp_write }, 5482 { .name = "TLBIMVALHIS", 5483 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5484 .type = ARM_CP_NO_RAW, .access = PL2_W, 5485 .writefn = tlbimva_hyp_is_write }, 5486 { .name = "TLBIIPAS2", 5487 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5488 .type = ARM_CP_NO_RAW, .access = PL2_W, 5489 .writefn = tlbiipas2_hyp_write }, 5490 { .name = "TLBIIPAS2IS", 5491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5492 .type = ARM_CP_NO_RAW, .access = PL2_W, 5493 .writefn = tlbiipas2is_hyp_write }, 5494 { .name = "TLBIIPAS2L", 5495 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5496 .type = ARM_CP_NO_RAW, .access = PL2_W, 5497 .writefn = tlbiipas2_hyp_write }, 5498 { .name = "TLBIIPAS2LIS", 5499 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5500 .type = ARM_CP_NO_RAW, .access = PL2_W, 5501 .writefn = tlbiipas2is_hyp_write }, 5502 /* 32 bit cache operations */ 5503 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5504 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5505 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5506 .type = ARM_CP_NOP, .access = PL1_W }, 5507 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5508 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5509 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5510 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5511 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5512 .type = ARM_CP_NOP, .access = PL1_W }, 5513 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5514 .type = ARM_CP_NOP, .access = PL1_W }, 5515 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5516 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5517 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5518 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5519 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5520 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5521 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5522 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5523 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5524 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5525 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5526 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5527 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5528 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5529 /* MMU Domain access control / MPU write buffer control */ 5530 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5531 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5532 .writefn = dacr_write, .raw_writefn = raw_write, 5533 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5534 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5535 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5536 .type = ARM_CP_ALIAS, 5537 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5538 .access = PL1_RW, 5539 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5540 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5541 .type = ARM_CP_ALIAS, 5542 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5543 .access = PL1_RW, 5544 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5545 /* 5546 * We rely on the access checks not allowing the guest to write to the 5547 * state field when SPSel indicates that it's being used as the stack 5548 * pointer. 5549 */ 5550 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5552 .access = PL1_RW, .accessfn = sp_el0_access, 5553 .type = ARM_CP_ALIAS, 5554 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5555 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5556 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5557 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5558 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5559 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5560 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5561 .type = ARM_CP_NO_RAW, 5562 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5563 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5564 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5565 .access = PL2_RW, 5566 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5567 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5568 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5569 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5570 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5571 .writefn = dacr_write, .raw_writefn = raw_write, 5572 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5573 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5574 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5575 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5576 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5577 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5578 .type = ARM_CP_ALIAS, 5579 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5580 .access = PL2_RW, 5581 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5582 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5583 .type = ARM_CP_ALIAS, 5584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5585 .access = PL2_RW, 5586 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5587 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5588 .type = ARM_CP_ALIAS, 5589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5590 .access = PL2_RW, 5591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5592 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5593 .type = ARM_CP_ALIAS, 5594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5595 .access = PL2_RW, 5596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5597 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5598 .type = ARM_CP_IO, 5599 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5600 .resetvalue = 0, 5601 .access = PL3_RW, 5602 .writefn = mdcr_el3_write, 5603 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5604 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5605 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5606 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5607 .writefn = sdcr_write, 5608 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5609 }; 5610 5611 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5612 { 5613 ARMCPU *cpu = env_archcpu(env); 5614 5615 if (arm_feature(env, ARM_FEATURE_V8)) { 5616 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5617 } else { 5618 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5619 } 5620 5621 if (arm_feature(env, ARM_FEATURE_EL3)) { 5622 valid_mask &= ~HCR_HCD; 5623 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5624 /* 5625 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5626 * However, if we're using the SMC PSCI conduit then QEMU is 5627 * effectively acting like EL3 firmware and so the guest at 5628 * EL2 should retain the ability to prevent EL1 from being 5629 * able to make SMC calls into the ersatz firmware, so in 5630 * that case HCR.TSC should be read/write. 5631 */ 5632 valid_mask &= ~HCR_TSC; 5633 } 5634 5635 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5636 if (cpu_isar_feature(aa64_vh, cpu)) { 5637 valid_mask |= HCR_E2H; 5638 } 5639 if (cpu_isar_feature(aa64_ras, cpu)) { 5640 valid_mask |= HCR_TERR | HCR_TEA; 5641 } 5642 if (cpu_isar_feature(aa64_lor, cpu)) { 5643 valid_mask |= HCR_TLOR; 5644 } 5645 if (cpu_isar_feature(aa64_pauth, cpu)) { 5646 valid_mask |= HCR_API | HCR_APK; 5647 } 5648 if (cpu_isar_feature(aa64_mte, cpu)) { 5649 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5650 } 5651 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5652 valid_mask |= HCR_ENSCXT; 5653 } 5654 if (cpu_isar_feature(aa64_fwb, cpu)) { 5655 valid_mask |= HCR_FWB; 5656 } 5657 } 5658 5659 if (cpu_isar_feature(any_evt, cpu)) { 5660 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5661 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5662 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5663 } 5664 5665 /* Clear RES0 bits. */ 5666 value &= valid_mask; 5667 5668 /* 5669 * These bits change the MMU setup: 5670 * HCR_VM enables stage 2 translation 5671 * HCR_PTW forbids certain page-table setups 5672 * HCR_DC disables stage1 and enables stage2 translation 5673 * HCR_DCT enables tagging on (disabled) stage1 translation 5674 * HCR_FWB changes the interpretation of stage2 descriptor bits 5675 */ 5676 if ((env->cp15.hcr_el2 ^ value) & 5677 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5678 tlb_flush(CPU(cpu)); 5679 } 5680 env->cp15.hcr_el2 = value; 5681 5682 /* 5683 * Updates to VI and VF require us to update the status of 5684 * virtual interrupts, which are the logical OR of these bits 5685 * and the state of the input lines from the GIC. (This requires 5686 * that we have the iothread lock, which is done by marking the 5687 * reginfo structs as ARM_CP_IO.) 5688 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5689 * possible for it to be taken immediately, because VIRQ and 5690 * VFIQ are masked unless running at EL0 or EL1, and HCR 5691 * can only be written at EL2. 5692 */ 5693 g_assert(qemu_mutex_iothread_locked()); 5694 arm_cpu_update_virq(cpu); 5695 arm_cpu_update_vfiq(cpu); 5696 arm_cpu_update_vserr(cpu); 5697 } 5698 5699 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5700 { 5701 do_hcr_write(env, value, 0); 5702 } 5703 5704 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5705 uint64_t value) 5706 { 5707 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5708 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5709 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5710 } 5711 5712 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5713 uint64_t value) 5714 { 5715 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5716 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5717 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5718 } 5719 5720 /* 5721 * Return the effective value of HCR_EL2, at the given security state. 5722 * Bits that are not included here: 5723 * RW (read from SCR_EL3.RW as needed) 5724 */ 5725 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5726 { 5727 uint64_t ret = env->cp15.hcr_el2; 5728 5729 if (!arm_is_el2_enabled_secstate(env, secure)) { 5730 /* 5731 * "This register has no effect if EL2 is not enabled in the 5732 * current Security state". This is ARMv8.4-SecEL2 speak for 5733 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5734 * 5735 * Prior to that, the language was "In an implementation that 5736 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5737 * as if this field is 0 for all purposes other than a direct 5738 * read or write access of HCR_EL2". With lots of enumeration 5739 * on a per-field basis. In current QEMU, this is condition 5740 * is arm_is_secure_below_el3. 5741 * 5742 * Since the v8.4 language applies to the entire register, and 5743 * appears to be backward compatible, use that. 5744 */ 5745 return 0; 5746 } 5747 5748 /* 5749 * For a cpu that supports both aarch64 and aarch32, we can set bits 5750 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5751 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5752 */ 5753 if (!arm_el_is_aa64(env, 2)) { 5754 uint64_t aa32_valid; 5755 5756 /* 5757 * These bits are up-to-date as of ARMv8.6. 5758 * For HCR, it's easiest to list just the 2 bits that are invalid. 5759 * For HCR2, list those that are valid. 5760 */ 5761 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5762 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5763 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5764 ret &= aa32_valid; 5765 } 5766 5767 if (ret & HCR_TGE) { 5768 /* These bits are up-to-date as of ARMv8.6. */ 5769 if (ret & HCR_E2H) { 5770 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5771 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5772 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5773 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5774 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5775 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5776 } else { 5777 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5778 } 5779 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5780 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5781 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5782 HCR_TLOR); 5783 } 5784 5785 return ret; 5786 } 5787 5788 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5789 { 5790 if (arm_feature(env, ARM_FEATURE_M)) { 5791 return 0; 5792 } 5793 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5794 } 5795 5796 /* 5797 * Corresponds to ARM pseudocode function ELIsInHost(). 5798 */ 5799 bool el_is_in_host(CPUARMState *env, int el) 5800 { 5801 uint64_t mask; 5802 5803 /* 5804 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5805 * Perform the simplest bit tests first, and validate EL2 afterward. 5806 */ 5807 if (el & 1) { 5808 return false; /* EL1 or EL3 */ 5809 } 5810 5811 /* 5812 * Note that hcr_write() checks isar_feature_aa64_vh(), 5813 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5814 */ 5815 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5816 if ((env->cp15.hcr_el2 & mask) != mask) { 5817 return false; 5818 } 5819 5820 /* TGE and/or E2H set: double check those bits are currently legal. */ 5821 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5822 } 5823 5824 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5825 uint64_t value) 5826 { 5827 uint64_t valid_mask = 0; 5828 5829 /* No features adding bits to HCRX are implemented. */ 5830 5831 /* Clear RES0 bits. */ 5832 env->cp15.hcrx_el2 = value & valid_mask; 5833 } 5834 5835 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5836 bool isread) 5837 { 5838 if (arm_current_el(env) < 3 5839 && arm_feature(env, ARM_FEATURE_EL3) 5840 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5841 return CP_ACCESS_TRAP_EL3; 5842 } 5843 return CP_ACCESS_OK; 5844 } 5845 5846 static const ARMCPRegInfo hcrx_el2_reginfo = { 5847 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5848 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5849 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5850 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5851 }; 5852 5853 /* Return the effective value of HCRX_EL2. */ 5854 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5855 { 5856 /* 5857 * The bits in this register behave as 0 for all purposes other than 5858 * direct reads of the register if: 5859 * - EL2 is not enabled in the current security state, 5860 * - SCR_EL3.HXEn is 0. 5861 */ 5862 if (!arm_is_el2_enabled(env) 5863 || (arm_feature(env, ARM_FEATURE_EL3) 5864 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5865 return 0; 5866 } 5867 return env->cp15.hcrx_el2; 5868 } 5869 5870 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5871 uint64_t value) 5872 { 5873 /* 5874 * For A-profile AArch32 EL3, if NSACR.CP10 5875 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5876 */ 5877 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5878 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5879 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5880 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5881 } 5882 env->cp15.cptr_el[2] = value; 5883 } 5884 5885 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5886 { 5887 /* 5888 * For A-profile AArch32 EL3, if NSACR.CP10 5889 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5890 */ 5891 uint64_t value = env->cp15.cptr_el[2]; 5892 5893 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5894 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5895 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5896 } 5897 return value; 5898 } 5899 5900 static const ARMCPRegInfo el2_cp_reginfo[] = { 5901 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5902 .type = ARM_CP_IO, 5903 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5904 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5905 .writefn = hcr_write }, 5906 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5907 .type = ARM_CP_ALIAS | ARM_CP_IO, 5908 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5909 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5910 .writefn = hcr_writelow }, 5911 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5912 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5913 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5914 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5915 .type = ARM_CP_ALIAS, 5916 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5917 .access = PL2_RW, 5918 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5919 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5920 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5921 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5922 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5923 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5924 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5925 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5926 .type = ARM_CP_ALIAS, 5927 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5928 .access = PL2_RW, 5929 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5930 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5931 .type = ARM_CP_ALIAS, 5932 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5933 .access = PL2_RW, 5934 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5935 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5936 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5937 .access = PL2_RW, .writefn = vbar_write, 5938 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5939 .resetvalue = 0 }, 5940 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5941 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5942 .access = PL3_RW, .type = ARM_CP_ALIAS, 5943 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5944 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5945 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5946 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5947 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5948 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5949 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5950 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5951 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5952 .resetvalue = 0 }, 5953 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5954 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5955 .access = PL2_RW, .type = ARM_CP_ALIAS, 5956 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5957 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5958 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5959 .access = PL2_RW, .type = ARM_CP_CONST, 5960 .resetvalue = 0 }, 5961 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5962 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5963 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5964 .access = PL2_RW, .type = ARM_CP_CONST, 5965 .resetvalue = 0 }, 5966 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5967 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5968 .access = PL2_RW, .type = ARM_CP_CONST, 5969 .resetvalue = 0 }, 5970 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5971 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5972 .access = PL2_RW, .type = ARM_CP_CONST, 5973 .resetvalue = 0 }, 5974 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5975 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5976 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5977 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5978 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5979 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5980 .type = ARM_CP_ALIAS, 5981 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5982 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5983 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5984 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5985 .access = PL2_RW, 5986 /* no .writefn needed as this can't cause an ASID change */ 5987 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5988 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5989 .cp = 15, .opc1 = 6, .crm = 2, 5990 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5991 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5992 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5993 .writefn = vttbr_write }, 5994 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5995 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5996 .access = PL2_RW, .writefn = vttbr_write, 5997 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5998 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5999 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6000 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6001 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6002 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6003 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6004 .access = PL2_RW, .resetvalue = 0, 6005 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6006 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6007 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6008 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 6009 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6010 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6011 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6012 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6013 { .name = "TLBIALLNSNH", 6014 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6015 .type = ARM_CP_NO_RAW, .access = PL2_W, 6016 .writefn = tlbiall_nsnh_write }, 6017 { .name = "TLBIALLNSNHIS", 6018 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6019 .type = ARM_CP_NO_RAW, .access = PL2_W, 6020 .writefn = tlbiall_nsnh_is_write }, 6021 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6022 .type = ARM_CP_NO_RAW, .access = PL2_W, 6023 .writefn = tlbiall_hyp_write }, 6024 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6025 .type = ARM_CP_NO_RAW, .access = PL2_W, 6026 .writefn = tlbiall_hyp_is_write }, 6027 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6028 .type = ARM_CP_NO_RAW, .access = PL2_W, 6029 .writefn = tlbimva_hyp_write }, 6030 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6031 .type = ARM_CP_NO_RAW, .access = PL2_W, 6032 .writefn = tlbimva_hyp_is_write }, 6033 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6034 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6035 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6036 .writefn = tlbi_aa64_alle2_write }, 6037 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6038 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6039 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6040 .writefn = tlbi_aa64_vae2_write }, 6041 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6042 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6043 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6044 .writefn = tlbi_aa64_vae2_write }, 6045 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6046 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6047 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6048 .writefn = tlbi_aa64_alle2is_write }, 6049 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6050 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6051 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6052 .writefn = tlbi_aa64_vae2is_write }, 6053 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6054 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6055 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6056 .writefn = tlbi_aa64_vae2is_write }, 6057 #ifndef CONFIG_USER_ONLY 6058 /* 6059 * Unlike the other EL2-related AT operations, these must 6060 * UNDEF from EL3 if EL2 is not implemented, which is why we 6061 * define them here rather than with the rest of the AT ops. 6062 */ 6063 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6064 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6065 .access = PL2_W, .accessfn = at_s1e2_access, 6066 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6067 .writefn = ats_write64 }, 6068 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6069 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6070 .access = PL2_W, .accessfn = at_s1e2_access, 6071 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6072 .writefn = ats_write64 }, 6073 /* 6074 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6075 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6076 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6077 * to behave as if SCR.NS was 1. 6078 */ 6079 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6080 .access = PL2_W, 6081 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6082 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6083 .access = PL2_W, 6084 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6085 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6086 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6087 /* 6088 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6089 * reset values as IMPDEF. We choose to reset to 3 to comply with 6090 * both ARMv7 and ARMv8. 6091 */ 6092 .access = PL2_RW, .resetvalue = 3, 6093 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6094 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6095 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6096 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6097 .writefn = gt_cntvoff_write, 6098 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6099 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6100 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6101 .writefn = gt_cntvoff_write, 6102 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6103 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6104 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6105 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6106 .type = ARM_CP_IO, .access = PL2_RW, 6107 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6108 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6109 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6110 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6111 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6112 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6113 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6114 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6115 .resetfn = gt_hyp_timer_reset, 6116 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6117 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6118 .type = ARM_CP_IO, 6119 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6120 .access = PL2_RW, 6121 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6122 .resetvalue = 0, 6123 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6124 #endif 6125 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6126 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6127 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6128 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6129 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6130 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6131 .access = PL2_RW, 6132 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6133 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6134 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6135 .access = PL2_RW, 6136 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6137 }; 6138 6139 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6140 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6141 .type = ARM_CP_ALIAS | ARM_CP_IO, 6142 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6143 .access = PL2_RW, 6144 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6145 .writefn = hcr_writehigh }, 6146 }; 6147 6148 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6149 bool isread) 6150 { 6151 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6152 return CP_ACCESS_OK; 6153 } 6154 return CP_ACCESS_TRAP_UNCATEGORIZED; 6155 } 6156 6157 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6158 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6159 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6160 .access = PL2_RW, .accessfn = sel2_access, 6161 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6162 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6163 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6164 .access = PL2_RW, .accessfn = sel2_access, 6165 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6166 }; 6167 6168 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6169 bool isread) 6170 { 6171 /* 6172 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6173 * At Secure EL1 it traps to EL3 or EL2. 6174 */ 6175 if (arm_current_el(env) == 3) { 6176 return CP_ACCESS_OK; 6177 } 6178 if (arm_is_secure_below_el3(env)) { 6179 if (env->cp15.scr_el3 & SCR_EEL2) { 6180 return CP_ACCESS_TRAP_EL2; 6181 } 6182 return CP_ACCESS_TRAP_EL3; 6183 } 6184 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6185 if (isread) { 6186 return CP_ACCESS_OK; 6187 } 6188 return CP_ACCESS_TRAP_UNCATEGORIZED; 6189 } 6190 6191 static const ARMCPRegInfo el3_cp_reginfo[] = { 6192 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6193 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6194 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6195 .resetfn = scr_reset, .writefn = scr_write }, 6196 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6197 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6198 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6199 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6200 .writefn = scr_write }, 6201 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6202 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6203 .access = PL3_RW, .resetvalue = 0, 6204 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6205 { .name = "SDER", 6206 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6207 .access = PL3_RW, .resetvalue = 0, 6208 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6209 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6210 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6211 .writefn = vbar_write, .resetvalue = 0, 6212 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6213 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6214 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6215 .access = PL3_RW, .resetvalue = 0, 6216 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6217 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6218 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6219 .access = PL3_RW, 6220 /* no .writefn needed as this can't cause an ASID change */ 6221 .resetvalue = 0, 6222 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6223 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6224 .type = ARM_CP_ALIAS, 6225 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6226 .access = PL3_RW, 6227 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6228 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6229 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6230 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6231 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6232 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6233 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6234 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6235 .type = ARM_CP_ALIAS, 6236 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6237 .access = PL3_RW, 6238 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6239 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6240 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6241 .access = PL3_RW, .writefn = vbar_write, 6242 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6243 .resetvalue = 0 }, 6244 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6245 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6246 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6247 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6248 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6249 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6250 .access = PL3_RW, .resetvalue = 0, 6251 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6252 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6253 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6254 .access = PL3_RW, .type = ARM_CP_CONST, 6255 .resetvalue = 0 }, 6256 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6257 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6258 .access = PL3_RW, .type = ARM_CP_CONST, 6259 .resetvalue = 0 }, 6260 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6261 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6262 .access = PL3_RW, .type = ARM_CP_CONST, 6263 .resetvalue = 0 }, 6264 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6265 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6266 .access = PL3_W, .type = ARM_CP_NO_RAW, 6267 .writefn = tlbi_aa64_alle3is_write }, 6268 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6269 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6270 .access = PL3_W, .type = ARM_CP_NO_RAW, 6271 .writefn = tlbi_aa64_vae3is_write }, 6272 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6273 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6274 .access = PL3_W, .type = ARM_CP_NO_RAW, 6275 .writefn = tlbi_aa64_vae3is_write }, 6276 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6277 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6278 .access = PL3_W, .type = ARM_CP_NO_RAW, 6279 .writefn = tlbi_aa64_alle3_write }, 6280 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6281 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6282 .access = PL3_W, .type = ARM_CP_NO_RAW, 6283 .writefn = tlbi_aa64_vae3_write }, 6284 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6285 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6286 .access = PL3_W, .type = ARM_CP_NO_RAW, 6287 .writefn = tlbi_aa64_vae3_write }, 6288 }; 6289 6290 #ifndef CONFIG_USER_ONLY 6291 /* Test if system register redirection is to occur in the current state. */ 6292 static bool redirect_for_e2h(CPUARMState *env) 6293 { 6294 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6295 } 6296 6297 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6298 { 6299 CPReadFn *readfn; 6300 6301 if (redirect_for_e2h(env)) { 6302 /* Switch to the saved EL2 version of the register. */ 6303 ri = ri->opaque; 6304 readfn = ri->readfn; 6305 } else { 6306 readfn = ri->orig_readfn; 6307 } 6308 if (readfn == NULL) { 6309 readfn = raw_read; 6310 } 6311 return readfn(env, ri); 6312 } 6313 6314 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6315 uint64_t value) 6316 { 6317 CPWriteFn *writefn; 6318 6319 if (redirect_for_e2h(env)) { 6320 /* Switch to the saved EL2 version of the register. */ 6321 ri = ri->opaque; 6322 writefn = ri->writefn; 6323 } else { 6324 writefn = ri->orig_writefn; 6325 } 6326 if (writefn == NULL) { 6327 writefn = raw_write; 6328 } 6329 writefn(env, ri, value); 6330 } 6331 6332 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6333 { 6334 struct E2HAlias { 6335 uint32_t src_key, dst_key, new_key; 6336 const char *src_name, *dst_name, *new_name; 6337 bool (*feature)(const ARMISARegisters *id); 6338 }; 6339 6340 #define K(op0, op1, crn, crm, op2) \ 6341 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6342 6343 static const struct E2HAlias aliases[] = { 6344 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6345 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6346 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6347 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6348 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6349 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6350 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6351 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6352 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6353 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6354 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6355 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6356 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6357 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6358 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6359 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6360 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6361 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6362 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6363 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6364 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6365 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6366 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6367 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6368 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6369 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6370 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6371 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6372 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6373 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6374 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6375 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6376 6377 /* 6378 * Note that redirection of ZCR is mentioned in the description 6379 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6380 * not in the summary table. 6381 */ 6382 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6383 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6384 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6385 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6386 6387 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6388 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6389 6390 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6391 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6392 isar_feature_aa64_scxtnum }, 6393 6394 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6395 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6396 }; 6397 #undef K 6398 6399 size_t i; 6400 6401 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6402 const struct E2HAlias *a = &aliases[i]; 6403 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6404 bool ok; 6405 6406 if (a->feature && !a->feature(&cpu->isar)) { 6407 continue; 6408 } 6409 6410 src_reg = g_hash_table_lookup(cpu->cp_regs, 6411 (gpointer)(uintptr_t)a->src_key); 6412 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6413 (gpointer)(uintptr_t)a->dst_key); 6414 g_assert(src_reg != NULL); 6415 g_assert(dst_reg != NULL); 6416 6417 /* Cross-compare names to detect typos in the keys. */ 6418 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6419 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6420 6421 /* None of the core system registers use opaque; we will. */ 6422 g_assert(src_reg->opaque == NULL); 6423 6424 /* Create alias before redirection so we dup the right data. */ 6425 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6426 6427 new_reg->name = a->new_name; 6428 new_reg->type |= ARM_CP_ALIAS; 6429 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6430 new_reg->access &= PL2_RW | PL3_RW; 6431 6432 ok = g_hash_table_insert(cpu->cp_regs, 6433 (gpointer)(uintptr_t)a->new_key, new_reg); 6434 g_assert(ok); 6435 6436 src_reg->opaque = dst_reg; 6437 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6438 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6439 if (!src_reg->raw_readfn) { 6440 src_reg->raw_readfn = raw_read; 6441 } 6442 if (!src_reg->raw_writefn) { 6443 src_reg->raw_writefn = raw_write; 6444 } 6445 src_reg->readfn = el2_e2h_read; 6446 src_reg->writefn = el2_e2h_write; 6447 } 6448 } 6449 #endif 6450 6451 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6452 bool isread) 6453 { 6454 int cur_el = arm_current_el(env); 6455 6456 if (cur_el < 2) { 6457 uint64_t hcr = arm_hcr_el2_eff(env); 6458 6459 if (cur_el == 0) { 6460 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6461 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6462 return CP_ACCESS_TRAP_EL2; 6463 } 6464 } else { 6465 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6466 return CP_ACCESS_TRAP; 6467 } 6468 if (hcr & HCR_TID2) { 6469 return CP_ACCESS_TRAP_EL2; 6470 } 6471 } 6472 } else if (hcr & HCR_TID2) { 6473 return CP_ACCESS_TRAP_EL2; 6474 } 6475 } 6476 6477 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6478 return CP_ACCESS_TRAP_EL2; 6479 } 6480 6481 return CP_ACCESS_OK; 6482 } 6483 6484 /* 6485 * Check for traps to RAS registers, which are controlled 6486 * by HCR_EL2.TERR and SCR_EL3.TERR. 6487 */ 6488 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6489 bool isread) 6490 { 6491 int el = arm_current_el(env); 6492 6493 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6494 return CP_ACCESS_TRAP_EL2; 6495 } 6496 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6497 return CP_ACCESS_TRAP_EL3; 6498 } 6499 return CP_ACCESS_OK; 6500 } 6501 6502 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6503 { 6504 int el = arm_current_el(env); 6505 6506 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6507 return env->cp15.vdisr_el2; 6508 } 6509 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6510 return 0; /* RAZ/WI */ 6511 } 6512 return env->cp15.disr_el1; 6513 } 6514 6515 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6516 { 6517 int el = arm_current_el(env); 6518 6519 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6520 env->cp15.vdisr_el2 = val; 6521 return; 6522 } 6523 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6524 return; /* RAZ/WI */ 6525 } 6526 env->cp15.disr_el1 = val; 6527 } 6528 6529 /* 6530 * Minimal RAS implementation with no Error Records. 6531 * Which means that all of the Error Record registers: 6532 * ERXADDR_EL1 6533 * ERXCTLR_EL1 6534 * ERXFR_EL1 6535 * ERXMISC0_EL1 6536 * ERXMISC1_EL1 6537 * ERXMISC2_EL1 6538 * ERXMISC3_EL1 6539 * ERXPFGCDN_EL1 (RASv1p1) 6540 * ERXPFGCTL_EL1 (RASv1p1) 6541 * ERXPFGF_EL1 (RASv1p1) 6542 * ERXSTATUS_EL1 6543 * and 6544 * ERRSELR_EL1 6545 * may generate UNDEFINED, which is the effect we get by not 6546 * listing them at all. 6547 * 6548 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6549 * is higher priority than FGT-to-EL2 so we do not need to list them 6550 * in order to check for an FGT. 6551 */ 6552 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6553 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6554 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6555 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6556 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6557 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6558 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6559 .access = PL1_R, .accessfn = access_terr, 6560 .fgt = FGT_ERRIDR_EL1, 6561 .type = ARM_CP_CONST, .resetvalue = 0 }, 6562 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6563 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6564 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6565 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6566 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6567 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6568 }; 6569 6570 /* 6571 * Return the exception level to which exceptions should be taken 6572 * via SVEAccessTrap. This excludes the check for whether the exception 6573 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6574 * be found by testing 0 < fp_exception_el < sve_exception_el. 6575 * 6576 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6577 * pseudocode does *not* separate out the FP trap checks, but has them 6578 * all in one function. 6579 */ 6580 int sve_exception_el(CPUARMState *env, int el) 6581 { 6582 #ifndef CONFIG_USER_ONLY 6583 if (el <= 1 && !el_is_in_host(env, el)) { 6584 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6585 case 1: 6586 if (el != 0) { 6587 break; 6588 } 6589 /* fall through */ 6590 case 0: 6591 case 2: 6592 return 1; 6593 } 6594 } 6595 6596 if (el <= 2 && arm_is_el2_enabled(env)) { 6597 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6598 if (env->cp15.hcr_el2 & HCR_E2H) { 6599 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6600 case 1: 6601 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6602 break; 6603 } 6604 /* fall through */ 6605 case 0: 6606 case 2: 6607 return 2; 6608 } 6609 } else { 6610 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6611 return 2; 6612 } 6613 } 6614 } 6615 6616 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6617 if (arm_feature(env, ARM_FEATURE_EL3) 6618 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6619 return 3; 6620 } 6621 #endif 6622 return 0; 6623 } 6624 6625 /* 6626 * Return the exception level to which exceptions should be taken for SME. 6627 * C.f. the ARM pseudocode function CheckSMEAccess. 6628 */ 6629 int sme_exception_el(CPUARMState *env, int el) 6630 { 6631 #ifndef CONFIG_USER_ONLY 6632 if (el <= 1 && !el_is_in_host(env, el)) { 6633 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6634 case 1: 6635 if (el != 0) { 6636 break; 6637 } 6638 /* fall through */ 6639 case 0: 6640 case 2: 6641 return 1; 6642 } 6643 } 6644 6645 if (el <= 2 && arm_is_el2_enabled(env)) { 6646 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6647 if (env->cp15.hcr_el2 & HCR_E2H) { 6648 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6649 case 1: 6650 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6651 break; 6652 } 6653 /* fall through */ 6654 case 0: 6655 case 2: 6656 return 2; 6657 } 6658 } else { 6659 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6660 return 2; 6661 } 6662 } 6663 } 6664 6665 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6666 if (arm_feature(env, ARM_FEATURE_EL3) 6667 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6668 return 3; 6669 } 6670 #endif 6671 return 0; 6672 } 6673 6674 /* 6675 * Given that SVE is enabled, return the vector length for EL. 6676 */ 6677 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6678 { 6679 ARMCPU *cpu = env_archcpu(env); 6680 uint64_t *cr = env->vfp.zcr_el; 6681 uint32_t map = cpu->sve_vq.map; 6682 uint32_t len = ARM_MAX_VQ - 1; 6683 6684 if (sm) { 6685 cr = env->vfp.smcr_el; 6686 map = cpu->sme_vq.map; 6687 } 6688 6689 if (el <= 1 && !el_is_in_host(env, el)) { 6690 len = MIN(len, 0xf & (uint32_t)cr[1]); 6691 } 6692 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6693 len = MIN(len, 0xf & (uint32_t)cr[2]); 6694 } 6695 if (arm_feature(env, ARM_FEATURE_EL3)) { 6696 len = MIN(len, 0xf & (uint32_t)cr[3]); 6697 } 6698 6699 map &= MAKE_64BIT_MASK(0, len + 1); 6700 if (map != 0) { 6701 return 31 - clz32(map); 6702 } 6703 6704 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6705 assert(sm); 6706 return ctz32(cpu->sme_vq.map); 6707 } 6708 6709 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6710 { 6711 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6712 } 6713 6714 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6715 uint64_t value) 6716 { 6717 int cur_el = arm_current_el(env); 6718 int old_len = sve_vqm1_for_el(env, cur_el); 6719 int new_len; 6720 6721 /* Bits other than [3:0] are RAZ/WI. */ 6722 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6723 raw_write(env, ri, value & 0xf); 6724 6725 /* 6726 * Because we arrived here, we know both FP and SVE are enabled; 6727 * otherwise we would have trapped access to the ZCR_ELn register. 6728 */ 6729 new_len = sve_vqm1_for_el(env, cur_el); 6730 if (new_len < old_len) { 6731 aarch64_sve_narrow_vq(env, new_len + 1); 6732 } 6733 } 6734 6735 static const ARMCPRegInfo zcr_reginfo[] = { 6736 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6737 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6738 .access = PL1_RW, .type = ARM_CP_SVE, 6739 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6740 .writefn = zcr_write, .raw_writefn = raw_write }, 6741 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6742 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6743 .access = PL2_RW, .type = ARM_CP_SVE, 6744 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6745 .writefn = zcr_write, .raw_writefn = raw_write }, 6746 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6747 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6748 .access = PL3_RW, .type = ARM_CP_SVE, 6749 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6750 .writefn = zcr_write, .raw_writefn = raw_write }, 6751 }; 6752 6753 #ifdef TARGET_AARCH64 6754 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6755 bool isread) 6756 { 6757 int el = arm_current_el(env); 6758 6759 if (el == 0) { 6760 uint64_t sctlr = arm_sctlr(env, el); 6761 if (!(sctlr & SCTLR_EnTP2)) { 6762 return CP_ACCESS_TRAP; 6763 } 6764 } 6765 /* TODO: FEAT_FGT */ 6766 if (el < 3 6767 && arm_feature(env, ARM_FEATURE_EL3) 6768 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6769 return CP_ACCESS_TRAP_EL3; 6770 } 6771 return CP_ACCESS_OK; 6772 } 6773 6774 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6775 bool isread) 6776 { 6777 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6778 if (arm_current_el(env) < 3 6779 && arm_feature(env, ARM_FEATURE_EL3) 6780 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6781 return CP_ACCESS_TRAP_EL3; 6782 } 6783 return CP_ACCESS_OK; 6784 } 6785 6786 /* ResetSVEState */ 6787 static void arm_reset_sve_state(CPUARMState *env) 6788 { 6789 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6790 /* Recall that FFR is stored as pregs[16]. */ 6791 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6792 vfp_set_fpcr(env, 0x0800009f); 6793 } 6794 6795 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6796 { 6797 uint64_t change = (env->svcr ^ new) & mask; 6798 6799 if (change == 0) { 6800 return; 6801 } 6802 env->svcr ^= change; 6803 6804 if (change & R_SVCR_SM_MASK) { 6805 arm_reset_sve_state(env); 6806 } 6807 6808 /* 6809 * ResetSMEState. 6810 * 6811 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6812 * on enable: while disabled, the storage is inaccessible and the 6813 * value does not matter. We're not saving the storage in vmstate 6814 * when disabled either. 6815 */ 6816 if (change & new & R_SVCR_ZA_MASK) { 6817 memset(env->zarray, 0, sizeof(env->zarray)); 6818 } 6819 6820 if (tcg_enabled()) { 6821 arm_rebuild_hflags(env); 6822 } 6823 } 6824 6825 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6826 uint64_t value) 6827 { 6828 aarch64_set_svcr(env, value, -1); 6829 } 6830 6831 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6832 uint64_t value) 6833 { 6834 int cur_el = arm_current_el(env); 6835 int old_len = sve_vqm1_for_el(env, cur_el); 6836 int new_len; 6837 6838 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6839 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6840 raw_write(env, ri, value); 6841 6842 /* 6843 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6844 * when SVL is widened (old values kept, or zeros). Choose to keep the 6845 * current values for simplicity. But for QEMU internals, we must still 6846 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6847 * above aarch64_sve_narrow_vq. 6848 */ 6849 new_len = sve_vqm1_for_el(env, cur_el); 6850 if (new_len < old_len) { 6851 aarch64_sve_narrow_vq(env, new_len + 1); 6852 } 6853 } 6854 6855 static const ARMCPRegInfo sme_reginfo[] = { 6856 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6858 .access = PL0_RW, .accessfn = access_tpidr2, 6859 .fgt = FGT_NTPIDR2_EL0, 6860 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6861 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6863 .access = PL0_RW, .type = ARM_CP_SME, 6864 .fieldoffset = offsetof(CPUARMState, svcr), 6865 .writefn = svcr_write, .raw_writefn = raw_write }, 6866 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6867 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6868 .access = PL1_RW, .type = ARM_CP_SME, 6869 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6870 .writefn = smcr_write, .raw_writefn = raw_write }, 6871 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6872 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6873 .access = PL2_RW, .type = ARM_CP_SME, 6874 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6875 .writefn = smcr_write, .raw_writefn = raw_write }, 6876 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6878 .access = PL3_RW, .type = ARM_CP_SME, 6879 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6880 .writefn = smcr_write, .raw_writefn = raw_write }, 6881 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6883 .access = PL1_R, .accessfn = access_aa64_tid1, 6884 /* 6885 * IMPLEMENTOR = 0 (software) 6886 * REVISION = 0 (implementation defined) 6887 * SMPS = 0 (no streaming execution priority in QEMU) 6888 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6889 */ 6890 .type = ARM_CP_CONST, .resetvalue = 0, }, 6891 /* 6892 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6893 */ 6894 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6895 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6896 .access = PL1_RW, .accessfn = access_esm, 6897 .fgt = FGT_NSMPRI_EL1, 6898 .type = ARM_CP_CONST, .resetvalue = 0 }, 6899 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6900 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6901 .access = PL2_RW, .accessfn = access_esm, 6902 .type = ARM_CP_CONST, .resetvalue = 0 }, 6903 }; 6904 #endif /* TARGET_AARCH64 */ 6905 6906 static void define_pmu_regs(ARMCPU *cpu) 6907 { 6908 /* 6909 * v7 performance monitor control register: same implementor 6910 * field as main ID register, and we implement four counters in 6911 * addition to the cycle count register. 6912 */ 6913 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6914 ARMCPRegInfo pmcr = { 6915 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6916 .access = PL0_RW, 6917 .fgt = FGT_PMCR_EL0, 6918 .type = ARM_CP_IO | ARM_CP_ALIAS, 6919 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6920 .accessfn = pmreg_access, .writefn = pmcr_write, 6921 .raw_writefn = raw_write, 6922 }; 6923 ARMCPRegInfo pmcr64 = { 6924 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6926 .access = PL0_RW, .accessfn = pmreg_access, 6927 .fgt = FGT_PMCR_EL0, 6928 .type = ARM_CP_IO, 6929 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6930 .resetvalue = cpu->isar.reset_pmcr_el0, 6931 .writefn = pmcr_write, .raw_writefn = raw_write, 6932 }; 6933 6934 define_one_arm_cp_reg(cpu, &pmcr); 6935 define_one_arm_cp_reg(cpu, &pmcr64); 6936 for (i = 0; i < pmcrn; i++) { 6937 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6938 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6939 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6940 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6941 ARMCPRegInfo pmev_regs[] = { 6942 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6943 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6944 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6945 .fgt = FGT_PMEVCNTRN_EL0, 6946 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6947 .accessfn = pmreg_access_xevcntr }, 6948 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6949 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6950 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6951 .type = ARM_CP_IO, 6952 .fgt = FGT_PMEVCNTRN_EL0, 6953 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6954 .raw_readfn = pmevcntr_rawread, 6955 .raw_writefn = pmevcntr_rawwrite }, 6956 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6957 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6958 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6959 .fgt = FGT_PMEVTYPERN_EL0, 6960 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6961 .accessfn = pmreg_access }, 6962 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6964 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6965 .fgt = FGT_PMEVTYPERN_EL0, 6966 .type = ARM_CP_IO, 6967 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6968 .raw_writefn = pmevtyper_rawwrite }, 6969 }; 6970 define_arm_cp_regs(cpu, pmev_regs); 6971 g_free(pmevcntr_name); 6972 g_free(pmevcntr_el0_name); 6973 g_free(pmevtyper_name); 6974 g_free(pmevtyper_el0_name); 6975 } 6976 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6977 ARMCPRegInfo v81_pmu_regs[] = { 6978 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6979 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6980 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6981 .fgt = FGT_PMCEIDN_EL0, 6982 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6983 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6984 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6985 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6986 .fgt = FGT_PMCEIDN_EL0, 6987 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6988 }; 6989 define_arm_cp_regs(cpu, v81_pmu_regs); 6990 } 6991 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6992 static const ARMCPRegInfo v84_pmmir = { 6993 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6994 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6995 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6996 .fgt = FGT_PMMIR_EL1, 6997 .resetvalue = 0 6998 }; 6999 define_one_arm_cp_reg(cpu, &v84_pmmir); 7000 } 7001 } 7002 7003 #ifndef CONFIG_USER_ONLY 7004 /* 7005 * We don't know until after realize whether there's a GICv3 7006 * attached, and that is what registers the gicv3 sysregs. 7007 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7008 * at runtime. 7009 */ 7010 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7011 { 7012 ARMCPU *cpu = env_archcpu(env); 7013 uint64_t pfr1 = cpu->isar.id_pfr1; 7014 7015 if (env->gicv3state) { 7016 pfr1 |= 1 << 28; 7017 } 7018 return pfr1; 7019 } 7020 7021 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7022 { 7023 ARMCPU *cpu = env_archcpu(env); 7024 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7025 7026 if (env->gicv3state) { 7027 pfr0 |= 1 << 24; 7028 } 7029 return pfr0; 7030 } 7031 #endif 7032 7033 /* 7034 * Shared logic between LORID and the rest of the LOR* registers. 7035 * Secure state exclusion has already been dealt with. 7036 */ 7037 static CPAccessResult access_lor_ns(CPUARMState *env, 7038 const ARMCPRegInfo *ri, bool isread) 7039 { 7040 int el = arm_current_el(env); 7041 7042 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7043 return CP_ACCESS_TRAP_EL2; 7044 } 7045 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7046 return CP_ACCESS_TRAP_EL3; 7047 } 7048 return CP_ACCESS_OK; 7049 } 7050 7051 static CPAccessResult access_lor_other(CPUARMState *env, 7052 const ARMCPRegInfo *ri, bool isread) 7053 { 7054 if (arm_is_secure_below_el3(env)) { 7055 /* Access denied in secure mode. */ 7056 return CP_ACCESS_TRAP; 7057 } 7058 return access_lor_ns(env, ri, isread); 7059 } 7060 7061 /* 7062 * A trivial implementation of ARMv8.1-LOR leaves all of these 7063 * registers fixed at 0, which indicates that there are zero 7064 * supported Limited Ordering regions. 7065 */ 7066 static const ARMCPRegInfo lor_reginfo[] = { 7067 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7069 .access = PL1_RW, .accessfn = access_lor_other, 7070 .fgt = FGT_LORSA_EL1, 7071 .type = ARM_CP_CONST, .resetvalue = 0 }, 7072 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7074 .access = PL1_RW, .accessfn = access_lor_other, 7075 .fgt = FGT_LOREA_EL1, 7076 .type = ARM_CP_CONST, .resetvalue = 0 }, 7077 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7078 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7079 .access = PL1_RW, .accessfn = access_lor_other, 7080 .fgt = FGT_LORN_EL1, 7081 .type = ARM_CP_CONST, .resetvalue = 0 }, 7082 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7083 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7084 .access = PL1_RW, .accessfn = access_lor_other, 7085 .fgt = FGT_LORC_EL1, 7086 .type = ARM_CP_CONST, .resetvalue = 0 }, 7087 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7089 .access = PL1_R, .accessfn = access_lor_ns, 7090 .fgt = FGT_LORID_EL1, 7091 .type = ARM_CP_CONST, .resetvalue = 0 }, 7092 }; 7093 7094 #ifdef TARGET_AARCH64 7095 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7096 bool isread) 7097 { 7098 int el = arm_current_el(env); 7099 7100 if (el < 2 && 7101 arm_is_el2_enabled(env) && 7102 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7103 return CP_ACCESS_TRAP_EL2; 7104 } 7105 if (el < 3 && 7106 arm_feature(env, ARM_FEATURE_EL3) && 7107 !(env->cp15.scr_el3 & SCR_APK)) { 7108 return CP_ACCESS_TRAP_EL3; 7109 } 7110 return CP_ACCESS_OK; 7111 } 7112 7113 static const ARMCPRegInfo pauth_reginfo[] = { 7114 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7116 .access = PL1_RW, .accessfn = access_pauth, 7117 .fgt = FGT_APDAKEY, 7118 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7119 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7121 .access = PL1_RW, .accessfn = access_pauth, 7122 .fgt = FGT_APDAKEY, 7123 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7124 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7125 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7126 .access = PL1_RW, .accessfn = access_pauth, 7127 .fgt = FGT_APDBKEY, 7128 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7129 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7131 .access = PL1_RW, .accessfn = access_pauth, 7132 .fgt = FGT_APDBKEY, 7133 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7134 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7136 .access = PL1_RW, .accessfn = access_pauth, 7137 .fgt = FGT_APGAKEY, 7138 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7139 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7141 .access = PL1_RW, .accessfn = access_pauth, 7142 .fgt = FGT_APGAKEY, 7143 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7144 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7145 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7146 .access = PL1_RW, .accessfn = access_pauth, 7147 .fgt = FGT_APIAKEY, 7148 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7149 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7150 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7151 .access = PL1_RW, .accessfn = access_pauth, 7152 .fgt = FGT_APIAKEY, 7153 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7154 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7156 .access = PL1_RW, .accessfn = access_pauth, 7157 .fgt = FGT_APIBKEY, 7158 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7159 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7161 .access = PL1_RW, .accessfn = access_pauth, 7162 .fgt = FGT_APIBKEY, 7163 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7164 }; 7165 7166 static const ARMCPRegInfo tlbirange_reginfo[] = { 7167 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7168 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7169 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7170 .fgt = FGT_TLBIRVAE1IS, 7171 .writefn = tlbi_aa64_rvae1is_write }, 7172 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7173 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7174 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7175 .fgt = FGT_TLBIRVAAE1IS, 7176 .writefn = tlbi_aa64_rvae1is_write }, 7177 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7179 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7180 .fgt = FGT_TLBIRVALE1IS, 7181 .writefn = tlbi_aa64_rvae1is_write }, 7182 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7183 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7184 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7185 .fgt = FGT_TLBIRVAALE1IS, 7186 .writefn = tlbi_aa64_rvae1is_write }, 7187 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7188 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7189 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7190 .fgt = FGT_TLBIRVAE1OS, 7191 .writefn = tlbi_aa64_rvae1is_write }, 7192 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7194 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7195 .fgt = FGT_TLBIRVAAE1OS, 7196 .writefn = tlbi_aa64_rvae1is_write }, 7197 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7198 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7199 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7200 .fgt = FGT_TLBIRVALE1OS, 7201 .writefn = tlbi_aa64_rvae1is_write }, 7202 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7203 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7204 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7205 .fgt = FGT_TLBIRVAALE1OS, 7206 .writefn = tlbi_aa64_rvae1is_write }, 7207 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7208 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7209 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7210 .fgt = FGT_TLBIRVAE1, 7211 .writefn = tlbi_aa64_rvae1_write }, 7212 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7214 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7215 .fgt = FGT_TLBIRVAAE1, 7216 .writefn = tlbi_aa64_rvae1_write }, 7217 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7219 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7220 .fgt = FGT_TLBIRVALE1, 7221 .writefn = tlbi_aa64_rvae1_write }, 7222 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7223 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7224 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7225 .fgt = FGT_TLBIRVAALE1, 7226 .writefn = tlbi_aa64_rvae1_write }, 7227 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7228 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7229 .access = PL2_W, .type = ARM_CP_NO_RAW, 7230 .writefn = tlbi_aa64_ripas2e1is_write }, 7231 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7233 .access = PL2_W, .type = ARM_CP_NO_RAW, 7234 .writefn = tlbi_aa64_ripas2e1is_write }, 7235 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7237 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7238 .writefn = tlbi_aa64_rvae2is_write }, 7239 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7240 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7241 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7242 .writefn = tlbi_aa64_rvae2is_write }, 7243 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7245 .access = PL2_W, .type = ARM_CP_NO_RAW, 7246 .writefn = tlbi_aa64_ripas2e1_write }, 7247 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7249 .access = PL2_W, .type = ARM_CP_NO_RAW, 7250 .writefn = tlbi_aa64_ripas2e1_write }, 7251 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7252 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7253 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7254 .writefn = tlbi_aa64_rvae2is_write }, 7255 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7257 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7258 .writefn = tlbi_aa64_rvae2is_write }, 7259 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7261 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7262 .writefn = tlbi_aa64_rvae2_write }, 7263 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7265 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7266 .writefn = tlbi_aa64_rvae2_write }, 7267 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7269 .access = PL3_W, .type = ARM_CP_NO_RAW, 7270 .writefn = tlbi_aa64_rvae3is_write }, 7271 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7273 .access = PL3_W, .type = ARM_CP_NO_RAW, 7274 .writefn = tlbi_aa64_rvae3is_write }, 7275 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7277 .access = PL3_W, .type = ARM_CP_NO_RAW, 7278 .writefn = tlbi_aa64_rvae3is_write }, 7279 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7281 .access = PL3_W, .type = ARM_CP_NO_RAW, 7282 .writefn = tlbi_aa64_rvae3is_write }, 7283 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7285 .access = PL3_W, .type = ARM_CP_NO_RAW, 7286 .writefn = tlbi_aa64_rvae3_write }, 7287 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7289 .access = PL3_W, .type = ARM_CP_NO_RAW, 7290 .writefn = tlbi_aa64_rvae3_write }, 7291 }; 7292 7293 static const ARMCPRegInfo tlbios_reginfo[] = { 7294 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7295 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7296 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7297 .fgt = FGT_TLBIVMALLE1OS, 7298 .writefn = tlbi_aa64_vmalle1is_write }, 7299 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7301 .fgt = FGT_TLBIVAE1OS, 7302 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7303 .writefn = tlbi_aa64_vae1is_write }, 7304 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7306 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7307 .fgt = FGT_TLBIASIDE1OS, 7308 .writefn = tlbi_aa64_vmalle1is_write }, 7309 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7311 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7312 .fgt = FGT_TLBIVAAE1OS, 7313 .writefn = tlbi_aa64_vae1is_write }, 7314 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7315 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7316 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7317 .fgt = FGT_TLBIVALE1OS, 7318 .writefn = tlbi_aa64_vae1is_write }, 7319 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7321 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7322 .fgt = FGT_TLBIVAALE1OS, 7323 .writefn = tlbi_aa64_vae1is_write }, 7324 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7325 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7326 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7327 .writefn = tlbi_aa64_alle2is_write }, 7328 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7329 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7330 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7331 .writefn = tlbi_aa64_vae2is_write }, 7332 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7333 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7334 .access = PL2_W, .type = ARM_CP_NO_RAW, 7335 .writefn = tlbi_aa64_alle1is_write }, 7336 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7337 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7338 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7339 .writefn = tlbi_aa64_vae2is_write }, 7340 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7341 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7342 .access = PL2_W, .type = ARM_CP_NO_RAW, 7343 .writefn = tlbi_aa64_alle1is_write }, 7344 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7345 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7346 .access = PL2_W, .type = ARM_CP_NOP }, 7347 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7349 .access = PL2_W, .type = ARM_CP_NOP }, 7350 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7351 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7352 .access = PL2_W, .type = ARM_CP_NOP }, 7353 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7354 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7355 .access = PL2_W, .type = ARM_CP_NOP }, 7356 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7357 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7358 .access = PL3_W, .type = ARM_CP_NO_RAW, 7359 .writefn = tlbi_aa64_alle3is_write }, 7360 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7362 .access = PL3_W, .type = ARM_CP_NO_RAW, 7363 .writefn = tlbi_aa64_vae3is_write }, 7364 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7365 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7366 .access = PL3_W, .type = ARM_CP_NO_RAW, 7367 .writefn = tlbi_aa64_vae3is_write }, 7368 }; 7369 7370 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7371 { 7372 Error *err = NULL; 7373 uint64_t ret; 7374 7375 /* Success sets NZCV = 0000. */ 7376 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7377 7378 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7379 /* 7380 * ??? Failed, for unknown reasons in the crypto subsystem. 7381 * The best we can do is log the reason and return the 7382 * timed-out indication to the guest. There is no reason 7383 * we know to expect this failure to be transitory, so the 7384 * guest may well hang retrying the operation. 7385 */ 7386 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7387 ri->name, error_get_pretty(err)); 7388 error_free(err); 7389 7390 env->ZF = 0; /* NZCF = 0100 */ 7391 return 0; 7392 } 7393 return ret; 7394 } 7395 7396 /* We do not support re-seeding, so the two registers operate the same. */ 7397 static const ARMCPRegInfo rndr_reginfo[] = { 7398 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7399 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7400 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7401 .access = PL0_R, .readfn = rndr_readfn }, 7402 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7403 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7404 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7405 .access = PL0_R, .readfn = rndr_readfn }, 7406 }; 7407 7408 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7409 uint64_t value) 7410 { 7411 ARMCPU *cpu = env_archcpu(env); 7412 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7413 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7414 uint64_t vaddr_in = (uint64_t) value; 7415 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7416 void *haddr; 7417 int mem_idx = cpu_mmu_index(env, false); 7418 7419 /* This won't be crossing page boundaries */ 7420 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7421 if (haddr) { 7422 #ifndef CONFIG_USER_ONLY 7423 7424 ram_addr_t offset; 7425 MemoryRegion *mr; 7426 7427 /* RCU lock is already being held */ 7428 mr = memory_region_from_host(haddr, &offset); 7429 7430 if (mr) { 7431 memory_region_writeback(mr, offset, dline_size); 7432 } 7433 #endif /*CONFIG_USER_ONLY*/ 7434 } 7435 } 7436 7437 static const ARMCPRegInfo dcpop_reg[] = { 7438 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7439 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7440 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7441 .fgt = FGT_DCCVAP, 7442 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7443 }; 7444 7445 static const ARMCPRegInfo dcpodp_reg[] = { 7446 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7448 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7449 .fgt = FGT_DCCVADP, 7450 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7451 }; 7452 7453 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7454 bool isread) 7455 { 7456 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7457 return CP_ACCESS_TRAP_EL2; 7458 } 7459 7460 return CP_ACCESS_OK; 7461 } 7462 7463 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7464 bool isread) 7465 { 7466 int el = arm_current_el(env); 7467 7468 if (el < 2 && arm_is_el2_enabled(env)) { 7469 uint64_t hcr = arm_hcr_el2_eff(env); 7470 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7471 return CP_ACCESS_TRAP_EL2; 7472 } 7473 } 7474 if (el < 3 && 7475 arm_feature(env, ARM_FEATURE_EL3) && 7476 !(env->cp15.scr_el3 & SCR_ATA)) { 7477 return CP_ACCESS_TRAP_EL3; 7478 } 7479 return CP_ACCESS_OK; 7480 } 7481 7482 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7483 { 7484 return env->pstate & PSTATE_TCO; 7485 } 7486 7487 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7488 { 7489 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7490 } 7491 7492 static const ARMCPRegInfo mte_reginfo[] = { 7493 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7495 .access = PL1_RW, .accessfn = access_mte, 7496 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7497 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7498 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7499 .access = PL1_RW, .accessfn = access_mte, 7500 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7501 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7503 .access = PL2_RW, .accessfn = access_mte, 7504 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7505 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7506 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7507 .access = PL3_RW, 7508 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7509 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7511 .access = PL1_RW, .accessfn = access_mte, 7512 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7513 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7515 .access = PL1_RW, .accessfn = access_mte, 7516 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7517 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7519 .access = PL1_R, .accessfn = access_aa64_tid5, 7520 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7521 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7523 .type = ARM_CP_NO_RAW, 7524 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7525 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7527 .type = ARM_CP_NOP, .access = PL1_W, 7528 .fgt = FGT_DCIVAC, 7529 .accessfn = aa64_cacheop_poc_access }, 7530 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7532 .fgt = FGT_DCISW, 7533 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7534 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7535 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7536 .type = ARM_CP_NOP, .access = PL1_W, 7537 .fgt = FGT_DCIVAC, 7538 .accessfn = aa64_cacheop_poc_access }, 7539 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7540 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7541 .fgt = FGT_DCISW, 7542 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7543 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7544 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7545 .fgt = FGT_DCCSW, 7546 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7547 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7548 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7549 .fgt = FGT_DCCSW, 7550 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7551 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7553 .fgt = FGT_DCCISW, 7554 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7555 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7557 .fgt = FGT_DCCISW, 7558 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7559 }; 7560 7561 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7562 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7563 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7564 .type = ARM_CP_CONST, .access = PL0_RW, }, 7565 }; 7566 7567 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7568 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7570 .type = ARM_CP_NOP, .access = PL0_W, 7571 .fgt = FGT_DCCVAC, 7572 .accessfn = aa64_cacheop_poc_access }, 7573 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7575 .type = ARM_CP_NOP, .access = PL0_W, 7576 .fgt = FGT_DCCVAC, 7577 .accessfn = aa64_cacheop_poc_access }, 7578 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7580 .type = ARM_CP_NOP, .access = PL0_W, 7581 .fgt = FGT_DCCVAP, 7582 .accessfn = aa64_cacheop_poc_access }, 7583 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7585 .type = ARM_CP_NOP, .access = PL0_W, 7586 .fgt = FGT_DCCVAP, 7587 .accessfn = aa64_cacheop_poc_access }, 7588 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7590 .type = ARM_CP_NOP, .access = PL0_W, 7591 .fgt = FGT_DCCVADP, 7592 .accessfn = aa64_cacheop_poc_access }, 7593 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7595 .type = ARM_CP_NOP, .access = PL0_W, 7596 .fgt = FGT_DCCVADP, 7597 .accessfn = aa64_cacheop_poc_access }, 7598 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7600 .type = ARM_CP_NOP, .access = PL0_W, 7601 .fgt = FGT_DCCIVAC, 7602 .accessfn = aa64_cacheop_poc_access }, 7603 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7605 .type = ARM_CP_NOP, .access = PL0_W, 7606 .fgt = FGT_DCCIVAC, 7607 .accessfn = aa64_cacheop_poc_access }, 7608 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7609 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7610 .access = PL0_W, .type = ARM_CP_DC_GVA, 7611 #ifndef CONFIG_USER_ONLY 7612 /* Avoid overhead of an access check that always passes in user-mode */ 7613 .accessfn = aa64_zva_access, 7614 .fgt = FGT_DCZVA, 7615 #endif 7616 }, 7617 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7618 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7619 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7620 #ifndef CONFIG_USER_ONLY 7621 /* Avoid overhead of an access check that always passes in user-mode */ 7622 .accessfn = aa64_zva_access, 7623 .fgt = FGT_DCZVA, 7624 #endif 7625 }, 7626 }; 7627 7628 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7629 bool isread) 7630 { 7631 uint64_t hcr = arm_hcr_el2_eff(env); 7632 int el = arm_current_el(env); 7633 7634 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7635 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7636 if (hcr & HCR_TGE) { 7637 return CP_ACCESS_TRAP_EL2; 7638 } 7639 return CP_ACCESS_TRAP; 7640 } 7641 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7642 return CP_ACCESS_TRAP_EL2; 7643 } 7644 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7645 return CP_ACCESS_TRAP_EL2; 7646 } 7647 if (el < 3 7648 && arm_feature(env, ARM_FEATURE_EL3) 7649 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7650 return CP_ACCESS_TRAP_EL3; 7651 } 7652 return CP_ACCESS_OK; 7653 } 7654 7655 static const ARMCPRegInfo scxtnum_reginfo[] = { 7656 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7658 .access = PL0_RW, .accessfn = access_scxtnum, 7659 .fgt = FGT_SCXTNUM_EL0, 7660 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7661 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7663 .access = PL1_RW, .accessfn = access_scxtnum, 7664 .fgt = FGT_SCXTNUM_EL1, 7665 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7666 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7668 .access = PL2_RW, .accessfn = access_scxtnum, 7669 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7670 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7672 .access = PL3_RW, 7673 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7674 }; 7675 7676 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7677 bool isread) 7678 { 7679 if (arm_current_el(env) == 2 && 7680 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7681 return CP_ACCESS_TRAP_EL3; 7682 } 7683 return CP_ACCESS_OK; 7684 } 7685 7686 static const ARMCPRegInfo fgt_reginfo[] = { 7687 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7688 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7689 .access = PL2_RW, .accessfn = access_fgt, 7690 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7691 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7693 .access = PL2_RW, .accessfn = access_fgt, 7694 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7695 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7696 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7697 .access = PL2_RW, .accessfn = access_fgt, 7698 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7699 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7700 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7701 .access = PL2_RW, .accessfn = access_fgt, 7702 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7703 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7704 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7705 .access = PL2_RW, .accessfn = access_fgt, 7706 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7707 }; 7708 #endif /* TARGET_AARCH64 */ 7709 7710 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7711 bool isread) 7712 { 7713 int el = arm_current_el(env); 7714 7715 if (el == 0) { 7716 uint64_t sctlr = arm_sctlr(env, el); 7717 if (!(sctlr & SCTLR_EnRCTX)) { 7718 return CP_ACCESS_TRAP; 7719 } 7720 } else if (el == 1) { 7721 uint64_t hcr = arm_hcr_el2_eff(env); 7722 if (hcr & HCR_NV) { 7723 return CP_ACCESS_TRAP_EL2; 7724 } 7725 } 7726 return CP_ACCESS_OK; 7727 } 7728 7729 static const ARMCPRegInfo predinv_reginfo[] = { 7730 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7732 .fgt = FGT_CFPRCTX, 7733 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7734 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7736 .fgt = FGT_DVPRCTX, 7737 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7738 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7740 .fgt = FGT_CPPRCTX, 7741 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7742 /* 7743 * Note the AArch32 opcodes have a different OPC1. 7744 */ 7745 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7746 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7747 .fgt = FGT_CFPRCTX, 7748 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7749 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7750 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7751 .fgt = FGT_DVPRCTX, 7752 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7753 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7754 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7755 .fgt = FGT_CPPRCTX, 7756 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7757 }; 7758 7759 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7760 { 7761 /* Read the high 32 bits of the current CCSIDR */ 7762 return extract64(ccsidr_read(env, ri), 32, 32); 7763 } 7764 7765 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7766 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7767 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7768 .access = PL1_R, 7769 .accessfn = access_tid4, 7770 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7771 }; 7772 7773 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7774 bool isread) 7775 { 7776 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7777 return CP_ACCESS_TRAP_EL2; 7778 } 7779 7780 return CP_ACCESS_OK; 7781 } 7782 7783 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7784 bool isread) 7785 { 7786 if (arm_feature(env, ARM_FEATURE_V8)) { 7787 return access_aa64_tid3(env, ri, isread); 7788 } 7789 7790 return CP_ACCESS_OK; 7791 } 7792 7793 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7794 bool isread) 7795 { 7796 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7797 return CP_ACCESS_TRAP_EL2; 7798 } 7799 7800 return CP_ACCESS_OK; 7801 } 7802 7803 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7804 const ARMCPRegInfo *ri, bool isread) 7805 { 7806 /* 7807 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7808 * in v7A, not in v8A. 7809 */ 7810 if (!arm_feature(env, ARM_FEATURE_V8) && 7811 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7812 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7813 return CP_ACCESS_TRAP_EL2; 7814 } 7815 return CP_ACCESS_OK; 7816 } 7817 7818 static const ARMCPRegInfo jazelle_regs[] = { 7819 { .name = "JIDR", 7820 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7821 .access = PL1_R, .accessfn = access_jazelle, 7822 .type = ARM_CP_CONST, .resetvalue = 0 }, 7823 { .name = "JOSCR", 7824 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7825 .accessfn = access_joscr_jmcr, 7826 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7827 { .name = "JMCR", 7828 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7829 .accessfn = access_joscr_jmcr, 7830 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7831 }; 7832 7833 static const ARMCPRegInfo contextidr_el2 = { 7834 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7836 .access = PL2_RW, 7837 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7838 }; 7839 7840 static const ARMCPRegInfo vhe_reginfo[] = { 7841 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7842 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7843 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7844 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7845 #ifndef CONFIG_USER_ONLY 7846 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7848 .fieldoffset = 7849 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7850 .type = ARM_CP_IO, .access = PL2_RW, 7851 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7852 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7853 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7854 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7855 .resetfn = gt_hv_timer_reset, 7856 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7857 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7858 .type = ARM_CP_IO, 7859 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7860 .access = PL2_RW, 7861 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7862 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7863 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7865 .type = ARM_CP_IO | ARM_CP_ALIAS, 7866 .access = PL2_RW, .accessfn = e2h_access, 7867 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7868 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7869 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7870 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7871 .type = ARM_CP_IO | ARM_CP_ALIAS, 7872 .access = PL2_RW, .accessfn = e2h_access, 7873 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7874 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7875 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7876 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7877 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7878 .access = PL2_RW, .accessfn = e2h_access, 7879 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7880 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7881 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7882 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7883 .access = PL2_RW, .accessfn = e2h_access, 7884 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7885 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7887 .type = ARM_CP_IO | ARM_CP_ALIAS, 7888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7889 .access = PL2_RW, .accessfn = e2h_access, 7890 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7891 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7892 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7893 .type = ARM_CP_IO | ARM_CP_ALIAS, 7894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7895 .access = PL2_RW, .accessfn = e2h_access, 7896 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7897 #endif 7898 }; 7899 7900 #ifndef CONFIG_USER_ONLY 7901 static const ARMCPRegInfo ats1e1_reginfo[] = { 7902 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7903 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7904 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7905 .fgt = FGT_ATS1E1RP, 7906 .writefn = ats_write64 }, 7907 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7908 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7909 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7910 .fgt = FGT_ATS1E1WP, 7911 .writefn = ats_write64 }, 7912 }; 7913 7914 static const ARMCPRegInfo ats1cp_reginfo[] = { 7915 { .name = "ATS1CPRP", 7916 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7917 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7918 .writefn = ats_write }, 7919 { .name = "ATS1CPWP", 7920 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7921 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7922 .writefn = ats_write }, 7923 }; 7924 #endif 7925 7926 /* 7927 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7928 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7929 * is non-zero, which is never for ARMv7, optionally in ARMv8 7930 * and mandatorily for ARMv8.2 and up. 7931 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7932 * implementation is RAZ/WI we can ignore this detail, as we 7933 * do for ACTLR. 7934 */ 7935 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7936 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7937 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7938 .access = PL1_RW, .accessfn = access_tacr, 7939 .type = ARM_CP_CONST, .resetvalue = 0 }, 7940 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7941 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7942 .access = PL2_RW, .type = ARM_CP_CONST, 7943 .resetvalue = 0 }, 7944 }; 7945 7946 void register_cp_regs_for_features(ARMCPU *cpu) 7947 { 7948 /* Register all the coprocessor registers based on feature bits */ 7949 CPUARMState *env = &cpu->env; 7950 if (arm_feature(env, ARM_FEATURE_M)) { 7951 /* M profile has no coprocessor registers */ 7952 return; 7953 } 7954 7955 define_arm_cp_regs(cpu, cp_reginfo); 7956 if (!arm_feature(env, ARM_FEATURE_V8)) { 7957 /* 7958 * Must go early as it is full of wildcards that may be 7959 * overridden by later definitions. 7960 */ 7961 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7962 } 7963 7964 if (arm_feature(env, ARM_FEATURE_V6)) { 7965 /* The ID registers all have impdef reset values */ 7966 ARMCPRegInfo v6_idregs[] = { 7967 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7969 .access = PL1_R, .type = ARM_CP_CONST, 7970 .accessfn = access_aa32_tid3, 7971 .resetvalue = cpu->isar.id_pfr0 }, 7972 /* 7973 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7974 * the value of the GIC field until after we define these regs. 7975 */ 7976 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7978 .access = PL1_R, .type = ARM_CP_NO_RAW, 7979 .accessfn = access_aa32_tid3, 7980 #ifdef CONFIG_USER_ONLY 7981 .type = ARM_CP_CONST, 7982 .resetvalue = cpu->isar.id_pfr1, 7983 #else 7984 .type = ARM_CP_NO_RAW, 7985 .accessfn = access_aa32_tid3, 7986 .readfn = id_pfr1_read, 7987 .writefn = arm_cp_write_ignore 7988 #endif 7989 }, 7990 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7992 .access = PL1_R, .type = ARM_CP_CONST, 7993 .accessfn = access_aa32_tid3, 7994 .resetvalue = cpu->isar.id_dfr0 }, 7995 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7997 .access = PL1_R, .type = ARM_CP_CONST, 7998 .accessfn = access_aa32_tid3, 7999 .resetvalue = cpu->id_afr0 }, 8000 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8002 .access = PL1_R, .type = ARM_CP_CONST, 8003 .accessfn = access_aa32_tid3, 8004 .resetvalue = cpu->isar.id_mmfr0 }, 8005 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8007 .access = PL1_R, .type = ARM_CP_CONST, 8008 .accessfn = access_aa32_tid3, 8009 .resetvalue = cpu->isar.id_mmfr1 }, 8010 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8012 .access = PL1_R, .type = ARM_CP_CONST, 8013 .accessfn = access_aa32_tid3, 8014 .resetvalue = cpu->isar.id_mmfr2 }, 8015 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8017 .access = PL1_R, .type = ARM_CP_CONST, 8018 .accessfn = access_aa32_tid3, 8019 .resetvalue = cpu->isar.id_mmfr3 }, 8020 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8022 .access = PL1_R, .type = ARM_CP_CONST, 8023 .accessfn = access_aa32_tid3, 8024 .resetvalue = cpu->isar.id_isar0 }, 8025 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8027 .access = PL1_R, .type = ARM_CP_CONST, 8028 .accessfn = access_aa32_tid3, 8029 .resetvalue = cpu->isar.id_isar1 }, 8030 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8032 .access = PL1_R, .type = ARM_CP_CONST, 8033 .accessfn = access_aa32_tid3, 8034 .resetvalue = cpu->isar.id_isar2 }, 8035 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8037 .access = PL1_R, .type = ARM_CP_CONST, 8038 .accessfn = access_aa32_tid3, 8039 .resetvalue = cpu->isar.id_isar3 }, 8040 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8042 .access = PL1_R, .type = ARM_CP_CONST, 8043 .accessfn = access_aa32_tid3, 8044 .resetvalue = cpu->isar.id_isar4 }, 8045 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8047 .access = PL1_R, .type = ARM_CP_CONST, 8048 .accessfn = access_aa32_tid3, 8049 .resetvalue = cpu->isar.id_isar5 }, 8050 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8052 .access = PL1_R, .type = ARM_CP_CONST, 8053 .accessfn = access_aa32_tid3, 8054 .resetvalue = cpu->isar.id_mmfr4 }, 8055 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8057 .access = PL1_R, .type = ARM_CP_CONST, 8058 .accessfn = access_aa32_tid3, 8059 .resetvalue = cpu->isar.id_isar6 }, 8060 }; 8061 define_arm_cp_regs(cpu, v6_idregs); 8062 define_arm_cp_regs(cpu, v6_cp_reginfo); 8063 } else { 8064 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8065 } 8066 if (arm_feature(env, ARM_FEATURE_V6K)) { 8067 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8068 } 8069 if (arm_feature(env, ARM_FEATURE_V7MP) && 8070 !arm_feature(env, ARM_FEATURE_PMSA)) { 8071 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8072 } 8073 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8074 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8075 } 8076 if (arm_feature(env, ARM_FEATURE_V7)) { 8077 ARMCPRegInfo clidr = { 8078 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8079 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8080 .access = PL1_R, .type = ARM_CP_CONST, 8081 .accessfn = access_tid4, 8082 .fgt = FGT_CLIDR_EL1, 8083 .resetvalue = cpu->clidr 8084 }; 8085 define_one_arm_cp_reg(cpu, &clidr); 8086 define_arm_cp_regs(cpu, v7_cp_reginfo); 8087 define_debug_regs(cpu); 8088 define_pmu_regs(cpu); 8089 } else { 8090 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8091 } 8092 if (arm_feature(env, ARM_FEATURE_V8)) { 8093 /* 8094 * v8 ID registers, which all have impdef reset values. 8095 * Note that within the ID register ranges the unused slots 8096 * must all RAZ, not UNDEF; future architecture versions may 8097 * define new registers here. 8098 * ID registers which are AArch64 views of the AArch32 ID registers 8099 * which already existed in v6 and v7 are handled elsewhere, 8100 * in v6_idregs[]. 8101 */ 8102 int i; 8103 ARMCPRegInfo v8_idregs[] = { 8104 /* 8105 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8106 * emulation because we don't know the right value for the 8107 * GIC field until after we define these regs. 8108 */ 8109 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8111 .access = PL1_R, 8112 #ifdef CONFIG_USER_ONLY 8113 .type = ARM_CP_CONST, 8114 .resetvalue = cpu->isar.id_aa64pfr0 8115 #else 8116 .type = ARM_CP_NO_RAW, 8117 .accessfn = access_aa64_tid3, 8118 .readfn = id_aa64pfr0_read, 8119 .writefn = arm_cp_write_ignore 8120 #endif 8121 }, 8122 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8124 .access = PL1_R, .type = ARM_CP_CONST, 8125 .accessfn = access_aa64_tid3, 8126 .resetvalue = cpu->isar.id_aa64pfr1}, 8127 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8128 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8129 .access = PL1_R, .type = ARM_CP_CONST, 8130 .accessfn = access_aa64_tid3, 8131 .resetvalue = 0 }, 8132 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8134 .access = PL1_R, .type = ARM_CP_CONST, 8135 .accessfn = access_aa64_tid3, 8136 .resetvalue = 0 }, 8137 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8139 .access = PL1_R, .type = ARM_CP_CONST, 8140 .accessfn = access_aa64_tid3, 8141 .resetvalue = cpu->isar.id_aa64zfr0 }, 8142 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8144 .access = PL1_R, .type = ARM_CP_CONST, 8145 .accessfn = access_aa64_tid3, 8146 .resetvalue = cpu->isar.id_aa64smfr0 }, 8147 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8148 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8149 .access = PL1_R, .type = ARM_CP_CONST, 8150 .accessfn = access_aa64_tid3, 8151 .resetvalue = 0 }, 8152 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8153 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8154 .access = PL1_R, .type = ARM_CP_CONST, 8155 .accessfn = access_aa64_tid3, 8156 .resetvalue = 0 }, 8157 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8159 .access = PL1_R, .type = ARM_CP_CONST, 8160 .accessfn = access_aa64_tid3, 8161 .resetvalue = cpu->isar.id_aa64dfr0 }, 8162 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8164 .access = PL1_R, .type = ARM_CP_CONST, 8165 .accessfn = access_aa64_tid3, 8166 .resetvalue = cpu->isar.id_aa64dfr1 }, 8167 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8168 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8169 .access = PL1_R, .type = ARM_CP_CONST, 8170 .accessfn = access_aa64_tid3, 8171 .resetvalue = 0 }, 8172 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8173 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8174 .access = PL1_R, .type = ARM_CP_CONST, 8175 .accessfn = access_aa64_tid3, 8176 .resetvalue = 0 }, 8177 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8179 .access = PL1_R, .type = ARM_CP_CONST, 8180 .accessfn = access_aa64_tid3, 8181 .resetvalue = cpu->id_aa64afr0 }, 8182 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8184 .access = PL1_R, .type = ARM_CP_CONST, 8185 .accessfn = access_aa64_tid3, 8186 .resetvalue = cpu->id_aa64afr1 }, 8187 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8188 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8189 .access = PL1_R, .type = ARM_CP_CONST, 8190 .accessfn = access_aa64_tid3, 8191 .resetvalue = 0 }, 8192 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8193 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8194 .access = PL1_R, .type = ARM_CP_CONST, 8195 .accessfn = access_aa64_tid3, 8196 .resetvalue = 0 }, 8197 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8199 .access = PL1_R, .type = ARM_CP_CONST, 8200 .accessfn = access_aa64_tid3, 8201 .resetvalue = cpu->isar.id_aa64isar0 }, 8202 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8204 .access = PL1_R, .type = ARM_CP_CONST, 8205 .accessfn = access_aa64_tid3, 8206 .resetvalue = cpu->isar.id_aa64isar1 }, 8207 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8209 .access = PL1_R, .type = ARM_CP_CONST, 8210 .accessfn = access_aa64_tid3, 8211 .resetvalue = 0 }, 8212 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8214 .access = PL1_R, .type = ARM_CP_CONST, 8215 .accessfn = access_aa64_tid3, 8216 .resetvalue = 0 }, 8217 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8219 .access = PL1_R, .type = ARM_CP_CONST, 8220 .accessfn = access_aa64_tid3, 8221 .resetvalue = 0 }, 8222 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8224 .access = PL1_R, .type = ARM_CP_CONST, 8225 .accessfn = access_aa64_tid3, 8226 .resetvalue = 0 }, 8227 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8229 .access = PL1_R, .type = ARM_CP_CONST, 8230 .accessfn = access_aa64_tid3, 8231 .resetvalue = 0 }, 8232 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8234 .access = PL1_R, .type = ARM_CP_CONST, 8235 .accessfn = access_aa64_tid3, 8236 .resetvalue = 0 }, 8237 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8239 .access = PL1_R, .type = ARM_CP_CONST, 8240 .accessfn = access_aa64_tid3, 8241 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8242 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8244 .access = PL1_R, .type = ARM_CP_CONST, 8245 .accessfn = access_aa64_tid3, 8246 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8247 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8249 .access = PL1_R, .type = ARM_CP_CONST, 8250 .accessfn = access_aa64_tid3, 8251 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8252 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8254 .access = PL1_R, .type = ARM_CP_CONST, 8255 .accessfn = access_aa64_tid3, 8256 .resetvalue = 0 }, 8257 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8259 .access = PL1_R, .type = ARM_CP_CONST, 8260 .accessfn = access_aa64_tid3, 8261 .resetvalue = 0 }, 8262 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8264 .access = PL1_R, .type = ARM_CP_CONST, 8265 .accessfn = access_aa64_tid3, 8266 .resetvalue = 0 }, 8267 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8269 .access = PL1_R, .type = ARM_CP_CONST, 8270 .accessfn = access_aa64_tid3, 8271 .resetvalue = 0 }, 8272 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8274 .access = PL1_R, .type = ARM_CP_CONST, 8275 .accessfn = access_aa64_tid3, 8276 .resetvalue = 0 }, 8277 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8279 .access = PL1_R, .type = ARM_CP_CONST, 8280 .accessfn = access_aa64_tid3, 8281 .resetvalue = cpu->isar.mvfr0 }, 8282 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8284 .access = PL1_R, .type = ARM_CP_CONST, 8285 .accessfn = access_aa64_tid3, 8286 .resetvalue = cpu->isar.mvfr1 }, 8287 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8289 .access = PL1_R, .type = ARM_CP_CONST, 8290 .accessfn = access_aa64_tid3, 8291 .resetvalue = cpu->isar.mvfr2 }, 8292 /* 8293 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8294 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8295 * as RAZ, since it is in the "reserved for future ID 8296 * registers, RAZ" part of the AArch32 encoding space. 8297 */ 8298 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8299 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8300 .access = PL1_R, .type = ARM_CP_CONST, 8301 .accessfn = access_aa64_tid3, 8302 .resetvalue = 0 }, 8303 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8304 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8305 .access = PL1_R, .type = ARM_CP_CONST, 8306 .accessfn = access_aa64_tid3, 8307 .resetvalue = 0 }, 8308 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8309 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8310 .access = PL1_R, .type = ARM_CP_CONST, 8311 .accessfn = access_aa64_tid3, 8312 .resetvalue = 0 }, 8313 /* 8314 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8315 * they're also RAZ for AArch64, and in v8 are gradually 8316 * being filled with AArch64-view-of-AArch32-ID-register 8317 * for new ID registers. 8318 */ 8319 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8321 .access = PL1_R, .type = ARM_CP_CONST, 8322 .accessfn = access_aa64_tid3, 8323 .resetvalue = 0 }, 8324 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8326 .access = PL1_R, .type = ARM_CP_CONST, 8327 .accessfn = access_aa64_tid3, 8328 .resetvalue = cpu->isar.id_pfr2 }, 8329 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8330 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8331 .access = PL1_R, .type = ARM_CP_CONST, 8332 .accessfn = access_aa64_tid3, 8333 .resetvalue = cpu->isar.id_dfr1 }, 8334 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8335 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8336 .access = PL1_R, .type = ARM_CP_CONST, 8337 .accessfn = access_aa64_tid3, 8338 .resetvalue = cpu->isar.id_mmfr5 }, 8339 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8341 .access = PL1_R, .type = ARM_CP_CONST, 8342 .accessfn = access_aa64_tid3, 8343 .resetvalue = 0 }, 8344 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8345 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8346 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8347 .fgt = FGT_PMCEIDN_EL0, 8348 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8349 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8350 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8351 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8352 .fgt = FGT_PMCEIDN_EL0, 8353 .resetvalue = cpu->pmceid0 }, 8354 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8355 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8356 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8357 .fgt = FGT_PMCEIDN_EL0, 8358 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8359 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8360 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8361 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8362 .fgt = FGT_PMCEIDN_EL0, 8363 .resetvalue = cpu->pmceid1 }, 8364 }; 8365 #ifdef CONFIG_USER_ONLY 8366 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8367 { .name = "ID_AA64PFR0_EL1", 8368 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8369 R_ID_AA64PFR0_ADVSIMD_MASK | 8370 R_ID_AA64PFR0_SVE_MASK | 8371 R_ID_AA64PFR0_DIT_MASK, 8372 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8373 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8374 { .name = "ID_AA64PFR1_EL1", 8375 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8376 R_ID_AA64PFR1_SSBS_MASK | 8377 R_ID_AA64PFR1_MTE_MASK | 8378 R_ID_AA64PFR1_SME_MASK }, 8379 { .name = "ID_AA64PFR*_EL1_RESERVED", 8380 .is_glob = true }, 8381 { .name = "ID_AA64ZFR0_EL1", 8382 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8383 R_ID_AA64ZFR0_AES_MASK | 8384 R_ID_AA64ZFR0_BITPERM_MASK | 8385 R_ID_AA64ZFR0_BFLOAT16_MASK | 8386 R_ID_AA64ZFR0_SHA3_MASK | 8387 R_ID_AA64ZFR0_SM4_MASK | 8388 R_ID_AA64ZFR0_I8MM_MASK | 8389 R_ID_AA64ZFR0_F32MM_MASK | 8390 R_ID_AA64ZFR0_F64MM_MASK }, 8391 { .name = "ID_AA64SMFR0_EL1", 8392 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8393 R_ID_AA64SMFR0_B16F32_MASK | 8394 R_ID_AA64SMFR0_F16F32_MASK | 8395 R_ID_AA64SMFR0_I8I32_MASK | 8396 R_ID_AA64SMFR0_F64F64_MASK | 8397 R_ID_AA64SMFR0_I16I64_MASK | 8398 R_ID_AA64SMFR0_FA64_MASK }, 8399 { .name = "ID_AA64MMFR0_EL1", 8400 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8401 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8402 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8403 { .name = "ID_AA64MMFR1_EL1", 8404 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8405 { .name = "ID_AA64MMFR2_EL1", 8406 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8407 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8408 .is_glob = true }, 8409 { .name = "ID_AA64DFR0_EL1", 8410 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8411 { .name = "ID_AA64DFR1_EL1" }, 8412 { .name = "ID_AA64DFR*_EL1_RESERVED", 8413 .is_glob = true }, 8414 { .name = "ID_AA64AFR*", 8415 .is_glob = true }, 8416 { .name = "ID_AA64ISAR0_EL1", 8417 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8418 R_ID_AA64ISAR0_SHA1_MASK | 8419 R_ID_AA64ISAR0_SHA2_MASK | 8420 R_ID_AA64ISAR0_CRC32_MASK | 8421 R_ID_AA64ISAR0_ATOMIC_MASK | 8422 R_ID_AA64ISAR0_RDM_MASK | 8423 R_ID_AA64ISAR0_SHA3_MASK | 8424 R_ID_AA64ISAR0_SM3_MASK | 8425 R_ID_AA64ISAR0_SM4_MASK | 8426 R_ID_AA64ISAR0_DP_MASK | 8427 R_ID_AA64ISAR0_FHM_MASK | 8428 R_ID_AA64ISAR0_TS_MASK | 8429 R_ID_AA64ISAR0_RNDR_MASK }, 8430 { .name = "ID_AA64ISAR1_EL1", 8431 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8432 R_ID_AA64ISAR1_APA_MASK | 8433 R_ID_AA64ISAR1_API_MASK | 8434 R_ID_AA64ISAR1_JSCVT_MASK | 8435 R_ID_AA64ISAR1_FCMA_MASK | 8436 R_ID_AA64ISAR1_LRCPC_MASK | 8437 R_ID_AA64ISAR1_GPA_MASK | 8438 R_ID_AA64ISAR1_GPI_MASK | 8439 R_ID_AA64ISAR1_FRINTTS_MASK | 8440 R_ID_AA64ISAR1_SB_MASK | 8441 R_ID_AA64ISAR1_BF16_MASK | 8442 R_ID_AA64ISAR1_DGH_MASK | 8443 R_ID_AA64ISAR1_I8MM_MASK }, 8444 { .name = "ID_AA64ISAR2_EL1", 8445 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8446 R_ID_AA64ISAR2_RPRES_MASK | 8447 R_ID_AA64ISAR2_GPA3_MASK | 8448 R_ID_AA64ISAR2_APA3_MASK }, 8449 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8450 .is_glob = true }, 8451 }; 8452 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8453 #endif 8454 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8455 if (!arm_feature(env, ARM_FEATURE_EL3) && 8456 !arm_feature(env, ARM_FEATURE_EL2)) { 8457 ARMCPRegInfo rvbar = { 8458 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8459 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8460 .access = PL1_R, 8461 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8462 }; 8463 define_one_arm_cp_reg(cpu, &rvbar); 8464 } 8465 define_arm_cp_regs(cpu, v8_idregs); 8466 define_arm_cp_regs(cpu, v8_cp_reginfo); 8467 8468 for (i = 4; i < 16; i++) { 8469 /* 8470 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8471 * For pre-v8 cores there are RAZ patterns for these in 8472 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8473 * v8 extends the "must RAZ" part of the ID register space 8474 * to also cover c0, 0, c{8-15}, {0-7}. 8475 * These are STATE_AA32 because in the AArch64 sysreg space 8476 * c4-c7 is where the AArch64 ID registers live (and we've 8477 * already defined those in v8_idregs[]), and c8-c15 are not 8478 * "must RAZ" for AArch64. 8479 */ 8480 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8481 ARMCPRegInfo v8_aa32_raz_idregs = { 8482 .name = name, 8483 .state = ARM_CP_STATE_AA32, 8484 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8485 .access = PL1_R, .type = ARM_CP_CONST, 8486 .accessfn = access_aa64_tid3, 8487 .resetvalue = 0 }; 8488 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8489 } 8490 } 8491 8492 /* 8493 * Register the base EL2 cpregs. 8494 * Pre v8, these registers are implemented only as part of the 8495 * Virtualization Extensions (EL2 present). Beginning with v8, 8496 * if EL2 is missing but EL3 is enabled, mostly these become 8497 * RES0 from EL3, with some specific exceptions. 8498 */ 8499 if (arm_feature(env, ARM_FEATURE_EL2) 8500 || (arm_feature(env, ARM_FEATURE_EL3) 8501 && arm_feature(env, ARM_FEATURE_V8))) { 8502 uint64_t vmpidr_def = mpidr_read_val(env); 8503 ARMCPRegInfo vpidr_regs[] = { 8504 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8505 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8506 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8507 .resetvalue = cpu->midr, 8508 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8509 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8510 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8511 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8512 .access = PL2_RW, .resetvalue = cpu->midr, 8513 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8514 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8515 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8516 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8517 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8518 .resetvalue = vmpidr_def, 8519 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8520 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8521 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8522 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8523 .access = PL2_RW, .resetvalue = vmpidr_def, 8524 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8525 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8526 }; 8527 /* 8528 * The only field of MDCR_EL2 that has a defined architectural reset 8529 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8530 */ 8531 ARMCPRegInfo mdcr_el2 = { 8532 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8533 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8534 .writefn = mdcr_el2_write, 8535 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8536 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8537 }; 8538 define_one_arm_cp_reg(cpu, &mdcr_el2); 8539 define_arm_cp_regs(cpu, vpidr_regs); 8540 define_arm_cp_regs(cpu, el2_cp_reginfo); 8541 if (arm_feature(env, ARM_FEATURE_V8)) { 8542 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8543 } 8544 if (cpu_isar_feature(aa64_sel2, cpu)) { 8545 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8546 } 8547 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8548 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8549 ARMCPRegInfo rvbar[] = { 8550 { 8551 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8552 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8553 .access = PL2_R, 8554 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8555 }, 8556 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8557 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8558 .access = PL2_R, 8559 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8560 }, 8561 }; 8562 define_arm_cp_regs(cpu, rvbar); 8563 } 8564 } 8565 8566 /* Register the base EL3 cpregs. */ 8567 if (arm_feature(env, ARM_FEATURE_EL3)) { 8568 define_arm_cp_regs(cpu, el3_cp_reginfo); 8569 ARMCPRegInfo el3_regs[] = { 8570 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8571 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8572 .access = PL3_R, 8573 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8574 }, 8575 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8576 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8577 .access = PL3_RW, 8578 .raw_writefn = raw_write, .writefn = sctlr_write, 8579 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8580 .resetvalue = cpu->reset_sctlr }, 8581 }; 8582 8583 define_arm_cp_regs(cpu, el3_regs); 8584 } 8585 /* 8586 * The behaviour of NSACR is sufficiently various that we don't 8587 * try to describe it in a single reginfo: 8588 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8589 * reads as constant 0xc00 from NS EL1 and NS EL2 8590 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8591 * if v7 without EL3, register doesn't exist 8592 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8593 */ 8594 if (arm_feature(env, ARM_FEATURE_EL3)) { 8595 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8596 static const ARMCPRegInfo nsacr = { 8597 .name = "NSACR", .type = ARM_CP_CONST, 8598 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8599 .access = PL1_RW, .accessfn = nsacr_access, 8600 .resetvalue = 0xc00 8601 }; 8602 define_one_arm_cp_reg(cpu, &nsacr); 8603 } else { 8604 static const ARMCPRegInfo nsacr = { 8605 .name = "NSACR", 8606 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8607 .access = PL3_RW | PL1_R, 8608 .resetvalue = 0, 8609 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8610 }; 8611 define_one_arm_cp_reg(cpu, &nsacr); 8612 } 8613 } else { 8614 if (arm_feature(env, ARM_FEATURE_V8)) { 8615 static const ARMCPRegInfo nsacr = { 8616 .name = "NSACR", .type = ARM_CP_CONST, 8617 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8618 .access = PL1_R, 8619 .resetvalue = 0xc00 8620 }; 8621 define_one_arm_cp_reg(cpu, &nsacr); 8622 } 8623 } 8624 8625 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8626 if (arm_feature(env, ARM_FEATURE_V6)) { 8627 /* PMSAv6 not implemented */ 8628 assert(arm_feature(env, ARM_FEATURE_V7)); 8629 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8630 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8631 } else { 8632 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8633 } 8634 } else { 8635 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8636 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8637 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8638 if (cpu_isar_feature(aa32_hpd, cpu)) { 8639 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8640 } 8641 } 8642 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8643 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8644 } 8645 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8646 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8647 } 8648 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8649 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8650 } 8651 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8652 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8653 } 8654 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8655 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8656 } 8657 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8658 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8659 } 8660 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8661 define_arm_cp_regs(cpu, omap_cp_reginfo); 8662 } 8663 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8664 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8665 } 8666 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8667 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8668 } 8669 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8670 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8671 } 8672 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8673 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8674 } 8675 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8676 define_arm_cp_regs(cpu, jazelle_regs); 8677 } 8678 /* 8679 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8680 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8681 * be read-only (ie write causes UNDEF exception). 8682 */ 8683 { 8684 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8685 /* 8686 * Pre-v8 MIDR space. 8687 * Note that the MIDR isn't a simple constant register because 8688 * of the TI925 behaviour where writes to another register can 8689 * cause the MIDR value to change. 8690 * 8691 * Unimplemented registers in the c15 0 0 0 space default to 8692 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8693 * and friends override accordingly. 8694 */ 8695 { .name = "MIDR", 8696 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8697 .access = PL1_R, .resetvalue = cpu->midr, 8698 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8699 .readfn = midr_read, 8700 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8701 .type = ARM_CP_OVERRIDE }, 8702 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8703 { .name = "DUMMY", 8704 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8705 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8706 { .name = "DUMMY", 8707 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8708 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8709 { .name = "DUMMY", 8710 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8711 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8712 { .name = "DUMMY", 8713 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8714 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8715 { .name = "DUMMY", 8716 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8717 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8718 }; 8719 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8720 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8722 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8723 .fgt = FGT_MIDR_EL1, 8724 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8725 .readfn = midr_read }, 8726 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8727 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8728 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8729 .access = PL1_R, .resetvalue = cpu->midr }, 8730 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8732 .access = PL1_R, 8733 .accessfn = access_aa64_tid1, 8734 .fgt = FGT_REVIDR_EL1, 8735 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8736 }; 8737 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8738 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8739 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8740 .access = PL1_R, .resetvalue = cpu->midr 8741 }; 8742 ARMCPRegInfo id_cp_reginfo[] = { 8743 /* These are common to v8 and pre-v8 */ 8744 { .name = "CTR", 8745 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8746 .access = PL1_R, .accessfn = ctr_el0_access, 8747 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8748 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8749 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8750 .access = PL0_R, .accessfn = ctr_el0_access, 8751 .fgt = FGT_CTR_EL0, 8752 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8753 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8754 { .name = "TCMTR", 8755 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8756 .access = PL1_R, 8757 .accessfn = access_aa32_tid1, 8758 .type = ARM_CP_CONST, .resetvalue = 0 }, 8759 }; 8760 /* TLBTR is specific to VMSA */ 8761 ARMCPRegInfo id_tlbtr_reginfo = { 8762 .name = "TLBTR", 8763 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8764 .access = PL1_R, 8765 .accessfn = access_aa32_tid1, 8766 .type = ARM_CP_CONST, .resetvalue = 0, 8767 }; 8768 /* MPUIR is specific to PMSA V6+ */ 8769 ARMCPRegInfo id_mpuir_reginfo = { 8770 .name = "MPUIR", 8771 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8772 .access = PL1_R, .type = ARM_CP_CONST, 8773 .resetvalue = cpu->pmsav7_dregion << 8 8774 }; 8775 /* HMPUIR is specific to PMSA V8 */ 8776 ARMCPRegInfo id_hmpuir_reginfo = { 8777 .name = "HMPUIR", 8778 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8779 .access = PL2_R, .type = ARM_CP_CONST, 8780 .resetvalue = cpu->pmsav8r_hdregion 8781 }; 8782 static const ARMCPRegInfo crn0_wi_reginfo = { 8783 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8785 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8786 }; 8787 #ifdef CONFIG_USER_ONLY 8788 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8789 { .name = "MIDR_EL1", 8790 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8791 R_MIDR_EL1_PARTNUM_MASK | 8792 R_MIDR_EL1_ARCHITECTURE_MASK | 8793 R_MIDR_EL1_VARIANT_MASK | 8794 R_MIDR_EL1_IMPLEMENTER_MASK }, 8795 { .name = "REVIDR_EL1" }, 8796 }; 8797 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8798 #endif 8799 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8800 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8801 size_t i; 8802 /* 8803 * Register the blanket "writes ignored" value first to cover the 8804 * whole space. Then update the specific ID registers to allow write 8805 * access, so that they ignore writes rather than causing them to 8806 * UNDEF. 8807 */ 8808 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8809 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8810 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8811 } 8812 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8813 id_cp_reginfo[i].access = PL1_RW; 8814 } 8815 id_mpuir_reginfo.access = PL1_RW; 8816 id_tlbtr_reginfo.access = PL1_RW; 8817 } 8818 if (arm_feature(env, ARM_FEATURE_V8)) { 8819 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8820 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8821 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8822 } 8823 } else { 8824 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8825 } 8826 define_arm_cp_regs(cpu, id_cp_reginfo); 8827 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8828 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8829 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8830 arm_feature(env, ARM_FEATURE_V8)) { 8831 uint32_t i = 0; 8832 char *tmp_string; 8833 8834 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8835 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8836 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8837 8838 /* Register alias is only valid for first 32 indexes */ 8839 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8840 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8841 uint8_t opc1 = extract32(i, 4, 1); 8842 uint8_t opc2 = extract32(i, 0, 1) << 2; 8843 8844 tmp_string = g_strdup_printf("PRBAR%u", i); 8845 ARMCPRegInfo tmp_prbarn_reginfo = { 8846 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8847 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8848 .access = PL1_RW, .resetvalue = 0, 8849 .accessfn = access_tvm_trvm, 8850 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8851 }; 8852 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8853 g_free(tmp_string); 8854 8855 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8856 tmp_string = g_strdup_printf("PRLAR%u", i); 8857 ARMCPRegInfo tmp_prlarn_reginfo = { 8858 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8859 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8860 .access = PL1_RW, .resetvalue = 0, 8861 .accessfn = access_tvm_trvm, 8862 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8863 }; 8864 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8865 g_free(tmp_string); 8866 } 8867 8868 /* Register alias is only valid for first 32 indexes */ 8869 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8870 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8871 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8872 uint8_t opc2 = extract32(i, 0, 1) << 2; 8873 8874 tmp_string = g_strdup_printf("HPRBAR%u", i); 8875 ARMCPRegInfo tmp_hprbarn_reginfo = { 8876 .name = tmp_string, 8877 .type = ARM_CP_NO_RAW, 8878 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8879 .access = PL2_RW, .resetvalue = 0, 8880 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8881 }; 8882 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8883 g_free(tmp_string); 8884 8885 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8886 tmp_string = g_strdup_printf("HPRLAR%u", i); 8887 ARMCPRegInfo tmp_hprlarn_reginfo = { 8888 .name = tmp_string, 8889 .type = ARM_CP_NO_RAW, 8890 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8891 .access = PL2_RW, .resetvalue = 0, 8892 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8893 }; 8894 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8895 g_free(tmp_string); 8896 } 8897 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8898 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8899 } 8900 } 8901 8902 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8903 ARMCPRegInfo mpidr_cp_reginfo[] = { 8904 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8905 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8906 .fgt = FGT_MPIDR_EL1, 8907 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8908 }; 8909 #ifdef CONFIG_USER_ONLY 8910 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8911 { .name = "MPIDR_EL1", 8912 .fixed_bits = 0x0000000080000000 }, 8913 }; 8914 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8915 #endif 8916 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8917 } 8918 8919 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8920 ARMCPRegInfo auxcr_reginfo[] = { 8921 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8922 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8923 .access = PL1_RW, .accessfn = access_tacr, 8924 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8925 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8926 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8927 .access = PL2_RW, .type = ARM_CP_CONST, 8928 .resetvalue = 0 }, 8929 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8930 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8931 .access = PL3_RW, .type = ARM_CP_CONST, 8932 .resetvalue = 0 }, 8933 }; 8934 define_arm_cp_regs(cpu, auxcr_reginfo); 8935 if (cpu_isar_feature(aa32_ac2, cpu)) { 8936 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8937 } 8938 } 8939 8940 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8941 /* 8942 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8943 * There are two flavours: 8944 * (1) older 32-bit only cores have a simple 32-bit CBAR 8945 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8946 * 32-bit register visible to AArch32 at a different encoding 8947 * to the "flavour 1" register and with the bits rearranged to 8948 * be able to squash a 64-bit address into the 32-bit view. 8949 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8950 * in future if we support AArch32-only configs of some of the 8951 * AArch64 cores we might need to add a specific feature flag 8952 * to indicate cores with "flavour 2" CBAR. 8953 */ 8954 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8955 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8956 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8957 | extract64(cpu->reset_cbar, 32, 12); 8958 ARMCPRegInfo cbar_reginfo[] = { 8959 { .name = "CBAR", 8960 .type = ARM_CP_CONST, 8961 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8962 .access = PL1_R, .resetvalue = cbar32 }, 8963 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8964 .type = ARM_CP_CONST, 8965 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8966 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8967 }; 8968 /* We don't implement a r/w 64 bit CBAR currently */ 8969 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8970 define_arm_cp_regs(cpu, cbar_reginfo); 8971 } else { 8972 ARMCPRegInfo cbar = { 8973 .name = "CBAR", 8974 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8975 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8976 .fieldoffset = offsetof(CPUARMState, 8977 cp15.c15_config_base_address) 8978 }; 8979 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8980 cbar.access = PL1_R; 8981 cbar.fieldoffset = 0; 8982 cbar.type = ARM_CP_CONST; 8983 } 8984 define_one_arm_cp_reg(cpu, &cbar); 8985 } 8986 } 8987 8988 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8989 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8990 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8991 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8992 .access = PL1_RW, .writefn = vbar_write, 8993 .fgt = FGT_VBAR_EL1, 8994 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8995 offsetof(CPUARMState, cp15.vbar_ns) }, 8996 .resetvalue = 0 }, 8997 }; 8998 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8999 } 9000 9001 /* Generic registers whose values depend on the implementation */ 9002 { 9003 ARMCPRegInfo sctlr = { 9004 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9005 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9006 .access = PL1_RW, .accessfn = access_tvm_trvm, 9007 .fgt = FGT_SCTLR_EL1, 9008 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9009 offsetof(CPUARMState, cp15.sctlr_ns) }, 9010 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9011 .raw_writefn = raw_write, 9012 }; 9013 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9014 /* 9015 * Normally we would always end the TB on an SCTLR write, but Linux 9016 * arch/arm/mach-pxa/sleep.S expects two instructions following 9017 * an MMU enable to execute from cache. Imitate this behaviour. 9018 */ 9019 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9020 } 9021 define_one_arm_cp_reg(cpu, &sctlr); 9022 9023 if (arm_feature(env, ARM_FEATURE_PMSA) && 9024 arm_feature(env, ARM_FEATURE_V8)) { 9025 ARMCPRegInfo vsctlr = { 9026 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9027 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9028 .access = PL2_RW, .resetvalue = 0x0, 9029 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9030 }; 9031 define_one_arm_cp_reg(cpu, &vsctlr); 9032 } 9033 } 9034 9035 if (cpu_isar_feature(aa64_lor, cpu)) { 9036 define_arm_cp_regs(cpu, lor_reginfo); 9037 } 9038 if (cpu_isar_feature(aa64_pan, cpu)) { 9039 define_one_arm_cp_reg(cpu, &pan_reginfo); 9040 } 9041 #ifndef CONFIG_USER_ONLY 9042 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9043 define_arm_cp_regs(cpu, ats1e1_reginfo); 9044 } 9045 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9046 define_arm_cp_regs(cpu, ats1cp_reginfo); 9047 } 9048 #endif 9049 if (cpu_isar_feature(aa64_uao, cpu)) { 9050 define_one_arm_cp_reg(cpu, &uao_reginfo); 9051 } 9052 9053 if (cpu_isar_feature(aa64_dit, cpu)) { 9054 define_one_arm_cp_reg(cpu, &dit_reginfo); 9055 } 9056 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9057 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9058 } 9059 if (cpu_isar_feature(any_ras, cpu)) { 9060 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9061 } 9062 9063 if (cpu_isar_feature(aa64_vh, cpu) || 9064 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9065 define_one_arm_cp_reg(cpu, &contextidr_el2); 9066 } 9067 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9068 define_arm_cp_regs(cpu, vhe_reginfo); 9069 } 9070 9071 if (cpu_isar_feature(aa64_sve, cpu)) { 9072 define_arm_cp_regs(cpu, zcr_reginfo); 9073 } 9074 9075 if (cpu_isar_feature(aa64_hcx, cpu)) { 9076 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9077 } 9078 9079 #ifdef TARGET_AARCH64 9080 if (cpu_isar_feature(aa64_sme, cpu)) { 9081 define_arm_cp_regs(cpu, sme_reginfo); 9082 } 9083 if (cpu_isar_feature(aa64_pauth, cpu)) { 9084 define_arm_cp_regs(cpu, pauth_reginfo); 9085 } 9086 if (cpu_isar_feature(aa64_rndr, cpu)) { 9087 define_arm_cp_regs(cpu, rndr_reginfo); 9088 } 9089 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9090 define_arm_cp_regs(cpu, tlbirange_reginfo); 9091 } 9092 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9093 define_arm_cp_regs(cpu, tlbios_reginfo); 9094 } 9095 /* Data Cache clean instructions up to PoP */ 9096 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9097 define_one_arm_cp_reg(cpu, dcpop_reg); 9098 9099 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9100 define_one_arm_cp_reg(cpu, dcpodp_reg); 9101 } 9102 } 9103 9104 /* 9105 * If full MTE is enabled, add all of the system registers. 9106 * If only "instructions available at EL0" are enabled, 9107 * then define only a RAZ/WI version of PSTATE.TCO. 9108 */ 9109 if (cpu_isar_feature(aa64_mte, cpu)) { 9110 define_arm_cp_regs(cpu, mte_reginfo); 9111 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9112 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9113 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9114 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9115 } 9116 9117 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9118 define_arm_cp_regs(cpu, scxtnum_reginfo); 9119 } 9120 9121 if (cpu_isar_feature(aa64_fgt, cpu)) { 9122 define_arm_cp_regs(cpu, fgt_reginfo); 9123 } 9124 #endif 9125 9126 if (cpu_isar_feature(any_predinv, cpu)) { 9127 define_arm_cp_regs(cpu, predinv_reginfo); 9128 } 9129 9130 if (cpu_isar_feature(any_ccidx, cpu)) { 9131 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9132 } 9133 9134 #ifndef CONFIG_USER_ONLY 9135 /* 9136 * Register redirections and aliases must be done last, 9137 * after the registers from the other extensions have been defined. 9138 */ 9139 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9140 define_arm_vh_e2h_redirects_aliases(cpu); 9141 } 9142 #endif 9143 } 9144 9145 /* Sort alphabetically by type name, except for "any". */ 9146 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9147 { 9148 ObjectClass *class_a = (ObjectClass *)a; 9149 ObjectClass *class_b = (ObjectClass *)b; 9150 const char *name_a, *name_b; 9151 9152 name_a = object_class_get_name(class_a); 9153 name_b = object_class_get_name(class_b); 9154 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9155 return 1; 9156 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9157 return -1; 9158 } else { 9159 return strcmp(name_a, name_b); 9160 } 9161 } 9162 9163 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9164 { 9165 ObjectClass *oc = data; 9166 CPUClass *cc = CPU_CLASS(oc); 9167 const char *typename; 9168 char *name; 9169 9170 typename = object_class_get_name(oc); 9171 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9172 if (cc->deprecation_note) { 9173 qemu_printf(" %s (deprecated)\n", name); 9174 } else { 9175 qemu_printf(" %s\n", name); 9176 } 9177 g_free(name); 9178 } 9179 9180 void arm_cpu_list(void) 9181 { 9182 GSList *list; 9183 9184 list = object_class_get_list(TYPE_ARM_CPU, false); 9185 list = g_slist_sort(list, arm_cpu_list_compare); 9186 qemu_printf("Available CPUs:\n"); 9187 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9188 g_slist_free(list); 9189 } 9190 9191 /* 9192 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9193 * add a single reginfo struct to the hash table. 9194 */ 9195 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9196 void *opaque, CPState state, 9197 CPSecureState secstate, 9198 int crm, int opc1, int opc2, 9199 const char *name) 9200 { 9201 CPUARMState *env = &cpu->env; 9202 uint32_t key; 9203 ARMCPRegInfo *r2; 9204 bool is64 = r->type & ARM_CP_64BIT; 9205 bool ns = secstate & ARM_CP_SECSTATE_NS; 9206 int cp = r->cp; 9207 size_t name_len; 9208 bool make_const; 9209 9210 switch (state) { 9211 case ARM_CP_STATE_AA32: 9212 /* We assume it is a cp15 register if the .cp field is left unset. */ 9213 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9214 cp = 15; 9215 } 9216 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9217 break; 9218 case ARM_CP_STATE_AA64: 9219 /* 9220 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9221 * cp == 0 as equivalent to the value for "standard guest-visible 9222 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9223 * in their AArch64 view (the .cp value may be non-zero for the 9224 * benefit of the AArch32 view). 9225 */ 9226 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9227 cp = CP_REG_ARM64_SYSREG_CP; 9228 } 9229 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9230 break; 9231 default: 9232 g_assert_not_reached(); 9233 } 9234 9235 /* Overriding of an existing definition must be explicitly requested. */ 9236 if (!(r->type & ARM_CP_OVERRIDE)) { 9237 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9238 if (oldreg) { 9239 assert(oldreg->type & ARM_CP_OVERRIDE); 9240 } 9241 } 9242 9243 /* 9244 * Eliminate registers that are not present because the EL is missing. 9245 * Doing this here makes it easier to put all registers for a given 9246 * feature into the same ARMCPRegInfo array and define them all at once. 9247 */ 9248 make_const = false; 9249 if (arm_feature(env, ARM_FEATURE_EL3)) { 9250 /* 9251 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9252 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9253 */ 9254 int min_el = ctz32(r->access) / 2; 9255 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9256 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9257 return; 9258 } 9259 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9260 } 9261 } else { 9262 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9263 ? PL2_RW : PL1_RW); 9264 if ((r->access & max_el) == 0) { 9265 return; 9266 } 9267 } 9268 9269 /* Combine cpreg and name into one allocation. */ 9270 name_len = strlen(name) + 1; 9271 r2 = g_malloc(sizeof(*r2) + name_len); 9272 *r2 = *r; 9273 r2->name = memcpy(r2 + 1, name, name_len); 9274 9275 /* 9276 * Update fields to match the instantiation, overwiting wildcards 9277 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9278 */ 9279 r2->cp = cp; 9280 r2->crm = crm; 9281 r2->opc1 = opc1; 9282 r2->opc2 = opc2; 9283 r2->state = state; 9284 r2->secure = secstate; 9285 if (opaque) { 9286 r2->opaque = opaque; 9287 } 9288 9289 if (make_const) { 9290 /* This should not have been a very special register to begin. */ 9291 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9292 assert(old_special == 0 || old_special == ARM_CP_NOP); 9293 /* 9294 * Set the special function to CONST, retaining the other flags. 9295 * This is important for e.g. ARM_CP_SVE so that we still 9296 * take the SVE trap if CPTR_EL3.EZ == 0. 9297 */ 9298 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9299 /* 9300 * Usually, these registers become RES0, but there are a few 9301 * special cases like VPIDR_EL2 which have a constant non-zero 9302 * value with writes ignored. 9303 */ 9304 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9305 r2->resetvalue = 0; 9306 } 9307 /* 9308 * ARM_CP_CONST has precedence, so removing the callbacks and 9309 * offsets are not strictly necessary, but it is potentially 9310 * less confusing to debug later. 9311 */ 9312 r2->readfn = NULL; 9313 r2->writefn = NULL; 9314 r2->raw_readfn = NULL; 9315 r2->raw_writefn = NULL; 9316 r2->resetfn = NULL; 9317 r2->fieldoffset = 0; 9318 r2->bank_fieldoffsets[0] = 0; 9319 r2->bank_fieldoffsets[1] = 0; 9320 } else { 9321 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9322 9323 if (isbanked) { 9324 /* 9325 * Register is banked (using both entries in array). 9326 * Overwriting fieldoffset as the array is only used to define 9327 * banked registers but later only fieldoffset is used. 9328 */ 9329 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9330 } 9331 if (state == ARM_CP_STATE_AA32) { 9332 if (isbanked) { 9333 /* 9334 * If the register is banked then we don't need to migrate or 9335 * reset the 32-bit instance in certain cases: 9336 * 9337 * 1) If the register has both 32-bit and 64-bit instances 9338 * then we can count on the 64-bit instance taking care 9339 * of the non-secure bank. 9340 * 2) If ARMv8 is enabled then we can count on a 64-bit 9341 * version taking care of the secure bank. This requires 9342 * that separate 32 and 64-bit definitions are provided. 9343 */ 9344 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9345 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9346 r2->type |= ARM_CP_ALIAS; 9347 } 9348 } else if ((secstate != r->secure) && !ns) { 9349 /* 9350 * The register is not banked so we only want to allow 9351 * migration of the non-secure instance. 9352 */ 9353 r2->type |= ARM_CP_ALIAS; 9354 } 9355 9356 if (HOST_BIG_ENDIAN && 9357 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9358 r2->fieldoffset += sizeof(uint32_t); 9359 } 9360 } 9361 } 9362 9363 /* 9364 * By convention, for wildcarded registers only the first 9365 * entry is used for migration; the others are marked as 9366 * ALIAS so we don't try to transfer the register 9367 * multiple times. Special registers (ie NOP/WFI) are 9368 * never migratable and not even raw-accessible. 9369 */ 9370 if (r2->type & ARM_CP_SPECIAL_MASK) { 9371 r2->type |= ARM_CP_NO_RAW; 9372 } 9373 if (((r->crm == CP_ANY) && crm != 0) || 9374 ((r->opc1 == CP_ANY) && opc1 != 0) || 9375 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9376 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9377 } 9378 9379 /* 9380 * Check that raw accesses are either forbidden or handled. Note that 9381 * we can't assert this earlier because the setup of fieldoffset for 9382 * banked registers has to be done first. 9383 */ 9384 if (!(r2->type & ARM_CP_NO_RAW)) { 9385 assert(!raw_accessors_invalid(r2)); 9386 } 9387 9388 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9389 } 9390 9391 9392 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9393 const ARMCPRegInfo *r, void *opaque) 9394 { 9395 /* 9396 * Define implementations of coprocessor registers. 9397 * We store these in a hashtable because typically 9398 * there are less than 150 registers in a space which 9399 * is 16*16*16*8*8 = 262144 in size. 9400 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9401 * If a register is defined twice then the second definition is 9402 * used, so this can be used to define some generic registers and 9403 * then override them with implementation specific variations. 9404 * At least one of the original and the second definition should 9405 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9406 * against accidental use. 9407 * 9408 * The state field defines whether the register is to be 9409 * visible in the AArch32 or AArch64 execution state. If the 9410 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9411 * reginfo structure for the AArch32 view, which sees the lower 9412 * 32 bits of the 64 bit register. 9413 * 9414 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9415 * be wildcarded. AArch64 registers are always considered to be 64 9416 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9417 * the register, if any. 9418 */ 9419 int crm, opc1, opc2; 9420 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9421 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9422 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9423 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9424 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9425 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9426 CPState state; 9427 9428 /* 64 bit registers have only CRm and Opc1 fields */ 9429 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9430 /* op0 only exists in the AArch64 encodings */ 9431 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9432 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9433 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9434 /* 9435 * This API is only for Arm's system coprocessors (14 and 15) or 9436 * (M-profile or v7A-and-earlier only) for implementation defined 9437 * coprocessors in the range 0..7. Our decode assumes this, since 9438 * 8..13 can be used for other insns including VFP and Neon. See 9439 * valid_cp() in translate.c. Assert here that we haven't tried 9440 * to use an invalid coprocessor number. 9441 */ 9442 switch (r->state) { 9443 case ARM_CP_STATE_BOTH: 9444 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9445 if (r->cp == 0) { 9446 break; 9447 } 9448 /* fall through */ 9449 case ARM_CP_STATE_AA32: 9450 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9451 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9452 assert(r->cp >= 14 && r->cp <= 15); 9453 } else { 9454 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9455 } 9456 break; 9457 case ARM_CP_STATE_AA64: 9458 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9459 break; 9460 default: 9461 g_assert_not_reached(); 9462 } 9463 /* 9464 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9465 * encodes a minimum access level for the register. We roll this 9466 * runtime check into our general permission check code, so check 9467 * here that the reginfo's specified permissions are strict enough 9468 * to encompass the generic architectural permission check. 9469 */ 9470 if (r->state != ARM_CP_STATE_AA32) { 9471 CPAccessRights mask; 9472 switch (r->opc1) { 9473 case 0: 9474 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9475 mask = PL0U_R | PL1_RW; 9476 break; 9477 case 1: case 2: 9478 /* min_EL EL1 */ 9479 mask = PL1_RW; 9480 break; 9481 case 3: 9482 /* min_EL EL0 */ 9483 mask = PL0_RW; 9484 break; 9485 case 4: 9486 case 5: 9487 /* min_EL EL2 */ 9488 mask = PL2_RW; 9489 break; 9490 case 6: 9491 /* min_EL EL3 */ 9492 mask = PL3_RW; 9493 break; 9494 case 7: 9495 /* min_EL EL1, secure mode only (we don't check the latter) */ 9496 mask = PL1_RW; 9497 break; 9498 default: 9499 /* broken reginfo with out-of-range opc1 */ 9500 g_assert_not_reached(); 9501 } 9502 /* assert our permissions are not too lax (stricter is fine) */ 9503 assert((r->access & ~mask) == 0); 9504 } 9505 9506 /* 9507 * Check that the register definition has enough info to handle 9508 * reads and writes if they are permitted. 9509 */ 9510 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9511 if (r->access & PL3_R) { 9512 assert((r->fieldoffset || 9513 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9514 r->readfn); 9515 } 9516 if (r->access & PL3_W) { 9517 assert((r->fieldoffset || 9518 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9519 r->writefn); 9520 } 9521 } 9522 9523 for (crm = crmmin; crm <= crmmax; crm++) { 9524 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9525 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9526 for (state = ARM_CP_STATE_AA32; 9527 state <= ARM_CP_STATE_AA64; state++) { 9528 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9529 continue; 9530 } 9531 if (state == ARM_CP_STATE_AA32) { 9532 /* 9533 * Under AArch32 CP registers can be common 9534 * (same for secure and non-secure world) or banked. 9535 */ 9536 char *name; 9537 9538 switch (r->secure) { 9539 case ARM_CP_SECSTATE_S: 9540 case ARM_CP_SECSTATE_NS: 9541 add_cpreg_to_hashtable(cpu, r, opaque, state, 9542 r->secure, crm, opc1, opc2, 9543 r->name); 9544 break; 9545 case ARM_CP_SECSTATE_BOTH: 9546 name = g_strdup_printf("%s_S", r->name); 9547 add_cpreg_to_hashtable(cpu, r, opaque, state, 9548 ARM_CP_SECSTATE_S, 9549 crm, opc1, opc2, name); 9550 g_free(name); 9551 add_cpreg_to_hashtable(cpu, r, opaque, state, 9552 ARM_CP_SECSTATE_NS, 9553 crm, opc1, opc2, r->name); 9554 break; 9555 default: 9556 g_assert_not_reached(); 9557 } 9558 } else { 9559 /* 9560 * AArch64 registers get mapped to non-secure instance 9561 * of AArch32 9562 */ 9563 add_cpreg_to_hashtable(cpu, r, opaque, state, 9564 ARM_CP_SECSTATE_NS, 9565 crm, opc1, opc2, r->name); 9566 } 9567 } 9568 } 9569 } 9570 } 9571 } 9572 9573 /* Define a whole list of registers */ 9574 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9575 void *opaque, size_t len) 9576 { 9577 size_t i; 9578 for (i = 0; i < len; ++i) { 9579 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9580 } 9581 } 9582 9583 /* 9584 * Modify ARMCPRegInfo for access from userspace. 9585 * 9586 * This is a data driven modification directed by 9587 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9588 * user-space cannot alter any values and dynamic values pertaining to 9589 * execution state are hidden from user space view anyway. 9590 */ 9591 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9592 const ARMCPRegUserSpaceInfo *mods, 9593 size_t mods_len) 9594 { 9595 for (size_t mi = 0; mi < mods_len; ++mi) { 9596 const ARMCPRegUserSpaceInfo *m = mods + mi; 9597 GPatternSpec *pat = NULL; 9598 9599 if (m->is_glob) { 9600 pat = g_pattern_spec_new(m->name); 9601 } 9602 for (size_t ri = 0; ri < regs_len; ++ri) { 9603 ARMCPRegInfo *r = regs + ri; 9604 9605 if (pat && g_pattern_match_string(pat, r->name)) { 9606 r->type = ARM_CP_CONST; 9607 r->access = PL0U_R; 9608 r->resetvalue = 0; 9609 /* continue */ 9610 } else if (strcmp(r->name, m->name) == 0) { 9611 r->type = ARM_CP_CONST; 9612 r->access = PL0U_R; 9613 r->resetvalue &= m->exported_bits; 9614 r->resetvalue |= m->fixed_bits; 9615 break; 9616 } 9617 } 9618 if (pat) { 9619 g_pattern_spec_free(pat); 9620 } 9621 } 9622 } 9623 9624 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9625 { 9626 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9627 } 9628 9629 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9630 uint64_t value) 9631 { 9632 /* Helper coprocessor write function for write-ignore registers */ 9633 } 9634 9635 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9636 { 9637 /* Helper coprocessor write function for read-as-zero registers */ 9638 return 0; 9639 } 9640 9641 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9642 { 9643 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9644 } 9645 9646 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9647 { 9648 /* 9649 * Return true if it is not valid for us to switch to 9650 * this CPU mode (ie all the UNPREDICTABLE cases in 9651 * the ARM ARM CPSRWriteByInstr pseudocode). 9652 */ 9653 9654 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9655 if (write_type == CPSRWriteByInstr && 9656 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9657 mode == ARM_CPU_MODE_HYP)) { 9658 return 1; 9659 } 9660 9661 switch (mode) { 9662 case ARM_CPU_MODE_USR: 9663 return 0; 9664 case ARM_CPU_MODE_SYS: 9665 case ARM_CPU_MODE_SVC: 9666 case ARM_CPU_MODE_ABT: 9667 case ARM_CPU_MODE_UND: 9668 case ARM_CPU_MODE_IRQ: 9669 case ARM_CPU_MODE_FIQ: 9670 /* 9671 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9672 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9673 */ 9674 /* 9675 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9676 * and CPS are treated as illegal mode changes. 9677 */ 9678 if (write_type == CPSRWriteByInstr && 9679 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9680 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9681 return 1; 9682 } 9683 return 0; 9684 case ARM_CPU_MODE_HYP: 9685 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9686 case ARM_CPU_MODE_MON: 9687 return arm_current_el(env) < 3; 9688 default: 9689 return 1; 9690 } 9691 } 9692 9693 uint32_t cpsr_read(CPUARMState *env) 9694 { 9695 int ZF; 9696 ZF = (env->ZF == 0); 9697 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9698 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9699 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9700 | ((env->condexec_bits & 0xfc) << 8) 9701 | (env->GE << 16) | (env->daif & CPSR_AIF); 9702 } 9703 9704 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9705 CPSRWriteType write_type) 9706 { 9707 uint32_t changed_daif; 9708 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9709 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9710 9711 if (mask & CPSR_NZCV) { 9712 env->ZF = (~val) & CPSR_Z; 9713 env->NF = val; 9714 env->CF = (val >> 29) & 1; 9715 env->VF = (val << 3) & 0x80000000; 9716 } 9717 if (mask & CPSR_Q) { 9718 env->QF = ((val & CPSR_Q) != 0); 9719 } 9720 if (mask & CPSR_T) { 9721 env->thumb = ((val & CPSR_T) != 0); 9722 } 9723 if (mask & CPSR_IT_0_1) { 9724 env->condexec_bits &= ~3; 9725 env->condexec_bits |= (val >> 25) & 3; 9726 } 9727 if (mask & CPSR_IT_2_7) { 9728 env->condexec_bits &= 3; 9729 env->condexec_bits |= (val >> 8) & 0xfc; 9730 } 9731 if (mask & CPSR_GE) { 9732 env->GE = (val >> 16) & 0xf; 9733 } 9734 9735 /* 9736 * In a V7 implementation that includes the security extensions but does 9737 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9738 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9739 * bits respectively. 9740 * 9741 * In a V8 implementation, it is permitted for privileged software to 9742 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9743 */ 9744 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9745 arm_feature(env, ARM_FEATURE_EL3) && 9746 !arm_feature(env, ARM_FEATURE_EL2) && 9747 !arm_is_secure(env)) { 9748 9749 changed_daif = (env->daif ^ val) & mask; 9750 9751 if (changed_daif & CPSR_A) { 9752 /* 9753 * Check to see if we are allowed to change the masking of async 9754 * abort exceptions from a non-secure state. 9755 */ 9756 if (!(env->cp15.scr_el3 & SCR_AW)) { 9757 qemu_log_mask(LOG_GUEST_ERROR, 9758 "Ignoring attempt to switch CPSR_A flag from " 9759 "non-secure world with SCR.AW bit clear\n"); 9760 mask &= ~CPSR_A; 9761 } 9762 } 9763 9764 if (changed_daif & CPSR_F) { 9765 /* 9766 * Check to see if we are allowed to change the masking of FIQ 9767 * exceptions from a non-secure state. 9768 */ 9769 if (!(env->cp15.scr_el3 & SCR_FW)) { 9770 qemu_log_mask(LOG_GUEST_ERROR, 9771 "Ignoring attempt to switch CPSR_F flag from " 9772 "non-secure world with SCR.FW bit clear\n"); 9773 mask &= ~CPSR_F; 9774 } 9775 9776 /* 9777 * Check whether non-maskable FIQ (NMFI) support is enabled. 9778 * If this bit is set software is not allowed to mask 9779 * FIQs, but is allowed to set CPSR_F to 0. 9780 */ 9781 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9782 (val & CPSR_F)) { 9783 qemu_log_mask(LOG_GUEST_ERROR, 9784 "Ignoring attempt to enable CPSR_F flag " 9785 "(non-maskable FIQ [NMFI] support enabled)\n"); 9786 mask &= ~CPSR_F; 9787 } 9788 } 9789 } 9790 9791 env->daif &= ~(CPSR_AIF & mask); 9792 env->daif |= val & CPSR_AIF & mask; 9793 9794 if (write_type != CPSRWriteRaw && 9795 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9796 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9797 /* 9798 * Note that we can only get here in USR mode if this is a 9799 * gdb stub write; for this case we follow the architectural 9800 * behaviour for guest writes in USR mode of ignoring an attempt 9801 * to switch mode. (Those are caught by translate.c for writes 9802 * triggered by guest instructions.) 9803 */ 9804 mask &= ~CPSR_M; 9805 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9806 /* 9807 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9808 * v7, and has defined behaviour in v8: 9809 * + leave CPSR.M untouched 9810 * + allow changes to the other CPSR fields 9811 * + set PSTATE.IL 9812 * For user changes via the GDB stub, we don't set PSTATE.IL, 9813 * as this would be unnecessarily harsh for a user error. 9814 */ 9815 mask &= ~CPSR_M; 9816 if (write_type != CPSRWriteByGDBStub && 9817 arm_feature(env, ARM_FEATURE_V8)) { 9818 mask |= CPSR_IL; 9819 val |= CPSR_IL; 9820 } 9821 qemu_log_mask(LOG_GUEST_ERROR, 9822 "Illegal AArch32 mode switch attempt from %s to %s\n", 9823 aarch32_mode_name(env->uncached_cpsr), 9824 aarch32_mode_name(val)); 9825 } else { 9826 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9827 write_type == CPSRWriteExceptionReturn ? 9828 "Exception return from AArch32" : 9829 "AArch32 mode switch from", 9830 aarch32_mode_name(env->uncached_cpsr), 9831 aarch32_mode_name(val), env->regs[15]); 9832 switch_mode(env, val & CPSR_M); 9833 } 9834 } 9835 mask &= ~CACHED_CPSR_BITS; 9836 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9837 if (tcg_enabled() && rebuild_hflags) { 9838 arm_rebuild_hflags(env); 9839 } 9840 } 9841 9842 /* Sign/zero extend */ 9843 uint32_t HELPER(sxtb16)(uint32_t x) 9844 { 9845 uint32_t res; 9846 res = (uint16_t)(int8_t)x; 9847 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9848 return res; 9849 } 9850 9851 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9852 { 9853 /* 9854 * Take a division-by-zero exception if necessary; otherwise return 9855 * to get the usual non-trapping division behaviour (result of 0) 9856 */ 9857 if (arm_feature(env, ARM_FEATURE_M) 9858 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9859 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9860 } 9861 } 9862 9863 uint32_t HELPER(uxtb16)(uint32_t x) 9864 { 9865 uint32_t res; 9866 res = (uint16_t)(uint8_t)x; 9867 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9868 return res; 9869 } 9870 9871 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9872 { 9873 if (den == 0) { 9874 handle_possible_div0_trap(env, GETPC()); 9875 return 0; 9876 } 9877 if (num == INT_MIN && den == -1) { 9878 return INT_MIN; 9879 } 9880 return num / den; 9881 } 9882 9883 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9884 { 9885 if (den == 0) { 9886 handle_possible_div0_trap(env, GETPC()); 9887 return 0; 9888 } 9889 return num / den; 9890 } 9891 9892 uint32_t HELPER(rbit)(uint32_t x) 9893 { 9894 return revbit32(x); 9895 } 9896 9897 #ifdef CONFIG_USER_ONLY 9898 9899 static void switch_mode(CPUARMState *env, int mode) 9900 { 9901 ARMCPU *cpu = env_archcpu(env); 9902 9903 if (mode != ARM_CPU_MODE_USR) { 9904 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9905 } 9906 } 9907 9908 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9909 uint32_t cur_el, bool secure) 9910 { 9911 return 1; 9912 } 9913 9914 void aarch64_sync_64_to_32(CPUARMState *env) 9915 { 9916 g_assert_not_reached(); 9917 } 9918 9919 #else 9920 9921 static void switch_mode(CPUARMState *env, int mode) 9922 { 9923 int old_mode; 9924 int i; 9925 9926 old_mode = env->uncached_cpsr & CPSR_M; 9927 if (mode == old_mode) { 9928 return; 9929 } 9930 9931 if (old_mode == ARM_CPU_MODE_FIQ) { 9932 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9933 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9934 } else if (mode == ARM_CPU_MODE_FIQ) { 9935 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9936 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9937 } 9938 9939 i = bank_number(old_mode); 9940 env->banked_r13[i] = env->regs[13]; 9941 env->banked_spsr[i] = env->spsr; 9942 9943 i = bank_number(mode); 9944 env->regs[13] = env->banked_r13[i]; 9945 env->spsr = env->banked_spsr[i]; 9946 9947 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9948 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9949 } 9950 9951 /* 9952 * Physical Interrupt Target EL Lookup Table 9953 * 9954 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9955 * 9956 * The below multi-dimensional table is used for looking up the target 9957 * exception level given numerous condition criteria. Specifically, the 9958 * target EL is based on SCR and HCR routing controls as well as the 9959 * currently executing EL and secure state. 9960 * 9961 * Dimensions: 9962 * target_el_table[2][2][2][2][2][4] 9963 * | | | | | +--- Current EL 9964 * | | | | +------ Non-secure(0)/Secure(1) 9965 * | | | +--------- HCR mask override 9966 * | | +------------ SCR exec state control 9967 * | +--------------- SCR mask override 9968 * +------------------ 32-bit(0)/64-bit(1) EL3 9969 * 9970 * The table values are as such: 9971 * 0-3 = EL0-EL3 9972 * -1 = Cannot occur 9973 * 9974 * The ARM ARM target EL table includes entries indicating that an "exception 9975 * is not taken". The two cases where this is applicable are: 9976 * 1) An exception is taken from EL3 but the SCR does not have the exception 9977 * routed to EL3. 9978 * 2) An exception is taken from EL2 but the HCR does not have the exception 9979 * routed to EL2. 9980 * In these two cases, the below table contain a target of EL1. This value is 9981 * returned as it is expected that the consumer of the table data will check 9982 * for "target EL >= current EL" to ensure the exception is not taken. 9983 * 9984 * SCR HCR 9985 * 64 EA AMO From 9986 * BIT IRQ IMO Non-secure Secure 9987 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9988 */ 9989 static const int8_t target_el_table[2][2][2][2][2][4] = { 9990 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9991 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9992 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9993 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9994 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9995 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9996 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9997 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9998 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9999 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10000 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10001 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10002 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10003 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10004 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10005 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10006 }; 10007 10008 /* 10009 * Determine the target EL for physical exceptions 10010 */ 10011 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10012 uint32_t cur_el, bool secure) 10013 { 10014 CPUARMState *env = cs->env_ptr; 10015 bool rw; 10016 bool scr; 10017 bool hcr; 10018 int target_el; 10019 /* Is the highest EL AArch64? */ 10020 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10021 uint64_t hcr_el2; 10022 10023 if (arm_feature(env, ARM_FEATURE_EL3)) { 10024 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10025 } else { 10026 /* 10027 * Either EL2 is the highest EL (and so the EL2 register width 10028 * is given by is64); or there is no EL2 or EL3, in which case 10029 * the value of 'rw' does not affect the table lookup anyway. 10030 */ 10031 rw = is64; 10032 } 10033 10034 hcr_el2 = arm_hcr_el2_eff(env); 10035 switch (excp_idx) { 10036 case EXCP_IRQ: 10037 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10038 hcr = hcr_el2 & HCR_IMO; 10039 break; 10040 case EXCP_FIQ: 10041 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10042 hcr = hcr_el2 & HCR_FMO; 10043 break; 10044 default: 10045 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10046 hcr = hcr_el2 & HCR_AMO; 10047 break; 10048 }; 10049 10050 /* 10051 * For these purposes, TGE and AMO/IMO/FMO both force the 10052 * interrupt to EL2. Fold TGE into the bit extracted above. 10053 */ 10054 hcr |= (hcr_el2 & HCR_TGE) != 0; 10055 10056 /* Perform a table-lookup for the target EL given the current state */ 10057 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10058 10059 assert(target_el > 0); 10060 10061 return target_el; 10062 } 10063 10064 void arm_log_exception(CPUState *cs) 10065 { 10066 int idx = cs->exception_index; 10067 10068 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10069 const char *exc = NULL; 10070 static const char * const excnames[] = { 10071 [EXCP_UDEF] = "Undefined Instruction", 10072 [EXCP_SWI] = "SVC", 10073 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10074 [EXCP_DATA_ABORT] = "Data Abort", 10075 [EXCP_IRQ] = "IRQ", 10076 [EXCP_FIQ] = "FIQ", 10077 [EXCP_BKPT] = "Breakpoint", 10078 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10079 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10080 [EXCP_HVC] = "Hypervisor Call", 10081 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10082 [EXCP_SMC] = "Secure Monitor Call", 10083 [EXCP_VIRQ] = "Virtual IRQ", 10084 [EXCP_VFIQ] = "Virtual FIQ", 10085 [EXCP_SEMIHOST] = "Semihosting call", 10086 [EXCP_NOCP] = "v7M NOCP UsageFault", 10087 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10088 [EXCP_STKOF] = "v8M STKOF UsageFault", 10089 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10090 [EXCP_LSERR] = "v8M LSERR UsageFault", 10091 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10092 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10093 [EXCP_VSERR] = "Virtual SERR", 10094 }; 10095 10096 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10097 exc = excnames[idx]; 10098 } 10099 if (!exc) { 10100 exc = "unknown"; 10101 } 10102 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10103 idx, exc, cs->cpu_index); 10104 } 10105 } 10106 10107 /* 10108 * Function used to synchronize QEMU's AArch64 register set with AArch32 10109 * register set. This is necessary when switching between AArch32 and AArch64 10110 * execution state. 10111 */ 10112 void aarch64_sync_32_to_64(CPUARMState *env) 10113 { 10114 int i; 10115 uint32_t mode = env->uncached_cpsr & CPSR_M; 10116 10117 /* We can blanket copy R[0:7] to X[0:7] */ 10118 for (i = 0; i < 8; i++) { 10119 env->xregs[i] = env->regs[i]; 10120 } 10121 10122 /* 10123 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10124 * Otherwise, they come from the banked user regs. 10125 */ 10126 if (mode == ARM_CPU_MODE_FIQ) { 10127 for (i = 8; i < 13; i++) { 10128 env->xregs[i] = env->usr_regs[i - 8]; 10129 } 10130 } else { 10131 for (i = 8; i < 13; i++) { 10132 env->xregs[i] = env->regs[i]; 10133 } 10134 } 10135 10136 /* 10137 * Registers x13-x23 are the various mode SP and FP registers. Registers 10138 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10139 * from the mode banked register. 10140 */ 10141 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10142 env->xregs[13] = env->regs[13]; 10143 env->xregs[14] = env->regs[14]; 10144 } else { 10145 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10146 /* HYP is an exception in that it is copied from r14 */ 10147 if (mode == ARM_CPU_MODE_HYP) { 10148 env->xregs[14] = env->regs[14]; 10149 } else { 10150 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10151 } 10152 } 10153 10154 if (mode == ARM_CPU_MODE_HYP) { 10155 env->xregs[15] = env->regs[13]; 10156 } else { 10157 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10158 } 10159 10160 if (mode == ARM_CPU_MODE_IRQ) { 10161 env->xregs[16] = env->regs[14]; 10162 env->xregs[17] = env->regs[13]; 10163 } else { 10164 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10165 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10166 } 10167 10168 if (mode == ARM_CPU_MODE_SVC) { 10169 env->xregs[18] = env->regs[14]; 10170 env->xregs[19] = env->regs[13]; 10171 } else { 10172 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10173 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10174 } 10175 10176 if (mode == ARM_CPU_MODE_ABT) { 10177 env->xregs[20] = env->regs[14]; 10178 env->xregs[21] = env->regs[13]; 10179 } else { 10180 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10181 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10182 } 10183 10184 if (mode == ARM_CPU_MODE_UND) { 10185 env->xregs[22] = env->regs[14]; 10186 env->xregs[23] = env->regs[13]; 10187 } else { 10188 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10189 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10190 } 10191 10192 /* 10193 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10194 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10195 * FIQ bank for r8-r14. 10196 */ 10197 if (mode == ARM_CPU_MODE_FIQ) { 10198 for (i = 24; i < 31; i++) { 10199 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10200 } 10201 } else { 10202 for (i = 24; i < 29; i++) { 10203 env->xregs[i] = env->fiq_regs[i - 24]; 10204 } 10205 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10206 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10207 } 10208 10209 env->pc = env->regs[15]; 10210 } 10211 10212 /* 10213 * Function used to synchronize QEMU's AArch32 register set with AArch64 10214 * register set. This is necessary when switching between AArch32 and AArch64 10215 * execution state. 10216 */ 10217 void aarch64_sync_64_to_32(CPUARMState *env) 10218 { 10219 int i; 10220 uint32_t mode = env->uncached_cpsr & CPSR_M; 10221 10222 /* We can blanket copy X[0:7] to R[0:7] */ 10223 for (i = 0; i < 8; i++) { 10224 env->regs[i] = env->xregs[i]; 10225 } 10226 10227 /* 10228 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10229 * Otherwise, we copy x8-x12 into the banked user regs. 10230 */ 10231 if (mode == ARM_CPU_MODE_FIQ) { 10232 for (i = 8; i < 13; i++) { 10233 env->usr_regs[i - 8] = env->xregs[i]; 10234 } 10235 } else { 10236 for (i = 8; i < 13; i++) { 10237 env->regs[i] = env->xregs[i]; 10238 } 10239 } 10240 10241 /* 10242 * Registers r13 & r14 depend on the current mode. 10243 * If we are in a given mode, we copy the corresponding x registers to r13 10244 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10245 * for the mode. 10246 */ 10247 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10248 env->regs[13] = env->xregs[13]; 10249 env->regs[14] = env->xregs[14]; 10250 } else { 10251 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10252 10253 /* 10254 * HYP is an exception in that it does not have its own banked r14 but 10255 * shares the USR r14 10256 */ 10257 if (mode == ARM_CPU_MODE_HYP) { 10258 env->regs[14] = env->xregs[14]; 10259 } else { 10260 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10261 } 10262 } 10263 10264 if (mode == ARM_CPU_MODE_HYP) { 10265 env->regs[13] = env->xregs[15]; 10266 } else { 10267 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10268 } 10269 10270 if (mode == ARM_CPU_MODE_IRQ) { 10271 env->regs[14] = env->xregs[16]; 10272 env->regs[13] = env->xregs[17]; 10273 } else { 10274 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10275 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10276 } 10277 10278 if (mode == ARM_CPU_MODE_SVC) { 10279 env->regs[14] = env->xregs[18]; 10280 env->regs[13] = env->xregs[19]; 10281 } else { 10282 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10283 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10284 } 10285 10286 if (mode == ARM_CPU_MODE_ABT) { 10287 env->regs[14] = env->xregs[20]; 10288 env->regs[13] = env->xregs[21]; 10289 } else { 10290 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10291 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10292 } 10293 10294 if (mode == ARM_CPU_MODE_UND) { 10295 env->regs[14] = env->xregs[22]; 10296 env->regs[13] = env->xregs[23]; 10297 } else { 10298 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10299 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10300 } 10301 10302 /* 10303 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10304 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10305 * FIQ bank for r8-r14. 10306 */ 10307 if (mode == ARM_CPU_MODE_FIQ) { 10308 for (i = 24; i < 31; i++) { 10309 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10310 } 10311 } else { 10312 for (i = 24; i < 29; i++) { 10313 env->fiq_regs[i - 24] = env->xregs[i]; 10314 } 10315 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10316 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10317 } 10318 10319 env->regs[15] = env->pc; 10320 } 10321 10322 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10323 uint32_t mask, uint32_t offset, 10324 uint32_t newpc) 10325 { 10326 int new_el; 10327 10328 /* Change the CPU state so as to actually take the exception. */ 10329 switch_mode(env, new_mode); 10330 10331 /* 10332 * For exceptions taken to AArch32 we must clear the SS bit in both 10333 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10334 */ 10335 env->pstate &= ~PSTATE_SS; 10336 env->spsr = cpsr_read(env); 10337 /* Clear IT bits. */ 10338 env->condexec_bits = 0; 10339 /* Switch to the new mode, and to the correct instruction set. */ 10340 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10341 10342 /* This must be after mode switching. */ 10343 new_el = arm_current_el(env); 10344 10345 /* Set new mode endianness */ 10346 env->uncached_cpsr &= ~CPSR_E; 10347 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10348 env->uncached_cpsr |= CPSR_E; 10349 } 10350 /* J and IL must always be cleared for exception entry */ 10351 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10352 env->daif |= mask; 10353 10354 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10355 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10356 env->uncached_cpsr |= CPSR_SSBS; 10357 } else { 10358 env->uncached_cpsr &= ~CPSR_SSBS; 10359 } 10360 } 10361 10362 if (new_mode == ARM_CPU_MODE_HYP) { 10363 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10364 env->elr_el[2] = env->regs[15]; 10365 } else { 10366 /* CPSR.PAN is normally preserved preserved unless... */ 10367 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10368 switch (new_el) { 10369 case 3: 10370 if (!arm_is_secure_below_el3(env)) { 10371 /* ... the target is EL3, from non-secure state. */ 10372 env->uncached_cpsr &= ~CPSR_PAN; 10373 break; 10374 } 10375 /* ... the target is EL3, from secure state ... */ 10376 /* fall through */ 10377 case 1: 10378 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10379 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10380 env->uncached_cpsr |= CPSR_PAN; 10381 } 10382 break; 10383 } 10384 } 10385 /* 10386 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10387 * and we should just guard the thumb mode on V4 10388 */ 10389 if (arm_feature(env, ARM_FEATURE_V4T)) { 10390 env->thumb = 10391 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10392 } 10393 env->regs[14] = env->regs[15] + offset; 10394 } 10395 env->regs[15] = newpc; 10396 10397 if (tcg_enabled()) { 10398 arm_rebuild_hflags(env); 10399 } 10400 } 10401 10402 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10403 { 10404 /* 10405 * Handle exception entry to Hyp mode; this is sufficiently 10406 * different to entry to other AArch32 modes that we handle it 10407 * separately here. 10408 * 10409 * The vector table entry used is always the 0x14 Hyp mode entry point, 10410 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10411 * The offset applied to the preferred return address is always zero 10412 * (see DDI0487C.a section G1.12.3). 10413 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10414 */ 10415 uint32_t addr, mask; 10416 ARMCPU *cpu = ARM_CPU(cs); 10417 CPUARMState *env = &cpu->env; 10418 10419 switch (cs->exception_index) { 10420 case EXCP_UDEF: 10421 addr = 0x04; 10422 break; 10423 case EXCP_SWI: 10424 addr = 0x08; 10425 break; 10426 case EXCP_BKPT: 10427 /* Fall through to prefetch abort. */ 10428 case EXCP_PREFETCH_ABORT: 10429 env->cp15.ifar_s = env->exception.vaddress; 10430 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10431 (uint32_t)env->exception.vaddress); 10432 addr = 0x0c; 10433 break; 10434 case EXCP_DATA_ABORT: 10435 env->cp15.dfar_s = env->exception.vaddress; 10436 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10437 (uint32_t)env->exception.vaddress); 10438 addr = 0x10; 10439 break; 10440 case EXCP_IRQ: 10441 addr = 0x18; 10442 break; 10443 case EXCP_FIQ: 10444 addr = 0x1c; 10445 break; 10446 case EXCP_HVC: 10447 addr = 0x08; 10448 break; 10449 case EXCP_HYP_TRAP: 10450 addr = 0x14; 10451 break; 10452 default: 10453 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10454 } 10455 10456 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10457 if (!arm_feature(env, ARM_FEATURE_V8)) { 10458 /* 10459 * QEMU syndrome values are v8-style. v7 has the IL bit 10460 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10461 * If this is a v7 CPU, squash the IL bit in those cases. 10462 */ 10463 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10464 (cs->exception_index == EXCP_DATA_ABORT && 10465 !(env->exception.syndrome & ARM_EL_ISV)) || 10466 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10467 env->exception.syndrome &= ~ARM_EL_IL; 10468 } 10469 } 10470 env->cp15.esr_el[2] = env->exception.syndrome; 10471 } 10472 10473 if (arm_current_el(env) != 2 && addr < 0x14) { 10474 addr = 0x14; 10475 } 10476 10477 mask = 0; 10478 if (!(env->cp15.scr_el3 & SCR_EA)) { 10479 mask |= CPSR_A; 10480 } 10481 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10482 mask |= CPSR_I; 10483 } 10484 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10485 mask |= CPSR_F; 10486 } 10487 10488 addr += env->cp15.hvbar; 10489 10490 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10491 } 10492 10493 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10494 { 10495 ARMCPU *cpu = ARM_CPU(cs); 10496 CPUARMState *env = &cpu->env; 10497 uint32_t addr; 10498 uint32_t mask; 10499 int new_mode; 10500 uint32_t offset; 10501 uint32_t moe; 10502 10503 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10504 switch (syn_get_ec(env->exception.syndrome)) { 10505 case EC_BREAKPOINT: 10506 case EC_BREAKPOINT_SAME_EL: 10507 moe = 1; 10508 break; 10509 case EC_WATCHPOINT: 10510 case EC_WATCHPOINT_SAME_EL: 10511 moe = 10; 10512 break; 10513 case EC_AA32_BKPT: 10514 moe = 3; 10515 break; 10516 case EC_VECTORCATCH: 10517 moe = 5; 10518 break; 10519 default: 10520 moe = 0; 10521 break; 10522 } 10523 10524 if (moe) { 10525 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10526 } 10527 10528 if (env->exception.target_el == 2) { 10529 arm_cpu_do_interrupt_aarch32_hyp(cs); 10530 return; 10531 } 10532 10533 switch (cs->exception_index) { 10534 case EXCP_UDEF: 10535 new_mode = ARM_CPU_MODE_UND; 10536 addr = 0x04; 10537 mask = CPSR_I; 10538 if (env->thumb) { 10539 offset = 2; 10540 } else { 10541 offset = 4; 10542 } 10543 break; 10544 case EXCP_SWI: 10545 new_mode = ARM_CPU_MODE_SVC; 10546 addr = 0x08; 10547 mask = CPSR_I; 10548 /* The PC already points to the next instruction. */ 10549 offset = 0; 10550 break; 10551 case EXCP_BKPT: 10552 /* Fall through to prefetch abort. */ 10553 case EXCP_PREFETCH_ABORT: 10554 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10555 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10556 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10557 env->exception.fsr, (uint32_t)env->exception.vaddress); 10558 new_mode = ARM_CPU_MODE_ABT; 10559 addr = 0x0c; 10560 mask = CPSR_A | CPSR_I; 10561 offset = 4; 10562 break; 10563 case EXCP_DATA_ABORT: 10564 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10565 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10566 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10567 env->exception.fsr, 10568 (uint32_t)env->exception.vaddress); 10569 new_mode = ARM_CPU_MODE_ABT; 10570 addr = 0x10; 10571 mask = CPSR_A | CPSR_I; 10572 offset = 8; 10573 break; 10574 case EXCP_IRQ: 10575 new_mode = ARM_CPU_MODE_IRQ; 10576 addr = 0x18; 10577 /* Disable IRQ and imprecise data aborts. */ 10578 mask = CPSR_A | CPSR_I; 10579 offset = 4; 10580 if (env->cp15.scr_el3 & SCR_IRQ) { 10581 /* IRQ routed to monitor mode */ 10582 new_mode = ARM_CPU_MODE_MON; 10583 mask |= CPSR_F; 10584 } 10585 break; 10586 case EXCP_FIQ: 10587 new_mode = ARM_CPU_MODE_FIQ; 10588 addr = 0x1c; 10589 /* Disable FIQ, IRQ and imprecise data aborts. */ 10590 mask = CPSR_A | CPSR_I | CPSR_F; 10591 if (env->cp15.scr_el3 & SCR_FIQ) { 10592 /* FIQ routed to monitor mode */ 10593 new_mode = ARM_CPU_MODE_MON; 10594 } 10595 offset = 4; 10596 break; 10597 case EXCP_VIRQ: 10598 new_mode = ARM_CPU_MODE_IRQ; 10599 addr = 0x18; 10600 /* Disable IRQ and imprecise data aborts. */ 10601 mask = CPSR_A | CPSR_I; 10602 offset = 4; 10603 break; 10604 case EXCP_VFIQ: 10605 new_mode = ARM_CPU_MODE_FIQ; 10606 addr = 0x1c; 10607 /* Disable FIQ, IRQ and imprecise data aborts. */ 10608 mask = CPSR_A | CPSR_I | CPSR_F; 10609 offset = 4; 10610 break; 10611 case EXCP_VSERR: 10612 { 10613 /* 10614 * Note that this is reported as a data abort, but the DFAR 10615 * has an UNKNOWN value. Construct the SError syndrome from 10616 * AET and ExT fields. 10617 */ 10618 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10619 10620 if (extended_addresses_enabled(env)) { 10621 env->exception.fsr = arm_fi_to_lfsc(&fi); 10622 } else { 10623 env->exception.fsr = arm_fi_to_sfsc(&fi); 10624 } 10625 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10626 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10627 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10628 env->exception.fsr); 10629 10630 new_mode = ARM_CPU_MODE_ABT; 10631 addr = 0x10; 10632 mask = CPSR_A | CPSR_I; 10633 offset = 8; 10634 } 10635 break; 10636 case EXCP_SMC: 10637 new_mode = ARM_CPU_MODE_MON; 10638 addr = 0x08; 10639 mask = CPSR_A | CPSR_I | CPSR_F; 10640 offset = 0; 10641 break; 10642 default: 10643 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10644 return; /* Never happens. Keep compiler happy. */ 10645 } 10646 10647 if (new_mode == ARM_CPU_MODE_MON) { 10648 addr += env->cp15.mvbar; 10649 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10650 /* High vectors. When enabled, base address cannot be remapped. */ 10651 addr += 0xffff0000; 10652 } else { 10653 /* 10654 * ARM v7 architectures provide a vector base address register to remap 10655 * the interrupt vector table. 10656 * This register is only followed in non-monitor mode, and is banked. 10657 * Note: only bits 31:5 are valid. 10658 */ 10659 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10660 } 10661 10662 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10663 env->cp15.scr_el3 &= ~SCR_NS; 10664 } 10665 10666 take_aarch32_exception(env, new_mode, mask, offset, addr); 10667 } 10668 10669 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10670 { 10671 /* 10672 * Return the register number of the AArch64 view of the AArch32 10673 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10674 * be that of the AArch32 mode the exception came from. 10675 */ 10676 int mode = env->uncached_cpsr & CPSR_M; 10677 10678 switch (aarch32_reg) { 10679 case 0 ... 7: 10680 return aarch32_reg; 10681 case 8 ... 12: 10682 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10683 case 13: 10684 switch (mode) { 10685 case ARM_CPU_MODE_USR: 10686 case ARM_CPU_MODE_SYS: 10687 return 13; 10688 case ARM_CPU_MODE_HYP: 10689 return 15; 10690 case ARM_CPU_MODE_IRQ: 10691 return 17; 10692 case ARM_CPU_MODE_SVC: 10693 return 19; 10694 case ARM_CPU_MODE_ABT: 10695 return 21; 10696 case ARM_CPU_MODE_UND: 10697 return 23; 10698 case ARM_CPU_MODE_FIQ: 10699 return 29; 10700 default: 10701 g_assert_not_reached(); 10702 } 10703 case 14: 10704 switch (mode) { 10705 case ARM_CPU_MODE_USR: 10706 case ARM_CPU_MODE_SYS: 10707 case ARM_CPU_MODE_HYP: 10708 return 14; 10709 case ARM_CPU_MODE_IRQ: 10710 return 16; 10711 case ARM_CPU_MODE_SVC: 10712 return 18; 10713 case ARM_CPU_MODE_ABT: 10714 return 20; 10715 case ARM_CPU_MODE_UND: 10716 return 22; 10717 case ARM_CPU_MODE_FIQ: 10718 return 30; 10719 default: 10720 g_assert_not_reached(); 10721 } 10722 case 15: 10723 return 31; 10724 default: 10725 g_assert_not_reached(); 10726 } 10727 } 10728 10729 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10730 { 10731 uint32_t ret = cpsr_read(env); 10732 10733 /* Move DIT to the correct location for SPSR_ELx */ 10734 if (ret & CPSR_DIT) { 10735 ret &= ~CPSR_DIT; 10736 ret |= PSTATE_DIT; 10737 } 10738 /* Merge PSTATE.SS into SPSR_ELx */ 10739 ret |= env->pstate & PSTATE_SS; 10740 10741 return ret; 10742 } 10743 10744 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10745 { 10746 /* Return true if this syndrome value is a synchronous external abort */ 10747 switch (syn_get_ec(syndrome)) { 10748 case EC_INSNABORT: 10749 case EC_INSNABORT_SAME_EL: 10750 case EC_DATAABORT: 10751 case EC_DATAABORT_SAME_EL: 10752 /* Look at fault status code for all the synchronous ext abort cases */ 10753 switch (syndrome & 0x3f) { 10754 case 0x10: 10755 case 0x13: 10756 case 0x14: 10757 case 0x15: 10758 case 0x16: 10759 case 0x17: 10760 return true; 10761 default: 10762 return false; 10763 } 10764 default: 10765 return false; 10766 } 10767 } 10768 10769 /* Handle exception entry to a target EL which is using AArch64 */ 10770 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10771 { 10772 ARMCPU *cpu = ARM_CPU(cs); 10773 CPUARMState *env = &cpu->env; 10774 unsigned int new_el = env->exception.target_el; 10775 target_ulong addr = env->cp15.vbar_el[new_el]; 10776 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10777 unsigned int old_mode; 10778 unsigned int cur_el = arm_current_el(env); 10779 int rt; 10780 10781 if (tcg_enabled()) { 10782 /* 10783 * Note that new_el can never be 0. If cur_el is 0, then 10784 * el0_a64 is is_a64(), else el0_a64 is ignored. 10785 */ 10786 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10787 } 10788 10789 if (cur_el < new_el) { 10790 /* 10791 * Entry vector offset depends on whether the implemented EL 10792 * immediately lower than the target level is using AArch32 or AArch64 10793 */ 10794 bool is_aa64; 10795 uint64_t hcr; 10796 10797 switch (new_el) { 10798 case 3: 10799 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10800 break; 10801 case 2: 10802 hcr = arm_hcr_el2_eff(env); 10803 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10804 is_aa64 = (hcr & HCR_RW) != 0; 10805 break; 10806 } 10807 /* fall through */ 10808 case 1: 10809 is_aa64 = is_a64(env); 10810 break; 10811 default: 10812 g_assert_not_reached(); 10813 } 10814 10815 if (is_aa64) { 10816 addr += 0x400; 10817 } else { 10818 addr += 0x600; 10819 } 10820 } else if (pstate_read(env) & PSTATE_SP) { 10821 addr += 0x200; 10822 } 10823 10824 switch (cs->exception_index) { 10825 case EXCP_PREFETCH_ABORT: 10826 case EXCP_DATA_ABORT: 10827 /* 10828 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10829 * to be taken to the SError vector entrypoint. 10830 */ 10831 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10832 syndrome_is_sync_extabt(env->exception.syndrome)) { 10833 addr += 0x180; 10834 } 10835 env->cp15.far_el[new_el] = env->exception.vaddress; 10836 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10837 env->cp15.far_el[new_el]); 10838 /* fall through */ 10839 case EXCP_BKPT: 10840 case EXCP_UDEF: 10841 case EXCP_SWI: 10842 case EXCP_HVC: 10843 case EXCP_HYP_TRAP: 10844 case EXCP_SMC: 10845 switch (syn_get_ec(env->exception.syndrome)) { 10846 case EC_ADVSIMDFPACCESSTRAP: 10847 /* 10848 * QEMU internal FP/SIMD syndromes from AArch32 include the 10849 * TA and coproc fields which are only exposed if the exception 10850 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10851 * AArch64 format syndrome. 10852 */ 10853 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10854 break; 10855 case EC_CP14RTTRAP: 10856 case EC_CP15RTTRAP: 10857 case EC_CP14DTTRAP: 10858 /* 10859 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10860 * the raw register field from the insn; when taking this to 10861 * AArch64 we must convert it to the AArch64 view of the register 10862 * number. Notice that we read a 4-bit AArch32 register number and 10863 * write back a 5-bit AArch64 one. 10864 */ 10865 rt = extract32(env->exception.syndrome, 5, 4); 10866 rt = aarch64_regnum(env, rt); 10867 env->exception.syndrome = deposit32(env->exception.syndrome, 10868 5, 5, rt); 10869 break; 10870 case EC_CP15RRTTRAP: 10871 case EC_CP14RRTTRAP: 10872 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10873 rt = extract32(env->exception.syndrome, 5, 4); 10874 rt = aarch64_regnum(env, rt); 10875 env->exception.syndrome = deposit32(env->exception.syndrome, 10876 5, 5, rt); 10877 rt = extract32(env->exception.syndrome, 10, 4); 10878 rt = aarch64_regnum(env, rt); 10879 env->exception.syndrome = deposit32(env->exception.syndrome, 10880 10, 5, rt); 10881 break; 10882 } 10883 env->cp15.esr_el[new_el] = env->exception.syndrome; 10884 break; 10885 case EXCP_IRQ: 10886 case EXCP_VIRQ: 10887 addr += 0x80; 10888 break; 10889 case EXCP_FIQ: 10890 case EXCP_VFIQ: 10891 addr += 0x100; 10892 break; 10893 case EXCP_VSERR: 10894 addr += 0x180; 10895 /* Construct the SError syndrome from IDS and ISS fields. */ 10896 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10897 env->cp15.esr_el[new_el] = env->exception.syndrome; 10898 break; 10899 default: 10900 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10901 } 10902 10903 if (is_a64(env)) { 10904 old_mode = pstate_read(env); 10905 aarch64_save_sp(env, arm_current_el(env)); 10906 env->elr_el[new_el] = env->pc; 10907 } else { 10908 old_mode = cpsr_read_for_spsr_elx(env); 10909 env->elr_el[new_el] = env->regs[15]; 10910 10911 aarch64_sync_32_to_64(env); 10912 10913 env->condexec_bits = 0; 10914 } 10915 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10916 10917 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10918 env->elr_el[new_el]); 10919 10920 if (cpu_isar_feature(aa64_pan, cpu)) { 10921 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10922 new_mode |= old_mode & PSTATE_PAN; 10923 switch (new_el) { 10924 case 2: 10925 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10926 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10927 != (HCR_E2H | HCR_TGE)) { 10928 break; 10929 } 10930 /* fall through */ 10931 case 1: 10932 /* ... the target is EL1 ... */ 10933 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10934 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10935 new_mode |= PSTATE_PAN; 10936 } 10937 break; 10938 } 10939 } 10940 if (cpu_isar_feature(aa64_mte, cpu)) { 10941 new_mode |= PSTATE_TCO; 10942 } 10943 10944 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10945 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10946 new_mode |= PSTATE_SSBS; 10947 } else { 10948 new_mode &= ~PSTATE_SSBS; 10949 } 10950 } 10951 10952 pstate_write(env, PSTATE_DAIF | new_mode); 10953 env->aarch64 = true; 10954 aarch64_restore_sp(env, new_el); 10955 10956 if (tcg_enabled()) { 10957 helper_rebuild_hflags_a64(env, new_el); 10958 } 10959 10960 env->pc = addr; 10961 10962 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10963 new_el, env->pc, pstate_read(env)); 10964 } 10965 10966 /* 10967 * Do semihosting call and set the appropriate return value. All the 10968 * permission and validity checks have been done at translate time. 10969 * 10970 * We only see semihosting exceptions in TCG only as they are not 10971 * trapped to the hypervisor in KVM. 10972 */ 10973 #ifdef CONFIG_TCG 10974 static void tcg_handle_semihosting(CPUState *cs) 10975 { 10976 ARMCPU *cpu = ARM_CPU(cs); 10977 CPUARMState *env = &cpu->env; 10978 10979 if (is_a64(env)) { 10980 qemu_log_mask(CPU_LOG_INT, 10981 "...handling as semihosting call 0x%" PRIx64 "\n", 10982 env->xregs[0]); 10983 do_common_semihosting(cs); 10984 env->pc += 4; 10985 } else { 10986 qemu_log_mask(CPU_LOG_INT, 10987 "...handling as semihosting call 0x%x\n", 10988 env->regs[0]); 10989 do_common_semihosting(cs); 10990 env->regs[15] += env->thumb ? 2 : 4; 10991 } 10992 } 10993 #endif 10994 10995 /* 10996 * Handle a CPU exception for A and R profile CPUs. 10997 * Do any appropriate logging, handle PSCI calls, and then hand off 10998 * to the AArch64-entry or AArch32-entry function depending on the 10999 * target exception level's register width. 11000 * 11001 * Note: this is used for both TCG (as the do_interrupt tcg op), 11002 * and KVM to re-inject guest debug exceptions, and to 11003 * inject a Synchronous-External-Abort. 11004 */ 11005 void arm_cpu_do_interrupt(CPUState *cs) 11006 { 11007 ARMCPU *cpu = ARM_CPU(cs); 11008 CPUARMState *env = &cpu->env; 11009 unsigned int new_el = env->exception.target_el; 11010 11011 assert(!arm_feature(env, ARM_FEATURE_M)); 11012 11013 arm_log_exception(cs); 11014 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11015 new_el); 11016 if (qemu_loglevel_mask(CPU_LOG_INT) 11017 && !excp_is_internal(cs->exception_index)) { 11018 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11019 syn_get_ec(env->exception.syndrome), 11020 env->exception.syndrome); 11021 } 11022 11023 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11024 arm_handle_psci_call(cpu); 11025 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11026 return; 11027 } 11028 11029 /* 11030 * Semihosting semantics depend on the register width of the code 11031 * that caused the exception, not the target exception level, so 11032 * must be handled here. 11033 */ 11034 #ifdef CONFIG_TCG 11035 if (cs->exception_index == EXCP_SEMIHOST) { 11036 tcg_handle_semihosting(cs); 11037 return; 11038 } 11039 #endif 11040 11041 /* 11042 * Hooks may change global state so BQL should be held, also the 11043 * BQL needs to be held for any modification of 11044 * cs->interrupt_request. 11045 */ 11046 g_assert(qemu_mutex_iothread_locked()); 11047 11048 arm_call_pre_el_change_hook(cpu); 11049 11050 assert(!excp_is_internal(cs->exception_index)); 11051 if (arm_el_is_aa64(env, new_el)) { 11052 arm_cpu_do_interrupt_aarch64(cs); 11053 } else { 11054 arm_cpu_do_interrupt_aarch32(cs); 11055 } 11056 11057 arm_call_el_change_hook(cpu); 11058 11059 if (!kvm_enabled()) { 11060 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11061 } 11062 } 11063 #endif /* !CONFIG_USER_ONLY */ 11064 11065 uint64_t arm_sctlr(CPUARMState *env, int el) 11066 { 11067 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11068 if (el == 0) { 11069 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11070 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11071 } 11072 return env->cp15.sctlr_el[el]; 11073 } 11074 11075 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11076 { 11077 if (regime_has_2_ranges(mmu_idx)) { 11078 return extract64(tcr, 37, 2); 11079 } else if (regime_is_stage2(mmu_idx)) { 11080 return 0; /* VTCR_EL2 */ 11081 } else { 11082 /* Replicate the single TBI bit so we always have 2 bits. */ 11083 return extract32(tcr, 20, 1) * 3; 11084 } 11085 } 11086 11087 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11088 { 11089 if (regime_has_2_ranges(mmu_idx)) { 11090 return extract64(tcr, 51, 2); 11091 } else if (regime_is_stage2(mmu_idx)) { 11092 return 0; /* VTCR_EL2 */ 11093 } else { 11094 /* Replicate the single TBID bit so we always have 2 bits. */ 11095 return extract32(tcr, 29, 1) * 3; 11096 } 11097 } 11098 11099 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11100 { 11101 if (regime_has_2_ranges(mmu_idx)) { 11102 return extract64(tcr, 57, 2); 11103 } else { 11104 /* Replicate the single TCMA bit so we always have 2 bits. */ 11105 return extract32(tcr, 30, 1) * 3; 11106 } 11107 } 11108 11109 static ARMGranuleSize tg0_to_gran_size(int tg) 11110 { 11111 switch (tg) { 11112 case 0: 11113 return Gran4K; 11114 case 1: 11115 return Gran64K; 11116 case 2: 11117 return Gran16K; 11118 default: 11119 return GranInvalid; 11120 } 11121 } 11122 11123 static ARMGranuleSize tg1_to_gran_size(int tg) 11124 { 11125 switch (tg) { 11126 case 1: 11127 return Gran16K; 11128 case 2: 11129 return Gran4K; 11130 case 3: 11131 return Gran64K; 11132 default: 11133 return GranInvalid; 11134 } 11135 } 11136 11137 static inline bool have4k(ARMCPU *cpu, bool stage2) 11138 { 11139 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11140 : cpu_isar_feature(aa64_tgran4, cpu); 11141 } 11142 11143 static inline bool have16k(ARMCPU *cpu, bool stage2) 11144 { 11145 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11146 : cpu_isar_feature(aa64_tgran16, cpu); 11147 } 11148 11149 static inline bool have64k(ARMCPU *cpu, bool stage2) 11150 { 11151 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11152 : cpu_isar_feature(aa64_tgran64, cpu); 11153 } 11154 11155 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11156 bool stage2) 11157 { 11158 switch (gran) { 11159 case Gran4K: 11160 if (have4k(cpu, stage2)) { 11161 return gran; 11162 } 11163 break; 11164 case Gran16K: 11165 if (have16k(cpu, stage2)) { 11166 return gran; 11167 } 11168 break; 11169 case Gran64K: 11170 if (have64k(cpu, stage2)) { 11171 return gran; 11172 } 11173 break; 11174 case GranInvalid: 11175 break; 11176 } 11177 /* 11178 * If the guest selects a granule size that isn't implemented, 11179 * the architecture requires that we behave as if it selected one 11180 * that is (with an IMPDEF choice of which one to pick). We choose 11181 * to implement the smallest supported granule size. 11182 */ 11183 if (have4k(cpu, stage2)) { 11184 return Gran4K; 11185 } 11186 if (have16k(cpu, stage2)) { 11187 return Gran16K; 11188 } 11189 assert(have64k(cpu, stage2)); 11190 return Gran64K; 11191 } 11192 11193 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11194 ARMMMUIdx mmu_idx, bool data, 11195 bool el1_is_aa32) 11196 { 11197 uint64_t tcr = regime_tcr(env, mmu_idx); 11198 bool epd, hpd, tsz_oob, ds, ha, hd; 11199 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11200 ARMGranuleSize gran; 11201 ARMCPU *cpu = env_archcpu(env); 11202 bool stage2 = regime_is_stage2(mmu_idx); 11203 11204 if (!regime_has_2_ranges(mmu_idx)) { 11205 select = 0; 11206 tsz = extract32(tcr, 0, 6); 11207 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11208 if (stage2) { 11209 /* VTCR_EL2 */ 11210 hpd = false; 11211 } else { 11212 hpd = extract32(tcr, 24, 1); 11213 } 11214 epd = false; 11215 sh = extract32(tcr, 12, 2); 11216 ps = extract32(tcr, 16, 3); 11217 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11218 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11219 ds = extract64(tcr, 32, 1); 11220 } else { 11221 bool e0pd; 11222 11223 /* 11224 * Bit 55 is always between the two regions, and is canonical for 11225 * determining if address tagging is enabled. 11226 */ 11227 select = extract64(va, 55, 1); 11228 if (!select) { 11229 tsz = extract32(tcr, 0, 6); 11230 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11231 epd = extract32(tcr, 7, 1); 11232 sh = extract32(tcr, 12, 2); 11233 hpd = extract64(tcr, 41, 1); 11234 e0pd = extract64(tcr, 55, 1); 11235 } else { 11236 tsz = extract32(tcr, 16, 6); 11237 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11238 epd = extract32(tcr, 23, 1); 11239 sh = extract32(tcr, 28, 2); 11240 hpd = extract64(tcr, 42, 1); 11241 e0pd = extract64(tcr, 56, 1); 11242 } 11243 ps = extract64(tcr, 32, 3); 11244 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11245 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11246 ds = extract64(tcr, 59, 1); 11247 11248 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11249 regime_is_user(env, mmu_idx)) { 11250 epd = true; 11251 } 11252 } 11253 11254 gran = sanitize_gran_size(cpu, gran, stage2); 11255 11256 if (cpu_isar_feature(aa64_st, cpu)) { 11257 max_tsz = 48 - (gran == Gran64K); 11258 } else { 11259 max_tsz = 39; 11260 } 11261 11262 /* 11263 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11264 * adjust the effective value of DS, as documented. 11265 */ 11266 min_tsz = 16; 11267 if (gran == Gran64K) { 11268 if (cpu_isar_feature(aa64_lva, cpu)) { 11269 min_tsz = 12; 11270 } 11271 ds = false; 11272 } else if (ds) { 11273 if (regime_is_stage2(mmu_idx)) { 11274 if (gran == Gran16K) { 11275 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11276 } else { 11277 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11278 } 11279 } else { 11280 if (gran == Gran16K) { 11281 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11282 } else { 11283 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11284 } 11285 } 11286 if (ds) { 11287 min_tsz = 12; 11288 } 11289 } 11290 11291 if (stage2 && el1_is_aa32) { 11292 /* 11293 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11294 * are loosened: a configured IPA of 40 bits is permitted even if 11295 * the implemented PA is less than that (and so a 40 bit IPA would 11296 * fault for an AArch64 EL1). See R_DTLMN. 11297 */ 11298 min_tsz = MIN(min_tsz, 24); 11299 } 11300 11301 if (tsz > max_tsz) { 11302 tsz = max_tsz; 11303 tsz_oob = true; 11304 } else if (tsz < min_tsz) { 11305 tsz = min_tsz; 11306 tsz_oob = true; 11307 } else { 11308 tsz_oob = false; 11309 } 11310 11311 /* Present TBI as a composite with TBID. */ 11312 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11313 if (!data) { 11314 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11315 } 11316 tbi = (tbi >> select) & 1; 11317 11318 return (ARMVAParameters) { 11319 .tsz = tsz, 11320 .ps = ps, 11321 .sh = sh, 11322 .select = select, 11323 .tbi = tbi, 11324 .epd = epd, 11325 .hpd = hpd, 11326 .tsz_oob = tsz_oob, 11327 .ds = ds, 11328 .ha = ha, 11329 .hd = ha && hd, 11330 .gran = gran, 11331 }; 11332 } 11333 11334 /* 11335 * Note that signed overflow is undefined in C. The following routines are 11336 * careful to use unsigned types where modulo arithmetic is required. 11337 * Failure to do so _will_ break on newer gcc. 11338 */ 11339 11340 /* Signed saturating arithmetic. */ 11341 11342 /* Perform 16-bit signed saturating addition. */ 11343 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11344 { 11345 uint16_t res; 11346 11347 res = a + b; 11348 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11349 if (a & 0x8000) { 11350 res = 0x8000; 11351 } else { 11352 res = 0x7fff; 11353 } 11354 } 11355 return res; 11356 } 11357 11358 /* Perform 8-bit signed saturating addition. */ 11359 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11360 { 11361 uint8_t res; 11362 11363 res = a + b; 11364 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11365 if (a & 0x80) { 11366 res = 0x80; 11367 } else { 11368 res = 0x7f; 11369 } 11370 } 11371 return res; 11372 } 11373 11374 /* Perform 16-bit signed saturating subtraction. */ 11375 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11376 { 11377 uint16_t res; 11378 11379 res = a - b; 11380 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11381 if (a & 0x8000) { 11382 res = 0x8000; 11383 } else { 11384 res = 0x7fff; 11385 } 11386 } 11387 return res; 11388 } 11389 11390 /* Perform 8-bit signed saturating subtraction. */ 11391 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11392 { 11393 uint8_t res; 11394 11395 res = a - b; 11396 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11397 if (a & 0x80) { 11398 res = 0x80; 11399 } else { 11400 res = 0x7f; 11401 } 11402 } 11403 return res; 11404 } 11405 11406 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11407 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11408 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11409 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11410 #define PFX q 11411 11412 #include "op_addsub.h" 11413 11414 /* Unsigned saturating arithmetic. */ 11415 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11416 { 11417 uint16_t res; 11418 res = a + b; 11419 if (res < a) { 11420 res = 0xffff; 11421 } 11422 return res; 11423 } 11424 11425 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11426 { 11427 if (a > b) { 11428 return a - b; 11429 } else { 11430 return 0; 11431 } 11432 } 11433 11434 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11435 { 11436 uint8_t res; 11437 res = a + b; 11438 if (res < a) { 11439 res = 0xff; 11440 } 11441 return res; 11442 } 11443 11444 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11445 { 11446 if (a > b) { 11447 return a - b; 11448 } else { 11449 return 0; 11450 } 11451 } 11452 11453 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11454 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11455 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11456 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11457 #define PFX uq 11458 11459 #include "op_addsub.h" 11460 11461 /* Signed modulo arithmetic. */ 11462 #define SARITH16(a, b, n, op) do { \ 11463 int32_t sum; \ 11464 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11465 RESULT(sum, n, 16); \ 11466 if (sum >= 0) \ 11467 ge |= 3 << (n * 2); \ 11468 } while (0) 11469 11470 #define SARITH8(a, b, n, op) do { \ 11471 int32_t sum; \ 11472 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11473 RESULT(sum, n, 8); \ 11474 if (sum >= 0) \ 11475 ge |= 1 << n; \ 11476 } while (0) 11477 11478 11479 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11480 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11481 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11482 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11483 #define PFX s 11484 #define ARITH_GE 11485 11486 #include "op_addsub.h" 11487 11488 /* Unsigned modulo arithmetic. */ 11489 #define ADD16(a, b, n) do { \ 11490 uint32_t sum; \ 11491 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11492 RESULT(sum, n, 16); \ 11493 if ((sum >> 16) == 1) \ 11494 ge |= 3 << (n * 2); \ 11495 } while (0) 11496 11497 #define ADD8(a, b, n) do { \ 11498 uint32_t sum; \ 11499 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11500 RESULT(sum, n, 8); \ 11501 if ((sum >> 8) == 1) \ 11502 ge |= 1 << n; \ 11503 } while (0) 11504 11505 #define SUB16(a, b, n) do { \ 11506 uint32_t sum; \ 11507 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11508 RESULT(sum, n, 16); \ 11509 if ((sum >> 16) == 0) \ 11510 ge |= 3 << (n * 2); \ 11511 } while (0) 11512 11513 #define SUB8(a, b, n) do { \ 11514 uint32_t sum; \ 11515 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11516 RESULT(sum, n, 8); \ 11517 if ((sum >> 8) == 0) \ 11518 ge |= 1 << n; \ 11519 } while (0) 11520 11521 #define PFX u 11522 #define ARITH_GE 11523 11524 #include "op_addsub.h" 11525 11526 /* Halved signed arithmetic. */ 11527 #define ADD16(a, b, n) \ 11528 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11529 #define SUB16(a, b, n) \ 11530 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11531 #define ADD8(a, b, n) \ 11532 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11533 #define SUB8(a, b, n) \ 11534 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11535 #define PFX sh 11536 11537 #include "op_addsub.h" 11538 11539 /* Halved unsigned arithmetic. */ 11540 #define ADD16(a, b, n) \ 11541 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11542 #define SUB16(a, b, n) \ 11543 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11544 #define ADD8(a, b, n) \ 11545 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11546 #define SUB8(a, b, n) \ 11547 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11548 #define PFX uh 11549 11550 #include "op_addsub.h" 11551 11552 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11553 { 11554 if (a > b) { 11555 return a - b; 11556 } else { 11557 return b - a; 11558 } 11559 } 11560 11561 /* Unsigned sum of absolute byte differences. */ 11562 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11563 { 11564 uint32_t sum; 11565 sum = do_usad(a, b); 11566 sum += do_usad(a >> 8, b >> 8); 11567 sum += do_usad(a >> 16, b >> 16); 11568 sum += do_usad(a >> 24, b >> 24); 11569 return sum; 11570 } 11571 11572 /* For ARMv6 SEL instruction. */ 11573 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11574 { 11575 uint32_t mask; 11576 11577 mask = 0; 11578 if (flags & 1) { 11579 mask |= 0xff; 11580 } 11581 if (flags & 2) { 11582 mask |= 0xff00; 11583 } 11584 if (flags & 4) { 11585 mask |= 0xff0000; 11586 } 11587 if (flags & 8) { 11588 mask |= 0xff000000; 11589 } 11590 return (a & mask) | (b & ~mask); 11591 } 11592 11593 /* 11594 * CRC helpers. 11595 * The upper bytes of val (above the number specified by 'bytes') must have 11596 * been zeroed out by the caller. 11597 */ 11598 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11599 { 11600 uint8_t buf[4]; 11601 11602 stl_le_p(buf, val); 11603 11604 /* zlib crc32 converts the accumulator and output to one's complement. */ 11605 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11606 } 11607 11608 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11609 { 11610 uint8_t buf[4]; 11611 11612 stl_le_p(buf, val); 11613 11614 /* Linux crc32c converts the output to one's complement. */ 11615 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11616 } 11617 11618 /* 11619 * Return the exception level to which FP-disabled exceptions should 11620 * be taken, or 0 if FP is enabled. 11621 */ 11622 int fp_exception_el(CPUARMState *env, int cur_el) 11623 { 11624 #ifndef CONFIG_USER_ONLY 11625 uint64_t hcr_el2; 11626 11627 /* 11628 * CPACR and the CPTR registers don't exist before v6, so FP is 11629 * always accessible 11630 */ 11631 if (!arm_feature(env, ARM_FEATURE_V6)) { 11632 return 0; 11633 } 11634 11635 if (arm_feature(env, ARM_FEATURE_M)) { 11636 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11637 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11638 return 1; 11639 } 11640 11641 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11642 if (!extract32(env->v7m.nsacr, 10, 1)) { 11643 /* FP insns cause a NOCP UsageFault taken to Secure */ 11644 return 3; 11645 } 11646 } 11647 11648 return 0; 11649 } 11650 11651 hcr_el2 = arm_hcr_el2_eff(env); 11652 11653 /* 11654 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11655 * 0, 2 : trap EL0 and EL1/PL1 accesses 11656 * 1 : trap only EL0 accesses 11657 * 3 : trap no accesses 11658 * This register is ignored if E2H+TGE are both set. 11659 */ 11660 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11661 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11662 11663 switch (fpen) { 11664 case 1: 11665 if (cur_el != 0) { 11666 break; 11667 } 11668 /* fall through */ 11669 case 0: 11670 case 2: 11671 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11672 if (!arm_el_is_aa64(env, 3) 11673 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11674 return 3; 11675 } 11676 if (cur_el <= 1) { 11677 return 1; 11678 } 11679 break; 11680 } 11681 } 11682 11683 /* 11684 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11685 * to control non-secure access to the FPU. It doesn't have any 11686 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11687 */ 11688 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11689 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11690 if (!extract32(env->cp15.nsacr, 10, 1)) { 11691 /* FP insns act as UNDEF */ 11692 return cur_el == 2 ? 2 : 1; 11693 } 11694 } 11695 11696 /* 11697 * CPTR_EL2 is present in v7VE or v8, and changes format 11698 * with HCR_EL2.E2H (regardless of TGE). 11699 */ 11700 if (cur_el <= 2) { 11701 if (hcr_el2 & HCR_E2H) { 11702 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11703 case 1: 11704 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11705 break; 11706 } 11707 /* fall through */ 11708 case 0: 11709 case 2: 11710 return 2; 11711 } 11712 } else if (arm_is_el2_enabled(env)) { 11713 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11714 return 2; 11715 } 11716 } 11717 } 11718 11719 /* CPTR_EL3 : present in v8 */ 11720 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11721 /* Trap all FP ops to EL3 */ 11722 return 3; 11723 } 11724 #endif 11725 return 0; 11726 } 11727 11728 /* Return the exception level we're running at if this is our mmu_idx */ 11729 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11730 { 11731 if (mmu_idx & ARM_MMU_IDX_M) { 11732 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11733 } 11734 11735 switch (mmu_idx) { 11736 case ARMMMUIdx_E10_0: 11737 case ARMMMUIdx_E20_0: 11738 return 0; 11739 case ARMMMUIdx_E10_1: 11740 case ARMMMUIdx_E10_1_PAN: 11741 return 1; 11742 case ARMMMUIdx_E2: 11743 case ARMMMUIdx_E20_2: 11744 case ARMMMUIdx_E20_2_PAN: 11745 return 2; 11746 case ARMMMUIdx_E3: 11747 return 3; 11748 default: 11749 g_assert_not_reached(); 11750 } 11751 } 11752 11753 #ifndef CONFIG_TCG 11754 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11755 { 11756 g_assert_not_reached(); 11757 } 11758 #endif 11759 11760 static bool arm_pan_enabled(CPUARMState *env) 11761 { 11762 if (is_a64(env)) { 11763 return env->pstate & PSTATE_PAN; 11764 } else { 11765 return env->uncached_cpsr & CPSR_PAN; 11766 } 11767 } 11768 11769 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11770 { 11771 ARMMMUIdx idx; 11772 uint64_t hcr; 11773 11774 if (arm_feature(env, ARM_FEATURE_M)) { 11775 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11776 } 11777 11778 /* See ARM pseudo-function ELIsInHost. */ 11779 switch (el) { 11780 case 0: 11781 hcr = arm_hcr_el2_eff(env); 11782 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11783 idx = ARMMMUIdx_E20_0; 11784 } else { 11785 idx = ARMMMUIdx_E10_0; 11786 } 11787 break; 11788 case 1: 11789 if (arm_pan_enabled(env)) { 11790 idx = ARMMMUIdx_E10_1_PAN; 11791 } else { 11792 idx = ARMMMUIdx_E10_1; 11793 } 11794 break; 11795 case 2: 11796 /* Note that TGE does not apply at EL2. */ 11797 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11798 if (arm_pan_enabled(env)) { 11799 idx = ARMMMUIdx_E20_2_PAN; 11800 } else { 11801 idx = ARMMMUIdx_E20_2; 11802 } 11803 } else { 11804 idx = ARMMMUIdx_E2; 11805 } 11806 break; 11807 case 3: 11808 return ARMMMUIdx_E3; 11809 default: 11810 g_assert_not_reached(); 11811 } 11812 11813 return idx; 11814 } 11815 11816 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11817 { 11818 return arm_mmu_idx_el(env, arm_current_el(env)); 11819 } 11820 11821 static bool mve_no_pred(CPUARMState *env) 11822 { 11823 /* 11824 * Return true if there is definitely no predication of MVE 11825 * instructions by VPR or LTPSIZE. (Returning false even if there 11826 * isn't any predication is OK; generated code will just be 11827 * a little worse.) 11828 * If the CPU does not implement MVE then this TB flag is always 0. 11829 * 11830 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11831 * logic in gen_update_fp_context() needs to be updated to match. 11832 * 11833 * We do not include the effect of the ECI bits here -- they are 11834 * tracked in other TB flags. This simplifies the logic for 11835 * "when did we emit code that changes the MVE_NO_PRED TB flag 11836 * and thus need to end the TB?". 11837 */ 11838 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11839 return false; 11840 } 11841 if (env->v7m.vpr) { 11842 return false; 11843 } 11844 if (env->v7m.ltpsize < 4) { 11845 return false; 11846 } 11847 return true; 11848 } 11849 11850 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11851 target_ulong *cs_base, uint32_t *pflags) 11852 { 11853 CPUARMTBFlags flags; 11854 11855 assert_hflags_rebuild_correctly(env); 11856 flags = env->hflags; 11857 11858 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11859 *pc = env->pc; 11860 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11861 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11862 } 11863 } else { 11864 *pc = env->regs[15]; 11865 11866 if (arm_feature(env, ARM_FEATURE_M)) { 11867 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11868 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11869 != env->v7m.secure) { 11870 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11871 } 11872 11873 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11874 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11875 (env->v7m.secure && 11876 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11877 /* 11878 * ASPEN is set, but FPCA/SFPA indicate that there is no 11879 * active FP context; we must create a new FP context before 11880 * executing any FP insn. 11881 */ 11882 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11883 } 11884 11885 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11886 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11887 DP_TBFLAG_M32(flags, LSPACT, 1); 11888 } 11889 11890 if (mve_no_pred(env)) { 11891 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11892 } 11893 } else { 11894 /* 11895 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11896 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11897 */ 11898 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11899 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11900 } else { 11901 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11902 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11903 } 11904 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11905 DP_TBFLAG_A32(flags, VFPEN, 1); 11906 } 11907 } 11908 11909 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11910 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11911 } 11912 11913 /* 11914 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11915 * states defined in the ARM ARM for software singlestep: 11916 * SS_ACTIVE PSTATE.SS State 11917 * 0 x Inactive (the TB flag for SS is always 0) 11918 * 1 0 Active-pending 11919 * 1 1 Active-not-pending 11920 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11921 */ 11922 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11923 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11924 } 11925 11926 *pflags = flags.flags; 11927 *cs_base = flags.flags2; 11928 } 11929 11930 #ifdef TARGET_AARCH64 11931 /* 11932 * The manual says that when SVE is enabled and VQ is widened the 11933 * implementation is allowed to zero the previously inaccessible 11934 * portion of the registers. The corollary to that is that when 11935 * SVE is enabled and VQ is narrowed we are also allowed to zero 11936 * the now inaccessible portion of the registers. 11937 * 11938 * The intent of this is that no predicate bit beyond VQ is ever set. 11939 * Which means that some operations on predicate registers themselves 11940 * may operate on full uint64_t or even unrolled across the maximum 11941 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11942 * may well be cheaper than conditionals to restrict the operation 11943 * to the relevant portion of a uint16_t[16]. 11944 */ 11945 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11946 { 11947 int i, j; 11948 uint64_t pmask; 11949 11950 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11951 assert(vq <= env_archcpu(env)->sve_max_vq); 11952 11953 /* Zap the high bits of the zregs. */ 11954 for (i = 0; i < 32; i++) { 11955 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11956 } 11957 11958 /* Zap the high bits of the pregs and ffr. */ 11959 pmask = 0; 11960 if (vq & 3) { 11961 pmask = ~(-1ULL << (16 * (vq & 3))); 11962 } 11963 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11964 for (i = 0; i < 17; ++i) { 11965 env->vfp.pregs[i].p[j] &= pmask; 11966 } 11967 pmask = 0; 11968 } 11969 } 11970 11971 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11972 { 11973 int exc_el; 11974 11975 if (sm) { 11976 exc_el = sme_exception_el(env, el); 11977 } else { 11978 exc_el = sve_exception_el(env, el); 11979 } 11980 if (exc_el) { 11981 return 0; /* disabled */ 11982 } 11983 return sve_vqm1_for_el_sm(env, el, sm); 11984 } 11985 11986 /* 11987 * Notice a change in SVE vector size when changing EL. 11988 */ 11989 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11990 int new_el, bool el0_a64) 11991 { 11992 ARMCPU *cpu = env_archcpu(env); 11993 int old_len, new_len; 11994 bool old_a64, new_a64, sm; 11995 11996 /* Nothing to do if no SVE. */ 11997 if (!cpu_isar_feature(aa64_sve, cpu)) { 11998 return; 11999 } 12000 12001 /* Nothing to do if FP is disabled in either EL. */ 12002 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12003 return; 12004 } 12005 12006 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12007 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12008 12009 /* 12010 * Both AArch64.TakeException and AArch64.ExceptionReturn 12011 * invoke ResetSVEState when taking an exception from, or 12012 * returning to, AArch32 state when PSTATE.SM is enabled. 12013 */ 12014 sm = FIELD_EX64(env->svcr, SVCR, SM); 12015 if (old_a64 != new_a64 && sm) { 12016 arm_reset_sve_state(env); 12017 return; 12018 } 12019 12020 /* 12021 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12022 * at ELx, or not available because the EL is in AArch32 state, then 12023 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12024 * has an effective value of 0". 12025 * 12026 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12027 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12028 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12029 * we already have the correct register contents when encountering the 12030 * vq0->vq0 transition between EL0->EL1. 12031 */ 12032 old_len = new_len = 0; 12033 if (old_a64) { 12034 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12035 } 12036 if (new_a64) { 12037 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12038 } 12039 12040 /* When changing vector length, clear inaccessible state. */ 12041 if (new_len < old_len) { 12042 aarch64_sve_narrow_vq(env, new_len + 1); 12043 } 12044 } 12045 #endif 12046