1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 35 36 static void switch_mode(CPUARMState *env, int mode); 37 38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 assert(ri->fieldoffset); 41 if (cpreg_field_is_64bit(ri)) { 42 return CPREG_FIELD64(env, ri); 43 } else { 44 return CPREG_FIELD32(env, ri); 45 } 46 } 47 48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 49 { 50 assert(ri->fieldoffset); 51 if (cpreg_field_is_64bit(ri)) { 52 CPREG_FIELD64(env, ri) = value; 53 } else { 54 CPREG_FIELD32(env, ri) = value; 55 } 56 } 57 58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 return (char *)env + ri->fieldoffset; 61 } 62 63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 /* Raw read of a coprocessor register (as needed for migration, etc). */ 66 if (ri->type & ARM_CP_CONST) { 67 return ri->resetvalue; 68 } else if (ri->raw_readfn) { 69 return ri->raw_readfn(env, ri); 70 } else if (ri->readfn) { 71 return ri->readfn(env, ri); 72 } else { 73 return raw_read(env, ri); 74 } 75 } 76 77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 78 uint64_t v) 79 { 80 /* 81 * Raw write of a coprocessor register (as needed for migration, etc). 82 * Note that constant registers are treated as write-ignored; the 83 * caller should check for success by whether a readback gives the 84 * value written. 85 */ 86 if (ri->type & ARM_CP_CONST) { 87 return; 88 } else if (ri->raw_writefn) { 89 ri->raw_writefn(env, ri, v); 90 } else if (ri->writefn) { 91 ri->writefn(env, ri, v); 92 } else { 93 raw_write(env, ri, v); 94 } 95 } 96 97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 98 { 99 /* 100 * Return true if the regdef would cause an assertion if you called 101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 102 * program bug for it not to have the NO_RAW flag). 103 * NB that returning false here doesn't necessarily mean that calling 104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 105 * read/write access functions which are safe for raw use" from "has 106 * read/write access functions which have side effects but has forgotten 107 * to provide raw access functions". 108 * The tests here line up with the conditions in read/write_raw_cp_reg() 109 * and assertions in raw_read()/raw_write(). 110 */ 111 if ((ri->type & ARM_CP_CONST) || 112 ri->fieldoffset || 113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 114 return false; 115 } 116 return true; 117 } 118 119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 120 { 121 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 122 int i; 123 bool ok = true; 124 125 for (i = 0; i < cpu->cpreg_array_len; i++) { 126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 127 const ARMCPRegInfo *ri; 128 uint64_t newval; 129 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 131 if (!ri) { 132 ok = false; 133 continue; 134 } 135 if (ri->type & ARM_CP_NO_RAW) { 136 continue; 137 } 138 139 newval = read_raw_cp_reg(&cpu->env, ri); 140 if (kvm_sync) { 141 /* 142 * Only sync if the previous list->cpustate sync succeeded. 143 * Rather than tracking the success/failure state for every 144 * item in the list, we just recheck "does the raw write we must 145 * have made in write_list_to_cpustate() read back OK" here. 146 */ 147 uint64_t oldval = cpu->cpreg_values[i]; 148 149 if (oldval == newval) { 150 continue; 151 } 152 153 write_raw_cp_reg(&cpu->env, ri, oldval); 154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, newval); 159 } 160 cpu->cpreg_values[i] = newval; 161 } 162 return ok; 163 } 164 165 bool write_list_to_cpustate(ARMCPU *cpu) 166 { 167 int i; 168 bool ok = true; 169 170 for (i = 0; i < cpu->cpreg_array_len; i++) { 171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 172 uint64_t v = cpu->cpreg_values[i]; 173 const ARMCPRegInfo *ri; 174 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 176 if (!ri) { 177 ok = false; 178 continue; 179 } 180 if (ri->type & ARM_CP_NO_RAW) { 181 continue; 182 } 183 /* 184 * Write value and confirm it reads back as written 185 * (to catch read-only registers and partially read-only 186 * registers where the incoming migration value doesn't match) 187 */ 188 write_raw_cp_reg(&cpu->env, ri, v); 189 if (read_raw_cp_reg(&cpu->env, ri) != v) { 190 ok = false; 191 } 192 } 193 return ok; 194 } 195 196 static void add_cpreg_to_list(gpointer key, gpointer opaque) 197 { 198 ARMCPU *cpu = opaque; 199 uint32_t regidx = (uintptr_t)key; 200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 201 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 204 /* The value array need not be initialized at this point */ 205 cpu->cpreg_array_len++; 206 } 207 } 208 209 static void count_cpreg(gpointer key, gpointer opaque) 210 { 211 ARMCPU *cpu = opaque; 212 const ARMCPRegInfo *ri; 213 214 ri = g_hash_table_lookup(cpu->cp_regs, key); 215 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 217 cpu->cpreg_array_len++; 218 } 219 } 220 221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 222 { 223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 225 226 if (aidx > bidx) { 227 return 1; 228 } 229 if (aidx < bidx) { 230 return -1; 231 } 232 return 0; 233 } 234 235 void init_cpreg_list(ARMCPU *cpu) 236 { 237 /* 238 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 239 * Note that we require cpreg_tuples[] to be sorted by key ID. 240 */ 241 GList *keys; 242 int arraylen; 243 244 keys = g_hash_table_get_keys(cpu->cp_regs); 245 keys = g_list_sort(keys, cpreg_key_compare); 246 247 cpu->cpreg_array_len = 0; 248 249 g_list_foreach(keys, count_cpreg, cpu); 250 251 arraylen = cpu->cpreg_array_len; 252 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 253 cpu->cpreg_values = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 257 cpu->cpreg_array_len = 0; 258 259 g_list_foreach(keys, add_cpreg_to_list, cpu); 260 261 assert(cpu->cpreg_array_len == arraylen); 262 263 g_list_free(keys); 264 } 265 266 /* 267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 268 */ 269 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 270 const ARMCPRegInfo *ri, 271 bool isread) 272 { 273 if (!is_a64(env) && arm_current_el(env) == 3 && 274 arm_is_secure_below_el3(env)) { 275 return CP_ACCESS_TRAP_UNCATEGORIZED; 276 } 277 return CP_ACCESS_OK; 278 } 279 280 /* 281 * Some secure-only AArch32 registers trap to EL3 if used from 282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 284 * We assume that the .access field is set to PL1_RW. 285 */ 286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (arm_current_el(env) == 3) { 291 return CP_ACCESS_OK; 292 } 293 if (arm_is_secure_below_el3(env)) { 294 if (env->cp15.scr_el3 & SCR_EEL2) { 295 return CP_ACCESS_TRAP_EL2; 296 } 297 return CP_ACCESS_TRAP_EL3; 298 } 299 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 300 return CP_ACCESS_TRAP_UNCATEGORIZED; 301 } 302 303 /* 304 * Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 if (arm_current_el(env) == 1 && 370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 371 return CP_ACCESS_TRAP_EL2; 372 } 373 return CP_ACCESS_OK; 374 } 375 376 #ifdef TARGET_AARCH64 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 #endif 388 389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 390 { 391 ARMCPU *cpu = env_archcpu(env); 392 393 raw_write(env, ri, value); 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 395 } 396 397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 398 { 399 ARMCPU *cpu = env_archcpu(env); 400 401 if (raw_read(env, ri) != value) { 402 /* 403 * Unlike real hardware the qemu TLB uses virtual addresses, 404 * not modified virtual addresses, so this causes a TLB flush. 405 */ 406 tlb_flush(CPU(cpu)); 407 raw_write(env, ri, value); 408 } 409 } 410 411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 ARMCPU *cpu = env_archcpu(env); 415 416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 417 && !extended_addresses_enabled(env)) { 418 /* 419 * For VMSA (when not using the LPAE long descriptor page table 420 * format) this register includes the ASID, so do a TLB flush. 421 * For PMSA it is purely a process ID and no action is needed. 422 */ 423 tlb_flush(CPU(cpu)); 424 } 425 raw_write(env, ri, value); 426 } 427 428 static int alle1_tlbmask(CPUARMState *env) 429 { 430 /* 431 * Note that the 'ALL' scope must invalidate both stage 1 and 432 * stage 2 translations, whereas most other scopes only invalidate 433 * stage 1 translations. 434 */ 435 return (ARMMMUIdxBit_E10_1 | 436 ARMMMUIdxBit_E10_1_PAN | 437 ARMMMUIdxBit_E10_0 | 438 ARMMMUIdxBit_Stage2 | 439 ARMMMUIdxBit_Stage2_S); 440 } 441 442 443 /* IS variants of TLB operations must affect all cores */ 444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 445 uint64_t value) 446 { 447 CPUState *cs = env_cpu(env); 448 449 tlb_flush_all_cpus_synced(cs); 450 } 451 452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 CPUState *cs = env_cpu(env); 456 457 tlb_flush_all_cpus_synced(cs); 458 } 459 460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 CPUState *cs = env_cpu(env); 464 465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 466 } 467 468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 469 uint64_t value) 470 { 471 CPUState *cs = env_cpu(env); 472 473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 474 } 475 476 /* 477 * Non-IS variants of TLB operations are upgraded to 478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 479 * force broadcast of these operations. 480 */ 481 static bool tlb_force_broadcast(CPUARMState *env) 482 { 483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 484 } 485 486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 /* Invalidate all (TLBIALL) */ 490 CPUState *cs = env_cpu(env); 491 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_all_cpus_synced(cs); 494 } else { 495 tlb_flush(cs); 496 } 497 } 498 499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 503 CPUState *cs = env_cpu(env); 504 505 value &= TARGET_PAGE_MASK; 506 if (tlb_force_broadcast(env)) { 507 tlb_flush_page_all_cpus_synced(cs, value); 508 } else { 509 tlb_flush_page(cs, value); 510 } 511 } 512 513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 /* Invalidate by ASID (TLBIASID) */ 517 CPUState *cs = env_cpu(env); 518 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_all_cpus_synced(cs); 521 } else { 522 tlb_flush(cs); 523 } 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 CPUState *cs = env_cpu(env); 531 532 value &= TARGET_PAGE_MASK; 533 if (tlb_force_broadcast(env)) { 534 tlb_flush_page_all_cpus_synced(cs, value); 535 } else { 536 tlb_flush_page(cs, value); 537 } 538 } 539 540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 CPUState *cs = env_cpu(env); 544 545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 546 } 547 548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 549 uint64_t value) 550 { 551 CPUState *cs = env_cpu(env); 552 553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 554 } 555 556 557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 CPUState *cs = env_cpu(env); 561 562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 563 } 564 565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 571 } 572 573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = env_cpu(env); 577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 578 579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 580 } 581 582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 587 588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 589 ARMMMUIdxBit_E2); 590 } 591 592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = env_cpu(env); 596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 597 598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 599 } 600 601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = env_cpu(env); 605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 606 607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 608 } 609 610 static const ARMCPRegInfo cp_reginfo[] = { 611 /* 612 * Define the secure and non-secure FCSE identifier CP registers 613 * separately because there is no secure bank in V8 (no _EL3). This allows 614 * the secure register to be properly reset and migrated. There is also no 615 * v8 EL1 version of the register so the non-secure instance stands alone. 616 */ 617 { .name = "FCSEIDR", 618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 622 { .name = "FCSEIDR_S", 623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 627 /* 628 * Define the secure and non-secure context identifier CP registers 629 * separately because there is no secure bank in V8 (no _EL3). This allows 630 * the secure register to be properly reset and migrated. In the 631 * non-secure case, the 32-bit register will have reset and migration 632 * disabled during registration as it is handled by the 64-bit instance. 633 */ 634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 636 .access = PL1_RW, .accessfn = access_tvm_trvm, 637 .fgt = FGT_CONTEXTIDR_EL1, 638 .secure = ARM_CP_SECSTATE_NS, 639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 643 .access = PL1_RW, .accessfn = access_tvm_trvm, 644 .secure = ARM_CP_SECSTATE_S, 645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 647 }; 648 649 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 650 /* 651 * NB: Some of these registers exist in v8 but with more precise 652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 653 */ 654 /* MMU Domain access control / MPU write buffer control */ 655 { .name = "DACR", 656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 658 .writefn = dacr_write, .raw_writefn = raw_write, 659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 660 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 661 /* 662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 663 * For v6 and v5, these mappings are overly broad. 664 */ 665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 673 /* Cache maintenance ops; some of this space may be overridden later. */ 674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 677 }; 678 679 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 680 /* 681 * Not all pre-v6 cores implemented this WFI, so this is slightly 682 * over-broad. 683 */ 684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 685 .access = PL1_W, .type = ARM_CP_WFI }, 686 }; 687 688 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 689 /* 690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 691 * is UNPREDICTABLE; we choose to NOP as most implementations do). 692 */ 693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 694 .access = PL1_W, .type = ARM_CP_WFI }, 695 /* 696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 698 * OMAPCP will override this space. 699 */ 700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 702 .resetvalue = 0 }, 703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 705 .resetvalue = 0 }, 706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 709 .resetvalue = 0 }, 710 /* 711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 712 * implementing it as RAZ means the "debug architecture version" bits 713 * will read as a reserved value, which should cause Linux to not try 714 * to use the debug hardware. 715 */ 716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 718 /* 719 * MMU TLB control. Note that the wildcarding means we cover not just 720 * the unified TLB ops but also the dside/iside/inner-shareable variants. 721 */ 722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 724 .type = ARM_CP_NO_RAW }, 725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 738 }; 739 740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 741 uint64_t value) 742 { 743 uint32_t mask = 0; 744 745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 746 if (!arm_feature(env, ARM_FEATURE_V8)) { 747 /* 748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 751 */ 752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 753 /* VFP coprocessor: cp10 & cp11 [23:20] */ 754 mask |= R_CPACR_ASEDIS_MASK | 755 R_CPACR_D32DIS_MASK | 756 R_CPACR_CP11_MASK | 757 R_CPACR_CP10_MASK; 758 759 if (!arm_feature(env, ARM_FEATURE_NEON)) { 760 /* ASEDIS [31] bit is RAO/WI */ 761 value |= R_CPACR_ASEDIS_MASK; 762 } 763 764 /* 765 * VFPv3 and upwards with NEON implement 32 double precision 766 * registers (D0-D31). 767 */ 768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 770 value |= R_CPACR_D32DIS_MASK; 771 } 772 } 773 value &= mask; 774 } 775 776 /* 777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 779 */ 780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 784 } 785 786 env->cp15.cpacr_el1 = value; 787 } 788 789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 790 { 791 /* 792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 794 */ 795 uint64_t value = env->cp15.cpacr_el1; 796 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 800 } 801 return value; 802 } 803 804 805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 806 { 807 /* 808 * Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* 850 * We need to break the TB after ISB to execute self-modifying code 851 * correctly and also to take any pending interrupts immediately. 852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 853 */ 854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 857 .access = PL0_W, .type = ARM_CP_NOP }, 858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 859 .access = PL0_W, .type = ARM_CP_NOP }, 860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 861 .access = PL1_RW, .accessfn = access_tvm_trvm, 862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 863 offsetof(CPUARMState, cp15.ifar_ns) }, 864 .resetvalue = 0, }, 865 /* 866 * Watchpoint Fault Address Register : should actually only be present 867 * for 1136, 1176, 11MPCore. 868 */ 869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 873 .fgt = FGT_CPACR_EL1, 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 876 }; 877 878 typedef struct pm_event { 879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 881 bool (*supported)(CPUARMState *); 882 /* 883 * Retrieve the current count of the underlying event. The programmed 884 * counters hold a difference from the return value from this function 885 */ 886 uint64_t (*get_count)(CPUARMState *); 887 /* 888 * Return how many nanoseconds it will take (at a minimum) for count events 889 * to occur. A negative value indicates the counter will never overflow, or 890 * that the counter has otherwise arranged for the overflow bit to be set 891 * and the PMU interrupt to be raised on overflow. 892 */ 893 int64_t (*ns_per_count)(uint64_t); 894 } pm_event; 895 896 static bool event_always_supported(CPUARMState *env) 897 { 898 return true; 899 } 900 901 static uint64_t swinc_get_count(CPUARMState *env) 902 { 903 /* 904 * SW_INCR events are written directly to the pmevcntr's by writes to 905 * PMSWINC, so there is no underlying count maintained by the PMU itself 906 */ 907 return 0; 908 } 909 910 static int64_t swinc_ns_per(uint64_t ignored) 911 { 912 return -1; 913 } 914 915 /* 916 * Return the underlying cycle count for the PMU cycle counters. If we're in 917 * usermode, simply return 0. 918 */ 919 static uint64_t cycles_get_count(CPUARMState *env) 920 { 921 #ifndef CONFIG_USER_ONLY 922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 924 #else 925 return cpu_get_host_ticks(); 926 #endif 927 } 928 929 #ifndef CONFIG_USER_ONLY 930 static int64_t cycles_ns_per(uint64_t cycles) 931 { 932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 933 } 934 935 static bool instructions_supported(CPUARMState *env) 936 { 937 return icount_enabled() == 1; /* Precise instruction counting */ 938 } 939 940 static uint64_t instructions_get_count(CPUARMState *env) 941 { 942 return (uint64_t)icount_get_raw(); 943 } 944 945 static int64_t instructions_ns_per(uint64_t icount) 946 { 947 return icount_to_ns((int64_t)icount); 948 } 949 #endif 950 951 static bool pmuv3p1_events_supported(CPUARMState *env) 952 { 953 /* For events which are supported in any v8.1 PMU */ 954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 955 } 956 957 static bool pmuv3p4_events_supported(CPUARMState *env) 958 { 959 /* For events which are supported in any v8.1 PMU */ 960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 961 } 962 963 static uint64_t zero_event_get_count(CPUARMState *env) 964 { 965 /* For events which on QEMU never fire, so their count is always zero */ 966 return 0; 967 } 968 969 static int64_t zero_event_ns_per(uint64_t cycles) 970 { 971 /* An event which never fires can never overflow */ 972 return -1; 973 } 974 975 static const pm_event pm_events[] = { 976 { .number = 0x000, /* SW_INCR */ 977 .supported = event_always_supported, 978 .get_count = swinc_get_count, 979 .ns_per_count = swinc_ns_per, 980 }, 981 #ifndef CONFIG_USER_ONLY 982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 983 .supported = instructions_supported, 984 .get_count = instructions_get_count, 985 .ns_per_count = instructions_ns_per, 986 }, 987 { .number = 0x011, /* CPU_CYCLES, Cycle */ 988 .supported = event_always_supported, 989 .get_count = cycles_get_count, 990 .ns_per_count = cycles_ns_per, 991 }, 992 #endif 993 { .number = 0x023, /* STALL_FRONTEND */ 994 .supported = pmuv3p1_events_supported, 995 .get_count = zero_event_get_count, 996 .ns_per_count = zero_event_ns_per, 997 }, 998 { .number = 0x024, /* STALL_BACKEND */ 999 .supported = pmuv3p1_events_supported, 1000 .get_count = zero_event_get_count, 1001 .ns_per_count = zero_event_ns_per, 1002 }, 1003 { .number = 0x03c, /* STALL */ 1004 .supported = pmuv3p4_events_supported, 1005 .get_count = zero_event_get_count, 1006 .ns_per_count = zero_event_ns_per, 1007 }, 1008 }; 1009 1010 /* 1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1012 * events (i.e. the statistical profiling extension), this implementation 1013 * should first be updated to something sparse instead of the current 1014 * supported_event_map[] array. 1015 */ 1016 #define MAX_EVENT_ID 0x3c 1017 #define UNSUPPORTED_EVENT UINT16_MAX 1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1019 1020 /* 1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1022 * of ARM event numbers to indices in our pm_events array. 1023 * 1024 * Note: Events in the 0x40XX range are not currently supported. 1025 */ 1026 void pmu_init(ARMCPU *cpu) 1027 { 1028 unsigned int i; 1029 1030 /* 1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1032 * events to them 1033 */ 1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1035 supported_event_map[i] = UNSUPPORTED_EVENT; 1036 } 1037 cpu->pmceid0 = 0; 1038 cpu->pmceid1 = 0; 1039 1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1041 const pm_event *cnt = &pm_events[i]; 1042 assert(cnt->number <= MAX_EVENT_ID); 1043 /* We do not currently support events in the 0x40xx range */ 1044 assert(cnt->number <= 0x3f); 1045 1046 if (cnt->supported(&cpu->env)) { 1047 supported_event_map[cnt->number] = i; 1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1049 if (cnt->number & 0x20) { 1050 cpu->pmceid1 |= event_mask; 1051 } else { 1052 cpu->pmceid0 |= event_mask; 1053 } 1054 } 1055 } 1056 } 1057 1058 /* 1059 * Check at runtime whether a PMU event is supported for the current machine 1060 */ 1061 static bool event_supported(uint16_t number) 1062 { 1063 if (number > MAX_EVENT_ID) { 1064 return false; 1065 } 1066 return supported_event_map[number] != UNSUPPORTED_EVENT; 1067 } 1068 1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1070 bool isread) 1071 { 1072 /* 1073 * Performance monitor registers user accessibility is controlled 1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1075 * trapping to EL2 or EL3 for other accesses. 1076 */ 1077 int el = arm_current_el(env); 1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1079 1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1081 return CP_ACCESS_TRAP; 1082 } 1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1084 return CP_ACCESS_TRAP_EL2; 1085 } 1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1087 return CP_ACCESS_TRAP_EL3; 1088 } 1089 1090 return CP_ACCESS_OK; 1091 } 1092 1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1094 const ARMCPRegInfo *ri, 1095 bool isread) 1096 { 1097 /* ER: event counter read trap control */ 1098 if (arm_feature(env, ARM_FEATURE_V8) 1099 && arm_current_el(env) == 0 1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1101 && isread) { 1102 return CP_ACCESS_OK; 1103 } 1104 1105 return pmreg_access(env, ri, isread); 1106 } 1107 1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* SW: software increment write trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1116 && !isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* ER: event counter read trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* CR: cycle counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1145 && isread) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 /* 1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1154 * We use these to decide whether we need to wrap a write to MDCR_EL2 1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1156 */ 1157 #define MDCR_EL2_PMU_ENABLE_BITS \ 1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1160 1161 /* 1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1163 * the current EL, security state, and register configuration. 1164 */ 1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1166 { 1167 uint64_t filter; 1168 bool e, p, u, nsk, nsu, nsh, m; 1169 bool enabled, prohibited = false, filtered; 1170 bool secure = arm_is_secure(env); 1171 int el = arm_current_el(env); 1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1174 1175 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1176 return false; 1177 } 1178 1179 if (!arm_feature(env, ARM_FEATURE_EL2) || 1180 (counter < hpmn || counter == 31)) { 1181 e = env->cp15.c9_pmcr & PMCRE; 1182 } else { 1183 e = mdcr_el2 & MDCR_HPME; 1184 } 1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1186 1187 /* Is event counting prohibited? */ 1188 if (el == 2 && (counter < hpmn || counter == 31)) { 1189 prohibited = mdcr_el2 & MDCR_HPMD; 1190 } 1191 if (secure) { 1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1193 } 1194 1195 if (counter == 31) { 1196 /* 1197 * The cycle counter defaults to running. PMCR.DP says "disable 1198 * the cycle counter when event counting is prohibited". 1199 * Some MDCR bits disable the cycle counter specifically. 1200 */ 1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1203 if (secure) { 1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1205 } 1206 if (el == 2) { 1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1208 } 1209 } 1210 } 1211 1212 if (counter == 31) { 1213 filter = env->cp15.pmccfiltr_el0; 1214 } else { 1215 filter = env->cp15.c14_pmevtyper[counter]; 1216 } 1217 1218 p = filter & PMXEVTYPER_P; 1219 u = filter & PMXEVTYPER_U; 1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1223 m = arm_el_is_aa64(env, 1) && 1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1225 1226 if (el == 0) { 1227 filtered = secure ? u : u != nsu; 1228 } else if (el == 1) { 1229 filtered = secure ? p : p != nsk; 1230 } else if (el == 2) { 1231 filtered = !nsh; 1232 } else { /* EL3 */ 1233 filtered = m != p; 1234 } 1235 1236 if (counter != 31) { 1237 /* 1238 * If not checking PMCCNTR, ensure the counter is setup to an event we 1239 * support 1240 */ 1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1242 if (!event_supported(event)) { 1243 return false; 1244 } 1245 } 1246 1247 return enabled && !prohibited && !filtered; 1248 } 1249 1250 static void pmu_update_irq(CPUARMState *env) 1251 { 1252 ARMCPU *cpu = env_archcpu(env); 1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1255 } 1256 1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1258 { 1259 /* 1260 * Return true if the clock divider is enabled and the cycle counter 1261 * is supposed to tick only once every 64 clock cycles. This is 1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1263 * (64-bit) cycle counter PMCR.D has no effect. 1264 */ 1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1266 } 1267 1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1269 { 1270 /* Return true if the specified event counter is configured to be 64 bit */ 1271 1272 /* This isn't intended to be used with the cycle counter */ 1273 assert(counter < 31); 1274 1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1276 return false; 1277 } 1278 1279 if (arm_feature(env, ARM_FEATURE_EL2)) { 1280 /* 1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1282 * current security state, so we don't use arm_mdcr_el2_eff() here. 1283 */ 1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1286 1287 if (counter >= hpmn) { 1288 return hlp; 1289 } 1290 } 1291 return env->cp15.c9_pmcr & PMCRLP; 1292 } 1293 1294 /* 1295 * Ensure c15_ccnt is the guest-visible count so that operations such as 1296 * enabling/disabling the counter or filtering, modifying the count itself, 1297 * etc. can be done logically. This is essentially a no-op if the counter is 1298 * not enabled at the time of the call. 1299 */ 1300 static void pmccntr_op_start(CPUARMState *env) 1301 { 1302 uint64_t cycles = cycles_get_count(env); 1303 1304 if (pmu_counter_enabled(env, 31)) { 1305 uint64_t eff_cycles = cycles; 1306 if (pmccntr_clockdiv_enabled(env)) { 1307 eff_cycles /= 64; 1308 } 1309 1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1311 1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1313 1ull << 63 : 1ull << 31; 1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1315 env->cp15.c9_pmovsr |= (1ULL << 31); 1316 pmu_update_irq(env); 1317 } 1318 1319 env->cp15.c15_ccnt = new_pmccntr; 1320 } 1321 env->cp15.c15_ccnt_delta = cycles; 1322 } 1323 1324 /* 1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1327 * pmccntr_op_start. 1328 */ 1329 static void pmccntr_op_finish(CPUARMState *env) 1330 { 1331 if (pmu_counter_enabled(env, 31)) { 1332 #ifndef CONFIG_USER_ONLY 1333 /* Calculate when the counter will next overflow */ 1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1335 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1336 remaining_cycles = (uint32_t)remaining_cycles; 1337 } 1338 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1339 1340 if (overflow_in > 0) { 1341 int64_t overflow_at; 1342 1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1344 overflow_in, &overflow_at)) { 1345 ARMCPU *cpu = env_archcpu(env); 1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1347 } 1348 } 1349 #endif 1350 1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1352 if (pmccntr_clockdiv_enabled(env)) { 1353 prev_cycles /= 64; 1354 } 1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1356 } 1357 } 1358 1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1360 { 1361 1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1363 uint64_t count = 0; 1364 if (event_supported(event)) { 1365 uint16_t event_idx = supported_event_map[event]; 1366 count = pm_events[event_idx].get_count(env); 1367 } 1368 1369 if (pmu_counter_enabled(env, counter)) { 1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1372 1ULL << 63 : 1ULL << 31; 1373 1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1375 env->cp15.c9_pmovsr |= (1 << counter); 1376 pmu_update_irq(env); 1377 } 1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1379 } 1380 env->cp15.c14_pmevcntr_delta[counter] = count; 1381 } 1382 1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1384 { 1385 if (pmu_counter_enabled(env, counter)) { 1386 #ifndef CONFIG_USER_ONLY 1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1388 uint16_t event_idx = supported_event_map[event]; 1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1390 int64_t overflow_in; 1391 1392 if (!pmevcntr_is_64_bit(env, counter)) { 1393 delta = (uint32_t)delta; 1394 } 1395 overflow_in = pm_events[event_idx].ns_per_count(delta); 1396 1397 if (overflow_in > 0) { 1398 int64_t overflow_at; 1399 1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1401 overflow_in, &overflow_at)) { 1402 ARMCPU *cpu = env_archcpu(env); 1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1404 } 1405 } 1406 #endif 1407 1408 env->cp15.c14_pmevcntr_delta[counter] -= 1409 env->cp15.c14_pmevcntr[counter]; 1410 } 1411 } 1412 1413 void pmu_op_start(CPUARMState *env) 1414 { 1415 unsigned int i; 1416 pmccntr_op_start(env); 1417 for (i = 0; i < pmu_num_counters(env); i++) { 1418 pmevcntr_op_start(env, i); 1419 } 1420 } 1421 1422 void pmu_op_finish(CPUARMState *env) 1423 { 1424 unsigned int i; 1425 pmccntr_op_finish(env); 1426 for (i = 0; i < pmu_num_counters(env); i++) { 1427 pmevcntr_op_finish(env, i); 1428 } 1429 } 1430 1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1432 { 1433 pmu_op_start(&cpu->env); 1434 } 1435 1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1437 { 1438 pmu_op_finish(&cpu->env); 1439 } 1440 1441 void arm_pmu_timer_cb(void *opaque) 1442 { 1443 ARMCPU *cpu = opaque; 1444 1445 /* 1446 * Update all the counter values based on the current underlying counts, 1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1449 * counter may expire. 1450 */ 1451 pmu_op_start(&cpu->env); 1452 pmu_op_finish(&cpu->env); 1453 } 1454 1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1456 uint64_t value) 1457 { 1458 pmu_op_start(env); 1459 1460 if (value & PMCRC) { 1461 /* The counter has been reset */ 1462 env->cp15.c15_ccnt = 0; 1463 } 1464 1465 if (value & PMCRP) { 1466 unsigned int i; 1467 for (i = 0; i < pmu_num_counters(env); i++) { 1468 env->cp15.c14_pmevcntr[i] = 0; 1469 } 1470 } 1471 1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1474 1475 pmu_op_finish(env); 1476 } 1477 1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 unsigned int i; 1482 uint64_t overflow_mask, new_pmswinc; 1483 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 /* Increment a counter's count iff: */ 1486 if ((value & (1 << i)) && /* counter's bit is set */ 1487 /* counter is enabled and not filtered */ 1488 pmu_counter_enabled(env, i) && 1489 /* counter is SW_INCR */ 1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1491 pmevcntr_op_start(env, i); 1492 1493 /* 1494 * Detect if this write causes an overflow since we can't predict 1495 * PMSWINC overflows like we can for other events 1496 */ 1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1498 1499 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1500 1ULL << 63 : 1ULL << 31; 1501 1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1503 env->cp15.c9_pmovsr |= (1 << i); 1504 pmu_update_irq(env); 1505 } 1506 1507 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1508 1509 pmevcntr_op_finish(env, i); 1510 } 1511 } 1512 } 1513 1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1515 { 1516 uint64_t ret; 1517 pmccntr_op_start(env); 1518 ret = env->cp15.c15_ccnt; 1519 pmccntr_op_finish(env); 1520 return ret; 1521 } 1522 1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 /* 1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1530 * accessed. 1531 */ 1532 env->cp15.c9_pmselr = value & 0x1f; 1533 } 1534 1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value) 1537 { 1538 pmccntr_op_start(env); 1539 env->cp15.c15_ccnt = value; 1540 pmccntr_op_finish(env); 1541 } 1542 1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1544 uint64_t value) 1545 { 1546 uint64_t cur_val = pmccntr_read(env, NULL); 1547 1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1549 } 1550 1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1552 uint64_t value) 1553 { 1554 pmccntr_op_start(env); 1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1556 pmccntr_op_finish(env); 1557 } 1558 1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1560 uint64_t value) 1561 { 1562 pmccntr_op_start(env); 1563 /* M is not accessible from AArch32 */ 1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1565 (value & PMCCFILTR); 1566 pmccntr_op_finish(env); 1567 } 1568 1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1570 { 1571 /* M is not visible in AArch32 */ 1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1573 } 1574 1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 pmu_op_start(env); 1579 value &= pmu_counter_mask(env); 1580 env->cp15.c9_pmcnten |= value; 1581 pmu_op_finish(env); 1582 } 1583 1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1585 uint64_t value) 1586 { 1587 pmu_op_start(env); 1588 value &= pmu_counter_mask(env); 1589 env->cp15.c9_pmcnten &= ~value; 1590 pmu_op_finish(env); 1591 } 1592 1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 value &= pmu_counter_mask(env); 1597 env->cp15.c9_pmovsr &= ~value; 1598 pmu_update_irq(env); 1599 } 1600 1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 value &= pmu_counter_mask(env); 1605 env->cp15.c9_pmovsr |= value; 1606 pmu_update_irq(env); 1607 } 1608 1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1610 uint64_t value, const uint8_t counter) 1611 { 1612 if (counter == 31) { 1613 pmccfiltr_write(env, ri, value); 1614 } else if (counter < pmu_num_counters(env)) { 1615 pmevcntr_op_start(env, counter); 1616 1617 /* 1618 * If this counter's event type is changing, store the current 1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1620 * pmevcntr_op_finish has the correct baseline when it converts back to 1621 * a delta. 1622 */ 1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1624 PMXEVTYPER_EVTCOUNT; 1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1626 if (old_event != new_event) { 1627 uint64_t count = 0; 1628 if (event_supported(new_event)) { 1629 uint16_t event_idx = supported_event_map[new_event]; 1630 count = pm_events[event_idx].get_count(env); 1631 } 1632 env->cp15.c14_pmevcntr_delta[counter] = count; 1633 } 1634 1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1636 pmevcntr_op_finish(env, counter); 1637 } 1638 /* 1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1640 * PMSELR value is equal to or greater than the number of implemented 1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1642 */ 1643 } 1644 1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1646 const uint8_t counter) 1647 { 1648 if (counter == 31) { 1649 return env->cp15.pmccfiltr_el0; 1650 } else if (counter < pmu_num_counters(env)) { 1651 return env->cp15.c14_pmevtyper[counter]; 1652 } else { 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1656 */ 1657 return 0; 1658 } 1659 } 1660 1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1662 uint64_t value) 1663 { 1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1665 pmevtyper_write(env, ri, value, counter); 1666 } 1667 1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1669 uint64_t value) 1670 { 1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1672 env->cp15.c14_pmevtyper[counter] = value; 1673 1674 /* 1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1676 * pmu_op_finish calls when loading saved state for a migration. Because 1677 * we're potentially updating the type of event here, the value written to 1678 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1679 * different counter type. Therefore, we need to set this value to the 1680 * current count for the counter type we're writing so that pmu_op_finish 1681 * has the correct count for its calculation. 1682 */ 1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1684 if (event_supported(event)) { 1685 uint16_t event_idx = supported_event_map[event]; 1686 env->cp15.c14_pmevcntr_delta[counter] = 1687 pm_events[event_idx].get_count(env); 1688 } 1689 } 1690 1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1694 return pmevtyper_read(env, ri, counter); 1695 } 1696 1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1698 uint64_t value) 1699 { 1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1701 } 1702 1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1704 { 1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value, uint8_t counter) 1710 { 1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1713 value &= MAKE_64BIT_MASK(0, 32); 1714 } 1715 if (counter < pmu_num_counters(env)) { 1716 pmevcntr_op_start(env, counter); 1717 env->cp15.c14_pmevcntr[counter] = value; 1718 pmevcntr_op_finish(env, counter); 1719 } 1720 /* 1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1722 * are CONSTRAINED UNPREDICTABLE. 1723 */ 1724 } 1725 1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint8_t counter) 1728 { 1729 if (counter < pmu_num_counters(env)) { 1730 uint64_t ret; 1731 pmevcntr_op_start(env, counter); 1732 ret = env->cp15.c14_pmevcntr[counter]; 1733 pmevcntr_op_finish(env, counter); 1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1736 ret &= MAKE_64BIT_MASK(0, 32); 1737 } 1738 return ret; 1739 } else { 1740 /* 1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1742 * are CONSTRAINED UNPREDICTABLE. 1743 */ 1744 return 0; 1745 } 1746 } 1747 1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1752 pmevcntr_write(env, ri, value, counter); 1753 } 1754 1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1756 { 1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1758 return pmevcntr_read(env, ri, counter); 1759 } 1760 1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1765 assert(counter < pmu_num_counters(env)); 1766 env->cp15.c14_pmevcntr[counter] = value; 1767 pmevcntr_write(env, ri, value, counter); 1768 } 1769 1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1771 { 1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1773 assert(counter < pmu_num_counters(env)); 1774 return env->cp15.c14_pmevcntr[counter]; 1775 } 1776 1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1778 uint64_t value) 1779 { 1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1781 } 1782 1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1786 } 1787 1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 if (arm_feature(env, ARM_FEATURE_V8)) { 1792 env->cp15.c9_pmuserenr = value & 0xf; 1793 } else { 1794 env->cp15.c9_pmuserenr = value & 1; 1795 } 1796 } 1797 1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 /* We have no event counters so only the C bit can be changed */ 1802 value &= pmu_counter_mask(env); 1803 env->cp15.c9_pminten |= value; 1804 pmu_update_irq(env); 1805 } 1806 1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 value &= pmu_counter_mask(env); 1811 env->cp15.c9_pminten &= ~value; 1812 pmu_update_irq(env); 1813 } 1814 1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value) 1817 { 1818 /* 1819 * Note that even though the AArch64 view of this register has bits 1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1821 * architectural requirements for bits which are RES0 only in some 1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1824 */ 1825 raw_write(env, ri, value & ~0x1FULL); 1826 } 1827 1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1829 { 1830 /* Begin with base v8.0 state. */ 1831 uint64_t valid_mask = 0x3fff; 1832 ARMCPU *cpu = env_archcpu(env); 1833 uint64_t changed; 1834 1835 /* 1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1838 * Instead, choose the format based on the mode of EL3. 1839 */ 1840 if (arm_el_is_aa64(env, 3)) { 1841 value |= SCR_FW | SCR_AW; /* RES1 */ 1842 valid_mask &= ~SCR_NET; /* RES0 */ 1843 1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1846 value |= SCR_RW; /* RAO/WI */ 1847 } 1848 if (cpu_isar_feature(aa64_ras, cpu)) { 1849 valid_mask |= SCR_TERR; 1850 } 1851 if (cpu_isar_feature(aa64_lor, cpu)) { 1852 valid_mask |= SCR_TLOR; 1853 } 1854 if (cpu_isar_feature(aa64_pauth, cpu)) { 1855 valid_mask |= SCR_API | SCR_APK; 1856 } 1857 if (cpu_isar_feature(aa64_sel2, cpu)) { 1858 valid_mask |= SCR_EEL2; 1859 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1860 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1861 value |= SCR_NS; 1862 } 1863 if (cpu_isar_feature(aa64_mte, cpu)) { 1864 valid_mask |= SCR_ATA; 1865 } 1866 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1867 valid_mask |= SCR_ENSCXT; 1868 } 1869 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1870 valid_mask |= SCR_EASE | SCR_NMEA; 1871 } 1872 if (cpu_isar_feature(aa64_sme, cpu)) { 1873 valid_mask |= SCR_ENTP2; 1874 } 1875 if (cpu_isar_feature(aa64_hcx, cpu)) { 1876 valid_mask |= SCR_HXEN; 1877 } 1878 if (cpu_isar_feature(aa64_fgt, cpu)) { 1879 valid_mask |= SCR_FGTEN; 1880 } 1881 if (cpu_isar_feature(aa64_rme, cpu)) { 1882 valid_mask |= SCR_NSE | SCR_GPF; 1883 } 1884 } else { 1885 valid_mask &= ~(SCR_RW | SCR_ST); 1886 if (cpu_isar_feature(aa32_ras, cpu)) { 1887 valid_mask |= SCR_TERR; 1888 } 1889 } 1890 1891 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1892 valid_mask &= ~SCR_HCE; 1893 1894 /* 1895 * On ARMv7, SMD (or SCD as it is called in v7) is only 1896 * supported if EL2 exists. The bit is UNK/SBZP when 1897 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1898 * when EL2 is unavailable. 1899 * On ARMv8, this bit is always available. 1900 */ 1901 if (arm_feature(env, ARM_FEATURE_V7) && 1902 !arm_feature(env, ARM_FEATURE_V8)) { 1903 valid_mask &= ~SCR_SMD; 1904 } 1905 } 1906 1907 /* Clear all-context RES0 bits. */ 1908 value &= valid_mask; 1909 changed = env->cp15.scr_el3 ^ value; 1910 env->cp15.scr_el3 = value; 1911 1912 /* 1913 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1914 * we must invalidate all TLBs below EL3. 1915 */ 1916 if (changed & (SCR_NS | SCR_NSE)) { 1917 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1918 ARMMMUIdxBit_E20_0 | 1919 ARMMMUIdxBit_E10_1 | 1920 ARMMMUIdxBit_E20_2 | 1921 ARMMMUIdxBit_E10_1_PAN | 1922 ARMMMUIdxBit_E20_2_PAN | 1923 ARMMMUIdxBit_E2)); 1924 } 1925 } 1926 1927 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1928 { 1929 /* 1930 * scr_write will set the RES1 bits on an AArch64-only CPU. 1931 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1932 */ 1933 scr_write(env, ri, 0); 1934 } 1935 1936 static CPAccessResult access_tid4(CPUARMState *env, 1937 const ARMCPRegInfo *ri, 1938 bool isread) 1939 { 1940 if (arm_current_el(env) == 1 && 1941 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1942 return CP_ACCESS_TRAP_EL2; 1943 } 1944 1945 return CP_ACCESS_OK; 1946 } 1947 1948 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1949 { 1950 ARMCPU *cpu = env_archcpu(env); 1951 1952 /* 1953 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1954 * bank 1955 */ 1956 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1957 ri->secure & ARM_CP_SECSTATE_S); 1958 1959 return cpu->ccsidr[index]; 1960 } 1961 1962 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1963 uint64_t value) 1964 { 1965 raw_write(env, ri, value & 0xf); 1966 } 1967 1968 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1969 { 1970 CPUState *cs = env_cpu(env); 1971 bool el1 = arm_current_el(env) == 1; 1972 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1973 uint64_t ret = 0; 1974 1975 if (hcr_el2 & HCR_IMO) { 1976 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1977 ret |= CPSR_I; 1978 } 1979 } else { 1980 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1981 ret |= CPSR_I; 1982 } 1983 } 1984 1985 if (hcr_el2 & HCR_FMO) { 1986 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1987 ret |= CPSR_F; 1988 } 1989 } else { 1990 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1991 ret |= CPSR_F; 1992 } 1993 } 1994 1995 if (hcr_el2 & HCR_AMO) { 1996 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1997 ret |= CPSR_A; 1998 } 1999 } 2000 2001 return ret; 2002 } 2003 2004 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2005 bool isread) 2006 { 2007 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2008 return CP_ACCESS_TRAP_EL2; 2009 } 2010 2011 return CP_ACCESS_OK; 2012 } 2013 2014 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2015 bool isread) 2016 { 2017 if (arm_feature(env, ARM_FEATURE_V8)) { 2018 return access_aa64_tid1(env, ri, isread); 2019 } 2020 2021 return CP_ACCESS_OK; 2022 } 2023 2024 static const ARMCPRegInfo v7_cp_reginfo[] = { 2025 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2026 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2027 .access = PL1_W, .type = ARM_CP_NOP }, 2028 /* 2029 * Performance monitors are implementation defined in v7, 2030 * but with an ARM recommended set of registers, which we 2031 * follow. 2032 * 2033 * Performance registers fall into three categories: 2034 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2035 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2036 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2037 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2038 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2039 */ 2040 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2041 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2043 .writefn = pmcntenset_write, 2044 .accessfn = pmreg_access, 2045 .fgt = FGT_PMCNTEN, 2046 .raw_writefn = raw_write }, 2047 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2049 .access = PL0_RW, .accessfn = pmreg_access, 2050 .fgt = FGT_PMCNTEN, 2051 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2052 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2053 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2054 .access = PL0_RW, 2055 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2056 .accessfn = pmreg_access, 2057 .fgt = FGT_PMCNTEN, 2058 .writefn = pmcntenclr_write, 2059 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2060 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2062 .access = PL0_RW, .accessfn = pmreg_access, 2063 .fgt = FGT_PMCNTEN, 2064 .type = ARM_CP_ALIAS | ARM_CP_IO, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2066 .writefn = pmcntenclr_write }, 2067 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2068 .access = PL0_RW, .type = ARM_CP_IO, 2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2070 .accessfn = pmreg_access, 2071 .fgt = FGT_PMOVS, 2072 .writefn = pmovsr_write, 2073 .raw_writefn = raw_write }, 2074 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2076 .access = PL0_RW, .accessfn = pmreg_access, 2077 .fgt = FGT_PMOVS, 2078 .type = ARM_CP_ALIAS | ARM_CP_IO, 2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2080 .writefn = pmovsr_write, 2081 .raw_writefn = raw_write }, 2082 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2083 .access = PL0_W, .accessfn = pmreg_access_swinc, 2084 .fgt = FGT_PMSWINC_EL0, 2085 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2086 .writefn = pmswinc_write }, 2087 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2089 .access = PL0_W, .accessfn = pmreg_access_swinc, 2090 .fgt = FGT_PMSWINC_EL0, 2091 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2092 .writefn = pmswinc_write }, 2093 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2094 .access = PL0_RW, .type = ARM_CP_ALIAS, 2095 .fgt = FGT_PMSELR_EL0, 2096 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2097 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2098 .raw_writefn = raw_write}, 2099 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2101 .access = PL0_RW, .accessfn = pmreg_access_selr, 2102 .fgt = FGT_PMSELR_EL0, 2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2104 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2105 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2106 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2107 .fgt = FGT_PMCCNTR_EL0, 2108 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2109 .accessfn = pmreg_access_ccntr }, 2110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2112 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2113 .fgt = FGT_PMCCNTR_EL0, 2114 .type = ARM_CP_IO, 2115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2116 .readfn = pmccntr_read, .writefn = pmccntr_write, 2117 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2118 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2119 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCCFILTR_EL0, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .resetvalue = 0, }, 2124 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2126 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2127 .access = PL0_RW, .accessfn = pmreg_access, 2128 .fgt = FGT_PMCCFILTR_EL0, 2129 .type = ARM_CP_IO, 2130 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2131 .resetvalue = 0, }, 2132 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2134 .accessfn = pmreg_access, 2135 .fgt = FGT_PMEVTYPERN_EL0, 2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2140 .accessfn = pmreg_access, 2141 .fgt = FGT_PMEVTYPERN_EL0, 2142 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2143 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2145 .accessfn = pmreg_access_xevcntr, 2146 .fgt = FGT_PMEVCNTRN_EL0, 2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2148 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2150 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2151 .accessfn = pmreg_access_xevcntr, 2152 .fgt = FGT_PMEVCNTRN_EL0, 2153 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2154 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2157 .resetvalue = 0, 2158 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2159 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2161 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2163 .resetvalue = 0, 2164 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2165 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2166 .access = PL1_RW, .accessfn = access_tpm, 2167 .fgt = FGT_PMINTEN, 2168 .type = ARM_CP_ALIAS | ARM_CP_IO, 2169 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2170 .resetvalue = 0, 2171 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2172 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2173 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2174 .access = PL1_RW, .accessfn = access_tpm, 2175 .fgt = FGT_PMINTEN, 2176 .type = ARM_CP_IO, 2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2178 .writefn = pmintenset_write, .raw_writefn = raw_write, 2179 .resetvalue = 0x0 }, 2180 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2181 .access = PL1_RW, .accessfn = access_tpm, 2182 .fgt = FGT_PMINTEN, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2185 .writefn = pmintenclr_write, }, 2186 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2187 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2188 .access = PL1_RW, .accessfn = access_tpm, 2189 .fgt = FGT_PMINTEN, 2190 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2192 .writefn = pmintenclr_write }, 2193 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2195 .access = PL1_R, 2196 .accessfn = access_tid4, 2197 .fgt = FGT_CCSIDR_EL1, 2198 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2199 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2200 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2201 .access = PL1_RW, 2202 .accessfn = access_tid4, 2203 .fgt = FGT_CSSELR_EL1, 2204 .writefn = csselr_write, .resetvalue = 0, 2205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2206 offsetof(CPUARMState, cp15.csselr_ns) } }, 2207 /* 2208 * Auxiliary ID register: this actually has an IMPDEF value but for now 2209 * just RAZ for all cores: 2210 */ 2211 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2212 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2213 .access = PL1_R, .type = ARM_CP_CONST, 2214 .accessfn = access_aa64_tid1, 2215 .fgt = FGT_AIDR_EL1, 2216 .resetvalue = 0 }, 2217 /* 2218 * Auxiliary fault status registers: these also are IMPDEF, and we 2219 * choose to RAZ/WI for all cores. 2220 */ 2221 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2222 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2223 .access = PL1_RW, .accessfn = access_tvm_trvm, 2224 .fgt = FGT_AFSR0_EL1, 2225 .type = ARM_CP_CONST, .resetvalue = 0 }, 2226 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2228 .access = PL1_RW, .accessfn = access_tvm_trvm, 2229 .fgt = FGT_AFSR1_EL1, 2230 .type = ARM_CP_CONST, .resetvalue = 0 }, 2231 /* 2232 * MAIR can just read-as-written because we don't implement caches 2233 * and so don't need to care about memory attributes. 2234 */ 2235 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2237 .access = PL1_RW, .accessfn = access_tvm_trvm, 2238 .fgt = FGT_MAIR_EL1, 2239 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2240 .resetvalue = 0 }, 2241 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2242 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2243 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2244 .resetvalue = 0 }, 2245 /* 2246 * For non-long-descriptor page tables these are PRRR and NMRR; 2247 * regardless they still act as reads-as-written for QEMU. 2248 */ 2249 /* 2250 * MAIR0/1 are defined separately from their 64-bit counterpart which 2251 * allows them to assign the correct fieldoffset based on the endianness 2252 * handled in the field definitions. 2253 */ 2254 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2256 .access = PL1_RW, .accessfn = access_tvm_trvm, 2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2258 offsetof(CPUARMState, cp15.mair0_ns) }, 2259 .resetfn = arm_cp_reset_ignore }, 2260 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2261 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2262 .access = PL1_RW, .accessfn = access_tvm_trvm, 2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2264 offsetof(CPUARMState, cp15.mair1_ns) }, 2265 .resetfn = arm_cp_reset_ignore }, 2266 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2267 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2268 .fgt = FGT_ISR_EL1, 2269 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2270 /* 32 bit ITLB invalidates */ 2271 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2273 .writefn = tlbiall_write }, 2274 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2276 .writefn = tlbimva_write }, 2277 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2279 .writefn = tlbiasid_write }, 2280 /* 32 bit DTLB invalidates */ 2281 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2283 .writefn = tlbiall_write }, 2284 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2286 .writefn = tlbimva_write }, 2287 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2289 .writefn = tlbiasid_write }, 2290 /* 32 bit TLB invalidates */ 2291 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2293 .writefn = tlbiall_write }, 2294 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2296 .writefn = tlbimva_write }, 2297 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2299 .writefn = tlbiasid_write }, 2300 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2302 .writefn = tlbimvaa_write }, 2303 }; 2304 2305 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2306 /* 32 bit TLB invalidates, Inner Shareable */ 2307 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2309 .writefn = tlbiall_is_write }, 2310 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2312 .writefn = tlbimva_is_write }, 2313 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2315 .writefn = tlbiasid_is_write }, 2316 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2318 .writefn = tlbimvaa_is_write }, 2319 }; 2320 2321 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2322 /* PMOVSSET is not implemented in v7 before v7ve */ 2323 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2324 .access = PL0_RW, .accessfn = pmreg_access, 2325 .fgt = FGT_PMOVS, 2326 .type = ARM_CP_ALIAS | ARM_CP_IO, 2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2328 .writefn = pmovsset_write, 2329 .raw_writefn = raw_write }, 2330 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2332 .access = PL0_RW, .accessfn = pmreg_access, 2333 .fgt = FGT_PMOVS, 2334 .type = ARM_CP_ALIAS | ARM_CP_IO, 2335 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2336 .writefn = pmovsset_write, 2337 .raw_writefn = raw_write }, 2338 }; 2339 2340 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2341 uint64_t value) 2342 { 2343 value &= 1; 2344 env->teecr = value; 2345 } 2346 2347 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2348 bool isread) 2349 { 2350 /* 2351 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2352 * at all, so we don't need to check whether we're v8A. 2353 */ 2354 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2355 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2356 return CP_ACCESS_TRAP_EL2; 2357 } 2358 return CP_ACCESS_OK; 2359 } 2360 2361 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2362 bool isread) 2363 { 2364 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2365 return CP_ACCESS_TRAP; 2366 } 2367 return teecr_access(env, ri, isread); 2368 } 2369 2370 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2371 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2373 .resetvalue = 0, 2374 .writefn = teecr_write, .accessfn = teecr_access }, 2375 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2376 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2377 .accessfn = teehbr_access, .resetvalue = 0 }, 2378 }; 2379 2380 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2381 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2382 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2383 .access = PL0_RW, 2384 .fgt = FGT_TPIDR_EL0, 2385 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2386 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2387 .access = PL0_RW, 2388 .fgt = FGT_TPIDR_EL0, 2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2391 .resetfn = arm_cp_reset_ignore }, 2392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2394 .access = PL0_R | PL1_W, 2395 .fgt = FGT_TPIDRRO_EL0, 2396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2397 .resetvalue = 0}, 2398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2399 .access = PL0_R | PL1_W, 2400 .fgt = FGT_TPIDRRO_EL0, 2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2402 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2403 .resetfn = arm_cp_reset_ignore }, 2404 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2405 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2406 .access = PL1_RW, 2407 .fgt = FGT_TPIDR_EL1, 2408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2409 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2410 .access = PL1_RW, 2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2412 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2413 .resetvalue = 0 }, 2414 }; 2415 2416 #ifndef CONFIG_USER_ONLY 2417 2418 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2419 bool isread) 2420 { 2421 /* 2422 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2423 * Writable only at the highest implemented exception level. 2424 */ 2425 int el = arm_current_el(env); 2426 uint64_t hcr; 2427 uint32_t cntkctl; 2428 2429 switch (el) { 2430 case 0: 2431 hcr = arm_hcr_el2_eff(env); 2432 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2433 cntkctl = env->cp15.cnthctl_el2; 2434 } else { 2435 cntkctl = env->cp15.c14_cntkctl; 2436 } 2437 if (!extract32(cntkctl, 0, 2)) { 2438 return CP_ACCESS_TRAP; 2439 } 2440 break; 2441 case 1: 2442 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2443 arm_is_secure_below_el3(env)) { 2444 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2445 return CP_ACCESS_TRAP_UNCATEGORIZED; 2446 } 2447 break; 2448 case 2: 2449 case 3: 2450 break; 2451 } 2452 2453 if (!isread && el < arm_highest_el(env)) { 2454 return CP_ACCESS_TRAP_UNCATEGORIZED; 2455 } 2456 2457 return CP_ACCESS_OK; 2458 } 2459 2460 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2461 bool isread) 2462 { 2463 unsigned int cur_el = arm_current_el(env); 2464 bool has_el2 = arm_is_el2_enabled(env); 2465 uint64_t hcr = arm_hcr_el2_eff(env); 2466 2467 switch (cur_el) { 2468 case 0: 2469 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2470 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2471 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2473 } 2474 2475 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2476 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2477 return CP_ACCESS_TRAP; 2478 } 2479 /* fall through */ 2480 case 1: 2481 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2482 if (has_el2 && timeridx == GTIMER_PHYS && 2483 (hcr & HCR_E2H 2484 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2485 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2486 return CP_ACCESS_TRAP_EL2; 2487 } 2488 break; 2489 } 2490 return CP_ACCESS_OK; 2491 } 2492 2493 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2494 bool isread) 2495 { 2496 unsigned int cur_el = arm_current_el(env); 2497 bool has_el2 = arm_is_el2_enabled(env); 2498 uint64_t hcr = arm_hcr_el2_eff(env); 2499 2500 switch (cur_el) { 2501 case 0: 2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2503 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2504 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2506 } 2507 2508 /* 2509 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2510 * EL0 if EL0[PV]TEN is zero. 2511 */ 2512 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2513 return CP_ACCESS_TRAP; 2514 } 2515 /* fall through */ 2516 2517 case 1: 2518 if (has_el2 && timeridx == GTIMER_PHYS) { 2519 if (hcr & HCR_E2H) { 2520 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2521 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2522 return CP_ACCESS_TRAP_EL2; 2523 } 2524 } else { 2525 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2526 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2527 return CP_ACCESS_TRAP_EL2; 2528 } 2529 } 2530 } 2531 break; 2532 } 2533 return CP_ACCESS_OK; 2534 } 2535 2536 static CPAccessResult gt_pct_access(CPUARMState *env, 2537 const ARMCPRegInfo *ri, 2538 bool isread) 2539 { 2540 return gt_counter_access(env, GTIMER_PHYS, isread); 2541 } 2542 2543 static CPAccessResult gt_vct_access(CPUARMState *env, 2544 const ARMCPRegInfo *ri, 2545 bool isread) 2546 { 2547 return gt_counter_access(env, GTIMER_VIRT, isread); 2548 } 2549 2550 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2551 bool isread) 2552 { 2553 return gt_timer_access(env, GTIMER_PHYS, isread); 2554 } 2555 2556 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2557 bool isread) 2558 { 2559 return gt_timer_access(env, GTIMER_VIRT, isread); 2560 } 2561 2562 static CPAccessResult gt_stimer_access(CPUARMState *env, 2563 const ARMCPRegInfo *ri, 2564 bool isread) 2565 { 2566 /* 2567 * The AArch64 register view of the secure physical timer is 2568 * always accessible from EL3, and configurably accessible from 2569 * Secure EL1. 2570 */ 2571 switch (arm_current_el(env)) { 2572 case 1: 2573 if (!arm_is_secure(env)) { 2574 return CP_ACCESS_TRAP; 2575 } 2576 if (!(env->cp15.scr_el3 & SCR_ST)) { 2577 return CP_ACCESS_TRAP_EL3; 2578 } 2579 return CP_ACCESS_OK; 2580 case 0: 2581 case 2: 2582 return CP_ACCESS_TRAP; 2583 case 3: 2584 return CP_ACCESS_OK; 2585 default: 2586 g_assert_not_reached(); 2587 } 2588 } 2589 2590 static uint64_t gt_get_countervalue(CPUARMState *env) 2591 { 2592 ARMCPU *cpu = env_archcpu(env); 2593 2594 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2595 } 2596 2597 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2598 { 2599 CPUARMState *env = &cpu->env; 2600 uint64_t cnthctl = env->cp15.cnthctl_el2; 2601 ARMSecuritySpace ss = arm_security_space(env); 2602 /* ISTATUS && !IMASK */ 2603 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2604 2605 /* 2606 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2607 * It is RES0 in Secure and NonSecure state. 2608 */ 2609 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2610 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2611 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2612 irqstate = 0; 2613 } 2614 2615 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2616 trace_arm_gt_update_irq(timeridx, irqstate); 2617 } 2618 2619 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2620 { 2621 /* 2622 * Changing security state between Root and Secure/NonSecure, which may 2623 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2624 * mask bits. Update the IRQ state accordingly. 2625 */ 2626 gt_update_irq(cpu, GTIMER_VIRT); 2627 gt_update_irq(cpu, GTIMER_PHYS); 2628 } 2629 2630 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2631 { 2632 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2633 2634 if (gt->ctl & 1) { 2635 /* 2636 * Timer enabled: calculate and set current ISTATUS, irq, and 2637 * reset timer to when ISTATUS next has to change 2638 */ 2639 uint64_t offset = timeridx == GTIMER_VIRT ? 2640 cpu->env.cp15.cntvoff_el2 : 0; 2641 uint64_t count = gt_get_countervalue(&cpu->env); 2642 /* Note that this must be unsigned 64 bit arithmetic: */ 2643 int istatus = count - offset >= gt->cval; 2644 uint64_t nexttick; 2645 2646 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2647 2648 if (istatus) { 2649 /* Next transition is when count rolls back over to zero */ 2650 nexttick = UINT64_MAX; 2651 } else { 2652 /* Next transition is when we hit cval */ 2653 nexttick = gt->cval + offset; 2654 } 2655 /* 2656 * Note that the desired next expiry time might be beyond the 2657 * signed-64-bit range of a QEMUTimer -- in this case we just 2658 * set the timer for as far in the future as possible. When the 2659 * timer expires we will reset the timer for any remaining period. 2660 */ 2661 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2662 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2663 } else { 2664 timer_mod(cpu->gt_timer[timeridx], nexttick); 2665 } 2666 trace_arm_gt_recalc(timeridx, nexttick); 2667 } else { 2668 /* Timer disabled: ISTATUS and timer output always clear */ 2669 gt->ctl &= ~4; 2670 timer_del(cpu->gt_timer[timeridx]); 2671 trace_arm_gt_recalc_disabled(timeridx); 2672 } 2673 gt_update_irq(cpu, timeridx); 2674 } 2675 2676 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2677 int timeridx) 2678 { 2679 ARMCPU *cpu = env_archcpu(env); 2680 2681 timer_del(cpu->gt_timer[timeridx]); 2682 } 2683 2684 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2685 { 2686 return gt_get_countervalue(env); 2687 } 2688 2689 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2690 { 2691 uint64_t hcr; 2692 2693 switch (arm_current_el(env)) { 2694 case 2: 2695 hcr = arm_hcr_el2_eff(env); 2696 if (hcr & HCR_E2H) { 2697 return 0; 2698 } 2699 break; 2700 case 0: 2701 hcr = arm_hcr_el2_eff(env); 2702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2703 return 0; 2704 } 2705 break; 2706 } 2707 2708 return env->cp15.cntvoff_el2; 2709 } 2710 2711 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2712 { 2713 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2714 } 2715 2716 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2717 int timeridx, 2718 uint64_t value) 2719 { 2720 trace_arm_gt_cval_write(timeridx, value); 2721 env->cp15.c14_timer[timeridx].cval = value; 2722 gt_recalc_timer(env_archcpu(env), timeridx); 2723 } 2724 2725 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2726 int timeridx) 2727 { 2728 uint64_t offset = 0; 2729 2730 switch (timeridx) { 2731 case GTIMER_VIRT: 2732 case GTIMER_HYPVIRT: 2733 offset = gt_virt_cnt_offset(env); 2734 break; 2735 } 2736 2737 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2738 (gt_get_countervalue(env) - offset)); 2739 } 2740 2741 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 int timeridx, 2743 uint64_t value) 2744 { 2745 uint64_t offset = 0; 2746 2747 switch (timeridx) { 2748 case GTIMER_VIRT: 2749 case GTIMER_HYPVIRT: 2750 offset = gt_virt_cnt_offset(env); 2751 break; 2752 } 2753 2754 trace_arm_gt_tval_write(timeridx, value); 2755 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2756 sextract64(value, 0, 32); 2757 gt_recalc_timer(env_archcpu(env), timeridx); 2758 } 2759 2760 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2761 int timeridx, 2762 uint64_t value) 2763 { 2764 ARMCPU *cpu = env_archcpu(env); 2765 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2766 2767 trace_arm_gt_ctl_write(timeridx, value); 2768 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2769 if ((oldval ^ value) & 1) { 2770 /* Enable toggled */ 2771 gt_recalc_timer(cpu, timeridx); 2772 } else if ((oldval ^ value) & 2) { 2773 /* 2774 * IMASK toggled: don't need to recalculate, 2775 * just set the interrupt line based on ISTATUS 2776 */ 2777 trace_arm_gt_imask_toggle(timeridx); 2778 gt_update_irq(cpu, timeridx); 2779 } 2780 } 2781 2782 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2783 { 2784 gt_timer_reset(env, ri, GTIMER_PHYS); 2785 } 2786 2787 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2788 uint64_t value) 2789 { 2790 gt_cval_write(env, ri, GTIMER_PHYS, value); 2791 } 2792 2793 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2794 { 2795 return gt_tval_read(env, ri, GTIMER_PHYS); 2796 } 2797 2798 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 gt_tval_write(env, ri, GTIMER_PHYS, value); 2802 } 2803 2804 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2805 uint64_t value) 2806 { 2807 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2808 } 2809 2810 static int gt_phys_redir_timeridx(CPUARMState *env) 2811 { 2812 switch (arm_mmu_idx(env)) { 2813 case ARMMMUIdx_E20_0: 2814 case ARMMMUIdx_E20_2: 2815 case ARMMMUIdx_E20_2_PAN: 2816 return GTIMER_HYP; 2817 default: 2818 return GTIMER_PHYS; 2819 } 2820 } 2821 2822 static int gt_virt_redir_timeridx(CPUARMState *env) 2823 { 2824 switch (arm_mmu_idx(env)) { 2825 case ARMMMUIdx_E20_0: 2826 case ARMMMUIdx_E20_2: 2827 case ARMMMUIdx_E20_2_PAN: 2828 return GTIMER_HYPVIRT; 2829 default: 2830 return GTIMER_VIRT; 2831 } 2832 } 2833 2834 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2835 const ARMCPRegInfo *ri) 2836 { 2837 int timeridx = gt_phys_redir_timeridx(env); 2838 return env->cp15.c14_timer[timeridx].cval; 2839 } 2840 2841 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2842 uint64_t value) 2843 { 2844 int timeridx = gt_phys_redir_timeridx(env); 2845 gt_cval_write(env, ri, timeridx, value); 2846 } 2847 2848 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2849 const ARMCPRegInfo *ri) 2850 { 2851 int timeridx = gt_phys_redir_timeridx(env); 2852 return gt_tval_read(env, ri, timeridx); 2853 } 2854 2855 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 int timeridx = gt_phys_redir_timeridx(env); 2859 gt_tval_write(env, ri, timeridx, value); 2860 } 2861 2862 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2863 const ARMCPRegInfo *ri) 2864 { 2865 int timeridx = gt_phys_redir_timeridx(env); 2866 return env->cp15.c14_timer[timeridx].ctl; 2867 } 2868 2869 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2870 uint64_t value) 2871 { 2872 int timeridx = gt_phys_redir_timeridx(env); 2873 gt_ctl_write(env, ri, timeridx, value); 2874 } 2875 2876 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2877 { 2878 gt_timer_reset(env, ri, GTIMER_VIRT); 2879 } 2880 2881 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2882 uint64_t value) 2883 { 2884 gt_cval_write(env, ri, GTIMER_VIRT, value); 2885 } 2886 2887 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2888 { 2889 return gt_tval_read(env, ri, GTIMER_VIRT); 2890 } 2891 2892 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2893 uint64_t value) 2894 { 2895 gt_tval_write(env, ri, GTIMER_VIRT, value); 2896 } 2897 2898 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2902 } 2903 2904 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2905 uint64_t value) 2906 { 2907 ARMCPU *cpu = env_archcpu(env); 2908 uint32_t oldval = env->cp15.cnthctl_el2; 2909 2910 raw_write(env, ri, value); 2911 2912 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2913 gt_update_irq(cpu, GTIMER_VIRT); 2914 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2915 gt_update_irq(cpu, GTIMER_PHYS); 2916 } 2917 } 2918 2919 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2920 uint64_t value) 2921 { 2922 ARMCPU *cpu = env_archcpu(env); 2923 2924 trace_arm_gt_cntvoff_write(value); 2925 raw_write(env, ri, value); 2926 gt_recalc_timer(cpu, GTIMER_VIRT); 2927 } 2928 2929 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2930 const ARMCPRegInfo *ri) 2931 { 2932 int timeridx = gt_virt_redir_timeridx(env); 2933 return env->cp15.c14_timer[timeridx].cval; 2934 } 2935 2936 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2937 uint64_t value) 2938 { 2939 int timeridx = gt_virt_redir_timeridx(env); 2940 gt_cval_write(env, ri, timeridx, value); 2941 } 2942 2943 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2944 const ARMCPRegInfo *ri) 2945 { 2946 int timeridx = gt_virt_redir_timeridx(env); 2947 return gt_tval_read(env, ri, timeridx); 2948 } 2949 2950 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 int timeridx = gt_virt_redir_timeridx(env); 2954 gt_tval_write(env, ri, timeridx, value); 2955 } 2956 2957 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2958 const ARMCPRegInfo *ri) 2959 { 2960 int timeridx = gt_virt_redir_timeridx(env); 2961 return env->cp15.c14_timer[timeridx].ctl; 2962 } 2963 2964 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2965 uint64_t value) 2966 { 2967 int timeridx = gt_virt_redir_timeridx(env); 2968 gt_ctl_write(env, ri, timeridx, value); 2969 } 2970 2971 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2972 { 2973 gt_timer_reset(env, ri, GTIMER_HYP); 2974 } 2975 2976 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2977 uint64_t value) 2978 { 2979 gt_cval_write(env, ri, GTIMER_HYP, value); 2980 } 2981 2982 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2983 { 2984 return gt_tval_read(env, ri, GTIMER_HYP); 2985 } 2986 2987 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 gt_tval_write(env, ri, GTIMER_HYP, value); 2991 } 2992 2993 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2994 uint64_t value) 2995 { 2996 gt_ctl_write(env, ri, GTIMER_HYP, value); 2997 } 2998 2999 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3000 { 3001 gt_timer_reset(env, ri, GTIMER_SEC); 3002 } 3003 3004 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 gt_cval_write(env, ri, GTIMER_SEC, value); 3008 } 3009 3010 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3011 { 3012 return gt_tval_read(env, ri, GTIMER_SEC); 3013 } 3014 3015 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 gt_tval_write(env, ri, GTIMER_SEC, value); 3019 } 3020 3021 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3022 uint64_t value) 3023 { 3024 gt_ctl_write(env, ri, GTIMER_SEC, value); 3025 } 3026 3027 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3028 { 3029 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3030 } 3031 3032 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3036 } 3037 3038 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3039 { 3040 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3041 } 3042 3043 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3044 uint64_t value) 3045 { 3046 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3047 } 3048 3049 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3050 uint64_t value) 3051 { 3052 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3053 } 3054 3055 void arm_gt_ptimer_cb(void *opaque) 3056 { 3057 ARMCPU *cpu = opaque; 3058 3059 gt_recalc_timer(cpu, GTIMER_PHYS); 3060 } 3061 3062 void arm_gt_vtimer_cb(void *opaque) 3063 { 3064 ARMCPU *cpu = opaque; 3065 3066 gt_recalc_timer(cpu, GTIMER_VIRT); 3067 } 3068 3069 void arm_gt_htimer_cb(void *opaque) 3070 { 3071 ARMCPU *cpu = opaque; 3072 3073 gt_recalc_timer(cpu, GTIMER_HYP); 3074 } 3075 3076 void arm_gt_stimer_cb(void *opaque) 3077 { 3078 ARMCPU *cpu = opaque; 3079 3080 gt_recalc_timer(cpu, GTIMER_SEC); 3081 } 3082 3083 void arm_gt_hvtimer_cb(void *opaque) 3084 { 3085 ARMCPU *cpu = opaque; 3086 3087 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3088 } 3089 3090 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3091 { 3092 ARMCPU *cpu = env_archcpu(env); 3093 3094 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3095 } 3096 3097 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3098 /* 3099 * Note that CNTFRQ is purely reads-as-written for the benefit 3100 * of software; writing it doesn't actually change the timer frequency. 3101 * Our reset value matches the fixed frequency we implement the timer at. 3102 */ 3103 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3104 .type = ARM_CP_ALIAS, 3105 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3106 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3107 }, 3108 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3109 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3110 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3112 .resetfn = arm_gt_cntfrq_reset, 3113 }, 3114 /* overall control: mostly access permissions */ 3115 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3116 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3117 .access = PL1_RW, 3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3119 .resetvalue = 0, 3120 }, 3121 /* per-timer control */ 3122 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3123 .secure = ARM_CP_SECSTATE_NS, 3124 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3125 .accessfn = gt_ptimer_access, 3126 .fieldoffset = offsetoflow32(CPUARMState, 3127 cp15.c14_timer[GTIMER_PHYS].ctl), 3128 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3129 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3130 }, 3131 { .name = "CNTP_CTL_S", 3132 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3133 .secure = ARM_CP_SECSTATE_S, 3134 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3135 .accessfn = gt_ptimer_access, 3136 .fieldoffset = offsetoflow32(CPUARMState, 3137 cp15.c14_timer[GTIMER_SEC].ctl), 3138 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3139 }, 3140 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3142 .type = ARM_CP_IO, .access = PL0_RW, 3143 .accessfn = gt_ptimer_access, 3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3145 .resetvalue = 0, 3146 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3147 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3148 }, 3149 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3150 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3151 .accessfn = gt_vtimer_access, 3152 .fieldoffset = offsetoflow32(CPUARMState, 3153 cp15.c14_timer[GTIMER_VIRT].ctl), 3154 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3155 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3156 }, 3157 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3159 .type = ARM_CP_IO, .access = PL0_RW, 3160 .accessfn = gt_vtimer_access, 3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3162 .resetvalue = 0, 3163 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3164 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3165 }, 3166 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3167 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3168 .secure = ARM_CP_SECSTATE_NS, 3169 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3170 .accessfn = gt_ptimer_access, 3171 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3172 }, 3173 { .name = "CNTP_TVAL_S", 3174 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3175 .secure = ARM_CP_SECSTATE_S, 3176 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3177 .accessfn = gt_ptimer_access, 3178 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3179 }, 3180 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3181 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3182 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3183 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3184 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3185 }, 3186 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3187 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3188 .accessfn = gt_vtimer_access, 3189 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3190 }, 3191 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3192 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3194 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3195 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3196 }, 3197 /* The counter itself */ 3198 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3199 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3200 .accessfn = gt_pct_access, 3201 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3202 }, 3203 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3205 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3206 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3207 }, 3208 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3209 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3210 .accessfn = gt_vct_access, 3211 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3212 }, 3213 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3215 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3216 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3217 }, 3218 /* Comparison value, indicating when the timer goes off */ 3219 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3220 .secure = ARM_CP_SECSTATE_NS, 3221 .access = PL0_RW, 3222 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3224 .accessfn = gt_ptimer_access, 3225 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3226 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3227 }, 3228 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3229 .secure = ARM_CP_SECSTATE_S, 3230 .access = PL0_RW, 3231 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3232 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3233 .accessfn = gt_ptimer_access, 3234 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3235 }, 3236 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3238 .access = PL0_RW, 3239 .type = ARM_CP_IO, 3240 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3241 .resetvalue = 0, .accessfn = gt_ptimer_access, 3242 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3243 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3244 }, 3245 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3246 .access = PL0_RW, 3247 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3249 .accessfn = gt_vtimer_access, 3250 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3251 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3252 }, 3253 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3254 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3255 .access = PL0_RW, 3256 .type = ARM_CP_IO, 3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3258 .resetvalue = 0, .accessfn = gt_vtimer_access, 3259 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3260 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3261 }, 3262 /* 3263 * Secure timer -- this is actually restricted to only EL3 3264 * and configurably Secure-EL1 via the accessfn. 3265 */ 3266 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3267 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3268 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3269 .accessfn = gt_stimer_access, 3270 .readfn = gt_sec_tval_read, 3271 .writefn = gt_sec_tval_write, 3272 .resetfn = gt_sec_timer_reset, 3273 }, 3274 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3275 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3276 .type = ARM_CP_IO, .access = PL1_RW, 3277 .accessfn = gt_stimer_access, 3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3279 .resetvalue = 0, 3280 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3281 }, 3282 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3283 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3284 .type = ARM_CP_IO, .access = PL1_RW, 3285 .accessfn = gt_stimer_access, 3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3287 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3288 }, 3289 }; 3290 3291 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3292 bool isread) 3293 { 3294 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3295 return CP_ACCESS_TRAP; 3296 } 3297 return CP_ACCESS_OK; 3298 } 3299 3300 #else 3301 3302 /* 3303 * In user-mode most of the generic timer registers are inaccessible 3304 * however modern kernels (4.12+) allow access to cntvct_el0 3305 */ 3306 3307 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3308 { 3309 ARMCPU *cpu = env_archcpu(env); 3310 3311 /* 3312 * Currently we have no support for QEMUTimer in linux-user so we 3313 * can't call gt_get_countervalue(env), instead we directly 3314 * call the lower level functions. 3315 */ 3316 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3317 } 3318 3319 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3320 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3322 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3323 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3324 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3325 }, 3326 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3327 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3328 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3329 .readfn = gt_virt_cnt_read, 3330 }, 3331 }; 3332 3333 #endif 3334 3335 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3336 { 3337 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3338 raw_write(env, ri, value); 3339 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3340 raw_write(env, ri, value & 0xfffff6ff); 3341 } else { 3342 raw_write(env, ri, value & 0xfffff1ff); 3343 } 3344 } 3345 3346 #ifndef CONFIG_USER_ONLY 3347 /* get_phys_addr() isn't present for user-mode-only targets */ 3348 3349 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3350 bool isread) 3351 { 3352 if (ri->opc2 & 4) { 3353 /* 3354 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3355 * Secure EL1 (which can only happen if EL3 is AArch64). 3356 * They are simply UNDEF if executed from NS EL1. 3357 * They function normally from EL2 or EL3. 3358 */ 3359 if (arm_current_el(env) == 1) { 3360 if (arm_is_secure_below_el3(env)) { 3361 if (env->cp15.scr_el3 & SCR_EEL2) { 3362 return CP_ACCESS_TRAP_EL2; 3363 } 3364 return CP_ACCESS_TRAP_EL3; 3365 } 3366 return CP_ACCESS_TRAP_UNCATEGORIZED; 3367 } 3368 } 3369 return CP_ACCESS_OK; 3370 } 3371 3372 #ifdef CONFIG_TCG 3373 static int par_el1_shareability(GetPhysAddrResult *res) 3374 { 3375 /* 3376 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3377 * memory -- see pseudocode PAREncodeShareability(). 3378 */ 3379 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3380 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3381 return 2; 3382 } 3383 return res->cacheattrs.shareability; 3384 } 3385 3386 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3387 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3388 ARMSecuritySpace ss) 3389 { 3390 bool ret; 3391 uint64_t par64; 3392 bool format64 = false; 3393 ARMMMUFaultInfo fi = {}; 3394 GetPhysAddrResult res = {}; 3395 3396 /* 3397 * I_MXTJT: Granule protection checks are not performed on the final address 3398 * of a successful translation. 3399 */ 3400 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3401 &res, &fi); 3402 3403 /* 3404 * ATS operations only do S1 or S1+S2 translations, so we never 3405 * have to deal with the ARMCacheAttrs format for S2 only. 3406 */ 3407 assert(!res.cacheattrs.is_s2_format); 3408 3409 if (ret) { 3410 /* 3411 * Some kinds of translation fault must cause exceptions rather 3412 * than being reported in the PAR. 3413 */ 3414 int current_el = arm_current_el(env); 3415 int target_el; 3416 uint32_t syn, fsr, fsc; 3417 bool take_exc = false; 3418 3419 if (fi.s1ptw && current_el == 1 3420 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3421 /* 3422 * Synchronous stage 2 fault on an access made as part of the 3423 * translation table walk for AT S1E0* or AT S1E1* insn 3424 * executed from NS EL1. If this is a synchronous external abort 3425 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3426 * to EL3. Otherwise the fault is taken as an exception to EL2, 3427 * and HPFAR_EL2 holds the faulting IPA. 3428 */ 3429 if (fi.type == ARMFault_SyncExternalOnWalk && 3430 (env->cp15.scr_el3 & SCR_EA)) { 3431 target_el = 3; 3432 } else { 3433 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3434 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3435 env->cp15.hpfar_el2 |= HPFAR_NS; 3436 } 3437 target_el = 2; 3438 } 3439 take_exc = true; 3440 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3441 /* 3442 * Synchronous external aborts during a translation table walk 3443 * are taken as Data Abort exceptions. 3444 */ 3445 if (fi.stage2) { 3446 if (current_el == 3) { 3447 target_el = 3; 3448 } else { 3449 target_el = 2; 3450 } 3451 } else { 3452 target_el = exception_target_el(env); 3453 } 3454 take_exc = true; 3455 } 3456 3457 if (take_exc) { 3458 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3459 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3460 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3461 fsr = arm_fi_to_lfsc(&fi); 3462 fsc = extract32(fsr, 0, 6); 3463 } else { 3464 fsr = arm_fi_to_sfsc(&fi); 3465 fsc = 0x3f; 3466 } 3467 /* 3468 * Report exception with ESR indicating a fault due to a 3469 * translation table walk for a cache maintenance instruction. 3470 */ 3471 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3472 fi.ea, 1, fi.s1ptw, 1, fsc); 3473 env->exception.vaddress = value; 3474 env->exception.fsr = fsr; 3475 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3476 } 3477 } 3478 3479 if (is_a64(env)) { 3480 format64 = true; 3481 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3482 /* 3483 * ATS1Cxx: 3484 * * TTBCR.EAE determines whether the result is returned using the 3485 * 32-bit or the 64-bit PAR format 3486 * * Instructions executed in Hyp mode always use the 64bit format 3487 * 3488 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3489 * * The Non-secure TTBCR.EAE bit is set to 1 3490 * * The implementation includes EL2, and the value of HCR.VM is 1 3491 * 3492 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3493 * 3494 * ATS1Hx always uses the 64bit format. 3495 */ 3496 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3497 3498 if (arm_feature(env, ARM_FEATURE_EL2)) { 3499 if (mmu_idx == ARMMMUIdx_E10_0 || 3500 mmu_idx == ARMMMUIdx_E10_1 || 3501 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3502 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3503 } else { 3504 format64 |= arm_current_el(env) == 2; 3505 } 3506 } 3507 } 3508 3509 if (format64) { 3510 /* Create a 64-bit PAR */ 3511 par64 = (1 << 11); /* LPAE bit always set */ 3512 if (!ret) { 3513 par64 |= res.f.phys_addr & ~0xfffULL; 3514 if (!res.f.attrs.secure) { 3515 par64 |= (1 << 9); /* NS */ 3516 } 3517 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3518 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3519 } else { 3520 uint32_t fsr = arm_fi_to_lfsc(&fi); 3521 3522 par64 |= 1; /* F */ 3523 par64 |= (fsr & 0x3f) << 1; /* FS */ 3524 if (fi.stage2) { 3525 par64 |= (1 << 9); /* S */ 3526 } 3527 if (fi.s1ptw) { 3528 par64 |= (1 << 8); /* PTW */ 3529 } 3530 } 3531 } else { 3532 /* 3533 * fsr is a DFSR/IFSR value for the short descriptor 3534 * translation table format (with WnR always clear). 3535 * Convert it to a 32-bit PAR. 3536 */ 3537 if (!ret) { 3538 /* We do not set any attribute bits in the PAR */ 3539 if (res.f.lg_page_size == 24 3540 && arm_feature(env, ARM_FEATURE_V7)) { 3541 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3542 } else { 3543 par64 = res.f.phys_addr & 0xfffff000; 3544 } 3545 if (!res.f.attrs.secure) { 3546 par64 |= (1 << 9); /* NS */ 3547 } 3548 } else { 3549 uint32_t fsr = arm_fi_to_sfsc(&fi); 3550 3551 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3552 ((fsr & 0xf) << 1) | 1; 3553 } 3554 } 3555 return par64; 3556 } 3557 #endif /* CONFIG_TCG */ 3558 3559 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3560 { 3561 #ifdef CONFIG_TCG 3562 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3563 uint64_t par64; 3564 ARMMMUIdx mmu_idx; 3565 int el = arm_current_el(env); 3566 ARMSecuritySpace ss = arm_security_space(env); 3567 3568 switch (ri->opc2 & 6) { 3569 case 0: 3570 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3571 switch (el) { 3572 case 3: 3573 mmu_idx = ARMMMUIdx_E3; 3574 break; 3575 case 2: 3576 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3577 /* fall through */ 3578 case 1: 3579 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3580 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3581 } else { 3582 mmu_idx = ARMMMUIdx_Stage1_E1; 3583 } 3584 break; 3585 default: 3586 g_assert_not_reached(); 3587 } 3588 break; 3589 case 2: 3590 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3591 switch (el) { 3592 case 3: 3593 mmu_idx = ARMMMUIdx_E10_0; 3594 break; 3595 case 2: 3596 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3597 mmu_idx = ARMMMUIdx_Stage1_E0; 3598 break; 3599 case 1: 3600 mmu_idx = ARMMMUIdx_Stage1_E0; 3601 break; 3602 default: 3603 g_assert_not_reached(); 3604 } 3605 break; 3606 case 4: 3607 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3608 mmu_idx = ARMMMUIdx_E10_1; 3609 ss = ARMSS_NonSecure; 3610 break; 3611 case 6: 3612 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3613 mmu_idx = ARMMMUIdx_E10_0; 3614 ss = ARMSS_NonSecure; 3615 break; 3616 default: 3617 g_assert_not_reached(); 3618 } 3619 3620 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3621 3622 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3623 #else 3624 /* Handled by hardware accelerator. */ 3625 g_assert_not_reached(); 3626 #endif /* CONFIG_TCG */ 3627 } 3628 3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3630 uint64_t value) 3631 { 3632 #ifdef CONFIG_TCG 3633 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3634 uint64_t par64; 3635 3636 /* There is no SecureEL2 for AArch32. */ 3637 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3638 ARMSS_NonSecure); 3639 3640 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3641 #else 3642 /* Handled by hardware accelerator. */ 3643 g_assert_not_reached(); 3644 #endif /* CONFIG_TCG */ 3645 } 3646 3647 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3648 bool isread) 3649 { 3650 /* 3651 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3652 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3653 * only happen when executing at EL3 because that combination also causes an 3654 * illegal exception return. We don't need to check FEAT_RME either, because 3655 * scr_write() ensures that the NSE bit is not set otherwise. 3656 */ 3657 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3658 return CP_ACCESS_TRAP; 3659 } 3660 return CP_ACCESS_OK; 3661 } 3662 3663 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3664 bool isread) 3665 { 3666 if (arm_current_el(env) == 3 && 3667 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3668 return CP_ACCESS_TRAP; 3669 } 3670 return at_e012_access(env, ri, isread); 3671 } 3672 3673 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3674 uint64_t value) 3675 { 3676 #ifdef CONFIG_TCG 3677 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3678 ARMMMUIdx mmu_idx; 3679 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3680 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3681 3682 switch (ri->opc2 & 6) { 3683 case 0: 3684 switch (ri->opc1) { 3685 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3686 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3687 mmu_idx = regime_e20 ? 3688 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3689 } else { 3690 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3691 } 3692 break; 3693 case 4: /* AT S1E2R, AT S1E2W */ 3694 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3695 break; 3696 case 6: /* AT S1E3R, AT S1E3W */ 3697 mmu_idx = ARMMMUIdx_E3; 3698 break; 3699 default: 3700 g_assert_not_reached(); 3701 } 3702 break; 3703 case 2: /* AT S1E0R, AT S1E0W */ 3704 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3705 break; 3706 case 4: /* AT S12E1R, AT S12E1W */ 3707 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3708 break; 3709 case 6: /* AT S12E0R, AT S12E0W */ 3710 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3711 break; 3712 default: 3713 g_assert_not_reached(); 3714 } 3715 3716 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3717 mmu_idx, arm_security_space(env)); 3718 #else 3719 /* Handled by hardware accelerator. */ 3720 g_assert_not_reached(); 3721 #endif /* CONFIG_TCG */ 3722 } 3723 #endif 3724 3725 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3726 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3727 .access = PL1_RW, .resetvalue = 0, 3728 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3729 offsetoflow32(CPUARMState, cp15.par_ns) }, 3730 .writefn = par_write }, 3731 #ifndef CONFIG_USER_ONLY 3732 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3733 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3734 .access = PL1_W, .accessfn = ats_access, 3735 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3736 #endif 3737 }; 3738 3739 /* Return basic MPU access permission bits. */ 3740 static uint32_t simple_mpu_ap_bits(uint32_t val) 3741 { 3742 uint32_t ret; 3743 uint32_t mask; 3744 int i; 3745 ret = 0; 3746 mask = 3; 3747 for (i = 0; i < 16; i += 2) { 3748 ret |= (val >> i) & mask; 3749 mask <<= 2; 3750 } 3751 return ret; 3752 } 3753 3754 /* Pad basic MPU access permission bits to extended format. */ 3755 static uint32_t extended_mpu_ap_bits(uint32_t val) 3756 { 3757 uint32_t ret; 3758 uint32_t mask; 3759 int i; 3760 ret = 0; 3761 mask = 3; 3762 for (i = 0; i < 16; i += 2) { 3763 ret |= (val & mask) << i; 3764 mask <<= 2; 3765 } 3766 return ret; 3767 } 3768 3769 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3770 uint64_t value) 3771 { 3772 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3773 } 3774 3775 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3776 { 3777 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3778 } 3779 3780 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3781 uint64_t value) 3782 { 3783 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3784 } 3785 3786 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3787 { 3788 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3789 } 3790 3791 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3792 { 3793 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3794 3795 if (!u32p) { 3796 return 0; 3797 } 3798 3799 u32p += env->pmsav7.rnr[M_REG_NS]; 3800 return *u32p; 3801 } 3802 3803 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3804 uint64_t value) 3805 { 3806 ARMCPU *cpu = env_archcpu(env); 3807 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3808 3809 if (!u32p) { 3810 return; 3811 } 3812 3813 u32p += env->pmsav7.rnr[M_REG_NS]; 3814 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3815 *u32p = value; 3816 } 3817 3818 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3819 uint64_t value) 3820 { 3821 ARMCPU *cpu = env_archcpu(env); 3822 uint32_t nrgs = cpu->pmsav7_dregion; 3823 3824 if (value >= nrgs) { 3825 qemu_log_mask(LOG_GUEST_ERROR, 3826 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3827 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3828 return; 3829 } 3830 3831 raw_write(env, ri, value); 3832 } 3833 3834 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3835 uint64_t value) 3836 { 3837 ARMCPU *cpu = env_archcpu(env); 3838 3839 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3840 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3841 } 3842 3843 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3844 { 3845 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3846 } 3847 3848 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 ARMCPU *cpu = env_archcpu(env); 3852 3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3854 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3855 } 3856 3857 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3858 { 3859 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3860 } 3861 3862 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3863 uint64_t value) 3864 { 3865 ARMCPU *cpu = env_archcpu(env); 3866 3867 /* 3868 * Ignore writes that would select not implemented region. 3869 * This is architecturally UNPREDICTABLE. 3870 */ 3871 if (value >= cpu->pmsav7_dregion) { 3872 return; 3873 } 3874 3875 env->pmsav7.rnr[M_REG_NS] = value; 3876 } 3877 3878 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3879 uint64_t value) 3880 { 3881 ARMCPU *cpu = env_archcpu(env); 3882 3883 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3884 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3885 } 3886 3887 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3888 { 3889 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3890 } 3891 3892 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 ARMCPU *cpu = env_archcpu(env); 3896 3897 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3898 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3899 } 3900 3901 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3902 { 3903 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3904 } 3905 3906 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3907 uint64_t value) 3908 { 3909 uint32_t n; 3910 uint32_t bit; 3911 ARMCPU *cpu = env_archcpu(env); 3912 3913 /* Ignore writes to unimplemented regions */ 3914 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3915 value &= MAKE_64BIT_MASK(0, rmax); 3916 3917 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3918 3919 /* Register alias is only valid for first 32 indexes */ 3920 for (n = 0; n < rmax; ++n) { 3921 bit = extract32(value, n, 1); 3922 env->pmsav8.hprlar[n] = deposit32( 3923 env->pmsav8.hprlar[n], 0, 1, bit); 3924 } 3925 } 3926 3927 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3928 { 3929 uint32_t n; 3930 uint32_t result = 0x0; 3931 ARMCPU *cpu = env_archcpu(env); 3932 3933 /* Register alias is only valid for first 32 indexes */ 3934 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3935 if (env->pmsav8.hprlar[n] & 0x1) { 3936 result |= (0x1 << n); 3937 } 3938 } 3939 return result; 3940 } 3941 3942 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3943 uint64_t value) 3944 { 3945 ARMCPU *cpu = env_archcpu(env); 3946 3947 /* 3948 * Ignore writes that would select not implemented region. 3949 * This is architecturally UNPREDICTABLE. 3950 */ 3951 if (value >= cpu->pmsav8r_hdregion) { 3952 return; 3953 } 3954 3955 env->pmsav8.hprselr = value; 3956 } 3957 3958 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3959 uint64_t value) 3960 { 3961 ARMCPU *cpu = env_archcpu(env); 3962 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3963 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3964 3965 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3966 3967 if (ri->opc1 & 4) { 3968 if (index >= cpu->pmsav8r_hdregion) { 3969 return; 3970 } 3971 if (ri->opc2 & 0x1) { 3972 env->pmsav8.hprlar[index] = value; 3973 } else { 3974 env->pmsav8.hprbar[index] = value; 3975 } 3976 } else { 3977 if (index >= cpu->pmsav7_dregion) { 3978 return; 3979 } 3980 if (ri->opc2 & 0x1) { 3981 env->pmsav8.rlar[M_REG_NS][index] = value; 3982 } else { 3983 env->pmsav8.rbar[M_REG_NS][index] = value; 3984 } 3985 } 3986 } 3987 3988 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3989 { 3990 ARMCPU *cpu = env_archcpu(env); 3991 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3992 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3993 3994 if (ri->opc1 & 4) { 3995 if (index >= cpu->pmsav8r_hdregion) { 3996 return 0x0; 3997 } 3998 if (ri->opc2 & 0x1) { 3999 return env->pmsav8.hprlar[index]; 4000 } else { 4001 return env->pmsav8.hprbar[index]; 4002 } 4003 } else { 4004 if (index >= cpu->pmsav7_dregion) { 4005 return 0x0; 4006 } 4007 if (ri->opc2 & 0x1) { 4008 return env->pmsav8.rlar[M_REG_NS][index]; 4009 } else { 4010 return env->pmsav8.rbar[M_REG_NS][index]; 4011 } 4012 } 4013 } 4014 4015 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4016 { .name = "PRBAR", 4017 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4018 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4019 .accessfn = access_tvm_trvm, 4020 .readfn = prbar_read, .writefn = prbar_write }, 4021 { .name = "PRLAR", 4022 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4023 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4024 .accessfn = access_tvm_trvm, 4025 .readfn = prlar_read, .writefn = prlar_write }, 4026 { .name = "PRSELR", .resetvalue = 0, 4027 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4028 .access = PL1_RW, .accessfn = access_tvm_trvm, 4029 .writefn = prselr_write, 4030 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4031 { .name = "HPRBAR", .resetvalue = 0, 4032 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4033 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4034 .readfn = hprbar_read, .writefn = hprbar_write }, 4035 { .name = "HPRLAR", 4036 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4037 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4038 .readfn = hprlar_read, .writefn = hprlar_write }, 4039 { .name = "HPRSELR", .resetvalue = 0, 4040 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4041 .access = PL2_RW, 4042 .writefn = hprselr_write, 4043 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4044 { .name = "HPRENR", 4045 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4046 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4047 .readfn = hprenr_read, .writefn = hprenr_write }, 4048 }; 4049 4050 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4051 /* 4052 * Reset for all these registers is handled in arm_cpu_reset(), 4053 * because the PMSAv7 is also used by M-profile CPUs, which do 4054 * not register cpregs but still need the state to be reset. 4055 */ 4056 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4057 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4058 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4059 .readfn = pmsav7_read, .writefn = pmsav7_write, 4060 .resetfn = arm_cp_reset_ignore }, 4061 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4062 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4063 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4064 .readfn = pmsav7_read, .writefn = pmsav7_write, 4065 .resetfn = arm_cp_reset_ignore }, 4066 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4067 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4068 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4069 .readfn = pmsav7_read, .writefn = pmsav7_write, 4070 .resetfn = arm_cp_reset_ignore }, 4071 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4072 .access = PL1_RW, 4073 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4074 .writefn = pmsav7_rgnr_write, 4075 .resetfn = arm_cp_reset_ignore }, 4076 }; 4077 4078 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4079 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4080 .access = PL1_RW, .type = ARM_CP_ALIAS, 4081 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4082 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4083 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4084 .access = PL1_RW, .type = ARM_CP_ALIAS, 4085 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4086 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4087 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4088 .access = PL1_RW, 4089 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4090 .resetvalue = 0, }, 4091 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4092 .access = PL1_RW, 4093 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4094 .resetvalue = 0, }, 4095 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4096 .access = PL1_RW, 4097 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4098 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4099 .access = PL1_RW, 4100 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4101 /* Protection region base and size registers */ 4102 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4103 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4104 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4105 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4106 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4107 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4108 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4109 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4110 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4111 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4112 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4113 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4114 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4115 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4116 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4117 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4118 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4119 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4120 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4121 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4122 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4123 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4124 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4125 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4126 }; 4127 4128 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 ARMCPU *cpu = env_archcpu(env); 4132 4133 if (!arm_feature(env, ARM_FEATURE_V8)) { 4134 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4135 /* 4136 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4137 * using Long-descriptor translation table format 4138 */ 4139 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4140 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4141 /* 4142 * In an implementation that includes the Security Extensions 4143 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4144 * Short-descriptor translation table format. 4145 */ 4146 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4147 } else { 4148 value &= TTBCR_N; 4149 } 4150 } 4151 4152 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4153 /* 4154 * With LPAE the TTBCR could result in a change of ASID 4155 * via the TTBCR.A1 bit, so do a TLB flush. 4156 */ 4157 tlb_flush(CPU(cpu)); 4158 } 4159 raw_write(env, ri, value); 4160 } 4161 4162 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4163 uint64_t value) 4164 { 4165 ARMCPU *cpu = env_archcpu(env); 4166 4167 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4168 tlb_flush(CPU(cpu)); 4169 raw_write(env, ri, value); 4170 } 4171 4172 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4173 uint64_t value) 4174 { 4175 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4176 if (cpreg_field_is_64bit(ri) && 4177 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4178 ARMCPU *cpu = env_archcpu(env); 4179 tlb_flush(CPU(cpu)); 4180 } 4181 raw_write(env, ri, value); 4182 } 4183 4184 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4185 uint64_t value) 4186 { 4187 /* 4188 * If we are running with E2&0 regime, then an ASID is active. 4189 * Flush if that might be changing. Note we're not checking 4190 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4191 * holds the active ASID, only checking the field that might. 4192 */ 4193 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4194 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4195 uint16_t mask = ARMMMUIdxBit_E20_2 | 4196 ARMMMUIdxBit_E20_2_PAN | 4197 ARMMMUIdxBit_E20_0; 4198 tlb_flush_by_mmuidx(env_cpu(env), mask); 4199 } 4200 raw_write(env, ri, value); 4201 } 4202 4203 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4204 uint64_t value) 4205 { 4206 ARMCPU *cpu = env_archcpu(env); 4207 CPUState *cs = CPU(cpu); 4208 4209 /* 4210 * A change in VMID to the stage2 page table (Stage2) invalidates 4211 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4212 */ 4213 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4214 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4215 } 4216 raw_write(env, ri, value); 4217 } 4218 4219 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4220 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4221 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4222 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4223 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4224 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4225 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4226 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4227 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4228 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4229 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4230 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4231 offsetof(CPUARMState, cp15.dfar_ns) } }, 4232 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4233 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4234 .access = PL1_RW, .accessfn = access_tvm_trvm, 4235 .fgt = FGT_FAR_EL1, 4236 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4237 .resetvalue = 0, }, 4238 }; 4239 4240 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4241 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4242 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4243 .access = PL1_RW, .accessfn = access_tvm_trvm, 4244 .fgt = FGT_ESR_EL1, 4245 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4246 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4247 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4248 .access = PL1_RW, .accessfn = access_tvm_trvm, 4249 .fgt = FGT_TTBR0_EL1, 4250 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4251 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4252 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4253 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4254 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4255 .access = PL1_RW, .accessfn = access_tvm_trvm, 4256 .fgt = FGT_TTBR1_EL1, 4257 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4259 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4260 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4262 .access = PL1_RW, .accessfn = access_tvm_trvm, 4263 .fgt = FGT_TCR_EL1, 4264 .writefn = vmsa_tcr_el12_write, 4265 .raw_writefn = raw_write, 4266 .resetvalue = 0, 4267 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4268 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4269 .access = PL1_RW, .accessfn = access_tvm_trvm, 4270 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4271 .raw_writefn = raw_write, 4272 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4273 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4274 }; 4275 4276 /* 4277 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4278 * qemu tlbs nor adjusting cached masks. 4279 */ 4280 static const ARMCPRegInfo ttbcr2_reginfo = { 4281 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4282 .access = PL1_RW, .accessfn = access_tvm_trvm, 4283 .type = ARM_CP_ALIAS, 4284 .bank_fieldoffsets = { 4285 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4286 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4287 }, 4288 }; 4289 4290 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4291 uint64_t value) 4292 { 4293 env->cp15.c15_ticonfig = value & 0xe7; 4294 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4295 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4296 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4297 } 4298 4299 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4300 uint64_t value) 4301 { 4302 env->cp15.c15_threadid = value & 0xffff; 4303 } 4304 4305 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4306 uint64_t value) 4307 { 4308 /* Wait-for-interrupt (deprecated) */ 4309 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4310 } 4311 4312 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4313 uint64_t value) 4314 { 4315 /* 4316 * On OMAP there are registers indicating the max/min index of dcache lines 4317 * containing a dirty line; cache flush operations have to reset these. 4318 */ 4319 env->cp15.c15_i_max = 0x000; 4320 env->cp15.c15_i_min = 0xff0; 4321 } 4322 4323 static const ARMCPRegInfo omap_cp_reginfo[] = { 4324 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4325 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4326 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4327 .resetvalue = 0, }, 4328 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4329 .access = PL1_RW, .type = ARM_CP_NOP }, 4330 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4331 .access = PL1_RW, 4332 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4333 .writefn = omap_ticonfig_write }, 4334 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4335 .access = PL1_RW, 4336 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4337 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4338 .access = PL1_RW, .resetvalue = 0xff0, 4339 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4340 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4341 .access = PL1_RW, 4342 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4343 .writefn = omap_threadid_write }, 4344 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4345 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4346 .type = ARM_CP_NO_RAW, 4347 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4348 /* 4349 * TODO: Peripheral port remap register: 4350 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4351 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4352 * when MMU is off. 4353 */ 4354 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4355 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4356 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4357 .writefn = omap_cachemaint_write }, 4358 { .name = "C9", .cp = 15, .crn = 9, 4359 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4360 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4361 }; 4362 4363 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4364 uint64_t value) 4365 { 4366 env->cp15.c15_cpar = value & 0x3fff; 4367 } 4368 4369 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4370 { .name = "XSCALE_CPAR", 4371 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4372 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4373 .writefn = xscale_cpar_write, }, 4374 { .name = "XSCALE_AUXCR", 4375 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4376 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4377 .resetvalue = 0, }, 4378 /* 4379 * XScale specific cache-lockdown: since we have no cache we NOP these 4380 * and hope the guest does not really rely on cache behaviour. 4381 */ 4382 { .name = "XSCALE_LOCK_ICACHE_LINE", 4383 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4384 .access = PL1_W, .type = ARM_CP_NOP }, 4385 { .name = "XSCALE_UNLOCK_ICACHE", 4386 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4387 .access = PL1_W, .type = ARM_CP_NOP }, 4388 { .name = "XSCALE_DCACHE_LOCK", 4389 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4390 .access = PL1_RW, .type = ARM_CP_NOP }, 4391 { .name = "XSCALE_UNLOCK_DCACHE", 4392 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4393 .access = PL1_W, .type = ARM_CP_NOP }, 4394 }; 4395 4396 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4397 /* 4398 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4399 * implementation of this implementation-defined space. 4400 * Ideally this should eventually disappear in favour of actually 4401 * implementing the correct behaviour for all cores. 4402 */ 4403 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4404 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4405 .access = PL1_RW, 4406 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4407 .resetvalue = 0 }, 4408 }; 4409 4410 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4411 /* Cache status: RAZ because we have no cache so it's always clean */ 4412 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4413 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4414 .resetvalue = 0 }, 4415 }; 4416 4417 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4418 /* We never have a block transfer operation in progress */ 4419 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4420 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4421 .resetvalue = 0 }, 4422 /* The cache ops themselves: these all NOP for QEMU */ 4423 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4424 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4425 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4426 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4427 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4428 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4429 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4430 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4431 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4432 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4433 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4434 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4435 }; 4436 4437 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4438 /* 4439 * The cache test-and-clean instructions always return (1 << 30) 4440 * to indicate that there are no dirty cache lines. 4441 */ 4442 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4443 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4444 .resetvalue = (1 << 30) }, 4445 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4446 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4447 .resetvalue = (1 << 30) }, 4448 }; 4449 4450 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4451 /* Ignore ReadBuffer accesses */ 4452 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4453 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4454 .access = PL1_RW, .resetvalue = 0, 4455 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4456 }; 4457 4458 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4459 { 4460 unsigned int cur_el = arm_current_el(env); 4461 4462 if (arm_is_el2_enabled(env) && cur_el == 1) { 4463 return env->cp15.vpidr_el2; 4464 } 4465 return raw_read(env, ri); 4466 } 4467 4468 static uint64_t mpidr_read_val(CPUARMState *env) 4469 { 4470 ARMCPU *cpu = env_archcpu(env); 4471 uint64_t mpidr = cpu->mp_affinity; 4472 4473 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4474 mpidr |= (1U << 31); 4475 /* 4476 * Cores which are uniprocessor (non-coherent) 4477 * but still implement the MP extensions set 4478 * bit 30. (For instance, Cortex-R5). 4479 */ 4480 if (cpu->mp_is_up) { 4481 mpidr |= (1u << 30); 4482 } 4483 } 4484 return mpidr; 4485 } 4486 4487 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4488 { 4489 unsigned int cur_el = arm_current_el(env); 4490 4491 if (arm_is_el2_enabled(env) && cur_el == 1) { 4492 return env->cp15.vmpidr_el2; 4493 } 4494 return mpidr_read_val(env); 4495 } 4496 4497 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4498 /* NOP AMAIR0/1 */ 4499 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4500 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4501 .access = PL1_RW, .accessfn = access_tvm_trvm, 4502 .fgt = FGT_AMAIR_EL1, 4503 .type = ARM_CP_CONST, .resetvalue = 0 }, 4504 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4505 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4506 .access = PL1_RW, .accessfn = access_tvm_trvm, 4507 .type = ARM_CP_CONST, .resetvalue = 0 }, 4508 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4509 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4510 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4511 offsetof(CPUARMState, cp15.par_ns)} }, 4512 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4513 .access = PL1_RW, .accessfn = access_tvm_trvm, 4514 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4515 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4516 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4517 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4518 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4519 .access = PL1_RW, .accessfn = access_tvm_trvm, 4520 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4521 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4522 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4523 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4524 }; 4525 4526 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4527 { 4528 return vfp_get_fpcr(env); 4529 } 4530 4531 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4532 uint64_t value) 4533 { 4534 vfp_set_fpcr(env, value); 4535 } 4536 4537 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4538 { 4539 return vfp_get_fpsr(env); 4540 } 4541 4542 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4543 uint64_t value) 4544 { 4545 vfp_set_fpsr(env, value); 4546 } 4547 4548 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4549 bool isread) 4550 { 4551 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4552 return CP_ACCESS_TRAP; 4553 } 4554 return CP_ACCESS_OK; 4555 } 4556 4557 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4558 uint64_t value) 4559 { 4560 env->daif = value & PSTATE_DAIF; 4561 } 4562 4563 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4564 { 4565 return env->pstate & PSTATE_PAN; 4566 } 4567 4568 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4569 uint64_t value) 4570 { 4571 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4572 } 4573 4574 static const ARMCPRegInfo pan_reginfo = { 4575 .name = "PAN", .state = ARM_CP_STATE_AA64, 4576 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4577 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4578 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4579 }; 4580 4581 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4582 { 4583 return env->pstate & PSTATE_UAO; 4584 } 4585 4586 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4587 uint64_t value) 4588 { 4589 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4590 } 4591 4592 static const ARMCPRegInfo uao_reginfo = { 4593 .name = "UAO", .state = ARM_CP_STATE_AA64, 4594 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4595 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4596 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4597 }; 4598 4599 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4600 { 4601 return env->pstate & PSTATE_DIT; 4602 } 4603 4604 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4605 uint64_t value) 4606 { 4607 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4608 } 4609 4610 static const ARMCPRegInfo dit_reginfo = { 4611 .name = "DIT", .state = ARM_CP_STATE_AA64, 4612 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4613 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4614 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4615 }; 4616 4617 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4618 { 4619 return env->pstate & PSTATE_SSBS; 4620 } 4621 4622 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4623 uint64_t value) 4624 { 4625 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4626 } 4627 4628 static const ARMCPRegInfo ssbs_reginfo = { 4629 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4630 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4631 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4632 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4633 }; 4634 4635 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4636 const ARMCPRegInfo *ri, 4637 bool isread) 4638 { 4639 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4640 switch (arm_current_el(env)) { 4641 case 0: 4642 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4643 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4644 return CP_ACCESS_TRAP; 4645 } 4646 /* fall through */ 4647 case 1: 4648 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4649 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4650 return CP_ACCESS_TRAP_EL2; 4651 } 4652 break; 4653 } 4654 return CP_ACCESS_OK; 4655 } 4656 4657 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4658 { 4659 /* Cache invalidate/clean to Point of Unification... */ 4660 switch (arm_current_el(env)) { 4661 case 0: 4662 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4663 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4664 return CP_ACCESS_TRAP; 4665 } 4666 /* fall through */ 4667 case 1: 4668 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4669 if (arm_hcr_el2_eff(env) & hcrflags) { 4670 return CP_ACCESS_TRAP_EL2; 4671 } 4672 break; 4673 } 4674 return CP_ACCESS_OK; 4675 } 4676 4677 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4678 bool isread) 4679 { 4680 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4681 } 4682 4683 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4684 bool isread) 4685 { 4686 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4687 } 4688 4689 /* 4690 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4691 * Page D4-1736 (DDI0487A.b) 4692 */ 4693 4694 static int vae1_tlbmask(CPUARMState *env) 4695 { 4696 uint64_t hcr = arm_hcr_el2_eff(env); 4697 uint16_t mask; 4698 4699 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4700 mask = ARMMMUIdxBit_E20_2 | 4701 ARMMMUIdxBit_E20_2_PAN | 4702 ARMMMUIdxBit_E20_0; 4703 } else { 4704 mask = ARMMMUIdxBit_E10_1 | 4705 ARMMMUIdxBit_E10_1_PAN | 4706 ARMMMUIdxBit_E10_0; 4707 } 4708 return mask; 4709 } 4710 4711 static int vae2_tlbmask(CPUARMState *env) 4712 { 4713 uint64_t hcr = arm_hcr_el2_eff(env); 4714 uint16_t mask; 4715 4716 if (hcr & HCR_E2H) { 4717 mask = ARMMMUIdxBit_E20_2 | 4718 ARMMMUIdxBit_E20_2_PAN | 4719 ARMMMUIdxBit_E20_0; 4720 } else { 4721 mask = ARMMMUIdxBit_E2; 4722 } 4723 return mask; 4724 } 4725 4726 /* Return 56 if TBI is enabled, 64 otherwise. */ 4727 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4728 uint64_t addr) 4729 { 4730 uint64_t tcr = regime_tcr(env, mmu_idx); 4731 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4732 int select = extract64(addr, 55, 1); 4733 4734 return (tbi >> select) & 1 ? 56 : 64; 4735 } 4736 4737 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4738 { 4739 uint64_t hcr = arm_hcr_el2_eff(env); 4740 ARMMMUIdx mmu_idx; 4741 4742 /* Only the regime of the mmu_idx below is significant. */ 4743 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4744 mmu_idx = ARMMMUIdx_E20_0; 4745 } else { 4746 mmu_idx = ARMMMUIdx_E10_0; 4747 } 4748 4749 return tlbbits_for_regime(env, mmu_idx, addr); 4750 } 4751 4752 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4753 { 4754 uint64_t hcr = arm_hcr_el2_eff(env); 4755 ARMMMUIdx mmu_idx; 4756 4757 /* 4758 * Only the regime of the mmu_idx below is significant. 4759 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4760 * only has one. 4761 */ 4762 if (hcr & HCR_E2H) { 4763 mmu_idx = ARMMMUIdx_E20_2; 4764 } else { 4765 mmu_idx = ARMMMUIdx_E2; 4766 } 4767 4768 return tlbbits_for_regime(env, mmu_idx, addr); 4769 } 4770 4771 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4772 uint64_t value) 4773 { 4774 CPUState *cs = env_cpu(env); 4775 int mask = vae1_tlbmask(env); 4776 4777 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4778 } 4779 4780 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4781 uint64_t value) 4782 { 4783 CPUState *cs = env_cpu(env); 4784 int mask = vae1_tlbmask(env); 4785 4786 if (tlb_force_broadcast(env)) { 4787 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4788 } else { 4789 tlb_flush_by_mmuidx(cs, mask); 4790 } 4791 } 4792 4793 static int e2_tlbmask(CPUARMState *env) 4794 { 4795 return (ARMMMUIdxBit_E20_0 | 4796 ARMMMUIdxBit_E20_2 | 4797 ARMMMUIdxBit_E20_2_PAN | 4798 ARMMMUIdxBit_E2); 4799 } 4800 4801 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4802 uint64_t value) 4803 { 4804 CPUState *cs = env_cpu(env); 4805 int mask = alle1_tlbmask(env); 4806 4807 tlb_flush_by_mmuidx(cs, mask); 4808 } 4809 4810 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4811 uint64_t value) 4812 { 4813 CPUState *cs = env_cpu(env); 4814 int mask = e2_tlbmask(env); 4815 4816 tlb_flush_by_mmuidx(cs, mask); 4817 } 4818 4819 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4820 uint64_t value) 4821 { 4822 ARMCPU *cpu = env_archcpu(env); 4823 CPUState *cs = CPU(cpu); 4824 4825 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4826 } 4827 4828 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4829 uint64_t value) 4830 { 4831 CPUState *cs = env_cpu(env); 4832 int mask = alle1_tlbmask(env); 4833 4834 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4835 } 4836 4837 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4838 uint64_t value) 4839 { 4840 CPUState *cs = env_cpu(env); 4841 int mask = e2_tlbmask(env); 4842 4843 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4844 } 4845 4846 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4847 uint64_t value) 4848 { 4849 CPUState *cs = env_cpu(env); 4850 4851 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4852 } 4853 4854 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4855 uint64_t value) 4856 { 4857 /* 4858 * Invalidate by VA, EL2 4859 * Currently handles both VAE2 and VALE2, since we don't support 4860 * flush-last-level-only. 4861 */ 4862 CPUState *cs = env_cpu(env); 4863 int mask = vae2_tlbmask(env); 4864 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4865 int bits = vae2_tlbbits(env, pageaddr); 4866 4867 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4868 } 4869 4870 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4871 uint64_t value) 4872 { 4873 /* 4874 * Invalidate by VA, EL3 4875 * Currently handles both VAE3 and VALE3, since we don't support 4876 * flush-last-level-only. 4877 */ 4878 ARMCPU *cpu = env_archcpu(env); 4879 CPUState *cs = CPU(cpu); 4880 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4881 4882 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4883 } 4884 4885 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4886 uint64_t value) 4887 { 4888 CPUState *cs = env_cpu(env); 4889 int mask = vae1_tlbmask(env); 4890 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4891 int bits = vae1_tlbbits(env, pageaddr); 4892 4893 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4894 } 4895 4896 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4897 uint64_t value) 4898 { 4899 /* 4900 * Invalidate by VA, EL1&0 (AArch64 version). 4901 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4902 * since we don't support flush-for-specific-ASID-only or 4903 * flush-last-level-only. 4904 */ 4905 CPUState *cs = env_cpu(env); 4906 int mask = vae1_tlbmask(env); 4907 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4908 int bits = vae1_tlbbits(env, pageaddr); 4909 4910 if (tlb_force_broadcast(env)) { 4911 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4912 } else { 4913 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4914 } 4915 } 4916 4917 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4918 uint64_t value) 4919 { 4920 CPUState *cs = env_cpu(env); 4921 int mask = vae2_tlbmask(env); 4922 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4923 int bits = vae2_tlbbits(env, pageaddr); 4924 4925 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4926 } 4927 4928 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4929 uint64_t value) 4930 { 4931 CPUState *cs = env_cpu(env); 4932 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4933 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4934 4935 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4936 ARMMMUIdxBit_E3, bits); 4937 } 4938 4939 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4940 { 4941 /* 4942 * The MSB of value is the NS field, which only applies if SEL2 4943 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4944 */ 4945 return (value >= 0 4946 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4947 && arm_is_secure_below_el3(env) 4948 ? ARMMMUIdxBit_Stage2_S 4949 : ARMMMUIdxBit_Stage2); 4950 } 4951 4952 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4953 uint64_t value) 4954 { 4955 CPUState *cs = env_cpu(env); 4956 int mask = ipas2e1_tlbmask(env, value); 4957 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4958 4959 if (tlb_force_broadcast(env)) { 4960 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4961 } else { 4962 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4963 } 4964 } 4965 4966 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4967 uint64_t value) 4968 { 4969 CPUState *cs = env_cpu(env); 4970 int mask = ipas2e1_tlbmask(env, value); 4971 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4972 4973 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4974 } 4975 4976 #ifdef TARGET_AARCH64 4977 typedef struct { 4978 uint64_t base; 4979 uint64_t length; 4980 } TLBIRange; 4981 4982 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4983 { 4984 /* 4985 * Note that the TLBI range TG field encoding differs from both 4986 * TG0 and TG1 encodings. 4987 */ 4988 switch (tg) { 4989 case 1: 4990 return Gran4K; 4991 case 2: 4992 return Gran16K; 4993 case 3: 4994 return Gran64K; 4995 default: 4996 return GranInvalid; 4997 } 4998 } 4999 5000 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5001 uint64_t value) 5002 { 5003 unsigned int page_size_granule, page_shift, num, scale, exponent; 5004 /* Extract one bit to represent the va selector in use. */ 5005 uint64_t select = sextract64(value, 36, 1); 5006 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5007 TLBIRange ret = { }; 5008 ARMGranuleSize gran; 5009 5010 page_size_granule = extract64(value, 46, 2); 5011 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5012 5013 /* The granule encoded in value must match the granule in use. */ 5014 if (gran != param.gran) { 5015 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5016 page_size_granule); 5017 return ret; 5018 } 5019 5020 page_shift = arm_granule_bits(gran); 5021 num = extract64(value, 39, 5); 5022 scale = extract64(value, 44, 2); 5023 exponent = (5 * scale) + 1; 5024 5025 ret.length = (num + 1) << (exponent + page_shift); 5026 5027 if (param.select) { 5028 ret.base = sextract64(value, 0, 37); 5029 } else { 5030 ret.base = extract64(value, 0, 37); 5031 } 5032 if (param.ds) { 5033 /* 5034 * With DS=1, BaseADDR is always shifted 16 so that it is able 5035 * to address all 52 va bits. The input address is perforce 5036 * aligned on a 64k boundary regardless of translation granule. 5037 */ 5038 page_shift = 16; 5039 } 5040 ret.base <<= page_shift; 5041 5042 return ret; 5043 } 5044 5045 static void do_rvae_write(CPUARMState *env, uint64_t value, 5046 int idxmap, bool synced) 5047 { 5048 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5049 TLBIRange range; 5050 int bits; 5051 5052 range = tlbi_aa64_get_range(env, one_idx, value); 5053 bits = tlbbits_for_regime(env, one_idx, range.base); 5054 5055 if (synced) { 5056 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5057 range.base, 5058 range.length, 5059 idxmap, 5060 bits); 5061 } else { 5062 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5063 range.length, idxmap, bits); 5064 } 5065 } 5066 5067 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5068 const ARMCPRegInfo *ri, 5069 uint64_t value) 5070 { 5071 /* 5072 * Invalidate by VA range, EL1&0. 5073 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5074 * since we don't support flush-for-specific-ASID-only or 5075 * flush-last-level-only. 5076 */ 5077 5078 do_rvae_write(env, value, vae1_tlbmask(env), 5079 tlb_force_broadcast(env)); 5080 } 5081 5082 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5083 const ARMCPRegInfo *ri, 5084 uint64_t value) 5085 { 5086 /* 5087 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5088 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5089 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5090 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5091 * shareable specific flushes. 5092 */ 5093 5094 do_rvae_write(env, value, vae1_tlbmask(env), true); 5095 } 5096 5097 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5098 const ARMCPRegInfo *ri, 5099 uint64_t value) 5100 { 5101 /* 5102 * Invalidate by VA range, EL2. 5103 * Currently handles all of RVAE2 and RVALE2, 5104 * since we don't support flush-for-specific-ASID-only or 5105 * flush-last-level-only. 5106 */ 5107 5108 do_rvae_write(env, value, vae2_tlbmask(env), 5109 tlb_force_broadcast(env)); 5110 5111 5112 } 5113 5114 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5115 const ARMCPRegInfo *ri, 5116 uint64_t value) 5117 { 5118 /* 5119 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5120 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5121 * since we don't support flush-for-specific-ASID-only, 5122 * flush-last-level-only or inner/outer shareable specific flushes. 5123 */ 5124 5125 do_rvae_write(env, value, vae2_tlbmask(env), true); 5126 5127 } 5128 5129 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5130 const ARMCPRegInfo *ri, 5131 uint64_t value) 5132 { 5133 /* 5134 * Invalidate by VA range, EL3. 5135 * Currently handles all of RVAE3 and RVALE3, 5136 * since we don't support flush-for-specific-ASID-only or 5137 * flush-last-level-only. 5138 */ 5139 5140 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5141 } 5142 5143 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5144 const ARMCPRegInfo *ri, 5145 uint64_t value) 5146 { 5147 /* 5148 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5149 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5150 * since we don't support flush-for-specific-ASID-only, 5151 * flush-last-level-only or inner/outer specific flushes. 5152 */ 5153 5154 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5155 } 5156 5157 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5158 uint64_t value) 5159 { 5160 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5161 tlb_force_broadcast(env)); 5162 } 5163 5164 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5165 const ARMCPRegInfo *ri, 5166 uint64_t value) 5167 { 5168 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5169 } 5170 #endif 5171 5172 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5173 bool isread) 5174 { 5175 int cur_el = arm_current_el(env); 5176 5177 if (cur_el < 2) { 5178 uint64_t hcr = arm_hcr_el2_eff(env); 5179 5180 if (cur_el == 0) { 5181 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5182 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5183 return CP_ACCESS_TRAP_EL2; 5184 } 5185 } else { 5186 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5187 return CP_ACCESS_TRAP; 5188 } 5189 if (hcr & HCR_TDZ) { 5190 return CP_ACCESS_TRAP_EL2; 5191 } 5192 } 5193 } else if (hcr & HCR_TDZ) { 5194 return CP_ACCESS_TRAP_EL2; 5195 } 5196 } 5197 return CP_ACCESS_OK; 5198 } 5199 5200 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5201 { 5202 ARMCPU *cpu = env_archcpu(env); 5203 int dzp_bit = 1 << 4; 5204 5205 /* DZP indicates whether DC ZVA access is allowed */ 5206 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5207 dzp_bit = 0; 5208 } 5209 return cpu->dcz_blocksize | dzp_bit; 5210 } 5211 5212 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5213 bool isread) 5214 { 5215 if (!(env->pstate & PSTATE_SP)) { 5216 /* 5217 * Access to SP_EL0 is undefined if it's being used as 5218 * the stack pointer. 5219 */ 5220 return CP_ACCESS_TRAP_UNCATEGORIZED; 5221 } 5222 return CP_ACCESS_OK; 5223 } 5224 5225 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5226 { 5227 return env->pstate & PSTATE_SP; 5228 } 5229 5230 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5231 { 5232 update_spsel(env, val); 5233 } 5234 5235 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5236 uint64_t value) 5237 { 5238 ARMCPU *cpu = env_archcpu(env); 5239 5240 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5241 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5242 value &= ~SCTLR_M; 5243 } 5244 5245 /* ??? Lots of these bits are not implemented. */ 5246 5247 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5248 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5249 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5250 } else { 5251 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5252 SCTLR_ATA0 | SCTLR_ATA); 5253 } 5254 } 5255 5256 if (raw_read(env, ri) == value) { 5257 /* 5258 * Skip the TLB flush if nothing actually changed; Linux likes 5259 * to do a lot of pointless SCTLR writes. 5260 */ 5261 return; 5262 } 5263 5264 raw_write(env, ri, value); 5265 5266 /* This may enable/disable the MMU, so do a TLB flush. */ 5267 tlb_flush(CPU(cpu)); 5268 5269 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5270 /* 5271 * Normally we would always end the TB on an SCTLR write; see the 5272 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5273 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5274 * of hflags from the translator, so do it here. 5275 */ 5276 arm_rebuild_hflags(env); 5277 } 5278 } 5279 5280 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5281 uint64_t value) 5282 { 5283 /* 5284 * Some MDCR_EL3 bits affect whether PMU counters are running: 5285 * if we are trying to change any of those then we must 5286 * bracket this update with PMU start/finish calls. 5287 */ 5288 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5289 5290 if (pmu_op) { 5291 pmu_op_start(env); 5292 } 5293 env->cp15.mdcr_el3 = value; 5294 if (pmu_op) { 5295 pmu_op_finish(env); 5296 } 5297 } 5298 5299 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5300 uint64_t value) 5301 { 5302 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5303 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5304 } 5305 5306 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5307 uint64_t value) 5308 { 5309 /* 5310 * Some MDCR_EL2 bits affect whether PMU counters are running: 5311 * if we are trying to change any of those then we must 5312 * bracket this update with PMU start/finish calls. 5313 */ 5314 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5315 5316 if (pmu_op) { 5317 pmu_op_start(env); 5318 } 5319 env->cp15.mdcr_el2 = value; 5320 if (pmu_op) { 5321 pmu_op_finish(env); 5322 } 5323 } 5324 5325 #ifdef CONFIG_USER_ONLY 5326 /* 5327 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5328 * code to get around W^X restrictions, where one region is writable and the 5329 * other is executable. 5330 * 5331 * Since the executable region is never written to we cannot detect code 5332 * changes when running in user mode, and rely on the emulated JIT telling us 5333 * that the code has changed by executing this instruction. 5334 */ 5335 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5336 uint64_t value) 5337 { 5338 uint64_t icache_line_mask, start_address, end_address; 5339 const ARMCPU *cpu; 5340 5341 cpu = env_archcpu(env); 5342 5343 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5344 start_address = value & ~icache_line_mask; 5345 end_address = value | icache_line_mask; 5346 5347 mmap_lock(); 5348 5349 tb_invalidate_phys_range(start_address, end_address); 5350 5351 mmap_unlock(); 5352 } 5353 #endif 5354 5355 static const ARMCPRegInfo v8_cp_reginfo[] = { 5356 /* 5357 * Minimal set of EL0-visible registers. This will need to be expanded 5358 * significantly for system emulation of AArch64 CPUs. 5359 */ 5360 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5361 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5362 .access = PL0_RW, .type = ARM_CP_NZCV }, 5363 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5364 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5365 .type = ARM_CP_NO_RAW, 5366 .access = PL0_RW, .accessfn = aa64_daif_access, 5367 .fieldoffset = offsetof(CPUARMState, daif), 5368 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5369 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5370 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5371 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5372 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5373 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5374 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5375 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5376 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5377 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5378 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5379 .access = PL0_R, .type = ARM_CP_NO_RAW, 5380 .fgt = FGT_DCZID_EL0, 5381 .readfn = aa64_dczid_read }, 5382 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5383 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5384 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5385 #ifndef CONFIG_USER_ONLY 5386 /* Avoid overhead of an access check that always passes in user-mode */ 5387 .accessfn = aa64_zva_access, 5388 .fgt = FGT_DCZVA, 5389 #endif 5390 }, 5391 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5392 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5393 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5394 /* 5395 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5396 * don't emulate caches. 5397 */ 5398 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5399 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5400 .access = PL1_W, .type = ARM_CP_NOP, 5401 .fgt = FGT_ICIALLUIS, 5402 .accessfn = access_ticab }, 5403 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5404 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5405 .access = PL1_W, .type = ARM_CP_NOP, 5406 .fgt = FGT_ICIALLU, 5407 .accessfn = access_tocu }, 5408 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5410 .access = PL0_W, 5411 .fgt = FGT_ICIVAU, 5412 .accessfn = access_tocu, 5413 #ifdef CONFIG_USER_ONLY 5414 .type = ARM_CP_NO_RAW, 5415 .writefn = ic_ivau_write 5416 #else 5417 .type = ARM_CP_NOP 5418 #endif 5419 }, 5420 /* Cache ops: all NOPs since we don't emulate caches */ 5421 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5423 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5424 .fgt = FGT_DCIVAC, 5425 .type = ARM_CP_NOP }, 5426 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5427 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5428 .fgt = FGT_DCISW, 5429 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5430 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5431 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5432 .access = PL0_W, .type = ARM_CP_NOP, 5433 .fgt = FGT_DCCVAC, 5434 .accessfn = aa64_cacheop_poc_access }, 5435 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5437 .fgt = FGT_DCCSW, 5438 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5439 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5440 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5441 .access = PL0_W, .type = ARM_CP_NOP, 5442 .fgt = FGT_DCCVAU, 5443 .accessfn = access_tocu }, 5444 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5445 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5446 .access = PL0_W, .type = ARM_CP_NOP, 5447 .fgt = FGT_DCCIVAC, 5448 .accessfn = aa64_cacheop_poc_access }, 5449 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5451 .fgt = FGT_DCCISW, 5452 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5453 /* TLBI operations */ 5454 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5455 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5456 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5457 .fgt = FGT_TLBIVMALLE1IS, 5458 .writefn = tlbi_aa64_vmalle1is_write }, 5459 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5460 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5461 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5462 .fgt = FGT_TLBIVAE1IS, 5463 .writefn = tlbi_aa64_vae1is_write }, 5464 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5465 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5466 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5467 .fgt = FGT_TLBIASIDE1IS, 5468 .writefn = tlbi_aa64_vmalle1is_write }, 5469 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5470 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5471 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5472 .fgt = FGT_TLBIVAAE1IS, 5473 .writefn = tlbi_aa64_vae1is_write }, 5474 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5475 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5476 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5477 .fgt = FGT_TLBIVALE1IS, 5478 .writefn = tlbi_aa64_vae1is_write }, 5479 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5480 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5481 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5482 .fgt = FGT_TLBIVAALE1IS, 5483 .writefn = tlbi_aa64_vae1is_write }, 5484 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5485 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5486 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5487 .fgt = FGT_TLBIVMALLE1, 5488 .writefn = tlbi_aa64_vmalle1_write }, 5489 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5490 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5491 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5492 .fgt = FGT_TLBIVAE1, 5493 .writefn = tlbi_aa64_vae1_write }, 5494 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5495 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5496 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5497 .fgt = FGT_TLBIASIDE1, 5498 .writefn = tlbi_aa64_vmalle1_write }, 5499 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5500 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5501 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5502 .fgt = FGT_TLBIVAAE1, 5503 .writefn = tlbi_aa64_vae1_write }, 5504 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5506 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5507 .fgt = FGT_TLBIVALE1, 5508 .writefn = tlbi_aa64_vae1_write }, 5509 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5510 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5511 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5512 .fgt = FGT_TLBIVAALE1, 5513 .writefn = tlbi_aa64_vae1_write }, 5514 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5515 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5516 .access = PL2_W, .type = ARM_CP_NO_RAW, 5517 .writefn = tlbi_aa64_ipas2e1is_write }, 5518 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5519 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5520 .access = PL2_W, .type = ARM_CP_NO_RAW, 5521 .writefn = tlbi_aa64_ipas2e1is_write }, 5522 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5523 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5524 .access = PL2_W, .type = ARM_CP_NO_RAW, 5525 .writefn = tlbi_aa64_alle1is_write }, 5526 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5527 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5528 .access = PL2_W, .type = ARM_CP_NO_RAW, 5529 .writefn = tlbi_aa64_alle1is_write }, 5530 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5531 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5532 .access = PL2_W, .type = ARM_CP_NO_RAW, 5533 .writefn = tlbi_aa64_ipas2e1_write }, 5534 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5535 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5536 .access = PL2_W, .type = ARM_CP_NO_RAW, 5537 .writefn = tlbi_aa64_ipas2e1_write }, 5538 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5539 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5540 .access = PL2_W, .type = ARM_CP_NO_RAW, 5541 .writefn = tlbi_aa64_alle1_write }, 5542 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5543 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5544 .access = PL2_W, .type = ARM_CP_NO_RAW, 5545 .writefn = tlbi_aa64_alle1is_write }, 5546 #ifndef CONFIG_USER_ONLY 5547 /* 64 bit address translation operations */ 5548 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5549 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5550 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5551 .fgt = FGT_ATS1E1R, 5552 .accessfn = at_e012_access, .writefn = ats_write64 }, 5553 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5554 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5555 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5556 .fgt = FGT_ATS1E1W, 5557 .accessfn = at_e012_access, .writefn = ats_write64 }, 5558 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5560 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5561 .fgt = FGT_ATS1E0R, 5562 .accessfn = at_e012_access, .writefn = ats_write64 }, 5563 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5564 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5565 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5566 .fgt = FGT_ATS1E0W, 5567 .accessfn = at_e012_access, .writefn = ats_write64 }, 5568 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5569 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5570 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5571 .accessfn = at_e012_access, .writefn = ats_write64 }, 5572 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5573 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5574 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5575 .accessfn = at_e012_access, .writefn = ats_write64 }, 5576 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5577 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5578 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5579 .accessfn = at_e012_access, .writefn = ats_write64 }, 5580 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5581 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5582 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5583 .accessfn = at_e012_access, .writefn = ats_write64 }, 5584 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5585 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5586 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5587 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5588 .writefn = ats_write64 }, 5589 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5591 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5592 .writefn = ats_write64 }, 5593 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5594 .type = ARM_CP_ALIAS, 5595 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5596 .access = PL1_RW, .resetvalue = 0, 5597 .fgt = FGT_PAR_EL1, 5598 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5599 .writefn = par_write }, 5600 #endif 5601 /* TLB invalidate last level of translation table walk */ 5602 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5603 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5604 .writefn = tlbimva_is_write }, 5605 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5606 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5607 .writefn = tlbimvaa_is_write }, 5608 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5609 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5610 .writefn = tlbimva_write }, 5611 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5612 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5613 .writefn = tlbimvaa_write }, 5614 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5615 .type = ARM_CP_NO_RAW, .access = PL2_W, 5616 .writefn = tlbimva_hyp_write }, 5617 { .name = "TLBIMVALHIS", 5618 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5619 .type = ARM_CP_NO_RAW, .access = PL2_W, 5620 .writefn = tlbimva_hyp_is_write }, 5621 { .name = "TLBIIPAS2", 5622 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5623 .type = ARM_CP_NO_RAW, .access = PL2_W, 5624 .writefn = tlbiipas2_hyp_write }, 5625 { .name = "TLBIIPAS2IS", 5626 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5627 .type = ARM_CP_NO_RAW, .access = PL2_W, 5628 .writefn = tlbiipas2is_hyp_write }, 5629 { .name = "TLBIIPAS2L", 5630 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5631 .type = ARM_CP_NO_RAW, .access = PL2_W, 5632 .writefn = tlbiipas2_hyp_write }, 5633 { .name = "TLBIIPAS2LIS", 5634 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5635 .type = ARM_CP_NO_RAW, .access = PL2_W, 5636 .writefn = tlbiipas2is_hyp_write }, 5637 /* 32 bit cache operations */ 5638 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5639 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5640 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5641 .type = ARM_CP_NOP, .access = PL1_W }, 5642 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5643 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5644 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5645 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5646 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5647 .type = ARM_CP_NOP, .access = PL1_W }, 5648 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5649 .type = ARM_CP_NOP, .access = PL1_W }, 5650 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5651 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5652 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5653 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5654 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5655 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5656 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5657 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5658 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5659 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5660 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5661 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5662 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5663 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5664 /* MMU Domain access control / MPU write buffer control */ 5665 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5666 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5667 .writefn = dacr_write, .raw_writefn = raw_write, 5668 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5669 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5670 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5671 .type = ARM_CP_ALIAS, 5672 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5673 .access = PL1_RW, 5674 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5675 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5676 .type = ARM_CP_ALIAS, 5677 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5678 .access = PL1_RW, 5679 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5680 /* 5681 * We rely on the access checks not allowing the guest to write to the 5682 * state field when SPSel indicates that it's being used as the stack 5683 * pointer. 5684 */ 5685 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5686 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5687 .access = PL1_RW, .accessfn = sp_el0_access, 5688 .type = ARM_CP_ALIAS, 5689 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5690 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5691 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5692 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5693 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5694 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5695 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5696 .type = ARM_CP_NO_RAW, 5697 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5698 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5699 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5700 .access = PL2_RW, 5701 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5702 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5703 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5704 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5705 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5706 .writefn = dacr_write, .raw_writefn = raw_write, 5707 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5708 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5710 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5711 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5712 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5713 .type = ARM_CP_ALIAS, 5714 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5715 .access = PL2_RW, 5716 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5717 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5718 .type = ARM_CP_ALIAS, 5719 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5720 .access = PL2_RW, 5721 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5722 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5723 .type = ARM_CP_ALIAS, 5724 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5725 .access = PL2_RW, 5726 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5727 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5728 .type = ARM_CP_ALIAS, 5729 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5730 .access = PL2_RW, 5731 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5732 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5733 .type = ARM_CP_IO, 5734 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5735 .resetvalue = 0, 5736 .access = PL3_RW, 5737 .writefn = mdcr_el3_write, 5738 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5739 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5740 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5741 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5742 .writefn = sdcr_write, 5743 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5744 }; 5745 5746 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5747 { 5748 ARMCPU *cpu = env_archcpu(env); 5749 5750 if (arm_feature(env, ARM_FEATURE_V8)) { 5751 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5752 } else { 5753 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5754 } 5755 5756 if (arm_feature(env, ARM_FEATURE_EL3)) { 5757 valid_mask &= ~HCR_HCD; 5758 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5759 /* 5760 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5761 * However, if we're using the SMC PSCI conduit then QEMU is 5762 * effectively acting like EL3 firmware and so the guest at 5763 * EL2 should retain the ability to prevent EL1 from being 5764 * able to make SMC calls into the ersatz firmware, so in 5765 * that case HCR.TSC should be read/write. 5766 */ 5767 valid_mask &= ~HCR_TSC; 5768 } 5769 5770 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5771 if (cpu_isar_feature(aa64_vh, cpu)) { 5772 valid_mask |= HCR_E2H; 5773 } 5774 if (cpu_isar_feature(aa64_ras, cpu)) { 5775 valid_mask |= HCR_TERR | HCR_TEA; 5776 } 5777 if (cpu_isar_feature(aa64_lor, cpu)) { 5778 valid_mask |= HCR_TLOR; 5779 } 5780 if (cpu_isar_feature(aa64_pauth, cpu)) { 5781 valid_mask |= HCR_API | HCR_APK; 5782 } 5783 if (cpu_isar_feature(aa64_mte, cpu)) { 5784 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5785 } 5786 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5787 valid_mask |= HCR_ENSCXT; 5788 } 5789 if (cpu_isar_feature(aa64_fwb, cpu)) { 5790 valid_mask |= HCR_FWB; 5791 } 5792 if (cpu_isar_feature(aa64_rme, cpu)) { 5793 valid_mask |= HCR_GPF; 5794 } 5795 } 5796 5797 if (cpu_isar_feature(any_evt, cpu)) { 5798 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5799 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5800 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5801 } 5802 5803 /* Clear RES0 bits. */ 5804 value &= valid_mask; 5805 5806 /* 5807 * These bits change the MMU setup: 5808 * HCR_VM enables stage 2 translation 5809 * HCR_PTW forbids certain page-table setups 5810 * HCR_DC disables stage1 and enables stage2 translation 5811 * HCR_DCT enables tagging on (disabled) stage1 translation 5812 * HCR_FWB changes the interpretation of stage2 descriptor bits 5813 */ 5814 if ((env->cp15.hcr_el2 ^ value) & 5815 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5816 tlb_flush(CPU(cpu)); 5817 } 5818 env->cp15.hcr_el2 = value; 5819 5820 /* 5821 * Updates to VI and VF require us to update the status of 5822 * virtual interrupts, which are the logical OR of these bits 5823 * and the state of the input lines from the GIC. (This requires 5824 * that we have the iothread lock, which is done by marking the 5825 * reginfo structs as ARM_CP_IO.) 5826 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5827 * possible for it to be taken immediately, because VIRQ and 5828 * VFIQ are masked unless running at EL0 or EL1, and HCR 5829 * can only be written at EL2. 5830 */ 5831 g_assert(qemu_mutex_iothread_locked()); 5832 arm_cpu_update_virq(cpu); 5833 arm_cpu_update_vfiq(cpu); 5834 arm_cpu_update_vserr(cpu); 5835 } 5836 5837 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5838 { 5839 do_hcr_write(env, value, 0); 5840 } 5841 5842 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5843 uint64_t value) 5844 { 5845 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5846 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5847 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5848 } 5849 5850 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5851 uint64_t value) 5852 { 5853 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5854 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5855 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5856 } 5857 5858 /* 5859 * Return the effective value of HCR_EL2, at the given security state. 5860 * Bits that are not included here: 5861 * RW (read from SCR_EL3.RW as needed) 5862 */ 5863 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5864 { 5865 uint64_t ret = env->cp15.hcr_el2; 5866 5867 assert(space != ARMSS_Root); 5868 5869 if (!arm_is_el2_enabled_secstate(env, space)) { 5870 /* 5871 * "This register has no effect if EL2 is not enabled in the 5872 * current Security state". This is ARMv8.4-SecEL2 speak for 5873 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5874 * 5875 * Prior to that, the language was "In an implementation that 5876 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5877 * as if this field is 0 for all purposes other than a direct 5878 * read or write access of HCR_EL2". With lots of enumeration 5879 * on a per-field basis. In current QEMU, this is condition 5880 * is arm_is_secure_below_el3. 5881 * 5882 * Since the v8.4 language applies to the entire register, and 5883 * appears to be backward compatible, use that. 5884 */ 5885 return 0; 5886 } 5887 5888 /* 5889 * For a cpu that supports both aarch64 and aarch32, we can set bits 5890 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5891 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5892 */ 5893 if (!arm_el_is_aa64(env, 2)) { 5894 uint64_t aa32_valid; 5895 5896 /* 5897 * These bits are up-to-date as of ARMv8.6. 5898 * For HCR, it's easiest to list just the 2 bits that are invalid. 5899 * For HCR2, list those that are valid. 5900 */ 5901 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5902 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5903 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5904 ret &= aa32_valid; 5905 } 5906 5907 if (ret & HCR_TGE) { 5908 /* These bits are up-to-date as of ARMv8.6. */ 5909 if (ret & HCR_E2H) { 5910 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5911 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5912 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5913 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5914 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5915 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5916 } else { 5917 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5918 } 5919 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5920 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5921 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5922 HCR_TLOR); 5923 } 5924 5925 return ret; 5926 } 5927 5928 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5929 { 5930 if (arm_feature(env, ARM_FEATURE_M)) { 5931 return 0; 5932 } 5933 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5934 } 5935 5936 /* 5937 * Corresponds to ARM pseudocode function ELIsInHost(). 5938 */ 5939 bool el_is_in_host(CPUARMState *env, int el) 5940 { 5941 uint64_t mask; 5942 5943 /* 5944 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5945 * Perform the simplest bit tests first, and validate EL2 afterward. 5946 */ 5947 if (el & 1) { 5948 return false; /* EL1 or EL3 */ 5949 } 5950 5951 /* 5952 * Note that hcr_write() checks isar_feature_aa64_vh(), 5953 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5954 */ 5955 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5956 if ((env->cp15.hcr_el2 & mask) != mask) { 5957 return false; 5958 } 5959 5960 /* TGE and/or E2H set: double check those bits are currently legal. */ 5961 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5962 } 5963 5964 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5965 uint64_t value) 5966 { 5967 uint64_t valid_mask = 0; 5968 5969 /* FEAT_MOPS adds MSCEn and MCE2 */ 5970 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5971 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5972 } 5973 5974 /* Clear RES0 bits. */ 5975 env->cp15.hcrx_el2 = value & valid_mask; 5976 } 5977 5978 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5979 bool isread) 5980 { 5981 if (arm_current_el(env) < 3 5982 && arm_feature(env, ARM_FEATURE_EL3) 5983 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5984 return CP_ACCESS_TRAP_EL3; 5985 } 5986 return CP_ACCESS_OK; 5987 } 5988 5989 static const ARMCPRegInfo hcrx_el2_reginfo = { 5990 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5991 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5992 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5993 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5994 }; 5995 5996 /* Return the effective value of HCRX_EL2. */ 5997 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5998 { 5999 /* 6000 * The bits in this register behave as 0 for all purposes other than 6001 * direct reads of the register if SCR_EL3.HXEn is 0. 6002 * If EL2 is not enabled in the current security state, then the 6003 * bit may behave as if 0, or as if 1, depending on the bit. 6004 * For the moment, we treat the EL2-disabled case as taking 6005 * priority over the HXEn-disabled case. This is true for the only 6006 * bit for a feature which we implement where the answer is different 6007 * for the two cases (MSCEn for FEAT_MOPS). 6008 * This may need to be revisited for future bits. 6009 */ 6010 if (!arm_is_el2_enabled(env)) { 6011 uint64_t hcrx = 0; 6012 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6013 /* MSCEn behaves as 1 if EL2 is not enabled */ 6014 hcrx |= HCRX_MSCEN; 6015 } 6016 return hcrx; 6017 } 6018 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6019 return 0; 6020 } 6021 return env->cp15.hcrx_el2; 6022 } 6023 6024 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6025 uint64_t value) 6026 { 6027 /* 6028 * For A-profile AArch32 EL3, if NSACR.CP10 6029 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6030 */ 6031 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6032 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6033 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6034 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6035 } 6036 env->cp15.cptr_el[2] = value; 6037 } 6038 6039 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6040 { 6041 /* 6042 * For A-profile AArch32 EL3, if NSACR.CP10 6043 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6044 */ 6045 uint64_t value = env->cp15.cptr_el[2]; 6046 6047 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6048 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6049 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6050 } 6051 return value; 6052 } 6053 6054 static const ARMCPRegInfo el2_cp_reginfo[] = { 6055 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6056 .type = ARM_CP_IO, 6057 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6058 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6059 .writefn = hcr_write, .raw_writefn = raw_write }, 6060 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6061 .type = ARM_CP_ALIAS | ARM_CP_IO, 6062 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6063 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6064 .writefn = hcr_writelow }, 6065 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6066 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6067 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6068 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6069 .type = ARM_CP_ALIAS, 6070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6071 .access = PL2_RW, 6072 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6073 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6074 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6075 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6076 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6077 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6078 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6079 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6080 .type = ARM_CP_ALIAS, 6081 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6082 .access = PL2_RW, 6083 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6084 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6085 .type = ARM_CP_ALIAS, 6086 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6087 .access = PL2_RW, 6088 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6089 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6090 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6091 .access = PL2_RW, .writefn = vbar_write, 6092 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6093 .resetvalue = 0 }, 6094 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6095 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6096 .access = PL3_RW, .type = ARM_CP_ALIAS, 6097 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6098 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6099 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6100 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6101 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6102 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6103 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6104 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6105 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6106 .resetvalue = 0 }, 6107 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6108 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6109 .access = PL2_RW, .type = ARM_CP_ALIAS, 6110 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6111 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6112 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6113 .access = PL2_RW, .type = ARM_CP_CONST, 6114 .resetvalue = 0 }, 6115 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6116 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6117 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6118 .access = PL2_RW, .type = ARM_CP_CONST, 6119 .resetvalue = 0 }, 6120 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6121 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6122 .access = PL2_RW, .type = ARM_CP_CONST, 6123 .resetvalue = 0 }, 6124 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6125 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6126 .access = PL2_RW, .type = ARM_CP_CONST, 6127 .resetvalue = 0 }, 6128 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6129 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6130 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6131 .raw_writefn = raw_write, 6132 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6133 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6134 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6135 .type = ARM_CP_ALIAS, 6136 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6137 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6138 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6139 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6140 .access = PL2_RW, 6141 /* no .writefn needed as this can't cause an ASID change */ 6142 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6143 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6144 .cp = 15, .opc1 = 6, .crm = 2, 6145 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6146 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6147 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6148 .writefn = vttbr_write, .raw_writefn = raw_write }, 6149 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6150 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6151 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6152 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6153 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6154 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6155 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6156 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6157 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6158 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6159 .access = PL2_RW, .resetvalue = 0, 6160 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6161 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6162 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6163 .access = PL2_RW, .resetvalue = 0, 6164 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6165 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6166 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6167 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6168 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6169 { .name = "TLBIALLNSNH", 6170 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6171 .type = ARM_CP_NO_RAW, .access = PL2_W, 6172 .writefn = tlbiall_nsnh_write }, 6173 { .name = "TLBIALLNSNHIS", 6174 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6175 .type = ARM_CP_NO_RAW, .access = PL2_W, 6176 .writefn = tlbiall_nsnh_is_write }, 6177 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6178 .type = ARM_CP_NO_RAW, .access = PL2_W, 6179 .writefn = tlbiall_hyp_write }, 6180 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6181 .type = ARM_CP_NO_RAW, .access = PL2_W, 6182 .writefn = tlbiall_hyp_is_write }, 6183 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6184 .type = ARM_CP_NO_RAW, .access = PL2_W, 6185 .writefn = tlbimva_hyp_write }, 6186 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6187 .type = ARM_CP_NO_RAW, .access = PL2_W, 6188 .writefn = tlbimva_hyp_is_write }, 6189 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6190 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6191 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6192 .writefn = tlbi_aa64_alle2_write }, 6193 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6194 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6195 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6196 .writefn = tlbi_aa64_vae2_write }, 6197 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6198 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6199 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6200 .writefn = tlbi_aa64_vae2_write }, 6201 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6202 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6203 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6204 .writefn = tlbi_aa64_alle2is_write }, 6205 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6206 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6207 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6208 .writefn = tlbi_aa64_vae2is_write }, 6209 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6211 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6212 .writefn = tlbi_aa64_vae2is_write }, 6213 #ifndef CONFIG_USER_ONLY 6214 /* 6215 * Unlike the other EL2-related AT operations, these must 6216 * UNDEF from EL3 if EL2 is not implemented, which is why we 6217 * define them here rather than with the rest of the AT ops. 6218 */ 6219 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6220 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6221 .access = PL2_W, .accessfn = at_s1e2_access, 6222 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6223 .writefn = ats_write64 }, 6224 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6225 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6226 .access = PL2_W, .accessfn = at_s1e2_access, 6227 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6228 .writefn = ats_write64 }, 6229 /* 6230 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6231 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6232 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6233 * to behave as if SCR.NS was 1. 6234 */ 6235 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6236 .access = PL2_W, 6237 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6238 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6239 .access = PL2_W, 6240 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6241 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6242 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6243 /* 6244 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6245 * reset values as IMPDEF. We choose to reset to 3 to comply with 6246 * both ARMv7 and ARMv8. 6247 */ 6248 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6249 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6250 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6251 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6252 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6253 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6254 .writefn = gt_cntvoff_write, 6255 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6256 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6257 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6258 .writefn = gt_cntvoff_write, 6259 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6260 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6261 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6263 .type = ARM_CP_IO, .access = PL2_RW, 6264 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6265 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6266 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6267 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6268 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6269 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6270 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6271 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6272 .resetfn = gt_hyp_timer_reset, 6273 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6274 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6275 .type = ARM_CP_IO, 6276 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6277 .access = PL2_RW, 6278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6279 .resetvalue = 0, 6280 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6281 #endif 6282 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6283 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6284 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6285 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6286 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6287 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6288 .access = PL2_RW, 6289 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6290 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6291 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6292 .access = PL2_RW, 6293 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6294 }; 6295 6296 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6297 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6298 .type = ARM_CP_ALIAS | ARM_CP_IO, 6299 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6300 .access = PL2_RW, 6301 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6302 .writefn = hcr_writehigh }, 6303 }; 6304 6305 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6306 bool isread) 6307 { 6308 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6309 return CP_ACCESS_OK; 6310 } 6311 return CP_ACCESS_TRAP_UNCATEGORIZED; 6312 } 6313 6314 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6315 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6316 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6317 .access = PL2_RW, .accessfn = sel2_access, 6318 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6319 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6320 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6321 .access = PL2_RW, .accessfn = sel2_access, 6322 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6323 }; 6324 6325 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6326 bool isread) 6327 { 6328 /* 6329 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6330 * At Secure EL1 it traps to EL3 or EL2. 6331 */ 6332 if (arm_current_el(env) == 3) { 6333 return CP_ACCESS_OK; 6334 } 6335 if (arm_is_secure_below_el3(env)) { 6336 if (env->cp15.scr_el3 & SCR_EEL2) { 6337 return CP_ACCESS_TRAP_EL2; 6338 } 6339 return CP_ACCESS_TRAP_EL3; 6340 } 6341 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6342 if (isread) { 6343 return CP_ACCESS_OK; 6344 } 6345 return CP_ACCESS_TRAP_UNCATEGORIZED; 6346 } 6347 6348 static const ARMCPRegInfo el3_cp_reginfo[] = { 6349 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6350 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6351 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6352 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6353 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6354 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6355 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6356 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6357 .writefn = scr_write, .raw_writefn = raw_write }, 6358 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6359 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6360 .access = PL3_RW, .resetvalue = 0, 6361 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6362 { .name = "SDER", 6363 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6364 .access = PL3_RW, .resetvalue = 0, 6365 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6366 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6367 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6368 .writefn = vbar_write, .resetvalue = 0, 6369 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6370 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6371 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6372 .access = PL3_RW, .resetvalue = 0, 6373 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6374 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6375 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6376 .access = PL3_RW, 6377 /* no .writefn needed as this can't cause an ASID change */ 6378 .resetvalue = 0, 6379 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6380 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6381 .type = ARM_CP_ALIAS, 6382 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6383 .access = PL3_RW, 6384 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6385 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6386 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6387 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6388 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6389 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6390 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6391 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6392 .type = ARM_CP_ALIAS, 6393 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6394 .access = PL3_RW, 6395 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6396 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6397 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6398 .access = PL3_RW, .writefn = vbar_write, 6399 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6400 .resetvalue = 0 }, 6401 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6402 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6403 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6404 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6405 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6406 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6407 .access = PL3_RW, .resetvalue = 0, 6408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6409 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6410 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6411 .access = PL3_RW, .type = ARM_CP_CONST, 6412 .resetvalue = 0 }, 6413 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6414 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6415 .access = PL3_RW, .type = ARM_CP_CONST, 6416 .resetvalue = 0 }, 6417 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6418 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6419 .access = PL3_RW, .type = ARM_CP_CONST, 6420 .resetvalue = 0 }, 6421 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6422 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6423 .access = PL3_W, .type = ARM_CP_NO_RAW, 6424 .writefn = tlbi_aa64_alle3is_write }, 6425 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6426 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6427 .access = PL3_W, .type = ARM_CP_NO_RAW, 6428 .writefn = tlbi_aa64_vae3is_write }, 6429 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6430 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6431 .access = PL3_W, .type = ARM_CP_NO_RAW, 6432 .writefn = tlbi_aa64_vae3is_write }, 6433 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6434 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6435 .access = PL3_W, .type = ARM_CP_NO_RAW, 6436 .writefn = tlbi_aa64_alle3_write }, 6437 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6438 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6439 .access = PL3_W, .type = ARM_CP_NO_RAW, 6440 .writefn = tlbi_aa64_vae3_write }, 6441 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6442 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6443 .access = PL3_W, .type = ARM_CP_NO_RAW, 6444 .writefn = tlbi_aa64_vae3_write }, 6445 }; 6446 6447 #ifndef CONFIG_USER_ONLY 6448 /* Test if system register redirection is to occur in the current state. */ 6449 static bool redirect_for_e2h(CPUARMState *env) 6450 { 6451 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6452 } 6453 6454 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6455 { 6456 CPReadFn *readfn; 6457 6458 if (redirect_for_e2h(env)) { 6459 /* Switch to the saved EL2 version of the register. */ 6460 ri = ri->opaque; 6461 readfn = ri->readfn; 6462 } else { 6463 readfn = ri->orig_readfn; 6464 } 6465 if (readfn == NULL) { 6466 readfn = raw_read; 6467 } 6468 return readfn(env, ri); 6469 } 6470 6471 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6472 uint64_t value) 6473 { 6474 CPWriteFn *writefn; 6475 6476 if (redirect_for_e2h(env)) { 6477 /* Switch to the saved EL2 version of the register. */ 6478 ri = ri->opaque; 6479 writefn = ri->writefn; 6480 } else { 6481 writefn = ri->orig_writefn; 6482 } 6483 if (writefn == NULL) { 6484 writefn = raw_write; 6485 } 6486 writefn(env, ri, value); 6487 } 6488 6489 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6490 { 6491 struct E2HAlias { 6492 uint32_t src_key, dst_key, new_key; 6493 const char *src_name, *dst_name, *new_name; 6494 bool (*feature)(const ARMISARegisters *id); 6495 }; 6496 6497 #define K(op0, op1, crn, crm, op2) \ 6498 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6499 6500 static const struct E2HAlias aliases[] = { 6501 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6502 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6503 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6504 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6505 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6506 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6507 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6508 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6509 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6510 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6511 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6512 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6513 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6514 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6515 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6516 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6517 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6518 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6519 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6520 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6521 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6522 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6523 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6524 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6525 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6526 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6527 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6528 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6529 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6530 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6531 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6532 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6533 6534 /* 6535 * Note that redirection of ZCR is mentioned in the description 6536 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6537 * not in the summary table. 6538 */ 6539 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6540 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6541 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6542 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6543 6544 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6545 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6546 6547 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6548 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6549 isar_feature_aa64_scxtnum }, 6550 6551 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6552 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6553 }; 6554 #undef K 6555 6556 size_t i; 6557 6558 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6559 const struct E2HAlias *a = &aliases[i]; 6560 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6561 bool ok; 6562 6563 if (a->feature && !a->feature(&cpu->isar)) { 6564 continue; 6565 } 6566 6567 src_reg = g_hash_table_lookup(cpu->cp_regs, 6568 (gpointer)(uintptr_t)a->src_key); 6569 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6570 (gpointer)(uintptr_t)a->dst_key); 6571 g_assert(src_reg != NULL); 6572 g_assert(dst_reg != NULL); 6573 6574 /* Cross-compare names to detect typos in the keys. */ 6575 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6576 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6577 6578 /* None of the core system registers use opaque; we will. */ 6579 g_assert(src_reg->opaque == NULL); 6580 6581 /* Create alias before redirection so we dup the right data. */ 6582 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6583 6584 new_reg->name = a->new_name; 6585 new_reg->type |= ARM_CP_ALIAS; 6586 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6587 new_reg->access &= PL2_RW | PL3_RW; 6588 6589 ok = g_hash_table_insert(cpu->cp_regs, 6590 (gpointer)(uintptr_t)a->new_key, new_reg); 6591 g_assert(ok); 6592 6593 src_reg->opaque = dst_reg; 6594 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6595 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6596 if (!src_reg->raw_readfn) { 6597 src_reg->raw_readfn = raw_read; 6598 } 6599 if (!src_reg->raw_writefn) { 6600 src_reg->raw_writefn = raw_write; 6601 } 6602 src_reg->readfn = el2_e2h_read; 6603 src_reg->writefn = el2_e2h_write; 6604 } 6605 } 6606 #endif 6607 6608 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6609 bool isread) 6610 { 6611 int cur_el = arm_current_el(env); 6612 6613 if (cur_el < 2) { 6614 uint64_t hcr = arm_hcr_el2_eff(env); 6615 6616 if (cur_el == 0) { 6617 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6618 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6619 return CP_ACCESS_TRAP_EL2; 6620 } 6621 } else { 6622 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6623 return CP_ACCESS_TRAP; 6624 } 6625 if (hcr & HCR_TID2) { 6626 return CP_ACCESS_TRAP_EL2; 6627 } 6628 } 6629 } else if (hcr & HCR_TID2) { 6630 return CP_ACCESS_TRAP_EL2; 6631 } 6632 } 6633 6634 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6635 return CP_ACCESS_TRAP_EL2; 6636 } 6637 6638 return CP_ACCESS_OK; 6639 } 6640 6641 /* 6642 * Check for traps to RAS registers, which are controlled 6643 * by HCR_EL2.TERR and SCR_EL3.TERR. 6644 */ 6645 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6646 bool isread) 6647 { 6648 int el = arm_current_el(env); 6649 6650 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6651 return CP_ACCESS_TRAP_EL2; 6652 } 6653 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6654 return CP_ACCESS_TRAP_EL3; 6655 } 6656 return CP_ACCESS_OK; 6657 } 6658 6659 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6660 { 6661 int el = arm_current_el(env); 6662 6663 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6664 return env->cp15.vdisr_el2; 6665 } 6666 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6667 return 0; /* RAZ/WI */ 6668 } 6669 return env->cp15.disr_el1; 6670 } 6671 6672 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6673 { 6674 int el = arm_current_el(env); 6675 6676 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6677 env->cp15.vdisr_el2 = val; 6678 return; 6679 } 6680 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6681 return; /* RAZ/WI */ 6682 } 6683 env->cp15.disr_el1 = val; 6684 } 6685 6686 /* 6687 * Minimal RAS implementation with no Error Records. 6688 * Which means that all of the Error Record registers: 6689 * ERXADDR_EL1 6690 * ERXCTLR_EL1 6691 * ERXFR_EL1 6692 * ERXMISC0_EL1 6693 * ERXMISC1_EL1 6694 * ERXMISC2_EL1 6695 * ERXMISC3_EL1 6696 * ERXPFGCDN_EL1 (RASv1p1) 6697 * ERXPFGCTL_EL1 (RASv1p1) 6698 * ERXPFGF_EL1 (RASv1p1) 6699 * ERXSTATUS_EL1 6700 * and 6701 * ERRSELR_EL1 6702 * may generate UNDEFINED, which is the effect we get by not 6703 * listing them at all. 6704 * 6705 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6706 * is higher priority than FGT-to-EL2 so we do not need to list them 6707 * in order to check for an FGT. 6708 */ 6709 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6710 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6711 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6712 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6713 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6714 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6715 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6716 .access = PL1_R, .accessfn = access_terr, 6717 .fgt = FGT_ERRIDR_EL1, 6718 .type = ARM_CP_CONST, .resetvalue = 0 }, 6719 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6720 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6721 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6722 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6723 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6724 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6725 }; 6726 6727 /* 6728 * Return the exception level to which exceptions should be taken 6729 * via SVEAccessTrap. This excludes the check for whether the exception 6730 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6731 * be found by testing 0 < fp_exception_el < sve_exception_el. 6732 * 6733 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6734 * pseudocode does *not* separate out the FP trap checks, but has them 6735 * all in one function. 6736 */ 6737 int sve_exception_el(CPUARMState *env, int el) 6738 { 6739 #ifndef CONFIG_USER_ONLY 6740 if (el <= 1 && !el_is_in_host(env, el)) { 6741 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6742 case 1: 6743 if (el != 0) { 6744 break; 6745 } 6746 /* fall through */ 6747 case 0: 6748 case 2: 6749 return 1; 6750 } 6751 } 6752 6753 if (el <= 2 && arm_is_el2_enabled(env)) { 6754 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6755 if (env->cp15.hcr_el2 & HCR_E2H) { 6756 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6757 case 1: 6758 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6759 break; 6760 } 6761 /* fall through */ 6762 case 0: 6763 case 2: 6764 return 2; 6765 } 6766 } else { 6767 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6768 return 2; 6769 } 6770 } 6771 } 6772 6773 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6774 if (arm_feature(env, ARM_FEATURE_EL3) 6775 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6776 return 3; 6777 } 6778 #endif 6779 return 0; 6780 } 6781 6782 /* 6783 * Return the exception level to which exceptions should be taken for SME. 6784 * C.f. the ARM pseudocode function CheckSMEAccess. 6785 */ 6786 int sme_exception_el(CPUARMState *env, int el) 6787 { 6788 #ifndef CONFIG_USER_ONLY 6789 if (el <= 1 && !el_is_in_host(env, el)) { 6790 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6791 case 1: 6792 if (el != 0) { 6793 break; 6794 } 6795 /* fall through */ 6796 case 0: 6797 case 2: 6798 return 1; 6799 } 6800 } 6801 6802 if (el <= 2 && arm_is_el2_enabled(env)) { 6803 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6804 if (env->cp15.hcr_el2 & HCR_E2H) { 6805 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6806 case 1: 6807 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6808 break; 6809 } 6810 /* fall through */ 6811 case 0: 6812 case 2: 6813 return 2; 6814 } 6815 } else { 6816 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6817 return 2; 6818 } 6819 } 6820 } 6821 6822 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6823 if (arm_feature(env, ARM_FEATURE_EL3) 6824 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6825 return 3; 6826 } 6827 #endif 6828 return 0; 6829 } 6830 6831 /* 6832 * Given that SVE is enabled, return the vector length for EL. 6833 */ 6834 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6835 { 6836 ARMCPU *cpu = env_archcpu(env); 6837 uint64_t *cr = env->vfp.zcr_el; 6838 uint32_t map = cpu->sve_vq.map; 6839 uint32_t len = ARM_MAX_VQ - 1; 6840 6841 if (sm) { 6842 cr = env->vfp.smcr_el; 6843 map = cpu->sme_vq.map; 6844 } 6845 6846 if (el <= 1 && !el_is_in_host(env, el)) { 6847 len = MIN(len, 0xf & (uint32_t)cr[1]); 6848 } 6849 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6850 len = MIN(len, 0xf & (uint32_t)cr[2]); 6851 } 6852 if (arm_feature(env, ARM_FEATURE_EL3)) { 6853 len = MIN(len, 0xf & (uint32_t)cr[3]); 6854 } 6855 6856 map &= MAKE_64BIT_MASK(0, len + 1); 6857 if (map != 0) { 6858 return 31 - clz32(map); 6859 } 6860 6861 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6862 assert(sm); 6863 return ctz32(cpu->sme_vq.map); 6864 } 6865 6866 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6867 { 6868 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6869 } 6870 6871 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6872 uint64_t value) 6873 { 6874 int cur_el = arm_current_el(env); 6875 int old_len = sve_vqm1_for_el(env, cur_el); 6876 int new_len; 6877 6878 /* Bits other than [3:0] are RAZ/WI. */ 6879 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6880 raw_write(env, ri, value & 0xf); 6881 6882 /* 6883 * Because we arrived here, we know both FP and SVE are enabled; 6884 * otherwise we would have trapped access to the ZCR_ELn register. 6885 */ 6886 new_len = sve_vqm1_for_el(env, cur_el); 6887 if (new_len < old_len) { 6888 aarch64_sve_narrow_vq(env, new_len + 1); 6889 } 6890 } 6891 6892 static const ARMCPRegInfo zcr_reginfo[] = { 6893 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6895 .access = PL1_RW, .type = ARM_CP_SVE, 6896 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6897 .writefn = zcr_write, .raw_writefn = raw_write }, 6898 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6900 .access = PL2_RW, .type = ARM_CP_SVE, 6901 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6902 .writefn = zcr_write, .raw_writefn = raw_write }, 6903 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6904 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6905 .access = PL3_RW, .type = ARM_CP_SVE, 6906 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6907 .writefn = zcr_write, .raw_writefn = raw_write }, 6908 }; 6909 6910 #ifdef TARGET_AARCH64 6911 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6912 bool isread) 6913 { 6914 int el = arm_current_el(env); 6915 6916 if (el == 0) { 6917 uint64_t sctlr = arm_sctlr(env, el); 6918 if (!(sctlr & SCTLR_EnTP2)) { 6919 return CP_ACCESS_TRAP; 6920 } 6921 } 6922 /* TODO: FEAT_FGT */ 6923 if (el < 3 6924 && arm_feature(env, ARM_FEATURE_EL3) 6925 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6926 return CP_ACCESS_TRAP_EL3; 6927 } 6928 return CP_ACCESS_OK; 6929 } 6930 6931 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6932 bool isread) 6933 { 6934 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6935 if (arm_current_el(env) < 3 6936 && arm_feature(env, ARM_FEATURE_EL3) 6937 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6938 return CP_ACCESS_TRAP_EL3; 6939 } 6940 return CP_ACCESS_OK; 6941 } 6942 6943 /* ResetSVEState */ 6944 static void arm_reset_sve_state(CPUARMState *env) 6945 { 6946 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6947 /* Recall that FFR is stored as pregs[16]. */ 6948 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6949 vfp_set_fpcr(env, 0x0800009f); 6950 } 6951 6952 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6953 { 6954 uint64_t change = (env->svcr ^ new) & mask; 6955 6956 if (change == 0) { 6957 return; 6958 } 6959 env->svcr ^= change; 6960 6961 if (change & R_SVCR_SM_MASK) { 6962 arm_reset_sve_state(env); 6963 } 6964 6965 /* 6966 * ResetSMEState. 6967 * 6968 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6969 * on enable: while disabled, the storage is inaccessible and the 6970 * value does not matter. We're not saving the storage in vmstate 6971 * when disabled either. 6972 */ 6973 if (change & new & R_SVCR_ZA_MASK) { 6974 memset(env->zarray, 0, sizeof(env->zarray)); 6975 } 6976 6977 if (tcg_enabled()) { 6978 arm_rebuild_hflags(env); 6979 } 6980 } 6981 6982 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6983 uint64_t value) 6984 { 6985 aarch64_set_svcr(env, value, -1); 6986 } 6987 6988 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6989 uint64_t value) 6990 { 6991 int cur_el = arm_current_el(env); 6992 int old_len = sve_vqm1_for_el(env, cur_el); 6993 int new_len; 6994 6995 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6996 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6997 raw_write(env, ri, value); 6998 6999 /* 7000 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7001 * when SVL is widened (old values kept, or zeros). Choose to keep the 7002 * current values for simplicity. But for QEMU internals, we must still 7003 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7004 * above aarch64_sve_narrow_vq. 7005 */ 7006 new_len = sve_vqm1_for_el(env, cur_el); 7007 if (new_len < old_len) { 7008 aarch64_sve_narrow_vq(env, new_len + 1); 7009 } 7010 } 7011 7012 static const ARMCPRegInfo sme_reginfo[] = { 7013 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7015 .access = PL0_RW, .accessfn = access_tpidr2, 7016 .fgt = FGT_NTPIDR2_EL0, 7017 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7018 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7020 .access = PL0_RW, .type = ARM_CP_SME, 7021 .fieldoffset = offsetof(CPUARMState, svcr), 7022 .writefn = svcr_write, .raw_writefn = raw_write }, 7023 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7024 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7025 .access = PL1_RW, .type = ARM_CP_SME, 7026 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7027 .writefn = smcr_write, .raw_writefn = raw_write }, 7028 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7030 .access = PL2_RW, .type = ARM_CP_SME, 7031 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7032 .writefn = smcr_write, .raw_writefn = raw_write }, 7033 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7035 .access = PL3_RW, .type = ARM_CP_SME, 7036 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7037 .writefn = smcr_write, .raw_writefn = raw_write }, 7038 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7040 .access = PL1_R, .accessfn = access_aa64_tid1, 7041 /* 7042 * IMPLEMENTOR = 0 (software) 7043 * REVISION = 0 (implementation defined) 7044 * SMPS = 0 (no streaming execution priority in QEMU) 7045 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7046 */ 7047 .type = ARM_CP_CONST, .resetvalue = 0, }, 7048 /* 7049 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7050 */ 7051 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7053 .access = PL1_RW, .accessfn = access_esm, 7054 .fgt = FGT_NSMPRI_EL1, 7055 .type = ARM_CP_CONST, .resetvalue = 0 }, 7056 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7058 .access = PL2_RW, .accessfn = access_esm, 7059 .type = ARM_CP_CONST, .resetvalue = 0 }, 7060 }; 7061 7062 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7063 uint64_t value) 7064 { 7065 CPUState *cs = env_cpu(env); 7066 7067 tlb_flush(cs); 7068 } 7069 7070 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7071 uint64_t value) 7072 { 7073 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7074 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7075 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7076 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7077 7078 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7079 } 7080 7081 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7082 { 7083 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7084 env_archcpu(env)->reset_l0gptsz); 7085 } 7086 7087 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7088 uint64_t value) 7089 { 7090 CPUState *cs = env_cpu(env); 7091 7092 tlb_flush_all_cpus_synced(cs); 7093 } 7094 7095 static const ARMCPRegInfo rme_reginfo[] = { 7096 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7098 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7099 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7100 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7101 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7102 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7103 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7105 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7106 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7108 .access = PL3_W, .type = ARM_CP_NO_RAW, 7109 .writefn = tlbi_aa64_paall_write }, 7110 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7112 .access = PL3_W, .type = ARM_CP_NO_RAW, 7113 .writefn = tlbi_aa64_paallos_write }, 7114 /* 7115 * QEMU does not have a way to invalidate by physical address, thus 7116 * invalidating a range of physical addresses is accomplished by 7117 * flushing all tlb entries in the outer shareable domain, 7118 * just like PAALLOS. 7119 */ 7120 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7122 .access = PL3_W, .type = ARM_CP_NO_RAW, 7123 .writefn = tlbi_aa64_paallos_write }, 7124 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7125 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7126 .access = PL3_W, .type = ARM_CP_NO_RAW, 7127 .writefn = tlbi_aa64_paallos_write }, 7128 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7129 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7130 .access = PL3_W, .type = ARM_CP_NOP }, 7131 }; 7132 7133 static const ARMCPRegInfo rme_mte_reginfo[] = { 7134 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7136 .access = PL3_W, .type = ARM_CP_NOP }, 7137 }; 7138 #endif /* TARGET_AARCH64 */ 7139 7140 static void define_pmu_regs(ARMCPU *cpu) 7141 { 7142 /* 7143 * v7 performance monitor control register: same implementor 7144 * field as main ID register, and we implement four counters in 7145 * addition to the cycle count register. 7146 */ 7147 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7148 ARMCPRegInfo pmcr = { 7149 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7150 .access = PL0_RW, 7151 .fgt = FGT_PMCR_EL0, 7152 .type = ARM_CP_IO | ARM_CP_ALIAS, 7153 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7154 .accessfn = pmreg_access, .writefn = pmcr_write, 7155 .raw_writefn = raw_write, 7156 }; 7157 ARMCPRegInfo pmcr64 = { 7158 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7160 .access = PL0_RW, .accessfn = pmreg_access, 7161 .fgt = FGT_PMCR_EL0, 7162 .type = ARM_CP_IO, 7163 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7164 .resetvalue = cpu->isar.reset_pmcr_el0, 7165 .writefn = pmcr_write, .raw_writefn = raw_write, 7166 }; 7167 7168 define_one_arm_cp_reg(cpu, &pmcr); 7169 define_one_arm_cp_reg(cpu, &pmcr64); 7170 for (i = 0; i < pmcrn; i++) { 7171 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7172 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7173 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7174 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7175 ARMCPRegInfo pmev_regs[] = { 7176 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7177 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7178 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7179 .fgt = FGT_PMEVCNTRN_EL0, 7180 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7181 .accessfn = pmreg_access_xevcntr }, 7182 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7184 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7185 .type = ARM_CP_IO, 7186 .fgt = FGT_PMEVCNTRN_EL0, 7187 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7188 .raw_readfn = pmevcntr_rawread, 7189 .raw_writefn = pmevcntr_rawwrite }, 7190 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7191 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7192 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7193 .fgt = FGT_PMEVTYPERN_EL0, 7194 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7195 .accessfn = pmreg_access }, 7196 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7197 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7198 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7199 .fgt = FGT_PMEVTYPERN_EL0, 7200 .type = ARM_CP_IO, 7201 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7202 .raw_writefn = pmevtyper_rawwrite }, 7203 }; 7204 define_arm_cp_regs(cpu, pmev_regs); 7205 g_free(pmevcntr_name); 7206 g_free(pmevcntr_el0_name); 7207 g_free(pmevtyper_name); 7208 g_free(pmevtyper_el0_name); 7209 } 7210 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7211 ARMCPRegInfo v81_pmu_regs[] = { 7212 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7213 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7214 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7215 .fgt = FGT_PMCEIDN_EL0, 7216 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7217 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7218 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7219 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7220 .fgt = FGT_PMCEIDN_EL0, 7221 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7222 }; 7223 define_arm_cp_regs(cpu, v81_pmu_regs); 7224 } 7225 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7226 static const ARMCPRegInfo v84_pmmir = { 7227 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7228 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7229 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7230 .fgt = FGT_PMMIR_EL1, 7231 .resetvalue = 0 7232 }; 7233 define_one_arm_cp_reg(cpu, &v84_pmmir); 7234 } 7235 } 7236 7237 #ifndef CONFIG_USER_ONLY 7238 /* 7239 * We don't know until after realize whether there's a GICv3 7240 * attached, and that is what registers the gicv3 sysregs. 7241 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7242 * at runtime. 7243 */ 7244 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7245 { 7246 ARMCPU *cpu = env_archcpu(env); 7247 uint64_t pfr1 = cpu->isar.id_pfr1; 7248 7249 if (env->gicv3state) { 7250 pfr1 |= 1 << 28; 7251 } 7252 return pfr1; 7253 } 7254 7255 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7256 { 7257 ARMCPU *cpu = env_archcpu(env); 7258 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7259 7260 if (env->gicv3state) { 7261 pfr0 |= 1 << 24; 7262 } 7263 return pfr0; 7264 } 7265 #endif 7266 7267 /* 7268 * Shared logic between LORID and the rest of the LOR* registers. 7269 * Secure state exclusion has already been dealt with. 7270 */ 7271 static CPAccessResult access_lor_ns(CPUARMState *env, 7272 const ARMCPRegInfo *ri, bool isread) 7273 { 7274 int el = arm_current_el(env); 7275 7276 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7277 return CP_ACCESS_TRAP_EL2; 7278 } 7279 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7280 return CP_ACCESS_TRAP_EL3; 7281 } 7282 return CP_ACCESS_OK; 7283 } 7284 7285 static CPAccessResult access_lor_other(CPUARMState *env, 7286 const ARMCPRegInfo *ri, bool isread) 7287 { 7288 if (arm_is_secure_below_el3(env)) { 7289 /* Access denied in secure mode. */ 7290 return CP_ACCESS_TRAP; 7291 } 7292 return access_lor_ns(env, ri, isread); 7293 } 7294 7295 /* 7296 * A trivial implementation of ARMv8.1-LOR leaves all of these 7297 * registers fixed at 0, which indicates that there are zero 7298 * supported Limited Ordering regions. 7299 */ 7300 static const ARMCPRegInfo lor_reginfo[] = { 7301 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7303 .access = PL1_RW, .accessfn = access_lor_other, 7304 .fgt = FGT_LORSA_EL1, 7305 .type = ARM_CP_CONST, .resetvalue = 0 }, 7306 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7307 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7308 .access = PL1_RW, .accessfn = access_lor_other, 7309 .fgt = FGT_LOREA_EL1, 7310 .type = ARM_CP_CONST, .resetvalue = 0 }, 7311 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7312 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7313 .access = PL1_RW, .accessfn = access_lor_other, 7314 .fgt = FGT_LORN_EL1, 7315 .type = ARM_CP_CONST, .resetvalue = 0 }, 7316 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7317 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7318 .access = PL1_RW, .accessfn = access_lor_other, 7319 .fgt = FGT_LORC_EL1, 7320 .type = ARM_CP_CONST, .resetvalue = 0 }, 7321 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7323 .access = PL1_R, .accessfn = access_lor_ns, 7324 .fgt = FGT_LORID_EL1, 7325 .type = ARM_CP_CONST, .resetvalue = 0 }, 7326 }; 7327 7328 #ifdef TARGET_AARCH64 7329 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7330 bool isread) 7331 { 7332 int el = arm_current_el(env); 7333 7334 if (el < 2 && 7335 arm_is_el2_enabled(env) && 7336 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7337 return CP_ACCESS_TRAP_EL2; 7338 } 7339 if (el < 3 && 7340 arm_feature(env, ARM_FEATURE_EL3) && 7341 !(env->cp15.scr_el3 & SCR_APK)) { 7342 return CP_ACCESS_TRAP_EL3; 7343 } 7344 return CP_ACCESS_OK; 7345 } 7346 7347 static const ARMCPRegInfo pauth_reginfo[] = { 7348 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7349 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7350 .access = PL1_RW, .accessfn = access_pauth, 7351 .fgt = FGT_APDAKEY, 7352 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7353 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7354 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7355 .access = PL1_RW, .accessfn = access_pauth, 7356 .fgt = FGT_APDAKEY, 7357 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7358 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7359 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7360 .access = PL1_RW, .accessfn = access_pauth, 7361 .fgt = FGT_APDBKEY, 7362 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7363 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7364 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7365 .access = PL1_RW, .accessfn = access_pauth, 7366 .fgt = FGT_APDBKEY, 7367 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7368 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7369 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7370 .access = PL1_RW, .accessfn = access_pauth, 7371 .fgt = FGT_APGAKEY, 7372 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7373 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7374 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7375 .access = PL1_RW, .accessfn = access_pauth, 7376 .fgt = FGT_APGAKEY, 7377 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7378 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7379 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7380 .access = PL1_RW, .accessfn = access_pauth, 7381 .fgt = FGT_APIAKEY, 7382 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7383 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7384 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7385 .access = PL1_RW, .accessfn = access_pauth, 7386 .fgt = FGT_APIAKEY, 7387 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7388 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7389 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7390 .access = PL1_RW, .accessfn = access_pauth, 7391 .fgt = FGT_APIBKEY, 7392 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7393 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7394 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7395 .access = PL1_RW, .accessfn = access_pauth, 7396 .fgt = FGT_APIBKEY, 7397 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7398 }; 7399 7400 static const ARMCPRegInfo tlbirange_reginfo[] = { 7401 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7402 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7403 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7404 .fgt = FGT_TLBIRVAE1IS, 7405 .writefn = tlbi_aa64_rvae1is_write }, 7406 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7408 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7409 .fgt = FGT_TLBIRVAAE1IS, 7410 .writefn = tlbi_aa64_rvae1is_write }, 7411 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7412 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7413 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7414 .fgt = FGT_TLBIRVALE1IS, 7415 .writefn = tlbi_aa64_rvae1is_write }, 7416 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7417 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7418 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7419 .fgt = FGT_TLBIRVAALE1IS, 7420 .writefn = tlbi_aa64_rvae1is_write }, 7421 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7422 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7423 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7424 .fgt = FGT_TLBIRVAE1OS, 7425 .writefn = tlbi_aa64_rvae1is_write }, 7426 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7428 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7429 .fgt = FGT_TLBIRVAAE1OS, 7430 .writefn = tlbi_aa64_rvae1is_write }, 7431 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7433 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7434 .fgt = FGT_TLBIRVALE1OS, 7435 .writefn = tlbi_aa64_rvae1is_write }, 7436 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7438 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7439 .fgt = FGT_TLBIRVAALE1OS, 7440 .writefn = tlbi_aa64_rvae1is_write }, 7441 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7443 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7444 .fgt = FGT_TLBIRVAE1, 7445 .writefn = tlbi_aa64_rvae1_write }, 7446 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7448 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7449 .fgt = FGT_TLBIRVAAE1, 7450 .writefn = tlbi_aa64_rvae1_write }, 7451 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7453 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7454 .fgt = FGT_TLBIRVALE1, 7455 .writefn = tlbi_aa64_rvae1_write }, 7456 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7457 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7458 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7459 .fgt = FGT_TLBIRVAALE1, 7460 .writefn = tlbi_aa64_rvae1_write }, 7461 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7463 .access = PL2_W, .type = ARM_CP_NO_RAW, 7464 .writefn = tlbi_aa64_ripas2e1is_write }, 7465 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7467 .access = PL2_W, .type = ARM_CP_NO_RAW, 7468 .writefn = tlbi_aa64_ripas2e1is_write }, 7469 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7471 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7472 .writefn = tlbi_aa64_rvae2is_write }, 7473 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7475 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7476 .writefn = tlbi_aa64_rvae2is_write }, 7477 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7479 .access = PL2_W, .type = ARM_CP_NO_RAW, 7480 .writefn = tlbi_aa64_ripas2e1_write }, 7481 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7483 .access = PL2_W, .type = ARM_CP_NO_RAW, 7484 .writefn = tlbi_aa64_ripas2e1_write }, 7485 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7487 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7488 .writefn = tlbi_aa64_rvae2is_write }, 7489 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7491 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7492 .writefn = tlbi_aa64_rvae2is_write }, 7493 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7495 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7496 .writefn = tlbi_aa64_rvae2_write }, 7497 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7498 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7499 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7500 .writefn = tlbi_aa64_rvae2_write }, 7501 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7503 .access = PL3_W, .type = ARM_CP_NO_RAW, 7504 .writefn = tlbi_aa64_rvae3is_write }, 7505 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7506 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7507 .access = PL3_W, .type = ARM_CP_NO_RAW, 7508 .writefn = tlbi_aa64_rvae3is_write }, 7509 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7511 .access = PL3_W, .type = ARM_CP_NO_RAW, 7512 .writefn = tlbi_aa64_rvae3is_write }, 7513 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7515 .access = PL3_W, .type = ARM_CP_NO_RAW, 7516 .writefn = tlbi_aa64_rvae3is_write }, 7517 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7519 .access = PL3_W, .type = ARM_CP_NO_RAW, 7520 .writefn = tlbi_aa64_rvae3_write }, 7521 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7523 .access = PL3_W, .type = ARM_CP_NO_RAW, 7524 .writefn = tlbi_aa64_rvae3_write }, 7525 }; 7526 7527 static const ARMCPRegInfo tlbios_reginfo[] = { 7528 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7530 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7531 .fgt = FGT_TLBIVMALLE1OS, 7532 .writefn = tlbi_aa64_vmalle1is_write }, 7533 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7535 .fgt = FGT_TLBIVAE1OS, 7536 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7537 .writefn = tlbi_aa64_vae1is_write }, 7538 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7540 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7541 .fgt = FGT_TLBIASIDE1OS, 7542 .writefn = tlbi_aa64_vmalle1is_write }, 7543 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7544 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7545 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7546 .fgt = FGT_TLBIVAAE1OS, 7547 .writefn = tlbi_aa64_vae1is_write }, 7548 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7549 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7550 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7551 .fgt = FGT_TLBIVALE1OS, 7552 .writefn = tlbi_aa64_vae1is_write }, 7553 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7555 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7556 .fgt = FGT_TLBIVAALE1OS, 7557 .writefn = tlbi_aa64_vae1is_write }, 7558 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7561 .writefn = tlbi_aa64_alle2is_write }, 7562 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7565 .writefn = tlbi_aa64_vae2is_write }, 7566 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7568 .access = PL2_W, .type = ARM_CP_NO_RAW, 7569 .writefn = tlbi_aa64_alle1is_write }, 7570 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7572 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7573 .writefn = tlbi_aa64_vae2is_write }, 7574 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7575 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7576 .access = PL2_W, .type = ARM_CP_NO_RAW, 7577 .writefn = tlbi_aa64_alle1is_write }, 7578 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7580 .access = PL2_W, .type = ARM_CP_NOP }, 7581 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7583 .access = PL2_W, .type = ARM_CP_NOP }, 7584 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7586 .access = PL2_W, .type = ARM_CP_NOP }, 7587 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7589 .access = PL2_W, .type = ARM_CP_NOP }, 7590 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7592 .access = PL3_W, .type = ARM_CP_NO_RAW, 7593 .writefn = tlbi_aa64_alle3is_write }, 7594 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7595 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7596 .access = PL3_W, .type = ARM_CP_NO_RAW, 7597 .writefn = tlbi_aa64_vae3is_write }, 7598 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7600 .access = PL3_W, .type = ARM_CP_NO_RAW, 7601 .writefn = tlbi_aa64_vae3is_write }, 7602 }; 7603 7604 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7605 { 7606 Error *err = NULL; 7607 uint64_t ret; 7608 7609 /* Success sets NZCV = 0000. */ 7610 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7611 7612 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7613 /* 7614 * ??? Failed, for unknown reasons in the crypto subsystem. 7615 * The best we can do is log the reason and return the 7616 * timed-out indication to the guest. There is no reason 7617 * we know to expect this failure to be transitory, so the 7618 * guest may well hang retrying the operation. 7619 */ 7620 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7621 ri->name, error_get_pretty(err)); 7622 error_free(err); 7623 7624 env->ZF = 0; /* NZCF = 0100 */ 7625 return 0; 7626 } 7627 return ret; 7628 } 7629 7630 /* We do not support re-seeding, so the two registers operate the same. */ 7631 static const ARMCPRegInfo rndr_reginfo[] = { 7632 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7633 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7634 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7635 .access = PL0_R, .readfn = rndr_readfn }, 7636 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7637 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7638 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7639 .access = PL0_R, .readfn = rndr_readfn }, 7640 }; 7641 7642 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7643 uint64_t value) 7644 { 7645 ARMCPU *cpu = env_archcpu(env); 7646 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7647 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7648 uint64_t vaddr_in = (uint64_t) value; 7649 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7650 void *haddr; 7651 int mem_idx = cpu_mmu_index(env, false); 7652 7653 /* This won't be crossing page boundaries */ 7654 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7655 if (haddr) { 7656 #ifndef CONFIG_USER_ONLY 7657 7658 ram_addr_t offset; 7659 MemoryRegion *mr; 7660 7661 /* RCU lock is already being held */ 7662 mr = memory_region_from_host(haddr, &offset); 7663 7664 if (mr) { 7665 memory_region_writeback(mr, offset, dline_size); 7666 } 7667 #endif /*CONFIG_USER_ONLY*/ 7668 } 7669 } 7670 7671 static const ARMCPRegInfo dcpop_reg[] = { 7672 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7673 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7674 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7675 .fgt = FGT_DCCVAP, 7676 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7677 }; 7678 7679 static const ARMCPRegInfo dcpodp_reg[] = { 7680 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7682 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7683 .fgt = FGT_DCCVADP, 7684 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7685 }; 7686 7687 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7688 bool isread) 7689 { 7690 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7691 return CP_ACCESS_TRAP_EL2; 7692 } 7693 7694 return CP_ACCESS_OK; 7695 } 7696 7697 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7698 bool isread) 7699 { 7700 int el = arm_current_el(env); 7701 7702 if (el < 2 && arm_is_el2_enabled(env)) { 7703 uint64_t hcr = arm_hcr_el2_eff(env); 7704 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7705 return CP_ACCESS_TRAP_EL2; 7706 } 7707 } 7708 if (el < 3 && 7709 arm_feature(env, ARM_FEATURE_EL3) && 7710 !(env->cp15.scr_el3 & SCR_ATA)) { 7711 return CP_ACCESS_TRAP_EL3; 7712 } 7713 return CP_ACCESS_OK; 7714 } 7715 7716 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7717 { 7718 return env->pstate & PSTATE_TCO; 7719 } 7720 7721 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7722 { 7723 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7724 } 7725 7726 static const ARMCPRegInfo mte_reginfo[] = { 7727 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7729 .access = PL1_RW, .accessfn = access_mte, 7730 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7731 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7733 .access = PL1_RW, .accessfn = access_mte, 7734 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7735 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7737 .access = PL2_RW, .accessfn = access_mte, 7738 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7739 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7741 .access = PL3_RW, 7742 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7743 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7744 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7745 .access = PL1_RW, .accessfn = access_mte, 7746 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7747 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7748 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7749 .access = PL1_RW, .accessfn = access_mte, 7750 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7751 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7753 .type = ARM_CP_NO_RAW, 7754 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7755 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7757 .type = ARM_CP_NOP, .access = PL1_W, 7758 .fgt = FGT_DCIVAC, 7759 .accessfn = aa64_cacheop_poc_access }, 7760 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7762 .fgt = FGT_DCISW, 7763 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7764 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7765 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7766 .type = ARM_CP_NOP, .access = PL1_W, 7767 .fgt = FGT_DCIVAC, 7768 .accessfn = aa64_cacheop_poc_access }, 7769 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7770 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7771 .fgt = FGT_DCISW, 7772 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7773 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7775 .fgt = FGT_DCCSW, 7776 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7777 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7779 .fgt = FGT_DCCSW, 7780 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7781 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7783 .fgt = FGT_DCCISW, 7784 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7785 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7787 .fgt = FGT_DCCISW, 7788 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7789 }; 7790 7791 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7792 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7793 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7794 .type = ARM_CP_CONST, .access = PL0_RW, }, 7795 }; 7796 7797 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7798 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7799 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7800 .type = ARM_CP_NOP, .access = PL0_W, 7801 .fgt = FGT_DCCVAC, 7802 .accessfn = aa64_cacheop_poc_access }, 7803 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7805 .type = ARM_CP_NOP, .access = PL0_W, 7806 .fgt = FGT_DCCVAC, 7807 .accessfn = aa64_cacheop_poc_access }, 7808 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7809 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7810 .type = ARM_CP_NOP, .access = PL0_W, 7811 .fgt = FGT_DCCVAP, 7812 .accessfn = aa64_cacheop_poc_access }, 7813 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7814 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7815 .type = ARM_CP_NOP, .access = PL0_W, 7816 .fgt = FGT_DCCVAP, 7817 .accessfn = aa64_cacheop_poc_access }, 7818 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7820 .type = ARM_CP_NOP, .access = PL0_W, 7821 .fgt = FGT_DCCVADP, 7822 .accessfn = aa64_cacheop_poc_access }, 7823 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7825 .type = ARM_CP_NOP, .access = PL0_W, 7826 .fgt = FGT_DCCVADP, 7827 .accessfn = aa64_cacheop_poc_access }, 7828 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7829 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7830 .type = ARM_CP_NOP, .access = PL0_W, 7831 .fgt = FGT_DCCIVAC, 7832 .accessfn = aa64_cacheop_poc_access }, 7833 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7835 .type = ARM_CP_NOP, .access = PL0_W, 7836 .fgt = FGT_DCCIVAC, 7837 .accessfn = aa64_cacheop_poc_access }, 7838 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7840 .access = PL0_W, .type = ARM_CP_DC_GVA, 7841 #ifndef CONFIG_USER_ONLY 7842 /* Avoid overhead of an access check that always passes in user-mode */ 7843 .accessfn = aa64_zva_access, 7844 .fgt = FGT_DCZVA, 7845 #endif 7846 }, 7847 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7849 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7850 #ifndef CONFIG_USER_ONLY 7851 /* Avoid overhead of an access check that always passes in user-mode */ 7852 .accessfn = aa64_zva_access, 7853 .fgt = FGT_DCZVA, 7854 #endif 7855 }, 7856 }; 7857 7858 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7859 bool isread) 7860 { 7861 uint64_t hcr = arm_hcr_el2_eff(env); 7862 int el = arm_current_el(env); 7863 7864 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7865 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7866 if (hcr & HCR_TGE) { 7867 return CP_ACCESS_TRAP_EL2; 7868 } 7869 return CP_ACCESS_TRAP; 7870 } 7871 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7872 return CP_ACCESS_TRAP_EL2; 7873 } 7874 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7875 return CP_ACCESS_TRAP_EL2; 7876 } 7877 if (el < 3 7878 && arm_feature(env, ARM_FEATURE_EL3) 7879 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7880 return CP_ACCESS_TRAP_EL3; 7881 } 7882 return CP_ACCESS_OK; 7883 } 7884 7885 static const ARMCPRegInfo scxtnum_reginfo[] = { 7886 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7887 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7888 .access = PL0_RW, .accessfn = access_scxtnum, 7889 .fgt = FGT_SCXTNUM_EL0, 7890 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7891 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7892 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7893 .access = PL1_RW, .accessfn = access_scxtnum, 7894 .fgt = FGT_SCXTNUM_EL1, 7895 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7896 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7898 .access = PL2_RW, .accessfn = access_scxtnum, 7899 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7900 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7901 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7902 .access = PL3_RW, 7903 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7904 }; 7905 7906 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7907 bool isread) 7908 { 7909 if (arm_current_el(env) == 2 && 7910 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7911 return CP_ACCESS_TRAP_EL3; 7912 } 7913 return CP_ACCESS_OK; 7914 } 7915 7916 static const ARMCPRegInfo fgt_reginfo[] = { 7917 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7918 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7919 .access = PL2_RW, .accessfn = access_fgt, 7920 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7921 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7922 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7923 .access = PL2_RW, .accessfn = access_fgt, 7924 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7925 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7926 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7927 .access = PL2_RW, .accessfn = access_fgt, 7928 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7929 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7930 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7931 .access = PL2_RW, .accessfn = access_fgt, 7932 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7933 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7935 .access = PL2_RW, .accessfn = access_fgt, 7936 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7937 }; 7938 #endif /* TARGET_AARCH64 */ 7939 7940 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7941 bool isread) 7942 { 7943 int el = arm_current_el(env); 7944 7945 if (el == 0) { 7946 uint64_t sctlr = arm_sctlr(env, el); 7947 if (!(sctlr & SCTLR_EnRCTX)) { 7948 return CP_ACCESS_TRAP; 7949 } 7950 } else if (el == 1) { 7951 uint64_t hcr = arm_hcr_el2_eff(env); 7952 if (hcr & HCR_NV) { 7953 return CP_ACCESS_TRAP_EL2; 7954 } 7955 } 7956 return CP_ACCESS_OK; 7957 } 7958 7959 static const ARMCPRegInfo predinv_reginfo[] = { 7960 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7961 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7962 .fgt = FGT_CFPRCTX, 7963 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7964 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7965 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7966 .fgt = FGT_DVPRCTX, 7967 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7968 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7970 .fgt = FGT_CPPRCTX, 7971 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7972 /* 7973 * Note the AArch32 opcodes have a different OPC1. 7974 */ 7975 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7976 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7977 .fgt = FGT_CFPRCTX, 7978 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7979 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7980 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7981 .fgt = FGT_DVPRCTX, 7982 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7983 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7984 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7985 .fgt = FGT_CPPRCTX, 7986 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7987 }; 7988 7989 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7990 { 7991 /* Read the high 32 bits of the current CCSIDR */ 7992 return extract64(ccsidr_read(env, ri), 32, 32); 7993 } 7994 7995 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7996 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7997 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7998 .access = PL1_R, 7999 .accessfn = access_tid4, 8000 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8001 }; 8002 8003 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8004 bool isread) 8005 { 8006 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8007 return CP_ACCESS_TRAP_EL2; 8008 } 8009 8010 return CP_ACCESS_OK; 8011 } 8012 8013 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8014 bool isread) 8015 { 8016 if (arm_feature(env, ARM_FEATURE_V8)) { 8017 return access_aa64_tid3(env, ri, isread); 8018 } 8019 8020 return CP_ACCESS_OK; 8021 } 8022 8023 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8024 bool isread) 8025 { 8026 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8027 return CP_ACCESS_TRAP_EL2; 8028 } 8029 8030 return CP_ACCESS_OK; 8031 } 8032 8033 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8034 const ARMCPRegInfo *ri, bool isread) 8035 { 8036 /* 8037 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8038 * in v7A, not in v8A. 8039 */ 8040 if (!arm_feature(env, ARM_FEATURE_V8) && 8041 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8042 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8043 return CP_ACCESS_TRAP_EL2; 8044 } 8045 return CP_ACCESS_OK; 8046 } 8047 8048 static const ARMCPRegInfo jazelle_regs[] = { 8049 { .name = "JIDR", 8050 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8051 .access = PL1_R, .accessfn = access_jazelle, 8052 .type = ARM_CP_CONST, .resetvalue = 0 }, 8053 { .name = "JOSCR", 8054 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8055 .accessfn = access_joscr_jmcr, 8056 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8057 { .name = "JMCR", 8058 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8059 .accessfn = access_joscr_jmcr, 8060 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8061 }; 8062 8063 static const ARMCPRegInfo contextidr_el2 = { 8064 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8065 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8066 .access = PL2_RW, 8067 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8068 }; 8069 8070 static const ARMCPRegInfo vhe_reginfo[] = { 8071 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8072 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8073 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8074 .raw_writefn = raw_write, 8075 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8076 #ifndef CONFIG_USER_ONLY 8077 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8078 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8079 .fieldoffset = 8080 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8081 .type = ARM_CP_IO, .access = PL2_RW, 8082 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8083 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8084 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8085 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8086 .resetfn = gt_hv_timer_reset, 8087 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8088 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8089 .type = ARM_CP_IO, 8090 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8091 .access = PL2_RW, 8092 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8093 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8094 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8095 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8096 .type = ARM_CP_IO | ARM_CP_ALIAS, 8097 .access = PL2_RW, .accessfn = e2h_access, 8098 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8099 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8100 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8101 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8102 .type = ARM_CP_IO | ARM_CP_ALIAS, 8103 .access = PL2_RW, .accessfn = e2h_access, 8104 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8105 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8106 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8107 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8108 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8109 .access = PL2_RW, .accessfn = e2h_access, 8110 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8111 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8112 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8113 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8114 .access = PL2_RW, .accessfn = e2h_access, 8115 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8116 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8117 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8118 .type = ARM_CP_IO | ARM_CP_ALIAS, 8119 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8120 .access = PL2_RW, .accessfn = e2h_access, 8121 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8122 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8123 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8124 .type = ARM_CP_IO | ARM_CP_ALIAS, 8125 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8126 .access = PL2_RW, .accessfn = e2h_access, 8127 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8128 #endif 8129 }; 8130 8131 #ifndef CONFIG_USER_ONLY 8132 static const ARMCPRegInfo ats1e1_reginfo[] = { 8133 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8134 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8135 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8136 .fgt = FGT_ATS1E1RP, 8137 .accessfn = at_e012_access, .writefn = ats_write64 }, 8138 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8139 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8140 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8141 .fgt = FGT_ATS1E1WP, 8142 .accessfn = at_e012_access, .writefn = ats_write64 }, 8143 }; 8144 8145 static const ARMCPRegInfo ats1cp_reginfo[] = { 8146 { .name = "ATS1CPRP", 8147 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8148 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8149 .writefn = ats_write }, 8150 { .name = "ATS1CPWP", 8151 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8152 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8153 .writefn = ats_write }, 8154 }; 8155 #endif 8156 8157 /* 8158 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8159 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8160 * is non-zero, which is never for ARMv7, optionally in ARMv8 8161 * and mandatorily for ARMv8.2 and up. 8162 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8163 * implementation is RAZ/WI we can ignore this detail, as we 8164 * do for ACTLR. 8165 */ 8166 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8167 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8168 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8169 .access = PL1_RW, .accessfn = access_tacr, 8170 .type = ARM_CP_CONST, .resetvalue = 0 }, 8171 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8172 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8173 .access = PL2_RW, .type = ARM_CP_CONST, 8174 .resetvalue = 0 }, 8175 }; 8176 8177 void register_cp_regs_for_features(ARMCPU *cpu) 8178 { 8179 /* Register all the coprocessor registers based on feature bits */ 8180 CPUARMState *env = &cpu->env; 8181 if (arm_feature(env, ARM_FEATURE_M)) { 8182 /* M profile has no coprocessor registers */ 8183 return; 8184 } 8185 8186 define_arm_cp_regs(cpu, cp_reginfo); 8187 if (!arm_feature(env, ARM_FEATURE_V8)) { 8188 /* 8189 * Must go early as it is full of wildcards that may be 8190 * overridden by later definitions. 8191 */ 8192 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8193 } 8194 8195 if (arm_feature(env, ARM_FEATURE_V6)) { 8196 /* The ID registers all have impdef reset values */ 8197 ARMCPRegInfo v6_idregs[] = { 8198 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8200 .access = PL1_R, .type = ARM_CP_CONST, 8201 .accessfn = access_aa32_tid3, 8202 .resetvalue = cpu->isar.id_pfr0 }, 8203 /* 8204 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8205 * the value of the GIC field until after we define these regs. 8206 */ 8207 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8209 .access = PL1_R, .type = ARM_CP_NO_RAW, 8210 .accessfn = access_aa32_tid3, 8211 #ifdef CONFIG_USER_ONLY 8212 .type = ARM_CP_CONST, 8213 .resetvalue = cpu->isar.id_pfr1, 8214 #else 8215 .type = ARM_CP_NO_RAW, 8216 .accessfn = access_aa32_tid3, 8217 .readfn = id_pfr1_read, 8218 .writefn = arm_cp_write_ignore 8219 #endif 8220 }, 8221 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8223 .access = PL1_R, .type = ARM_CP_CONST, 8224 .accessfn = access_aa32_tid3, 8225 .resetvalue = cpu->isar.id_dfr0 }, 8226 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8228 .access = PL1_R, .type = ARM_CP_CONST, 8229 .accessfn = access_aa32_tid3, 8230 .resetvalue = cpu->id_afr0 }, 8231 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8233 .access = PL1_R, .type = ARM_CP_CONST, 8234 .accessfn = access_aa32_tid3, 8235 .resetvalue = cpu->isar.id_mmfr0 }, 8236 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8238 .access = PL1_R, .type = ARM_CP_CONST, 8239 .accessfn = access_aa32_tid3, 8240 .resetvalue = cpu->isar.id_mmfr1 }, 8241 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8243 .access = PL1_R, .type = ARM_CP_CONST, 8244 .accessfn = access_aa32_tid3, 8245 .resetvalue = cpu->isar.id_mmfr2 }, 8246 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8248 .access = PL1_R, .type = ARM_CP_CONST, 8249 .accessfn = access_aa32_tid3, 8250 .resetvalue = cpu->isar.id_mmfr3 }, 8251 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8253 .access = PL1_R, .type = ARM_CP_CONST, 8254 .accessfn = access_aa32_tid3, 8255 .resetvalue = cpu->isar.id_isar0 }, 8256 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8258 .access = PL1_R, .type = ARM_CP_CONST, 8259 .accessfn = access_aa32_tid3, 8260 .resetvalue = cpu->isar.id_isar1 }, 8261 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8262 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8263 .access = PL1_R, .type = ARM_CP_CONST, 8264 .accessfn = access_aa32_tid3, 8265 .resetvalue = cpu->isar.id_isar2 }, 8266 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8268 .access = PL1_R, .type = ARM_CP_CONST, 8269 .accessfn = access_aa32_tid3, 8270 .resetvalue = cpu->isar.id_isar3 }, 8271 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8273 .access = PL1_R, .type = ARM_CP_CONST, 8274 .accessfn = access_aa32_tid3, 8275 .resetvalue = cpu->isar.id_isar4 }, 8276 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8278 .access = PL1_R, .type = ARM_CP_CONST, 8279 .accessfn = access_aa32_tid3, 8280 .resetvalue = cpu->isar.id_isar5 }, 8281 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8283 .access = PL1_R, .type = ARM_CP_CONST, 8284 .accessfn = access_aa32_tid3, 8285 .resetvalue = cpu->isar.id_mmfr4 }, 8286 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8288 .access = PL1_R, .type = ARM_CP_CONST, 8289 .accessfn = access_aa32_tid3, 8290 .resetvalue = cpu->isar.id_isar6 }, 8291 }; 8292 define_arm_cp_regs(cpu, v6_idregs); 8293 define_arm_cp_regs(cpu, v6_cp_reginfo); 8294 } else { 8295 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8296 } 8297 if (arm_feature(env, ARM_FEATURE_V6K)) { 8298 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8299 } 8300 if (arm_feature(env, ARM_FEATURE_V7MP) && 8301 !arm_feature(env, ARM_FEATURE_PMSA)) { 8302 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8303 } 8304 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8305 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8306 } 8307 if (arm_feature(env, ARM_FEATURE_V7)) { 8308 ARMCPRegInfo clidr = { 8309 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8310 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8311 .access = PL1_R, .type = ARM_CP_CONST, 8312 .accessfn = access_tid4, 8313 .fgt = FGT_CLIDR_EL1, 8314 .resetvalue = cpu->clidr 8315 }; 8316 define_one_arm_cp_reg(cpu, &clidr); 8317 define_arm_cp_regs(cpu, v7_cp_reginfo); 8318 define_debug_regs(cpu); 8319 define_pmu_regs(cpu); 8320 } else { 8321 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8322 } 8323 if (arm_feature(env, ARM_FEATURE_V8)) { 8324 /* 8325 * v8 ID registers, which all have impdef reset values. 8326 * Note that within the ID register ranges the unused slots 8327 * must all RAZ, not UNDEF; future architecture versions may 8328 * define new registers here. 8329 * ID registers which are AArch64 views of the AArch32 ID registers 8330 * which already existed in v6 and v7 are handled elsewhere, 8331 * in v6_idregs[]. 8332 */ 8333 int i; 8334 ARMCPRegInfo v8_idregs[] = { 8335 /* 8336 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8337 * emulation because we don't know the right value for the 8338 * GIC field until after we define these regs. 8339 */ 8340 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8342 .access = PL1_R, 8343 #ifdef CONFIG_USER_ONLY 8344 .type = ARM_CP_CONST, 8345 .resetvalue = cpu->isar.id_aa64pfr0 8346 #else 8347 .type = ARM_CP_NO_RAW, 8348 .accessfn = access_aa64_tid3, 8349 .readfn = id_aa64pfr0_read, 8350 .writefn = arm_cp_write_ignore 8351 #endif 8352 }, 8353 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8355 .access = PL1_R, .type = ARM_CP_CONST, 8356 .accessfn = access_aa64_tid3, 8357 .resetvalue = cpu->isar.id_aa64pfr1}, 8358 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8359 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8360 .access = PL1_R, .type = ARM_CP_CONST, 8361 .accessfn = access_aa64_tid3, 8362 .resetvalue = 0 }, 8363 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8365 .access = PL1_R, .type = ARM_CP_CONST, 8366 .accessfn = access_aa64_tid3, 8367 .resetvalue = 0 }, 8368 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8370 .access = PL1_R, .type = ARM_CP_CONST, 8371 .accessfn = access_aa64_tid3, 8372 .resetvalue = cpu->isar.id_aa64zfr0 }, 8373 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8374 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8375 .access = PL1_R, .type = ARM_CP_CONST, 8376 .accessfn = access_aa64_tid3, 8377 .resetvalue = cpu->isar.id_aa64smfr0 }, 8378 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8379 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8380 .access = PL1_R, .type = ARM_CP_CONST, 8381 .accessfn = access_aa64_tid3, 8382 .resetvalue = 0 }, 8383 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8384 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8385 .access = PL1_R, .type = ARM_CP_CONST, 8386 .accessfn = access_aa64_tid3, 8387 .resetvalue = 0 }, 8388 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8389 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8390 .access = PL1_R, .type = ARM_CP_CONST, 8391 .accessfn = access_aa64_tid3, 8392 .resetvalue = cpu->isar.id_aa64dfr0 }, 8393 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8394 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8395 .access = PL1_R, .type = ARM_CP_CONST, 8396 .accessfn = access_aa64_tid3, 8397 .resetvalue = cpu->isar.id_aa64dfr1 }, 8398 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8400 .access = PL1_R, .type = ARM_CP_CONST, 8401 .accessfn = access_aa64_tid3, 8402 .resetvalue = 0 }, 8403 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8404 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8405 .access = PL1_R, .type = ARM_CP_CONST, 8406 .accessfn = access_aa64_tid3, 8407 .resetvalue = 0 }, 8408 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8409 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8410 .access = PL1_R, .type = ARM_CP_CONST, 8411 .accessfn = access_aa64_tid3, 8412 .resetvalue = cpu->id_aa64afr0 }, 8413 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8415 .access = PL1_R, .type = ARM_CP_CONST, 8416 .accessfn = access_aa64_tid3, 8417 .resetvalue = cpu->id_aa64afr1 }, 8418 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8420 .access = PL1_R, .type = ARM_CP_CONST, 8421 .accessfn = access_aa64_tid3, 8422 .resetvalue = 0 }, 8423 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8424 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8425 .access = PL1_R, .type = ARM_CP_CONST, 8426 .accessfn = access_aa64_tid3, 8427 .resetvalue = 0 }, 8428 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8429 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8430 .access = PL1_R, .type = ARM_CP_CONST, 8431 .accessfn = access_aa64_tid3, 8432 .resetvalue = cpu->isar.id_aa64isar0 }, 8433 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8435 .access = PL1_R, .type = ARM_CP_CONST, 8436 .accessfn = access_aa64_tid3, 8437 .resetvalue = cpu->isar.id_aa64isar1 }, 8438 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8440 .access = PL1_R, .type = ARM_CP_CONST, 8441 .accessfn = access_aa64_tid3, 8442 .resetvalue = cpu->isar.id_aa64isar2 }, 8443 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8445 .access = PL1_R, .type = ARM_CP_CONST, 8446 .accessfn = access_aa64_tid3, 8447 .resetvalue = 0 }, 8448 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8449 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8450 .access = PL1_R, .type = ARM_CP_CONST, 8451 .accessfn = access_aa64_tid3, 8452 .resetvalue = 0 }, 8453 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8455 .access = PL1_R, .type = ARM_CP_CONST, 8456 .accessfn = access_aa64_tid3, 8457 .resetvalue = 0 }, 8458 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8460 .access = PL1_R, .type = ARM_CP_CONST, 8461 .accessfn = access_aa64_tid3, 8462 .resetvalue = 0 }, 8463 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8465 .access = PL1_R, .type = ARM_CP_CONST, 8466 .accessfn = access_aa64_tid3, 8467 .resetvalue = 0 }, 8468 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8470 .access = PL1_R, .type = ARM_CP_CONST, 8471 .accessfn = access_aa64_tid3, 8472 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8473 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8475 .access = PL1_R, .type = ARM_CP_CONST, 8476 .accessfn = access_aa64_tid3, 8477 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8478 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8480 .access = PL1_R, .type = ARM_CP_CONST, 8481 .accessfn = access_aa64_tid3, 8482 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8483 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8485 .access = PL1_R, .type = ARM_CP_CONST, 8486 .accessfn = access_aa64_tid3, 8487 .resetvalue = 0 }, 8488 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8490 .access = PL1_R, .type = ARM_CP_CONST, 8491 .accessfn = access_aa64_tid3, 8492 .resetvalue = 0 }, 8493 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8495 .access = PL1_R, .type = ARM_CP_CONST, 8496 .accessfn = access_aa64_tid3, 8497 .resetvalue = 0 }, 8498 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8500 .access = PL1_R, .type = ARM_CP_CONST, 8501 .accessfn = access_aa64_tid3, 8502 .resetvalue = 0 }, 8503 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8505 .access = PL1_R, .type = ARM_CP_CONST, 8506 .accessfn = access_aa64_tid3, 8507 .resetvalue = 0 }, 8508 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8510 .access = PL1_R, .type = ARM_CP_CONST, 8511 .accessfn = access_aa64_tid3, 8512 .resetvalue = cpu->isar.mvfr0 }, 8513 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8515 .access = PL1_R, .type = ARM_CP_CONST, 8516 .accessfn = access_aa64_tid3, 8517 .resetvalue = cpu->isar.mvfr1 }, 8518 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8520 .access = PL1_R, .type = ARM_CP_CONST, 8521 .accessfn = access_aa64_tid3, 8522 .resetvalue = cpu->isar.mvfr2 }, 8523 /* 8524 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8525 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8526 * as RAZ, since it is in the "reserved for future ID 8527 * registers, RAZ" part of the AArch32 encoding space. 8528 */ 8529 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8530 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8531 .access = PL1_R, .type = ARM_CP_CONST, 8532 .accessfn = access_aa64_tid3, 8533 .resetvalue = 0 }, 8534 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8535 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8536 .access = PL1_R, .type = ARM_CP_CONST, 8537 .accessfn = access_aa64_tid3, 8538 .resetvalue = 0 }, 8539 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8540 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8541 .access = PL1_R, .type = ARM_CP_CONST, 8542 .accessfn = access_aa64_tid3, 8543 .resetvalue = 0 }, 8544 /* 8545 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8546 * they're also RAZ for AArch64, and in v8 are gradually 8547 * being filled with AArch64-view-of-AArch32-ID-register 8548 * for new ID registers. 8549 */ 8550 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8552 .access = PL1_R, .type = ARM_CP_CONST, 8553 .accessfn = access_aa64_tid3, 8554 .resetvalue = 0 }, 8555 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8557 .access = PL1_R, .type = ARM_CP_CONST, 8558 .accessfn = access_aa64_tid3, 8559 .resetvalue = cpu->isar.id_pfr2 }, 8560 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8562 .access = PL1_R, .type = ARM_CP_CONST, 8563 .accessfn = access_aa64_tid3, 8564 .resetvalue = cpu->isar.id_dfr1 }, 8565 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8567 .access = PL1_R, .type = ARM_CP_CONST, 8568 .accessfn = access_aa64_tid3, 8569 .resetvalue = cpu->isar.id_mmfr5 }, 8570 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8572 .access = PL1_R, .type = ARM_CP_CONST, 8573 .accessfn = access_aa64_tid3, 8574 .resetvalue = 0 }, 8575 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8576 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8577 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8578 .fgt = FGT_PMCEIDN_EL0, 8579 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8580 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8581 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8582 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8583 .fgt = FGT_PMCEIDN_EL0, 8584 .resetvalue = cpu->pmceid0 }, 8585 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8586 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8587 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8588 .fgt = FGT_PMCEIDN_EL0, 8589 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8590 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8591 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8592 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8593 .fgt = FGT_PMCEIDN_EL0, 8594 .resetvalue = cpu->pmceid1 }, 8595 }; 8596 #ifdef CONFIG_USER_ONLY 8597 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8598 { .name = "ID_AA64PFR0_EL1", 8599 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8600 R_ID_AA64PFR0_ADVSIMD_MASK | 8601 R_ID_AA64PFR0_SVE_MASK | 8602 R_ID_AA64PFR0_DIT_MASK, 8603 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8604 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8605 { .name = "ID_AA64PFR1_EL1", 8606 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8607 R_ID_AA64PFR1_SSBS_MASK | 8608 R_ID_AA64PFR1_MTE_MASK | 8609 R_ID_AA64PFR1_SME_MASK }, 8610 { .name = "ID_AA64PFR*_EL1_RESERVED", 8611 .is_glob = true }, 8612 { .name = "ID_AA64ZFR0_EL1", 8613 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8614 R_ID_AA64ZFR0_AES_MASK | 8615 R_ID_AA64ZFR0_BITPERM_MASK | 8616 R_ID_AA64ZFR0_BFLOAT16_MASK | 8617 R_ID_AA64ZFR0_SHA3_MASK | 8618 R_ID_AA64ZFR0_SM4_MASK | 8619 R_ID_AA64ZFR0_I8MM_MASK | 8620 R_ID_AA64ZFR0_F32MM_MASK | 8621 R_ID_AA64ZFR0_F64MM_MASK }, 8622 { .name = "ID_AA64SMFR0_EL1", 8623 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8624 R_ID_AA64SMFR0_BI32I32_MASK | 8625 R_ID_AA64SMFR0_B16F32_MASK | 8626 R_ID_AA64SMFR0_F16F32_MASK | 8627 R_ID_AA64SMFR0_I8I32_MASK | 8628 R_ID_AA64SMFR0_F16F16_MASK | 8629 R_ID_AA64SMFR0_B16B16_MASK | 8630 R_ID_AA64SMFR0_I16I32_MASK | 8631 R_ID_AA64SMFR0_F64F64_MASK | 8632 R_ID_AA64SMFR0_I16I64_MASK | 8633 R_ID_AA64SMFR0_SMEVER_MASK | 8634 R_ID_AA64SMFR0_FA64_MASK }, 8635 { .name = "ID_AA64MMFR0_EL1", 8636 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8637 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8638 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8639 { .name = "ID_AA64MMFR1_EL1", 8640 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8641 { .name = "ID_AA64MMFR2_EL1", 8642 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8643 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8644 .is_glob = true }, 8645 { .name = "ID_AA64DFR0_EL1", 8646 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8647 { .name = "ID_AA64DFR1_EL1" }, 8648 { .name = "ID_AA64DFR*_EL1_RESERVED", 8649 .is_glob = true }, 8650 { .name = "ID_AA64AFR*", 8651 .is_glob = true }, 8652 { .name = "ID_AA64ISAR0_EL1", 8653 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8654 R_ID_AA64ISAR0_SHA1_MASK | 8655 R_ID_AA64ISAR0_SHA2_MASK | 8656 R_ID_AA64ISAR0_CRC32_MASK | 8657 R_ID_AA64ISAR0_ATOMIC_MASK | 8658 R_ID_AA64ISAR0_RDM_MASK | 8659 R_ID_AA64ISAR0_SHA3_MASK | 8660 R_ID_AA64ISAR0_SM3_MASK | 8661 R_ID_AA64ISAR0_SM4_MASK | 8662 R_ID_AA64ISAR0_DP_MASK | 8663 R_ID_AA64ISAR0_FHM_MASK | 8664 R_ID_AA64ISAR0_TS_MASK | 8665 R_ID_AA64ISAR0_RNDR_MASK }, 8666 { .name = "ID_AA64ISAR1_EL1", 8667 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8668 R_ID_AA64ISAR1_APA_MASK | 8669 R_ID_AA64ISAR1_API_MASK | 8670 R_ID_AA64ISAR1_JSCVT_MASK | 8671 R_ID_AA64ISAR1_FCMA_MASK | 8672 R_ID_AA64ISAR1_LRCPC_MASK | 8673 R_ID_AA64ISAR1_GPA_MASK | 8674 R_ID_AA64ISAR1_GPI_MASK | 8675 R_ID_AA64ISAR1_FRINTTS_MASK | 8676 R_ID_AA64ISAR1_SB_MASK | 8677 R_ID_AA64ISAR1_BF16_MASK | 8678 R_ID_AA64ISAR1_DGH_MASK | 8679 R_ID_AA64ISAR1_I8MM_MASK }, 8680 { .name = "ID_AA64ISAR2_EL1", 8681 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8682 R_ID_AA64ISAR2_RPRES_MASK | 8683 R_ID_AA64ISAR2_GPA3_MASK | 8684 R_ID_AA64ISAR2_APA3_MASK | 8685 R_ID_AA64ISAR2_MOPS_MASK | 8686 R_ID_AA64ISAR2_BC_MASK | 8687 R_ID_AA64ISAR2_RPRFM_MASK | 8688 R_ID_AA64ISAR2_CSSC_MASK }, 8689 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8690 .is_glob = true }, 8691 }; 8692 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8693 #endif 8694 /* 8695 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8696 * TODO: For RMR, a write with bit 1 set should do something with 8697 * cpu_reset(). In the meantime, "the bit is strictly a request", 8698 * so we are in spec just ignoring writes. 8699 */ 8700 if (!arm_feature(env, ARM_FEATURE_EL3) && 8701 !arm_feature(env, ARM_FEATURE_EL2)) { 8702 ARMCPRegInfo el1_reset_regs[] = { 8703 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8704 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8705 .access = PL1_R, 8706 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8707 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8708 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8709 .access = PL1_RW, .type = ARM_CP_CONST, 8710 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8711 }; 8712 define_arm_cp_regs(cpu, el1_reset_regs); 8713 } 8714 define_arm_cp_regs(cpu, v8_idregs); 8715 define_arm_cp_regs(cpu, v8_cp_reginfo); 8716 8717 for (i = 4; i < 16; i++) { 8718 /* 8719 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8720 * For pre-v8 cores there are RAZ patterns for these in 8721 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8722 * v8 extends the "must RAZ" part of the ID register space 8723 * to also cover c0, 0, c{8-15}, {0-7}. 8724 * These are STATE_AA32 because in the AArch64 sysreg space 8725 * c4-c7 is where the AArch64 ID registers live (and we've 8726 * already defined those in v8_idregs[]), and c8-c15 are not 8727 * "must RAZ" for AArch64. 8728 */ 8729 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8730 ARMCPRegInfo v8_aa32_raz_idregs = { 8731 .name = name, 8732 .state = ARM_CP_STATE_AA32, 8733 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8734 .access = PL1_R, .type = ARM_CP_CONST, 8735 .accessfn = access_aa64_tid3, 8736 .resetvalue = 0 }; 8737 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8738 } 8739 } 8740 8741 /* 8742 * Register the base EL2 cpregs. 8743 * Pre v8, these registers are implemented only as part of the 8744 * Virtualization Extensions (EL2 present). Beginning with v8, 8745 * if EL2 is missing but EL3 is enabled, mostly these become 8746 * RES0 from EL3, with some specific exceptions. 8747 */ 8748 if (arm_feature(env, ARM_FEATURE_EL2) 8749 || (arm_feature(env, ARM_FEATURE_EL3) 8750 && arm_feature(env, ARM_FEATURE_V8))) { 8751 uint64_t vmpidr_def = mpidr_read_val(env); 8752 ARMCPRegInfo vpidr_regs[] = { 8753 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8754 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8755 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8756 .resetvalue = cpu->midr, 8757 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8758 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8759 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8760 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8761 .access = PL2_RW, .resetvalue = cpu->midr, 8762 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8763 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8764 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8765 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8766 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8767 .resetvalue = vmpidr_def, 8768 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8769 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8770 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8771 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8772 .access = PL2_RW, .resetvalue = vmpidr_def, 8773 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8774 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8775 }; 8776 /* 8777 * The only field of MDCR_EL2 that has a defined architectural reset 8778 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8779 */ 8780 ARMCPRegInfo mdcr_el2 = { 8781 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8782 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8783 .writefn = mdcr_el2_write, 8784 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8785 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8786 }; 8787 define_one_arm_cp_reg(cpu, &mdcr_el2); 8788 define_arm_cp_regs(cpu, vpidr_regs); 8789 define_arm_cp_regs(cpu, el2_cp_reginfo); 8790 if (arm_feature(env, ARM_FEATURE_V8)) { 8791 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8792 } 8793 if (cpu_isar_feature(aa64_sel2, cpu)) { 8794 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8795 } 8796 /* 8797 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8798 * See commentary near RMR_EL1. 8799 */ 8800 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8801 static const ARMCPRegInfo el2_reset_regs[] = { 8802 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8803 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8804 .access = PL2_R, 8805 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8806 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8807 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8808 .access = PL2_R, 8809 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8810 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8811 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8812 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8813 }; 8814 define_arm_cp_regs(cpu, el2_reset_regs); 8815 } 8816 } 8817 8818 /* Register the base EL3 cpregs. */ 8819 if (arm_feature(env, ARM_FEATURE_EL3)) { 8820 define_arm_cp_regs(cpu, el3_cp_reginfo); 8821 ARMCPRegInfo el3_regs[] = { 8822 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8823 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8824 .access = PL3_R, 8825 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8826 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8827 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8828 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8829 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8830 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8831 .access = PL3_RW, .type = ARM_CP_CONST, 8832 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8833 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8834 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8835 .access = PL3_RW, 8836 .raw_writefn = raw_write, .writefn = sctlr_write, 8837 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8838 .resetvalue = cpu->reset_sctlr }, 8839 }; 8840 8841 define_arm_cp_regs(cpu, el3_regs); 8842 } 8843 /* 8844 * The behaviour of NSACR is sufficiently various that we don't 8845 * try to describe it in a single reginfo: 8846 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8847 * reads as constant 0xc00 from NS EL1 and NS EL2 8848 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8849 * if v7 without EL3, register doesn't exist 8850 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8851 */ 8852 if (arm_feature(env, ARM_FEATURE_EL3)) { 8853 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8854 static const ARMCPRegInfo nsacr = { 8855 .name = "NSACR", .type = ARM_CP_CONST, 8856 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8857 .access = PL1_RW, .accessfn = nsacr_access, 8858 .resetvalue = 0xc00 8859 }; 8860 define_one_arm_cp_reg(cpu, &nsacr); 8861 } else { 8862 static const ARMCPRegInfo nsacr = { 8863 .name = "NSACR", 8864 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8865 .access = PL3_RW | PL1_R, 8866 .resetvalue = 0, 8867 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8868 }; 8869 define_one_arm_cp_reg(cpu, &nsacr); 8870 } 8871 } else { 8872 if (arm_feature(env, ARM_FEATURE_V8)) { 8873 static const ARMCPRegInfo nsacr = { 8874 .name = "NSACR", .type = ARM_CP_CONST, 8875 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8876 .access = PL1_R, 8877 .resetvalue = 0xc00 8878 }; 8879 define_one_arm_cp_reg(cpu, &nsacr); 8880 } 8881 } 8882 8883 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8884 if (arm_feature(env, ARM_FEATURE_V6)) { 8885 /* PMSAv6 not implemented */ 8886 assert(arm_feature(env, ARM_FEATURE_V7)); 8887 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8888 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8889 } else { 8890 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8891 } 8892 } else { 8893 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8894 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8895 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8896 if (cpu_isar_feature(aa32_hpd, cpu)) { 8897 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8898 } 8899 } 8900 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8901 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8902 } 8903 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8904 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8905 } 8906 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8907 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8908 } 8909 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8910 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8911 } 8912 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8913 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8914 } 8915 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8916 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8917 } 8918 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8919 define_arm_cp_regs(cpu, omap_cp_reginfo); 8920 } 8921 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8922 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8923 } 8924 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8925 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8926 } 8927 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8928 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8929 } 8930 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8931 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8932 } 8933 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8934 define_arm_cp_regs(cpu, jazelle_regs); 8935 } 8936 /* 8937 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8938 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8939 * be read-only (ie write causes UNDEF exception). 8940 */ 8941 { 8942 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8943 /* 8944 * Pre-v8 MIDR space. 8945 * Note that the MIDR isn't a simple constant register because 8946 * of the TI925 behaviour where writes to another register can 8947 * cause the MIDR value to change. 8948 * 8949 * Unimplemented registers in the c15 0 0 0 space default to 8950 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8951 * and friends override accordingly. 8952 */ 8953 { .name = "MIDR", 8954 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8955 .access = PL1_R, .resetvalue = cpu->midr, 8956 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8957 .readfn = midr_read, 8958 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8959 .type = ARM_CP_OVERRIDE }, 8960 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8961 { .name = "DUMMY", 8962 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8963 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8964 { .name = "DUMMY", 8965 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8966 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8967 { .name = "DUMMY", 8968 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8969 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8970 { .name = "DUMMY", 8971 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8972 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8973 { .name = "DUMMY", 8974 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8975 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8976 }; 8977 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8978 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8980 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8981 .fgt = FGT_MIDR_EL1, 8982 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8983 .readfn = midr_read }, 8984 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8985 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8986 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8987 .access = PL1_R, .resetvalue = cpu->midr }, 8988 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8990 .access = PL1_R, 8991 .accessfn = access_aa64_tid1, 8992 .fgt = FGT_REVIDR_EL1, 8993 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8994 }; 8995 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8996 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8997 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8998 .access = PL1_R, .resetvalue = cpu->midr 8999 }; 9000 ARMCPRegInfo id_cp_reginfo[] = { 9001 /* These are common to v8 and pre-v8 */ 9002 { .name = "CTR", 9003 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9004 .access = PL1_R, .accessfn = ctr_el0_access, 9005 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9006 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9007 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9008 .access = PL0_R, .accessfn = ctr_el0_access, 9009 .fgt = FGT_CTR_EL0, 9010 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9011 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9012 { .name = "TCMTR", 9013 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9014 .access = PL1_R, 9015 .accessfn = access_aa32_tid1, 9016 .type = ARM_CP_CONST, .resetvalue = 0 }, 9017 }; 9018 /* TLBTR is specific to VMSA */ 9019 ARMCPRegInfo id_tlbtr_reginfo = { 9020 .name = "TLBTR", 9021 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9022 .access = PL1_R, 9023 .accessfn = access_aa32_tid1, 9024 .type = ARM_CP_CONST, .resetvalue = 0, 9025 }; 9026 /* MPUIR is specific to PMSA V6+ */ 9027 ARMCPRegInfo id_mpuir_reginfo = { 9028 .name = "MPUIR", 9029 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9030 .access = PL1_R, .type = ARM_CP_CONST, 9031 .resetvalue = cpu->pmsav7_dregion << 8 9032 }; 9033 /* HMPUIR is specific to PMSA V8 */ 9034 ARMCPRegInfo id_hmpuir_reginfo = { 9035 .name = "HMPUIR", 9036 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9037 .access = PL2_R, .type = ARM_CP_CONST, 9038 .resetvalue = cpu->pmsav8r_hdregion 9039 }; 9040 static const ARMCPRegInfo crn0_wi_reginfo = { 9041 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9042 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9043 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9044 }; 9045 #ifdef CONFIG_USER_ONLY 9046 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9047 { .name = "MIDR_EL1", 9048 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9049 R_MIDR_EL1_PARTNUM_MASK | 9050 R_MIDR_EL1_ARCHITECTURE_MASK | 9051 R_MIDR_EL1_VARIANT_MASK | 9052 R_MIDR_EL1_IMPLEMENTER_MASK }, 9053 { .name = "REVIDR_EL1" }, 9054 }; 9055 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9056 #endif 9057 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9058 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9059 size_t i; 9060 /* 9061 * Register the blanket "writes ignored" value first to cover the 9062 * whole space. Then update the specific ID registers to allow write 9063 * access, so that they ignore writes rather than causing them to 9064 * UNDEF. 9065 */ 9066 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9067 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9068 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9069 } 9070 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9071 id_cp_reginfo[i].access = PL1_RW; 9072 } 9073 id_mpuir_reginfo.access = PL1_RW; 9074 id_tlbtr_reginfo.access = PL1_RW; 9075 } 9076 if (arm_feature(env, ARM_FEATURE_V8)) { 9077 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9078 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9079 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9080 } 9081 } else { 9082 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9083 } 9084 define_arm_cp_regs(cpu, id_cp_reginfo); 9085 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9086 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9087 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9088 arm_feature(env, ARM_FEATURE_V8)) { 9089 uint32_t i = 0; 9090 char *tmp_string; 9091 9092 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9093 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9094 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9095 9096 /* Register alias is only valid for first 32 indexes */ 9097 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9098 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9099 uint8_t opc1 = extract32(i, 4, 1); 9100 uint8_t opc2 = extract32(i, 0, 1) << 2; 9101 9102 tmp_string = g_strdup_printf("PRBAR%u", i); 9103 ARMCPRegInfo tmp_prbarn_reginfo = { 9104 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9105 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9106 .access = PL1_RW, .resetvalue = 0, 9107 .accessfn = access_tvm_trvm, 9108 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9109 }; 9110 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9111 g_free(tmp_string); 9112 9113 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9114 tmp_string = g_strdup_printf("PRLAR%u", i); 9115 ARMCPRegInfo tmp_prlarn_reginfo = { 9116 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9117 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9118 .access = PL1_RW, .resetvalue = 0, 9119 .accessfn = access_tvm_trvm, 9120 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9121 }; 9122 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9123 g_free(tmp_string); 9124 } 9125 9126 /* Register alias is only valid for first 32 indexes */ 9127 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9128 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9129 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9130 uint8_t opc2 = extract32(i, 0, 1) << 2; 9131 9132 tmp_string = g_strdup_printf("HPRBAR%u", i); 9133 ARMCPRegInfo tmp_hprbarn_reginfo = { 9134 .name = tmp_string, 9135 .type = ARM_CP_NO_RAW, 9136 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9137 .access = PL2_RW, .resetvalue = 0, 9138 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9139 }; 9140 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9141 g_free(tmp_string); 9142 9143 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9144 tmp_string = g_strdup_printf("HPRLAR%u", i); 9145 ARMCPRegInfo tmp_hprlarn_reginfo = { 9146 .name = tmp_string, 9147 .type = ARM_CP_NO_RAW, 9148 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9149 .access = PL2_RW, .resetvalue = 0, 9150 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9151 }; 9152 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9153 g_free(tmp_string); 9154 } 9155 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9156 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9157 } 9158 } 9159 9160 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9161 ARMCPRegInfo mpidr_cp_reginfo[] = { 9162 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9163 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9164 .fgt = FGT_MPIDR_EL1, 9165 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9166 }; 9167 #ifdef CONFIG_USER_ONLY 9168 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9169 { .name = "MPIDR_EL1", 9170 .fixed_bits = 0x0000000080000000 }, 9171 }; 9172 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9173 #endif 9174 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9175 } 9176 9177 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9178 ARMCPRegInfo auxcr_reginfo[] = { 9179 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9180 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9181 .access = PL1_RW, .accessfn = access_tacr, 9182 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9183 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9184 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9185 .access = PL2_RW, .type = ARM_CP_CONST, 9186 .resetvalue = 0 }, 9187 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9188 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9189 .access = PL3_RW, .type = ARM_CP_CONST, 9190 .resetvalue = 0 }, 9191 }; 9192 define_arm_cp_regs(cpu, auxcr_reginfo); 9193 if (cpu_isar_feature(aa32_ac2, cpu)) { 9194 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9195 } 9196 } 9197 9198 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9199 /* 9200 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9201 * There are two flavours: 9202 * (1) older 32-bit only cores have a simple 32-bit CBAR 9203 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9204 * 32-bit register visible to AArch32 at a different encoding 9205 * to the "flavour 1" register and with the bits rearranged to 9206 * be able to squash a 64-bit address into the 32-bit view. 9207 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9208 * in future if we support AArch32-only configs of some of the 9209 * AArch64 cores we might need to add a specific feature flag 9210 * to indicate cores with "flavour 2" CBAR. 9211 */ 9212 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9213 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9214 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9215 | extract64(cpu->reset_cbar, 32, 12); 9216 ARMCPRegInfo cbar_reginfo[] = { 9217 { .name = "CBAR", 9218 .type = ARM_CP_CONST, 9219 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9220 .access = PL1_R, .resetvalue = cbar32 }, 9221 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9222 .type = ARM_CP_CONST, 9223 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9224 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9225 }; 9226 /* We don't implement a r/w 64 bit CBAR currently */ 9227 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9228 define_arm_cp_regs(cpu, cbar_reginfo); 9229 } else { 9230 ARMCPRegInfo cbar = { 9231 .name = "CBAR", 9232 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9233 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9234 .fieldoffset = offsetof(CPUARMState, 9235 cp15.c15_config_base_address) 9236 }; 9237 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9238 cbar.access = PL1_R; 9239 cbar.fieldoffset = 0; 9240 cbar.type = ARM_CP_CONST; 9241 } 9242 define_one_arm_cp_reg(cpu, &cbar); 9243 } 9244 } 9245 9246 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9247 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9248 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9249 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9250 .access = PL1_RW, .writefn = vbar_write, 9251 .fgt = FGT_VBAR_EL1, 9252 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9253 offsetof(CPUARMState, cp15.vbar_ns) }, 9254 .resetvalue = 0 }, 9255 }; 9256 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9257 } 9258 9259 /* Generic registers whose values depend on the implementation */ 9260 { 9261 ARMCPRegInfo sctlr = { 9262 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9263 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9264 .access = PL1_RW, .accessfn = access_tvm_trvm, 9265 .fgt = FGT_SCTLR_EL1, 9266 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9267 offsetof(CPUARMState, cp15.sctlr_ns) }, 9268 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9269 .raw_writefn = raw_write, 9270 }; 9271 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9272 /* 9273 * Normally we would always end the TB on an SCTLR write, but Linux 9274 * arch/arm/mach-pxa/sleep.S expects two instructions following 9275 * an MMU enable to execute from cache. Imitate this behaviour. 9276 */ 9277 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9278 } 9279 define_one_arm_cp_reg(cpu, &sctlr); 9280 9281 if (arm_feature(env, ARM_FEATURE_PMSA) && 9282 arm_feature(env, ARM_FEATURE_V8)) { 9283 ARMCPRegInfo vsctlr = { 9284 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9285 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9286 .access = PL2_RW, .resetvalue = 0x0, 9287 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9288 }; 9289 define_one_arm_cp_reg(cpu, &vsctlr); 9290 } 9291 } 9292 9293 if (cpu_isar_feature(aa64_lor, cpu)) { 9294 define_arm_cp_regs(cpu, lor_reginfo); 9295 } 9296 if (cpu_isar_feature(aa64_pan, cpu)) { 9297 define_one_arm_cp_reg(cpu, &pan_reginfo); 9298 } 9299 #ifndef CONFIG_USER_ONLY 9300 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9301 define_arm_cp_regs(cpu, ats1e1_reginfo); 9302 } 9303 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9304 define_arm_cp_regs(cpu, ats1cp_reginfo); 9305 } 9306 #endif 9307 if (cpu_isar_feature(aa64_uao, cpu)) { 9308 define_one_arm_cp_reg(cpu, &uao_reginfo); 9309 } 9310 9311 if (cpu_isar_feature(aa64_dit, cpu)) { 9312 define_one_arm_cp_reg(cpu, &dit_reginfo); 9313 } 9314 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9315 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9316 } 9317 if (cpu_isar_feature(any_ras, cpu)) { 9318 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9319 } 9320 9321 if (cpu_isar_feature(aa64_vh, cpu) || 9322 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9323 define_one_arm_cp_reg(cpu, &contextidr_el2); 9324 } 9325 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9326 define_arm_cp_regs(cpu, vhe_reginfo); 9327 } 9328 9329 if (cpu_isar_feature(aa64_sve, cpu)) { 9330 define_arm_cp_regs(cpu, zcr_reginfo); 9331 } 9332 9333 if (cpu_isar_feature(aa64_hcx, cpu)) { 9334 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9335 } 9336 9337 #ifdef TARGET_AARCH64 9338 if (cpu_isar_feature(aa64_sme, cpu)) { 9339 define_arm_cp_regs(cpu, sme_reginfo); 9340 } 9341 if (cpu_isar_feature(aa64_pauth, cpu)) { 9342 define_arm_cp_regs(cpu, pauth_reginfo); 9343 } 9344 if (cpu_isar_feature(aa64_rndr, cpu)) { 9345 define_arm_cp_regs(cpu, rndr_reginfo); 9346 } 9347 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9348 define_arm_cp_regs(cpu, tlbirange_reginfo); 9349 } 9350 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9351 define_arm_cp_regs(cpu, tlbios_reginfo); 9352 } 9353 /* Data Cache clean instructions up to PoP */ 9354 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9355 define_one_arm_cp_reg(cpu, dcpop_reg); 9356 9357 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9358 define_one_arm_cp_reg(cpu, dcpodp_reg); 9359 } 9360 } 9361 9362 /* 9363 * If full MTE is enabled, add all of the system registers. 9364 * If only "instructions available at EL0" are enabled, 9365 * then define only a RAZ/WI version of PSTATE.TCO. 9366 */ 9367 if (cpu_isar_feature(aa64_mte, cpu)) { 9368 ARMCPRegInfo gmid_reginfo = { 9369 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9370 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9371 .access = PL1_R, .accessfn = access_aa64_tid5, 9372 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9373 }; 9374 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9375 define_arm_cp_regs(cpu, mte_reginfo); 9376 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9377 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9378 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9379 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9380 } 9381 9382 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9383 define_arm_cp_regs(cpu, scxtnum_reginfo); 9384 } 9385 9386 if (cpu_isar_feature(aa64_fgt, cpu)) { 9387 define_arm_cp_regs(cpu, fgt_reginfo); 9388 } 9389 9390 if (cpu_isar_feature(aa64_rme, cpu)) { 9391 define_arm_cp_regs(cpu, rme_reginfo); 9392 if (cpu_isar_feature(aa64_mte, cpu)) { 9393 define_arm_cp_regs(cpu, rme_mte_reginfo); 9394 } 9395 } 9396 #endif 9397 9398 if (cpu_isar_feature(any_predinv, cpu)) { 9399 define_arm_cp_regs(cpu, predinv_reginfo); 9400 } 9401 9402 if (cpu_isar_feature(any_ccidx, cpu)) { 9403 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9404 } 9405 9406 #ifndef CONFIG_USER_ONLY 9407 /* 9408 * Register redirections and aliases must be done last, 9409 * after the registers from the other extensions have been defined. 9410 */ 9411 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9412 define_arm_vh_e2h_redirects_aliases(cpu); 9413 } 9414 #endif 9415 } 9416 9417 /* Sort alphabetically by type name, except for "any". */ 9418 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9419 { 9420 ObjectClass *class_a = (ObjectClass *)a; 9421 ObjectClass *class_b = (ObjectClass *)b; 9422 const char *name_a, *name_b; 9423 9424 name_a = object_class_get_name(class_a); 9425 name_b = object_class_get_name(class_b); 9426 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9427 return 1; 9428 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9429 return -1; 9430 } else { 9431 return strcmp(name_a, name_b); 9432 } 9433 } 9434 9435 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9436 { 9437 ObjectClass *oc = data; 9438 CPUClass *cc = CPU_CLASS(oc); 9439 const char *typename; 9440 char *name; 9441 9442 typename = object_class_get_name(oc); 9443 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9444 if (cc->deprecation_note) { 9445 qemu_printf(" %s (deprecated)\n", name); 9446 } else { 9447 qemu_printf(" %s\n", name); 9448 } 9449 g_free(name); 9450 } 9451 9452 void arm_cpu_list(void) 9453 { 9454 GSList *list; 9455 9456 list = object_class_get_list(TYPE_ARM_CPU, false); 9457 list = g_slist_sort(list, arm_cpu_list_compare); 9458 qemu_printf("Available CPUs:\n"); 9459 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9460 g_slist_free(list); 9461 } 9462 9463 /* 9464 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9465 * add a single reginfo struct to the hash table. 9466 */ 9467 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9468 void *opaque, CPState state, 9469 CPSecureState secstate, 9470 int crm, int opc1, int opc2, 9471 const char *name) 9472 { 9473 CPUARMState *env = &cpu->env; 9474 uint32_t key; 9475 ARMCPRegInfo *r2; 9476 bool is64 = r->type & ARM_CP_64BIT; 9477 bool ns = secstate & ARM_CP_SECSTATE_NS; 9478 int cp = r->cp; 9479 size_t name_len; 9480 bool make_const; 9481 9482 switch (state) { 9483 case ARM_CP_STATE_AA32: 9484 /* We assume it is a cp15 register if the .cp field is left unset. */ 9485 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9486 cp = 15; 9487 } 9488 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9489 break; 9490 case ARM_CP_STATE_AA64: 9491 /* 9492 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9493 * cp == 0 as equivalent to the value for "standard guest-visible 9494 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9495 * in their AArch64 view (the .cp value may be non-zero for the 9496 * benefit of the AArch32 view). 9497 */ 9498 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9499 cp = CP_REG_ARM64_SYSREG_CP; 9500 } 9501 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9502 break; 9503 default: 9504 g_assert_not_reached(); 9505 } 9506 9507 /* Overriding of an existing definition must be explicitly requested. */ 9508 if (!(r->type & ARM_CP_OVERRIDE)) { 9509 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9510 if (oldreg) { 9511 assert(oldreg->type & ARM_CP_OVERRIDE); 9512 } 9513 } 9514 9515 /* 9516 * Eliminate registers that are not present because the EL is missing. 9517 * Doing this here makes it easier to put all registers for a given 9518 * feature into the same ARMCPRegInfo array and define them all at once. 9519 */ 9520 make_const = false; 9521 if (arm_feature(env, ARM_FEATURE_EL3)) { 9522 /* 9523 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9524 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9525 */ 9526 int min_el = ctz32(r->access) / 2; 9527 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9528 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9529 return; 9530 } 9531 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9532 } 9533 } else { 9534 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9535 ? PL2_RW : PL1_RW); 9536 if ((r->access & max_el) == 0) { 9537 return; 9538 } 9539 } 9540 9541 /* Combine cpreg and name into one allocation. */ 9542 name_len = strlen(name) + 1; 9543 r2 = g_malloc(sizeof(*r2) + name_len); 9544 *r2 = *r; 9545 r2->name = memcpy(r2 + 1, name, name_len); 9546 9547 /* 9548 * Update fields to match the instantiation, overwiting wildcards 9549 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9550 */ 9551 r2->cp = cp; 9552 r2->crm = crm; 9553 r2->opc1 = opc1; 9554 r2->opc2 = opc2; 9555 r2->state = state; 9556 r2->secure = secstate; 9557 if (opaque) { 9558 r2->opaque = opaque; 9559 } 9560 9561 if (make_const) { 9562 /* This should not have been a very special register to begin. */ 9563 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9564 assert(old_special == 0 || old_special == ARM_CP_NOP); 9565 /* 9566 * Set the special function to CONST, retaining the other flags. 9567 * This is important for e.g. ARM_CP_SVE so that we still 9568 * take the SVE trap if CPTR_EL3.EZ == 0. 9569 */ 9570 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9571 /* 9572 * Usually, these registers become RES0, but there are a few 9573 * special cases like VPIDR_EL2 which have a constant non-zero 9574 * value with writes ignored. 9575 */ 9576 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9577 r2->resetvalue = 0; 9578 } 9579 /* 9580 * ARM_CP_CONST has precedence, so removing the callbacks and 9581 * offsets are not strictly necessary, but it is potentially 9582 * less confusing to debug later. 9583 */ 9584 r2->readfn = NULL; 9585 r2->writefn = NULL; 9586 r2->raw_readfn = NULL; 9587 r2->raw_writefn = NULL; 9588 r2->resetfn = NULL; 9589 r2->fieldoffset = 0; 9590 r2->bank_fieldoffsets[0] = 0; 9591 r2->bank_fieldoffsets[1] = 0; 9592 } else { 9593 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9594 9595 if (isbanked) { 9596 /* 9597 * Register is banked (using both entries in array). 9598 * Overwriting fieldoffset as the array is only used to define 9599 * banked registers but later only fieldoffset is used. 9600 */ 9601 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9602 } 9603 if (state == ARM_CP_STATE_AA32) { 9604 if (isbanked) { 9605 /* 9606 * If the register is banked then we don't need to migrate or 9607 * reset the 32-bit instance in certain cases: 9608 * 9609 * 1) If the register has both 32-bit and 64-bit instances 9610 * then we can count on the 64-bit instance taking care 9611 * of the non-secure bank. 9612 * 2) If ARMv8 is enabled then we can count on a 64-bit 9613 * version taking care of the secure bank. This requires 9614 * that separate 32 and 64-bit definitions are provided. 9615 */ 9616 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9617 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9618 r2->type |= ARM_CP_ALIAS; 9619 } 9620 } else if ((secstate != r->secure) && !ns) { 9621 /* 9622 * The register is not banked so we only want to allow 9623 * migration of the non-secure instance. 9624 */ 9625 r2->type |= ARM_CP_ALIAS; 9626 } 9627 9628 if (HOST_BIG_ENDIAN && 9629 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9630 r2->fieldoffset += sizeof(uint32_t); 9631 } 9632 } 9633 } 9634 9635 /* 9636 * By convention, for wildcarded registers only the first 9637 * entry is used for migration; the others are marked as 9638 * ALIAS so we don't try to transfer the register 9639 * multiple times. Special registers (ie NOP/WFI) are 9640 * never migratable and not even raw-accessible. 9641 */ 9642 if (r2->type & ARM_CP_SPECIAL_MASK) { 9643 r2->type |= ARM_CP_NO_RAW; 9644 } 9645 if (((r->crm == CP_ANY) && crm != 0) || 9646 ((r->opc1 == CP_ANY) && opc1 != 0) || 9647 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9648 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9649 } 9650 9651 /* 9652 * Check that raw accesses are either forbidden or handled. Note that 9653 * we can't assert this earlier because the setup of fieldoffset for 9654 * banked registers has to be done first. 9655 */ 9656 if (!(r2->type & ARM_CP_NO_RAW)) { 9657 assert(!raw_accessors_invalid(r2)); 9658 } 9659 9660 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9661 } 9662 9663 9664 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9665 const ARMCPRegInfo *r, void *opaque) 9666 { 9667 /* 9668 * Define implementations of coprocessor registers. 9669 * We store these in a hashtable because typically 9670 * there are less than 150 registers in a space which 9671 * is 16*16*16*8*8 = 262144 in size. 9672 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9673 * If a register is defined twice then the second definition is 9674 * used, so this can be used to define some generic registers and 9675 * then override them with implementation specific variations. 9676 * At least one of the original and the second definition should 9677 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9678 * against accidental use. 9679 * 9680 * The state field defines whether the register is to be 9681 * visible in the AArch32 or AArch64 execution state. If the 9682 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9683 * reginfo structure for the AArch32 view, which sees the lower 9684 * 32 bits of the 64 bit register. 9685 * 9686 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9687 * be wildcarded. AArch64 registers are always considered to be 64 9688 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9689 * the register, if any. 9690 */ 9691 int crm, opc1, opc2; 9692 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9693 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9694 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9695 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9696 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9697 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9698 CPState state; 9699 9700 /* 64 bit registers have only CRm and Opc1 fields */ 9701 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9702 /* op0 only exists in the AArch64 encodings */ 9703 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9704 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9705 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9706 /* 9707 * This API is only for Arm's system coprocessors (14 and 15) or 9708 * (M-profile or v7A-and-earlier only) for implementation defined 9709 * coprocessors in the range 0..7. Our decode assumes this, since 9710 * 8..13 can be used for other insns including VFP and Neon. See 9711 * valid_cp() in translate.c. Assert here that we haven't tried 9712 * to use an invalid coprocessor number. 9713 */ 9714 switch (r->state) { 9715 case ARM_CP_STATE_BOTH: 9716 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9717 if (r->cp == 0) { 9718 break; 9719 } 9720 /* fall through */ 9721 case ARM_CP_STATE_AA32: 9722 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9723 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9724 assert(r->cp >= 14 && r->cp <= 15); 9725 } else { 9726 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9727 } 9728 break; 9729 case ARM_CP_STATE_AA64: 9730 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9731 break; 9732 default: 9733 g_assert_not_reached(); 9734 } 9735 /* 9736 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9737 * encodes a minimum access level for the register. We roll this 9738 * runtime check into our general permission check code, so check 9739 * here that the reginfo's specified permissions are strict enough 9740 * to encompass the generic architectural permission check. 9741 */ 9742 if (r->state != ARM_CP_STATE_AA32) { 9743 CPAccessRights mask; 9744 switch (r->opc1) { 9745 case 0: 9746 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9747 mask = PL0U_R | PL1_RW; 9748 break; 9749 case 1: case 2: 9750 /* min_EL EL1 */ 9751 mask = PL1_RW; 9752 break; 9753 case 3: 9754 /* min_EL EL0 */ 9755 mask = PL0_RW; 9756 break; 9757 case 4: 9758 case 5: 9759 /* min_EL EL2 */ 9760 mask = PL2_RW; 9761 break; 9762 case 6: 9763 /* min_EL EL3 */ 9764 mask = PL3_RW; 9765 break; 9766 case 7: 9767 /* min_EL EL1, secure mode only (we don't check the latter) */ 9768 mask = PL1_RW; 9769 break; 9770 default: 9771 /* broken reginfo with out-of-range opc1 */ 9772 g_assert_not_reached(); 9773 } 9774 /* assert our permissions are not too lax (stricter is fine) */ 9775 assert((r->access & ~mask) == 0); 9776 } 9777 9778 /* 9779 * Check that the register definition has enough info to handle 9780 * reads and writes if they are permitted. 9781 */ 9782 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9783 if (r->access & PL3_R) { 9784 assert((r->fieldoffset || 9785 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9786 r->readfn); 9787 } 9788 if (r->access & PL3_W) { 9789 assert((r->fieldoffset || 9790 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9791 r->writefn); 9792 } 9793 } 9794 9795 for (crm = crmmin; crm <= crmmax; crm++) { 9796 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9797 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9798 for (state = ARM_CP_STATE_AA32; 9799 state <= ARM_CP_STATE_AA64; state++) { 9800 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9801 continue; 9802 } 9803 if (state == ARM_CP_STATE_AA32) { 9804 /* 9805 * Under AArch32 CP registers can be common 9806 * (same for secure and non-secure world) or banked. 9807 */ 9808 char *name; 9809 9810 switch (r->secure) { 9811 case ARM_CP_SECSTATE_S: 9812 case ARM_CP_SECSTATE_NS: 9813 add_cpreg_to_hashtable(cpu, r, opaque, state, 9814 r->secure, crm, opc1, opc2, 9815 r->name); 9816 break; 9817 case ARM_CP_SECSTATE_BOTH: 9818 name = g_strdup_printf("%s_S", r->name); 9819 add_cpreg_to_hashtable(cpu, r, opaque, state, 9820 ARM_CP_SECSTATE_S, 9821 crm, opc1, opc2, name); 9822 g_free(name); 9823 add_cpreg_to_hashtable(cpu, r, opaque, state, 9824 ARM_CP_SECSTATE_NS, 9825 crm, opc1, opc2, r->name); 9826 break; 9827 default: 9828 g_assert_not_reached(); 9829 } 9830 } else { 9831 /* 9832 * AArch64 registers get mapped to non-secure instance 9833 * of AArch32 9834 */ 9835 add_cpreg_to_hashtable(cpu, r, opaque, state, 9836 ARM_CP_SECSTATE_NS, 9837 crm, opc1, opc2, r->name); 9838 } 9839 } 9840 } 9841 } 9842 } 9843 } 9844 9845 /* Define a whole list of registers */ 9846 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9847 void *opaque, size_t len) 9848 { 9849 size_t i; 9850 for (i = 0; i < len; ++i) { 9851 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9852 } 9853 } 9854 9855 /* 9856 * Modify ARMCPRegInfo for access from userspace. 9857 * 9858 * This is a data driven modification directed by 9859 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9860 * user-space cannot alter any values and dynamic values pertaining to 9861 * execution state are hidden from user space view anyway. 9862 */ 9863 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9864 const ARMCPRegUserSpaceInfo *mods, 9865 size_t mods_len) 9866 { 9867 for (size_t mi = 0; mi < mods_len; ++mi) { 9868 const ARMCPRegUserSpaceInfo *m = mods + mi; 9869 GPatternSpec *pat = NULL; 9870 9871 if (m->is_glob) { 9872 pat = g_pattern_spec_new(m->name); 9873 } 9874 for (size_t ri = 0; ri < regs_len; ++ri) { 9875 ARMCPRegInfo *r = regs + ri; 9876 9877 if (pat && g_pattern_match_string(pat, r->name)) { 9878 r->type = ARM_CP_CONST; 9879 r->access = PL0U_R; 9880 r->resetvalue = 0; 9881 /* continue */ 9882 } else if (strcmp(r->name, m->name) == 0) { 9883 r->type = ARM_CP_CONST; 9884 r->access = PL0U_R; 9885 r->resetvalue &= m->exported_bits; 9886 r->resetvalue |= m->fixed_bits; 9887 break; 9888 } 9889 } 9890 if (pat) { 9891 g_pattern_spec_free(pat); 9892 } 9893 } 9894 } 9895 9896 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9897 { 9898 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9899 } 9900 9901 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9902 uint64_t value) 9903 { 9904 /* Helper coprocessor write function for write-ignore registers */ 9905 } 9906 9907 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9908 { 9909 /* Helper coprocessor write function for read-as-zero registers */ 9910 return 0; 9911 } 9912 9913 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9914 { 9915 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9916 } 9917 9918 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9919 { 9920 /* 9921 * Return true if it is not valid for us to switch to 9922 * this CPU mode (ie all the UNPREDICTABLE cases in 9923 * the ARM ARM CPSRWriteByInstr pseudocode). 9924 */ 9925 9926 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9927 if (write_type == CPSRWriteByInstr && 9928 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9929 mode == ARM_CPU_MODE_HYP)) { 9930 return 1; 9931 } 9932 9933 switch (mode) { 9934 case ARM_CPU_MODE_USR: 9935 return 0; 9936 case ARM_CPU_MODE_SYS: 9937 case ARM_CPU_MODE_SVC: 9938 case ARM_CPU_MODE_ABT: 9939 case ARM_CPU_MODE_UND: 9940 case ARM_CPU_MODE_IRQ: 9941 case ARM_CPU_MODE_FIQ: 9942 /* 9943 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9944 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9945 */ 9946 /* 9947 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9948 * and CPS are treated as illegal mode changes. 9949 */ 9950 if (write_type == CPSRWriteByInstr && 9951 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9952 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9953 return 1; 9954 } 9955 return 0; 9956 case ARM_CPU_MODE_HYP: 9957 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9958 case ARM_CPU_MODE_MON: 9959 return arm_current_el(env) < 3; 9960 default: 9961 return 1; 9962 } 9963 } 9964 9965 uint32_t cpsr_read(CPUARMState *env) 9966 { 9967 int ZF; 9968 ZF = (env->ZF == 0); 9969 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9970 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9971 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9972 | ((env->condexec_bits & 0xfc) << 8) 9973 | (env->GE << 16) | (env->daif & CPSR_AIF); 9974 } 9975 9976 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9977 CPSRWriteType write_type) 9978 { 9979 uint32_t changed_daif; 9980 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9981 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9982 9983 if (mask & CPSR_NZCV) { 9984 env->ZF = (~val) & CPSR_Z; 9985 env->NF = val; 9986 env->CF = (val >> 29) & 1; 9987 env->VF = (val << 3) & 0x80000000; 9988 } 9989 if (mask & CPSR_Q) { 9990 env->QF = ((val & CPSR_Q) != 0); 9991 } 9992 if (mask & CPSR_T) { 9993 env->thumb = ((val & CPSR_T) != 0); 9994 } 9995 if (mask & CPSR_IT_0_1) { 9996 env->condexec_bits &= ~3; 9997 env->condexec_bits |= (val >> 25) & 3; 9998 } 9999 if (mask & CPSR_IT_2_7) { 10000 env->condexec_bits &= 3; 10001 env->condexec_bits |= (val >> 8) & 0xfc; 10002 } 10003 if (mask & CPSR_GE) { 10004 env->GE = (val >> 16) & 0xf; 10005 } 10006 10007 /* 10008 * In a V7 implementation that includes the security extensions but does 10009 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10010 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10011 * bits respectively. 10012 * 10013 * In a V8 implementation, it is permitted for privileged software to 10014 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10015 */ 10016 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10017 arm_feature(env, ARM_FEATURE_EL3) && 10018 !arm_feature(env, ARM_FEATURE_EL2) && 10019 !arm_is_secure(env)) { 10020 10021 changed_daif = (env->daif ^ val) & mask; 10022 10023 if (changed_daif & CPSR_A) { 10024 /* 10025 * Check to see if we are allowed to change the masking of async 10026 * abort exceptions from a non-secure state. 10027 */ 10028 if (!(env->cp15.scr_el3 & SCR_AW)) { 10029 qemu_log_mask(LOG_GUEST_ERROR, 10030 "Ignoring attempt to switch CPSR_A flag from " 10031 "non-secure world with SCR.AW bit clear\n"); 10032 mask &= ~CPSR_A; 10033 } 10034 } 10035 10036 if (changed_daif & CPSR_F) { 10037 /* 10038 * Check to see if we are allowed to change the masking of FIQ 10039 * exceptions from a non-secure state. 10040 */ 10041 if (!(env->cp15.scr_el3 & SCR_FW)) { 10042 qemu_log_mask(LOG_GUEST_ERROR, 10043 "Ignoring attempt to switch CPSR_F flag from " 10044 "non-secure world with SCR.FW bit clear\n"); 10045 mask &= ~CPSR_F; 10046 } 10047 10048 /* 10049 * Check whether non-maskable FIQ (NMFI) support is enabled. 10050 * If this bit is set software is not allowed to mask 10051 * FIQs, but is allowed to set CPSR_F to 0. 10052 */ 10053 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10054 (val & CPSR_F)) { 10055 qemu_log_mask(LOG_GUEST_ERROR, 10056 "Ignoring attempt to enable CPSR_F flag " 10057 "(non-maskable FIQ [NMFI] support enabled)\n"); 10058 mask &= ~CPSR_F; 10059 } 10060 } 10061 } 10062 10063 env->daif &= ~(CPSR_AIF & mask); 10064 env->daif |= val & CPSR_AIF & mask; 10065 10066 if (write_type != CPSRWriteRaw && 10067 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10068 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10069 /* 10070 * Note that we can only get here in USR mode if this is a 10071 * gdb stub write; for this case we follow the architectural 10072 * behaviour for guest writes in USR mode of ignoring an attempt 10073 * to switch mode. (Those are caught by translate.c for writes 10074 * triggered by guest instructions.) 10075 */ 10076 mask &= ~CPSR_M; 10077 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10078 /* 10079 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10080 * v7, and has defined behaviour in v8: 10081 * + leave CPSR.M untouched 10082 * + allow changes to the other CPSR fields 10083 * + set PSTATE.IL 10084 * For user changes via the GDB stub, we don't set PSTATE.IL, 10085 * as this would be unnecessarily harsh for a user error. 10086 */ 10087 mask &= ~CPSR_M; 10088 if (write_type != CPSRWriteByGDBStub && 10089 arm_feature(env, ARM_FEATURE_V8)) { 10090 mask |= CPSR_IL; 10091 val |= CPSR_IL; 10092 } 10093 qemu_log_mask(LOG_GUEST_ERROR, 10094 "Illegal AArch32 mode switch attempt from %s to %s\n", 10095 aarch32_mode_name(env->uncached_cpsr), 10096 aarch32_mode_name(val)); 10097 } else { 10098 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10099 write_type == CPSRWriteExceptionReturn ? 10100 "Exception return from AArch32" : 10101 "AArch32 mode switch from", 10102 aarch32_mode_name(env->uncached_cpsr), 10103 aarch32_mode_name(val), env->regs[15]); 10104 switch_mode(env, val & CPSR_M); 10105 } 10106 } 10107 mask &= ~CACHED_CPSR_BITS; 10108 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10109 if (tcg_enabled() && rebuild_hflags) { 10110 arm_rebuild_hflags(env); 10111 } 10112 } 10113 10114 /* Sign/zero extend */ 10115 uint32_t HELPER(sxtb16)(uint32_t x) 10116 { 10117 uint32_t res; 10118 res = (uint16_t)(int8_t)x; 10119 res |= (uint32_t)(int8_t)(x >> 16) << 16; 10120 return res; 10121 } 10122 10123 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 10124 { 10125 /* 10126 * Take a division-by-zero exception if necessary; otherwise return 10127 * to get the usual non-trapping division behaviour (result of 0) 10128 */ 10129 if (arm_feature(env, ARM_FEATURE_M) 10130 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 10131 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 10132 } 10133 } 10134 10135 uint32_t HELPER(uxtb16)(uint32_t x) 10136 { 10137 uint32_t res; 10138 res = (uint16_t)(uint8_t)x; 10139 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 10140 return res; 10141 } 10142 10143 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 10144 { 10145 if (den == 0) { 10146 handle_possible_div0_trap(env, GETPC()); 10147 return 0; 10148 } 10149 if (num == INT_MIN && den == -1) { 10150 return INT_MIN; 10151 } 10152 return num / den; 10153 } 10154 10155 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 10156 { 10157 if (den == 0) { 10158 handle_possible_div0_trap(env, GETPC()); 10159 return 0; 10160 } 10161 return num / den; 10162 } 10163 10164 uint32_t HELPER(rbit)(uint32_t x) 10165 { 10166 return revbit32(x); 10167 } 10168 10169 #ifdef CONFIG_USER_ONLY 10170 10171 static void switch_mode(CPUARMState *env, int mode) 10172 { 10173 ARMCPU *cpu = env_archcpu(env); 10174 10175 if (mode != ARM_CPU_MODE_USR) { 10176 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10177 } 10178 } 10179 10180 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10181 uint32_t cur_el, bool secure) 10182 { 10183 return 1; 10184 } 10185 10186 void aarch64_sync_64_to_32(CPUARMState *env) 10187 { 10188 g_assert_not_reached(); 10189 } 10190 10191 #else 10192 10193 static void switch_mode(CPUARMState *env, int mode) 10194 { 10195 int old_mode; 10196 int i; 10197 10198 old_mode = env->uncached_cpsr & CPSR_M; 10199 if (mode == old_mode) { 10200 return; 10201 } 10202 10203 if (old_mode == ARM_CPU_MODE_FIQ) { 10204 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10205 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10206 } else if (mode == ARM_CPU_MODE_FIQ) { 10207 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10208 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10209 } 10210 10211 i = bank_number(old_mode); 10212 env->banked_r13[i] = env->regs[13]; 10213 env->banked_spsr[i] = env->spsr; 10214 10215 i = bank_number(mode); 10216 env->regs[13] = env->banked_r13[i]; 10217 env->spsr = env->banked_spsr[i]; 10218 10219 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10220 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10221 } 10222 10223 /* 10224 * Physical Interrupt Target EL Lookup Table 10225 * 10226 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10227 * 10228 * The below multi-dimensional table is used for looking up the target 10229 * exception level given numerous condition criteria. Specifically, the 10230 * target EL is based on SCR and HCR routing controls as well as the 10231 * currently executing EL and secure state. 10232 * 10233 * Dimensions: 10234 * target_el_table[2][2][2][2][2][4] 10235 * | | | | | +--- Current EL 10236 * | | | | +------ Non-secure(0)/Secure(1) 10237 * | | | +--------- HCR mask override 10238 * | | +------------ SCR exec state control 10239 * | +--------------- SCR mask override 10240 * +------------------ 32-bit(0)/64-bit(1) EL3 10241 * 10242 * The table values are as such: 10243 * 0-3 = EL0-EL3 10244 * -1 = Cannot occur 10245 * 10246 * The ARM ARM target EL table includes entries indicating that an "exception 10247 * is not taken". The two cases where this is applicable are: 10248 * 1) An exception is taken from EL3 but the SCR does not have the exception 10249 * routed to EL3. 10250 * 2) An exception is taken from EL2 but the HCR does not have the exception 10251 * routed to EL2. 10252 * In these two cases, the below table contain a target of EL1. This value is 10253 * returned as it is expected that the consumer of the table data will check 10254 * for "target EL >= current EL" to ensure the exception is not taken. 10255 * 10256 * SCR HCR 10257 * 64 EA AMO From 10258 * BIT IRQ IMO Non-secure Secure 10259 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10260 */ 10261 static const int8_t target_el_table[2][2][2][2][2][4] = { 10262 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10263 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10264 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10265 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10266 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10267 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10268 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10269 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10270 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10271 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10272 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10273 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10274 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10275 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10276 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10277 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10278 }; 10279 10280 /* 10281 * Determine the target EL for physical exceptions 10282 */ 10283 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10284 uint32_t cur_el, bool secure) 10285 { 10286 CPUARMState *env = cpu_env(cs); 10287 bool rw; 10288 bool scr; 10289 bool hcr; 10290 int target_el; 10291 /* Is the highest EL AArch64? */ 10292 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10293 uint64_t hcr_el2; 10294 10295 if (arm_feature(env, ARM_FEATURE_EL3)) { 10296 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10297 } else { 10298 /* 10299 * Either EL2 is the highest EL (and so the EL2 register width 10300 * is given by is64); or there is no EL2 or EL3, in which case 10301 * the value of 'rw' does not affect the table lookup anyway. 10302 */ 10303 rw = is64; 10304 } 10305 10306 hcr_el2 = arm_hcr_el2_eff(env); 10307 switch (excp_idx) { 10308 case EXCP_IRQ: 10309 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10310 hcr = hcr_el2 & HCR_IMO; 10311 break; 10312 case EXCP_FIQ: 10313 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10314 hcr = hcr_el2 & HCR_FMO; 10315 break; 10316 default: 10317 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10318 hcr = hcr_el2 & HCR_AMO; 10319 break; 10320 }; 10321 10322 /* 10323 * For these purposes, TGE and AMO/IMO/FMO both force the 10324 * interrupt to EL2. Fold TGE into the bit extracted above. 10325 */ 10326 hcr |= (hcr_el2 & HCR_TGE) != 0; 10327 10328 /* Perform a table-lookup for the target EL given the current state */ 10329 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10330 10331 assert(target_el > 0); 10332 10333 return target_el; 10334 } 10335 10336 void arm_log_exception(CPUState *cs) 10337 { 10338 int idx = cs->exception_index; 10339 10340 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10341 const char *exc = NULL; 10342 static const char * const excnames[] = { 10343 [EXCP_UDEF] = "Undefined Instruction", 10344 [EXCP_SWI] = "SVC", 10345 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10346 [EXCP_DATA_ABORT] = "Data Abort", 10347 [EXCP_IRQ] = "IRQ", 10348 [EXCP_FIQ] = "FIQ", 10349 [EXCP_BKPT] = "Breakpoint", 10350 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10351 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10352 [EXCP_HVC] = "Hypervisor Call", 10353 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10354 [EXCP_SMC] = "Secure Monitor Call", 10355 [EXCP_VIRQ] = "Virtual IRQ", 10356 [EXCP_VFIQ] = "Virtual FIQ", 10357 [EXCP_SEMIHOST] = "Semihosting call", 10358 [EXCP_NOCP] = "v7M NOCP UsageFault", 10359 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10360 [EXCP_STKOF] = "v8M STKOF UsageFault", 10361 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10362 [EXCP_LSERR] = "v8M LSERR UsageFault", 10363 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10364 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10365 [EXCP_VSERR] = "Virtual SERR", 10366 [EXCP_GPC] = "Granule Protection Check", 10367 }; 10368 10369 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10370 exc = excnames[idx]; 10371 } 10372 if (!exc) { 10373 exc = "unknown"; 10374 } 10375 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10376 idx, exc, cs->cpu_index); 10377 } 10378 } 10379 10380 /* 10381 * Function used to synchronize QEMU's AArch64 register set with AArch32 10382 * register set. This is necessary when switching between AArch32 and AArch64 10383 * execution state. 10384 */ 10385 void aarch64_sync_32_to_64(CPUARMState *env) 10386 { 10387 int i; 10388 uint32_t mode = env->uncached_cpsr & CPSR_M; 10389 10390 /* We can blanket copy R[0:7] to X[0:7] */ 10391 for (i = 0; i < 8; i++) { 10392 env->xregs[i] = env->regs[i]; 10393 } 10394 10395 /* 10396 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10397 * Otherwise, they come from the banked user regs. 10398 */ 10399 if (mode == ARM_CPU_MODE_FIQ) { 10400 for (i = 8; i < 13; i++) { 10401 env->xregs[i] = env->usr_regs[i - 8]; 10402 } 10403 } else { 10404 for (i = 8; i < 13; i++) { 10405 env->xregs[i] = env->regs[i]; 10406 } 10407 } 10408 10409 /* 10410 * Registers x13-x23 are the various mode SP and FP registers. Registers 10411 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10412 * from the mode banked register. 10413 */ 10414 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10415 env->xregs[13] = env->regs[13]; 10416 env->xregs[14] = env->regs[14]; 10417 } else { 10418 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10419 /* HYP is an exception in that it is copied from r14 */ 10420 if (mode == ARM_CPU_MODE_HYP) { 10421 env->xregs[14] = env->regs[14]; 10422 } else { 10423 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10424 } 10425 } 10426 10427 if (mode == ARM_CPU_MODE_HYP) { 10428 env->xregs[15] = env->regs[13]; 10429 } else { 10430 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10431 } 10432 10433 if (mode == ARM_CPU_MODE_IRQ) { 10434 env->xregs[16] = env->regs[14]; 10435 env->xregs[17] = env->regs[13]; 10436 } else { 10437 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10438 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10439 } 10440 10441 if (mode == ARM_CPU_MODE_SVC) { 10442 env->xregs[18] = env->regs[14]; 10443 env->xregs[19] = env->regs[13]; 10444 } else { 10445 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10446 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10447 } 10448 10449 if (mode == ARM_CPU_MODE_ABT) { 10450 env->xregs[20] = env->regs[14]; 10451 env->xregs[21] = env->regs[13]; 10452 } else { 10453 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10454 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10455 } 10456 10457 if (mode == ARM_CPU_MODE_UND) { 10458 env->xregs[22] = env->regs[14]; 10459 env->xregs[23] = env->regs[13]; 10460 } else { 10461 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10462 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10463 } 10464 10465 /* 10466 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10467 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10468 * FIQ bank for r8-r14. 10469 */ 10470 if (mode == ARM_CPU_MODE_FIQ) { 10471 for (i = 24; i < 31; i++) { 10472 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10473 } 10474 } else { 10475 for (i = 24; i < 29; i++) { 10476 env->xregs[i] = env->fiq_regs[i - 24]; 10477 } 10478 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10479 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10480 } 10481 10482 env->pc = env->regs[15]; 10483 } 10484 10485 /* 10486 * Function used to synchronize QEMU's AArch32 register set with AArch64 10487 * register set. This is necessary when switching between AArch32 and AArch64 10488 * execution state. 10489 */ 10490 void aarch64_sync_64_to_32(CPUARMState *env) 10491 { 10492 int i; 10493 uint32_t mode = env->uncached_cpsr & CPSR_M; 10494 10495 /* We can blanket copy X[0:7] to R[0:7] */ 10496 for (i = 0; i < 8; i++) { 10497 env->regs[i] = env->xregs[i]; 10498 } 10499 10500 /* 10501 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10502 * Otherwise, we copy x8-x12 into the banked user regs. 10503 */ 10504 if (mode == ARM_CPU_MODE_FIQ) { 10505 for (i = 8; i < 13; i++) { 10506 env->usr_regs[i - 8] = env->xregs[i]; 10507 } 10508 } else { 10509 for (i = 8; i < 13; i++) { 10510 env->regs[i] = env->xregs[i]; 10511 } 10512 } 10513 10514 /* 10515 * Registers r13 & r14 depend on the current mode. 10516 * If we are in a given mode, we copy the corresponding x registers to r13 10517 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10518 * for the mode. 10519 */ 10520 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10521 env->regs[13] = env->xregs[13]; 10522 env->regs[14] = env->xregs[14]; 10523 } else { 10524 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10525 10526 /* 10527 * HYP is an exception in that it does not have its own banked r14 but 10528 * shares the USR r14 10529 */ 10530 if (mode == ARM_CPU_MODE_HYP) { 10531 env->regs[14] = env->xregs[14]; 10532 } else { 10533 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10534 } 10535 } 10536 10537 if (mode == ARM_CPU_MODE_HYP) { 10538 env->regs[13] = env->xregs[15]; 10539 } else { 10540 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10541 } 10542 10543 if (mode == ARM_CPU_MODE_IRQ) { 10544 env->regs[14] = env->xregs[16]; 10545 env->regs[13] = env->xregs[17]; 10546 } else { 10547 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10548 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10549 } 10550 10551 if (mode == ARM_CPU_MODE_SVC) { 10552 env->regs[14] = env->xregs[18]; 10553 env->regs[13] = env->xregs[19]; 10554 } else { 10555 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10556 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10557 } 10558 10559 if (mode == ARM_CPU_MODE_ABT) { 10560 env->regs[14] = env->xregs[20]; 10561 env->regs[13] = env->xregs[21]; 10562 } else { 10563 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10564 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10565 } 10566 10567 if (mode == ARM_CPU_MODE_UND) { 10568 env->regs[14] = env->xregs[22]; 10569 env->regs[13] = env->xregs[23]; 10570 } else { 10571 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10572 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10573 } 10574 10575 /* 10576 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10577 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10578 * FIQ bank for r8-r14. 10579 */ 10580 if (mode == ARM_CPU_MODE_FIQ) { 10581 for (i = 24; i < 31; i++) { 10582 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10583 } 10584 } else { 10585 for (i = 24; i < 29; i++) { 10586 env->fiq_regs[i - 24] = env->xregs[i]; 10587 } 10588 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10589 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10590 } 10591 10592 env->regs[15] = env->pc; 10593 } 10594 10595 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10596 uint32_t mask, uint32_t offset, 10597 uint32_t newpc) 10598 { 10599 int new_el; 10600 10601 /* Change the CPU state so as to actually take the exception. */ 10602 switch_mode(env, new_mode); 10603 10604 /* 10605 * For exceptions taken to AArch32 we must clear the SS bit in both 10606 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10607 */ 10608 env->pstate &= ~PSTATE_SS; 10609 env->spsr = cpsr_read(env); 10610 /* Clear IT bits. */ 10611 env->condexec_bits = 0; 10612 /* Switch to the new mode, and to the correct instruction set. */ 10613 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10614 10615 /* This must be after mode switching. */ 10616 new_el = arm_current_el(env); 10617 10618 /* Set new mode endianness */ 10619 env->uncached_cpsr &= ~CPSR_E; 10620 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10621 env->uncached_cpsr |= CPSR_E; 10622 } 10623 /* J and IL must always be cleared for exception entry */ 10624 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10625 env->daif |= mask; 10626 10627 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10628 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10629 env->uncached_cpsr |= CPSR_SSBS; 10630 } else { 10631 env->uncached_cpsr &= ~CPSR_SSBS; 10632 } 10633 } 10634 10635 if (new_mode == ARM_CPU_MODE_HYP) { 10636 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10637 env->elr_el[2] = env->regs[15]; 10638 } else { 10639 /* CPSR.PAN is normally preserved preserved unless... */ 10640 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10641 switch (new_el) { 10642 case 3: 10643 if (!arm_is_secure_below_el3(env)) { 10644 /* ... the target is EL3, from non-secure state. */ 10645 env->uncached_cpsr &= ~CPSR_PAN; 10646 break; 10647 } 10648 /* ... the target is EL3, from secure state ... */ 10649 /* fall through */ 10650 case 1: 10651 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10652 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10653 env->uncached_cpsr |= CPSR_PAN; 10654 } 10655 break; 10656 } 10657 } 10658 /* 10659 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10660 * and we should just guard the thumb mode on V4 10661 */ 10662 if (arm_feature(env, ARM_FEATURE_V4T)) { 10663 env->thumb = 10664 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10665 } 10666 env->regs[14] = env->regs[15] + offset; 10667 } 10668 env->regs[15] = newpc; 10669 10670 if (tcg_enabled()) { 10671 arm_rebuild_hflags(env); 10672 } 10673 } 10674 10675 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10676 { 10677 /* 10678 * Handle exception entry to Hyp mode; this is sufficiently 10679 * different to entry to other AArch32 modes that we handle it 10680 * separately here. 10681 * 10682 * The vector table entry used is always the 0x14 Hyp mode entry point, 10683 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10684 * The offset applied to the preferred return address is always zero 10685 * (see DDI0487C.a section G1.12.3). 10686 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10687 */ 10688 uint32_t addr, mask; 10689 ARMCPU *cpu = ARM_CPU(cs); 10690 CPUARMState *env = &cpu->env; 10691 10692 switch (cs->exception_index) { 10693 case EXCP_UDEF: 10694 addr = 0x04; 10695 break; 10696 case EXCP_SWI: 10697 addr = 0x08; 10698 break; 10699 case EXCP_BKPT: 10700 /* Fall through to prefetch abort. */ 10701 case EXCP_PREFETCH_ABORT: 10702 env->cp15.ifar_s = env->exception.vaddress; 10703 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10704 (uint32_t)env->exception.vaddress); 10705 addr = 0x0c; 10706 break; 10707 case EXCP_DATA_ABORT: 10708 env->cp15.dfar_s = env->exception.vaddress; 10709 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10710 (uint32_t)env->exception.vaddress); 10711 addr = 0x10; 10712 break; 10713 case EXCP_IRQ: 10714 addr = 0x18; 10715 break; 10716 case EXCP_FIQ: 10717 addr = 0x1c; 10718 break; 10719 case EXCP_HVC: 10720 addr = 0x08; 10721 break; 10722 case EXCP_HYP_TRAP: 10723 addr = 0x14; 10724 break; 10725 default: 10726 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10727 } 10728 10729 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10730 if (!arm_feature(env, ARM_FEATURE_V8)) { 10731 /* 10732 * QEMU syndrome values are v8-style. v7 has the IL bit 10733 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10734 * If this is a v7 CPU, squash the IL bit in those cases. 10735 */ 10736 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10737 (cs->exception_index == EXCP_DATA_ABORT && 10738 !(env->exception.syndrome & ARM_EL_ISV)) || 10739 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10740 env->exception.syndrome &= ~ARM_EL_IL; 10741 } 10742 } 10743 env->cp15.esr_el[2] = env->exception.syndrome; 10744 } 10745 10746 if (arm_current_el(env) != 2 && addr < 0x14) { 10747 addr = 0x14; 10748 } 10749 10750 mask = 0; 10751 if (!(env->cp15.scr_el3 & SCR_EA)) { 10752 mask |= CPSR_A; 10753 } 10754 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10755 mask |= CPSR_I; 10756 } 10757 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10758 mask |= CPSR_F; 10759 } 10760 10761 addr += env->cp15.hvbar; 10762 10763 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10764 } 10765 10766 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10767 { 10768 ARMCPU *cpu = ARM_CPU(cs); 10769 CPUARMState *env = &cpu->env; 10770 uint32_t addr; 10771 uint32_t mask; 10772 int new_mode; 10773 uint32_t offset; 10774 uint32_t moe; 10775 10776 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10777 switch (syn_get_ec(env->exception.syndrome)) { 10778 case EC_BREAKPOINT: 10779 case EC_BREAKPOINT_SAME_EL: 10780 moe = 1; 10781 break; 10782 case EC_WATCHPOINT: 10783 case EC_WATCHPOINT_SAME_EL: 10784 moe = 10; 10785 break; 10786 case EC_AA32_BKPT: 10787 moe = 3; 10788 break; 10789 case EC_VECTORCATCH: 10790 moe = 5; 10791 break; 10792 default: 10793 moe = 0; 10794 break; 10795 } 10796 10797 if (moe) { 10798 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10799 } 10800 10801 if (env->exception.target_el == 2) { 10802 arm_cpu_do_interrupt_aarch32_hyp(cs); 10803 return; 10804 } 10805 10806 switch (cs->exception_index) { 10807 case EXCP_UDEF: 10808 new_mode = ARM_CPU_MODE_UND; 10809 addr = 0x04; 10810 mask = CPSR_I; 10811 if (env->thumb) { 10812 offset = 2; 10813 } else { 10814 offset = 4; 10815 } 10816 break; 10817 case EXCP_SWI: 10818 new_mode = ARM_CPU_MODE_SVC; 10819 addr = 0x08; 10820 mask = CPSR_I; 10821 /* The PC already points to the next instruction. */ 10822 offset = 0; 10823 break; 10824 case EXCP_BKPT: 10825 /* Fall through to prefetch abort. */ 10826 case EXCP_PREFETCH_ABORT: 10827 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10828 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10829 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10830 env->exception.fsr, (uint32_t)env->exception.vaddress); 10831 new_mode = ARM_CPU_MODE_ABT; 10832 addr = 0x0c; 10833 mask = CPSR_A | CPSR_I; 10834 offset = 4; 10835 break; 10836 case EXCP_DATA_ABORT: 10837 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10838 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10839 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10840 env->exception.fsr, 10841 (uint32_t)env->exception.vaddress); 10842 new_mode = ARM_CPU_MODE_ABT; 10843 addr = 0x10; 10844 mask = CPSR_A | CPSR_I; 10845 offset = 8; 10846 break; 10847 case EXCP_IRQ: 10848 new_mode = ARM_CPU_MODE_IRQ; 10849 addr = 0x18; 10850 /* Disable IRQ and imprecise data aborts. */ 10851 mask = CPSR_A | CPSR_I; 10852 offset = 4; 10853 if (env->cp15.scr_el3 & SCR_IRQ) { 10854 /* IRQ routed to monitor mode */ 10855 new_mode = ARM_CPU_MODE_MON; 10856 mask |= CPSR_F; 10857 } 10858 break; 10859 case EXCP_FIQ: 10860 new_mode = ARM_CPU_MODE_FIQ; 10861 addr = 0x1c; 10862 /* Disable FIQ, IRQ and imprecise data aborts. */ 10863 mask = CPSR_A | CPSR_I | CPSR_F; 10864 if (env->cp15.scr_el3 & SCR_FIQ) { 10865 /* FIQ routed to monitor mode */ 10866 new_mode = ARM_CPU_MODE_MON; 10867 } 10868 offset = 4; 10869 break; 10870 case EXCP_VIRQ: 10871 new_mode = ARM_CPU_MODE_IRQ; 10872 addr = 0x18; 10873 /* Disable IRQ and imprecise data aborts. */ 10874 mask = CPSR_A | CPSR_I; 10875 offset = 4; 10876 break; 10877 case EXCP_VFIQ: 10878 new_mode = ARM_CPU_MODE_FIQ; 10879 addr = 0x1c; 10880 /* Disable FIQ, IRQ and imprecise data aborts. */ 10881 mask = CPSR_A | CPSR_I | CPSR_F; 10882 offset = 4; 10883 break; 10884 case EXCP_VSERR: 10885 { 10886 /* 10887 * Note that this is reported as a data abort, but the DFAR 10888 * has an UNKNOWN value. Construct the SError syndrome from 10889 * AET and ExT fields. 10890 */ 10891 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10892 10893 if (extended_addresses_enabled(env)) { 10894 env->exception.fsr = arm_fi_to_lfsc(&fi); 10895 } else { 10896 env->exception.fsr = arm_fi_to_sfsc(&fi); 10897 } 10898 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10899 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10900 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10901 env->exception.fsr); 10902 10903 new_mode = ARM_CPU_MODE_ABT; 10904 addr = 0x10; 10905 mask = CPSR_A | CPSR_I; 10906 offset = 8; 10907 } 10908 break; 10909 case EXCP_SMC: 10910 new_mode = ARM_CPU_MODE_MON; 10911 addr = 0x08; 10912 mask = CPSR_A | CPSR_I | CPSR_F; 10913 offset = 0; 10914 break; 10915 default: 10916 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10917 return; /* Never happens. Keep compiler happy. */ 10918 } 10919 10920 if (new_mode == ARM_CPU_MODE_MON) { 10921 addr += env->cp15.mvbar; 10922 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10923 /* High vectors. When enabled, base address cannot be remapped. */ 10924 addr += 0xffff0000; 10925 } else { 10926 /* 10927 * ARM v7 architectures provide a vector base address register to remap 10928 * the interrupt vector table. 10929 * This register is only followed in non-monitor mode, and is banked. 10930 * Note: only bits 31:5 are valid. 10931 */ 10932 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10933 } 10934 10935 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10936 env->cp15.scr_el3 &= ~SCR_NS; 10937 } 10938 10939 take_aarch32_exception(env, new_mode, mask, offset, addr); 10940 } 10941 10942 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10943 { 10944 /* 10945 * Return the register number of the AArch64 view of the AArch32 10946 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10947 * be that of the AArch32 mode the exception came from. 10948 */ 10949 int mode = env->uncached_cpsr & CPSR_M; 10950 10951 switch (aarch32_reg) { 10952 case 0 ... 7: 10953 return aarch32_reg; 10954 case 8 ... 12: 10955 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10956 case 13: 10957 switch (mode) { 10958 case ARM_CPU_MODE_USR: 10959 case ARM_CPU_MODE_SYS: 10960 return 13; 10961 case ARM_CPU_MODE_HYP: 10962 return 15; 10963 case ARM_CPU_MODE_IRQ: 10964 return 17; 10965 case ARM_CPU_MODE_SVC: 10966 return 19; 10967 case ARM_CPU_MODE_ABT: 10968 return 21; 10969 case ARM_CPU_MODE_UND: 10970 return 23; 10971 case ARM_CPU_MODE_FIQ: 10972 return 29; 10973 default: 10974 g_assert_not_reached(); 10975 } 10976 case 14: 10977 switch (mode) { 10978 case ARM_CPU_MODE_USR: 10979 case ARM_CPU_MODE_SYS: 10980 case ARM_CPU_MODE_HYP: 10981 return 14; 10982 case ARM_CPU_MODE_IRQ: 10983 return 16; 10984 case ARM_CPU_MODE_SVC: 10985 return 18; 10986 case ARM_CPU_MODE_ABT: 10987 return 20; 10988 case ARM_CPU_MODE_UND: 10989 return 22; 10990 case ARM_CPU_MODE_FIQ: 10991 return 30; 10992 default: 10993 g_assert_not_reached(); 10994 } 10995 case 15: 10996 return 31; 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 } 11001 11002 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11003 { 11004 uint32_t ret = cpsr_read(env); 11005 11006 /* Move DIT to the correct location for SPSR_ELx */ 11007 if (ret & CPSR_DIT) { 11008 ret &= ~CPSR_DIT; 11009 ret |= PSTATE_DIT; 11010 } 11011 /* Merge PSTATE.SS into SPSR_ELx */ 11012 ret |= env->pstate & PSTATE_SS; 11013 11014 return ret; 11015 } 11016 11017 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11018 { 11019 /* Return true if this syndrome value is a synchronous external abort */ 11020 switch (syn_get_ec(syndrome)) { 11021 case EC_INSNABORT: 11022 case EC_INSNABORT_SAME_EL: 11023 case EC_DATAABORT: 11024 case EC_DATAABORT_SAME_EL: 11025 /* Look at fault status code for all the synchronous ext abort cases */ 11026 switch (syndrome & 0x3f) { 11027 case 0x10: 11028 case 0x13: 11029 case 0x14: 11030 case 0x15: 11031 case 0x16: 11032 case 0x17: 11033 return true; 11034 default: 11035 return false; 11036 } 11037 default: 11038 return false; 11039 } 11040 } 11041 11042 /* Handle exception entry to a target EL which is using AArch64 */ 11043 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11044 { 11045 ARMCPU *cpu = ARM_CPU(cs); 11046 CPUARMState *env = &cpu->env; 11047 unsigned int new_el = env->exception.target_el; 11048 target_ulong addr = env->cp15.vbar_el[new_el]; 11049 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11050 unsigned int old_mode; 11051 unsigned int cur_el = arm_current_el(env); 11052 int rt; 11053 11054 if (tcg_enabled()) { 11055 /* 11056 * Note that new_el can never be 0. If cur_el is 0, then 11057 * el0_a64 is is_a64(), else el0_a64 is ignored. 11058 */ 11059 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11060 } 11061 11062 if (cur_el < new_el) { 11063 /* 11064 * Entry vector offset depends on whether the implemented EL 11065 * immediately lower than the target level is using AArch32 or AArch64 11066 */ 11067 bool is_aa64; 11068 uint64_t hcr; 11069 11070 switch (new_el) { 11071 case 3: 11072 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11073 break; 11074 case 2: 11075 hcr = arm_hcr_el2_eff(env); 11076 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11077 is_aa64 = (hcr & HCR_RW) != 0; 11078 break; 11079 } 11080 /* fall through */ 11081 case 1: 11082 is_aa64 = is_a64(env); 11083 break; 11084 default: 11085 g_assert_not_reached(); 11086 } 11087 11088 if (is_aa64) { 11089 addr += 0x400; 11090 } else { 11091 addr += 0x600; 11092 } 11093 } else if (pstate_read(env) & PSTATE_SP) { 11094 addr += 0x200; 11095 } 11096 11097 switch (cs->exception_index) { 11098 case EXCP_GPC: 11099 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11100 env->cp15.mfar_el3); 11101 /* fall through */ 11102 case EXCP_PREFETCH_ABORT: 11103 case EXCP_DATA_ABORT: 11104 /* 11105 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11106 * to be taken to the SError vector entrypoint. 11107 */ 11108 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11109 syndrome_is_sync_extabt(env->exception.syndrome)) { 11110 addr += 0x180; 11111 } 11112 env->cp15.far_el[new_el] = env->exception.vaddress; 11113 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11114 env->cp15.far_el[new_el]); 11115 /* fall through */ 11116 case EXCP_BKPT: 11117 case EXCP_UDEF: 11118 case EXCP_SWI: 11119 case EXCP_HVC: 11120 case EXCP_HYP_TRAP: 11121 case EXCP_SMC: 11122 switch (syn_get_ec(env->exception.syndrome)) { 11123 case EC_ADVSIMDFPACCESSTRAP: 11124 /* 11125 * QEMU internal FP/SIMD syndromes from AArch32 include the 11126 * TA and coproc fields which are only exposed if the exception 11127 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11128 * AArch64 format syndrome. 11129 */ 11130 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11131 break; 11132 case EC_CP14RTTRAP: 11133 case EC_CP15RTTRAP: 11134 case EC_CP14DTTRAP: 11135 /* 11136 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11137 * the raw register field from the insn; when taking this to 11138 * AArch64 we must convert it to the AArch64 view of the register 11139 * number. Notice that we read a 4-bit AArch32 register number and 11140 * write back a 5-bit AArch64 one. 11141 */ 11142 rt = extract32(env->exception.syndrome, 5, 4); 11143 rt = aarch64_regnum(env, rt); 11144 env->exception.syndrome = deposit32(env->exception.syndrome, 11145 5, 5, rt); 11146 break; 11147 case EC_CP15RRTTRAP: 11148 case EC_CP14RRTTRAP: 11149 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11150 rt = extract32(env->exception.syndrome, 5, 4); 11151 rt = aarch64_regnum(env, rt); 11152 env->exception.syndrome = deposit32(env->exception.syndrome, 11153 5, 5, rt); 11154 rt = extract32(env->exception.syndrome, 10, 4); 11155 rt = aarch64_regnum(env, rt); 11156 env->exception.syndrome = deposit32(env->exception.syndrome, 11157 10, 5, rt); 11158 break; 11159 } 11160 env->cp15.esr_el[new_el] = env->exception.syndrome; 11161 break; 11162 case EXCP_IRQ: 11163 case EXCP_VIRQ: 11164 addr += 0x80; 11165 break; 11166 case EXCP_FIQ: 11167 case EXCP_VFIQ: 11168 addr += 0x100; 11169 break; 11170 case EXCP_VSERR: 11171 addr += 0x180; 11172 /* Construct the SError syndrome from IDS and ISS fields. */ 11173 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11174 env->cp15.esr_el[new_el] = env->exception.syndrome; 11175 break; 11176 default: 11177 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11178 } 11179 11180 if (is_a64(env)) { 11181 old_mode = pstate_read(env); 11182 aarch64_save_sp(env, arm_current_el(env)); 11183 env->elr_el[new_el] = env->pc; 11184 } else { 11185 old_mode = cpsr_read_for_spsr_elx(env); 11186 env->elr_el[new_el] = env->regs[15]; 11187 11188 aarch64_sync_32_to_64(env); 11189 11190 env->condexec_bits = 0; 11191 } 11192 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11193 11194 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11195 env->elr_el[new_el]); 11196 11197 if (cpu_isar_feature(aa64_pan, cpu)) { 11198 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11199 new_mode |= old_mode & PSTATE_PAN; 11200 switch (new_el) { 11201 case 2: 11202 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11203 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11204 != (HCR_E2H | HCR_TGE)) { 11205 break; 11206 } 11207 /* fall through */ 11208 case 1: 11209 /* ... the target is EL1 ... */ 11210 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11211 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11212 new_mode |= PSTATE_PAN; 11213 } 11214 break; 11215 } 11216 } 11217 if (cpu_isar_feature(aa64_mte, cpu)) { 11218 new_mode |= PSTATE_TCO; 11219 } 11220 11221 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11222 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11223 new_mode |= PSTATE_SSBS; 11224 } else { 11225 new_mode &= ~PSTATE_SSBS; 11226 } 11227 } 11228 11229 pstate_write(env, PSTATE_DAIF | new_mode); 11230 env->aarch64 = true; 11231 aarch64_restore_sp(env, new_el); 11232 11233 if (tcg_enabled()) { 11234 helper_rebuild_hflags_a64(env, new_el); 11235 } 11236 11237 env->pc = addr; 11238 11239 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11240 new_el, env->pc, pstate_read(env)); 11241 } 11242 11243 /* 11244 * Do semihosting call and set the appropriate return value. All the 11245 * permission and validity checks have been done at translate time. 11246 * 11247 * We only see semihosting exceptions in TCG only as they are not 11248 * trapped to the hypervisor in KVM. 11249 */ 11250 #ifdef CONFIG_TCG 11251 static void tcg_handle_semihosting(CPUState *cs) 11252 { 11253 ARMCPU *cpu = ARM_CPU(cs); 11254 CPUARMState *env = &cpu->env; 11255 11256 if (is_a64(env)) { 11257 qemu_log_mask(CPU_LOG_INT, 11258 "...handling as semihosting call 0x%" PRIx64 "\n", 11259 env->xregs[0]); 11260 do_common_semihosting(cs); 11261 env->pc += 4; 11262 } else { 11263 qemu_log_mask(CPU_LOG_INT, 11264 "...handling as semihosting call 0x%x\n", 11265 env->regs[0]); 11266 do_common_semihosting(cs); 11267 env->regs[15] += env->thumb ? 2 : 4; 11268 } 11269 } 11270 #endif 11271 11272 /* 11273 * Handle a CPU exception for A and R profile CPUs. 11274 * Do any appropriate logging, handle PSCI calls, and then hand off 11275 * to the AArch64-entry or AArch32-entry function depending on the 11276 * target exception level's register width. 11277 * 11278 * Note: this is used for both TCG (as the do_interrupt tcg op), 11279 * and KVM to re-inject guest debug exceptions, and to 11280 * inject a Synchronous-External-Abort. 11281 */ 11282 void arm_cpu_do_interrupt(CPUState *cs) 11283 { 11284 ARMCPU *cpu = ARM_CPU(cs); 11285 CPUARMState *env = &cpu->env; 11286 unsigned int new_el = env->exception.target_el; 11287 11288 assert(!arm_feature(env, ARM_FEATURE_M)); 11289 11290 arm_log_exception(cs); 11291 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11292 new_el); 11293 if (qemu_loglevel_mask(CPU_LOG_INT) 11294 && !excp_is_internal(cs->exception_index)) { 11295 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11296 syn_get_ec(env->exception.syndrome), 11297 env->exception.syndrome); 11298 } 11299 11300 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11301 arm_handle_psci_call(cpu); 11302 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11303 return; 11304 } 11305 11306 /* 11307 * Semihosting semantics depend on the register width of the code 11308 * that caused the exception, not the target exception level, so 11309 * must be handled here. 11310 */ 11311 #ifdef CONFIG_TCG 11312 if (cs->exception_index == EXCP_SEMIHOST) { 11313 tcg_handle_semihosting(cs); 11314 return; 11315 } 11316 #endif 11317 11318 /* 11319 * Hooks may change global state so BQL should be held, also the 11320 * BQL needs to be held for any modification of 11321 * cs->interrupt_request. 11322 */ 11323 g_assert(qemu_mutex_iothread_locked()); 11324 11325 arm_call_pre_el_change_hook(cpu); 11326 11327 assert(!excp_is_internal(cs->exception_index)); 11328 if (arm_el_is_aa64(env, new_el)) { 11329 arm_cpu_do_interrupt_aarch64(cs); 11330 } else { 11331 arm_cpu_do_interrupt_aarch32(cs); 11332 } 11333 11334 arm_call_el_change_hook(cpu); 11335 11336 if (!kvm_enabled()) { 11337 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11338 } 11339 } 11340 #endif /* !CONFIG_USER_ONLY */ 11341 11342 uint64_t arm_sctlr(CPUARMState *env, int el) 11343 { 11344 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11345 if (el == 0) { 11346 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11347 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11348 } 11349 return env->cp15.sctlr_el[el]; 11350 } 11351 11352 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11353 { 11354 if (regime_has_2_ranges(mmu_idx)) { 11355 return extract64(tcr, 37, 2); 11356 } else if (regime_is_stage2(mmu_idx)) { 11357 return 0; /* VTCR_EL2 */ 11358 } else { 11359 /* Replicate the single TBI bit so we always have 2 bits. */ 11360 return extract32(tcr, 20, 1) * 3; 11361 } 11362 } 11363 11364 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11365 { 11366 if (regime_has_2_ranges(mmu_idx)) { 11367 return extract64(tcr, 51, 2); 11368 } else if (regime_is_stage2(mmu_idx)) { 11369 return 0; /* VTCR_EL2 */ 11370 } else { 11371 /* Replicate the single TBID bit so we always have 2 bits. */ 11372 return extract32(tcr, 29, 1) * 3; 11373 } 11374 } 11375 11376 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11377 { 11378 if (regime_has_2_ranges(mmu_idx)) { 11379 return extract64(tcr, 57, 2); 11380 } else { 11381 /* Replicate the single TCMA bit so we always have 2 bits. */ 11382 return extract32(tcr, 30, 1) * 3; 11383 } 11384 } 11385 11386 static ARMGranuleSize tg0_to_gran_size(int tg) 11387 { 11388 switch (tg) { 11389 case 0: 11390 return Gran4K; 11391 case 1: 11392 return Gran64K; 11393 case 2: 11394 return Gran16K; 11395 default: 11396 return GranInvalid; 11397 } 11398 } 11399 11400 static ARMGranuleSize tg1_to_gran_size(int tg) 11401 { 11402 switch (tg) { 11403 case 1: 11404 return Gran16K; 11405 case 2: 11406 return Gran4K; 11407 case 3: 11408 return Gran64K; 11409 default: 11410 return GranInvalid; 11411 } 11412 } 11413 11414 static inline bool have4k(ARMCPU *cpu, bool stage2) 11415 { 11416 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11417 : cpu_isar_feature(aa64_tgran4, cpu); 11418 } 11419 11420 static inline bool have16k(ARMCPU *cpu, bool stage2) 11421 { 11422 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11423 : cpu_isar_feature(aa64_tgran16, cpu); 11424 } 11425 11426 static inline bool have64k(ARMCPU *cpu, bool stage2) 11427 { 11428 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11429 : cpu_isar_feature(aa64_tgran64, cpu); 11430 } 11431 11432 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11433 bool stage2) 11434 { 11435 switch (gran) { 11436 case Gran4K: 11437 if (have4k(cpu, stage2)) { 11438 return gran; 11439 } 11440 break; 11441 case Gran16K: 11442 if (have16k(cpu, stage2)) { 11443 return gran; 11444 } 11445 break; 11446 case Gran64K: 11447 if (have64k(cpu, stage2)) { 11448 return gran; 11449 } 11450 break; 11451 case GranInvalid: 11452 break; 11453 } 11454 /* 11455 * If the guest selects a granule size that isn't implemented, 11456 * the architecture requires that we behave as if it selected one 11457 * that is (with an IMPDEF choice of which one to pick). We choose 11458 * to implement the smallest supported granule size. 11459 */ 11460 if (have4k(cpu, stage2)) { 11461 return Gran4K; 11462 } 11463 if (have16k(cpu, stage2)) { 11464 return Gran16K; 11465 } 11466 assert(have64k(cpu, stage2)); 11467 return Gran64K; 11468 } 11469 11470 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11471 ARMMMUIdx mmu_idx, bool data, 11472 bool el1_is_aa32) 11473 { 11474 uint64_t tcr = regime_tcr(env, mmu_idx); 11475 bool epd, hpd, tsz_oob, ds, ha, hd; 11476 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11477 ARMGranuleSize gran; 11478 ARMCPU *cpu = env_archcpu(env); 11479 bool stage2 = regime_is_stage2(mmu_idx); 11480 11481 if (!regime_has_2_ranges(mmu_idx)) { 11482 select = 0; 11483 tsz = extract32(tcr, 0, 6); 11484 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11485 if (stage2) { 11486 /* VTCR_EL2 */ 11487 hpd = false; 11488 } else { 11489 hpd = extract32(tcr, 24, 1); 11490 } 11491 epd = false; 11492 sh = extract32(tcr, 12, 2); 11493 ps = extract32(tcr, 16, 3); 11494 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11495 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11496 ds = extract64(tcr, 32, 1); 11497 } else { 11498 bool e0pd; 11499 11500 /* 11501 * Bit 55 is always between the two regions, and is canonical for 11502 * determining if address tagging is enabled. 11503 */ 11504 select = extract64(va, 55, 1); 11505 if (!select) { 11506 tsz = extract32(tcr, 0, 6); 11507 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11508 epd = extract32(tcr, 7, 1); 11509 sh = extract32(tcr, 12, 2); 11510 hpd = extract64(tcr, 41, 1); 11511 e0pd = extract64(tcr, 55, 1); 11512 } else { 11513 tsz = extract32(tcr, 16, 6); 11514 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11515 epd = extract32(tcr, 23, 1); 11516 sh = extract32(tcr, 28, 2); 11517 hpd = extract64(tcr, 42, 1); 11518 e0pd = extract64(tcr, 56, 1); 11519 } 11520 ps = extract64(tcr, 32, 3); 11521 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11522 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11523 ds = extract64(tcr, 59, 1); 11524 11525 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11526 regime_is_user(env, mmu_idx)) { 11527 epd = true; 11528 } 11529 } 11530 11531 gran = sanitize_gran_size(cpu, gran, stage2); 11532 11533 if (cpu_isar_feature(aa64_st, cpu)) { 11534 max_tsz = 48 - (gran == Gran64K); 11535 } else { 11536 max_tsz = 39; 11537 } 11538 11539 /* 11540 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11541 * adjust the effective value of DS, as documented. 11542 */ 11543 min_tsz = 16; 11544 if (gran == Gran64K) { 11545 if (cpu_isar_feature(aa64_lva, cpu)) { 11546 min_tsz = 12; 11547 } 11548 ds = false; 11549 } else if (ds) { 11550 if (regime_is_stage2(mmu_idx)) { 11551 if (gran == Gran16K) { 11552 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11553 } else { 11554 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11555 } 11556 } else { 11557 if (gran == Gran16K) { 11558 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11559 } else { 11560 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11561 } 11562 } 11563 if (ds) { 11564 min_tsz = 12; 11565 } 11566 } 11567 11568 if (stage2 && el1_is_aa32) { 11569 /* 11570 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11571 * are loosened: a configured IPA of 40 bits is permitted even if 11572 * the implemented PA is less than that (and so a 40 bit IPA would 11573 * fault for an AArch64 EL1). See R_DTLMN. 11574 */ 11575 min_tsz = MIN(min_tsz, 24); 11576 } 11577 11578 if (tsz > max_tsz) { 11579 tsz = max_tsz; 11580 tsz_oob = true; 11581 } else if (tsz < min_tsz) { 11582 tsz = min_tsz; 11583 tsz_oob = true; 11584 } else { 11585 tsz_oob = false; 11586 } 11587 11588 /* Present TBI as a composite with TBID. */ 11589 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11590 if (!data) { 11591 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11592 } 11593 tbi = (tbi >> select) & 1; 11594 11595 return (ARMVAParameters) { 11596 .tsz = tsz, 11597 .ps = ps, 11598 .sh = sh, 11599 .select = select, 11600 .tbi = tbi, 11601 .epd = epd, 11602 .hpd = hpd, 11603 .tsz_oob = tsz_oob, 11604 .ds = ds, 11605 .ha = ha, 11606 .hd = ha && hd, 11607 .gran = gran, 11608 }; 11609 } 11610 11611 /* 11612 * Note that signed overflow is undefined in C. The following routines are 11613 * careful to use unsigned types where modulo arithmetic is required. 11614 * Failure to do so _will_ break on newer gcc. 11615 */ 11616 11617 /* Signed saturating arithmetic. */ 11618 11619 /* Perform 16-bit signed saturating addition. */ 11620 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11621 { 11622 uint16_t res; 11623 11624 res = a + b; 11625 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11626 if (a & 0x8000) { 11627 res = 0x8000; 11628 } else { 11629 res = 0x7fff; 11630 } 11631 } 11632 return res; 11633 } 11634 11635 /* Perform 8-bit signed saturating addition. */ 11636 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11637 { 11638 uint8_t res; 11639 11640 res = a + b; 11641 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11642 if (a & 0x80) { 11643 res = 0x80; 11644 } else { 11645 res = 0x7f; 11646 } 11647 } 11648 return res; 11649 } 11650 11651 /* Perform 16-bit signed saturating subtraction. */ 11652 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11653 { 11654 uint16_t res; 11655 11656 res = a - b; 11657 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11658 if (a & 0x8000) { 11659 res = 0x8000; 11660 } else { 11661 res = 0x7fff; 11662 } 11663 } 11664 return res; 11665 } 11666 11667 /* Perform 8-bit signed saturating subtraction. */ 11668 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11669 { 11670 uint8_t res; 11671 11672 res = a - b; 11673 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11674 if (a & 0x80) { 11675 res = 0x80; 11676 } else { 11677 res = 0x7f; 11678 } 11679 } 11680 return res; 11681 } 11682 11683 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11684 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11685 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11686 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11687 #define PFX q 11688 11689 #include "op_addsub.h" 11690 11691 /* Unsigned saturating arithmetic. */ 11692 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11693 { 11694 uint16_t res; 11695 res = a + b; 11696 if (res < a) { 11697 res = 0xffff; 11698 } 11699 return res; 11700 } 11701 11702 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11703 { 11704 if (a > b) { 11705 return a - b; 11706 } else { 11707 return 0; 11708 } 11709 } 11710 11711 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11712 { 11713 uint8_t res; 11714 res = a + b; 11715 if (res < a) { 11716 res = 0xff; 11717 } 11718 return res; 11719 } 11720 11721 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11722 { 11723 if (a > b) { 11724 return a - b; 11725 } else { 11726 return 0; 11727 } 11728 } 11729 11730 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11731 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11732 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11733 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11734 #define PFX uq 11735 11736 #include "op_addsub.h" 11737 11738 /* Signed modulo arithmetic. */ 11739 #define SARITH16(a, b, n, op) do { \ 11740 int32_t sum; \ 11741 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11742 RESULT(sum, n, 16); \ 11743 if (sum >= 0) \ 11744 ge |= 3 << (n * 2); \ 11745 } while (0) 11746 11747 #define SARITH8(a, b, n, op) do { \ 11748 int32_t sum; \ 11749 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11750 RESULT(sum, n, 8); \ 11751 if (sum >= 0) \ 11752 ge |= 1 << n; \ 11753 } while (0) 11754 11755 11756 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11757 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11758 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11759 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11760 #define PFX s 11761 #define ARITH_GE 11762 11763 #include "op_addsub.h" 11764 11765 /* Unsigned modulo arithmetic. */ 11766 #define ADD16(a, b, n) do { \ 11767 uint32_t sum; \ 11768 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11769 RESULT(sum, n, 16); \ 11770 if ((sum >> 16) == 1) \ 11771 ge |= 3 << (n * 2); \ 11772 } while (0) 11773 11774 #define ADD8(a, b, n) do { \ 11775 uint32_t sum; \ 11776 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11777 RESULT(sum, n, 8); \ 11778 if ((sum >> 8) == 1) \ 11779 ge |= 1 << n; \ 11780 } while (0) 11781 11782 #define SUB16(a, b, n) do { \ 11783 uint32_t sum; \ 11784 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11785 RESULT(sum, n, 16); \ 11786 if ((sum >> 16) == 0) \ 11787 ge |= 3 << (n * 2); \ 11788 } while (0) 11789 11790 #define SUB8(a, b, n) do { \ 11791 uint32_t sum; \ 11792 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11793 RESULT(sum, n, 8); \ 11794 if ((sum >> 8) == 0) \ 11795 ge |= 1 << n; \ 11796 } while (0) 11797 11798 #define PFX u 11799 #define ARITH_GE 11800 11801 #include "op_addsub.h" 11802 11803 /* Halved signed arithmetic. */ 11804 #define ADD16(a, b, n) \ 11805 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11806 #define SUB16(a, b, n) \ 11807 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11808 #define ADD8(a, b, n) \ 11809 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11810 #define SUB8(a, b, n) \ 11811 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11812 #define PFX sh 11813 11814 #include "op_addsub.h" 11815 11816 /* Halved unsigned arithmetic. */ 11817 #define ADD16(a, b, n) \ 11818 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11819 #define SUB16(a, b, n) \ 11820 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11821 #define ADD8(a, b, n) \ 11822 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11823 #define SUB8(a, b, n) \ 11824 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11825 #define PFX uh 11826 11827 #include "op_addsub.h" 11828 11829 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11830 { 11831 if (a > b) { 11832 return a - b; 11833 } else { 11834 return b - a; 11835 } 11836 } 11837 11838 /* Unsigned sum of absolute byte differences. */ 11839 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11840 { 11841 uint32_t sum; 11842 sum = do_usad(a, b); 11843 sum += do_usad(a >> 8, b >> 8); 11844 sum += do_usad(a >> 16, b >> 16); 11845 sum += do_usad(a >> 24, b >> 24); 11846 return sum; 11847 } 11848 11849 /* For ARMv6 SEL instruction. */ 11850 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11851 { 11852 uint32_t mask; 11853 11854 mask = 0; 11855 if (flags & 1) { 11856 mask |= 0xff; 11857 } 11858 if (flags & 2) { 11859 mask |= 0xff00; 11860 } 11861 if (flags & 4) { 11862 mask |= 0xff0000; 11863 } 11864 if (flags & 8) { 11865 mask |= 0xff000000; 11866 } 11867 return (a & mask) | (b & ~mask); 11868 } 11869 11870 /* 11871 * CRC helpers. 11872 * The upper bytes of val (above the number specified by 'bytes') must have 11873 * been zeroed out by the caller. 11874 */ 11875 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11876 { 11877 uint8_t buf[4]; 11878 11879 stl_le_p(buf, val); 11880 11881 /* zlib crc32 converts the accumulator and output to one's complement. */ 11882 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11883 } 11884 11885 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11886 { 11887 uint8_t buf[4]; 11888 11889 stl_le_p(buf, val); 11890 11891 /* Linux crc32c converts the output to one's complement. */ 11892 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11893 } 11894 11895 /* 11896 * Return the exception level to which FP-disabled exceptions should 11897 * be taken, or 0 if FP is enabled. 11898 */ 11899 int fp_exception_el(CPUARMState *env, int cur_el) 11900 { 11901 #ifndef CONFIG_USER_ONLY 11902 uint64_t hcr_el2; 11903 11904 /* 11905 * CPACR and the CPTR registers don't exist before v6, so FP is 11906 * always accessible 11907 */ 11908 if (!arm_feature(env, ARM_FEATURE_V6)) { 11909 return 0; 11910 } 11911 11912 if (arm_feature(env, ARM_FEATURE_M)) { 11913 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11914 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11915 return 1; 11916 } 11917 11918 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11919 if (!extract32(env->v7m.nsacr, 10, 1)) { 11920 /* FP insns cause a NOCP UsageFault taken to Secure */ 11921 return 3; 11922 } 11923 } 11924 11925 return 0; 11926 } 11927 11928 hcr_el2 = arm_hcr_el2_eff(env); 11929 11930 /* 11931 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11932 * 0, 2 : trap EL0 and EL1/PL1 accesses 11933 * 1 : trap only EL0 accesses 11934 * 3 : trap no accesses 11935 * This register is ignored if E2H+TGE are both set. 11936 */ 11937 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11938 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11939 11940 switch (fpen) { 11941 case 1: 11942 if (cur_el != 0) { 11943 break; 11944 } 11945 /* fall through */ 11946 case 0: 11947 case 2: 11948 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11949 if (!arm_el_is_aa64(env, 3) 11950 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11951 return 3; 11952 } 11953 if (cur_el <= 1) { 11954 return 1; 11955 } 11956 break; 11957 } 11958 } 11959 11960 /* 11961 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11962 * to control non-secure access to the FPU. It doesn't have any 11963 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11964 */ 11965 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11966 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11967 if (!extract32(env->cp15.nsacr, 10, 1)) { 11968 /* FP insns act as UNDEF */ 11969 return cur_el == 2 ? 2 : 1; 11970 } 11971 } 11972 11973 /* 11974 * CPTR_EL2 is present in v7VE or v8, and changes format 11975 * with HCR_EL2.E2H (regardless of TGE). 11976 */ 11977 if (cur_el <= 2) { 11978 if (hcr_el2 & HCR_E2H) { 11979 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11980 case 1: 11981 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11982 break; 11983 } 11984 /* fall through */ 11985 case 0: 11986 case 2: 11987 return 2; 11988 } 11989 } else if (arm_is_el2_enabled(env)) { 11990 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11991 return 2; 11992 } 11993 } 11994 } 11995 11996 /* CPTR_EL3 : present in v8 */ 11997 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11998 /* Trap all FP ops to EL3 */ 11999 return 3; 12000 } 12001 #endif 12002 return 0; 12003 } 12004 12005 /* Return the exception level we're running at if this is our mmu_idx */ 12006 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12007 { 12008 if (mmu_idx & ARM_MMU_IDX_M) { 12009 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12010 } 12011 12012 switch (mmu_idx) { 12013 case ARMMMUIdx_E10_0: 12014 case ARMMMUIdx_E20_0: 12015 return 0; 12016 case ARMMMUIdx_E10_1: 12017 case ARMMMUIdx_E10_1_PAN: 12018 return 1; 12019 case ARMMMUIdx_E2: 12020 case ARMMMUIdx_E20_2: 12021 case ARMMMUIdx_E20_2_PAN: 12022 return 2; 12023 case ARMMMUIdx_E3: 12024 return 3; 12025 default: 12026 g_assert_not_reached(); 12027 } 12028 } 12029 12030 #ifndef CONFIG_TCG 12031 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12032 { 12033 g_assert_not_reached(); 12034 } 12035 #endif 12036 12037 static bool arm_pan_enabled(CPUARMState *env) 12038 { 12039 if (is_a64(env)) { 12040 return env->pstate & PSTATE_PAN; 12041 } else { 12042 return env->uncached_cpsr & CPSR_PAN; 12043 } 12044 } 12045 12046 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12047 { 12048 ARMMMUIdx idx; 12049 uint64_t hcr; 12050 12051 if (arm_feature(env, ARM_FEATURE_M)) { 12052 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12053 } 12054 12055 /* See ARM pseudo-function ELIsInHost. */ 12056 switch (el) { 12057 case 0: 12058 hcr = arm_hcr_el2_eff(env); 12059 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12060 idx = ARMMMUIdx_E20_0; 12061 } else { 12062 idx = ARMMMUIdx_E10_0; 12063 } 12064 break; 12065 case 1: 12066 if (arm_pan_enabled(env)) { 12067 idx = ARMMMUIdx_E10_1_PAN; 12068 } else { 12069 idx = ARMMMUIdx_E10_1; 12070 } 12071 break; 12072 case 2: 12073 /* Note that TGE does not apply at EL2. */ 12074 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12075 if (arm_pan_enabled(env)) { 12076 idx = ARMMMUIdx_E20_2_PAN; 12077 } else { 12078 idx = ARMMMUIdx_E20_2; 12079 } 12080 } else { 12081 idx = ARMMMUIdx_E2; 12082 } 12083 break; 12084 case 3: 12085 return ARMMMUIdx_E3; 12086 default: 12087 g_assert_not_reached(); 12088 } 12089 12090 return idx; 12091 } 12092 12093 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12094 { 12095 return arm_mmu_idx_el(env, arm_current_el(env)); 12096 } 12097 12098 static bool mve_no_pred(CPUARMState *env) 12099 { 12100 /* 12101 * Return true if there is definitely no predication of MVE 12102 * instructions by VPR or LTPSIZE. (Returning false even if there 12103 * isn't any predication is OK; generated code will just be 12104 * a little worse.) 12105 * If the CPU does not implement MVE then this TB flag is always 0. 12106 * 12107 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12108 * logic in gen_update_fp_context() needs to be updated to match. 12109 * 12110 * We do not include the effect of the ECI bits here -- they are 12111 * tracked in other TB flags. This simplifies the logic for 12112 * "when did we emit code that changes the MVE_NO_PRED TB flag 12113 * and thus need to end the TB?". 12114 */ 12115 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12116 return false; 12117 } 12118 if (env->v7m.vpr) { 12119 return false; 12120 } 12121 if (env->v7m.ltpsize < 4) { 12122 return false; 12123 } 12124 return true; 12125 } 12126 12127 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12128 uint64_t *cs_base, uint32_t *pflags) 12129 { 12130 CPUARMTBFlags flags; 12131 12132 assert_hflags_rebuild_correctly(env); 12133 flags = env->hflags; 12134 12135 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12136 *pc = env->pc; 12137 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12138 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12139 } 12140 } else { 12141 *pc = env->regs[15]; 12142 12143 if (arm_feature(env, ARM_FEATURE_M)) { 12144 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12145 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12146 != env->v7m.secure) { 12147 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12148 } 12149 12150 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12151 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12152 (env->v7m.secure && 12153 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12154 /* 12155 * ASPEN is set, but FPCA/SFPA indicate that there is no 12156 * active FP context; we must create a new FP context before 12157 * executing any FP insn. 12158 */ 12159 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12160 } 12161 12162 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12163 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12164 DP_TBFLAG_M32(flags, LSPACT, 1); 12165 } 12166 12167 if (mve_no_pred(env)) { 12168 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12169 } 12170 } else { 12171 /* 12172 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12173 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12174 */ 12175 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12176 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12177 } else { 12178 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12179 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12180 } 12181 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12182 DP_TBFLAG_A32(flags, VFPEN, 1); 12183 } 12184 } 12185 12186 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12187 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12188 } 12189 12190 /* 12191 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12192 * states defined in the ARM ARM for software singlestep: 12193 * SS_ACTIVE PSTATE.SS State 12194 * 0 x Inactive (the TB flag for SS is always 0) 12195 * 1 0 Active-pending 12196 * 1 1 Active-not-pending 12197 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12198 */ 12199 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12200 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12201 } 12202 12203 *pflags = flags.flags; 12204 *cs_base = flags.flags2; 12205 } 12206 12207 #ifdef TARGET_AARCH64 12208 /* 12209 * The manual says that when SVE is enabled and VQ is widened the 12210 * implementation is allowed to zero the previously inaccessible 12211 * portion of the registers. The corollary to that is that when 12212 * SVE is enabled and VQ is narrowed we are also allowed to zero 12213 * the now inaccessible portion of the registers. 12214 * 12215 * The intent of this is that no predicate bit beyond VQ is ever set. 12216 * Which means that some operations on predicate registers themselves 12217 * may operate on full uint64_t or even unrolled across the maximum 12218 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12219 * may well be cheaper than conditionals to restrict the operation 12220 * to the relevant portion of a uint16_t[16]. 12221 */ 12222 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12223 { 12224 int i, j; 12225 uint64_t pmask; 12226 12227 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12228 assert(vq <= env_archcpu(env)->sve_max_vq); 12229 12230 /* Zap the high bits of the zregs. */ 12231 for (i = 0; i < 32; i++) { 12232 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12233 } 12234 12235 /* Zap the high bits of the pregs and ffr. */ 12236 pmask = 0; 12237 if (vq & 3) { 12238 pmask = ~(-1ULL << (16 * (vq & 3))); 12239 } 12240 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12241 for (i = 0; i < 17; ++i) { 12242 env->vfp.pregs[i].p[j] &= pmask; 12243 } 12244 pmask = 0; 12245 } 12246 } 12247 12248 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12249 { 12250 int exc_el; 12251 12252 if (sm) { 12253 exc_el = sme_exception_el(env, el); 12254 } else { 12255 exc_el = sve_exception_el(env, el); 12256 } 12257 if (exc_el) { 12258 return 0; /* disabled */ 12259 } 12260 return sve_vqm1_for_el_sm(env, el, sm); 12261 } 12262 12263 /* 12264 * Notice a change in SVE vector size when changing EL. 12265 */ 12266 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12267 int new_el, bool el0_a64) 12268 { 12269 ARMCPU *cpu = env_archcpu(env); 12270 int old_len, new_len; 12271 bool old_a64, new_a64, sm; 12272 12273 /* Nothing to do if no SVE. */ 12274 if (!cpu_isar_feature(aa64_sve, cpu)) { 12275 return; 12276 } 12277 12278 /* Nothing to do if FP is disabled in either EL. */ 12279 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12280 return; 12281 } 12282 12283 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12284 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12285 12286 /* 12287 * Both AArch64.TakeException and AArch64.ExceptionReturn 12288 * invoke ResetSVEState when taking an exception from, or 12289 * returning to, AArch32 state when PSTATE.SM is enabled. 12290 */ 12291 sm = FIELD_EX64(env->svcr, SVCR, SM); 12292 if (old_a64 != new_a64 && sm) { 12293 arm_reset_sve_state(env); 12294 return; 12295 } 12296 12297 /* 12298 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12299 * at ELx, or not available because the EL is in AArch32 state, then 12300 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12301 * has an effective value of 0". 12302 * 12303 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12304 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12305 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12306 * we already have the correct register contents when encountering the 12307 * vq0->vq0 transition between EL0->EL1. 12308 */ 12309 old_len = new_len = 0; 12310 if (old_a64) { 12311 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12312 } 12313 if (new_a64) { 12314 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12315 } 12316 12317 /* When changing vector length, clear inaccessible state. */ 12318 if (new_len < old_len) { 12319 aarch64_sve_narrow_vq(env, new_len + 1); 12320 } 12321 } 12322 #endif 12323 12324 #ifndef CONFIG_USER_ONLY 12325 ARMSecuritySpace arm_security_space(CPUARMState *env) 12326 { 12327 if (arm_feature(env, ARM_FEATURE_M)) { 12328 return arm_secure_to_space(env->v7m.secure); 12329 } 12330 12331 /* 12332 * If EL3 is not supported then the secure state is implementation 12333 * defined, in which case QEMU defaults to non-secure. 12334 */ 12335 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12336 return ARMSS_NonSecure; 12337 } 12338 12339 /* Check for AArch64 EL3 or AArch32 Mon. */ 12340 if (is_a64(env)) { 12341 if (extract32(env->pstate, 2, 2) == 3) { 12342 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12343 return ARMSS_Root; 12344 } else { 12345 return ARMSS_Secure; 12346 } 12347 } 12348 } else { 12349 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12350 return ARMSS_Secure; 12351 } 12352 } 12353 12354 return arm_security_space_below_el3(env); 12355 } 12356 12357 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12358 { 12359 assert(!arm_feature(env, ARM_FEATURE_M)); 12360 12361 /* 12362 * If EL3 is not supported then the secure state is implementation 12363 * defined, in which case QEMU defaults to non-secure. 12364 */ 12365 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12366 return ARMSS_NonSecure; 12367 } 12368 12369 /* 12370 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12371 * Ignoring NSE when !NS retains consistency without having to 12372 * modify other predicates. 12373 */ 12374 if (!(env->cp15.scr_el3 & SCR_NS)) { 12375 return ARMSS_Secure; 12376 } else if (env->cp15.scr_el3 & SCR_NSE) { 12377 return ARMSS_Realm; 12378 } else { 12379 return ARMSS_NonSecure; 12380 } 12381 } 12382 #endif /* !CONFIG_USER_ONLY */ 12383