xref: /openbmc/qemu/target/arm/helper.c (revision 24496b8d)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "qemu/qemu-print.h"
14 #include "exec/exec-all.h"
15 #include "exec/cpu_ldst.h"
16 #include "arm_ldst.h"
17 #include <zlib.h> /* For crc32 */
18 #include "exec/semihost.h"
19 #include "sysemu/cpus.h"
20 #include "sysemu/kvm.h"
21 #include "fpu/softfloat.h"
22 #include "qemu/range.h"
23 #include "qapi/qapi-commands-target.h"
24 
25 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
26 
27 #ifndef CONFIG_USER_ONLY
28 /* Cacheability and shareability attributes for a memory access */
29 typedef struct ARMCacheAttrs {
30     unsigned int attrs:8; /* as in the MAIR register encoding */
31     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
32 } ARMCacheAttrs;
33 
34 static bool get_phys_addr(CPUARMState *env, target_ulong address,
35                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
36                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
37                           target_ulong *page_size,
38                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 
40 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
41                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
42                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
43                                target_ulong *page_size_ptr,
44                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
45 
46 /* Security attributes for an address, as returned by v8m_security_lookup. */
47 typedef struct V8M_SAttributes {
48     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
49     bool ns;
50     bool nsc;
51     uint8_t sregion;
52     bool srvalid;
53     uint8_t iregion;
54     bool irvalid;
55 } V8M_SAttributes;
56 
57 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
58                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
59                                 V8M_SAttributes *sattrs);
60 #endif
61 
62 static void switch_mode(CPUARMState *env, int mode);
63 
64 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
65 {
66     int nregs;
67 
68     /* VFP data registers are always little-endian.  */
69     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70     if (reg < nregs) {
71         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
72         return 8;
73     }
74     if (arm_feature(env, ARM_FEATURE_NEON)) {
75         /* Aliases for Q regs.  */
76         nregs += 16;
77         if (reg < nregs) {
78             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
79             stq_le_p(buf, q[0]);
80             stq_le_p(buf + 8, q[1]);
81             return 16;
82         }
83     }
84     switch (reg - nregs) {
85     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
86     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
87     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
88     }
89     return 0;
90 }
91 
92 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94     int nregs;
95 
96     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
97     if (reg < nregs) {
98         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
99         return 8;
100     }
101     if (arm_feature(env, ARM_FEATURE_NEON)) {
102         nregs += 16;
103         if (reg < nregs) {
104             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
105             q[0] = ldq_le_p(buf);
106             q[1] = ldq_le_p(buf + 8);
107             return 16;
108         }
109     }
110     switch (reg - nregs) {
111     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
112     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
113     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
114     }
115     return 0;
116 }
117 
118 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
119 {
120     switch (reg) {
121     case 0 ... 31:
122         /* 128 bit FP register */
123         {
124             uint64_t *q = aa64_vfp_qreg(env, reg);
125             stq_le_p(buf, q[0]);
126             stq_le_p(buf + 8, q[1]);
127             return 16;
128         }
129     case 32:
130         /* FPSR */
131         stl_p(buf, vfp_get_fpsr(env));
132         return 4;
133     case 33:
134         /* FPCR */
135         stl_p(buf, vfp_get_fpcr(env));
136         return 4;
137     default:
138         return 0;
139     }
140 }
141 
142 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
143 {
144     switch (reg) {
145     case 0 ... 31:
146         /* 128 bit FP register */
147         {
148             uint64_t *q = aa64_vfp_qreg(env, reg);
149             q[0] = ldq_le_p(buf);
150             q[1] = ldq_le_p(buf + 8);
151             return 16;
152         }
153     case 32:
154         /* FPSR */
155         vfp_set_fpsr(env, ldl_p(buf));
156         return 4;
157     case 33:
158         /* FPCR */
159         vfp_set_fpcr(env, ldl_p(buf));
160         return 4;
161     default:
162         return 0;
163     }
164 }
165 
166 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
167 {
168     assert(ri->fieldoffset);
169     if (cpreg_field_is_64bit(ri)) {
170         return CPREG_FIELD64(env, ri);
171     } else {
172         return CPREG_FIELD32(env, ri);
173     }
174 }
175 
176 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
177                       uint64_t value)
178 {
179     assert(ri->fieldoffset);
180     if (cpreg_field_is_64bit(ri)) {
181         CPREG_FIELD64(env, ri) = value;
182     } else {
183         CPREG_FIELD32(env, ri) = value;
184     }
185 }
186 
187 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
188 {
189     return (char *)env + ri->fieldoffset;
190 }
191 
192 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
193 {
194     /* Raw read of a coprocessor register (as needed for migration, etc). */
195     if (ri->type & ARM_CP_CONST) {
196         return ri->resetvalue;
197     } else if (ri->raw_readfn) {
198         return ri->raw_readfn(env, ri);
199     } else if (ri->readfn) {
200         return ri->readfn(env, ri);
201     } else {
202         return raw_read(env, ri);
203     }
204 }
205 
206 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
207                              uint64_t v)
208 {
209     /* Raw write of a coprocessor register (as needed for migration, etc).
210      * Note that constant registers are treated as write-ignored; the
211      * caller should check for success by whether a readback gives the
212      * value written.
213      */
214     if (ri->type & ARM_CP_CONST) {
215         return;
216     } else if (ri->raw_writefn) {
217         ri->raw_writefn(env, ri, v);
218     } else if (ri->writefn) {
219         ri->writefn(env, ri, v);
220     } else {
221         raw_write(env, ri, v);
222     }
223 }
224 
225 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
226 {
227     ARMCPU *cpu = arm_env_get_cpu(env);
228     const ARMCPRegInfo *ri;
229     uint32_t key;
230 
231     key = cpu->dyn_xml.cpregs_keys[reg];
232     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
233     if (ri) {
234         if (cpreg_field_is_64bit(ri)) {
235             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
236         } else {
237             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
238         }
239     }
240     return 0;
241 }
242 
243 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
244 {
245     return 0;
246 }
247 
248 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
249 {
250    /* Return true if the regdef would cause an assertion if you called
251     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
252     * program bug for it not to have the NO_RAW flag).
253     * NB that returning false here doesn't necessarily mean that calling
254     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
255     * read/write access functions which are safe for raw use" from "has
256     * read/write access functions which have side effects but has forgotten
257     * to provide raw access functions".
258     * The tests here line up with the conditions in read/write_raw_cp_reg()
259     * and assertions in raw_read()/raw_write().
260     */
261     if ((ri->type & ARM_CP_CONST) ||
262         ri->fieldoffset ||
263         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
264         return false;
265     }
266     return true;
267 }
268 
269 bool write_cpustate_to_list(ARMCPU *cpu)
270 {
271     /* Write the coprocessor state from cpu->env to the (index,value) list. */
272     int i;
273     bool ok = true;
274 
275     for (i = 0; i < cpu->cpreg_array_len; i++) {
276         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
277         const ARMCPRegInfo *ri;
278 
279         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
280         if (!ri) {
281             ok = false;
282             continue;
283         }
284         if (ri->type & ARM_CP_NO_RAW) {
285             continue;
286         }
287         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
288     }
289     return ok;
290 }
291 
292 bool write_list_to_cpustate(ARMCPU *cpu)
293 {
294     int i;
295     bool ok = true;
296 
297     for (i = 0; i < cpu->cpreg_array_len; i++) {
298         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
299         uint64_t v = cpu->cpreg_values[i];
300         const ARMCPRegInfo *ri;
301 
302         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
303         if (!ri) {
304             ok = false;
305             continue;
306         }
307         if (ri->type & ARM_CP_NO_RAW) {
308             continue;
309         }
310         /* Write value and confirm it reads back as written
311          * (to catch read-only registers and partially read-only
312          * registers where the incoming migration value doesn't match)
313          */
314         write_raw_cp_reg(&cpu->env, ri, v);
315         if (read_raw_cp_reg(&cpu->env, ri) != v) {
316             ok = false;
317         }
318     }
319     return ok;
320 }
321 
322 static void add_cpreg_to_list(gpointer key, gpointer opaque)
323 {
324     ARMCPU *cpu = opaque;
325     uint64_t regidx;
326     const ARMCPRegInfo *ri;
327 
328     regidx = *(uint32_t *)key;
329     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
330 
331     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
332         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
333         /* The value array need not be initialized at this point */
334         cpu->cpreg_array_len++;
335     }
336 }
337 
338 static void count_cpreg(gpointer key, gpointer opaque)
339 {
340     ARMCPU *cpu = opaque;
341     uint64_t regidx;
342     const ARMCPRegInfo *ri;
343 
344     regidx = *(uint32_t *)key;
345     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
346 
347     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
348         cpu->cpreg_array_len++;
349     }
350 }
351 
352 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
353 {
354     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
355     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
356 
357     if (aidx > bidx) {
358         return 1;
359     }
360     if (aidx < bidx) {
361         return -1;
362     }
363     return 0;
364 }
365 
366 void init_cpreg_list(ARMCPU *cpu)
367 {
368     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
369      * Note that we require cpreg_tuples[] to be sorted by key ID.
370      */
371     GList *keys;
372     int arraylen;
373 
374     keys = g_hash_table_get_keys(cpu->cp_regs);
375     keys = g_list_sort(keys, cpreg_key_compare);
376 
377     cpu->cpreg_array_len = 0;
378 
379     g_list_foreach(keys, count_cpreg, cpu);
380 
381     arraylen = cpu->cpreg_array_len;
382     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
383     cpu->cpreg_values = g_new(uint64_t, arraylen);
384     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
385     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
386     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
387     cpu->cpreg_array_len = 0;
388 
389     g_list_foreach(keys, add_cpreg_to_list, cpu);
390 
391     assert(cpu->cpreg_array_len == arraylen);
392 
393     g_list_free(keys);
394 }
395 
396 /*
397  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
398  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
399  *
400  * access_el3_aa32ns: Used to check AArch32 register views.
401  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
402  */
403 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
404                                         const ARMCPRegInfo *ri,
405                                         bool isread)
406 {
407     bool secure = arm_is_secure_below_el3(env);
408 
409     assert(!arm_el_is_aa64(env, 3));
410     if (secure) {
411         return CP_ACCESS_TRAP_UNCATEGORIZED;
412     }
413     return CP_ACCESS_OK;
414 }
415 
416 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
417                                                 const ARMCPRegInfo *ri,
418                                                 bool isread)
419 {
420     if (!arm_el_is_aa64(env, 3)) {
421         return access_el3_aa32ns(env, ri, isread);
422     }
423     return CP_ACCESS_OK;
424 }
425 
426 /* Some secure-only AArch32 registers trap to EL3 if used from
427  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
428  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
429  * We assume that the .access field is set to PL1_RW.
430  */
431 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
432                                             const ARMCPRegInfo *ri,
433                                             bool isread)
434 {
435     if (arm_current_el(env) == 3) {
436         return CP_ACCESS_OK;
437     }
438     if (arm_is_secure_below_el3(env)) {
439         return CP_ACCESS_TRAP_EL3;
440     }
441     /* This will be EL1 NS and EL2 NS, which just UNDEF */
442     return CP_ACCESS_TRAP_UNCATEGORIZED;
443 }
444 
445 /* Check for traps to "powerdown debug" registers, which are controlled
446  * by MDCR.TDOSA
447  */
448 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
449                                    bool isread)
450 {
451     int el = arm_current_el(env);
452     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
453         (env->cp15.mdcr_el2 & MDCR_TDE) ||
454         (arm_hcr_el2_eff(env) & HCR_TGE);
455 
456     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
457         return CP_ACCESS_TRAP_EL2;
458     }
459     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
460         return CP_ACCESS_TRAP_EL3;
461     }
462     return CP_ACCESS_OK;
463 }
464 
465 /* Check for traps to "debug ROM" registers, which are controlled
466  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
467  */
468 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
469                                   bool isread)
470 {
471     int el = arm_current_el(env);
472     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
473         (env->cp15.mdcr_el2 & MDCR_TDE) ||
474         (arm_hcr_el2_eff(env) & HCR_TGE);
475 
476     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
477         return CP_ACCESS_TRAP_EL2;
478     }
479     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
480         return CP_ACCESS_TRAP_EL3;
481     }
482     return CP_ACCESS_OK;
483 }
484 
485 /* Check for traps to general debug registers, which are controlled
486  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
487  */
488 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
489                                   bool isread)
490 {
491     int el = arm_current_el(env);
492     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
493         (env->cp15.mdcr_el2 & MDCR_TDE) ||
494         (arm_hcr_el2_eff(env) & HCR_TGE);
495 
496     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
497         return CP_ACCESS_TRAP_EL2;
498     }
499     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
500         return CP_ACCESS_TRAP_EL3;
501     }
502     return CP_ACCESS_OK;
503 }
504 
505 /* Check for traps to performance monitor registers, which are controlled
506  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
507  */
508 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
509                                  bool isread)
510 {
511     int el = arm_current_el(env);
512 
513     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
514         && !arm_is_secure_below_el3(env)) {
515         return CP_ACCESS_TRAP_EL2;
516     }
517     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
518         return CP_ACCESS_TRAP_EL3;
519     }
520     return CP_ACCESS_OK;
521 }
522 
523 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
524 {
525     ARMCPU *cpu = arm_env_get_cpu(env);
526 
527     raw_write(env, ri, value);
528     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
529 }
530 
531 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
532 {
533     ARMCPU *cpu = arm_env_get_cpu(env);
534 
535     if (raw_read(env, ri) != value) {
536         /* Unlike real hardware the qemu TLB uses virtual addresses,
537          * not modified virtual addresses, so this causes a TLB flush.
538          */
539         tlb_flush(CPU(cpu));
540         raw_write(env, ri, value);
541     }
542 }
543 
544 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
545                              uint64_t value)
546 {
547     ARMCPU *cpu = arm_env_get_cpu(env);
548 
549     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
550         && !extended_addresses_enabled(env)) {
551         /* For VMSA (when not using the LPAE long descriptor page table
552          * format) this register includes the ASID, so do a TLB flush.
553          * For PMSA it is purely a process ID and no action is needed.
554          */
555         tlb_flush(CPU(cpu));
556     }
557     raw_write(env, ri, value);
558 }
559 
560 /* IS variants of TLB operations must affect all cores */
561 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562                              uint64_t value)
563 {
564     CPUState *cs = ENV_GET_CPU(env);
565 
566     tlb_flush_all_cpus_synced(cs);
567 }
568 
569 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
570                              uint64_t value)
571 {
572     CPUState *cs = ENV_GET_CPU(env);
573 
574     tlb_flush_all_cpus_synced(cs);
575 }
576 
577 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
578                              uint64_t value)
579 {
580     CPUState *cs = ENV_GET_CPU(env);
581 
582     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
583 }
584 
585 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
586                              uint64_t value)
587 {
588     CPUState *cs = ENV_GET_CPU(env);
589 
590     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
591 }
592 
593 /*
594  * Non-IS variants of TLB operations are upgraded to
595  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
596  * force broadcast of these operations.
597  */
598 static bool tlb_force_broadcast(CPUARMState *env)
599 {
600     return (env->cp15.hcr_el2 & HCR_FB) &&
601         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
602 }
603 
604 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
605                           uint64_t value)
606 {
607     /* Invalidate all (TLBIALL) */
608     ARMCPU *cpu = arm_env_get_cpu(env);
609 
610     if (tlb_force_broadcast(env)) {
611         tlbiall_is_write(env, NULL, value);
612         return;
613     }
614 
615     tlb_flush(CPU(cpu));
616 }
617 
618 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
619                           uint64_t value)
620 {
621     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
622     ARMCPU *cpu = arm_env_get_cpu(env);
623 
624     if (tlb_force_broadcast(env)) {
625         tlbimva_is_write(env, NULL, value);
626         return;
627     }
628 
629     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
630 }
631 
632 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
633                            uint64_t value)
634 {
635     /* Invalidate by ASID (TLBIASID) */
636     ARMCPU *cpu = arm_env_get_cpu(env);
637 
638     if (tlb_force_broadcast(env)) {
639         tlbiasid_is_write(env, NULL, value);
640         return;
641     }
642 
643     tlb_flush(CPU(cpu));
644 }
645 
646 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
647                            uint64_t value)
648 {
649     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
650     ARMCPU *cpu = arm_env_get_cpu(env);
651 
652     if (tlb_force_broadcast(env)) {
653         tlbimvaa_is_write(env, NULL, value);
654         return;
655     }
656 
657     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
658 }
659 
660 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
661                                uint64_t value)
662 {
663     CPUState *cs = ENV_GET_CPU(env);
664 
665     tlb_flush_by_mmuidx(cs,
666                         ARMMMUIdxBit_S12NSE1 |
667                         ARMMMUIdxBit_S12NSE0 |
668                         ARMMMUIdxBit_S2NS);
669 }
670 
671 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
672                                   uint64_t value)
673 {
674     CPUState *cs = ENV_GET_CPU(env);
675 
676     tlb_flush_by_mmuidx_all_cpus_synced(cs,
677                                         ARMMMUIdxBit_S12NSE1 |
678                                         ARMMMUIdxBit_S12NSE0 |
679                                         ARMMMUIdxBit_S2NS);
680 }
681 
682 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
683                             uint64_t value)
684 {
685     /* Invalidate by IPA. This has to invalidate any structures that
686      * contain only stage 2 translation information, but does not need
687      * to apply to structures that contain combined stage 1 and stage 2
688      * translation information.
689      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
690      */
691     CPUState *cs = ENV_GET_CPU(env);
692     uint64_t pageaddr;
693 
694     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
695         return;
696     }
697 
698     pageaddr = sextract64(value << 12, 0, 40);
699 
700     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
701 }
702 
703 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
704                                uint64_t value)
705 {
706     CPUState *cs = ENV_GET_CPU(env);
707     uint64_t pageaddr;
708 
709     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
710         return;
711     }
712 
713     pageaddr = sextract64(value << 12, 0, 40);
714 
715     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
716                                              ARMMMUIdxBit_S2NS);
717 }
718 
719 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
720                               uint64_t value)
721 {
722     CPUState *cs = ENV_GET_CPU(env);
723 
724     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
725 }
726 
727 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
728                                  uint64_t value)
729 {
730     CPUState *cs = ENV_GET_CPU(env);
731 
732     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
733 }
734 
735 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
736                               uint64_t value)
737 {
738     CPUState *cs = ENV_GET_CPU(env);
739     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
740 
741     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
742 }
743 
744 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
745                                  uint64_t value)
746 {
747     CPUState *cs = ENV_GET_CPU(env);
748     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749 
750     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
751                                              ARMMMUIdxBit_S1E2);
752 }
753 
754 static const ARMCPRegInfo cp_reginfo[] = {
755     /* Define the secure and non-secure FCSE identifier CP registers
756      * separately because there is no secure bank in V8 (no _EL3).  This allows
757      * the secure register to be properly reset and migrated. There is also no
758      * v8 EL1 version of the register so the non-secure instance stands alone.
759      */
760     { .name = "FCSEIDR",
761       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
762       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
763       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
764       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
765     { .name = "FCSEIDR_S",
766       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
767       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
768       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
769       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
770     /* Define the secure and non-secure context identifier CP registers
771      * separately because there is no secure bank in V8 (no _EL3).  This allows
772      * the secure register to be properly reset and migrated.  In the
773      * non-secure case, the 32-bit register will have reset and migration
774      * disabled during registration as it is handled by the 64-bit instance.
775      */
776     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
777       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
778       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
779       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
780       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
781     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
782       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
783       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
784       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
785       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
786     REGINFO_SENTINEL
787 };
788 
789 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
790     /* NB: Some of these registers exist in v8 but with more precise
791      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
792      */
793     /* MMU Domain access control / MPU write buffer control */
794     { .name = "DACR",
795       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
796       .access = PL1_RW, .resetvalue = 0,
797       .writefn = dacr_write, .raw_writefn = raw_write,
798       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
799                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
800     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
801      * For v6 and v5, these mappings are overly broad.
802      */
803     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
804       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
805     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
806       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
807     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
808       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
809     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
810       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
811     /* Cache maintenance ops; some of this space may be overridden later. */
812     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
813       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
814       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
815     REGINFO_SENTINEL
816 };
817 
818 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
819     /* Not all pre-v6 cores implemented this WFI, so this is slightly
820      * over-broad.
821      */
822     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
823       .access = PL1_W, .type = ARM_CP_WFI },
824     REGINFO_SENTINEL
825 };
826 
827 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
828     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
829      * is UNPREDICTABLE; we choose to NOP as most implementations do).
830      */
831     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
832       .access = PL1_W, .type = ARM_CP_WFI },
833     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
834      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
835      * OMAPCP will override this space.
836      */
837     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
838       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
839       .resetvalue = 0 },
840     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
841       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
842       .resetvalue = 0 },
843     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
844     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
845       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
846       .resetvalue = 0 },
847     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
848      * implementing it as RAZ means the "debug architecture version" bits
849      * will read as a reserved value, which should cause Linux to not try
850      * to use the debug hardware.
851      */
852     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
853       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
854     /* MMU TLB control. Note that the wildcarding means we cover not just
855      * the unified TLB ops but also the dside/iside/inner-shareable variants.
856      */
857     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
858       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
859       .type = ARM_CP_NO_RAW },
860     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
861       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
862       .type = ARM_CP_NO_RAW },
863     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
864       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
865       .type = ARM_CP_NO_RAW },
866     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
867       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
868       .type = ARM_CP_NO_RAW },
869     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
870       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
871     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
872       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
873     REGINFO_SENTINEL
874 };
875 
876 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
877                         uint64_t value)
878 {
879     uint32_t mask = 0;
880 
881     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
882     if (!arm_feature(env, ARM_FEATURE_V8)) {
883         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
884          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
885          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
886          */
887         if (arm_feature(env, ARM_FEATURE_VFP)) {
888             /* VFP coprocessor: cp10 & cp11 [23:20] */
889             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
890 
891             if (!arm_feature(env, ARM_FEATURE_NEON)) {
892                 /* ASEDIS [31] bit is RAO/WI */
893                 value |= (1 << 31);
894             }
895 
896             /* VFPv3 and upwards with NEON implement 32 double precision
897              * registers (D0-D31).
898              */
899             if (!arm_feature(env, ARM_FEATURE_NEON) ||
900                     !arm_feature(env, ARM_FEATURE_VFP3)) {
901                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
902                 value |= (1 << 30);
903             }
904         }
905         value &= mask;
906     }
907     env->cp15.cpacr_el1 = value;
908 }
909 
910 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
911 {
912     /* Call cpacr_write() so that we reset with the correct RAO bits set
913      * for our CPU features.
914      */
915     cpacr_write(env, ri, 0);
916 }
917 
918 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
919                                    bool isread)
920 {
921     if (arm_feature(env, ARM_FEATURE_V8)) {
922         /* Check if CPACR accesses are to be trapped to EL2 */
923         if (arm_current_el(env) == 1 &&
924             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
925             return CP_ACCESS_TRAP_EL2;
926         /* Check if CPACR accesses are to be trapped to EL3 */
927         } else if (arm_current_el(env) < 3 &&
928                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
929             return CP_ACCESS_TRAP_EL3;
930         }
931     }
932 
933     return CP_ACCESS_OK;
934 }
935 
936 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
937                                   bool isread)
938 {
939     /* Check if CPTR accesses are set to trap to EL3 */
940     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
941         return CP_ACCESS_TRAP_EL3;
942     }
943 
944     return CP_ACCESS_OK;
945 }
946 
947 static const ARMCPRegInfo v6_cp_reginfo[] = {
948     /* prefetch by MVA in v6, NOP in v7 */
949     { .name = "MVA_prefetch",
950       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
951       .access = PL1_W, .type = ARM_CP_NOP },
952     /* We need to break the TB after ISB to execute self-modifying code
953      * correctly and also to take any pending interrupts immediately.
954      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
955      */
956     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
957       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
958     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
959       .access = PL0_W, .type = ARM_CP_NOP },
960     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
961       .access = PL0_W, .type = ARM_CP_NOP },
962     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
963       .access = PL1_RW,
964       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
965                              offsetof(CPUARMState, cp15.ifar_ns) },
966       .resetvalue = 0, },
967     /* Watchpoint Fault Address Register : should actually only be present
968      * for 1136, 1176, 11MPCore.
969      */
970     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
971       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
972     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
973       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
974       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
975       .resetfn = cpacr_reset, .writefn = cpacr_write },
976     REGINFO_SENTINEL
977 };
978 
979 /* Definitions for the PMU registers */
980 #define PMCRN_MASK  0xf800
981 #define PMCRN_SHIFT 11
982 #define PMCRLC  0x40
983 #define PMCRDP  0x10
984 #define PMCRD   0x8
985 #define PMCRC   0x4
986 #define PMCRP   0x2
987 #define PMCRE   0x1
988 
989 #define PMXEVTYPER_P          0x80000000
990 #define PMXEVTYPER_U          0x40000000
991 #define PMXEVTYPER_NSK        0x20000000
992 #define PMXEVTYPER_NSU        0x10000000
993 #define PMXEVTYPER_NSH        0x08000000
994 #define PMXEVTYPER_M          0x04000000
995 #define PMXEVTYPER_MT         0x02000000
996 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
997 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
998                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
999                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1000                                PMXEVTYPER_EVTCOUNT)
1001 
1002 #define PMCCFILTR             0xf8000000
1003 #define PMCCFILTR_M           PMXEVTYPER_M
1004 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1005 
1006 static inline uint32_t pmu_num_counters(CPUARMState *env)
1007 {
1008   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1009 }
1010 
1011 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1012 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1013 {
1014   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1015 }
1016 
1017 typedef struct pm_event {
1018     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1019     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1020     bool (*supported)(CPUARMState *);
1021     /*
1022      * Retrieve the current count of the underlying event. The programmed
1023      * counters hold a difference from the return value from this function
1024      */
1025     uint64_t (*get_count)(CPUARMState *);
1026     /*
1027      * Return how many nanoseconds it will take (at a minimum) for count events
1028      * to occur. A negative value indicates the counter will never overflow, or
1029      * that the counter has otherwise arranged for the overflow bit to be set
1030      * and the PMU interrupt to be raised on overflow.
1031      */
1032     int64_t (*ns_per_count)(uint64_t);
1033 } pm_event;
1034 
1035 static bool event_always_supported(CPUARMState *env)
1036 {
1037     return true;
1038 }
1039 
1040 static uint64_t swinc_get_count(CPUARMState *env)
1041 {
1042     /*
1043      * SW_INCR events are written directly to the pmevcntr's by writes to
1044      * PMSWINC, so there is no underlying count maintained by the PMU itself
1045      */
1046     return 0;
1047 }
1048 
1049 static int64_t swinc_ns_per(uint64_t ignored)
1050 {
1051     return -1;
1052 }
1053 
1054 /*
1055  * Return the underlying cycle count for the PMU cycle counters. If we're in
1056  * usermode, simply return 0.
1057  */
1058 static uint64_t cycles_get_count(CPUARMState *env)
1059 {
1060 #ifndef CONFIG_USER_ONLY
1061     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1062                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1063 #else
1064     return cpu_get_host_ticks();
1065 #endif
1066 }
1067 
1068 #ifndef CONFIG_USER_ONLY
1069 static int64_t cycles_ns_per(uint64_t cycles)
1070 {
1071     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1072 }
1073 
1074 static bool instructions_supported(CPUARMState *env)
1075 {
1076     return use_icount == 1 /* Precise instruction counting */;
1077 }
1078 
1079 static uint64_t instructions_get_count(CPUARMState *env)
1080 {
1081     return (uint64_t)cpu_get_icount_raw();
1082 }
1083 
1084 static int64_t instructions_ns_per(uint64_t icount)
1085 {
1086     return cpu_icount_to_ns((int64_t)icount);
1087 }
1088 #endif
1089 
1090 static const pm_event pm_events[] = {
1091     { .number = 0x000, /* SW_INCR */
1092       .supported = event_always_supported,
1093       .get_count = swinc_get_count,
1094       .ns_per_count = swinc_ns_per,
1095     },
1096 #ifndef CONFIG_USER_ONLY
1097     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1098       .supported = instructions_supported,
1099       .get_count = instructions_get_count,
1100       .ns_per_count = instructions_ns_per,
1101     },
1102     { .number = 0x011, /* CPU_CYCLES, Cycle */
1103       .supported = event_always_supported,
1104       .get_count = cycles_get_count,
1105       .ns_per_count = cycles_ns_per,
1106     }
1107 #endif
1108 };
1109 
1110 /*
1111  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1112  * events (i.e. the statistical profiling extension), this implementation
1113  * should first be updated to something sparse instead of the current
1114  * supported_event_map[] array.
1115  */
1116 #define MAX_EVENT_ID 0x11
1117 #define UNSUPPORTED_EVENT UINT16_MAX
1118 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1119 
1120 /*
1121  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1122  * of ARM event numbers to indices in our pm_events array.
1123  *
1124  * Note: Events in the 0x40XX range are not currently supported.
1125  */
1126 void pmu_init(ARMCPU *cpu)
1127 {
1128     unsigned int i;
1129 
1130     /*
1131      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1132      * events to them
1133      */
1134     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1135         supported_event_map[i] = UNSUPPORTED_EVENT;
1136     }
1137     cpu->pmceid0 = 0;
1138     cpu->pmceid1 = 0;
1139 
1140     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1141         const pm_event *cnt = &pm_events[i];
1142         assert(cnt->number <= MAX_EVENT_ID);
1143         /* We do not currently support events in the 0x40xx range */
1144         assert(cnt->number <= 0x3f);
1145 
1146         if (cnt->supported(&cpu->env)) {
1147             supported_event_map[cnt->number] = i;
1148             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1149             if (cnt->number & 0x20) {
1150                 cpu->pmceid1 |= event_mask;
1151             } else {
1152                 cpu->pmceid0 |= event_mask;
1153             }
1154         }
1155     }
1156 }
1157 
1158 /*
1159  * Check at runtime whether a PMU event is supported for the current machine
1160  */
1161 static bool event_supported(uint16_t number)
1162 {
1163     if (number > MAX_EVENT_ID) {
1164         return false;
1165     }
1166     return supported_event_map[number] != UNSUPPORTED_EVENT;
1167 }
1168 
1169 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1170                                    bool isread)
1171 {
1172     /* Performance monitor registers user accessibility is controlled
1173      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1174      * trapping to EL2 or EL3 for other accesses.
1175      */
1176     int el = arm_current_el(env);
1177 
1178     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1179         return CP_ACCESS_TRAP;
1180     }
1181     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1182         && !arm_is_secure_below_el3(env)) {
1183         return CP_ACCESS_TRAP_EL2;
1184     }
1185     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1186         return CP_ACCESS_TRAP_EL3;
1187     }
1188 
1189     return CP_ACCESS_OK;
1190 }
1191 
1192 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1193                                            const ARMCPRegInfo *ri,
1194                                            bool isread)
1195 {
1196     /* ER: event counter read trap control */
1197     if (arm_feature(env, ARM_FEATURE_V8)
1198         && arm_current_el(env) == 0
1199         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1200         && isread) {
1201         return CP_ACCESS_OK;
1202     }
1203 
1204     return pmreg_access(env, ri, isread);
1205 }
1206 
1207 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1208                                          const ARMCPRegInfo *ri,
1209                                          bool isread)
1210 {
1211     /* SW: software increment write trap control */
1212     if (arm_feature(env, ARM_FEATURE_V8)
1213         && arm_current_el(env) == 0
1214         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1215         && !isread) {
1216         return CP_ACCESS_OK;
1217     }
1218 
1219     return pmreg_access(env, ri, isread);
1220 }
1221 
1222 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1223                                         const ARMCPRegInfo *ri,
1224                                         bool isread)
1225 {
1226     /* ER: event counter read trap control */
1227     if (arm_feature(env, ARM_FEATURE_V8)
1228         && arm_current_el(env) == 0
1229         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1230         return CP_ACCESS_OK;
1231     }
1232 
1233     return pmreg_access(env, ri, isread);
1234 }
1235 
1236 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1237                                          const ARMCPRegInfo *ri,
1238                                          bool isread)
1239 {
1240     /* CR: cycle counter read trap control */
1241     if (arm_feature(env, ARM_FEATURE_V8)
1242         && arm_current_el(env) == 0
1243         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1244         && isread) {
1245         return CP_ACCESS_OK;
1246     }
1247 
1248     return pmreg_access(env, ri, isread);
1249 }
1250 
1251 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1252  * the current EL, security state, and register configuration.
1253  */
1254 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1255 {
1256     uint64_t filter;
1257     bool e, p, u, nsk, nsu, nsh, m;
1258     bool enabled, prohibited, filtered;
1259     bool secure = arm_is_secure(env);
1260     int el = arm_current_el(env);
1261     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1262 
1263     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1264         return false;
1265     }
1266 
1267     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1268             (counter < hpmn || counter == 31)) {
1269         e = env->cp15.c9_pmcr & PMCRE;
1270     } else {
1271         e = env->cp15.mdcr_el2 & MDCR_HPME;
1272     }
1273     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1274 
1275     if (!secure) {
1276         if (el == 2 && (counter < hpmn || counter == 31)) {
1277             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1278         } else {
1279             prohibited = false;
1280         }
1281     } else {
1282         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1283            (env->cp15.mdcr_el3 & MDCR_SPME);
1284     }
1285 
1286     if (prohibited && counter == 31) {
1287         prohibited = env->cp15.c9_pmcr & PMCRDP;
1288     }
1289 
1290     if (counter == 31) {
1291         filter = env->cp15.pmccfiltr_el0;
1292     } else {
1293         filter = env->cp15.c14_pmevtyper[counter];
1294     }
1295 
1296     p   = filter & PMXEVTYPER_P;
1297     u   = filter & PMXEVTYPER_U;
1298     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1299     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1300     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1301     m   = arm_el_is_aa64(env, 1) &&
1302               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1303 
1304     if (el == 0) {
1305         filtered = secure ? u : u != nsu;
1306     } else if (el == 1) {
1307         filtered = secure ? p : p != nsk;
1308     } else if (el == 2) {
1309         filtered = !nsh;
1310     } else { /* EL3 */
1311         filtered = m != p;
1312     }
1313 
1314     if (counter != 31) {
1315         /*
1316          * If not checking PMCCNTR, ensure the counter is setup to an event we
1317          * support
1318          */
1319         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1320         if (!event_supported(event)) {
1321             return false;
1322         }
1323     }
1324 
1325     return enabled && !prohibited && !filtered;
1326 }
1327 
1328 static void pmu_update_irq(CPUARMState *env)
1329 {
1330     ARMCPU *cpu = arm_env_get_cpu(env);
1331     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1332             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1333 }
1334 
1335 /*
1336  * Ensure c15_ccnt is the guest-visible count so that operations such as
1337  * enabling/disabling the counter or filtering, modifying the count itself,
1338  * etc. can be done logically. This is essentially a no-op if the counter is
1339  * not enabled at the time of the call.
1340  */
1341 static void pmccntr_op_start(CPUARMState *env)
1342 {
1343     uint64_t cycles = cycles_get_count(env);
1344 
1345     if (pmu_counter_enabled(env, 31)) {
1346         uint64_t eff_cycles = cycles;
1347         if (env->cp15.c9_pmcr & PMCRD) {
1348             /* Increment once every 64 processor clock cycles */
1349             eff_cycles /= 64;
1350         }
1351 
1352         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1353 
1354         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1355                                  1ull << 63 : 1ull << 31;
1356         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1357             env->cp15.c9_pmovsr |= (1 << 31);
1358             pmu_update_irq(env);
1359         }
1360 
1361         env->cp15.c15_ccnt = new_pmccntr;
1362     }
1363     env->cp15.c15_ccnt_delta = cycles;
1364 }
1365 
1366 /*
1367  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1368  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1369  * pmccntr_op_start.
1370  */
1371 static void pmccntr_op_finish(CPUARMState *env)
1372 {
1373     if (pmu_counter_enabled(env, 31)) {
1374 #ifndef CONFIG_USER_ONLY
1375         /* Calculate when the counter will next overflow */
1376         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1377         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1378             remaining_cycles = (uint32_t)remaining_cycles;
1379         }
1380         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1381 
1382         if (overflow_in > 0) {
1383             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1384                 overflow_in;
1385             ARMCPU *cpu = arm_env_get_cpu(env);
1386             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1387         }
1388 #endif
1389 
1390         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1391         if (env->cp15.c9_pmcr & PMCRD) {
1392             /* Increment once every 64 processor clock cycles */
1393             prev_cycles /= 64;
1394         }
1395         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1396     }
1397 }
1398 
1399 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1400 {
1401 
1402     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1403     uint64_t count = 0;
1404     if (event_supported(event)) {
1405         uint16_t event_idx = supported_event_map[event];
1406         count = pm_events[event_idx].get_count(env);
1407     }
1408 
1409     if (pmu_counter_enabled(env, counter)) {
1410         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1411 
1412         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1413             env->cp15.c9_pmovsr |= (1 << counter);
1414             pmu_update_irq(env);
1415         }
1416         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1417     }
1418     env->cp15.c14_pmevcntr_delta[counter] = count;
1419 }
1420 
1421 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1422 {
1423     if (pmu_counter_enabled(env, counter)) {
1424 #ifndef CONFIG_USER_ONLY
1425         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1426         uint16_t event_idx = supported_event_map[event];
1427         uint64_t delta = UINT32_MAX -
1428             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1429         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1430 
1431         if (overflow_in > 0) {
1432             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1433                 overflow_in;
1434             ARMCPU *cpu = arm_env_get_cpu(env);
1435             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1436         }
1437 #endif
1438 
1439         env->cp15.c14_pmevcntr_delta[counter] -=
1440             env->cp15.c14_pmevcntr[counter];
1441     }
1442 }
1443 
1444 void pmu_op_start(CPUARMState *env)
1445 {
1446     unsigned int i;
1447     pmccntr_op_start(env);
1448     for (i = 0; i < pmu_num_counters(env); i++) {
1449         pmevcntr_op_start(env, i);
1450     }
1451 }
1452 
1453 void pmu_op_finish(CPUARMState *env)
1454 {
1455     unsigned int i;
1456     pmccntr_op_finish(env);
1457     for (i = 0; i < pmu_num_counters(env); i++) {
1458         pmevcntr_op_finish(env, i);
1459     }
1460 }
1461 
1462 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1463 {
1464     pmu_op_start(&cpu->env);
1465 }
1466 
1467 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1468 {
1469     pmu_op_finish(&cpu->env);
1470 }
1471 
1472 void arm_pmu_timer_cb(void *opaque)
1473 {
1474     ARMCPU *cpu = opaque;
1475 
1476     /*
1477      * Update all the counter values based on the current underlying counts,
1478      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1479      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1480      * counter may expire.
1481      */
1482     pmu_op_start(&cpu->env);
1483     pmu_op_finish(&cpu->env);
1484 }
1485 
1486 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1487                        uint64_t value)
1488 {
1489     pmu_op_start(env);
1490 
1491     if (value & PMCRC) {
1492         /* The counter has been reset */
1493         env->cp15.c15_ccnt = 0;
1494     }
1495 
1496     if (value & PMCRP) {
1497         unsigned int i;
1498         for (i = 0; i < pmu_num_counters(env); i++) {
1499             env->cp15.c14_pmevcntr[i] = 0;
1500         }
1501     }
1502 
1503     /* only the DP, X, D and E bits are writable */
1504     env->cp15.c9_pmcr &= ~0x39;
1505     env->cp15.c9_pmcr |= (value & 0x39);
1506 
1507     pmu_op_finish(env);
1508 }
1509 
1510 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1511                           uint64_t value)
1512 {
1513     unsigned int i;
1514     for (i = 0; i < pmu_num_counters(env); i++) {
1515         /* Increment a counter's count iff: */
1516         if ((value & (1 << i)) && /* counter's bit is set */
1517                 /* counter is enabled and not filtered */
1518                 pmu_counter_enabled(env, i) &&
1519                 /* counter is SW_INCR */
1520                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1521             pmevcntr_op_start(env, i);
1522 
1523             /*
1524              * Detect if this write causes an overflow since we can't predict
1525              * PMSWINC overflows like we can for other events
1526              */
1527             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1528 
1529             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1530                 env->cp15.c9_pmovsr |= (1 << i);
1531                 pmu_update_irq(env);
1532             }
1533 
1534             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1535 
1536             pmevcntr_op_finish(env, i);
1537         }
1538     }
1539 }
1540 
1541 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1542 {
1543     uint64_t ret;
1544     pmccntr_op_start(env);
1545     ret = env->cp15.c15_ccnt;
1546     pmccntr_op_finish(env);
1547     return ret;
1548 }
1549 
1550 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                          uint64_t value)
1552 {
1553     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1554      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1555      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1556      * accessed.
1557      */
1558     env->cp15.c9_pmselr = value & 0x1f;
1559 }
1560 
1561 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1562                         uint64_t value)
1563 {
1564     pmccntr_op_start(env);
1565     env->cp15.c15_ccnt = value;
1566     pmccntr_op_finish(env);
1567 }
1568 
1569 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1570                             uint64_t value)
1571 {
1572     uint64_t cur_val = pmccntr_read(env, NULL);
1573 
1574     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1575 }
1576 
1577 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578                             uint64_t value)
1579 {
1580     pmccntr_op_start(env);
1581     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1582     pmccntr_op_finish(env);
1583 }
1584 
1585 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1586                             uint64_t value)
1587 {
1588     pmccntr_op_start(env);
1589     /* M is not accessible from AArch32 */
1590     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1591         (value & PMCCFILTR);
1592     pmccntr_op_finish(env);
1593 }
1594 
1595 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1596 {
1597     /* M is not visible in AArch32 */
1598     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1599 }
1600 
1601 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602                             uint64_t value)
1603 {
1604     value &= pmu_counter_mask(env);
1605     env->cp15.c9_pmcnten |= value;
1606 }
1607 
1608 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value)
1610 {
1611     value &= pmu_counter_mask(env);
1612     env->cp15.c9_pmcnten &= ~value;
1613 }
1614 
1615 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1616                          uint64_t value)
1617 {
1618     value &= pmu_counter_mask(env);
1619     env->cp15.c9_pmovsr &= ~value;
1620     pmu_update_irq(env);
1621 }
1622 
1623 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1624                          uint64_t value)
1625 {
1626     value &= pmu_counter_mask(env);
1627     env->cp15.c9_pmovsr |= value;
1628     pmu_update_irq(env);
1629 }
1630 
1631 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1632                              uint64_t value, const uint8_t counter)
1633 {
1634     if (counter == 31) {
1635         pmccfiltr_write(env, ri, value);
1636     } else if (counter < pmu_num_counters(env)) {
1637         pmevcntr_op_start(env, counter);
1638 
1639         /*
1640          * If this counter's event type is changing, store the current
1641          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1642          * pmevcntr_op_finish has the correct baseline when it converts back to
1643          * a delta.
1644          */
1645         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1646             PMXEVTYPER_EVTCOUNT;
1647         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1648         if (old_event != new_event) {
1649             uint64_t count = 0;
1650             if (event_supported(new_event)) {
1651                 uint16_t event_idx = supported_event_map[new_event];
1652                 count = pm_events[event_idx].get_count(env);
1653             }
1654             env->cp15.c14_pmevcntr_delta[counter] = count;
1655         }
1656 
1657         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1658         pmevcntr_op_finish(env, counter);
1659     }
1660     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1661      * PMSELR value is equal to or greater than the number of implemented
1662      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1663      */
1664 }
1665 
1666 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1667                                const uint8_t counter)
1668 {
1669     if (counter == 31) {
1670         return env->cp15.pmccfiltr_el0;
1671     } else if (counter < pmu_num_counters(env)) {
1672         return env->cp15.c14_pmevtyper[counter];
1673     } else {
1674       /*
1675        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1676        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1677        */
1678         return 0;
1679     }
1680 }
1681 
1682 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1683                               uint64_t value)
1684 {
1685     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1686     pmevtyper_write(env, ri, value, counter);
1687 }
1688 
1689 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1690                                uint64_t value)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     env->cp15.c14_pmevtyper[counter] = value;
1694 
1695     /*
1696      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1697      * pmu_op_finish calls when loading saved state for a migration. Because
1698      * we're potentially updating the type of event here, the value written to
1699      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1700      * different counter type. Therefore, we need to set this value to the
1701      * current count for the counter type we're writing so that pmu_op_finish
1702      * has the correct count for its calculation.
1703      */
1704     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1705     if (event_supported(event)) {
1706         uint16_t event_idx = supported_event_map[event];
1707         env->cp15.c14_pmevcntr_delta[counter] =
1708             pm_events[event_idx].get_count(env);
1709     }
1710 }
1711 
1712 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1713 {
1714     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1715     return pmevtyper_read(env, ri, counter);
1716 }
1717 
1718 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1719                              uint64_t value)
1720 {
1721     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1722 }
1723 
1724 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 {
1726     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1727 }
1728 
1729 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1730                              uint64_t value, uint8_t counter)
1731 {
1732     if (counter < pmu_num_counters(env)) {
1733         pmevcntr_op_start(env, counter);
1734         env->cp15.c14_pmevcntr[counter] = value;
1735         pmevcntr_op_finish(env, counter);
1736     }
1737     /*
1738      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1739      * are CONSTRAINED UNPREDICTABLE.
1740      */
1741 }
1742 
1743 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1744                               uint8_t counter)
1745 {
1746     if (counter < pmu_num_counters(env)) {
1747         uint64_t ret;
1748         pmevcntr_op_start(env, counter);
1749         ret = env->cp15.c14_pmevcntr[counter];
1750         pmevcntr_op_finish(env, counter);
1751         return ret;
1752     } else {
1753       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1754        * are CONSTRAINED UNPREDICTABLE. */
1755         return 0;
1756     }
1757 }
1758 
1759 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1760                              uint64_t value)
1761 {
1762     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1763     pmevcntr_write(env, ri, value, counter);
1764 }
1765 
1766 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1767 {
1768     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1769     return pmevcntr_read(env, ri, counter);
1770 }
1771 
1772 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1773                              uint64_t value)
1774 {
1775     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1776     assert(counter < pmu_num_counters(env));
1777     env->cp15.c14_pmevcntr[counter] = value;
1778     pmevcntr_write(env, ri, value, counter);
1779 }
1780 
1781 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1782 {
1783     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1784     assert(counter < pmu_num_counters(env));
1785     return env->cp15.c14_pmevcntr[counter];
1786 }
1787 
1788 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                              uint64_t value)
1790 {
1791     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1792 }
1793 
1794 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1795 {
1796     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1797 }
1798 
1799 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1800                             uint64_t value)
1801 {
1802     if (arm_feature(env, ARM_FEATURE_V8)) {
1803         env->cp15.c9_pmuserenr = value & 0xf;
1804     } else {
1805         env->cp15.c9_pmuserenr = value & 1;
1806     }
1807 }
1808 
1809 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1810                              uint64_t value)
1811 {
1812     /* We have no event counters so only the C bit can be changed */
1813     value &= pmu_counter_mask(env);
1814     env->cp15.c9_pminten |= value;
1815     pmu_update_irq(env);
1816 }
1817 
1818 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819                              uint64_t value)
1820 {
1821     value &= pmu_counter_mask(env);
1822     env->cp15.c9_pminten &= ~value;
1823     pmu_update_irq(env);
1824 }
1825 
1826 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1827                        uint64_t value)
1828 {
1829     /* Note that even though the AArch64 view of this register has bits
1830      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1831      * architectural requirements for bits which are RES0 only in some
1832      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1833      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1834      */
1835     raw_write(env, ri, value & ~0x1FULL);
1836 }
1837 
1838 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1839 {
1840     /* Begin with base v8.0 state.  */
1841     uint32_t valid_mask = 0x3fff;
1842     ARMCPU *cpu = arm_env_get_cpu(env);
1843 
1844     if (arm_el_is_aa64(env, 3)) {
1845         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1846         valid_mask &= ~SCR_NET;
1847     } else {
1848         valid_mask &= ~(SCR_RW | SCR_ST);
1849     }
1850 
1851     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1852         valid_mask &= ~SCR_HCE;
1853 
1854         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1855          * supported if EL2 exists. The bit is UNK/SBZP when
1856          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1857          * when EL2 is unavailable.
1858          * On ARMv8, this bit is always available.
1859          */
1860         if (arm_feature(env, ARM_FEATURE_V7) &&
1861             !arm_feature(env, ARM_FEATURE_V8)) {
1862             valid_mask &= ~SCR_SMD;
1863         }
1864     }
1865     if (cpu_isar_feature(aa64_lor, cpu)) {
1866         valid_mask |= SCR_TLOR;
1867     }
1868     if (cpu_isar_feature(aa64_pauth, cpu)) {
1869         valid_mask |= SCR_API | SCR_APK;
1870     }
1871 
1872     /* Clear all-context RES0 bits.  */
1873     value &= valid_mask;
1874     raw_write(env, ri, value);
1875 }
1876 
1877 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1878 {
1879     ARMCPU *cpu = arm_env_get_cpu(env);
1880 
1881     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1882      * bank
1883      */
1884     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1885                                         ri->secure & ARM_CP_SECSTATE_S);
1886 
1887     return cpu->ccsidr[index];
1888 }
1889 
1890 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1891                          uint64_t value)
1892 {
1893     raw_write(env, ri, value & 0xf);
1894 }
1895 
1896 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1897 {
1898     CPUState *cs = ENV_GET_CPU(env);
1899     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1900     uint64_t ret = 0;
1901 
1902     if (hcr_el2 & HCR_IMO) {
1903         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1904             ret |= CPSR_I;
1905         }
1906     } else {
1907         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1908             ret |= CPSR_I;
1909         }
1910     }
1911 
1912     if (hcr_el2 & HCR_FMO) {
1913         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1914             ret |= CPSR_F;
1915         }
1916     } else {
1917         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1918             ret |= CPSR_F;
1919         }
1920     }
1921 
1922     /* External aborts are not possible in QEMU so A bit is always clear */
1923     return ret;
1924 }
1925 
1926 static const ARMCPRegInfo v7_cp_reginfo[] = {
1927     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1928     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1929       .access = PL1_W, .type = ARM_CP_NOP },
1930     /* Performance monitors are implementation defined in v7,
1931      * but with an ARM recommended set of registers, which we
1932      * follow.
1933      *
1934      * Performance registers fall into three categories:
1935      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1936      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1937      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1938      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1939      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1940      */
1941     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1942       .access = PL0_RW, .type = ARM_CP_ALIAS,
1943       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1944       .writefn = pmcntenset_write,
1945       .accessfn = pmreg_access,
1946       .raw_writefn = raw_write },
1947     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1948       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1949       .access = PL0_RW, .accessfn = pmreg_access,
1950       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1951       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1952     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1953       .access = PL0_RW,
1954       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1955       .accessfn = pmreg_access,
1956       .writefn = pmcntenclr_write,
1957       .type = ARM_CP_ALIAS },
1958     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1959       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1960       .access = PL0_RW, .accessfn = pmreg_access,
1961       .type = ARM_CP_ALIAS,
1962       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1963       .writefn = pmcntenclr_write },
1964     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1965       .access = PL0_RW, .type = ARM_CP_IO,
1966       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1967       .accessfn = pmreg_access,
1968       .writefn = pmovsr_write,
1969       .raw_writefn = raw_write },
1970     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1971       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1972       .access = PL0_RW, .accessfn = pmreg_access,
1973       .type = ARM_CP_ALIAS | ARM_CP_IO,
1974       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1975       .writefn = pmovsr_write,
1976       .raw_writefn = raw_write },
1977     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1978       .access = PL0_W, .accessfn = pmreg_access_swinc,
1979       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1980       .writefn = pmswinc_write },
1981     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1982       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1983       .access = PL0_W, .accessfn = pmreg_access_swinc,
1984       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1985       .writefn = pmswinc_write },
1986     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1987       .access = PL0_RW, .type = ARM_CP_ALIAS,
1988       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1989       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1990       .raw_writefn = raw_write},
1991     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1992       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1993       .access = PL0_RW, .accessfn = pmreg_access_selr,
1994       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1995       .writefn = pmselr_write, .raw_writefn = raw_write, },
1996     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1997       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1998       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1999       .accessfn = pmreg_access_ccntr },
2000     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2001       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2002       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2003       .type = ARM_CP_IO,
2004       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2005       .readfn = pmccntr_read, .writefn = pmccntr_write,
2006       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2007     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2008       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2009       .access = PL0_RW, .accessfn = pmreg_access,
2010       .type = ARM_CP_ALIAS | ARM_CP_IO,
2011       .resetvalue = 0, },
2012     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2013       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2014       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2015       .access = PL0_RW, .accessfn = pmreg_access,
2016       .type = ARM_CP_IO,
2017       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2018       .resetvalue = 0, },
2019     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2020       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021       .accessfn = pmreg_access,
2022       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2023     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2024       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2025       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2026       .accessfn = pmreg_access,
2027       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2028     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2029       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2030       .accessfn = pmreg_access_xevcntr,
2031       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2032     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2033       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2034       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2035       .accessfn = pmreg_access_xevcntr,
2036       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2037     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2038       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2039       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2040       .resetvalue = 0,
2041       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2042     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2043       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2044       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2045       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2046       .resetvalue = 0,
2047       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2048     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2049       .access = PL1_RW, .accessfn = access_tpm,
2050       .type = ARM_CP_ALIAS | ARM_CP_IO,
2051       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2052       .resetvalue = 0,
2053       .writefn = pmintenset_write, .raw_writefn = raw_write },
2054     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2055       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2056       .access = PL1_RW, .accessfn = access_tpm,
2057       .type = ARM_CP_IO,
2058       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2059       .writefn = pmintenset_write, .raw_writefn = raw_write,
2060       .resetvalue = 0x0 },
2061     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2062       .access = PL1_RW, .accessfn = access_tpm,
2063       .type = ARM_CP_ALIAS | ARM_CP_IO,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2065       .writefn = pmintenclr_write, },
2066     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2067       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2068       .access = PL1_RW, .accessfn = access_tpm,
2069       .type = ARM_CP_ALIAS | ARM_CP_IO,
2070       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2071       .writefn = pmintenclr_write },
2072     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2073       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2074       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2075     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2076       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2077       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2078       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2079                              offsetof(CPUARMState, cp15.csselr_ns) } },
2080     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2081      * just RAZ for all cores:
2082      */
2083     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2084       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2085       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2086     /* Auxiliary fault status registers: these also are IMPDEF, and we
2087      * choose to RAZ/WI for all cores.
2088      */
2089     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2090       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2091       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2092     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2093       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2094       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2095     /* MAIR can just read-as-written because we don't implement caches
2096      * and so don't need to care about memory attributes.
2097      */
2098     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2099       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2100       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2101       .resetvalue = 0 },
2102     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2103       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2104       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2105       .resetvalue = 0 },
2106     /* For non-long-descriptor page tables these are PRRR and NMRR;
2107      * regardless they still act as reads-as-written for QEMU.
2108      */
2109      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2110       * allows them to assign the correct fieldoffset based on the endianness
2111       * handled in the field definitions.
2112       */
2113     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2114       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2115       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2116                              offsetof(CPUARMState, cp15.mair0_ns) },
2117       .resetfn = arm_cp_reset_ignore },
2118     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2119       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2120       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2121                              offsetof(CPUARMState, cp15.mair1_ns) },
2122       .resetfn = arm_cp_reset_ignore },
2123     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2124       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2125       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2126     /* 32 bit ITLB invalidates */
2127     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2128       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2129     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2130       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2131     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2132       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2133     /* 32 bit DTLB invalidates */
2134     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2135       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2136     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2137       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2138     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2139       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2140     /* 32 bit TLB invalidates */
2141     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2142       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2143     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2144       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2145     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2146       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2147     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2148       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2149     REGINFO_SENTINEL
2150 };
2151 
2152 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2153     /* 32 bit TLB invalidates, Inner Shareable */
2154     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2155       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2156     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2157       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2158     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2159       .type = ARM_CP_NO_RAW, .access = PL1_W,
2160       .writefn = tlbiasid_is_write },
2161     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2162       .type = ARM_CP_NO_RAW, .access = PL1_W,
2163       .writefn = tlbimvaa_is_write },
2164     REGINFO_SENTINEL
2165 };
2166 
2167 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2168     /* PMOVSSET is not implemented in v7 before v7ve */
2169     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2170       .access = PL0_RW, .accessfn = pmreg_access,
2171       .type = ARM_CP_ALIAS | ARM_CP_IO,
2172       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2173       .writefn = pmovsset_write,
2174       .raw_writefn = raw_write },
2175     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2176       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2177       .access = PL0_RW, .accessfn = pmreg_access,
2178       .type = ARM_CP_ALIAS | ARM_CP_IO,
2179       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2180       .writefn = pmovsset_write,
2181       .raw_writefn = raw_write },
2182     REGINFO_SENTINEL
2183 };
2184 
2185 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2186                         uint64_t value)
2187 {
2188     value &= 1;
2189     env->teecr = value;
2190 }
2191 
2192 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2193                                     bool isread)
2194 {
2195     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2196         return CP_ACCESS_TRAP;
2197     }
2198     return CP_ACCESS_OK;
2199 }
2200 
2201 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2202     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2203       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2204       .resetvalue = 0,
2205       .writefn = teecr_write },
2206     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2207       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2208       .accessfn = teehbr_access, .resetvalue = 0 },
2209     REGINFO_SENTINEL
2210 };
2211 
2212 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2213     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2214       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2215       .access = PL0_RW,
2216       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2217     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2218       .access = PL0_RW,
2219       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2220                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2221       .resetfn = arm_cp_reset_ignore },
2222     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2223       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2224       .access = PL0_R|PL1_W,
2225       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2226       .resetvalue = 0},
2227     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2228       .access = PL0_R|PL1_W,
2229       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2230                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2231       .resetfn = arm_cp_reset_ignore },
2232     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2233       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2234       .access = PL1_RW,
2235       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2236     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2237       .access = PL1_RW,
2238       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2239                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2240       .resetvalue = 0 },
2241     REGINFO_SENTINEL
2242 };
2243 
2244 #ifndef CONFIG_USER_ONLY
2245 
2246 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2247                                        bool isread)
2248 {
2249     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2250      * Writable only at the highest implemented exception level.
2251      */
2252     int el = arm_current_el(env);
2253 
2254     switch (el) {
2255     case 0:
2256         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2257             return CP_ACCESS_TRAP;
2258         }
2259         break;
2260     case 1:
2261         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2262             arm_is_secure_below_el3(env)) {
2263             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2264             return CP_ACCESS_TRAP_UNCATEGORIZED;
2265         }
2266         break;
2267     case 2:
2268     case 3:
2269         break;
2270     }
2271 
2272     if (!isread && el < arm_highest_el(env)) {
2273         return CP_ACCESS_TRAP_UNCATEGORIZED;
2274     }
2275 
2276     return CP_ACCESS_OK;
2277 }
2278 
2279 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2280                                         bool isread)
2281 {
2282     unsigned int cur_el = arm_current_el(env);
2283     bool secure = arm_is_secure(env);
2284 
2285     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2286     if (cur_el == 0 &&
2287         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2288         return CP_ACCESS_TRAP;
2289     }
2290 
2291     if (arm_feature(env, ARM_FEATURE_EL2) &&
2292         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2293         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2294         return CP_ACCESS_TRAP_EL2;
2295     }
2296     return CP_ACCESS_OK;
2297 }
2298 
2299 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2300                                       bool isread)
2301 {
2302     unsigned int cur_el = arm_current_el(env);
2303     bool secure = arm_is_secure(env);
2304 
2305     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2306      * EL0[PV]TEN is zero.
2307      */
2308     if (cur_el == 0 &&
2309         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2310         return CP_ACCESS_TRAP;
2311     }
2312 
2313     if (arm_feature(env, ARM_FEATURE_EL2) &&
2314         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2315         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2316         return CP_ACCESS_TRAP_EL2;
2317     }
2318     return CP_ACCESS_OK;
2319 }
2320 
2321 static CPAccessResult gt_pct_access(CPUARMState *env,
2322                                     const ARMCPRegInfo *ri,
2323                                     bool isread)
2324 {
2325     return gt_counter_access(env, GTIMER_PHYS, isread);
2326 }
2327 
2328 static CPAccessResult gt_vct_access(CPUARMState *env,
2329                                     const ARMCPRegInfo *ri,
2330                                     bool isread)
2331 {
2332     return gt_counter_access(env, GTIMER_VIRT, isread);
2333 }
2334 
2335 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2336                                        bool isread)
2337 {
2338     return gt_timer_access(env, GTIMER_PHYS, isread);
2339 }
2340 
2341 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2342                                        bool isread)
2343 {
2344     return gt_timer_access(env, GTIMER_VIRT, isread);
2345 }
2346 
2347 static CPAccessResult gt_stimer_access(CPUARMState *env,
2348                                        const ARMCPRegInfo *ri,
2349                                        bool isread)
2350 {
2351     /* The AArch64 register view of the secure physical timer is
2352      * always accessible from EL3, and configurably accessible from
2353      * Secure EL1.
2354      */
2355     switch (arm_current_el(env)) {
2356     case 1:
2357         if (!arm_is_secure(env)) {
2358             return CP_ACCESS_TRAP;
2359         }
2360         if (!(env->cp15.scr_el3 & SCR_ST)) {
2361             return CP_ACCESS_TRAP_EL3;
2362         }
2363         return CP_ACCESS_OK;
2364     case 0:
2365     case 2:
2366         return CP_ACCESS_TRAP;
2367     case 3:
2368         return CP_ACCESS_OK;
2369     default:
2370         g_assert_not_reached();
2371     }
2372 }
2373 
2374 static uint64_t gt_get_countervalue(CPUARMState *env)
2375 {
2376     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2377 }
2378 
2379 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2380 {
2381     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2382 
2383     if (gt->ctl & 1) {
2384         /* Timer enabled: calculate and set current ISTATUS, irq, and
2385          * reset timer to when ISTATUS next has to change
2386          */
2387         uint64_t offset = timeridx == GTIMER_VIRT ?
2388                                       cpu->env.cp15.cntvoff_el2 : 0;
2389         uint64_t count = gt_get_countervalue(&cpu->env);
2390         /* Note that this must be unsigned 64 bit arithmetic: */
2391         int istatus = count - offset >= gt->cval;
2392         uint64_t nexttick;
2393         int irqstate;
2394 
2395         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2396 
2397         irqstate = (istatus && !(gt->ctl & 2));
2398         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2399 
2400         if (istatus) {
2401             /* Next transition is when count rolls back over to zero */
2402             nexttick = UINT64_MAX;
2403         } else {
2404             /* Next transition is when we hit cval */
2405             nexttick = gt->cval + offset;
2406         }
2407         /* Note that the desired next expiry time might be beyond the
2408          * signed-64-bit range of a QEMUTimer -- in this case we just
2409          * set the timer for as far in the future as possible. When the
2410          * timer expires we will reset the timer for any remaining period.
2411          */
2412         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2413             nexttick = INT64_MAX / GTIMER_SCALE;
2414         }
2415         timer_mod(cpu->gt_timer[timeridx], nexttick);
2416         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2417     } else {
2418         /* Timer disabled: ISTATUS and timer output always clear */
2419         gt->ctl &= ~4;
2420         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2421         timer_del(cpu->gt_timer[timeridx]);
2422         trace_arm_gt_recalc_disabled(timeridx);
2423     }
2424 }
2425 
2426 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2427                            int timeridx)
2428 {
2429     ARMCPU *cpu = arm_env_get_cpu(env);
2430 
2431     timer_del(cpu->gt_timer[timeridx]);
2432 }
2433 
2434 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2435 {
2436     return gt_get_countervalue(env);
2437 }
2438 
2439 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2440 {
2441     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2442 }
2443 
2444 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2445                           int timeridx,
2446                           uint64_t value)
2447 {
2448     trace_arm_gt_cval_write(timeridx, value);
2449     env->cp15.c14_timer[timeridx].cval = value;
2450     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2451 }
2452 
2453 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2454                              int timeridx)
2455 {
2456     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2457 
2458     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2459                       (gt_get_countervalue(env) - offset));
2460 }
2461 
2462 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463                           int timeridx,
2464                           uint64_t value)
2465 {
2466     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2467 
2468     trace_arm_gt_tval_write(timeridx, value);
2469     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2470                                          sextract64(value, 0, 32);
2471     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2472 }
2473 
2474 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475                          int timeridx,
2476                          uint64_t value)
2477 {
2478     ARMCPU *cpu = arm_env_get_cpu(env);
2479     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2480 
2481     trace_arm_gt_ctl_write(timeridx, value);
2482     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2483     if ((oldval ^ value) & 1) {
2484         /* Enable toggled */
2485         gt_recalc_timer(cpu, timeridx);
2486     } else if ((oldval ^ value) & 2) {
2487         /* IMASK toggled: don't need to recalculate,
2488          * just set the interrupt line based on ISTATUS
2489          */
2490         int irqstate = (oldval & 4) && !(value & 2);
2491 
2492         trace_arm_gt_imask_toggle(timeridx, irqstate);
2493         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2494     }
2495 }
2496 
2497 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2498 {
2499     gt_timer_reset(env, ri, GTIMER_PHYS);
2500 }
2501 
2502 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503                                uint64_t value)
2504 {
2505     gt_cval_write(env, ri, GTIMER_PHYS, value);
2506 }
2507 
2508 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2509 {
2510     return gt_tval_read(env, ri, GTIMER_PHYS);
2511 }
2512 
2513 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2514                                uint64_t value)
2515 {
2516     gt_tval_write(env, ri, GTIMER_PHYS, value);
2517 }
2518 
2519 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2520                               uint64_t value)
2521 {
2522     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2523 }
2524 
2525 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2526 {
2527     gt_timer_reset(env, ri, GTIMER_VIRT);
2528 }
2529 
2530 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531                                uint64_t value)
2532 {
2533     gt_cval_write(env, ri, GTIMER_VIRT, value);
2534 }
2535 
2536 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2537 {
2538     return gt_tval_read(env, ri, GTIMER_VIRT);
2539 }
2540 
2541 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542                                uint64_t value)
2543 {
2544     gt_tval_write(env, ri, GTIMER_VIRT, value);
2545 }
2546 
2547 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548                               uint64_t value)
2549 {
2550     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2551 }
2552 
2553 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554                               uint64_t value)
2555 {
2556     ARMCPU *cpu = arm_env_get_cpu(env);
2557 
2558     trace_arm_gt_cntvoff_write(value);
2559     raw_write(env, ri, value);
2560     gt_recalc_timer(cpu, GTIMER_VIRT);
2561 }
2562 
2563 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2564 {
2565     gt_timer_reset(env, ri, GTIMER_HYP);
2566 }
2567 
2568 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2569                               uint64_t value)
2570 {
2571     gt_cval_write(env, ri, GTIMER_HYP, value);
2572 }
2573 
2574 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2575 {
2576     return gt_tval_read(env, ri, GTIMER_HYP);
2577 }
2578 
2579 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580                               uint64_t value)
2581 {
2582     gt_tval_write(env, ri, GTIMER_HYP, value);
2583 }
2584 
2585 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586                               uint64_t value)
2587 {
2588     gt_ctl_write(env, ri, GTIMER_HYP, value);
2589 }
2590 
2591 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2592 {
2593     gt_timer_reset(env, ri, GTIMER_SEC);
2594 }
2595 
2596 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2597                               uint64_t value)
2598 {
2599     gt_cval_write(env, ri, GTIMER_SEC, value);
2600 }
2601 
2602 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2603 {
2604     return gt_tval_read(env, ri, GTIMER_SEC);
2605 }
2606 
2607 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2608                               uint64_t value)
2609 {
2610     gt_tval_write(env, ri, GTIMER_SEC, value);
2611 }
2612 
2613 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614                               uint64_t value)
2615 {
2616     gt_ctl_write(env, ri, GTIMER_SEC, value);
2617 }
2618 
2619 void arm_gt_ptimer_cb(void *opaque)
2620 {
2621     ARMCPU *cpu = opaque;
2622 
2623     gt_recalc_timer(cpu, GTIMER_PHYS);
2624 }
2625 
2626 void arm_gt_vtimer_cb(void *opaque)
2627 {
2628     ARMCPU *cpu = opaque;
2629 
2630     gt_recalc_timer(cpu, GTIMER_VIRT);
2631 }
2632 
2633 void arm_gt_htimer_cb(void *opaque)
2634 {
2635     ARMCPU *cpu = opaque;
2636 
2637     gt_recalc_timer(cpu, GTIMER_HYP);
2638 }
2639 
2640 void arm_gt_stimer_cb(void *opaque)
2641 {
2642     ARMCPU *cpu = opaque;
2643 
2644     gt_recalc_timer(cpu, GTIMER_SEC);
2645 }
2646 
2647 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2648     /* Note that CNTFRQ is purely reads-as-written for the benefit
2649      * of software; writing it doesn't actually change the timer frequency.
2650      * Our reset value matches the fixed frequency we implement the timer at.
2651      */
2652     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2653       .type = ARM_CP_ALIAS,
2654       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2655       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2656     },
2657     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2658       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2659       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2660       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2661       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2662     },
2663     /* overall control: mostly access permissions */
2664     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2665       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2666       .access = PL1_RW,
2667       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2668       .resetvalue = 0,
2669     },
2670     /* per-timer control */
2671     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2672       .secure = ARM_CP_SECSTATE_NS,
2673       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2674       .accessfn = gt_ptimer_access,
2675       .fieldoffset = offsetoflow32(CPUARMState,
2676                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2677       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2678     },
2679     { .name = "CNTP_CTL_S",
2680       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2681       .secure = ARM_CP_SECSTATE_S,
2682       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2683       .accessfn = gt_ptimer_access,
2684       .fieldoffset = offsetoflow32(CPUARMState,
2685                                    cp15.c14_timer[GTIMER_SEC].ctl),
2686       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2687     },
2688     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2689       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2690       .type = ARM_CP_IO, .access = PL0_RW,
2691       .accessfn = gt_ptimer_access,
2692       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2693       .resetvalue = 0,
2694       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2695     },
2696     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2697       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2698       .accessfn = gt_vtimer_access,
2699       .fieldoffset = offsetoflow32(CPUARMState,
2700                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2701       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2702     },
2703     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2704       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2705       .type = ARM_CP_IO, .access = PL0_RW,
2706       .accessfn = gt_vtimer_access,
2707       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2708       .resetvalue = 0,
2709       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2710     },
2711     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2712     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2713       .secure = ARM_CP_SECSTATE_NS,
2714       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2715       .accessfn = gt_ptimer_access,
2716       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2717     },
2718     { .name = "CNTP_TVAL_S",
2719       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2720       .secure = ARM_CP_SECSTATE_S,
2721       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2722       .accessfn = gt_ptimer_access,
2723       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2724     },
2725     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2726       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2727       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2728       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2729       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2730     },
2731     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2732       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2733       .accessfn = gt_vtimer_access,
2734       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2735     },
2736     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2737       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2738       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2739       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2740       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2741     },
2742     /* The counter itself */
2743     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2744       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2745       .accessfn = gt_pct_access,
2746       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2747     },
2748     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2749       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2750       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2751       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2752     },
2753     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2754       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2755       .accessfn = gt_vct_access,
2756       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2757     },
2758     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2759       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2760       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2761       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2762     },
2763     /* Comparison value, indicating when the timer goes off */
2764     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2765       .secure = ARM_CP_SECSTATE_NS,
2766       .access = PL0_RW,
2767       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2768       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2769       .accessfn = gt_ptimer_access,
2770       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2771     },
2772     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2773       .secure = ARM_CP_SECSTATE_S,
2774       .access = PL0_RW,
2775       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2776       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2777       .accessfn = gt_ptimer_access,
2778       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2779     },
2780     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2781       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2782       .access = PL0_RW,
2783       .type = ARM_CP_IO,
2784       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2785       .resetvalue = 0, .accessfn = gt_ptimer_access,
2786       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2787     },
2788     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2789       .access = PL0_RW,
2790       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2791       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2792       .accessfn = gt_vtimer_access,
2793       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2794     },
2795     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2796       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2797       .access = PL0_RW,
2798       .type = ARM_CP_IO,
2799       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2800       .resetvalue = 0, .accessfn = gt_vtimer_access,
2801       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2802     },
2803     /* Secure timer -- this is actually restricted to only EL3
2804      * and configurably Secure-EL1 via the accessfn.
2805      */
2806     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2807       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2808       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2809       .accessfn = gt_stimer_access,
2810       .readfn = gt_sec_tval_read,
2811       .writefn = gt_sec_tval_write,
2812       .resetfn = gt_sec_timer_reset,
2813     },
2814     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2815       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2816       .type = ARM_CP_IO, .access = PL1_RW,
2817       .accessfn = gt_stimer_access,
2818       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2819       .resetvalue = 0,
2820       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2821     },
2822     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2823       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2824       .type = ARM_CP_IO, .access = PL1_RW,
2825       .accessfn = gt_stimer_access,
2826       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2827       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2828     },
2829     REGINFO_SENTINEL
2830 };
2831 
2832 #else
2833 
2834 /* In user-mode most of the generic timer registers are inaccessible
2835  * however modern kernels (4.12+) allow access to cntvct_el0
2836  */
2837 
2838 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2839 {
2840     /* Currently we have no support for QEMUTimer in linux-user so we
2841      * can't call gt_get_countervalue(env), instead we directly
2842      * call the lower level functions.
2843      */
2844     return cpu_get_clock() / GTIMER_SCALE;
2845 }
2846 
2847 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2848     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2849       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2850       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2851       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2852       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2853     },
2854     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2855       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2856       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2857       .readfn = gt_virt_cnt_read,
2858     },
2859     REGINFO_SENTINEL
2860 };
2861 
2862 #endif
2863 
2864 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2865 {
2866     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2867         raw_write(env, ri, value);
2868     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2869         raw_write(env, ri, value & 0xfffff6ff);
2870     } else {
2871         raw_write(env, ri, value & 0xfffff1ff);
2872     }
2873 }
2874 
2875 #ifndef CONFIG_USER_ONLY
2876 /* get_phys_addr() isn't present for user-mode-only targets */
2877 
2878 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2879                                  bool isread)
2880 {
2881     if (ri->opc2 & 4) {
2882         /* The ATS12NSO* operations must trap to EL3 if executed in
2883          * Secure EL1 (which can only happen if EL3 is AArch64).
2884          * They are simply UNDEF if executed from NS EL1.
2885          * They function normally from EL2 or EL3.
2886          */
2887         if (arm_current_el(env) == 1) {
2888             if (arm_is_secure_below_el3(env)) {
2889                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2890             }
2891             return CP_ACCESS_TRAP_UNCATEGORIZED;
2892         }
2893     }
2894     return CP_ACCESS_OK;
2895 }
2896 
2897 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2898                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2899 {
2900     hwaddr phys_addr;
2901     target_ulong page_size;
2902     int prot;
2903     bool ret;
2904     uint64_t par64;
2905     bool format64 = false;
2906     MemTxAttrs attrs = {};
2907     ARMMMUFaultInfo fi = {};
2908     ARMCacheAttrs cacheattrs = {};
2909 
2910     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2911                         &prot, &page_size, &fi, &cacheattrs);
2912 
2913     if (is_a64(env)) {
2914         format64 = true;
2915     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2916         /*
2917          * ATS1Cxx:
2918          * * TTBCR.EAE determines whether the result is returned using the
2919          *   32-bit or the 64-bit PAR format
2920          * * Instructions executed in Hyp mode always use the 64bit format
2921          *
2922          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2923          * * The Non-secure TTBCR.EAE bit is set to 1
2924          * * The implementation includes EL2, and the value of HCR.VM is 1
2925          *
2926          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2927          *
2928          * ATS1Hx always uses the 64bit format.
2929          */
2930         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2931 
2932         if (arm_feature(env, ARM_FEATURE_EL2)) {
2933             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2934                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2935             } else {
2936                 format64 |= arm_current_el(env) == 2;
2937             }
2938         }
2939     }
2940 
2941     if (format64) {
2942         /* Create a 64-bit PAR */
2943         par64 = (1 << 11); /* LPAE bit always set */
2944         if (!ret) {
2945             par64 |= phys_addr & ~0xfffULL;
2946             if (!attrs.secure) {
2947                 par64 |= (1 << 9); /* NS */
2948             }
2949             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2950             par64 |= cacheattrs.shareability << 7; /* SH */
2951         } else {
2952             uint32_t fsr = arm_fi_to_lfsc(&fi);
2953 
2954             par64 |= 1; /* F */
2955             par64 |= (fsr & 0x3f) << 1; /* FS */
2956             if (fi.stage2) {
2957                 par64 |= (1 << 9); /* S */
2958             }
2959             if (fi.s1ptw) {
2960                 par64 |= (1 << 8); /* PTW */
2961             }
2962         }
2963     } else {
2964         /* fsr is a DFSR/IFSR value for the short descriptor
2965          * translation table format (with WnR always clear).
2966          * Convert it to a 32-bit PAR.
2967          */
2968         if (!ret) {
2969             /* We do not set any attribute bits in the PAR */
2970             if (page_size == (1 << 24)
2971                 && arm_feature(env, ARM_FEATURE_V7)) {
2972                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2973             } else {
2974                 par64 = phys_addr & 0xfffff000;
2975             }
2976             if (!attrs.secure) {
2977                 par64 |= (1 << 9); /* NS */
2978             }
2979         } else {
2980             uint32_t fsr = arm_fi_to_sfsc(&fi);
2981 
2982             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2983                     ((fsr & 0xf) << 1) | 1;
2984         }
2985     }
2986     return par64;
2987 }
2988 
2989 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2990 {
2991     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2992     uint64_t par64;
2993     ARMMMUIdx mmu_idx;
2994     int el = arm_current_el(env);
2995     bool secure = arm_is_secure_below_el3(env);
2996 
2997     switch (ri->opc2 & 6) {
2998     case 0:
2999         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3000         switch (el) {
3001         case 3:
3002             mmu_idx = ARMMMUIdx_S1E3;
3003             break;
3004         case 2:
3005             mmu_idx = ARMMMUIdx_S1NSE1;
3006             break;
3007         case 1:
3008             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3009             break;
3010         default:
3011             g_assert_not_reached();
3012         }
3013         break;
3014     case 2:
3015         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3016         switch (el) {
3017         case 3:
3018             mmu_idx = ARMMMUIdx_S1SE0;
3019             break;
3020         case 2:
3021             mmu_idx = ARMMMUIdx_S1NSE0;
3022             break;
3023         case 1:
3024             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3025             break;
3026         default:
3027             g_assert_not_reached();
3028         }
3029         break;
3030     case 4:
3031         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3032         mmu_idx = ARMMMUIdx_S12NSE1;
3033         break;
3034     case 6:
3035         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3036         mmu_idx = ARMMMUIdx_S12NSE0;
3037         break;
3038     default:
3039         g_assert_not_reached();
3040     }
3041 
3042     par64 = do_ats_write(env, value, access_type, mmu_idx);
3043 
3044     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3045 }
3046 
3047 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048                         uint64_t value)
3049 {
3050     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3051     uint64_t par64;
3052 
3053     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3054 
3055     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3056 }
3057 
3058 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3059                                      bool isread)
3060 {
3061     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3062         return CP_ACCESS_TRAP;
3063     }
3064     return CP_ACCESS_OK;
3065 }
3066 
3067 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3068                         uint64_t value)
3069 {
3070     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3071     ARMMMUIdx mmu_idx;
3072     int secure = arm_is_secure_below_el3(env);
3073 
3074     switch (ri->opc2 & 6) {
3075     case 0:
3076         switch (ri->opc1) {
3077         case 0: /* AT S1E1R, AT S1E1W */
3078             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3079             break;
3080         case 4: /* AT S1E2R, AT S1E2W */
3081             mmu_idx = ARMMMUIdx_S1E2;
3082             break;
3083         case 6: /* AT S1E3R, AT S1E3W */
3084             mmu_idx = ARMMMUIdx_S1E3;
3085             break;
3086         default:
3087             g_assert_not_reached();
3088         }
3089         break;
3090     case 2: /* AT S1E0R, AT S1E0W */
3091         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3092         break;
3093     case 4: /* AT S12E1R, AT S12E1W */
3094         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3095         break;
3096     case 6: /* AT S12E0R, AT S12E0W */
3097         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3098         break;
3099     default:
3100         g_assert_not_reached();
3101     }
3102 
3103     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3104 }
3105 #endif
3106 
3107 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3108     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3109       .access = PL1_RW, .resetvalue = 0,
3110       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3111                              offsetoflow32(CPUARMState, cp15.par_ns) },
3112       .writefn = par_write },
3113 #ifndef CONFIG_USER_ONLY
3114     /* This underdecoding is safe because the reginfo is NO_RAW. */
3115     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3116       .access = PL1_W, .accessfn = ats_access,
3117       .writefn = ats_write, .type = ARM_CP_NO_RAW },
3118 #endif
3119     REGINFO_SENTINEL
3120 };
3121 
3122 /* Return basic MPU access permission bits.  */
3123 static uint32_t simple_mpu_ap_bits(uint32_t val)
3124 {
3125     uint32_t ret;
3126     uint32_t mask;
3127     int i;
3128     ret = 0;
3129     mask = 3;
3130     for (i = 0; i < 16; i += 2) {
3131         ret |= (val >> i) & mask;
3132         mask <<= 2;
3133     }
3134     return ret;
3135 }
3136 
3137 /* Pad basic MPU access permission bits to extended format.  */
3138 static uint32_t extended_mpu_ap_bits(uint32_t val)
3139 {
3140     uint32_t ret;
3141     uint32_t mask;
3142     int i;
3143     ret = 0;
3144     mask = 3;
3145     for (i = 0; i < 16; i += 2) {
3146         ret |= (val & mask) << i;
3147         mask <<= 2;
3148     }
3149     return ret;
3150 }
3151 
3152 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153                                  uint64_t value)
3154 {
3155     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3156 }
3157 
3158 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3159 {
3160     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3161 }
3162 
3163 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164                                  uint64_t value)
3165 {
3166     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3167 }
3168 
3169 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3170 {
3171     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3172 }
3173 
3174 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3175 {
3176     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3177 
3178     if (!u32p) {
3179         return 0;
3180     }
3181 
3182     u32p += env->pmsav7.rnr[M_REG_NS];
3183     return *u32p;
3184 }
3185 
3186 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3187                          uint64_t value)
3188 {
3189     ARMCPU *cpu = arm_env_get_cpu(env);
3190     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3191 
3192     if (!u32p) {
3193         return;
3194     }
3195 
3196     u32p += env->pmsav7.rnr[M_REG_NS];
3197     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3198     *u32p = value;
3199 }
3200 
3201 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202                               uint64_t value)
3203 {
3204     ARMCPU *cpu = arm_env_get_cpu(env);
3205     uint32_t nrgs = cpu->pmsav7_dregion;
3206 
3207     if (value >= nrgs) {
3208         qemu_log_mask(LOG_GUEST_ERROR,
3209                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3210                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3211         return;
3212     }
3213 
3214     raw_write(env, ri, value);
3215 }
3216 
3217 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3218     /* Reset for all these registers is handled in arm_cpu_reset(),
3219      * because the PMSAv7 is also used by M-profile CPUs, which do
3220      * not register cpregs but still need the state to be reset.
3221      */
3222     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3223       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3224       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3225       .readfn = pmsav7_read, .writefn = pmsav7_write,
3226       .resetfn = arm_cp_reset_ignore },
3227     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3228       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3229       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3230       .readfn = pmsav7_read, .writefn = pmsav7_write,
3231       .resetfn = arm_cp_reset_ignore },
3232     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3233       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3234       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3235       .readfn = pmsav7_read, .writefn = pmsav7_write,
3236       .resetfn = arm_cp_reset_ignore },
3237     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3238       .access = PL1_RW,
3239       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3240       .writefn = pmsav7_rgnr_write,
3241       .resetfn = arm_cp_reset_ignore },
3242     REGINFO_SENTINEL
3243 };
3244 
3245 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3246     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3247       .access = PL1_RW, .type = ARM_CP_ALIAS,
3248       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3249       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3250     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3251       .access = PL1_RW, .type = ARM_CP_ALIAS,
3252       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3253       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3254     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3255       .access = PL1_RW,
3256       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3257       .resetvalue = 0, },
3258     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3259       .access = PL1_RW,
3260       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3261       .resetvalue = 0, },
3262     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3263       .access = PL1_RW,
3264       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3265     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3266       .access = PL1_RW,
3267       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3268     /* Protection region base and size registers */
3269     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3270       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3271       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3272     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3273       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3274       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3275     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3276       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3277       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3278     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3279       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3280       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3281     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3282       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3283       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3284     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3285       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3286       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3287     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3288       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3290     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3291       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3292       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3293     REGINFO_SENTINEL
3294 };
3295 
3296 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3297                                  uint64_t value)
3298 {
3299     TCR *tcr = raw_ptr(env, ri);
3300     int maskshift = extract32(value, 0, 3);
3301 
3302     if (!arm_feature(env, ARM_FEATURE_V8)) {
3303         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3304             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3305              * using Long-desciptor translation table format */
3306             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3307         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3308             /* In an implementation that includes the Security Extensions
3309              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3310              * Short-descriptor translation table format.
3311              */
3312             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3313         } else {
3314             value &= TTBCR_N;
3315         }
3316     }
3317 
3318     /* Update the masks corresponding to the TCR bank being written
3319      * Note that we always calculate mask and base_mask, but
3320      * they are only used for short-descriptor tables (ie if EAE is 0);
3321      * for long-descriptor tables the TCR fields are used differently
3322      * and the mask and base_mask values are meaningless.
3323      */
3324     tcr->raw_tcr = value;
3325     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3326     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3327 }
3328 
3329 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3330                              uint64_t value)
3331 {
3332     ARMCPU *cpu = arm_env_get_cpu(env);
3333     TCR *tcr = raw_ptr(env, ri);
3334 
3335     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3336         /* With LPAE the TTBCR could result in a change of ASID
3337          * via the TTBCR.A1 bit, so do a TLB flush.
3338          */
3339         tlb_flush(CPU(cpu));
3340     }
3341     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3342     value = deposit64(tcr->raw_tcr, 0, 32, value);
3343     vmsa_ttbcr_raw_write(env, ri, value);
3344 }
3345 
3346 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3347 {
3348     TCR *tcr = raw_ptr(env, ri);
3349 
3350     /* Reset both the TCR as well as the masks corresponding to the bank of
3351      * the TCR being reset.
3352      */
3353     tcr->raw_tcr = 0;
3354     tcr->mask = 0;
3355     tcr->base_mask = 0xffffc000u;
3356 }
3357 
3358 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3359                                uint64_t value)
3360 {
3361     ARMCPU *cpu = arm_env_get_cpu(env);
3362     TCR *tcr = raw_ptr(env, ri);
3363 
3364     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3365     tlb_flush(CPU(cpu));
3366     tcr->raw_tcr = value;
3367 }
3368 
3369 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3370                             uint64_t value)
3371 {
3372     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3373     if (cpreg_field_is_64bit(ri) &&
3374         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3375         ARMCPU *cpu = arm_env_get_cpu(env);
3376         tlb_flush(CPU(cpu));
3377     }
3378     raw_write(env, ri, value);
3379 }
3380 
3381 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3382                         uint64_t value)
3383 {
3384     ARMCPU *cpu = arm_env_get_cpu(env);
3385     CPUState *cs = CPU(cpu);
3386 
3387     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3388     if (raw_read(env, ri) != value) {
3389         tlb_flush_by_mmuidx(cs,
3390                             ARMMMUIdxBit_S12NSE1 |
3391                             ARMMMUIdxBit_S12NSE0 |
3392                             ARMMMUIdxBit_S2NS);
3393         raw_write(env, ri, value);
3394     }
3395 }
3396 
3397 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3398     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3399       .access = PL1_RW, .type = ARM_CP_ALIAS,
3400       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3401                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3402     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3403       .access = PL1_RW, .resetvalue = 0,
3404       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3405                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3406     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3407       .access = PL1_RW, .resetvalue = 0,
3408       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3409                              offsetof(CPUARMState, cp15.dfar_ns) } },
3410     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3412       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3413       .resetvalue = 0, },
3414     REGINFO_SENTINEL
3415 };
3416 
3417 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3418     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3420       .access = PL1_RW,
3421       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3422     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3423       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3424       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3425       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3426                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3427     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3428       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3429       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3430       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3431                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3432     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3433       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3434       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3435       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3436       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3437     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3438       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3439       .raw_writefn = vmsa_ttbcr_raw_write,
3440       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3441                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3442     REGINFO_SENTINEL
3443 };
3444 
3445 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3446  * qemu tlbs nor adjusting cached masks.
3447  */
3448 static const ARMCPRegInfo ttbcr2_reginfo = {
3449     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3450     .access = PL1_RW, .type = ARM_CP_ALIAS,
3451     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3452                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3453 };
3454 
3455 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3456                                 uint64_t value)
3457 {
3458     env->cp15.c15_ticonfig = value & 0xe7;
3459     /* The OS_TYPE bit in this register changes the reported CPUID! */
3460     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3461         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3462 }
3463 
3464 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3465                                 uint64_t value)
3466 {
3467     env->cp15.c15_threadid = value & 0xffff;
3468 }
3469 
3470 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3471                            uint64_t value)
3472 {
3473     /* Wait-for-interrupt (deprecated) */
3474     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3475 }
3476 
3477 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3478                                   uint64_t value)
3479 {
3480     /* On OMAP there are registers indicating the max/min index of dcache lines
3481      * containing a dirty line; cache flush operations have to reset these.
3482      */
3483     env->cp15.c15_i_max = 0x000;
3484     env->cp15.c15_i_min = 0xff0;
3485 }
3486 
3487 static const ARMCPRegInfo omap_cp_reginfo[] = {
3488     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3489       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3490       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3491       .resetvalue = 0, },
3492     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3493       .access = PL1_RW, .type = ARM_CP_NOP },
3494     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3495       .access = PL1_RW,
3496       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3497       .writefn = omap_ticonfig_write },
3498     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3499       .access = PL1_RW,
3500       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3501     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3502       .access = PL1_RW, .resetvalue = 0xff0,
3503       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3504     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3505       .access = PL1_RW,
3506       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3507       .writefn = omap_threadid_write },
3508     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3509       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3510       .type = ARM_CP_NO_RAW,
3511       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3512     /* TODO: Peripheral port remap register:
3513      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3514      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3515      * when MMU is off.
3516      */
3517     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3518       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3519       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3520       .writefn = omap_cachemaint_write },
3521     { .name = "C9", .cp = 15, .crn = 9,
3522       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3523       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3524     REGINFO_SENTINEL
3525 };
3526 
3527 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3528                               uint64_t value)
3529 {
3530     env->cp15.c15_cpar = value & 0x3fff;
3531 }
3532 
3533 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3534     { .name = "XSCALE_CPAR",
3535       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3536       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3537       .writefn = xscale_cpar_write, },
3538     { .name = "XSCALE_AUXCR",
3539       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3540       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3541       .resetvalue = 0, },
3542     /* XScale specific cache-lockdown: since we have no cache we NOP these
3543      * and hope the guest does not really rely on cache behaviour.
3544      */
3545     { .name = "XSCALE_LOCK_ICACHE_LINE",
3546       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3547       .access = PL1_W, .type = ARM_CP_NOP },
3548     { .name = "XSCALE_UNLOCK_ICACHE",
3549       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3550       .access = PL1_W, .type = ARM_CP_NOP },
3551     { .name = "XSCALE_DCACHE_LOCK",
3552       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3553       .access = PL1_RW, .type = ARM_CP_NOP },
3554     { .name = "XSCALE_UNLOCK_DCACHE",
3555       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3556       .access = PL1_W, .type = ARM_CP_NOP },
3557     REGINFO_SENTINEL
3558 };
3559 
3560 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3561     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3562      * implementation of this implementation-defined space.
3563      * Ideally this should eventually disappear in favour of actually
3564      * implementing the correct behaviour for all cores.
3565      */
3566     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3567       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3568       .access = PL1_RW,
3569       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3570       .resetvalue = 0 },
3571     REGINFO_SENTINEL
3572 };
3573 
3574 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3575     /* Cache status: RAZ because we have no cache so it's always clean */
3576     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3577       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3578       .resetvalue = 0 },
3579     REGINFO_SENTINEL
3580 };
3581 
3582 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3583     /* We never have a a block transfer operation in progress */
3584     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3585       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3586       .resetvalue = 0 },
3587     /* The cache ops themselves: these all NOP for QEMU */
3588     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3589       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3590     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3591       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3592     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3593       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3594     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3595       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3596     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3597       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3598     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3599       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3600     REGINFO_SENTINEL
3601 };
3602 
3603 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3604     /* The cache test-and-clean instructions always return (1 << 30)
3605      * to indicate that there are no dirty cache lines.
3606      */
3607     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3608       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3609       .resetvalue = (1 << 30) },
3610     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3611       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3612       .resetvalue = (1 << 30) },
3613     REGINFO_SENTINEL
3614 };
3615 
3616 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3617     /* Ignore ReadBuffer accesses */
3618     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3619       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3620       .access = PL1_RW, .resetvalue = 0,
3621       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3622     REGINFO_SENTINEL
3623 };
3624 
3625 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3626 {
3627     ARMCPU *cpu = arm_env_get_cpu(env);
3628     unsigned int cur_el = arm_current_el(env);
3629     bool secure = arm_is_secure(env);
3630 
3631     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3632         return env->cp15.vpidr_el2;
3633     }
3634     return raw_read(env, ri);
3635 }
3636 
3637 static uint64_t mpidr_read_val(CPUARMState *env)
3638 {
3639     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3640     uint64_t mpidr = cpu->mp_affinity;
3641 
3642     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3643         mpidr |= (1U << 31);
3644         /* Cores which are uniprocessor (non-coherent)
3645          * but still implement the MP extensions set
3646          * bit 30. (For instance, Cortex-R5).
3647          */
3648         if (cpu->mp_is_up) {
3649             mpidr |= (1u << 30);
3650         }
3651     }
3652     return mpidr;
3653 }
3654 
3655 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3656 {
3657     unsigned int cur_el = arm_current_el(env);
3658     bool secure = arm_is_secure(env);
3659 
3660     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3661         return env->cp15.vmpidr_el2;
3662     }
3663     return mpidr_read_val(env);
3664 }
3665 
3666 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3667     /* NOP AMAIR0/1 */
3668     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3669       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3670       .access = PL1_RW, .type = ARM_CP_CONST,
3671       .resetvalue = 0 },
3672     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3673     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3674       .access = PL1_RW, .type = ARM_CP_CONST,
3675       .resetvalue = 0 },
3676     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3677       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3678       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3679                              offsetof(CPUARMState, cp15.par_ns)} },
3680     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3681       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3682       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3683                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3684       .writefn = vmsa_ttbr_write, },
3685     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3686       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3687       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3688                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3689       .writefn = vmsa_ttbr_write, },
3690     REGINFO_SENTINEL
3691 };
3692 
3693 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3694 {
3695     return vfp_get_fpcr(env);
3696 }
3697 
3698 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3699                             uint64_t value)
3700 {
3701     vfp_set_fpcr(env, value);
3702 }
3703 
3704 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3705 {
3706     return vfp_get_fpsr(env);
3707 }
3708 
3709 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3710                             uint64_t value)
3711 {
3712     vfp_set_fpsr(env, value);
3713 }
3714 
3715 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3716                                        bool isread)
3717 {
3718     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3719         return CP_ACCESS_TRAP;
3720     }
3721     return CP_ACCESS_OK;
3722 }
3723 
3724 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3725                             uint64_t value)
3726 {
3727     env->daif = value & PSTATE_DAIF;
3728 }
3729 
3730 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3731                                           const ARMCPRegInfo *ri,
3732                                           bool isread)
3733 {
3734     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3735      * SCTLR_EL1.UCI is set.
3736      */
3737     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3738         return CP_ACCESS_TRAP;
3739     }
3740     return CP_ACCESS_OK;
3741 }
3742 
3743 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3744  * Page D4-1736 (DDI0487A.b)
3745  */
3746 
3747 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748                                       uint64_t value)
3749 {
3750     CPUState *cs = ENV_GET_CPU(env);
3751     bool sec = arm_is_secure_below_el3(env);
3752 
3753     if (sec) {
3754         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3755                                             ARMMMUIdxBit_S1SE1 |
3756                                             ARMMMUIdxBit_S1SE0);
3757     } else {
3758         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3759                                             ARMMMUIdxBit_S12NSE1 |
3760                                             ARMMMUIdxBit_S12NSE0);
3761     }
3762 }
3763 
3764 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3765                                     uint64_t value)
3766 {
3767     CPUState *cs = ENV_GET_CPU(env);
3768 
3769     if (tlb_force_broadcast(env)) {
3770         tlbi_aa64_vmalle1is_write(env, NULL, value);
3771         return;
3772     }
3773 
3774     if (arm_is_secure_below_el3(env)) {
3775         tlb_flush_by_mmuidx(cs,
3776                             ARMMMUIdxBit_S1SE1 |
3777                             ARMMMUIdxBit_S1SE0);
3778     } else {
3779         tlb_flush_by_mmuidx(cs,
3780                             ARMMMUIdxBit_S12NSE1 |
3781                             ARMMMUIdxBit_S12NSE0);
3782     }
3783 }
3784 
3785 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3786                                   uint64_t value)
3787 {
3788     /* Note that the 'ALL' scope must invalidate both stage 1 and
3789      * stage 2 translations, whereas most other scopes only invalidate
3790      * stage 1 translations.
3791      */
3792     ARMCPU *cpu = arm_env_get_cpu(env);
3793     CPUState *cs = CPU(cpu);
3794 
3795     if (arm_is_secure_below_el3(env)) {
3796         tlb_flush_by_mmuidx(cs,
3797                             ARMMMUIdxBit_S1SE1 |
3798                             ARMMMUIdxBit_S1SE0);
3799     } else {
3800         if (arm_feature(env, ARM_FEATURE_EL2)) {
3801             tlb_flush_by_mmuidx(cs,
3802                                 ARMMMUIdxBit_S12NSE1 |
3803                                 ARMMMUIdxBit_S12NSE0 |
3804                                 ARMMMUIdxBit_S2NS);
3805         } else {
3806             tlb_flush_by_mmuidx(cs,
3807                                 ARMMMUIdxBit_S12NSE1 |
3808                                 ARMMMUIdxBit_S12NSE0);
3809         }
3810     }
3811 }
3812 
3813 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3814                                   uint64_t value)
3815 {
3816     ARMCPU *cpu = arm_env_get_cpu(env);
3817     CPUState *cs = CPU(cpu);
3818 
3819     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3820 }
3821 
3822 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3823                                   uint64_t value)
3824 {
3825     ARMCPU *cpu = arm_env_get_cpu(env);
3826     CPUState *cs = CPU(cpu);
3827 
3828     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3829 }
3830 
3831 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832                                     uint64_t value)
3833 {
3834     /* Note that the 'ALL' scope must invalidate both stage 1 and
3835      * stage 2 translations, whereas most other scopes only invalidate
3836      * stage 1 translations.
3837      */
3838     CPUState *cs = ENV_GET_CPU(env);
3839     bool sec = arm_is_secure_below_el3(env);
3840     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3841 
3842     if (sec) {
3843         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3844                                             ARMMMUIdxBit_S1SE1 |
3845                                             ARMMMUIdxBit_S1SE0);
3846     } else if (has_el2) {
3847         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3848                                             ARMMMUIdxBit_S12NSE1 |
3849                                             ARMMMUIdxBit_S12NSE0 |
3850                                             ARMMMUIdxBit_S2NS);
3851     } else {
3852           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3853                                               ARMMMUIdxBit_S12NSE1 |
3854                                               ARMMMUIdxBit_S12NSE0);
3855     }
3856 }
3857 
3858 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3859                                     uint64_t value)
3860 {
3861     CPUState *cs = ENV_GET_CPU(env);
3862 
3863     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3864 }
3865 
3866 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3867                                     uint64_t value)
3868 {
3869     CPUState *cs = ENV_GET_CPU(env);
3870 
3871     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3872 }
3873 
3874 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3875                                  uint64_t value)
3876 {
3877     /* Invalidate by VA, EL2
3878      * Currently handles both VAE2 and VALE2, since we don't support
3879      * flush-last-level-only.
3880      */
3881     ARMCPU *cpu = arm_env_get_cpu(env);
3882     CPUState *cs = CPU(cpu);
3883     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3884 
3885     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3886 }
3887 
3888 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889                                  uint64_t value)
3890 {
3891     /* Invalidate by VA, EL3
3892      * Currently handles both VAE3 and VALE3, since we don't support
3893      * flush-last-level-only.
3894      */
3895     ARMCPU *cpu = arm_env_get_cpu(env);
3896     CPUState *cs = CPU(cpu);
3897     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3898 
3899     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3900 }
3901 
3902 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903                                    uint64_t value)
3904 {
3905     ARMCPU *cpu = arm_env_get_cpu(env);
3906     CPUState *cs = CPU(cpu);
3907     bool sec = arm_is_secure_below_el3(env);
3908     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3909 
3910     if (sec) {
3911         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3912                                                  ARMMMUIdxBit_S1SE1 |
3913                                                  ARMMMUIdxBit_S1SE0);
3914     } else {
3915         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3916                                                  ARMMMUIdxBit_S12NSE1 |
3917                                                  ARMMMUIdxBit_S12NSE0);
3918     }
3919 }
3920 
3921 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3922                                  uint64_t value)
3923 {
3924     /* Invalidate by VA, EL1&0 (AArch64 version).
3925      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3926      * since we don't support flush-for-specific-ASID-only or
3927      * flush-last-level-only.
3928      */
3929     ARMCPU *cpu = arm_env_get_cpu(env);
3930     CPUState *cs = CPU(cpu);
3931     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3932 
3933     if (tlb_force_broadcast(env)) {
3934         tlbi_aa64_vae1is_write(env, NULL, value);
3935         return;
3936     }
3937 
3938     if (arm_is_secure_below_el3(env)) {
3939         tlb_flush_page_by_mmuidx(cs, pageaddr,
3940                                  ARMMMUIdxBit_S1SE1 |
3941                                  ARMMMUIdxBit_S1SE0);
3942     } else {
3943         tlb_flush_page_by_mmuidx(cs, pageaddr,
3944                                  ARMMMUIdxBit_S12NSE1 |
3945                                  ARMMMUIdxBit_S12NSE0);
3946     }
3947 }
3948 
3949 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3950                                    uint64_t value)
3951 {
3952     CPUState *cs = ENV_GET_CPU(env);
3953     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3954 
3955     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3956                                              ARMMMUIdxBit_S1E2);
3957 }
3958 
3959 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3960                                    uint64_t value)
3961 {
3962     CPUState *cs = ENV_GET_CPU(env);
3963     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3964 
3965     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3966                                              ARMMMUIdxBit_S1E3);
3967 }
3968 
3969 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3970                                     uint64_t value)
3971 {
3972     /* Invalidate by IPA. This has to invalidate any structures that
3973      * contain only stage 2 translation information, but does not need
3974      * to apply to structures that contain combined stage 1 and stage 2
3975      * translation information.
3976      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3977      */
3978     ARMCPU *cpu = arm_env_get_cpu(env);
3979     CPUState *cs = CPU(cpu);
3980     uint64_t pageaddr;
3981 
3982     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3983         return;
3984     }
3985 
3986     pageaddr = sextract64(value << 12, 0, 48);
3987 
3988     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3989 }
3990 
3991 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992                                       uint64_t value)
3993 {
3994     CPUState *cs = ENV_GET_CPU(env);
3995     uint64_t pageaddr;
3996 
3997     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3998         return;
3999     }
4000 
4001     pageaddr = sextract64(value << 12, 0, 48);
4002 
4003     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4004                                              ARMMMUIdxBit_S2NS);
4005 }
4006 
4007 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4008                                       bool isread)
4009 {
4010     /* We don't implement EL2, so the only control on DC ZVA is the
4011      * bit in the SCTLR which can prohibit access for EL0.
4012      */
4013     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4014         return CP_ACCESS_TRAP;
4015     }
4016     return CP_ACCESS_OK;
4017 }
4018 
4019 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4020 {
4021     ARMCPU *cpu = arm_env_get_cpu(env);
4022     int dzp_bit = 1 << 4;
4023 
4024     /* DZP indicates whether DC ZVA access is allowed */
4025     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4026         dzp_bit = 0;
4027     }
4028     return cpu->dcz_blocksize | dzp_bit;
4029 }
4030 
4031 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4032                                     bool isread)
4033 {
4034     if (!(env->pstate & PSTATE_SP)) {
4035         /* Access to SP_EL0 is undefined if it's being used as
4036          * the stack pointer.
4037          */
4038         return CP_ACCESS_TRAP_UNCATEGORIZED;
4039     }
4040     return CP_ACCESS_OK;
4041 }
4042 
4043 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4044 {
4045     return env->pstate & PSTATE_SP;
4046 }
4047 
4048 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4049 {
4050     update_spsel(env, val);
4051 }
4052 
4053 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4054                         uint64_t value)
4055 {
4056     ARMCPU *cpu = arm_env_get_cpu(env);
4057 
4058     if (raw_read(env, ri) == value) {
4059         /* Skip the TLB flush if nothing actually changed; Linux likes
4060          * to do a lot of pointless SCTLR writes.
4061          */
4062         return;
4063     }
4064 
4065     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4066         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4067         value &= ~SCTLR_M;
4068     }
4069 
4070     raw_write(env, ri, value);
4071     /* ??? Lots of these bits are not implemented.  */
4072     /* This may enable/disable the MMU, so do a TLB flush.  */
4073     tlb_flush(CPU(cpu));
4074 }
4075 
4076 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4077                                      bool isread)
4078 {
4079     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4080         return CP_ACCESS_TRAP_FP_EL2;
4081     }
4082     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4083         return CP_ACCESS_TRAP_FP_EL3;
4084     }
4085     return CP_ACCESS_OK;
4086 }
4087 
4088 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4089                        uint64_t value)
4090 {
4091     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4092 }
4093 
4094 static const ARMCPRegInfo v8_cp_reginfo[] = {
4095     /* Minimal set of EL0-visible registers. This will need to be expanded
4096      * significantly for system emulation of AArch64 CPUs.
4097      */
4098     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4099       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4100       .access = PL0_RW, .type = ARM_CP_NZCV },
4101     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4102       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4103       .type = ARM_CP_NO_RAW,
4104       .access = PL0_RW, .accessfn = aa64_daif_access,
4105       .fieldoffset = offsetof(CPUARMState, daif),
4106       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4107     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4108       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4109       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4110       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4111     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4112       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4113       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4114       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4115     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4116       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4117       .access = PL0_R, .type = ARM_CP_NO_RAW,
4118       .readfn = aa64_dczid_read },
4119     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4120       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4121       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4122 #ifndef CONFIG_USER_ONLY
4123       /* Avoid overhead of an access check that always passes in user-mode */
4124       .accessfn = aa64_zva_access,
4125 #endif
4126     },
4127     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4128       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4129       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4130     /* Cache ops: all NOPs since we don't emulate caches */
4131     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4132       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4133       .access = PL1_W, .type = ARM_CP_NOP },
4134     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4135       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4136       .access = PL1_W, .type = ARM_CP_NOP },
4137     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4138       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4139       .access = PL0_W, .type = ARM_CP_NOP,
4140       .accessfn = aa64_cacheop_access },
4141     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4143       .access = PL1_W, .type = ARM_CP_NOP },
4144     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4145       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4146       .access = PL1_W, .type = ARM_CP_NOP },
4147     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4148       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4149       .access = PL0_W, .type = ARM_CP_NOP,
4150       .accessfn = aa64_cacheop_access },
4151     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4152       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4153       .access = PL1_W, .type = ARM_CP_NOP },
4154     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4155       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4156       .access = PL0_W, .type = ARM_CP_NOP,
4157       .accessfn = aa64_cacheop_access },
4158     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4159       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4160       .access = PL0_W, .type = ARM_CP_NOP,
4161       .accessfn = aa64_cacheop_access },
4162     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4163       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4164       .access = PL1_W, .type = ARM_CP_NOP },
4165     /* TLBI operations */
4166     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4167       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4168       .access = PL1_W, .type = ARM_CP_NO_RAW,
4169       .writefn = tlbi_aa64_vmalle1is_write },
4170     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4171       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4172       .access = PL1_W, .type = ARM_CP_NO_RAW,
4173       .writefn = tlbi_aa64_vae1is_write },
4174     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4175       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4176       .access = PL1_W, .type = ARM_CP_NO_RAW,
4177       .writefn = tlbi_aa64_vmalle1is_write },
4178     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4179       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4180       .access = PL1_W, .type = ARM_CP_NO_RAW,
4181       .writefn = tlbi_aa64_vae1is_write },
4182     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4183       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4184       .access = PL1_W, .type = ARM_CP_NO_RAW,
4185       .writefn = tlbi_aa64_vae1is_write },
4186     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4187       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4188       .access = PL1_W, .type = ARM_CP_NO_RAW,
4189       .writefn = tlbi_aa64_vae1is_write },
4190     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4191       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4192       .access = PL1_W, .type = ARM_CP_NO_RAW,
4193       .writefn = tlbi_aa64_vmalle1_write },
4194     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4195       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4196       .access = PL1_W, .type = ARM_CP_NO_RAW,
4197       .writefn = tlbi_aa64_vae1_write },
4198     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4199       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4200       .access = PL1_W, .type = ARM_CP_NO_RAW,
4201       .writefn = tlbi_aa64_vmalle1_write },
4202     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4204       .access = PL1_W, .type = ARM_CP_NO_RAW,
4205       .writefn = tlbi_aa64_vae1_write },
4206     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4207       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4208       .access = PL1_W, .type = ARM_CP_NO_RAW,
4209       .writefn = tlbi_aa64_vae1_write },
4210     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4211       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4212       .access = PL1_W, .type = ARM_CP_NO_RAW,
4213       .writefn = tlbi_aa64_vae1_write },
4214     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4215       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4216       .access = PL2_W, .type = ARM_CP_NO_RAW,
4217       .writefn = tlbi_aa64_ipas2e1is_write },
4218     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4219       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4220       .access = PL2_W, .type = ARM_CP_NO_RAW,
4221       .writefn = tlbi_aa64_ipas2e1is_write },
4222     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4223       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4224       .access = PL2_W, .type = ARM_CP_NO_RAW,
4225       .writefn = tlbi_aa64_alle1is_write },
4226     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4227       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4228       .access = PL2_W, .type = ARM_CP_NO_RAW,
4229       .writefn = tlbi_aa64_alle1is_write },
4230     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4231       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4232       .access = PL2_W, .type = ARM_CP_NO_RAW,
4233       .writefn = tlbi_aa64_ipas2e1_write },
4234     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4235       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4236       .access = PL2_W, .type = ARM_CP_NO_RAW,
4237       .writefn = tlbi_aa64_ipas2e1_write },
4238     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4239       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4240       .access = PL2_W, .type = ARM_CP_NO_RAW,
4241       .writefn = tlbi_aa64_alle1_write },
4242     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4243       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4244       .access = PL2_W, .type = ARM_CP_NO_RAW,
4245       .writefn = tlbi_aa64_alle1is_write },
4246 #ifndef CONFIG_USER_ONLY
4247     /* 64 bit address translation operations */
4248     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4249       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4250       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4251     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4252       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4253       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4254     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4255       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4256       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4257     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4258       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4259       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4260     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4261       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4262       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4263     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4264       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4265       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4266     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4267       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4268       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4269     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4270       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4271       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4272     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4273     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4274       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4275       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4276     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4277       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4278       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4279     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4280       .type = ARM_CP_ALIAS,
4281       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4282       .access = PL1_RW, .resetvalue = 0,
4283       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4284       .writefn = par_write },
4285 #endif
4286     /* TLB invalidate last level of translation table walk */
4287     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4288       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4289     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4290       .type = ARM_CP_NO_RAW, .access = PL1_W,
4291       .writefn = tlbimvaa_is_write },
4292     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4293       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4294     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4295       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4296     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4297       .type = ARM_CP_NO_RAW, .access = PL2_W,
4298       .writefn = tlbimva_hyp_write },
4299     { .name = "TLBIMVALHIS",
4300       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4301       .type = ARM_CP_NO_RAW, .access = PL2_W,
4302       .writefn = tlbimva_hyp_is_write },
4303     { .name = "TLBIIPAS2",
4304       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4305       .type = ARM_CP_NO_RAW, .access = PL2_W,
4306       .writefn = tlbiipas2_write },
4307     { .name = "TLBIIPAS2IS",
4308       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4309       .type = ARM_CP_NO_RAW, .access = PL2_W,
4310       .writefn = tlbiipas2_is_write },
4311     { .name = "TLBIIPAS2L",
4312       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4313       .type = ARM_CP_NO_RAW, .access = PL2_W,
4314       .writefn = tlbiipas2_write },
4315     { .name = "TLBIIPAS2LIS",
4316       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4317       .type = ARM_CP_NO_RAW, .access = PL2_W,
4318       .writefn = tlbiipas2_is_write },
4319     /* 32 bit cache operations */
4320     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4321       .type = ARM_CP_NOP, .access = PL1_W },
4322     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4323       .type = ARM_CP_NOP, .access = PL1_W },
4324     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4325       .type = ARM_CP_NOP, .access = PL1_W },
4326     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4327       .type = ARM_CP_NOP, .access = PL1_W },
4328     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4329       .type = ARM_CP_NOP, .access = PL1_W },
4330     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4331       .type = ARM_CP_NOP, .access = PL1_W },
4332     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4333       .type = ARM_CP_NOP, .access = PL1_W },
4334     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4335       .type = ARM_CP_NOP, .access = PL1_W },
4336     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4337       .type = ARM_CP_NOP, .access = PL1_W },
4338     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4339       .type = ARM_CP_NOP, .access = PL1_W },
4340     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4341       .type = ARM_CP_NOP, .access = PL1_W },
4342     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4343       .type = ARM_CP_NOP, .access = PL1_W },
4344     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4345       .type = ARM_CP_NOP, .access = PL1_W },
4346     /* MMU Domain access control / MPU write buffer control */
4347     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4348       .access = PL1_RW, .resetvalue = 0,
4349       .writefn = dacr_write, .raw_writefn = raw_write,
4350       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4351                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4352     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4353       .type = ARM_CP_ALIAS,
4354       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4355       .access = PL1_RW,
4356       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4357     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4358       .type = ARM_CP_ALIAS,
4359       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4360       .access = PL1_RW,
4361       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4362     /* We rely on the access checks not allowing the guest to write to the
4363      * state field when SPSel indicates that it's being used as the stack
4364      * pointer.
4365      */
4366     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4367       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4368       .access = PL1_RW, .accessfn = sp_el0_access,
4369       .type = ARM_CP_ALIAS,
4370       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4371     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4372       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4373       .access = PL2_RW, .type = ARM_CP_ALIAS,
4374       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4375     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4376       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4377       .type = ARM_CP_NO_RAW,
4378       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4379     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4380       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4381       .type = ARM_CP_ALIAS,
4382       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4383       .access = PL2_RW, .accessfn = fpexc32_access },
4384     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4385       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4386       .access = PL2_RW, .resetvalue = 0,
4387       .writefn = dacr_write, .raw_writefn = raw_write,
4388       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4389     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4390       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4391       .access = PL2_RW, .resetvalue = 0,
4392       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4393     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4394       .type = ARM_CP_ALIAS,
4395       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4396       .access = PL2_RW,
4397       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4398     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4399       .type = ARM_CP_ALIAS,
4400       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4401       .access = PL2_RW,
4402       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4403     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4404       .type = ARM_CP_ALIAS,
4405       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4406       .access = PL2_RW,
4407       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4408     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4409       .type = ARM_CP_ALIAS,
4410       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4411       .access = PL2_RW,
4412       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4413     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4414       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4415       .resetvalue = 0,
4416       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4417     { .name = "SDCR", .type = ARM_CP_ALIAS,
4418       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4419       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4420       .writefn = sdcr_write,
4421       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4422     REGINFO_SENTINEL
4423 };
4424 
4425 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4426 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4427     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4428       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4429       .access = PL2_RW,
4430       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4431     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4432       .type = ARM_CP_NO_RAW,
4433       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4434       .access = PL2_RW,
4435       .type = ARM_CP_CONST, .resetvalue = 0 },
4436     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4437       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4438       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4439     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4440       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4441       .access = PL2_RW,
4442       .type = ARM_CP_CONST, .resetvalue = 0 },
4443     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4444       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4445       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4446     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4447       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4448       .access = PL2_RW, .type = ARM_CP_CONST,
4449       .resetvalue = 0 },
4450     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4451       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4452       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4453     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4454       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4455       .access = PL2_RW, .type = ARM_CP_CONST,
4456       .resetvalue = 0 },
4457     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4458       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4459       .access = PL2_RW, .type = ARM_CP_CONST,
4460       .resetvalue = 0 },
4461     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4462       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4463       .access = PL2_RW, .type = ARM_CP_CONST,
4464       .resetvalue = 0 },
4465     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4466       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4467       .access = PL2_RW, .type = ARM_CP_CONST,
4468       .resetvalue = 0 },
4469     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4470       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4471       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4472     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4473       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4474       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4475       .type = ARM_CP_CONST, .resetvalue = 0 },
4476     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4477       .cp = 15, .opc1 = 6, .crm = 2,
4478       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4479       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4480     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4481       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4482       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4483     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4484       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4485       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4486     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4487       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4488       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4489     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4490       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4491       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4492     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4493       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4494       .resetvalue = 0 },
4495     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4496       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4497       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4498     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4499       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4500       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4501     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4502       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4503       .resetvalue = 0 },
4504     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4505       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4506       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4507     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4508       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4509       .resetvalue = 0 },
4510     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4511       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4512       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4513     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4514       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4515       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4516     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4517       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4518       .access = PL2_RW, .accessfn = access_tda,
4519       .type = ARM_CP_CONST, .resetvalue = 0 },
4520     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4521       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4522       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4523       .type = ARM_CP_CONST, .resetvalue = 0 },
4524     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4525       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4526       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4527     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4528       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4529       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4530     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4531       .type = ARM_CP_CONST,
4532       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4533       .access = PL2_RW, .resetvalue = 0 },
4534     REGINFO_SENTINEL
4535 };
4536 
4537 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4538 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4539     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4540       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4541       .access = PL2_RW,
4542       .type = ARM_CP_CONST, .resetvalue = 0 },
4543     REGINFO_SENTINEL
4544 };
4545 
4546 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4547 {
4548     ARMCPU *cpu = arm_env_get_cpu(env);
4549     uint64_t valid_mask = HCR_MASK;
4550 
4551     if (arm_feature(env, ARM_FEATURE_EL3)) {
4552         valid_mask &= ~HCR_HCD;
4553     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4554         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4555          * However, if we're using the SMC PSCI conduit then QEMU is
4556          * effectively acting like EL3 firmware and so the guest at
4557          * EL2 should retain the ability to prevent EL1 from being
4558          * able to make SMC calls into the ersatz firmware, so in
4559          * that case HCR.TSC should be read/write.
4560          */
4561         valid_mask &= ~HCR_TSC;
4562     }
4563     if (cpu_isar_feature(aa64_lor, cpu)) {
4564         valid_mask |= HCR_TLOR;
4565     }
4566     if (cpu_isar_feature(aa64_pauth, cpu)) {
4567         valid_mask |= HCR_API | HCR_APK;
4568     }
4569 
4570     /* Clear RES0 bits.  */
4571     value &= valid_mask;
4572 
4573     /* These bits change the MMU setup:
4574      * HCR_VM enables stage 2 translation
4575      * HCR_PTW forbids certain page-table setups
4576      * HCR_DC Disables stage1 and enables stage2 translation
4577      */
4578     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4579         tlb_flush(CPU(cpu));
4580     }
4581     env->cp15.hcr_el2 = value;
4582 
4583     /*
4584      * Updates to VI and VF require us to update the status of
4585      * virtual interrupts, which are the logical OR of these bits
4586      * and the state of the input lines from the GIC. (This requires
4587      * that we have the iothread lock, which is done by marking the
4588      * reginfo structs as ARM_CP_IO.)
4589      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4590      * possible for it to be taken immediately, because VIRQ and
4591      * VFIQ are masked unless running at EL0 or EL1, and HCR
4592      * can only be written at EL2.
4593      */
4594     g_assert(qemu_mutex_iothread_locked());
4595     arm_cpu_update_virq(cpu);
4596     arm_cpu_update_vfiq(cpu);
4597 }
4598 
4599 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4600                           uint64_t value)
4601 {
4602     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4603     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4604     hcr_write(env, NULL, value);
4605 }
4606 
4607 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4608                          uint64_t value)
4609 {
4610     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4611     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4612     hcr_write(env, NULL, value);
4613 }
4614 
4615 /*
4616  * Return the effective value of HCR_EL2.
4617  * Bits that are not included here:
4618  * RW       (read from SCR_EL3.RW as needed)
4619  */
4620 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4621 {
4622     uint64_t ret = env->cp15.hcr_el2;
4623 
4624     if (arm_is_secure_below_el3(env)) {
4625         /*
4626          * "This register has no effect if EL2 is not enabled in the
4627          * current Security state".  This is ARMv8.4-SecEL2 speak for
4628          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4629          *
4630          * Prior to that, the language was "In an implementation that
4631          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4632          * as if this field is 0 for all purposes other than a direct
4633          * read or write access of HCR_EL2".  With lots of enumeration
4634          * on a per-field basis.  In current QEMU, this is condition
4635          * is arm_is_secure_below_el3.
4636          *
4637          * Since the v8.4 language applies to the entire register, and
4638          * appears to be backward compatible, use that.
4639          */
4640         ret = 0;
4641     } else if (ret & HCR_TGE) {
4642         /* These bits are up-to-date as of ARMv8.4.  */
4643         if (ret & HCR_E2H) {
4644             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4645                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4646                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4647                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4648         } else {
4649             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4650         }
4651         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4652                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4653                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4654                  HCR_TLOR);
4655     }
4656 
4657     return ret;
4658 }
4659 
4660 static const ARMCPRegInfo el2_cp_reginfo[] = {
4661     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4662       .type = ARM_CP_IO,
4663       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4664       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4665       .writefn = hcr_write },
4666     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4667       .type = ARM_CP_ALIAS | ARM_CP_IO,
4668       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4669       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4670       .writefn = hcr_writelow },
4671     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4672       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4673       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4674     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4675       .type = ARM_CP_ALIAS,
4676       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4677       .access = PL2_RW,
4678       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4679     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4680       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4681       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4682     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4683       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4684       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4685     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4686       .type = ARM_CP_ALIAS,
4687       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4688       .access = PL2_RW,
4689       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4690     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4691       .type = ARM_CP_ALIAS,
4692       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4693       .access = PL2_RW,
4694       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4695     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4696       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4697       .access = PL2_RW, .writefn = vbar_write,
4698       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4699       .resetvalue = 0 },
4700     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4701       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4702       .access = PL3_RW, .type = ARM_CP_ALIAS,
4703       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4704     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4705       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4706       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4707       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4708     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4709       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4710       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4711       .resetvalue = 0 },
4712     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4713       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4714       .access = PL2_RW, .type = ARM_CP_ALIAS,
4715       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4716     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4717       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4718       .access = PL2_RW, .type = ARM_CP_CONST,
4719       .resetvalue = 0 },
4720     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4721     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4722       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4723       .access = PL2_RW, .type = ARM_CP_CONST,
4724       .resetvalue = 0 },
4725     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4726       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4727       .access = PL2_RW, .type = ARM_CP_CONST,
4728       .resetvalue = 0 },
4729     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4730       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4731       .access = PL2_RW, .type = ARM_CP_CONST,
4732       .resetvalue = 0 },
4733     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4734       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4735       .access = PL2_RW,
4736       /* no .writefn needed as this can't cause an ASID change;
4737        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4738        */
4739       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4740     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4741       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4742       .type = ARM_CP_ALIAS,
4743       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4744       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4745     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4746       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4747       .access = PL2_RW,
4748       /* no .writefn needed as this can't cause an ASID change;
4749        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4750        */
4751       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4752     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4753       .cp = 15, .opc1 = 6, .crm = 2,
4754       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4755       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4756       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4757       .writefn = vttbr_write },
4758     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4759       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4760       .access = PL2_RW, .writefn = vttbr_write,
4761       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4762     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4763       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4764       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4765       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4766     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4767       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4768       .access = PL2_RW, .resetvalue = 0,
4769       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4770     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4771       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4772       .access = PL2_RW, .resetvalue = 0,
4773       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4774     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4775       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4776       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4777     { .name = "TLBIALLNSNH",
4778       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4779       .type = ARM_CP_NO_RAW, .access = PL2_W,
4780       .writefn = tlbiall_nsnh_write },
4781     { .name = "TLBIALLNSNHIS",
4782       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4783       .type = ARM_CP_NO_RAW, .access = PL2_W,
4784       .writefn = tlbiall_nsnh_is_write },
4785     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4786       .type = ARM_CP_NO_RAW, .access = PL2_W,
4787       .writefn = tlbiall_hyp_write },
4788     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4789       .type = ARM_CP_NO_RAW, .access = PL2_W,
4790       .writefn = tlbiall_hyp_is_write },
4791     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4792       .type = ARM_CP_NO_RAW, .access = PL2_W,
4793       .writefn = tlbimva_hyp_write },
4794     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4795       .type = ARM_CP_NO_RAW, .access = PL2_W,
4796       .writefn = tlbimva_hyp_is_write },
4797     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4798       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4799       .type = ARM_CP_NO_RAW, .access = PL2_W,
4800       .writefn = tlbi_aa64_alle2_write },
4801     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4802       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4803       .type = ARM_CP_NO_RAW, .access = PL2_W,
4804       .writefn = tlbi_aa64_vae2_write },
4805     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4806       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4807       .access = PL2_W, .type = ARM_CP_NO_RAW,
4808       .writefn = tlbi_aa64_vae2_write },
4809     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4810       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4811       .access = PL2_W, .type = ARM_CP_NO_RAW,
4812       .writefn = tlbi_aa64_alle2is_write },
4813     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4814       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4815       .type = ARM_CP_NO_RAW, .access = PL2_W,
4816       .writefn = tlbi_aa64_vae2is_write },
4817     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4818       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4819       .access = PL2_W, .type = ARM_CP_NO_RAW,
4820       .writefn = tlbi_aa64_vae2is_write },
4821 #ifndef CONFIG_USER_ONLY
4822     /* Unlike the other EL2-related AT operations, these must
4823      * UNDEF from EL3 if EL2 is not implemented, which is why we
4824      * define them here rather than with the rest of the AT ops.
4825      */
4826     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4827       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4828       .access = PL2_W, .accessfn = at_s1e2_access,
4829       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4830     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4831       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4832       .access = PL2_W, .accessfn = at_s1e2_access,
4833       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4834     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4835      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4836      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4837      * to behave as if SCR.NS was 1.
4838      */
4839     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4840       .access = PL2_W,
4841       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4842     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4843       .access = PL2_W,
4844       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4845     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4846       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4847       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4848        * reset values as IMPDEF. We choose to reset to 3 to comply with
4849        * both ARMv7 and ARMv8.
4850        */
4851       .access = PL2_RW, .resetvalue = 3,
4852       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4853     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4854       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4855       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4856       .writefn = gt_cntvoff_write,
4857       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4858     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4859       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4860       .writefn = gt_cntvoff_write,
4861       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4862     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4863       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4864       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4865       .type = ARM_CP_IO, .access = PL2_RW,
4866       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4867     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4868       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4869       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4870       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4871     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4872       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4873       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4874       .resetfn = gt_hyp_timer_reset,
4875       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4876     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4877       .type = ARM_CP_IO,
4878       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4879       .access = PL2_RW,
4880       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4881       .resetvalue = 0,
4882       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4883 #endif
4884     /* The only field of MDCR_EL2 that has a defined architectural reset value
4885      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4886      * don't implement any PMU event counters, so using zero as a reset
4887      * value for MDCR_EL2 is okay
4888      */
4889     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4890       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4891       .access = PL2_RW, .resetvalue = 0,
4892       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4893     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4894       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4895       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4896       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4897     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4898       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4899       .access = PL2_RW,
4900       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4901     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4902       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4903       .access = PL2_RW,
4904       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4905     REGINFO_SENTINEL
4906 };
4907 
4908 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4909     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4910       .type = ARM_CP_ALIAS | ARM_CP_IO,
4911       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4912       .access = PL2_RW,
4913       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4914       .writefn = hcr_writehigh },
4915     REGINFO_SENTINEL
4916 };
4917 
4918 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4919                                    bool isread)
4920 {
4921     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4922      * At Secure EL1 it traps to EL3.
4923      */
4924     if (arm_current_el(env) == 3) {
4925         return CP_ACCESS_OK;
4926     }
4927     if (arm_is_secure_below_el3(env)) {
4928         return CP_ACCESS_TRAP_EL3;
4929     }
4930     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4931     if (isread) {
4932         return CP_ACCESS_OK;
4933     }
4934     return CP_ACCESS_TRAP_UNCATEGORIZED;
4935 }
4936 
4937 static const ARMCPRegInfo el3_cp_reginfo[] = {
4938     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4939       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4940       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4941       .resetvalue = 0, .writefn = scr_write },
4942     { .name = "SCR",  .type = ARM_CP_ALIAS,
4943       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4944       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4945       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4946       .writefn = scr_write },
4947     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4948       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4949       .access = PL3_RW, .resetvalue = 0,
4950       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4951     { .name = "SDER",
4952       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4953       .access = PL3_RW, .resetvalue = 0,
4954       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4955     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4956       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4957       .writefn = vbar_write, .resetvalue = 0,
4958       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4959     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4961       .access = PL3_RW, .resetvalue = 0,
4962       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4963     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4964       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4965       .access = PL3_RW,
4966       /* no .writefn needed as this can't cause an ASID change;
4967        * we must provide a .raw_writefn and .resetfn because we handle
4968        * reset and migration for the AArch32 TTBCR(S), which might be
4969        * using mask and base_mask.
4970        */
4971       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4972       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4973     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4974       .type = ARM_CP_ALIAS,
4975       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4976       .access = PL3_RW,
4977       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4978     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4979       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4980       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4981     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4982       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4983       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4984     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4985       .type = ARM_CP_ALIAS,
4986       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4987       .access = PL3_RW,
4988       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4989     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4990       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4991       .access = PL3_RW, .writefn = vbar_write,
4992       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4993       .resetvalue = 0 },
4994     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4995       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4996       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4997       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4998     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4999       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5000       .access = PL3_RW, .resetvalue = 0,
5001       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5002     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5003       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5004       .access = PL3_RW, .type = ARM_CP_CONST,
5005       .resetvalue = 0 },
5006     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5007       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5008       .access = PL3_RW, .type = ARM_CP_CONST,
5009       .resetvalue = 0 },
5010     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5011       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5012       .access = PL3_RW, .type = ARM_CP_CONST,
5013       .resetvalue = 0 },
5014     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5015       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5016       .access = PL3_W, .type = ARM_CP_NO_RAW,
5017       .writefn = tlbi_aa64_alle3is_write },
5018     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5019       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5020       .access = PL3_W, .type = ARM_CP_NO_RAW,
5021       .writefn = tlbi_aa64_vae3is_write },
5022     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5023       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5024       .access = PL3_W, .type = ARM_CP_NO_RAW,
5025       .writefn = tlbi_aa64_vae3is_write },
5026     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5027       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5028       .access = PL3_W, .type = ARM_CP_NO_RAW,
5029       .writefn = tlbi_aa64_alle3_write },
5030     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5031       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5032       .access = PL3_W, .type = ARM_CP_NO_RAW,
5033       .writefn = tlbi_aa64_vae3_write },
5034     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5035       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5036       .access = PL3_W, .type = ARM_CP_NO_RAW,
5037       .writefn = tlbi_aa64_vae3_write },
5038     REGINFO_SENTINEL
5039 };
5040 
5041 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5042                                      bool isread)
5043 {
5044     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5045      * but the AArch32 CTR has its own reginfo struct)
5046      */
5047     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5048         return CP_ACCESS_TRAP;
5049     }
5050     return CP_ACCESS_OK;
5051 }
5052 
5053 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5054                         uint64_t value)
5055 {
5056     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5057      * read via a bit in OSLSR_EL1.
5058      */
5059     int oslock;
5060 
5061     if (ri->state == ARM_CP_STATE_AA32) {
5062         oslock = (value == 0xC5ACCE55);
5063     } else {
5064         oslock = value & 1;
5065     }
5066 
5067     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5068 }
5069 
5070 static const ARMCPRegInfo debug_cp_reginfo[] = {
5071     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5072      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5073      * unlike DBGDRAR it is never accessible from EL0.
5074      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5075      * accessor.
5076      */
5077     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5078       .access = PL0_R, .accessfn = access_tdra,
5079       .type = ARM_CP_CONST, .resetvalue = 0 },
5080     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5081       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5082       .access = PL1_R, .accessfn = access_tdra,
5083       .type = ARM_CP_CONST, .resetvalue = 0 },
5084     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5085       .access = PL0_R, .accessfn = access_tdra,
5086       .type = ARM_CP_CONST, .resetvalue = 0 },
5087     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5088     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5089       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5090       .access = PL1_RW, .accessfn = access_tda,
5091       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5092       .resetvalue = 0 },
5093     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5094      * We don't implement the configurable EL0 access.
5095      */
5096     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5097       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5098       .type = ARM_CP_ALIAS,
5099       .access = PL1_R, .accessfn = access_tda,
5100       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5101     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5102       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5103       .access = PL1_W, .type = ARM_CP_NO_RAW,
5104       .accessfn = access_tdosa,
5105       .writefn = oslar_write },
5106     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5107       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5108       .access = PL1_R, .resetvalue = 10,
5109       .accessfn = access_tdosa,
5110       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5111     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5112     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5113       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5114       .access = PL1_RW, .accessfn = access_tdosa,
5115       .type = ARM_CP_NOP },
5116     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5117      * implement vector catch debug events yet.
5118      */
5119     { .name = "DBGVCR",
5120       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5121       .access = PL1_RW, .accessfn = access_tda,
5122       .type = ARM_CP_NOP },
5123     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5124      * to save and restore a 32-bit guest's DBGVCR)
5125      */
5126     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5127       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5128       .access = PL2_RW, .accessfn = access_tda,
5129       .type = ARM_CP_NOP },
5130     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5131      * Channel but Linux may try to access this register. The 32-bit
5132      * alias is DBGDCCINT.
5133      */
5134     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5135       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5136       .access = PL1_RW, .accessfn = access_tda,
5137       .type = ARM_CP_NOP },
5138     REGINFO_SENTINEL
5139 };
5140 
5141 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5142     /* 64 bit access versions of the (dummy) debug registers */
5143     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5144       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5145     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5146       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5147     REGINFO_SENTINEL
5148 };
5149 
5150 /* Return the exception level to which exceptions should be taken
5151  * via SVEAccessTrap.  If an exception should be routed through
5152  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5153  * take care of raising that exception.
5154  * C.f. the ARM pseudocode function CheckSVEEnabled.
5155  */
5156 int sve_exception_el(CPUARMState *env, int el)
5157 {
5158 #ifndef CONFIG_USER_ONLY
5159     if (el <= 1) {
5160         bool disabled = false;
5161 
5162         /* The CPACR.ZEN controls traps to EL1:
5163          * 0, 2 : trap EL0 and EL1 accesses
5164          * 1    : trap only EL0 accesses
5165          * 3    : trap no accesses
5166          */
5167         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5168             disabled = true;
5169         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5170             disabled = el == 0;
5171         }
5172         if (disabled) {
5173             /* route_to_el2 */
5174             return (arm_feature(env, ARM_FEATURE_EL2)
5175                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5176         }
5177 
5178         /* Check CPACR.FPEN.  */
5179         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5180             disabled = true;
5181         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5182             disabled = el == 0;
5183         }
5184         if (disabled) {
5185             return 0;
5186         }
5187     }
5188 
5189     /* CPTR_EL2.  Since TZ and TFP are positive,
5190      * they will be zero when EL2 is not present.
5191      */
5192     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5193         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5194             return 2;
5195         }
5196         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5197             return 0;
5198         }
5199     }
5200 
5201     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5202     if (arm_feature(env, ARM_FEATURE_EL3)
5203         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5204         return 3;
5205     }
5206 #endif
5207     return 0;
5208 }
5209 
5210 /*
5211  * Given that SVE is enabled, return the vector length for EL.
5212  */
5213 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5214 {
5215     ARMCPU *cpu = arm_env_get_cpu(env);
5216     uint32_t zcr_len = cpu->sve_max_vq - 1;
5217 
5218     if (el <= 1) {
5219         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5220     }
5221     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5222         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5223     }
5224     if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5225         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5226     }
5227     return zcr_len;
5228 }
5229 
5230 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5231                       uint64_t value)
5232 {
5233     int cur_el = arm_current_el(env);
5234     int old_len = sve_zcr_len_for_el(env, cur_el);
5235     int new_len;
5236 
5237     /* Bits other than [3:0] are RAZ/WI.  */
5238     raw_write(env, ri, value & 0xf);
5239 
5240     /*
5241      * Because we arrived here, we know both FP and SVE are enabled;
5242      * otherwise we would have trapped access to the ZCR_ELn register.
5243      */
5244     new_len = sve_zcr_len_for_el(env, cur_el);
5245     if (new_len < old_len) {
5246         aarch64_sve_narrow_vq(env, new_len + 1);
5247     }
5248 }
5249 
5250 static const ARMCPRegInfo zcr_el1_reginfo = {
5251     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5252     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5253     .access = PL1_RW, .type = ARM_CP_SVE,
5254     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5255     .writefn = zcr_write, .raw_writefn = raw_write
5256 };
5257 
5258 static const ARMCPRegInfo zcr_el2_reginfo = {
5259     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5260     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5261     .access = PL2_RW, .type = ARM_CP_SVE,
5262     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5263     .writefn = zcr_write, .raw_writefn = raw_write
5264 };
5265 
5266 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5267     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5268     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5269     .access = PL2_RW, .type = ARM_CP_SVE,
5270     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5271 };
5272 
5273 static const ARMCPRegInfo zcr_el3_reginfo = {
5274     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5275     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5276     .access = PL3_RW, .type = ARM_CP_SVE,
5277     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5278     .writefn = zcr_write, .raw_writefn = raw_write
5279 };
5280 
5281 void hw_watchpoint_update(ARMCPU *cpu, int n)
5282 {
5283     CPUARMState *env = &cpu->env;
5284     vaddr len = 0;
5285     vaddr wvr = env->cp15.dbgwvr[n];
5286     uint64_t wcr = env->cp15.dbgwcr[n];
5287     int mask;
5288     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5289 
5290     if (env->cpu_watchpoint[n]) {
5291         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5292         env->cpu_watchpoint[n] = NULL;
5293     }
5294 
5295     if (!extract64(wcr, 0, 1)) {
5296         /* E bit clear : watchpoint disabled */
5297         return;
5298     }
5299 
5300     switch (extract64(wcr, 3, 2)) {
5301     case 0:
5302         /* LSC 00 is reserved and must behave as if the wp is disabled */
5303         return;
5304     case 1:
5305         flags |= BP_MEM_READ;
5306         break;
5307     case 2:
5308         flags |= BP_MEM_WRITE;
5309         break;
5310     case 3:
5311         flags |= BP_MEM_ACCESS;
5312         break;
5313     }
5314 
5315     /* Attempts to use both MASK and BAS fields simultaneously are
5316      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5317      * thus generating a watchpoint for every byte in the masked region.
5318      */
5319     mask = extract64(wcr, 24, 4);
5320     if (mask == 1 || mask == 2) {
5321         /* Reserved values of MASK; we must act as if the mask value was
5322          * some non-reserved value, or as if the watchpoint were disabled.
5323          * We choose the latter.
5324          */
5325         return;
5326     } else if (mask) {
5327         /* Watchpoint covers an aligned area up to 2GB in size */
5328         len = 1ULL << mask;
5329         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5330          * whether the watchpoint fires when the unmasked bits match; we opt
5331          * to generate the exceptions.
5332          */
5333         wvr &= ~(len - 1);
5334     } else {
5335         /* Watchpoint covers bytes defined by the byte address select bits */
5336         int bas = extract64(wcr, 5, 8);
5337         int basstart;
5338 
5339         if (bas == 0) {
5340             /* This must act as if the watchpoint is disabled */
5341             return;
5342         }
5343 
5344         if (extract64(wvr, 2, 1)) {
5345             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5346              * ignored, and BAS[3:0] define which bytes to watch.
5347              */
5348             bas &= 0xf;
5349         }
5350         /* The BAS bits are supposed to be programmed to indicate a contiguous
5351          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5352          * we fire for each byte in the word/doubleword addressed by the WVR.
5353          * We choose to ignore any non-zero bits after the first range of 1s.
5354          */
5355         basstart = ctz32(bas);
5356         len = cto32(bas >> basstart);
5357         wvr += basstart;
5358     }
5359 
5360     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5361                           &env->cpu_watchpoint[n]);
5362 }
5363 
5364 void hw_watchpoint_update_all(ARMCPU *cpu)
5365 {
5366     int i;
5367     CPUARMState *env = &cpu->env;
5368 
5369     /* Completely clear out existing QEMU watchpoints and our array, to
5370      * avoid possible stale entries following migration load.
5371      */
5372     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5373     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5374 
5375     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5376         hw_watchpoint_update(cpu, i);
5377     }
5378 }
5379 
5380 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5381                          uint64_t value)
5382 {
5383     ARMCPU *cpu = arm_env_get_cpu(env);
5384     int i = ri->crm;
5385 
5386     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5387      * register reads and behaves as if values written are sign extended.
5388      * Bits [1:0] are RES0.
5389      */
5390     value = sextract64(value, 0, 49) & ~3ULL;
5391 
5392     raw_write(env, ri, value);
5393     hw_watchpoint_update(cpu, i);
5394 }
5395 
5396 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5397                          uint64_t value)
5398 {
5399     ARMCPU *cpu = arm_env_get_cpu(env);
5400     int i = ri->crm;
5401 
5402     raw_write(env, ri, value);
5403     hw_watchpoint_update(cpu, i);
5404 }
5405 
5406 void hw_breakpoint_update(ARMCPU *cpu, int n)
5407 {
5408     CPUARMState *env = &cpu->env;
5409     uint64_t bvr = env->cp15.dbgbvr[n];
5410     uint64_t bcr = env->cp15.dbgbcr[n];
5411     vaddr addr;
5412     int bt;
5413     int flags = BP_CPU;
5414 
5415     if (env->cpu_breakpoint[n]) {
5416         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5417         env->cpu_breakpoint[n] = NULL;
5418     }
5419 
5420     if (!extract64(bcr, 0, 1)) {
5421         /* E bit clear : watchpoint disabled */
5422         return;
5423     }
5424 
5425     bt = extract64(bcr, 20, 4);
5426 
5427     switch (bt) {
5428     case 4: /* unlinked address mismatch (reserved if AArch64) */
5429     case 5: /* linked address mismatch (reserved if AArch64) */
5430         qemu_log_mask(LOG_UNIMP,
5431                       "arm: address mismatch breakpoint types not implemented\n");
5432         return;
5433     case 0: /* unlinked address match */
5434     case 1: /* linked address match */
5435     {
5436         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5437          * we behave as if the register was sign extended. Bits [1:0] are
5438          * RES0. The BAS field is used to allow setting breakpoints on 16
5439          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5440          * a bp will fire if the addresses covered by the bp and the addresses
5441          * covered by the insn overlap but the insn doesn't start at the
5442          * start of the bp address range. We choose to require the insn and
5443          * the bp to have the same address. The constraints on writing to
5444          * BAS enforced in dbgbcr_write mean we have only four cases:
5445          *  0b0000  => no breakpoint
5446          *  0b0011  => breakpoint on addr
5447          *  0b1100  => breakpoint on addr + 2
5448          *  0b1111  => breakpoint on addr
5449          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5450          */
5451         int bas = extract64(bcr, 5, 4);
5452         addr = sextract64(bvr, 0, 49) & ~3ULL;
5453         if (bas == 0) {
5454             return;
5455         }
5456         if (bas == 0xc) {
5457             addr += 2;
5458         }
5459         break;
5460     }
5461     case 2: /* unlinked context ID match */
5462     case 8: /* unlinked VMID match (reserved if no EL2) */
5463     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5464         qemu_log_mask(LOG_UNIMP,
5465                       "arm: unlinked context breakpoint types not implemented\n");
5466         return;
5467     case 9: /* linked VMID match (reserved if no EL2) */
5468     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5469     case 3: /* linked context ID match */
5470     default:
5471         /* We must generate no events for Linked context matches (unless
5472          * they are linked to by some other bp/wp, which is handled in
5473          * updates for the linking bp/wp). We choose to also generate no events
5474          * for reserved values.
5475          */
5476         return;
5477     }
5478 
5479     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5480 }
5481 
5482 void hw_breakpoint_update_all(ARMCPU *cpu)
5483 {
5484     int i;
5485     CPUARMState *env = &cpu->env;
5486 
5487     /* Completely clear out existing QEMU breakpoints and our array, to
5488      * avoid possible stale entries following migration load.
5489      */
5490     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5491     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5492 
5493     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5494         hw_breakpoint_update(cpu, i);
5495     }
5496 }
5497 
5498 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5499                          uint64_t value)
5500 {
5501     ARMCPU *cpu = arm_env_get_cpu(env);
5502     int i = ri->crm;
5503 
5504     raw_write(env, ri, value);
5505     hw_breakpoint_update(cpu, i);
5506 }
5507 
5508 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5509                          uint64_t value)
5510 {
5511     ARMCPU *cpu = arm_env_get_cpu(env);
5512     int i = ri->crm;
5513 
5514     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5515      * copy of BAS[0].
5516      */
5517     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5518     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5519 
5520     raw_write(env, ri, value);
5521     hw_breakpoint_update(cpu, i);
5522 }
5523 
5524 static void define_debug_regs(ARMCPU *cpu)
5525 {
5526     /* Define v7 and v8 architectural debug registers.
5527      * These are just dummy implementations for now.
5528      */
5529     int i;
5530     int wrps, brps, ctx_cmps;
5531     ARMCPRegInfo dbgdidr = {
5532         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5533         .access = PL0_R, .accessfn = access_tda,
5534         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5535     };
5536 
5537     /* Note that all these register fields hold "number of Xs minus 1". */
5538     brps = extract32(cpu->dbgdidr, 24, 4);
5539     wrps = extract32(cpu->dbgdidr, 28, 4);
5540     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5541 
5542     assert(ctx_cmps <= brps);
5543 
5544     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5545      * of the debug registers such as number of breakpoints;
5546      * check that if they both exist then they agree.
5547      */
5548     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5549         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5550         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5551         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5552     }
5553 
5554     define_one_arm_cp_reg(cpu, &dbgdidr);
5555     define_arm_cp_regs(cpu, debug_cp_reginfo);
5556 
5557     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5558         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5559     }
5560 
5561     for (i = 0; i < brps + 1; i++) {
5562         ARMCPRegInfo dbgregs[] = {
5563             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5564               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5565               .access = PL1_RW, .accessfn = access_tda,
5566               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5567               .writefn = dbgbvr_write, .raw_writefn = raw_write
5568             },
5569             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5570               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5571               .access = PL1_RW, .accessfn = access_tda,
5572               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5573               .writefn = dbgbcr_write, .raw_writefn = raw_write
5574             },
5575             REGINFO_SENTINEL
5576         };
5577         define_arm_cp_regs(cpu, dbgregs);
5578     }
5579 
5580     for (i = 0; i < wrps + 1; i++) {
5581         ARMCPRegInfo dbgregs[] = {
5582             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5583               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5584               .access = PL1_RW, .accessfn = access_tda,
5585               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5586               .writefn = dbgwvr_write, .raw_writefn = raw_write
5587             },
5588             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5589               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5590               .access = PL1_RW, .accessfn = access_tda,
5591               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5592               .writefn = dbgwcr_write, .raw_writefn = raw_write
5593             },
5594             REGINFO_SENTINEL
5595         };
5596         define_arm_cp_regs(cpu, dbgregs);
5597     }
5598 }
5599 
5600 /* We don't know until after realize whether there's a GICv3
5601  * attached, and that is what registers the gicv3 sysregs.
5602  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5603  * at runtime.
5604  */
5605 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5606 {
5607     ARMCPU *cpu = arm_env_get_cpu(env);
5608     uint64_t pfr1 = cpu->id_pfr1;
5609 
5610     if (env->gicv3state) {
5611         pfr1 |= 1 << 28;
5612     }
5613     return pfr1;
5614 }
5615 
5616 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5617 {
5618     ARMCPU *cpu = arm_env_get_cpu(env);
5619     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5620 
5621     if (env->gicv3state) {
5622         pfr0 |= 1 << 24;
5623     }
5624     return pfr0;
5625 }
5626 
5627 /* Shared logic between LORID and the rest of the LOR* registers.
5628  * Secure state has already been delt with.
5629  */
5630 static CPAccessResult access_lor_ns(CPUARMState *env)
5631 {
5632     int el = arm_current_el(env);
5633 
5634     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5635         return CP_ACCESS_TRAP_EL2;
5636     }
5637     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5638         return CP_ACCESS_TRAP_EL3;
5639     }
5640     return CP_ACCESS_OK;
5641 }
5642 
5643 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5644                                    bool isread)
5645 {
5646     if (arm_is_secure_below_el3(env)) {
5647         /* Access ok in secure mode.  */
5648         return CP_ACCESS_OK;
5649     }
5650     return access_lor_ns(env);
5651 }
5652 
5653 static CPAccessResult access_lor_other(CPUARMState *env,
5654                                        const ARMCPRegInfo *ri, bool isread)
5655 {
5656     if (arm_is_secure_below_el3(env)) {
5657         /* Access denied in secure mode.  */
5658         return CP_ACCESS_TRAP;
5659     }
5660     return access_lor_ns(env);
5661 }
5662 
5663 #ifdef TARGET_AARCH64
5664 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5665                                    bool isread)
5666 {
5667     int el = arm_current_el(env);
5668 
5669     if (el < 2 &&
5670         arm_feature(env, ARM_FEATURE_EL2) &&
5671         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5672         return CP_ACCESS_TRAP_EL2;
5673     }
5674     if (el < 3 &&
5675         arm_feature(env, ARM_FEATURE_EL3) &&
5676         !(env->cp15.scr_el3 & SCR_APK)) {
5677         return CP_ACCESS_TRAP_EL3;
5678     }
5679     return CP_ACCESS_OK;
5680 }
5681 
5682 static const ARMCPRegInfo pauth_reginfo[] = {
5683     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5684       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5685       .access = PL1_RW, .accessfn = access_pauth,
5686       .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5687     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5688       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5689       .access = PL1_RW, .accessfn = access_pauth,
5690       .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5691     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5692       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5693       .access = PL1_RW, .accessfn = access_pauth,
5694       .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5695     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5696       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5697       .access = PL1_RW, .accessfn = access_pauth,
5698       .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5699     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5700       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5701       .access = PL1_RW, .accessfn = access_pauth,
5702       .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5703     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5704       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5705       .access = PL1_RW, .accessfn = access_pauth,
5706       .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5707     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5708       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5709       .access = PL1_RW, .accessfn = access_pauth,
5710       .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5711     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5712       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5713       .access = PL1_RW, .accessfn = access_pauth,
5714       .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5715     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5716       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5717       .access = PL1_RW, .accessfn = access_pauth,
5718       .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5719     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5720       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5721       .access = PL1_RW, .accessfn = access_pauth,
5722       .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5723     REGINFO_SENTINEL
5724 };
5725 #endif
5726 
5727 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5728                                      bool isread)
5729 {
5730     int el = arm_current_el(env);
5731 
5732     if (el == 0) {
5733         uint64_t sctlr = arm_sctlr(env, el);
5734         if (!(sctlr & SCTLR_EnRCTX)) {
5735             return CP_ACCESS_TRAP;
5736         }
5737     } else if (el == 1) {
5738         uint64_t hcr = arm_hcr_el2_eff(env);
5739         if (hcr & HCR_NV) {
5740             return CP_ACCESS_TRAP_EL2;
5741         }
5742     }
5743     return CP_ACCESS_OK;
5744 }
5745 
5746 static const ARMCPRegInfo predinv_reginfo[] = {
5747     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5748       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5749       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5750     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5751       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5752       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5753     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5754       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5755       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5756     /*
5757      * Note the AArch32 opcodes have a different OPC1.
5758      */
5759     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5760       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5761       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5762     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5763       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5764       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5765     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5766       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5767       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5768     REGINFO_SENTINEL
5769 };
5770 
5771 void register_cp_regs_for_features(ARMCPU *cpu)
5772 {
5773     /* Register all the coprocessor registers based on feature bits */
5774     CPUARMState *env = &cpu->env;
5775     if (arm_feature(env, ARM_FEATURE_M)) {
5776         /* M profile has no coprocessor registers */
5777         return;
5778     }
5779 
5780     define_arm_cp_regs(cpu, cp_reginfo);
5781     if (!arm_feature(env, ARM_FEATURE_V8)) {
5782         /* Must go early as it is full of wildcards that may be
5783          * overridden by later definitions.
5784          */
5785         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5786     }
5787 
5788     if (arm_feature(env, ARM_FEATURE_V6)) {
5789         /* The ID registers all have impdef reset values */
5790         ARMCPRegInfo v6_idregs[] = {
5791             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5793               .access = PL1_R, .type = ARM_CP_CONST,
5794               .resetvalue = cpu->id_pfr0 },
5795             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5796              * the value of the GIC field until after we define these regs.
5797              */
5798             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5799               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5800               .access = PL1_R, .type = ARM_CP_NO_RAW,
5801               .readfn = id_pfr1_read,
5802               .writefn = arm_cp_write_ignore },
5803             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5804               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5805               .access = PL1_R, .type = ARM_CP_CONST,
5806               .resetvalue = cpu->id_dfr0 },
5807             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5809               .access = PL1_R, .type = ARM_CP_CONST,
5810               .resetvalue = cpu->id_afr0 },
5811             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5813               .access = PL1_R, .type = ARM_CP_CONST,
5814               .resetvalue = cpu->id_mmfr0 },
5815             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5816               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5817               .access = PL1_R, .type = ARM_CP_CONST,
5818               .resetvalue = cpu->id_mmfr1 },
5819             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5821               .access = PL1_R, .type = ARM_CP_CONST,
5822               .resetvalue = cpu->id_mmfr2 },
5823             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5824               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5825               .access = PL1_R, .type = ARM_CP_CONST,
5826               .resetvalue = cpu->id_mmfr3 },
5827             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5829               .access = PL1_R, .type = ARM_CP_CONST,
5830               .resetvalue = cpu->isar.id_isar0 },
5831             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5833               .access = PL1_R, .type = ARM_CP_CONST,
5834               .resetvalue = cpu->isar.id_isar1 },
5835             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5836               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5837               .access = PL1_R, .type = ARM_CP_CONST,
5838               .resetvalue = cpu->isar.id_isar2 },
5839             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5840               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5841               .access = PL1_R, .type = ARM_CP_CONST,
5842               .resetvalue = cpu->isar.id_isar3 },
5843             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5845               .access = PL1_R, .type = ARM_CP_CONST,
5846               .resetvalue = cpu->isar.id_isar4 },
5847             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5848               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5849               .access = PL1_R, .type = ARM_CP_CONST,
5850               .resetvalue = cpu->isar.id_isar5 },
5851             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5852               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5853               .access = PL1_R, .type = ARM_CP_CONST,
5854               .resetvalue = cpu->id_mmfr4 },
5855             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5856               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5857               .access = PL1_R, .type = ARM_CP_CONST,
5858               .resetvalue = cpu->isar.id_isar6 },
5859             REGINFO_SENTINEL
5860         };
5861         define_arm_cp_regs(cpu, v6_idregs);
5862         define_arm_cp_regs(cpu, v6_cp_reginfo);
5863     } else {
5864         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5865     }
5866     if (arm_feature(env, ARM_FEATURE_V6K)) {
5867         define_arm_cp_regs(cpu, v6k_cp_reginfo);
5868     }
5869     if (arm_feature(env, ARM_FEATURE_V7MP) &&
5870         !arm_feature(env, ARM_FEATURE_PMSA)) {
5871         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5872     }
5873     if (arm_feature(env, ARM_FEATURE_V7VE)) {
5874         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5875     }
5876     if (arm_feature(env, ARM_FEATURE_V7)) {
5877         /* v7 performance monitor control register: same implementor
5878          * field as main ID register, and we implement four counters in
5879          * addition to the cycle count register.
5880          */
5881         unsigned int i, pmcrn = 4;
5882         ARMCPRegInfo pmcr = {
5883             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5884             .access = PL0_RW,
5885             .type = ARM_CP_IO | ARM_CP_ALIAS,
5886             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5887             .accessfn = pmreg_access, .writefn = pmcr_write,
5888             .raw_writefn = raw_write,
5889         };
5890         ARMCPRegInfo pmcr64 = {
5891             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5892             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5893             .access = PL0_RW, .accessfn = pmreg_access,
5894             .type = ARM_CP_IO,
5895             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5896             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5897             .writefn = pmcr_write, .raw_writefn = raw_write,
5898         };
5899         define_one_arm_cp_reg(cpu, &pmcr);
5900         define_one_arm_cp_reg(cpu, &pmcr64);
5901         for (i = 0; i < pmcrn; i++) {
5902             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5903             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5904             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5905             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5906             ARMCPRegInfo pmev_regs[] = {
5907                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5908                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5909                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5910                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5911                   .accessfn = pmreg_access },
5912                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5913                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5914                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5915                   .type = ARM_CP_IO,
5916                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5917                   .raw_readfn = pmevcntr_rawread,
5918                   .raw_writefn = pmevcntr_rawwrite },
5919                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5920                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5921                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5922                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5923                   .accessfn = pmreg_access },
5924                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5925                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5926                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5927                   .type = ARM_CP_IO,
5928                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5929                   .raw_writefn = pmevtyper_rawwrite },
5930                 REGINFO_SENTINEL
5931             };
5932             define_arm_cp_regs(cpu, pmev_regs);
5933             g_free(pmevcntr_name);
5934             g_free(pmevcntr_el0_name);
5935             g_free(pmevtyper_name);
5936             g_free(pmevtyper_el0_name);
5937         }
5938         ARMCPRegInfo clidr = {
5939             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5940             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5941             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5942         };
5943         define_one_arm_cp_reg(cpu, &clidr);
5944         define_arm_cp_regs(cpu, v7_cp_reginfo);
5945         define_debug_regs(cpu);
5946     } else {
5947         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5948     }
5949     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5950             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5951         ARMCPRegInfo v81_pmu_regs[] = {
5952             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5953               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5954               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5955               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5956             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5957               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5958               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5959               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5960             REGINFO_SENTINEL
5961         };
5962         define_arm_cp_regs(cpu, v81_pmu_regs);
5963     }
5964     if (arm_feature(env, ARM_FEATURE_V8)) {
5965         /* AArch64 ID registers, which all have impdef reset values.
5966          * Note that within the ID register ranges the unused slots
5967          * must all RAZ, not UNDEF; future architecture versions may
5968          * define new registers here.
5969          */
5970         ARMCPRegInfo v8_idregs[] = {
5971             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5972              * know the right value for the GIC field until after we
5973              * define these regs.
5974              */
5975             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5976               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5977               .access = PL1_R, .type = ARM_CP_NO_RAW,
5978               .readfn = id_aa64pfr0_read,
5979               .writefn = arm_cp_write_ignore },
5980             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5981               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5982               .access = PL1_R, .type = ARM_CP_CONST,
5983               .resetvalue = cpu->isar.id_aa64pfr1},
5984             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5986               .access = PL1_R, .type = ARM_CP_CONST,
5987               .resetvalue = 0 },
5988             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5989               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5990               .access = PL1_R, .type = ARM_CP_CONST,
5991               .resetvalue = 0 },
5992             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5993               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5994               .access = PL1_R, .type = ARM_CP_CONST,
5995               /* At present, only SVEver == 0 is defined anyway.  */
5996               .resetvalue = 0 },
5997             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5998               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5999               .access = PL1_R, .type = ARM_CP_CONST,
6000               .resetvalue = 0 },
6001             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6003               .access = PL1_R, .type = ARM_CP_CONST,
6004               .resetvalue = 0 },
6005             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6006               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6007               .access = PL1_R, .type = ARM_CP_CONST,
6008               .resetvalue = 0 },
6009             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6011               .access = PL1_R, .type = ARM_CP_CONST,
6012               .resetvalue = cpu->id_aa64dfr0 },
6013             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6015               .access = PL1_R, .type = ARM_CP_CONST,
6016               .resetvalue = cpu->id_aa64dfr1 },
6017             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6018               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6019               .access = PL1_R, .type = ARM_CP_CONST,
6020               .resetvalue = 0 },
6021             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6023               .access = PL1_R, .type = ARM_CP_CONST,
6024               .resetvalue = 0 },
6025             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6026               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6027               .access = PL1_R, .type = ARM_CP_CONST,
6028               .resetvalue = cpu->id_aa64afr0 },
6029             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6031               .access = PL1_R, .type = ARM_CP_CONST,
6032               .resetvalue = cpu->id_aa64afr1 },
6033             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6035               .access = PL1_R, .type = ARM_CP_CONST,
6036               .resetvalue = 0 },
6037             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6038               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6039               .access = PL1_R, .type = ARM_CP_CONST,
6040               .resetvalue = 0 },
6041             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6043               .access = PL1_R, .type = ARM_CP_CONST,
6044               .resetvalue = cpu->isar.id_aa64isar0 },
6045             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6046               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6047               .access = PL1_R, .type = ARM_CP_CONST,
6048               .resetvalue = cpu->isar.id_aa64isar1 },
6049             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6051               .access = PL1_R, .type = ARM_CP_CONST,
6052               .resetvalue = 0 },
6053             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6055               .access = PL1_R, .type = ARM_CP_CONST,
6056               .resetvalue = 0 },
6057             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6058               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6059               .access = PL1_R, .type = ARM_CP_CONST,
6060               .resetvalue = 0 },
6061             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6062               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6063               .access = PL1_R, .type = ARM_CP_CONST,
6064               .resetvalue = 0 },
6065             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6067               .access = PL1_R, .type = ARM_CP_CONST,
6068               .resetvalue = 0 },
6069             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6071               .access = PL1_R, .type = ARM_CP_CONST,
6072               .resetvalue = 0 },
6073             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6074               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6075               .access = PL1_R, .type = ARM_CP_CONST,
6076               .resetvalue = cpu->isar.id_aa64mmfr0 },
6077             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6078               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6079               .access = PL1_R, .type = ARM_CP_CONST,
6080               .resetvalue = cpu->isar.id_aa64mmfr1 },
6081             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6082               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6083               .access = PL1_R, .type = ARM_CP_CONST,
6084               .resetvalue = 0 },
6085             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6086               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6087               .access = PL1_R, .type = ARM_CP_CONST,
6088               .resetvalue = 0 },
6089             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6091               .access = PL1_R, .type = ARM_CP_CONST,
6092               .resetvalue = 0 },
6093             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6094               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6095               .access = PL1_R, .type = ARM_CP_CONST,
6096               .resetvalue = 0 },
6097             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6098               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6099               .access = PL1_R, .type = ARM_CP_CONST,
6100               .resetvalue = 0 },
6101             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6103               .access = PL1_R, .type = ARM_CP_CONST,
6104               .resetvalue = 0 },
6105             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6106               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6107               .access = PL1_R, .type = ARM_CP_CONST,
6108               .resetvalue = cpu->isar.mvfr0 },
6109             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6110               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6111               .access = PL1_R, .type = ARM_CP_CONST,
6112               .resetvalue = cpu->isar.mvfr1 },
6113             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6114               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6115               .access = PL1_R, .type = ARM_CP_CONST,
6116               .resetvalue = cpu->isar.mvfr2 },
6117             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6118               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6119               .access = PL1_R, .type = ARM_CP_CONST,
6120               .resetvalue = 0 },
6121             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6122               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6123               .access = PL1_R, .type = ARM_CP_CONST,
6124               .resetvalue = 0 },
6125             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6126               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6127               .access = PL1_R, .type = ARM_CP_CONST,
6128               .resetvalue = 0 },
6129             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6130               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6131               .access = PL1_R, .type = ARM_CP_CONST,
6132               .resetvalue = 0 },
6133             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6134               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6135               .access = PL1_R, .type = ARM_CP_CONST,
6136               .resetvalue = 0 },
6137             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6138               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6139               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6140               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6141             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6142               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6143               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6144               .resetvalue = cpu->pmceid0 },
6145             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6146               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6147               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6148               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6149             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6150               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6151               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6152               .resetvalue = cpu->pmceid1 },
6153             REGINFO_SENTINEL
6154         };
6155 #ifdef CONFIG_USER_ONLY
6156         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6157             { .name = "ID_AA64PFR0_EL1",
6158               .exported_bits = 0x000f000f00ff0000,
6159               .fixed_bits    = 0x0000000000000011 },
6160             { .name = "ID_AA64PFR1_EL1",
6161               .exported_bits = 0x00000000000000f0 },
6162             { .name = "ID_AA64PFR*_EL1_RESERVED",
6163               .is_glob = true                     },
6164             { .name = "ID_AA64ZFR0_EL1"           },
6165             { .name = "ID_AA64MMFR0_EL1",
6166               .fixed_bits    = 0x00000000ff000000 },
6167             { .name = "ID_AA64MMFR1_EL1"          },
6168             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6169               .is_glob = true                     },
6170             { .name = "ID_AA64DFR0_EL1",
6171               .fixed_bits    = 0x0000000000000006 },
6172             { .name = "ID_AA64DFR1_EL1"           },
6173             { .name = "ID_AA64DFR*_EL1_RESERVED",
6174               .is_glob = true                     },
6175             { .name = "ID_AA64AFR*",
6176               .is_glob = true                     },
6177             { .name = "ID_AA64ISAR0_EL1",
6178               .exported_bits = 0x00fffffff0fffff0 },
6179             { .name = "ID_AA64ISAR1_EL1",
6180               .exported_bits = 0x000000f0ffffffff },
6181             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6182               .is_glob = true                     },
6183             REGUSERINFO_SENTINEL
6184         };
6185         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6186 #endif
6187         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6188         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6189             !arm_feature(env, ARM_FEATURE_EL2)) {
6190             ARMCPRegInfo rvbar = {
6191                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6192                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6193                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6194             };
6195             define_one_arm_cp_reg(cpu, &rvbar);
6196         }
6197         define_arm_cp_regs(cpu, v8_idregs);
6198         define_arm_cp_regs(cpu, v8_cp_reginfo);
6199     }
6200     if (arm_feature(env, ARM_FEATURE_EL2)) {
6201         uint64_t vmpidr_def = mpidr_read_val(env);
6202         ARMCPRegInfo vpidr_regs[] = {
6203             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6204               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6205               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6206               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6207               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6208             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6209               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6210               .access = PL2_RW, .resetvalue = cpu->midr,
6211               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6212             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6213               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6214               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6215               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6216               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6217             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6218               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6219               .access = PL2_RW,
6220               .resetvalue = vmpidr_def,
6221               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6222             REGINFO_SENTINEL
6223         };
6224         define_arm_cp_regs(cpu, vpidr_regs);
6225         define_arm_cp_regs(cpu, el2_cp_reginfo);
6226         if (arm_feature(env, ARM_FEATURE_V8)) {
6227             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6228         }
6229         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6230         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6231             ARMCPRegInfo rvbar = {
6232                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6233                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6234                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6235             };
6236             define_one_arm_cp_reg(cpu, &rvbar);
6237         }
6238     } else {
6239         /* If EL2 is missing but higher ELs are enabled, we need to
6240          * register the no_el2 reginfos.
6241          */
6242         if (arm_feature(env, ARM_FEATURE_EL3)) {
6243             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6244              * of MIDR_EL1 and MPIDR_EL1.
6245              */
6246             ARMCPRegInfo vpidr_regs[] = {
6247                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6248                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6249                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6250                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6251                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6252                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6253                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6254                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6255                   .type = ARM_CP_NO_RAW,
6256                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6257                 REGINFO_SENTINEL
6258             };
6259             define_arm_cp_regs(cpu, vpidr_regs);
6260             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6261             if (arm_feature(env, ARM_FEATURE_V8)) {
6262                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6263             }
6264         }
6265     }
6266     if (arm_feature(env, ARM_FEATURE_EL3)) {
6267         define_arm_cp_regs(cpu, el3_cp_reginfo);
6268         ARMCPRegInfo el3_regs[] = {
6269             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6270               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6271               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6272             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6273               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6274               .access = PL3_RW,
6275               .raw_writefn = raw_write, .writefn = sctlr_write,
6276               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6277               .resetvalue = cpu->reset_sctlr },
6278             REGINFO_SENTINEL
6279         };
6280 
6281         define_arm_cp_regs(cpu, el3_regs);
6282     }
6283     /* The behaviour of NSACR is sufficiently various that we don't
6284      * try to describe it in a single reginfo:
6285      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6286      *     reads as constant 0xc00 from NS EL1 and NS EL2
6287      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6288      *  if v7 without EL3, register doesn't exist
6289      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6290      */
6291     if (arm_feature(env, ARM_FEATURE_EL3)) {
6292         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6293             ARMCPRegInfo nsacr = {
6294                 .name = "NSACR", .type = ARM_CP_CONST,
6295                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6296                 .access = PL1_RW, .accessfn = nsacr_access,
6297                 .resetvalue = 0xc00
6298             };
6299             define_one_arm_cp_reg(cpu, &nsacr);
6300         } else {
6301             ARMCPRegInfo nsacr = {
6302                 .name = "NSACR",
6303                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6304                 .access = PL3_RW | PL1_R,
6305                 .resetvalue = 0,
6306                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6307             };
6308             define_one_arm_cp_reg(cpu, &nsacr);
6309         }
6310     } else {
6311         if (arm_feature(env, ARM_FEATURE_V8)) {
6312             ARMCPRegInfo nsacr = {
6313                 .name = "NSACR", .type = ARM_CP_CONST,
6314                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6315                 .access = PL1_R,
6316                 .resetvalue = 0xc00
6317             };
6318             define_one_arm_cp_reg(cpu, &nsacr);
6319         }
6320     }
6321 
6322     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6323         if (arm_feature(env, ARM_FEATURE_V6)) {
6324             /* PMSAv6 not implemented */
6325             assert(arm_feature(env, ARM_FEATURE_V7));
6326             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6327             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6328         } else {
6329             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6330         }
6331     } else {
6332         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6333         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6334         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6335         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6336             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6337         }
6338     }
6339     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6340         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6341     }
6342     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6343         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6344     }
6345     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6346         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6347     }
6348     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6349         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6350     }
6351     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6352         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6353     }
6354     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6355         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6356     }
6357     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6358         define_arm_cp_regs(cpu, omap_cp_reginfo);
6359     }
6360     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6361         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6362     }
6363     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6364         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6365     }
6366     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6367         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6368     }
6369     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6370         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6371     }
6372     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6373      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6374      * be read-only (ie write causes UNDEF exception).
6375      */
6376     {
6377         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6378             /* Pre-v8 MIDR space.
6379              * Note that the MIDR isn't a simple constant register because
6380              * of the TI925 behaviour where writes to another register can
6381              * cause the MIDR value to change.
6382              *
6383              * Unimplemented registers in the c15 0 0 0 space default to
6384              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6385              * and friends override accordingly.
6386              */
6387             { .name = "MIDR",
6388               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6389               .access = PL1_R, .resetvalue = cpu->midr,
6390               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6391               .readfn = midr_read,
6392               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6393               .type = ARM_CP_OVERRIDE },
6394             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6395             { .name = "DUMMY",
6396               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6397               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6398             { .name = "DUMMY",
6399               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6400               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6401             { .name = "DUMMY",
6402               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6403               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6404             { .name = "DUMMY",
6405               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6406               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6407             { .name = "DUMMY",
6408               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6409               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6410             REGINFO_SENTINEL
6411         };
6412         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6413             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6414               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6415               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6416               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6417               .readfn = midr_read },
6418             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6419             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6420               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6421               .access = PL1_R, .resetvalue = cpu->midr },
6422             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6423               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6424               .access = PL1_R, .resetvalue = cpu->midr },
6425             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6426               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6427               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6428             REGINFO_SENTINEL
6429         };
6430         ARMCPRegInfo id_cp_reginfo[] = {
6431             /* These are common to v8 and pre-v8 */
6432             { .name = "CTR",
6433               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6434               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6435             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6436               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6437               .access = PL0_R, .accessfn = ctr_el0_access,
6438               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6439             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6440             { .name = "TCMTR",
6441               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6442               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6443             REGINFO_SENTINEL
6444         };
6445         /* TLBTR is specific to VMSA */
6446         ARMCPRegInfo id_tlbtr_reginfo = {
6447               .name = "TLBTR",
6448               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6449               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6450         };
6451         /* MPUIR is specific to PMSA V6+ */
6452         ARMCPRegInfo id_mpuir_reginfo = {
6453               .name = "MPUIR",
6454               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6455               .access = PL1_R, .type = ARM_CP_CONST,
6456               .resetvalue = cpu->pmsav7_dregion << 8
6457         };
6458         ARMCPRegInfo crn0_wi_reginfo = {
6459             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6460             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6461             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6462         };
6463 #ifdef CONFIG_USER_ONLY
6464         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6465             { .name = "MIDR_EL1",
6466               .exported_bits = 0x00000000ffffffff },
6467             { .name = "REVIDR_EL1"                },
6468             REGUSERINFO_SENTINEL
6469         };
6470         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6471 #endif
6472         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6473             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6474             ARMCPRegInfo *r;
6475             /* Register the blanket "writes ignored" value first to cover the
6476              * whole space. Then update the specific ID registers to allow write
6477              * access, so that they ignore writes rather than causing them to
6478              * UNDEF.
6479              */
6480             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6481             for (r = id_pre_v8_midr_cp_reginfo;
6482                  r->type != ARM_CP_SENTINEL; r++) {
6483                 r->access = PL1_RW;
6484             }
6485             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6486                 r->access = PL1_RW;
6487             }
6488             id_mpuir_reginfo.access = PL1_RW;
6489             id_tlbtr_reginfo.access = PL1_RW;
6490         }
6491         if (arm_feature(env, ARM_FEATURE_V8)) {
6492             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6493         } else {
6494             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6495         }
6496         define_arm_cp_regs(cpu, id_cp_reginfo);
6497         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6498             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6499         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6500             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6501         }
6502     }
6503 
6504     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6505         ARMCPRegInfo mpidr_cp_reginfo[] = {
6506             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6507               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6508               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6509             REGINFO_SENTINEL
6510         };
6511 #ifdef CONFIG_USER_ONLY
6512         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6513             { .name = "MPIDR_EL1",
6514               .fixed_bits = 0x0000000080000000 },
6515             REGUSERINFO_SENTINEL
6516         };
6517         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6518 #endif
6519         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6520     }
6521 
6522     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6523         ARMCPRegInfo auxcr_reginfo[] = {
6524             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6525               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6526               .access = PL1_RW, .type = ARM_CP_CONST,
6527               .resetvalue = cpu->reset_auxcr },
6528             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6529               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6530               .access = PL2_RW, .type = ARM_CP_CONST,
6531               .resetvalue = 0 },
6532             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6533               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6534               .access = PL3_RW, .type = ARM_CP_CONST,
6535               .resetvalue = 0 },
6536             REGINFO_SENTINEL
6537         };
6538         define_arm_cp_regs(cpu, auxcr_reginfo);
6539         if (arm_feature(env, ARM_FEATURE_V8)) {
6540             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6541             ARMCPRegInfo hactlr2_reginfo = {
6542                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6543                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6544                 .access = PL2_RW, .type = ARM_CP_CONST,
6545                 .resetvalue = 0
6546             };
6547             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6548         }
6549     }
6550 
6551     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6552         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6553             /* 32 bit view is [31:18] 0...0 [43:32]. */
6554             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6555                 | extract64(cpu->reset_cbar, 32, 12);
6556             ARMCPRegInfo cbar_reginfo[] = {
6557                 { .name = "CBAR",
6558                   .type = ARM_CP_CONST,
6559                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6560                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6561                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6562                   .type = ARM_CP_CONST,
6563                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6564                   .access = PL1_R, .resetvalue = cbar32 },
6565                 REGINFO_SENTINEL
6566             };
6567             /* We don't implement a r/w 64 bit CBAR currently */
6568             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6569             define_arm_cp_regs(cpu, cbar_reginfo);
6570         } else {
6571             ARMCPRegInfo cbar = {
6572                 .name = "CBAR",
6573                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6574                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6575                 .fieldoffset = offsetof(CPUARMState,
6576                                         cp15.c15_config_base_address)
6577             };
6578             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6579                 cbar.access = PL1_R;
6580                 cbar.fieldoffset = 0;
6581                 cbar.type = ARM_CP_CONST;
6582             }
6583             define_one_arm_cp_reg(cpu, &cbar);
6584         }
6585     }
6586 
6587     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6588         ARMCPRegInfo vbar_cp_reginfo[] = {
6589             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6590               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6591               .access = PL1_RW, .writefn = vbar_write,
6592               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6593                                      offsetof(CPUARMState, cp15.vbar_ns) },
6594               .resetvalue = 0 },
6595             REGINFO_SENTINEL
6596         };
6597         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6598     }
6599 
6600     /* Generic registers whose values depend on the implementation */
6601     {
6602         ARMCPRegInfo sctlr = {
6603             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6604             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6605             .access = PL1_RW,
6606             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6607                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6608             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6609             .raw_writefn = raw_write,
6610         };
6611         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6612             /* Normally we would always end the TB on an SCTLR write, but Linux
6613              * arch/arm/mach-pxa/sleep.S expects two instructions following
6614              * an MMU enable to execute from cache.  Imitate this behaviour.
6615              */
6616             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6617         }
6618         define_one_arm_cp_reg(cpu, &sctlr);
6619     }
6620 
6621     if (cpu_isar_feature(aa64_lor, cpu)) {
6622         /*
6623          * A trivial implementation of ARMv8.1-LOR leaves all of these
6624          * registers fixed at 0, which indicates that there are zero
6625          * supported Limited Ordering regions.
6626          */
6627         static const ARMCPRegInfo lor_reginfo[] = {
6628             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6629               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6630               .access = PL1_RW, .accessfn = access_lor_other,
6631               .type = ARM_CP_CONST, .resetvalue = 0 },
6632             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6633               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6634               .access = PL1_RW, .accessfn = access_lor_other,
6635               .type = ARM_CP_CONST, .resetvalue = 0 },
6636             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6637               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6638               .access = PL1_RW, .accessfn = access_lor_other,
6639               .type = ARM_CP_CONST, .resetvalue = 0 },
6640             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6641               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6642               .access = PL1_RW, .accessfn = access_lor_other,
6643               .type = ARM_CP_CONST, .resetvalue = 0 },
6644             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6645               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6646               .access = PL1_R, .accessfn = access_lorid,
6647               .type = ARM_CP_CONST, .resetvalue = 0 },
6648             REGINFO_SENTINEL
6649         };
6650         define_arm_cp_regs(cpu, lor_reginfo);
6651     }
6652 
6653     if (cpu_isar_feature(aa64_sve, cpu)) {
6654         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6655         if (arm_feature(env, ARM_FEATURE_EL2)) {
6656             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6657         } else {
6658             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6659         }
6660         if (arm_feature(env, ARM_FEATURE_EL3)) {
6661             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6662         }
6663     }
6664 
6665 #ifdef TARGET_AARCH64
6666     if (cpu_isar_feature(aa64_pauth, cpu)) {
6667         define_arm_cp_regs(cpu, pauth_reginfo);
6668     }
6669 #endif
6670 
6671     /*
6672      * While all v8.0 cpus support aarch64, QEMU does have configurations
6673      * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6674      * which will set ID_ISAR6.
6675      */
6676     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6677         ? cpu_isar_feature(aa64_predinv, cpu)
6678         : cpu_isar_feature(aa32_predinv, cpu)) {
6679         define_arm_cp_regs(cpu, predinv_reginfo);
6680     }
6681 }
6682 
6683 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6684 {
6685     CPUState *cs = CPU(cpu);
6686     CPUARMState *env = &cpu->env;
6687 
6688     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6689         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6690                                  aarch64_fpu_gdb_set_reg,
6691                                  34, "aarch64-fpu.xml", 0);
6692     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6693         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6694                                  51, "arm-neon.xml", 0);
6695     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6696         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6697                                  35, "arm-vfp3.xml", 0);
6698     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6699         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6700                                  19, "arm-vfp.xml", 0);
6701     }
6702     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6703                              arm_gen_dynamic_xml(cs),
6704                              "system-registers.xml", 0);
6705 }
6706 
6707 /* Sort alphabetically by type name, except for "any". */
6708 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6709 {
6710     ObjectClass *class_a = (ObjectClass *)a;
6711     ObjectClass *class_b = (ObjectClass *)b;
6712     const char *name_a, *name_b;
6713 
6714     name_a = object_class_get_name(class_a);
6715     name_b = object_class_get_name(class_b);
6716     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6717         return 1;
6718     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6719         return -1;
6720     } else {
6721         return strcmp(name_a, name_b);
6722     }
6723 }
6724 
6725 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6726 {
6727     ObjectClass *oc = data;
6728     const char *typename;
6729     char *name;
6730 
6731     typename = object_class_get_name(oc);
6732     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6733     qemu_printf("  %s\n", name);
6734     g_free(name);
6735 }
6736 
6737 void arm_cpu_list(void)
6738 {
6739     GSList *list;
6740 
6741     list = object_class_get_list(TYPE_ARM_CPU, false);
6742     list = g_slist_sort(list, arm_cpu_list_compare);
6743     qemu_printf("Available CPUs:\n");
6744     g_slist_foreach(list, arm_cpu_list_entry, NULL);
6745     g_slist_free(list);
6746 }
6747 
6748 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6749 {
6750     ObjectClass *oc = data;
6751     CpuDefinitionInfoList **cpu_list = user_data;
6752     CpuDefinitionInfoList *entry;
6753     CpuDefinitionInfo *info;
6754     const char *typename;
6755 
6756     typename = object_class_get_name(oc);
6757     info = g_malloc0(sizeof(*info));
6758     info->name = g_strndup(typename,
6759                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
6760     info->q_typename = g_strdup(typename);
6761 
6762     entry = g_malloc0(sizeof(*entry));
6763     entry->value = info;
6764     entry->next = *cpu_list;
6765     *cpu_list = entry;
6766 }
6767 
6768 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6769 {
6770     CpuDefinitionInfoList *cpu_list = NULL;
6771     GSList *list;
6772 
6773     list = object_class_get_list(TYPE_ARM_CPU, false);
6774     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6775     g_slist_free(list);
6776 
6777     return cpu_list;
6778 }
6779 
6780 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6781                                    void *opaque, int state, int secstate,
6782                                    int crm, int opc1, int opc2,
6783                                    const char *name)
6784 {
6785     /* Private utility function for define_one_arm_cp_reg_with_opaque():
6786      * add a single reginfo struct to the hash table.
6787      */
6788     uint32_t *key = g_new(uint32_t, 1);
6789     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6790     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6791     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6792 
6793     r2->name = g_strdup(name);
6794     /* Reset the secure state to the specific incoming state.  This is
6795      * necessary as the register may have been defined with both states.
6796      */
6797     r2->secure = secstate;
6798 
6799     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6800         /* Register is banked (using both entries in array).
6801          * Overwriting fieldoffset as the array is only used to define
6802          * banked registers but later only fieldoffset is used.
6803          */
6804         r2->fieldoffset = r->bank_fieldoffsets[ns];
6805     }
6806 
6807     if (state == ARM_CP_STATE_AA32) {
6808         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6809             /* If the register is banked then we don't need to migrate or
6810              * reset the 32-bit instance in certain cases:
6811              *
6812              * 1) If the register has both 32-bit and 64-bit instances then we
6813              *    can count on the 64-bit instance taking care of the
6814              *    non-secure bank.
6815              * 2) If ARMv8 is enabled then we can count on a 64-bit version
6816              *    taking care of the secure bank.  This requires that separate
6817              *    32 and 64-bit definitions are provided.
6818              */
6819             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6820                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6821                 r2->type |= ARM_CP_ALIAS;
6822             }
6823         } else if ((secstate != r->secure) && !ns) {
6824             /* The register is not banked so we only want to allow migration of
6825              * the non-secure instance.
6826              */
6827             r2->type |= ARM_CP_ALIAS;
6828         }
6829 
6830         if (r->state == ARM_CP_STATE_BOTH) {
6831             /* We assume it is a cp15 register if the .cp field is left unset.
6832              */
6833             if (r2->cp == 0) {
6834                 r2->cp = 15;
6835             }
6836 
6837 #ifdef HOST_WORDS_BIGENDIAN
6838             if (r2->fieldoffset) {
6839                 r2->fieldoffset += sizeof(uint32_t);
6840             }
6841 #endif
6842         }
6843     }
6844     if (state == ARM_CP_STATE_AA64) {
6845         /* To allow abbreviation of ARMCPRegInfo
6846          * definitions, we treat cp == 0 as equivalent to
6847          * the value for "standard guest-visible sysreg".
6848          * STATE_BOTH definitions are also always "standard
6849          * sysreg" in their AArch64 view (the .cp value may
6850          * be non-zero for the benefit of the AArch32 view).
6851          */
6852         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6853             r2->cp = CP_REG_ARM64_SYSREG_CP;
6854         }
6855         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6856                                   r2->opc0, opc1, opc2);
6857     } else {
6858         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6859     }
6860     if (opaque) {
6861         r2->opaque = opaque;
6862     }
6863     /* reginfo passed to helpers is correct for the actual access,
6864      * and is never ARM_CP_STATE_BOTH:
6865      */
6866     r2->state = state;
6867     /* Make sure reginfo passed to helpers for wildcarded regs
6868      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6869      */
6870     r2->crm = crm;
6871     r2->opc1 = opc1;
6872     r2->opc2 = opc2;
6873     /* By convention, for wildcarded registers only the first
6874      * entry is used for migration; the others are marked as
6875      * ALIAS so we don't try to transfer the register
6876      * multiple times. Special registers (ie NOP/WFI) are
6877      * never migratable and not even raw-accessible.
6878      */
6879     if ((r->type & ARM_CP_SPECIAL)) {
6880         r2->type |= ARM_CP_NO_RAW;
6881     }
6882     if (((r->crm == CP_ANY) && crm != 0) ||
6883         ((r->opc1 == CP_ANY) && opc1 != 0) ||
6884         ((r->opc2 == CP_ANY) && opc2 != 0)) {
6885         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6886     }
6887 
6888     /* Check that raw accesses are either forbidden or handled. Note that
6889      * we can't assert this earlier because the setup of fieldoffset for
6890      * banked registers has to be done first.
6891      */
6892     if (!(r2->type & ARM_CP_NO_RAW)) {
6893         assert(!raw_accessors_invalid(r2));
6894     }
6895 
6896     /* Overriding of an existing definition must be explicitly
6897      * requested.
6898      */
6899     if (!(r->type & ARM_CP_OVERRIDE)) {
6900         ARMCPRegInfo *oldreg;
6901         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6902         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6903             fprintf(stderr, "Register redefined: cp=%d %d bit "
6904                     "crn=%d crm=%d opc1=%d opc2=%d, "
6905                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6906                     r2->crn, r2->crm, r2->opc1, r2->opc2,
6907                     oldreg->name, r2->name);
6908             g_assert_not_reached();
6909         }
6910     }
6911     g_hash_table_insert(cpu->cp_regs, key, r2);
6912 }
6913 
6914 
6915 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6916                                        const ARMCPRegInfo *r, void *opaque)
6917 {
6918     /* Define implementations of coprocessor registers.
6919      * We store these in a hashtable because typically
6920      * there are less than 150 registers in a space which
6921      * is 16*16*16*8*8 = 262144 in size.
6922      * Wildcarding is supported for the crm, opc1 and opc2 fields.
6923      * If a register is defined twice then the second definition is
6924      * used, so this can be used to define some generic registers and
6925      * then override them with implementation specific variations.
6926      * At least one of the original and the second definition should
6927      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6928      * against accidental use.
6929      *
6930      * The state field defines whether the register is to be
6931      * visible in the AArch32 or AArch64 execution state. If the
6932      * state is set to ARM_CP_STATE_BOTH then we synthesise a
6933      * reginfo structure for the AArch32 view, which sees the lower
6934      * 32 bits of the 64 bit register.
6935      *
6936      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6937      * be wildcarded. AArch64 registers are always considered to be 64
6938      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6939      * the register, if any.
6940      */
6941     int crm, opc1, opc2, state;
6942     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6943     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6944     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6945     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6946     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6947     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6948     /* 64 bit registers have only CRm and Opc1 fields */
6949     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6950     /* op0 only exists in the AArch64 encodings */
6951     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6952     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6953     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6954     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6955      * encodes a minimum access level for the register. We roll this
6956      * runtime check into our general permission check code, so check
6957      * here that the reginfo's specified permissions are strict enough
6958      * to encompass the generic architectural permission check.
6959      */
6960     if (r->state != ARM_CP_STATE_AA32) {
6961         int mask = 0;
6962         switch (r->opc1) {
6963         case 0:
6964             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6965             mask = PL0U_R | PL1_RW;
6966             break;
6967         case 1: case 2:
6968             /* min_EL EL1 */
6969             mask = PL1_RW;
6970             break;
6971         case 3:
6972             /* min_EL EL0 */
6973             mask = PL0_RW;
6974             break;
6975         case 4:
6976             /* min_EL EL2 */
6977             mask = PL2_RW;
6978             break;
6979         case 5:
6980             /* unallocated encoding, so not possible */
6981             assert(false);
6982             break;
6983         case 6:
6984             /* min_EL EL3 */
6985             mask = PL3_RW;
6986             break;
6987         case 7:
6988             /* min_EL EL1, secure mode only (we don't check the latter) */
6989             mask = PL1_RW;
6990             break;
6991         default:
6992             /* broken reginfo with out-of-range opc1 */
6993             assert(false);
6994             break;
6995         }
6996         /* assert our permissions are not too lax (stricter is fine) */
6997         assert((r->access & ~mask) == 0);
6998     }
6999 
7000     /* Check that the register definition has enough info to handle
7001      * reads and writes if they are permitted.
7002      */
7003     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7004         if (r->access & PL3_R) {
7005             assert((r->fieldoffset ||
7006                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7007                    r->readfn);
7008         }
7009         if (r->access & PL3_W) {
7010             assert((r->fieldoffset ||
7011                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7012                    r->writefn);
7013         }
7014     }
7015     /* Bad type field probably means missing sentinel at end of reg list */
7016     assert(cptype_valid(r->type));
7017     for (crm = crmmin; crm <= crmmax; crm++) {
7018         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7019             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7020                 for (state = ARM_CP_STATE_AA32;
7021                      state <= ARM_CP_STATE_AA64; state++) {
7022                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7023                         continue;
7024                     }
7025                     if (state == ARM_CP_STATE_AA32) {
7026                         /* Under AArch32 CP registers can be common
7027                          * (same for secure and non-secure world) or banked.
7028                          */
7029                         char *name;
7030 
7031                         switch (r->secure) {
7032                         case ARM_CP_SECSTATE_S:
7033                         case ARM_CP_SECSTATE_NS:
7034                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7035                                                    r->secure, crm, opc1, opc2,
7036                                                    r->name);
7037                             break;
7038                         default:
7039                             name = g_strdup_printf("%s_S", r->name);
7040                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7041                                                    ARM_CP_SECSTATE_S,
7042                                                    crm, opc1, opc2, name);
7043                             g_free(name);
7044                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7045                                                    ARM_CP_SECSTATE_NS,
7046                                                    crm, opc1, opc2, r->name);
7047                             break;
7048                         }
7049                     } else {
7050                         /* AArch64 registers get mapped to non-secure instance
7051                          * of AArch32 */
7052                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7053                                                ARM_CP_SECSTATE_NS,
7054                                                crm, opc1, opc2, r->name);
7055                     }
7056                 }
7057             }
7058         }
7059     }
7060 }
7061 
7062 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7063                                     const ARMCPRegInfo *regs, void *opaque)
7064 {
7065     /* Define a whole list of registers */
7066     const ARMCPRegInfo *r;
7067     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7068         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7069     }
7070 }
7071 
7072 /*
7073  * Modify ARMCPRegInfo for access from userspace.
7074  *
7075  * This is a data driven modification directed by
7076  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7077  * user-space cannot alter any values and dynamic values pertaining to
7078  * execution state are hidden from user space view anyway.
7079  */
7080 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7081 {
7082     const ARMCPRegUserSpaceInfo *m;
7083     ARMCPRegInfo *r;
7084 
7085     for (m = mods; m->name; m++) {
7086         GPatternSpec *pat = NULL;
7087         if (m->is_glob) {
7088             pat = g_pattern_spec_new(m->name);
7089         }
7090         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7091             if (pat && g_pattern_match_string(pat, r->name)) {
7092                 r->type = ARM_CP_CONST;
7093                 r->access = PL0U_R;
7094                 r->resetvalue = 0;
7095                 /* continue */
7096             } else if (strcmp(r->name, m->name) == 0) {
7097                 r->type = ARM_CP_CONST;
7098                 r->access = PL0U_R;
7099                 r->resetvalue &= m->exported_bits;
7100                 r->resetvalue |= m->fixed_bits;
7101                 break;
7102             }
7103         }
7104         if (pat) {
7105             g_pattern_spec_free(pat);
7106         }
7107     }
7108 }
7109 
7110 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7111 {
7112     return g_hash_table_lookup(cpregs, &encoded_cp);
7113 }
7114 
7115 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7116                          uint64_t value)
7117 {
7118     /* Helper coprocessor write function for write-ignore registers */
7119 }
7120 
7121 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7122 {
7123     /* Helper coprocessor write function for read-as-zero registers */
7124     return 0;
7125 }
7126 
7127 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7128 {
7129     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7130 }
7131 
7132 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7133 {
7134     /* Return true if it is not valid for us to switch to
7135      * this CPU mode (ie all the UNPREDICTABLE cases in
7136      * the ARM ARM CPSRWriteByInstr pseudocode).
7137      */
7138 
7139     /* Changes to or from Hyp via MSR and CPS are illegal. */
7140     if (write_type == CPSRWriteByInstr &&
7141         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7142          mode == ARM_CPU_MODE_HYP)) {
7143         return 1;
7144     }
7145 
7146     switch (mode) {
7147     case ARM_CPU_MODE_USR:
7148         return 0;
7149     case ARM_CPU_MODE_SYS:
7150     case ARM_CPU_MODE_SVC:
7151     case ARM_CPU_MODE_ABT:
7152     case ARM_CPU_MODE_UND:
7153     case ARM_CPU_MODE_IRQ:
7154     case ARM_CPU_MODE_FIQ:
7155         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7156          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7157          */
7158         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7159          * and CPS are treated as illegal mode changes.
7160          */
7161         if (write_type == CPSRWriteByInstr &&
7162             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7163             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7164             return 1;
7165         }
7166         return 0;
7167     case ARM_CPU_MODE_HYP:
7168         return !arm_feature(env, ARM_FEATURE_EL2)
7169             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7170     case ARM_CPU_MODE_MON:
7171         return arm_current_el(env) < 3;
7172     default:
7173         return 1;
7174     }
7175 }
7176 
7177 uint32_t cpsr_read(CPUARMState *env)
7178 {
7179     int ZF;
7180     ZF = (env->ZF == 0);
7181     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7182         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7183         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7184         | ((env->condexec_bits & 0xfc) << 8)
7185         | (env->GE << 16) | (env->daif & CPSR_AIF);
7186 }
7187 
7188 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7189                 CPSRWriteType write_type)
7190 {
7191     uint32_t changed_daif;
7192 
7193     if (mask & CPSR_NZCV) {
7194         env->ZF = (~val) & CPSR_Z;
7195         env->NF = val;
7196         env->CF = (val >> 29) & 1;
7197         env->VF = (val << 3) & 0x80000000;
7198     }
7199     if (mask & CPSR_Q)
7200         env->QF = ((val & CPSR_Q) != 0);
7201     if (mask & CPSR_T)
7202         env->thumb = ((val & CPSR_T) != 0);
7203     if (mask & CPSR_IT_0_1) {
7204         env->condexec_bits &= ~3;
7205         env->condexec_bits |= (val >> 25) & 3;
7206     }
7207     if (mask & CPSR_IT_2_7) {
7208         env->condexec_bits &= 3;
7209         env->condexec_bits |= (val >> 8) & 0xfc;
7210     }
7211     if (mask & CPSR_GE) {
7212         env->GE = (val >> 16) & 0xf;
7213     }
7214 
7215     /* In a V7 implementation that includes the security extensions but does
7216      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7217      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7218      * bits respectively.
7219      *
7220      * In a V8 implementation, it is permitted for privileged software to
7221      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7222      */
7223     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7224         arm_feature(env, ARM_FEATURE_EL3) &&
7225         !arm_feature(env, ARM_FEATURE_EL2) &&
7226         !arm_is_secure(env)) {
7227 
7228         changed_daif = (env->daif ^ val) & mask;
7229 
7230         if (changed_daif & CPSR_A) {
7231             /* Check to see if we are allowed to change the masking of async
7232              * abort exceptions from a non-secure state.
7233              */
7234             if (!(env->cp15.scr_el3 & SCR_AW)) {
7235                 qemu_log_mask(LOG_GUEST_ERROR,
7236                               "Ignoring attempt to switch CPSR_A flag from "
7237                               "non-secure world with SCR.AW bit clear\n");
7238                 mask &= ~CPSR_A;
7239             }
7240         }
7241 
7242         if (changed_daif & CPSR_F) {
7243             /* Check to see if we are allowed to change the masking of FIQ
7244              * exceptions from a non-secure state.
7245              */
7246             if (!(env->cp15.scr_el3 & SCR_FW)) {
7247                 qemu_log_mask(LOG_GUEST_ERROR,
7248                               "Ignoring attempt to switch CPSR_F flag from "
7249                               "non-secure world with SCR.FW bit clear\n");
7250                 mask &= ~CPSR_F;
7251             }
7252 
7253             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7254              * If this bit is set software is not allowed to mask
7255              * FIQs, but is allowed to set CPSR_F to 0.
7256              */
7257             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7258                 (val & CPSR_F)) {
7259                 qemu_log_mask(LOG_GUEST_ERROR,
7260                               "Ignoring attempt to enable CPSR_F flag "
7261                               "(non-maskable FIQ [NMFI] support enabled)\n");
7262                 mask &= ~CPSR_F;
7263             }
7264         }
7265     }
7266 
7267     env->daif &= ~(CPSR_AIF & mask);
7268     env->daif |= val & CPSR_AIF & mask;
7269 
7270     if (write_type != CPSRWriteRaw &&
7271         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7272         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7273             /* Note that we can only get here in USR mode if this is a
7274              * gdb stub write; for this case we follow the architectural
7275              * behaviour for guest writes in USR mode of ignoring an attempt
7276              * to switch mode. (Those are caught by translate.c for writes
7277              * triggered by guest instructions.)
7278              */
7279             mask &= ~CPSR_M;
7280         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7281             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7282              * v7, and has defined behaviour in v8:
7283              *  + leave CPSR.M untouched
7284              *  + allow changes to the other CPSR fields
7285              *  + set PSTATE.IL
7286              * For user changes via the GDB stub, we don't set PSTATE.IL,
7287              * as this would be unnecessarily harsh for a user error.
7288              */
7289             mask &= ~CPSR_M;
7290             if (write_type != CPSRWriteByGDBStub &&
7291                 arm_feature(env, ARM_FEATURE_V8)) {
7292                 mask |= CPSR_IL;
7293                 val |= CPSR_IL;
7294             }
7295             qemu_log_mask(LOG_GUEST_ERROR,
7296                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7297                           aarch32_mode_name(env->uncached_cpsr),
7298                           aarch32_mode_name(val));
7299         } else {
7300             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7301                           write_type == CPSRWriteExceptionReturn ?
7302                           "Exception return from AArch32" :
7303                           "AArch32 mode switch from",
7304                           aarch32_mode_name(env->uncached_cpsr),
7305                           aarch32_mode_name(val), env->regs[15]);
7306             switch_mode(env, val & CPSR_M);
7307         }
7308     }
7309     mask &= ~CACHED_CPSR_BITS;
7310     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7311 }
7312 
7313 /* Sign/zero extend */
7314 uint32_t HELPER(sxtb16)(uint32_t x)
7315 {
7316     uint32_t res;
7317     res = (uint16_t)(int8_t)x;
7318     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7319     return res;
7320 }
7321 
7322 uint32_t HELPER(uxtb16)(uint32_t x)
7323 {
7324     uint32_t res;
7325     res = (uint16_t)(uint8_t)x;
7326     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7327     return res;
7328 }
7329 
7330 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7331 {
7332     if (den == 0)
7333       return 0;
7334     if (num == INT_MIN && den == -1)
7335       return INT_MIN;
7336     return num / den;
7337 }
7338 
7339 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7340 {
7341     if (den == 0)
7342       return 0;
7343     return num / den;
7344 }
7345 
7346 uint32_t HELPER(rbit)(uint32_t x)
7347 {
7348     return revbit32(x);
7349 }
7350 
7351 #ifdef CONFIG_USER_ONLY
7352 
7353 /* These should probably raise undefined insn exceptions.  */
7354 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7355 {
7356     ARMCPU *cpu = arm_env_get_cpu(env);
7357 
7358     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7359 }
7360 
7361 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7362 {
7363     ARMCPU *cpu = arm_env_get_cpu(env);
7364 
7365     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7366     return 0;
7367 }
7368 
7369 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7370 {
7371     /* translate.c should never generate calls here in user-only mode */
7372     g_assert_not_reached();
7373 }
7374 
7375 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7376 {
7377     /* translate.c should never generate calls here in user-only mode */
7378     g_assert_not_reached();
7379 }
7380 
7381 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7382 {
7383     /* translate.c should never generate calls here in user-only mode */
7384     g_assert_not_reached();
7385 }
7386 
7387 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
7388 {
7389     /* translate.c should never generate calls here in user-only mode */
7390     g_assert_not_reached();
7391 }
7392 
7393 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
7394 {
7395     /* translate.c should never generate calls here in user-only mode */
7396     g_assert_not_reached();
7397 }
7398 
7399 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7400 {
7401     /* The TT instructions can be used by unprivileged code, but in
7402      * user-only emulation we don't have the MPU.
7403      * Luckily since we know we are NonSecure unprivileged (and that in
7404      * turn means that the A flag wasn't specified), all the bits in the
7405      * register must be zero:
7406      *  IREGION: 0 because IRVALID is 0
7407      *  IRVALID: 0 because NS
7408      *  S: 0 because NS
7409      *  NSRW: 0 because NS
7410      *  NSR: 0 because NS
7411      *  RW: 0 because unpriv and A flag not set
7412      *  R: 0 because unpriv and A flag not set
7413      *  SRVALID: 0 because NS
7414      *  MRVALID: 0 because unpriv and A flag not set
7415      *  SREGION: 0 becaus SRVALID is 0
7416      *  MREGION: 0 because MRVALID is 0
7417      */
7418     return 0;
7419 }
7420 
7421 static void switch_mode(CPUARMState *env, int mode)
7422 {
7423     ARMCPU *cpu = arm_env_get_cpu(env);
7424 
7425     if (mode != ARM_CPU_MODE_USR) {
7426         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7427     }
7428 }
7429 
7430 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7431                                  uint32_t cur_el, bool secure)
7432 {
7433     return 1;
7434 }
7435 
7436 void aarch64_sync_64_to_32(CPUARMState *env)
7437 {
7438     g_assert_not_reached();
7439 }
7440 
7441 #else
7442 
7443 static void switch_mode(CPUARMState *env, int mode)
7444 {
7445     int old_mode;
7446     int i;
7447 
7448     old_mode = env->uncached_cpsr & CPSR_M;
7449     if (mode == old_mode)
7450         return;
7451 
7452     if (old_mode == ARM_CPU_MODE_FIQ) {
7453         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7454         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7455     } else if (mode == ARM_CPU_MODE_FIQ) {
7456         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7457         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7458     }
7459 
7460     i = bank_number(old_mode);
7461     env->banked_r13[i] = env->regs[13];
7462     env->banked_spsr[i] = env->spsr;
7463 
7464     i = bank_number(mode);
7465     env->regs[13] = env->banked_r13[i];
7466     env->spsr = env->banked_spsr[i];
7467 
7468     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7469     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7470 }
7471 
7472 /* Physical Interrupt Target EL Lookup Table
7473  *
7474  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7475  *
7476  * The below multi-dimensional table is used for looking up the target
7477  * exception level given numerous condition criteria.  Specifically, the
7478  * target EL is based on SCR and HCR routing controls as well as the
7479  * currently executing EL and secure state.
7480  *
7481  *    Dimensions:
7482  *    target_el_table[2][2][2][2][2][4]
7483  *                    |  |  |  |  |  +--- Current EL
7484  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7485  *                    |  |  |  +--------- HCR mask override
7486  *                    |  |  +------------ SCR exec state control
7487  *                    |  +--------------- SCR mask override
7488  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7489  *
7490  *    The table values are as such:
7491  *    0-3 = EL0-EL3
7492  *     -1 = Cannot occur
7493  *
7494  * The ARM ARM target EL table includes entries indicating that an "exception
7495  * is not taken".  The two cases where this is applicable are:
7496  *    1) An exception is taken from EL3 but the SCR does not have the exception
7497  *    routed to EL3.
7498  *    2) An exception is taken from EL2 but the HCR does not have the exception
7499  *    routed to EL2.
7500  * In these two cases, the below table contain a target of EL1.  This value is
7501  * returned as it is expected that the consumer of the table data will check
7502  * for "target EL >= current EL" to ensure the exception is not taken.
7503  *
7504  *            SCR     HCR
7505  *         64  EA     AMO                 From
7506  *        BIT IRQ     IMO      Non-secure         Secure
7507  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7508  */
7509 static const int8_t target_el_table[2][2][2][2][2][4] = {
7510     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7511        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7512       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7513        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7514      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7515        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7516       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7517        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7518     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7519        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7520       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7521        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7522      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7523        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7524       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7525        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7526 };
7527 
7528 /*
7529  * Determine the target EL for physical exceptions
7530  */
7531 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7532                                  uint32_t cur_el, bool secure)
7533 {
7534     CPUARMState *env = cs->env_ptr;
7535     bool rw;
7536     bool scr;
7537     bool hcr;
7538     int target_el;
7539     /* Is the highest EL AArch64? */
7540     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7541     uint64_t hcr_el2;
7542 
7543     if (arm_feature(env, ARM_FEATURE_EL3)) {
7544         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7545     } else {
7546         /* Either EL2 is the highest EL (and so the EL2 register width
7547          * is given by is64); or there is no EL2 or EL3, in which case
7548          * the value of 'rw' does not affect the table lookup anyway.
7549          */
7550         rw = is64;
7551     }
7552 
7553     hcr_el2 = arm_hcr_el2_eff(env);
7554     switch (excp_idx) {
7555     case EXCP_IRQ:
7556         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7557         hcr = hcr_el2 & HCR_IMO;
7558         break;
7559     case EXCP_FIQ:
7560         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7561         hcr = hcr_el2 & HCR_FMO;
7562         break;
7563     default:
7564         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7565         hcr = hcr_el2 & HCR_AMO;
7566         break;
7567     };
7568 
7569     /* Perform a table-lookup for the target EL given the current state */
7570     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7571 
7572     assert(target_el > 0);
7573 
7574     return target_el;
7575 }
7576 
7577 /*
7578  * Return true if the v7M CPACR permits access to the FPU for the specified
7579  * security state and privilege level.
7580  */
7581 static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv)
7582 {
7583     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
7584     case 0:
7585     case 2: /* UNPREDICTABLE: we treat like 0 */
7586         return false;
7587     case 1:
7588         return is_priv;
7589     case 3:
7590         return true;
7591     default:
7592         g_assert_not_reached();
7593     }
7594 }
7595 
7596 /*
7597  * What kind of stack write are we doing? This affects how exceptions
7598  * generated during the stacking are treated.
7599  */
7600 typedef enum StackingMode {
7601     STACK_NORMAL,
7602     STACK_IGNFAULTS,
7603     STACK_LAZYFP,
7604 } StackingMode;
7605 
7606 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7607                             ARMMMUIdx mmu_idx, StackingMode mode)
7608 {
7609     CPUState *cs = CPU(cpu);
7610     CPUARMState *env = &cpu->env;
7611     MemTxAttrs attrs = {};
7612     MemTxResult txres;
7613     target_ulong page_size;
7614     hwaddr physaddr;
7615     int prot;
7616     ARMMMUFaultInfo fi = {};
7617     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7618     int exc;
7619     bool exc_secure;
7620 
7621     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7622                       &attrs, &prot, &page_size, &fi, NULL)) {
7623         /* MPU/SAU lookup failed */
7624         if (fi.type == ARMFault_QEMU_SFault) {
7625             if (mode == STACK_LAZYFP) {
7626                 qemu_log_mask(CPU_LOG_INT,
7627                               "...SecureFault with SFSR.LSPERR "
7628                               "during lazy stacking\n");
7629                 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
7630             } else {
7631                 qemu_log_mask(CPU_LOG_INT,
7632                               "...SecureFault with SFSR.AUVIOL "
7633                               "during stacking\n");
7634                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7635             }
7636             env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
7637             env->v7m.sfar = addr;
7638             exc = ARMV7M_EXCP_SECURE;
7639             exc_secure = false;
7640         } else {
7641             if (mode == STACK_LAZYFP) {
7642                 qemu_log_mask(CPU_LOG_INT,
7643                               "...MemManageFault with CFSR.MLSPERR\n");
7644                 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
7645             } else {
7646                 qemu_log_mask(CPU_LOG_INT,
7647                               "...MemManageFault with CFSR.MSTKERR\n");
7648                 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7649             }
7650             exc = ARMV7M_EXCP_MEM;
7651             exc_secure = secure;
7652         }
7653         goto pend_fault;
7654     }
7655     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7656                          attrs, &txres);
7657     if (txres != MEMTX_OK) {
7658         /* BusFault trying to write the data */
7659         if (mode == STACK_LAZYFP) {
7660             qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
7661             env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
7662         } else {
7663             qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7664             env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7665         }
7666         exc = ARMV7M_EXCP_BUS;
7667         exc_secure = false;
7668         goto pend_fault;
7669     }
7670     return true;
7671 
7672 pend_fault:
7673     /* By pending the exception at this point we are making
7674      * the IMPDEF choice "overridden exceptions pended" (see the
7675      * MergeExcInfo() pseudocode). The other choice would be to not
7676      * pend them now and then make a choice about which to throw away
7677      * later if we have two derived exceptions.
7678      * The only case when we must not pend the exception but instead
7679      * throw it away is if we are doing the push of the callee registers
7680      * and we've already generated a derived exception (this is indicated
7681      * by the caller passing STACK_IGNFAULTS). Even in this case we will
7682      * still update the fault status registers.
7683      */
7684     switch (mode) {
7685     case STACK_NORMAL:
7686         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7687         break;
7688     case STACK_LAZYFP:
7689         armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
7690         break;
7691     case STACK_IGNFAULTS:
7692         break;
7693     }
7694     return false;
7695 }
7696 
7697 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7698                            ARMMMUIdx mmu_idx)
7699 {
7700     CPUState *cs = CPU(cpu);
7701     CPUARMState *env = &cpu->env;
7702     MemTxAttrs attrs = {};
7703     MemTxResult txres;
7704     target_ulong page_size;
7705     hwaddr physaddr;
7706     int prot;
7707     ARMMMUFaultInfo fi = {};
7708     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7709     int exc;
7710     bool exc_secure;
7711     uint32_t value;
7712 
7713     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7714                       &attrs, &prot, &page_size, &fi, NULL)) {
7715         /* MPU/SAU lookup failed */
7716         if (fi.type == ARMFault_QEMU_SFault) {
7717             qemu_log_mask(CPU_LOG_INT,
7718                           "...SecureFault with SFSR.AUVIOL during unstack\n");
7719             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7720             env->v7m.sfar = addr;
7721             exc = ARMV7M_EXCP_SECURE;
7722             exc_secure = false;
7723         } else {
7724             qemu_log_mask(CPU_LOG_INT,
7725                           "...MemManageFault with CFSR.MUNSTKERR\n");
7726             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7727             exc = ARMV7M_EXCP_MEM;
7728             exc_secure = secure;
7729         }
7730         goto pend_fault;
7731     }
7732 
7733     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7734                               attrs, &txres);
7735     if (txres != MEMTX_OK) {
7736         /* BusFault trying to read the data */
7737         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7738         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7739         exc = ARMV7M_EXCP_BUS;
7740         exc_secure = false;
7741         goto pend_fault;
7742     }
7743 
7744     *dest = value;
7745     return true;
7746 
7747 pend_fault:
7748     /* By pending the exception at this point we are making
7749      * the IMPDEF choice "overridden exceptions pended" (see the
7750      * MergeExcInfo() pseudocode). The other choice would be to not
7751      * pend them now and then make a choice about which to throw away
7752      * later if we have two derived exceptions.
7753      */
7754     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7755     return false;
7756 }
7757 
7758 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7759 {
7760     /*
7761      * Preserve FP state (because LSPACT was set and we are about
7762      * to execute an FP instruction). This corresponds to the
7763      * PreserveFPState() pseudocode.
7764      * We may throw an exception if the stacking fails.
7765      */
7766     ARMCPU *cpu = arm_env_get_cpu(env);
7767     bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
7768     bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
7769     bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
7770     bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
7771     uint32_t fpcar = env->v7m.fpcar[is_secure];
7772     bool stacked_ok = true;
7773     bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
7774     bool take_exception;
7775 
7776     /* Take the iothread lock as we are going to touch the NVIC */
7777     qemu_mutex_lock_iothread();
7778 
7779     /* Check the background context had access to the FPU */
7780     if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
7781         armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
7782         env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
7783         stacked_ok = false;
7784     } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
7785         armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
7786         env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
7787         stacked_ok = false;
7788     }
7789 
7790     if (!splimviol && stacked_ok) {
7791         /* We only stack if the stack limit wasn't violated */
7792         int i;
7793         ARMMMUIdx mmu_idx;
7794 
7795         mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
7796         for (i = 0; i < (ts ? 32 : 16); i += 2) {
7797             uint64_t dn = *aa32_vfp_dreg(env, i / 2);
7798             uint32_t faddr = fpcar + 4 * i;
7799             uint32_t slo = extract64(dn, 0, 32);
7800             uint32_t shi = extract64(dn, 32, 32);
7801 
7802             if (i >= 16) {
7803                 faddr += 8; /* skip the slot for the FPSCR */
7804             }
7805             stacked_ok = stacked_ok &&
7806                 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
7807                 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
7808         }
7809 
7810         stacked_ok = stacked_ok &&
7811             v7m_stack_write(cpu, fpcar + 0x40,
7812                             vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
7813     }
7814 
7815     /*
7816      * We definitely pended an exception, but it's possible that it
7817      * might not be able to be taken now. If its priority permits us
7818      * to take it now, then we must not update the LSPACT or FP regs,
7819      * but instead jump out to take the exception immediately.
7820      * If it's just pending and won't be taken until the current
7821      * handler exits, then we do update LSPACT and the FP regs.
7822      */
7823     take_exception = !stacked_ok &&
7824         armv7m_nvic_can_take_pending_exception(env->nvic);
7825 
7826     qemu_mutex_unlock_iothread();
7827 
7828     if (take_exception) {
7829         raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
7830     }
7831 
7832     env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
7833 
7834     if (ts) {
7835         /* Clear s0 to s31 and the FPSCR */
7836         int i;
7837 
7838         for (i = 0; i < 32; i += 2) {
7839             *aa32_vfp_dreg(env, i / 2) = 0;
7840         }
7841         vfp_set_fpscr(env, 0);
7842     }
7843     /*
7844      * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
7845      * unchanged.
7846      */
7847 }
7848 
7849 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7850  * This may change the current stack pointer between Main and Process
7851  * stack pointers if it is done for the CONTROL register for the current
7852  * security state.
7853  */
7854 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7855                                                  bool new_spsel,
7856                                                  bool secstate)
7857 {
7858     bool old_is_psp = v7m_using_psp(env);
7859 
7860     env->v7m.control[secstate] =
7861         deposit32(env->v7m.control[secstate],
7862                   R_V7M_CONTROL_SPSEL_SHIFT,
7863                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7864 
7865     if (secstate == env->v7m.secure) {
7866         bool new_is_psp = v7m_using_psp(env);
7867         uint32_t tmp;
7868 
7869         if (old_is_psp != new_is_psp) {
7870             tmp = env->v7m.other_sp;
7871             env->v7m.other_sp = env->regs[13];
7872             env->regs[13] = tmp;
7873         }
7874     }
7875 }
7876 
7877 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7878  * stack pointer between Main and Process stack pointers.
7879  */
7880 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7881 {
7882     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7883 }
7884 
7885 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7886 {
7887     /* Write a new value to v7m.exception, thus transitioning into or out
7888      * of Handler mode; this may result in a change of active stack pointer.
7889      */
7890     bool new_is_psp, old_is_psp = v7m_using_psp(env);
7891     uint32_t tmp;
7892 
7893     env->v7m.exception = new_exc;
7894 
7895     new_is_psp = v7m_using_psp(env);
7896 
7897     if (old_is_psp != new_is_psp) {
7898         tmp = env->v7m.other_sp;
7899         env->v7m.other_sp = env->regs[13];
7900         env->regs[13] = tmp;
7901     }
7902 }
7903 
7904 /* Switch M profile security state between NS and S */
7905 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7906 {
7907     uint32_t new_ss_msp, new_ss_psp;
7908 
7909     if (env->v7m.secure == new_secstate) {
7910         return;
7911     }
7912 
7913     /* All the banked state is accessed by looking at env->v7m.secure
7914      * except for the stack pointer; rearrange the SP appropriately.
7915      */
7916     new_ss_msp = env->v7m.other_ss_msp;
7917     new_ss_psp = env->v7m.other_ss_psp;
7918 
7919     if (v7m_using_psp(env)) {
7920         env->v7m.other_ss_psp = env->regs[13];
7921         env->v7m.other_ss_msp = env->v7m.other_sp;
7922     } else {
7923         env->v7m.other_ss_msp = env->regs[13];
7924         env->v7m.other_ss_psp = env->v7m.other_sp;
7925     }
7926 
7927     env->v7m.secure = new_secstate;
7928 
7929     if (v7m_using_psp(env)) {
7930         env->regs[13] = new_ss_psp;
7931         env->v7m.other_sp = new_ss_msp;
7932     } else {
7933         env->regs[13] = new_ss_msp;
7934         env->v7m.other_sp = new_ss_psp;
7935     }
7936 }
7937 
7938 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7939 {
7940     /* Handle v7M BXNS:
7941      *  - if the return value is a magic value, do exception return (like BX)
7942      *  - otherwise bit 0 of the return value is the target security state
7943      */
7944     uint32_t min_magic;
7945 
7946     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7947         /* Covers FNC_RETURN and EXC_RETURN magic */
7948         min_magic = FNC_RETURN_MIN_MAGIC;
7949     } else {
7950         /* EXC_RETURN magic only */
7951         min_magic = EXC_RETURN_MIN_MAGIC;
7952     }
7953 
7954     if (dest >= min_magic) {
7955         /* This is an exception return magic value; put it where
7956          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7957          * Note that if we ever add gen_ss_advance() singlestep support to
7958          * M profile this should count as an "instruction execution complete"
7959          * event (compare gen_bx_excret_final_code()).
7960          */
7961         env->regs[15] = dest & ~1;
7962         env->thumb = dest & 1;
7963         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7964         /* notreached */
7965     }
7966 
7967     /* translate.c should have made BXNS UNDEF unless we're secure */
7968     assert(env->v7m.secure);
7969 
7970     if (!(dest & 1)) {
7971         env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7972     }
7973     switch_v7m_security_state(env, dest & 1);
7974     env->thumb = 1;
7975     env->regs[15] = dest & ~1;
7976 }
7977 
7978 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7979 {
7980     /* Handle v7M BLXNS:
7981      *  - bit 0 of the destination address is the target security state
7982      */
7983 
7984     /* At this point regs[15] is the address just after the BLXNS */
7985     uint32_t nextinst = env->regs[15] | 1;
7986     uint32_t sp = env->regs[13] - 8;
7987     uint32_t saved_psr;
7988 
7989     /* translate.c will have made BLXNS UNDEF unless we're secure */
7990     assert(env->v7m.secure);
7991 
7992     if (dest & 1) {
7993         /* target is Secure, so this is just a normal BLX,
7994          * except that the low bit doesn't indicate Thumb/not.
7995          */
7996         env->regs[14] = nextinst;
7997         env->thumb = 1;
7998         env->regs[15] = dest & ~1;
7999         return;
8000     }
8001 
8002     /* Target is non-secure: first push a stack frame */
8003     if (!QEMU_IS_ALIGNED(sp, 8)) {
8004         qemu_log_mask(LOG_GUEST_ERROR,
8005                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
8006     }
8007 
8008     if (sp < v7m_sp_limit(env)) {
8009         raise_exception(env, EXCP_STKOF, 0, 1);
8010     }
8011 
8012     saved_psr = env->v7m.exception;
8013     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
8014         saved_psr |= XPSR_SFPA;
8015     }
8016 
8017     /* Note that these stores can throw exceptions on MPU faults */
8018     cpu_stl_data(env, sp, nextinst);
8019     cpu_stl_data(env, sp + 4, saved_psr);
8020 
8021     env->regs[13] = sp;
8022     env->regs[14] = 0xfeffffff;
8023     if (arm_v7m_is_handler_mode(env)) {
8024         /* Write a dummy value to IPSR, to avoid leaking the current secure
8025          * exception number to non-secure code. This is guaranteed not
8026          * to cause write_v7m_exception() to actually change stacks.
8027          */
8028         write_v7m_exception(env, 1);
8029     }
8030     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8031     switch_v7m_security_state(env, 0);
8032     env->thumb = 1;
8033     env->regs[15] = dest;
8034 }
8035 
8036 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
8037                                 bool spsel)
8038 {
8039     /* Return a pointer to the location where we currently store the
8040      * stack pointer for the requested security state and thread mode.
8041      * This pointer will become invalid if the CPU state is updated
8042      * such that the stack pointers are switched around (eg changing
8043      * the SPSEL control bit).
8044      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
8045      * Unlike that pseudocode, we require the caller to pass us in the
8046      * SPSEL control bit value; this is because we also use this
8047      * function in handling of pushing of the callee-saves registers
8048      * part of the v8M stack frame (pseudocode PushCalleeStack()),
8049      * and in the tailchain codepath the SPSEL bit comes from the exception
8050      * return magic LR value from the previous exception. The pseudocode
8051      * opencodes the stack-selection in PushCalleeStack(), but we prefer
8052      * to make this utility function generic enough to do the job.
8053      */
8054     bool want_psp = threadmode && spsel;
8055 
8056     if (secure == env->v7m.secure) {
8057         if (want_psp == v7m_using_psp(env)) {
8058             return &env->regs[13];
8059         } else {
8060             return &env->v7m.other_sp;
8061         }
8062     } else {
8063         if (want_psp) {
8064             return &env->v7m.other_ss_psp;
8065         } else {
8066             return &env->v7m.other_ss_msp;
8067         }
8068     }
8069 }
8070 
8071 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
8072                                 uint32_t *pvec)
8073 {
8074     CPUState *cs = CPU(cpu);
8075     CPUARMState *env = &cpu->env;
8076     MemTxResult result;
8077     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
8078     uint32_t vector_entry;
8079     MemTxAttrs attrs = {};
8080     ARMMMUIdx mmu_idx;
8081     bool exc_secure;
8082 
8083     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
8084 
8085     /* We don't do a get_phys_addr() here because the rules for vector
8086      * loads are special: they always use the default memory map, and
8087      * the default memory map permits reads from all addresses.
8088      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
8089      * that we want this special case which would always say "yes",
8090      * we just do the SAU lookup here followed by a direct physical load.
8091      */
8092     attrs.secure = targets_secure;
8093     attrs.user = false;
8094 
8095     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8096         V8M_SAttributes sattrs = {};
8097 
8098         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
8099         if (sattrs.ns) {
8100             attrs.secure = false;
8101         } else if (!targets_secure) {
8102             /* NS access to S memory */
8103             goto load_fail;
8104         }
8105     }
8106 
8107     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
8108                                      attrs, &result);
8109     if (result != MEMTX_OK) {
8110         goto load_fail;
8111     }
8112     *pvec = vector_entry;
8113     return true;
8114 
8115 load_fail:
8116     /* All vector table fetch fails are reported as HardFault, with
8117      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
8118      * technically the underlying exception is a MemManage or BusFault
8119      * that is escalated to HardFault.) This is a terminal exception,
8120      * so we will either take the HardFault immediately or else enter
8121      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
8122      */
8123     exc_secure = targets_secure ||
8124         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
8125     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
8126     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
8127     return false;
8128 }
8129 
8130 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
8131 {
8132     /*
8133      * Return the integrity signature value for the callee-saves
8134      * stack frame section. @lr is the exception return payload/LR value
8135      * whose FType bit forms bit 0 of the signature if FP is present.
8136      */
8137     uint32_t sig = 0xfefa125a;
8138 
8139     if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
8140         sig |= 1;
8141     }
8142     return sig;
8143 }
8144 
8145 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8146                                   bool ignore_faults)
8147 {
8148     /* For v8M, push the callee-saves register part of the stack frame.
8149      * Compare the v8M pseudocode PushCalleeStack().
8150      * In the tailchaining case this may not be the current stack.
8151      */
8152     CPUARMState *env = &cpu->env;
8153     uint32_t *frame_sp_p;
8154     uint32_t frameptr;
8155     ARMMMUIdx mmu_idx;
8156     bool stacked_ok;
8157     uint32_t limit;
8158     bool want_psp;
8159     uint32_t sig;
8160     StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
8161 
8162     if (dotailchain) {
8163         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
8164         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
8165             !mode;
8166 
8167         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
8168         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
8169                                     lr & R_V7M_EXCRET_SPSEL_MASK);
8170         want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
8171         if (want_psp) {
8172             limit = env->v7m.psplim[M_REG_S];
8173         } else {
8174             limit = env->v7m.msplim[M_REG_S];
8175         }
8176     } else {
8177         mmu_idx = arm_mmu_idx(env);
8178         frame_sp_p = &env->regs[13];
8179         limit = v7m_sp_limit(env);
8180     }
8181 
8182     frameptr = *frame_sp_p - 0x28;
8183     if (frameptr < limit) {
8184         /*
8185          * Stack limit failure: set SP to the limit value, and generate
8186          * STKOF UsageFault. Stack pushes below the limit must not be
8187          * performed. It is IMPDEF whether pushes above the limit are
8188          * performed; we choose not to.
8189          */
8190         qemu_log_mask(CPU_LOG_INT,
8191                       "...STKOF during callee-saves register stacking\n");
8192         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8193         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8194                                 env->v7m.secure);
8195         *frame_sp_p = limit;
8196         return true;
8197     }
8198 
8199     /* Write as much of the stack frame as we can. A write failure may
8200      * cause us to pend a derived exception.
8201      */
8202     sig = v7m_integrity_sig(env, lr);
8203     stacked_ok =
8204         v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
8205         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
8206         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
8207         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
8208         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
8209         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
8210         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
8211         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
8212         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
8213 
8214     /* Update SP regardless of whether any of the stack accesses failed. */
8215     *frame_sp_p = frameptr;
8216 
8217     return !stacked_ok;
8218 }
8219 
8220 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8221                                 bool ignore_stackfaults)
8222 {
8223     /* Do the "take the exception" parts of exception entry,
8224      * but not the pushing of state to the stack. This is
8225      * similar to the pseudocode ExceptionTaken() function.
8226      */
8227     CPUARMState *env = &cpu->env;
8228     uint32_t addr;
8229     bool targets_secure;
8230     int exc;
8231     bool push_failed = false;
8232 
8233     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8234     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8235                   targets_secure ? "secure" : "nonsecure", exc);
8236 
8237     if (dotailchain) {
8238         /* Sanitize LR FType and PREFIX bits */
8239         if (!arm_feature(env, ARM_FEATURE_VFP)) {
8240             lr |= R_V7M_EXCRET_FTYPE_MASK;
8241         }
8242         lr = deposit32(lr, 24, 8, 0xff);
8243     }
8244 
8245     if (arm_feature(env, ARM_FEATURE_V8)) {
8246         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8247             (lr & R_V7M_EXCRET_S_MASK)) {
8248             /* The background code (the owner of the registers in the
8249              * exception frame) is Secure. This means it may either already
8250              * have or now needs to push callee-saves registers.
8251              */
8252             if (targets_secure) {
8253                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8254                     /* We took an exception from Secure to NonSecure
8255                      * (which means the callee-saved registers got stacked)
8256                      * and are now tailchaining to a Secure exception.
8257                      * Clear DCRS so eventual return from this Secure
8258                      * exception unstacks the callee-saved registers.
8259                      */
8260                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
8261                 }
8262             } else {
8263                 /* We're going to a non-secure exception; push the
8264                  * callee-saves registers to the stack now, if they're
8265                  * not already saved.
8266                  */
8267                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8268                     !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8269                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8270                                                         ignore_stackfaults);
8271                 }
8272                 lr |= R_V7M_EXCRET_DCRS_MASK;
8273             }
8274         }
8275 
8276         lr &= ~R_V7M_EXCRET_ES_MASK;
8277         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8278             lr |= R_V7M_EXCRET_ES_MASK;
8279         }
8280         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8281         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8282             lr |= R_V7M_EXCRET_SPSEL_MASK;
8283         }
8284 
8285         /* Clear registers if necessary to prevent non-secure exception
8286          * code being able to see register values from secure code.
8287          * Where register values become architecturally UNKNOWN we leave
8288          * them with their previous values.
8289          */
8290         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8291             if (!targets_secure) {
8292                 /* Always clear the caller-saved registers (they have been
8293                  * pushed to the stack earlier in v7m_push_stack()).
8294                  * Clear callee-saved registers if the background code is
8295                  * Secure (in which case these regs were saved in
8296                  * v7m_push_callee_stack()).
8297                  */
8298                 int i;
8299 
8300                 for (i = 0; i < 13; i++) {
8301                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8302                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8303                         env->regs[i] = 0;
8304                     }
8305                 }
8306                 /* Clear EAPSR */
8307                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8308             }
8309         }
8310     }
8311 
8312     if (push_failed && !ignore_stackfaults) {
8313         /* Derived exception on callee-saves register stacking:
8314          * we might now want to take a different exception which
8315          * targets a different security state, so try again from the top.
8316          */
8317         qemu_log_mask(CPU_LOG_INT,
8318                       "...derived exception on callee-saves register stacking");
8319         v7m_exception_taken(cpu, lr, true, true);
8320         return;
8321     }
8322 
8323     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8324         /* Vector load failed: derived exception */
8325         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8326         v7m_exception_taken(cpu, lr, true, true);
8327         return;
8328     }
8329 
8330     /* Now we've done everything that might cause a derived exception
8331      * we can go ahead and activate whichever exception we're going to
8332      * take (which might now be the derived exception).
8333      */
8334     armv7m_nvic_acknowledge_irq(env->nvic);
8335 
8336     /* Switch to target security state -- must do this before writing SPSEL */
8337     switch_v7m_security_state(env, targets_secure);
8338     write_v7m_control_spsel(env, 0);
8339     arm_clear_exclusive(env);
8340     /* Clear SFPA and FPCA (has no effect if no FPU) */
8341     env->v7m.control[M_REG_S] &=
8342         ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
8343     /* Clear IT bits */
8344     env->condexec_bits = 0;
8345     env->regs[14] = lr;
8346     env->regs[15] = addr & 0xfffffffe;
8347     env->thumb = addr & 1;
8348 }
8349 
8350 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
8351                              bool apply_splim)
8352 {
8353     /*
8354      * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
8355      * that we will need later in order to do lazy FP reg stacking.
8356      */
8357     bool is_secure = env->v7m.secure;
8358     void *nvic = env->nvic;
8359     /*
8360      * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
8361      * are banked and we want to update the bit in the bank for the
8362      * current security state; and in one case we want to specifically
8363      * update the NS banked version of a bit even if we are secure.
8364      */
8365     uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
8366     uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
8367     uint32_t *fpccr = &env->v7m.fpccr[is_secure];
8368     bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
8369 
8370     env->v7m.fpcar[is_secure] = frameptr & ~0x7;
8371 
8372     if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
8373         bool splimviol;
8374         uint32_t splim = v7m_sp_limit(env);
8375         bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
8376             (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
8377 
8378         splimviol = !ign && frameptr < splim;
8379         *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
8380     }
8381 
8382     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
8383 
8384     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
8385 
8386     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
8387 
8388     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
8389                         !arm_v7m_is_handler_mode(env));
8390 
8391     hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
8392     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
8393 
8394     bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
8395     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
8396 
8397     mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
8398     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
8399 
8400     ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
8401     *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
8402 
8403     monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
8404     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
8405 
8406     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8407         s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
8408         *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
8409 
8410         sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
8411         *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
8412     }
8413 }
8414 
8415 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
8416 {
8417     /* fptr is the value of Rn, the frame pointer we store the FP regs to */
8418     bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8419     bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
8420 
8421     assert(env->v7m.secure);
8422 
8423     if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8424         return;
8425     }
8426 
8427     /* Check access to the coprocessor is permitted */
8428     if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8429         raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8430     }
8431 
8432     if (lspact) {
8433         /* LSPACT should not be active when there is active FP state */
8434         raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
8435     }
8436 
8437     if (fptr & 7) {
8438         raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8439     }
8440 
8441     /*
8442      * Note that we do not use v7m_stack_write() here, because the
8443      * accesses should not set the FSR bits for stacking errors if they
8444      * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
8445      * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions
8446      * and longjmp out.
8447      */
8448     if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8449         bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8450         int i;
8451 
8452         for (i = 0; i < (ts ? 32 : 16); i += 2) {
8453             uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8454             uint32_t faddr = fptr + 4 * i;
8455             uint32_t slo = extract64(dn, 0, 32);
8456             uint32_t shi = extract64(dn, 32, 32);
8457 
8458             if (i >= 16) {
8459                 faddr += 8; /* skip the slot for the FPSCR */
8460             }
8461             cpu_stl_data(env, faddr, slo);
8462             cpu_stl_data(env, faddr + 4, shi);
8463         }
8464         cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env));
8465 
8466         /*
8467          * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
8468          * leave them unchanged, matching our choice in v7m_preserve_fp_state.
8469          */
8470         if (ts) {
8471             for (i = 0; i < 32; i += 2) {
8472                 *aa32_vfp_dreg(env, i / 2) = 0;
8473             }
8474             vfp_set_fpscr(env, 0);
8475         }
8476     } else {
8477         v7m_update_fpccr(env, fptr, false);
8478     }
8479 
8480     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
8481 }
8482 
8483 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
8484 {
8485     /* fptr is the value of Rn, the frame pointer we load the FP regs from */
8486     assert(env->v7m.secure);
8487 
8488     if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8489         return;
8490     }
8491 
8492     /* Check access to the coprocessor is permitted */
8493     if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8494         raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8495     }
8496 
8497     if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8498         /* State in FP is still valid */
8499         env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
8500     } else {
8501         bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8502         int i;
8503         uint32_t fpscr;
8504 
8505         if (fptr & 7) {
8506             raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8507         }
8508 
8509         for (i = 0; i < (ts ? 32 : 16); i += 2) {
8510             uint32_t slo, shi;
8511             uint64_t dn;
8512             uint32_t faddr = fptr + 4 * i;
8513 
8514             if (i >= 16) {
8515                 faddr += 8; /* skip the slot for the FPSCR */
8516             }
8517 
8518             slo = cpu_ldl_data(env, faddr);
8519             shi = cpu_ldl_data(env, faddr + 4);
8520 
8521             dn = (uint64_t) shi << 32 | slo;
8522             *aa32_vfp_dreg(env, i / 2) = dn;
8523         }
8524         fpscr = cpu_ldl_data(env, fptr + 0x40);
8525         vfp_set_fpscr(env, fpscr);
8526     }
8527 
8528     env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
8529 }
8530 
8531 static bool v7m_push_stack(ARMCPU *cpu)
8532 {
8533     /* Do the "set up stack frame" part of exception entry,
8534      * similar to pseudocode PushStack().
8535      * Return true if we generate a derived exception (and so
8536      * should ignore further stack faults trying to process
8537      * that derived exception.)
8538      */
8539     bool stacked_ok = true, limitviol = false;
8540     CPUARMState *env = &cpu->env;
8541     uint32_t xpsr = xpsr_read(env);
8542     uint32_t frameptr = env->regs[13];
8543     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8544     uint32_t framesize;
8545     bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
8546 
8547     if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
8548         (env->v7m.secure || nsacr_cp10)) {
8549         if (env->v7m.secure &&
8550             env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
8551             framesize = 0xa8;
8552         } else {
8553             framesize = 0x68;
8554         }
8555     } else {
8556         framesize = 0x20;
8557     }
8558 
8559     /* Align stack pointer if the guest wants that */
8560     if ((frameptr & 4) &&
8561         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8562         frameptr -= 4;
8563         xpsr |= XPSR_SPREALIGN;
8564     }
8565 
8566     xpsr &= ~XPSR_SFPA;
8567     if (env->v7m.secure &&
8568         (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8569         xpsr |= XPSR_SFPA;
8570     }
8571 
8572     frameptr -= framesize;
8573 
8574     if (arm_feature(env, ARM_FEATURE_V8)) {
8575         uint32_t limit = v7m_sp_limit(env);
8576 
8577         if (frameptr < limit) {
8578             /*
8579              * Stack limit failure: set SP to the limit value, and generate
8580              * STKOF UsageFault. Stack pushes below the limit must not be
8581              * performed. It is IMPDEF whether pushes above the limit are
8582              * performed; we choose not to.
8583              */
8584             qemu_log_mask(CPU_LOG_INT,
8585                           "...STKOF during stacking\n");
8586             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8587             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8588                                     env->v7m.secure);
8589             env->regs[13] = limit;
8590             /*
8591              * We won't try to perform any further memory accesses but
8592              * we must continue through the following code to check for
8593              * permission faults during FPU state preservation, and we
8594              * must update FPCCR if lazy stacking is enabled.
8595              */
8596             limitviol = true;
8597             stacked_ok = false;
8598         }
8599     }
8600 
8601     /* Write as much of the stack frame as we can. If we fail a stack
8602      * write this will result in a derived exception being pended
8603      * (which may be taken in preference to the one we started with
8604      * if it has higher priority).
8605      */
8606     stacked_ok = stacked_ok &&
8607         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
8608         v7m_stack_write(cpu, frameptr + 4, env->regs[1],
8609                         mmu_idx, STACK_NORMAL) &&
8610         v7m_stack_write(cpu, frameptr + 8, env->regs[2],
8611                         mmu_idx, STACK_NORMAL) &&
8612         v7m_stack_write(cpu, frameptr + 12, env->regs[3],
8613                         mmu_idx, STACK_NORMAL) &&
8614         v7m_stack_write(cpu, frameptr + 16, env->regs[12],
8615                         mmu_idx, STACK_NORMAL) &&
8616         v7m_stack_write(cpu, frameptr + 20, env->regs[14],
8617                         mmu_idx, STACK_NORMAL) &&
8618         v7m_stack_write(cpu, frameptr + 24, env->regs[15],
8619                         mmu_idx, STACK_NORMAL) &&
8620         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
8621 
8622     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
8623         /* FPU is active, try to save its registers */
8624         bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8625         bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
8626 
8627         if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8628             qemu_log_mask(CPU_LOG_INT,
8629                           "...SecureFault because LSPACT and FPCA both set\n");
8630             env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8631             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8632         } else if (!env->v7m.secure && !nsacr_cp10) {
8633             qemu_log_mask(CPU_LOG_INT,
8634                           "...Secure UsageFault with CFSR.NOCP because "
8635                           "NSACR.CP10 prevents stacking FP regs\n");
8636             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
8637             env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
8638         } else {
8639             if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8640                 /* Lazy stacking disabled, save registers now */
8641                 int i;
8642                 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
8643                                                  arm_current_el(env) != 0);
8644 
8645                 if (stacked_ok && !cpacr_pass) {
8646                     /*
8647                      * Take UsageFault if CPACR forbids access. The pseudocode
8648                      * here does a full CheckCPEnabled() but we know the NSACR
8649                      * check can never fail as we have already handled that.
8650                      */
8651                     qemu_log_mask(CPU_LOG_INT,
8652                                   "...UsageFault with CFSR.NOCP because "
8653                                   "CPACR.CP10 prevents stacking FP regs\n");
8654                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8655                                             env->v7m.secure);
8656                     env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8657                     stacked_ok = false;
8658                 }
8659 
8660                 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8661                     uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8662                     uint32_t faddr = frameptr + 0x20 + 4 * i;
8663                     uint32_t slo = extract64(dn, 0, 32);
8664                     uint32_t shi = extract64(dn, 32, 32);
8665 
8666                     if (i >= 16) {
8667                         faddr += 8; /* skip the slot for the FPSCR */
8668                     }
8669                     stacked_ok = stacked_ok &&
8670                         v7m_stack_write(cpu, faddr, slo,
8671                                         mmu_idx, STACK_NORMAL) &&
8672                         v7m_stack_write(cpu, faddr + 4, shi,
8673                                         mmu_idx, STACK_NORMAL);
8674                 }
8675                 stacked_ok = stacked_ok &&
8676                     v7m_stack_write(cpu, frameptr + 0x60,
8677                                     vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
8678                 if (cpacr_pass) {
8679                     for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8680                         *aa32_vfp_dreg(env, i / 2) = 0;
8681                     }
8682                     vfp_set_fpscr(env, 0);
8683                 }
8684             } else {
8685                 /* Lazy stacking enabled, save necessary info to stack later */
8686                 v7m_update_fpccr(env, frameptr + 0x20, true);
8687             }
8688         }
8689     }
8690 
8691     /*
8692      * If we broke a stack limit then SP was already updated earlier;
8693      * otherwise we update SP regardless of whether any of the stack
8694      * accesses failed or we took some other kind of fault.
8695      */
8696     if (!limitviol) {
8697         env->regs[13] = frameptr;
8698     }
8699 
8700     return !stacked_ok;
8701 }
8702 
8703 static void do_v7m_exception_exit(ARMCPU *cpu)
8704 {
8705     CPUARMState *env = &cpu->env;
8706     uint32_t excret;
8707     uint32_t xpsr;
8708     bool ufault = false;
8709     bool sfault = false;
8710     bool return_to_sp_process;
8711     bool return_to_handler;
8712     bool rettobase = false;
8713     bool exc_secure = false;
8714     bool return_to_secure;
8715     bool ftype;
8716     bool restore_s16_s31;
8717 
8718     /* If we're not in Handler mode then jumps to magic exception-exit
8719      * addresses don't have magic behaviour. However for the v8M
8720      * security extensions the magic secure-function-return has to
8721      * work in thread mode too, so to avoid doing an extra check in
8722      * the generated code we allow exception-exit magic to also cause the
8723      * internal exception and bring us here in thread mode. Correct code
8724      * will never try to do this (the following insn fetch will always
8725      * fault) so we the overhead of having taken an unnecessary exception
8726      * doesn't matter.
8727      */
8728     if (!arm_v7m_is_handler_mode(env)) {
8729         return;
8730     }
8731 
8732     /* In the spec pseudocode ExceptionReturn() is called directly
8733      * from BXWritePC() and gets the full target PC value including
8734      * bit zero. In QEMU's implementation we treat it as a normal
8735      * jump-to-register (which is then caught later on), and so split
8736      * the target value up between env->regs[15] and env->thumb in
8737      * gen_bx(). Reconstitute it.
8738      */
8739     excret = env->regs[15];
8740     if (env->thumb) {
8741         excret |= 1;
8742     }
8743 
8744     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8745                   " previous exception %d\n",
8746                   excret, env->v7m.exception);
8747 
8748     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8749         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8750                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8751                       excret);
8752     }
8753 
8754     ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
8755 
8756     if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) {
8757         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
8758                       "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
8759                       "if FPU not present\n",
8760                       excret);
8761         ftype = true;
8762     }
8763 
8764     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8765         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8766          * we pick which FAULTMASK to clear.
8767          */
8768         if (!env->v7m.secure &&
8769             ((excret & R_V7M_EXCRET_ES_MASK) ||
8770              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8771             sfault = 1;
8772             /* For all other purposes, treat ES as 0 (R_HXSR) */
8773             excret &= ~R_V7M_EXCRET_ES_MASK;
8774         }
8775         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8776     }
8777 
8778     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8779         /* Auto-clear FAULTMASK on return from other than NMI.
8780          * If the security extension is implemented then this only
8781          * happens if the raw execution priority is >= 0; the
8782          * value of the ES bit in the exception return value indicates
8783          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8784          */
8785         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8786             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8787                 env->v7m.faultmask[exc_secure] = 0;
8788             }
8789         } else {
8790             env->v7m.faultmask[M_REG_NS] = 0;
8791         }
8792     }
8793 
8794     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8795                                      exc_secure)) {
8796     case -1:
8797         /* attempt to exit an exception that isn't active */
8798         ufault = true;
8799         break;
8800     case 0:
8801         /* still an irq active now */
8802         break;
8803     case 1:
8804         /* we returned to base exception level, no nesting.
8805          * (In the pseudocode this is written using "NestedActivation != 1"
8806          * where we have 'rettobase == false'.)
8807          */
8808         rettobase = true;
8809         break;
8810     default:
8811         g_assert_not_reached();
8812     }
8813 
8814     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8815     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8816     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8817         (excret & R_V7M_EXCRET_S_MASK);
8818 
8819     if (arm_feature(env, ARM_FEATURE_V8)) {
8820         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8821             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8822              * we choose to take the UsageFault.
8823              */
8824             if ((excret & R_V7M_EXCRET_S_MASK) ||
8825                 (excret & R_V7M_EXCRET_ES_MASK) ||
8826                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8827                 ufault = true;
8828             }
8829         }
8830         if (excret & R_V7M_EXCRET_RES0_MASK) {
8831             ufault = true;
8832         }
8833     } else {
8834         /* For v7M we only recognize certain combinations of the low bits */
8835         switch (excret & 0xf) {
8836         case 1: /* Return to Handler */
8837             break;
8838         case 13: /* Return to Thread using Process stack */
8839         case 9: /* Return to Thread using Main stack */
8840             /* We only need to check NONBASETHRDENA for v7M, because in
8841              * v8M this bit does not exist (it is RES1).
8842              */
8843             if (!rettobase &&
8844                 !(env->v7m.ccr[env->v7m.secure] &
8845                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
8846                 ufault = true;
8847             }
8848             break;
8849         default:
8850             ufault = true;
8851         }
8852     }
8853 
8854     /*
8855      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8856      * Handler mode (and will be until we write the new XPSR.Interrupt
8857      * field) this does not switch around the current stack pointer.
8858      * We must do this before we do any kind of tailchaining, including
8859      * for the derived exceptions on integrity check failures, or we will
8860      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8861      */
8862     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8863 
8864     /*
8865      * Clear scratch FP values left in caller saved registers; this
8866      * must happen before any kind of tail chaining.
8867      */
8868     if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
8869         (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
8870         if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8871             env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8872             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8873             qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8874                           "stackframe: error during lazy state deactivation\n");
8875             v7m_exception_taken(cpu, excret, true, false);
8876             return;
8877         } else {
8878             /* Clear s0..s15 and FPSCR */
8879             int i;
8880 
8881             for (i = 0; i < 16; i += 2) {
8882                 *aa32_vfp_dreg(env, i / 2) = 0;
8883             }
8884             vfp_set_fpscr(env, 0);
8885         }
8886     }
8887 
8888     if (sfault) {
8889         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8890         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8891         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8892                       "stackframe: failed EXC_RETURN.ES validity check\n");
8893         v7m_exception_taken(cpu, excret, true, false);
8894         return;
8895     }
8896 
8897     if (ufault) {
8898         /* Bad exception return: instead of popping the exception
8899          * stack, directly take a usage fault on the current stack.
8900          */
8901         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8902         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8903         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8904                       "stackframe: failed exception return integrity check\n");
8905         v7m_exception_taken(cpu, excret, true, false);
8906         return;
8907     }
8908 
8909     /*
8910      * Tailchaining: if there is currently a pending exception that
8911      * is high enough priority to preempt execution at the level we're
8912      * about to return to, then just directly take that exception now,
8913      * avoiding an unstack-and-then-stack. Note that now we have
8914      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8915      * our current execution priority is already the execution priority we are
8916      * returning to -- none of the state we would unstack or set based on
8917      * the EXCRET value affects it.
8918      */
8919     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8920         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8921         v7m_exception_taken(cpu, excret, true, false);
8922         return;
8923     }
8924 
8925     switch_v7m_security_state(env, return_to_secure);
8926 
8927     {
8928         /* The stack pointer we should be reading the exception frame from
8929          * depends on bits in the magic exception return type value (and
8930          * for v8M isn't necessarily the stack pointer we will eventually
8931          * end up resuming execution with). Get a pointer to the location
8932          * in the CPU state struct where the SP we need is currently being
8933          * stored; we will use and modify it in place.
8934          * We use this limited C variable scope so we don't accidentally
8935          * use 'frame_sp_p' after we do something that makes it invalid.
8936          */
8937         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8938                                               return_to_secure,
8939                                               !return_to_handler,
8940                                               return_to_sp_process);
8941         uint32_t frameptr = *frame_sp_p;
8942         bool pop_ok = true;
8943         ARMMMUIdx mmu_idx;
8944         bool return_to_priv = return_to_handler ||
8945             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8946 
8947         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8948                                                         return_to_priv);
8949 
8950         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8951             arm_feature(env, ARM_FEATURE_V8)) {
8952             qemu_log_mask(LOG_GUEST_ERROR,
8953                           "M profile exception return with non-8-aligned SP "
8954                           "for destination state is UNPREDICTABLE\n");
8955         }
8956 
8957         /* Do we need to pop callee-saved registers? */
8958         if (return_to_secure &&
8959             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8960              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8961             uint32_t actual_sig;
8962 
8963             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8964 
8965             if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
8966                 /* Take a SecureFault on the current stack */
8967                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8968                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8969                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8970                               "stackframe: failed exception return integrity "
8971                               "signature check\n");
8972                 v7m_exception_taken(cpu, excret, true, false);
8973                 return;
8974             }
8975 
8976             pop_ok = pop_ok &&
8977                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8978                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8979                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8980                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8981                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8982                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8983                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8984                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8985 
8986             frameptr += 0x28;
8987         }
8988 
8989         /* Pop registers */
8990         pop_ok = pop_ok &&
8991             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8992             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8993             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8994             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8995             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8996             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8997             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8998             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8999 
9000         if (!pop_ok) {
9001             /* v7m_stack_read() pended a fault, so take it (as a tail
9002              * chained exception on the same stack frame)
9003              */
9004             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
9005             v7m_exception_taken(cpu, excret, true, false);
9006             return;
9007         }
9008 
9009         /* Returning from an exception with a PC with bit 0 set is defined
9010          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
9011          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
9012          * the lsbit, and there are several RTOSes out there which incorrectly
9013          * assume the r15 in the stack frame should be a Thumb-style "lsbit
9014          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
9015          * complain about the badly behaved guest.
9016          */
9017         if (env->regs[15] & 1) {
9018             env->regs[15] &= ~1U;
9019             if (!arm_feature(env, ARM_FEATURE_V8)) {
9020                 qemu_log_mask(LOG_GUEST_ERROR,
9021                               "M profile return from interrupt with misaligned "
9022                               "PC is UNPREDICTABLE on v7M\n");
9023             }
9024         }
9025 
9026         if (arm_feature(env, ARM_FEATURE_V8)) {
9027             /* For v8M we have to check whether the xPSR exception field
9028              * matches the EXCRET value for return to handler/thread
9029              * before we commit to changing the SP and xPSR.
9030              */
9031             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
9032             if (return_to_handler != will_be_handler) {
9033                 /* Take an INVPC UsageFault on the current stack.
9034                  * By this point we will have switched to the security state
9035                  * for the background state, so this UsageFault will target
9036                  * that state.
9037                  */
9038                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9039                                         env->v7m.secure);
9040                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9041                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
9042                               "stackframe: failed exception return integrity "
9043                               "check\n");
9044                 v7m_exception_taken(cpu, excret, true, false);
9045                 return;
9046             }
9047         }
9048 
9049         if (!ftype) {
9050             /* FP present and we need to handle it */
9051             if (!return_to_secure &&
9052                 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
9053                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9054                 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9055                 qemu_log_mask(CPU_LOG_INT,
9056                               "...taking SecureFault on existing stackframe: "
9057                               "Secure LSPACT set but exception return is "
9058                               "not to secure state\n");
9059                 v7m_exception_taken(cpu, excret, true, false);
9060                 return;
9061             }
9062 
9063             restore_s16_s31 = return_to_secure &&
9064                 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
9065 
9066             if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
9067                 /* State in FPU is still valid, just clear LSPACT */
9068                 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
9069             } else {
9070                 int i;
9071                 uint32_t fpscr;
9072                 bool cpacr_pass, nsacr_pass;
9073 
9074                 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
9075                                             return_to_priv);
9076                 nsacr_pass = return_to_secure ||
9077                     extract32(env->v7m.nsacr, 10, 1);
9078 
9079                 if (!cpacr_pass) {
9080                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9081                                             return_to_secure);
9082                     env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
9083                     qemu_log_mask(CPU_LOG_INT,
9084                                   "...taking UsageFault on existing "
9085                                   "stackframe: CPACR.CP10 prevents unstacking "
9086                                   "FP regs\n");
9087                     v7m_exception_taken(cpu, excret, true, false);
9088                     return;
9089                 } else if (!nsacr_pass) {
9090                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
9091                     env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
9092                     qemu_log_mask(CPU_LOG_INT,
9093                                   "...taking Secure UsageFault on existing "
9094                                   "stackframe: NSACR.CP10 prevents unstacking "
9095                                   "FP regs\n");
9096                     v7m_exception_taken(cpu, excret, true, false);
9097                     return;
9098                 }
9099 
9100                 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9101                     uint32_t slo, shi;
9102                     uint64_t dn;
9103                     uint32_t faddr = frameptr + 0x20 + 4 * i;
9104 
9105                     if (i >= 16) {
9106                         faddr += 8; /* Skip the slot for the FPSCR */
9107                     }
9108 
9109                     pop_ok = pop_ok &&
9110                         v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
9111                         v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
9112 
9113                     if (!pop_ok) {
9114                         break;
9115                     }
9116 
9117                     dn = (uint64_t)shi << 32 | slo;
9118                     *aa32_vfp_dreg(env, i / 2) = dn;
9119                 }
9120                 pop_ok = pop_ok &&
9121                     v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
9122                 if (pop_ok) {
9123                     vfp_set_fpscr(env, fpscr);
9124                 }
9125                 if (!pop_ok) {
9126                     /*
9127                      * These regs are 0 if security extension present;
9128                      * otherwise merely UNKNOWN. We zero always.
9129                      */
9130                     for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9131                         *aa32_vfp_dreg(env, i / 2) = 0;
9132                     }
9133                     vfp_set_fpscr(env, 0);
9134                 }
9135             }
9136         }
9137         env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9138                                                V7M_CONTROL, FPCA, !ftype);
9139 
9140         /* Commit to consuming the stack frame */
9141         frameptr += 0x20;
9142         if (!ftype) {
9143             frameptr += 0x48;
9144             if (restore_s16_s31) {
9145                 frameptr += 0x40;
9146             }
9147         }
9148         /* Undo stack alignment (the SPREALIGN bit indicates that the original
9149          * pre-exception SP was not 8-aligned and we added a padding word to
9150          * align it, so we undo this by ORing in the bit that increases it
9151          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
9152          * would work too but a logical OR is how the pseudocode specifies it.)
9153          */
9154         if (xpsr & XPSR_SPREALIGN) {
9155             frameptr |= 4;
9156         }
9157         *frame_sp_p = frameptr;
9158     }
9159     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
9160     xpsr_write(env, xpsr, ~(XPSR_SPREALIGN | XPSR_SFPA));
9161 
9162     if (env->v7m.secure) {
9163         bool sfpa = xpsr & XPSR_SFPA;
9164 
9165         env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9166                                                V7M_CONTROL, SFPA, sfpa);
9167     }
9168 
9169     /* The restored xPSR exception field will be zero if we're
9170      * resuming in Thread mode. If that doesn't match what the
9171      * exception return excret specified then this is a UsageFault.
9172      * v7M requires we make this check here; v8M did it earlier.
9173      */
9174     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
9175         /* Take an INVPC UsageFault by pushing the stack again;
9176          * we know we're v7M so this is never a Secure UsageFault.
9177          */
9178         bool ignore_stackfaults;
9179 
9180         assert(!arm_feature(env, ARM_FEATURE_V8));
9181         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
9182         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9183         ignore_stackfaults = v7m_push_stack(cpu);
9184         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
9185                       "failed exception return integrity check\n");
9186         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
9187         return;
9188     }
9189 
9190     /* Otherwise, we have a successful exception exit. */
9191     arm_clear_exclusive(env);
9192     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9193 }
9194 
9195 static bool do_v7m_function_return(ARMCPU *cpu)
9196 {
9197     /* v8M security extensions magic function return.
9198      * We may either:
9199      *  (1) throw an exception (longjump)
9200      *  (2) return true if we successfully handled the function return
9201      *  (3) return false if we failed a consistency check and have
9202      *      pended a UsageFault that needs to be taken now
9203      *
9204      * At this point the magic return value is split between env->regs[15]
9205      * and env->thumb. We don't bother to reconstitute it because we don't
9206      * need it (all values are handled the same way).
9207      */
9208     CPUARMState *env = &cpu->env;
9209     uint32_t newpc, newpsr, newpsr_exc;
9210 
9211     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
9212 
9213     {
9214         bool threadmode, spsel;
9215         TCGMemOpIdx oi;
9216         ARMMMUIdx mmu_idx;
9217         uint32_t *frame_sp_p;
9218         uint32_t frameptr;
9219 
9220         /* Pull the return address and IPSR from the Secure stack */
9221         threadmode = !arm_v7m_is_handler_mode(env);
9222         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
9223 
9224         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
9225         frameptr = *frame_sp_p;
9226 
9227         /* These loads may throw an exception (for MPU faults). We want to
9228          * do them as secure, so work out what MMU index that is.
9229          */
9230         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9231         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
9232         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
9233         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
9234 
9235         /* Consistency checks on new IPSR */
9236         newpsr_exc = newpsr & XPSR_EXCP;
9237         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
9238               (env->v7m.exception == 1 && newpsr_exc != 0))) {
9239             /* Pend the fault and tell our caller to take it */
9240             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9241             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9242                                     env->v7m.secure);
9243             qemu_log_mask(CPU_LOG_INT,
9244                           "...taking INVPC UsageFault: "
9245                           "IPSR consistency check failed\n");
9246             return false;
9247         }
9248 
9249         *frame_sp_p = frameptr + 8;
9250     }
9251 
9252     /* This invalidates frame_sp_p */
9253     switch_v7m_security_state(env, true);
9254     env->v7m.exception = newpsr_exc;
9255     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9256     if (newpsr & XPSR_SFPA) {
9257         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
9258     }
9259     xpsr_write(env, 0, XPSR_IT);
9260     env->thumb = newpc & 1;
9261     env->regs[15] = newpc & ~1;
9262 
9263     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
9264     return true;
9265 }
9266 
9267 static void arm_log_exception(int idx)
9268 {
9269     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9270         const char *exc = NULL;
9271         static const char * const excnames[] = {
9272             [EXCP_UDEF] = "Undefined Instruction",
9273             [EXCP_SWI] = "SVC",
9274             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9275             [EXCP_DATA_ABORT] = "Data Abort",
9276             [EXCP_IRQ] = "IRQ",
9277             [EXCP_FIQ] = "FIQ",
9278             [EXCP_BKPT] = "Breakpoint",
9279             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9280             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9281             [EXCP_HVC] = "Hypervisor Call",
9282             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9283             [EXCP_SMC] = "Secure Monitor Call",
9284             [EXCP_VIRQ] = "Virtual IRQ",
9285             [EXCP_VFIQ] = "Virtual FIQ",
9286             [EXCP_SEMIHOST] = "Semihosting call",
9287             [EXCP_NOCP] = "v7M NOCP UsageFault",
9288             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9289             [EXCP_STKOF] = "v8M STKOF UsageFault",
9290             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9291             [EXCP_LSERR] = "v8M LSERR UsageFault",
9292             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9293         };
9294 
9295         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9296             exc = excnames[idx];
9297         }
9298         if (!exc) {
9299             exc = "unknown";
9300         }
9301         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9302     }
9303 }
9304 
9305 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
9306                                uint32_t addr, uint16_t *insn)
9307 {
9308     /* Load a 16-bit portion of a v7M instruction, returning true on success,
9309      * or false on failure (in which case we will have pended the appropriate
9310      * exception).
9311      * We need to do the instruction fetch's MPU and SAU checks
9312      * like this because there is no MMU index that would allow
9313      * doing the load with a single function call. Instead we must
9314      * first check that the security attributes permit the load
9315      * and that they don't mismatch on the two halves of the instruction,
9316      * and then we do the load as a secure load (ie using the security
9317      * attributes of the address, not the CPU, as architecturally required).
9318      */
9319     CPUState *cs = CPU(cpu);
9320     CPUARMState *env = &cpu->env;
9321     V8M_SAttributes sattrs = {};
9322     MemTxAttrs attrs = {};
9323     ARMMMUFaultInfo fi = {};
9324     MemTxResult txres;
9325     target_ulong page_size;
9326     hwaddr physaddr;
9327     int prot;
9328 
9329     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
9330     if (!sattrs.nsc || sattrs.ns) {
9331         /* This must be the second half of the insn, and it straddles a
9332          * region boundary with the second half not being S&NSC.
9333          */
9334         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9335         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9336         qemu_log_mask(CPU_LOG_INT,
9337                       "...really SecureFault with SFSR.INVEP\n");
9338         return false;
9339     }
9340     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
9341                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
9342         /* the MPU lookup failed */
9343         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9344         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
9345         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
9346         return false;
9347     }
9348     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
9349                                  attrs, &txres);
9350     if (txres != MEMTX_OK) {
9351         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9352         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9353         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
9354         return false;
9355     }
9356     return true;
9357 }
9358 
9359 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
9360 {
9361     /* Check whether this attempt to execute code in a Secure & NS-Callable
9362      * memory region is for an SG instruction; if so, then emulate the
9363      * effect of the SG instruction and return true. Otherwise pend
9364      * the correct kind of exception and return false.
9365      */
9366     CPUARMState *env = &cpu->env;
9367     ARMMMUIdx mmu_idx;
9368     uint16_t insn;
9369 
9370     /* We should never get here unless get_phys_addr_pmsav8() caused
9371      * an exception for NS executing in S&NSC memory.
9372      */
9373     assert(!env->v7m.secure);
9374     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9375 
9376     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
9377     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9378 
9379     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
9380         return false;
9381     }
9382 
9383     if (!env->thumb) {
9384         goto gen_invep;
9385     }
9386 
9387     if (insn != 0xe97f) {
9388         /* Not an SG instruction first half (we choose the IMPDEF
9389          * early-SG-check option).
9390          */
9391         goto gen_invep;
9392     }
9393 
9394     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
9395         return false;
9396     }
9397 
9398     if (insn != 0xe97f) {
9399         /* Not an SG instruction second half (yes, both halves of the SG
9400          * insn have the same hex value)
9401          */
9402         goto gen_invep;
9403     }
9404 
9405     /* OK, we have confirmed that we really have an SG instruction.
9406      * We know we're NS in S memory so don't need to repeat those checks.
9407      */
9408     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
9409                   ", executing it\n", env->regs[15]);
9410     env->regs[14] &= ~1;
9411     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9412     switch_v7m_security_state(env, true);
9413     xpsr_write(env, 0, XPSR_IT);
9414     env->regs[15] += 4;
9415     return true;
9416 
9417 gen_invep:
9418     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9419     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9420     qemu_log_mask(CPU_LOG_INT,
9421                   "...really SecureFault with SFSR.INVEP\n");
9422     return false;
9423 }
9424 
9425 void arm_v7m_cpu_do_interrupt(CPUState *cs)
9426 {
9427     ARMCPU *cpu = ARM_CPU(cs);
9428     CPUARMState *env = &cpu->env;
9429     uint32_t lr;
9430     bool ignore_stackfaults;
9431 
9432     arm_log_exception(cs->exception_index);
9433 
9434     /* For exceptions we just mark as pending on the NVIC, and let that
9435        handle it.  */
9436     switch (cs->exception_index) {
9437     case EXCP_UDEF:
9438         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9439         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
9440         break;
9441     case EXCP_NOCP:
9442     {
9443         /*
9444          * NOCP might be directed to something other than the current
9445          * security state if this fault is because of NSACR; we indicate
9446          * the target security state using exception.target_el.
9447          */
9448         int target_secstate;
9449 
9450         if (env->exception.target_el == 3) {
9451             target_secstate = M_REG_S;
9452         } else {
9453             target_secstate = env->v7m.secure;
9454         }
9455         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
9456         env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
9457         break;
9458     }
9459     case EXCP_INVSTATE:
9460         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9461         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
9462         break;
9463     case EXCP_STKOF:
9464         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9465         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
9466         break;
9467     case EXCP_LSERR:
9468         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9469         env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9470         break;
9471     case EXCP_UNALIGNED:
9472         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9473         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
9474         break;
9475     case EXCP_SWI:
9476         /* The PC already points to the next instruction.  */
9477         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
9478         break;
9479     case EXCP_PREFETCH_ABORT:
9480     case EXCP_DATA_ABORT:
9481         /* Note that for M profile we don't have a guest facing FSR, but
9482          * the env->exception.fsr will be populated by the code that
9483          * raises the fault, in the A profile short-descriptor format.
9484          */
9485         switch (env->exception.fsr & 0xf) {
9486         case M_FAKE_FSR_NSC_EXEC:
9487             /* Exception generated when we try to execute code at an address
9488              * which is marked as Secure & Non-Secure Callable and the CPU
9489              * is in the Non-Secure state. The only instruction which can
9490              * be executed like this is SG (and that only if both halves of
9491              * the SG instruction have the same security attributes.)
9492              * Everything else must generate an INVEP SecureFault, so we
9493              * emulate the SG instruction here.
9494              */
9495             if (v7m_handle_execute_nsc(cpu)) {
9496                 return;
9497             }
9498             break;
9499         case M_FAKE_FSR_SFAULT:
9500             /* Various flavours of SecureFault for attempts to execute or
9501              * access data in the wrong security state.
9502              */
9503             switch (cs->exception_index) {
9504             case EXCP_PREFETCH_ABORT:
9505                 if (env->v7m.secure) {
9506                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
9507                     qemu_log_mask(CPU_LOG_INT,
9508                                   "...really SecureFault with SFSR.INVTRAN\n");
9509                 } else {
9510                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9511                     qemu_log_mask(CPU_LOG_INT,
9512                                   "...really SecureFault with SFSR.INVEP\n");
9513                 }
9514                 break;
9515             case EXCP_DATA_ABORT:
9516                 /* This must be an NS access to S memory */
9517                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
9518                 qemu_log_mask(CPU_LOG_INT,
9519                               "...really SecureFault with SFSR.AUVIOL\n");
9520                 break;
9521             }
9522             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9523             break;
9524         case 0x8: /* External Abort */
9525             switch (cs->exception_index) {
9526             case EXCP_PREFETCH_ABORT:
9527                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9528                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
9529                 break;
9530             case EXCP_DATA_ABORT:
9531                 env->v7m.cfsr[M_REG_NS] |=
9532                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
9533                 env->v7m.bfar = env->exception.vaddress;
9534                 qemu_log_mask(CPU_LOG_INT,
9535                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
9536                               env->v7m.bfar);
9537                 break;
9538             }
9539             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9540             break;
9541         default:
9542             /* All other FSR values are either MPU faults or "can't happen
9543              * for M profile" cases.
9544              */
9545             switch (cs->exception_index) {
9546             case EXCP_PREFETCH_ABORT:
9547                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9548                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
9549                 break;
9550             case EXCP_DATA_ABORT:
9551                 env->v7m.cfsr[env->v7m.secure] |=
9552                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
9553                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
9554                 qemu_log_mask(CPU_LOG_INT,
9555                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
9556                               env->v7m.mmfar[env->v7m.secure]);
9557                 break;
9558             }
9559             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
9560                                     env->v7m.secure);
9561             break;
9562         }
9563         break;
9564     case EXCP_BKPT:
9565         if (semihosting_enabled()) {
9566             int nr;
9567             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
9568             if (nr == 0xab) {
9569                 env->regs[15] += 2;
9570                 qemu_log_mask(CPU_LOG_INT,
9571                               "...handling as semihosting call 0x%x\n",
9572                               env->regs[0]);
9573                 env->regs[0] = do_arm_semihosting(env);
9574                 return;
9575             }
9576         }
9577         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
9578         break;
9579     case EXCP_IRQ:
9580         break;
9581     case EXCP_EXCEPTION_EXIT:
9582         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
9583             /* Must be v8M security extension function return */
9584             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
9585             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9586             if (do_v7m_function_return(cpu)) {
9587                 return;
9588             }
9589         } else {
9590             do_v7m_exception_exit(cpu);
9591             return;
9592         }
9593         break;
9594     case EXCP_LAZYFP:
9595         /*
9596          * We already pended the specific exception in the NVIC in the
9597          * v7m_preserve_fp_state() helper function.
9598          */
9599         break;
9600     default:
9601         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9602         return; /* Never happens.  Keep compiler happy.  */
9603     }
9604 
9605     if (arm_feature(env, ARM_FEATURE_V8)) {
9606         lr = R_V7M_EXCRET_RES1_MASK |
9607             R_V7M_EXCRET_DCRS_MASK;
9608         /* The S bit indicates whether we should return to Secure
9609          * or NonSecure (ie our current state).
9610          * The ES bit indicates whether we're taking this exception
9611          * to Secure or NonSecure (ie our target state). We set it
9612          * later, in v7m_exception_taken().
9613          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
9614          * This corresponds to the ARM ARM pseudocode for v8M setting
9615          * some LR bits in PushStack() and some in ExceptionTaken();
9616          * the distinction matters for the tailchain cases where we
9617          * can take an exception without pushing the stack.
9618          */
9619         if (env->v7m.secure) {
9620             lr |= R_V7M_EXCRET_S_MASK;
9621         }
9622         if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9623             lr |= R_V7M_EXCRET_FTYPE_MASK;
9624         }
9625     } else {
9626         lr = R_V7M_EXCRET_RES1_MASK |
9627             R_V7M_EXCRET_S_MASK |
9628             R_V7M_EXCRET_DCRS_MASK |
9629             R_V7M_EXCRET_FTYPE_MASK |
9630             R_V7M_EXCRET_ES_MASK;
9631         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
9632             lr |= R_V7M_EXCRET_SPSEL_MASK;
9633         }
9634     }
9635     if (!arm_v7m_is_handler_mode(env)) {
9636         lr |= R_V7M_EXCRET_MODE_MASK;
9637     }
9638 
9639     ignore_stackfaults = v7m_push_stack(cpu);
9640     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
9641 }
9642 
9643 /* Function used to synchronize QEMU's AArch64 register set with AArch32
9644  * register set.  This is necessary when switching between AArch32 and AArch64
9645  * execution state.
9646  */
9647 void aarch64_sync_32_to_64(CPUARMState *env)
9648 {
9649     int i;
9650     uint32_t mode = env->uncached_cpsr & CPSR_M;
9651 
9652     /* We can blanket copy R[0:7] to X[0:7] */
9653     for (i = 0; i < 8; i++) {
9654         env->xregs[i] = env->regs[i];
9655     }
9656 
9657     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9658      * Otherwise, they come from the banked user regs.
9659      */
9660     if (mode == ARM_CPU_MODE_FIQ) {
9661         for (i = 8; i < 13; i++) {
9662             env->xregs[i] = env->usr_regs[i - 8];
9663         }
9664     } else {
9665         for (i = 8; i < 13; i++) {
9666             env->xregs[i] = env->regs[i];
9667         }
9668     }
9669 
9670     /* Registers x13-x23 are the various mode SP and FP registers. Registers
9671      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9672      * from the mode banked register.
9673      */
9674     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9675         env->xregs[13] = env->regs[13];
9676         env->xregs[14] = env->regs[14];
9677     } else {
9678         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9679         /* HYP is an exception in that it is copied from r14 */
9680         if (mode == ARM_CPU_MODE_HYP) {
9681             env->xregs[14] = env->regs[14];
9682         } else {
9683             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9684         }
9685     }
9686 
9687     if (mode == ARM_CPU_MODE_HYP) {
9688         env->xregs[15] = env->regs[13];
9689     } else {
9690         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9691     }
9692 
9693     if (mode == ARM_CPU_MODE_IRQ) {
9694         env->xregs[16] = env->regs[14];
9695         env->xregs[17] = env->regs[13];
9696     } else {
9697         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9698         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9699     }
9700 
9701     if (mode == ARM_CPU_MODE_SVC) {
9702         env->xregs[18] = env->regs[14];
9703         env->xregs[19] = env->regs[13];
9704     } else {
9705         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9706         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9707     }
9708 
9709     if (mode == ARM_CPU_MODE_ABT) {
9710         env->xregs[20] = env->regs[14];
9711         env->xregs[21] = env->regs[13];
9712     } else {
9713         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9714         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9715     }
9716 
9717     if (mode == ARM_CPU_MODE_UND) {
9718         env->xregs[22] = env->regs[14];
9719         env->xregs[23] = env->regs[13];
9720     } else {
9721         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9722         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9723     }
9724 
9725     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9726      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9727      * FIQ bank for r8-r14.
9728      */
9729     if (mode == ARM_CPU_MODE_FIQ) {
9730         for (i = 24; i < 31; i++) {
9731             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9732         }
9733     } else {
9734         for (i = 24; i < 29; i++) {
9735             env->xregs[i] = env->fiq_regs[i - 24];
9736         }
9737         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9738         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9739     }
9740 
9741     env->pc = env->regs[15];
9742 }
9743 
9744 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9745  * register set.  This is necessary when switching between AArch32 and AArch64
9746  * execution state.
9747  */
9748 void aarch64_sync_64_to_32(CPUARMState *env)
9749 {
9750     int i;
9751     uint32_t mode = env->uncached_cpsr & CPSR_M;
9752 
9753     /* We can blanket copy X[0:7] to R[0:7] */
9754     for (i = 0; i < 8; i++) {
9755         env->regs[i] = env->xregs[i];
9756     }
9757 
9758     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9759      * Otherwise, we copy x8-x12 into the banked user regs.
9760      */
9761     if (mode == ARM_CPU_MODE_FIQ) {
9762         for (i = 8; i < 13; i++) {
9763             env->usr_regs[i - 8] = env->xregs[i];
9764         }
9765     } else {
9766         for (i = 8; i < 13; i++) {
9767             env->regs[i] = env->xregs[i];
9768         }
9769     }
9770 
9771     /* Registers r13 & r14 depend on the current mode.
9772      * If we are in a given mode, we copy the corresponding x registers to r13
9773      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9774      * for the mode.
9775      */
9776     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9777         env->regs[13] = env->xregs[13];
9778         env->regs[14] = env->xregs[14];
9779     } else {
9780         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9781 
9782         /* HYP is an exception in that it does not have its own banked r14 but
9783          * shares the USR r14
9784          */
9785         if (mode == ARM_CPU_MODE_HYP) {
9786             env->regs[14] = env->xregs[14];
9787         } else {
9788             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9789         }
9790     }
9791 
9792     if (mode == ARM_CPU_MODE_HYP) {
9793         env->regs[13] = env->xregs[15];
9794     } else {
9795         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9796     }
9797 
9798     if (mode == ARM_CPU_MODE_IRQ) {
9799         env->regs[14] = env->xregs[16];
9800         env->regs[13] = env->xregs[17];
9801     } else {
9802         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9803         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9804     }
9805 
9806     if (mode == ARM_CPU_MODE_SVC) {
9807         env->regs[14] = env->xregs[18];
9808         env->regs[13] = env->xregs[19];
9809     } else {
9810         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9811         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9812     }
9813 
9814     if (mode == ARM_CPU_MODE_ABT) {
9815         env->regs[14] = env->xregs[20];
9816         env->regs[13] = env->xregs[21];
9817     } else {
9818         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9819         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9820     }
9821 
9822     if (mode == ARM_CPU_MODE_UND) {
9823         env->regs[14] = env->xregs[22];
9824         env->regs[13] = env->xregs[23];
9825     } else {
9826         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9827         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9828     }
9829 
9830     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9831      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9832      * FIQ bank for r8-r14.
9833      */
9834     if (mode == ARM_CPU_MODE_FIQ) {
9835         for (i = 24; i < 31; i++) {
9836             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9837         }
9838     } else {
9839         for (i = 24; i < 29; i++) {
9840             env->fiq_regs[i - 24] = env->xregs[i];
9841         }
9842         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9843         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9844     }
9845 
9846     env->regs[15] = env->pc;
9847 }
9848 
9849 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9850                                    uint32_t mask, uint32_t offset,
9851                                    uint32_t newpc)
9852 {
9853     /* Change the CPU state so as to actually take the exception. */
9854     switch_mode(env, new_mode);
9855     /*
9856      * For exceptions taken to AArch32 we must clear the SS bit in both
9857      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9858      */
9859     env->uncached_cpsr &= ~PSTATE_SS;
9860     env->spsr = cpsr_read(env);
9861     /* Clear IT bits.  */
9862     env->condexec_bits = 0;
9863     /* Switch to the new mode, and to the correct instruction set.  */
9864     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9865     /* Set new mode endianness */
9866     env->uncached_cpsr &= ~CPSR_E;
9867     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9868         env->uncached_cpsr |= CPSR_E;
9869     }
9870     /* J and IL must always be cleared for exception entry */
9871     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9872     env->daif |= mask;
9873 
9874     if (new_mode == ARM_CPU_MODE_HYP) {
9875         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9876         env->elr_el[2] = env->regs[15];
9877     } else {
9878         /*
9879          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9880          * and we should just guard the thumb mode on V4
9881          */
9882         if (arm_feature(env, ARM_FEATURE_V4T)) {
9883             env->thumb =
9884                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9885         }
9886         env->regs[14] = env->regs[15] + offset;
9887     }
9888     env->regs[15] = newpc;
9889 }
9890 
9891 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9892 {
9893     /*
9894      * Handle exception entry to Hyp mode; this is sufficiently
9895      * different to entry to other AArch32 modes that we handle it
9896      * separately here.
9897      *
9898      * The vector table entry used is always the 0x14 Hyp mode entry point,
9899      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9900      * The offset applied to the preferred return address is always zero
9901      * (see DDI0487C.a section G1.12.3).
9902      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9903      */
9904     uint32_t addr, mask;
9905     ARMCPU *cpu = ARM_CPU(cs);
9906     CPUARMState *env = &cpu->env;
9907 
9908     switch (cs->exception_index) {
9909     case EXCP_UDEF:
9910         addr = 0x04;
9911         break;
9912     case EXCP_SWI:
9913         addr = 0x14;
9914         break;
9915     case EXCP_BKPT:
9916         /* Fall through to prefetch abort.  */
9917     case EXCP_PREFETCH_ABORT:
9918         env->cp15.ifar_s = env->exception.vaddress;
9919         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9920                       (uint32_t)env->exception.vaddress);
9921         addr = 0x0c;
9922         break;
9923     case EXCP_DATA_ABORT:
9924         env->cp15.dfar_s = env->exception.vaddress;
9925         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9926                       (uint32_t)env->exception.vaddress);
9927         addr = 0x10;
9928         break;
9929     case EXCP_IRQ:
9930         addr = 0x18;
9931         break;
9932     case EXCP_FIQ:
9933         addr = 0x1c;
9934         break;
9935     case EXCP_HVC:
9936         addr = 0x08;
9937         break;
9938     case EXCP_HYP_TRAP:
9939         addr = 0x14;
9940     default:
9941         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9942     }
9943 
9944     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9945         if (!arm_feature(env, ARM_FEATURE_V8)) {
9946             /*
9947              * QEMU syndrome values are v8-style. v7 has the IL bit
9948              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9949              * If this is a v7 CPU, squash the IL bit in those cases.
9950              */
9951             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9952                 (cs->exception_index == EXCP_DATA_ABORT &&
9953                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9954                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9955                 env->exception.syndrome &= ~ARM_EL_IL;
9956             }
9957         }
9958         env->cp15.esr_el[2] = env->exception.syndrome;
9959     }
9960 
9961     if (arm_current_el(env) != 2 && addr < 0x14) {
9962         addr = 0x14;
9963     }
9964 
9965     mask = 0;
9966     if (!(env->cp15.scr_el3 & SCR_EA)) {
9967         mask |= CPSR_A;
9968     }
9969     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9970         mask |= CPSR_I;
9971     }
9972     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9973         mask |= CPSR_F;
9974     }
9975 
9976     addr += env->cp15.hvbar;
9977 
9978     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9979 }
9980 
9981 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9982 {
9983     ARMCPU *cpu = ARM_CPU(cs);
9984     CPUARMState *env = &cpu->env;
9985     uint32_t addr;
9986     uint32_t mask;
9987     int new_mode;
9988     uint32_t offset;
9989     uint32_t moe;
9990 
9991     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9992     switch (syn_get_ec(env->exception.syndrome)) {
9993     case EC_BREAKPOINT:
9994     case EC_BREAKPOINT_SAME_EL:
9995         moe = 1;
9996         break;
9997     case EC_WATCHPOINT:
9998     case EC_WATCHPOINT_SAME_EL:
9999         moe = 10;
10000         break;
10001     case EC_AA32_BKPT:
10002         moe = 3;
10003         break;
10004     case EC_VECTORCATCH:
10005         moe = 5;
10006         break;
10007     default:
10008         moe = 0;
10009         break;
10010     }
10011 
10012     if (moe) {
10013         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10014     }
10015 
10016     if (env->exception.target_el == 2) {
10017         arm_cpu_do_interrupt_aarch32_hyp(cs);
10018         return;
10019     }
10020 
10021     switch (cs->exception_index) {
10022     case EXCP_UDEF:
10023         new_mode = ARM_CPU_MODE_UND;
10024         addr = 0x04;
10025         mask = CPSR_I;
10026         if (env->thumb)
10027             offset = 2;
10028         else
10029             offset = 4;
10030         break;
10031     case EXCP_SWI:
10032         new_mode = ARM_CPU_MODE_SVC;
10033         addr = 0x08;
10034         mask = CPSR_I;
10035         /* The PC already points to the next instruction.  */
10036         offset = 0;
10037         break;
10038     case EXCP_BKPT:
10039         /* Fall through to prefetch abort.  */
10040     case EXCP_PREFETCH_ABORT:
10041         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10042         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10043         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10044                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10045         new_mode = ARM_CPU_MODE_ABT;
10046         addr = 0x0c;
10047         mask = CPSR_A | CPSR_I;
10048         offset = 4;
10049         break;
10050     case EXCP_DATA_ABORT:
10051         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10052         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10053         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10054                       env->exception.fsr,
10055                       (uint32_t)env->exception.vaddress);
10056         new_mode = ARM_CPU_MODE_ABT;
10057         addr = 0x10;
10058         mask = CPSR_A | CPSR_I;
10059         offset = 8;
10060         break;
10061     case EXCP_IRQ:
10062         new_mode = ARM_CPU_MODE_IRQ;
10063         addr = 0x18;
10064         /* Disable IRQ and imprecise data aborts.  */
10065         mask = CPSR_A | CPSR_I;
10066         offset = 4;
10067         if (env->cp15.scr_el3 & SCR_IRQ) {
10068             /* IRQ routed to monitor mode */
10069             new_mode = ARM_CPU_MODE_MON;
10070             mask |= CPSR_F;
10071         }
10072         break;
10073     case EXCP_FIQ:
10074         new_mode = ARM_CPU_MODE_FIQ;
10075         addr = 0x1c;
10076         /* Disable FIQ, IRQ and imprecise data aborts.  */
10077         mask = CPSR_A | CPSR_I | CPSR_F;
10078         if (env->cp15.scr_el3 & SCR_FIQ) {
10079             /* FIQ routed to monitor mode */
10080             new_mode = ARM_CPU_MODE_MON;
10081         }
10082         offset = 4;
10083         break;
10084     case EXCP_VIRQ:
10085         new_mode = ARM_CPU_MODE_IRQ;
10086         addr = 0x18;
10087         /* Disable IRQ and imprecise data aborts.  */
10088         mask = CPSR_A | CPSR_I;
10089         offset = 4;
10090         break;
10091     case EXCP_VFIQ:
10092         new_mode = ARM_CPU_MODE_FIQ;
10093         addr = 0x1c;
10094         /* Disable FIQ, IRQ and imprecise data aborts.  */
10095         mask = CPSR_A | CPSR_I | CPSR_F;
10096         offset = 4;
10097         break;
10098     case EXCP_SMC:
10099         new_mode = ARM_CPU_MODE_MON;
10100         addr = 0x08;
10101         mask = CPSR_A | CPSR_I | CPSR_F;
10102         offset = 0;
10103         break;
10104     default:
10105         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10106         return; /* Never happens.  Keep compiler happy.  */
10107     }
10108 
10109     if (new_mode == ARM_CPU_MODE_MON) {
10110         addr += env->cp15.mvbar;
10111     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10112         /* High vectors. When enabled, base address cannot be remapped. */
10113         addr += 0xffff0000;
10114     } else {
10115         /* ARM v7 architectures provide a vector base address register to remap
10116          * the interrupt vector table.
10117          * This register is only followed in non-monitor mode, and is banked.
10118          * Note: only bits 31:5 are valid.
10119          */
10120         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10121     }
10122 
10123     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10124         env->cp15.scr_el3 &= ~SCR_NS;
10125     }
10126 
10127     take_aarch32_exception(env, new_mode, mask, offset, addr);
10128 }
10129 
10130 /* Handle exception entry to a target EL which is using AArch64 */
10131 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10132 {
10133     ARMCPU *cpu = ARM_CPU(cs);
10134     CPUARMState *env = &cpu->env;
10135     unsigned int new_el = env->exception.target_el;
10136     target_ulong addr = env->cp15.vbar_el[new_el];
10137     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10138     unsigned int cur_el = arm_current_el(env);
10139 
10140     /*
10141      * Note that new_el can never be 0.  If cur_el is 0, then
10142      * el0_a64 is is_a64(), else el0_a64 is ignored.
10143      */
10144     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10145 
10146     if (cur_el < new_el) {
10147         /* Entry vector offset depends on whether the implemented EL
10148          * immediately lower than the target level is using AArch32 or AArch64
10149          */
10150         bool is_aa64;
10151 
10152         switch (new_el) {
10153         case 3:
10154             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10155             break;
10156         case 2:
10157             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
10158             break;
10159         case 1:
10160             is_aa64 = is_a64(env);
10161             break;
10162         default:
10163             g_assert_not_reached();
10164         }
10165 
10166         if (is_aa64) {
10167             addr += 0x400;
10168         } else {
10169             addr += 0x600;
10170         }
10171     } else if (pstate_read(env) & PSTATE_SP) {
10172         addr += 0x200;
10173     }
10174 
10175     switch (cs->exception_index) {
10176     case EXCP_PREFETCH_ABORT:
10177     case EXCP_DATA_ABORT:
10178         env->cp15.far_el[new_el] = env->exception.vaddress;
10179         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10180                       env->cp15.far_el[new_el]);
10181         /* fall through */
10182     case EXCP_BKPT:
10183     case EXCP_UDEF:
10184     case EXCP_SWI:
10185     case EXCP_HVC:
10186     case EXCP_HYP_TRAP:
10187     case EXCP_SMC:
10188         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
10189             /*
10190              * QEMU internal FP/SIMD syndromes from AArch32 include the
10191              * TA and coproc fields which are only exposed if the exception
10192              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10193              * AArch64 format syndrome.
10194              */
10195             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10196         }
10197         env->cp15.esr_el[new_el] = env->exception.syndrome;
10198         break;
10199     case EXCP_IRQ:
10200     case EXCP_VIRQ:
10201         addr += 0x80;
10202         break;
10203     case EXCP_FIQ:
10204     case EXCP_VFIQ:
10205         addr += 0x100;
10206         break;
10207     case EXCP_SEMIHOST:
10208         qemu_log_mask(CPU_LOG_INT,
10209                       "...handling as semihosting call 0x%" PRIx64 "\n",
10210                       env->xregs[0]);
10211         env->xregs[0] = do_arm_semihosting(env);
10212         return;
10213     default:
10214         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10215     }
10216 
10217     if (is_a64(env)) {
10218         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
10219         aarch64_save_sp(env, arm_current_el(env));
10220         env->elr_el[new_el] = env->pc;
10221     } else {
10222         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
10223         env->elr_el[new_el] = env->regs[15];
10224 
10225         aarch64_sync_32_to_64(env);
10226 
10227         env->condexec_bits = 0;
10228     }
10229     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10230                   env->elr_el[new_el]);
10231 
10232     pstate_write(env, PSTATE_DAIF | new_mode);
10233     env->aarch64 = 1;
10234     aarch64_restore_sp(env, new_el);
10235 
10236     env->pc = addr;
10237 
10238     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10239                   new_el, env->pc, pstate_read(env));
10240 }
10241 
10242 static inline bool check_for_semihosting(CPUState *cs)
10243 {
10244     /* Check whether this exception is a semihosting call; if so
10245      * then handle it and return true; otherwise return false.
10246      */
10247     ARMCPU *cpu = ARM_CPU(cs);
10248     CPUARMState *env = &cpu->env;
10249 
10250     if (is_a64(env)) {
10251         if (cs->exception_index == EXCP_SEMIHOST) {
10252             /* This is always the 64-bit semihosting exception.
10253              * The "is this usermode" and "is semihosting enabled"
10254              * checks have been done at translate time.
10255              */
10256             qemu_log_mask(CPU_LOG_INT,
10257                           "...handling as semihosting call 0x%" PRIx64 "\n",
10258                           env->xregs[0]);
10259             env->xregs[0] = do_arm_semihosting(env);
10260             return true;
10261         }
10262         return false;
10263     } else {
10264         uint32_t imm;
10265 
10266         /* Only intercept calls from privileged modes, to provide some
10267          * semblance of security.
10268          */
10269         if (cs->exception_index != EXCP_SEMIHOST &&
10270             (!semihosting_enabled() ||
10271              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
10272             return false;
10273         }
10274 
10275         switch (cs->exception_index) {
10276         case EXCP_SEMIHOST:
10277             /* This is always a semihosting call; the "is this usermode"
10278              * and "is semihosting enabled" checks have been done at
10279              * translate time.
10280              */
10281             break;
10282         case EXCP_SWI:
10283             /* Check for semihosting interrupt.  */
10284             if (env->thumb) {
10285                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
10286                     & 0xff;
10287                 if (imm == 0xab) {
10288                     break;
10289                 }
10290             } else {
10291                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
10292                     & 0xffffff;
10293                 if (imm == 0x123456) {
10294                     break;
10295                 }
10296             }
10297             return false;
10298         case EXCP_BKPT:
10299             /* See if this is a semihosting syscall.  */
10300             if (env->thumb) {
10301                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
10302                     & 0xff;
10303                 if (imm == 0xab) {
10304                     env->regs[15] += 2;
10305                     break;
10306                 }
10307             }
10308             return false;
10309         default:
10310             return false;
10311         }
10312 
10313         qemu_log_mask(CPU_LOG_INT,
10314                       "...handling as semihosting call 0x%x\n",
10315                       env->regs[0]);
10316         env->regs[0] = do_arm_semihosting(env);
10317         return true;
10318     }
10319 }
10320 
10321 /* Handle a CPU exception for A and R profile CPUs.
10322  * Do any appropriate logging, handle PSCI calls, and then hand off
10323  * to the AArch64-entry or AArch32-entry function depending on the
10324  * target exception level's register width.
10325  */
10326 void arm_cpu_do_interrupt(CPUState *cs)
10327 {
10328     ARMCPU *cpu = ARM_CPU(cs);
10329     CPUARMState *env = &cpu->env;
10330     unsigned int new_el = env->exception.target_el;
10331 
10332     assert(!arm_feature(env, ARM_FEATURE_M));
10333 
10334     arm_log_exception(cs->exception_index);
10335     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10336                   new_el);
10337     if (qemu_loglevel_mask(CPU_LOG_INT)
10338         && !excp_is_internal(cs->exception_index)) {
10339         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10340                       syn_get_ec(env->exception.syndrome),
10341                       env->exception.syndrome);
10342     }
10343 
10344     if (arm_is_psci_call(cpu, cs->exception_index)) {
10345         arm_handle_psci_call(cpu);
10346         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10347         return;
10348     }
10349 
10350     /* Semihosting semantics depend on the register width of the
10351      * code that caused the exception, not the target exception level,
10352      * so must be handled here.
10353      */
10354     if (check_for_semihosting(cs)) {
10355         return;
10356     }
10357 
10358     /* Hooks may change global state so BQL should be held, also the
10359      * BQL needs to be held for any modification of
10360      * cs->interrupt_request.
10361      */
10362     g_assert(qemu_mutex_iothread_locked());
10363 
10364     arm_call_pre_el_change_hook(cpu);
10365 
10366     assert(!excp_is_internal(cs->exception_index));
10367     if (arm_el_is_aa64(env, new_el)) {
10368         arm_cpu_do_interrupt_aarch64(cs);
10369     } else {
10370         arm_cpu_do_interrupt_aarch32(cs);
10371     }
10372 
10373     arm_call_el_change_hook(cpu);
10374 
10375     if (!kvm_enabled()) {
10376         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10377     }
10378 }
10379 #endif /* !CONFIG_USER_ONLY */
10380 
10381 /* Return the exception level which controls this address translation regime */
10382 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
10383 {
10384     switch (mmu_idx) {
10385     case ARMMMUIdx_S2NS:
10386     case ARMMMUIdx_S1E2:
10387         return 2;
10388     case ARMMMUIdx_S1E3:
10389         return 3;
10390     case ARMMMUIdx_S1SE0:
10391         return arm_el_is_aa64(env, 3) ? 1 : 3;
10392     case ARMMMUIdx_S1SE1:
10393     case ARMMMUIdx_S1NSE0:
10394     case ARMMMUIdx_S1NSE1:
10395     case ARMMMUIdx_MPrivNegPri:
10396     case ARMMMUIdx_MUserNegPri:
10397     case ARMMMUIdx_MPriv:
10398     case ARMMMUIdx_MUser:
10399     case ARMMMUIdx_MSPrivNegPri:
10400     case ARMMMUIdx_MSUserNegPri:
10401     case ARMMMUIdx_MSPriv:
10402     case ARMMMUIdx_MSUser:
10403         return 1;
10404     default:
10405         g_assert_not_reached();
10406     }
10407 }
10408 
10409 #ifndef CONFIG_USER_ONLY
10410 
10411 /* Return the SCTLR value which controls this address translation regime */
10412 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10413 {
10414     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10415 }
10416 
10417 /* Return true if the specified stage of address translation is disabled */
10418 static inline bool regime_translation_disabled(CPUARMState *env,
10419                                                ARMMMUIdx mmu_idx)
10420 {
10421     if (arm_feature(env, ARM_FEATURE_M)) {
10422         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10423                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10424         case R_V7M_MPU_CTRL_ENABLE_MASK:
10425             /* Enabled, but not for HardFault and NMI */
10426             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10427         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10428             /* Enabled for all cases */
10429             return false;
10430         case 0:
10431         default:
10432             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10433              * we warned about that in armv7m_nvic.c when the guest set it.
10434              */
10435             return true;
10436         }
10437     }
10438 
10439     if (mmu_idx == ARMMMUIdx_S2NS) {
10440         /* HCR.DC means HCR.VM behaves as 1 */
10441         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10442     }
10443 
10444     if (env->cp15.hcr_el2 & HCR_TGE) {
10445         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10446         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10447             return true;
10448         }
10449     }
10450 
10451     if ((env->cp15.hcr_el2 & HCR_DC) &&
10452         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
10453         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10454         return true;
10455     }
10456 
10457     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10458 }
10459 
10460 static inline bool regime_translation_big_endian(CPUARMState *env,
10461                                                  ARMMMUIdx mmu_idx)
10462 {
10463     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10464 }
10465 
10466 /* Return the TTBR associated with this translation regime */
10467 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10468                                    int ttbrn)
10469 {
10470     if (mmu_idx == ARMMMUIdx_S2NS) {
10471         return env->cp15.vttbr_el2;
10472     }
10473     if (ttbrn == 0) {
10474         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10475     } else {
10476         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10477     }
10478 }
10479 
10480 #endif /* !CONFIG_USER_ONLY */
10481 
10482 /* Return the TCR controlling this translation regime */
10483 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
10484 {
10485     if (mmu_idx == ARMMMUIdx_S2NS) {
10486         return &env->cp15.vtcr_el2;
10487     }
10488     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
10489 }
10490 
10491 /* Convert a possible stage1+2 MMU index into the appropriate
10492  * stage 1 MMU index
10493  */
10494 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10495 {
10496     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10497         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
10498     }
10499     return mmu_idx;
10500 }
10501 
10502 /* Return true if the translation regime is using LPAE format page tables */
10503 static inline bool regime_using_lpae_format(CPUARMState *env,
10504                                             ARMMMUIdx mmu_idx)
10505 {
10506     int el = regime_el(env, mmu_idx);
10507     if (el == 2 || arm_el_is_aa64(env, el)) {
10508         return true;
10509     }
10510     if (arm_feature(env, ARM_FEATURE_LPAE)
10511         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10512         return true;
10513     }
10514     return false;
10515 }
10516 
10517 /* Returns true if the stage 1 translation regime is using LPAE format page
10518  * tables. Used when raising alignment exceptions, whose FSR changes depending
10519  * on whether the long or short descriptor format is in use. */
10520 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10521 {
10522     mmu_idx = stage_1_mmu_idx(mmu_idx);
10523 
10524     return regime_using_lpae_format(env, mmu_idx);
10525 }
10526 
10527 #ifndef CONFIG_USER_ONLY
10528 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10529 {
10530     switch (mmu_idx) {
10531     case ARMMMUIdx_S1SE0:
10532     case ARMMMUIdx_S1NSE0:
10533     case ARMMMUIdx_MUser:
10534     case ARMMMUIdx_MSUser:
10535     case ARMMMUIdx_MUserNegPri:
10536     case ARMMMUIdx_MSUserNegPri:
10537         return true;
10538     default:
10539         return false;
10540     case ARMMMUIdx_S12NSE0:
10541     case ARMMMUIdx_S12NSE1:
10542         g_assert_not_reached();
10543     }
10544 }
10545 
10546 /* Translate section/page access permissions to page
10547  * R/W protection flags
10548  *
10549  * @env:         CPUARMState
10550  * @mmu_idx:     MMU index indicating required translation regime
10551  * @ap:          The 3-bit access permissions (AP[2:0])
10552  * @domain_prot: The 2-bit domain access permissions
10553  */
10554 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10555                                 int ap, int domain_prot)
10556 {
10557     bool is_user = regime_is_user(env, mmu_idx);
10558 
10559     if (domain_prot == 3) {
10560         return PAGE_READ | PAGE_WRITE;
10561     }
10562 
10563     switch (ap) {
10564     case 0:
10565         if (arm_feature(env, ARM_FEATURE_V7)) {
10566             return 0;
10567         }
10568         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10569         case SCTLR_S:
10570             return is_user ? 0 : PAGE_READ;
10571         case SCTLR_R:
10572             return PAGE_READ;
10573         default:
10574             return 0;
10575         }
10576     case 1:
10577         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10578     case 2:
10579         if (is_user) {
10580             return PAGE_READ;
10581         } else {
10582             return PAGE_READ | PAGE_WRITE;
10583         }
10584     case 3:
10585         return PAGE_READ | PAGE_WRITE;
10586     case 4: /* Reserved.  */
10587         return 0;
10588     case 5:
10589         return is_user ? 0 : PAGE_READ;
10590     case 6:
10591         return PAGE_READ;
10592     case 7:
10593         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10594             return 0;
10595         }
10596         return PAGE_READ;
10597     default:
10598         g_assert_not_reached();
10599     }
10600 }
10601 
10602 /* Translate section/page access permissions to page
10603  * R/W protection flags.
10604  *
10605  * @ap:      The 2-bit simple AP (AP[2:1])
10606  * @is_user: TRUE if accessing from PL0
10607  */
10608 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10609 {
10610     switch (ap) {
10611     case 0:
10612         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10613     case 1:
10614         return PAGE_READ | PAGE_WRITE;
10615     case 2:
10616         return is_user ? 0 : PAGE_READ;
10617     case 3:
10618         return PAGE_READ;
10619     default:
10620         g_assert_not_reached();
10621     }
10622 }
10623 
10624 static inline int
10625 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10626 {
10627     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10628 }
10629 
10630 /* Translate S2 section/page access permissions to protection flags
10631  *
10632  * @env:     CPUARMState
10633  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10634  * @xn:      XN (execute-never) bit
10635  */
10636 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
10637 {
10638     int prot = 0;
10639 
10640     if (s2ap & 1) {
10641         prot |= PAGE_READ;
10642     }
10643     if (s2ap & 2) {
10644         prot |= PAGE_WRITE;
10645     }
10646     if (!xn) {
10647         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10648             prot |= PAGE_EXEC;
10649         }
10650     }
10651     return prot;
10652 }
10653 
10654 /* Translate section/page access permissions to protection flags
10655  *
10656  * @env:     CPUARMState
10657  * @mmu_idx: MMU index indicating required translation regime
10658  * @is_aa64: TRUE if AArch64
10659  * @ap:      The 2-bit simple AP (AP[2:1])
10660  * @ns:      NS (non-secure) bit
10661  * @xn:      XN (execute-never) bit
10662  * @pxn:     PXN (privileged execute-never) bit
10663  */
10664 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10665                       int ap, int ns, int xn, int pxn)
10666 {
10667     bool is_user = regime_is_user(env, mmu_idx);
10668     int prot_rw, user_rw;
10669     bool have_wxn;
10670     int wxn = 0;
10671 
10672     assert(mmu_idx != ARMMMUIdx_S2NS);
10673 
10674     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10675     if (is_user) {
10676         prot_rw = user_rw;
10677     } else {
10678         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10679     }
10680 
10681     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10682         return prot_rw;
10683     }
10684 
10685     /* TODO have_wxn should be replaced with
10686      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10687      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10688      * compatible processors have EL2, which is required for [U]WXN.
10689      */
10690     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10691 
10692     if (have_wxn) {
10693         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10694     }
10695 
10696     if (is_aa64) {
10697         switch (regime_el(env, mmu_idx)) {
10698         case 1:
10699             if (!is_user) {
10700                 xn = pxn || (user_rw & PAGE_WRITE);
10701             }
10702             break;
10703         case 2:
10704         case 3:
10705             break;
10706         }
10707     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10708         switch (regime_el(env, mmu_idx)) {
10709         case 1:
10710         case 3:
10711             if (is_user) {
10712                 xn = xn || !(user_rw & PAGE_READ);
10713             } else {
10714                 int uwxn = 0;
10715                 if (have_wxn) {
10716                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10717                 }
10718                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10719                      (uwxn && (user_rw & PAGE_WRITE));
10720             }
10721             break;
10722         case 2:
10723             break;
10724         }
10725     } else {
10726         xn = wxn = 0;
10727     }
10728 
10729     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10730         return prot_rw;
10731     }
10732     return prot_rw | PAGE_EXEC;
10733 }
10734 
10735 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10736                                      uint32_t *table, uint32_t address)
10737 {
10738     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10739     TCR *tcr = regime_tcr(env, mmu_idx);
10740 
10741     if (address & tcr->mask) {
10742         if (tcr->raw_tcr & TTBCR_PD1) {
10743             /* Translation table walk disabled for TTBR1 */
10744             return false;
10745         }
10746         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10747     } else {
10748         if (tcr->raw_tcr & TTBCR_PD0) {
10749             /* Translation table walk disabled for TTBR0 */
10750             return false;
10751         }
10752         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10753     }
10754     *table |= (address >> 18) & 0x3ffc;
10755     return true;
10756 }
10757 
10758 /* Translate a S1 pagetable walk through S2 if needed.  */
10759 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10760                                hwaddr addr, MemTxAttrs txattrs,
10761                                ARMMMUFaultInfo *fi)
10762 {
10763     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10764         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10765         target_ulong s2size;
10766         hwaddr s2pa;
10767         int s2prot;
10768         int ret;
10769         ARMCacheAttrs cacheattrs = {};
10770         ARMCacheAttrs *pcacheattrs = NULL;
10771 
10772         if (env->cp15.hcr_el2 & HCR_PTW) {
10773             /*
10774              * PTW means we must fault if this S1 walk touches S2 Device
10775              * memory; otherwise we don't care about the attributes and can
10776              * save the S2 translation the effort of computing them.
10777              */
10778             pcacheattrs = &cacheattrs;
10779         }
10780 
10781         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10782                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10783         if (ret) {
10784             assert(fi->type != ARMFault_None);
10785             fi->s2addr = addr;
10786             fi->stage2 = true;
10787             fi->s1ptw = true;
10788             return ~0;
10789         }
10790         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10791             /* Access was to Device memory: generate Permission fault */
10792             fi->type = ARMFault_Permission;
10793             fi->s2addr = addr;
10794             fi->stage2 = true;
10795             fi->s1ptw = true;
10796             return ~0;
10797         }
10798         addr = s2pa;
10799     }
10800     return addr;
10801 }
10802 
10803 /* All loads done in the course of a page table walk go through here. */
10804 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10805                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10806 {
10807     ARMCPU *cpu = ARM_CPU(cs);
10808     CPUARMState *env = &cpu->env;
10809     MemTxAttrs attrs = {};
10810     MemTxResult result = MEMTX_OK;
10811     AddressSpace *as;
10812     uint32_t data;
10813 
10814     attrs.secure = is_secure;
10815     as = arm_addressspace(cs, attrs);
10816     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10817     if (fi->s1ptw) {
10818         return 0;
10819     }
10820     if (regime_translation_big_endian(env, mmu_idx)) {
10821         data = address_space_ldl_be(as, addr, attrs, &result);
10822     } else {
10823         data = address_space_ldl_le(as, addr, attrs, &result);
10824     }
10825     if (result == MEMTX_OK) {
10826         return data;
10827     }
10828     fi->type = ARMFault_SyncExternalOnWalk;
10829     fi->ea = arm_extabort_type(result);
10830     return 0;
10831 }
10832 
10833 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10834                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10835 {
10836     ARMCPU *cpu = ARM_CPU(cs);
10837     CPUARMState *env = &cpu->env;
10838     MemTxAttrs attrs = {};
10839     MemTxResult result = MEMTX_OK;
10840     AddressSpace *as;
10841     uint64_t data;
10842 
10843     attrs.secure = is_secure;
10844     as = arm_addressspace(cs, attrs);
10845     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10846     if (fi->s1ptw) {
10847         return 0;
10848     }
10849     if (regime_translation_big_endian(env, mmu_idx)) {
10850         data = address_space_ldq_be(as, addr, attrs, &result);
10851     } else {
10852         data = address_space_ldq_le(as, addr, attrs, &result);
10853     }
10854     if (result == MEMTX_OK) {
10855         return data;
10856     }
10857     fi->type = ARMFault_SyncExternalOnWalk;
10858     fi->ea = arm_extabort_type(result);
10859     return 0;
10860 }
10861 
10862 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10863                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10864                              hwaddr *phys_ptr, int *prot,
10865                              target_ulong *page_size,
10866                              ARMMMUFaultInfo *fi)
10867 {
10868     CPUState *cs = CPU(arm_env_get_cpu(env));
10869     int level = 1;
10870     uint32_t table;
10871     uint32_t desc;
10872     int type;
10873     int ap;
10874     int domain = 0;
10875     int domain_prot;
10876     hwaddr phys_addr;
10877     uint32_t dacr;
10878 
10879     /* Pagetable walk.  */
10880     /* Lookup l1 descriptor.  */
10881     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10882         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10883         fi->type = ARMFault_Translation;
10884         goto do_fault;
10885     }
10886     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10887                        mmu_idx, fi);
10888     if (fi->type != ARMFault_None) {
10889         goto do_fault;
10890     }
10891     type = (desc & 3);
10892     domain = (desc >> 5) & 0x0f;
10893     if (regime_el(env, mmu_idx) == 1) {
10894         dacr = env->cp15.dacr_ns;
10895     } else {
10896         dacr = env->cp15.dacr_s;
10897     }
10898     domain_prot = (dacr >> (domain * 2)) & 3;
10899     if (type == 0) {
10900         /* Section translation fault.  */
10901         fi->type = ARMFault_Translation;
10902         goto do_fault;
10903     }
10904     if (type != 2) {
10905         level = 2;
10906     }
10907     if (domain_prot == 0 || domain_prot == 2) {
10908         fi->type = ARMFault_Domain;
10909         goto do_fault;
10910     }
10911     if (type == 2) {
10912         /* 1Mb section.  */
10913         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10914         ap = (desc >> 10) & 3;
10915         *page_size = 1024 * 1024;
10916     } else {
10917         /* Lookup l2 entry.  */
10918         if (type == 1) {
10919             /* Coarse pagetable.  */
10920             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10921         } else {
10922             /* Fine pagetable.  */
10923             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10924         }
10925         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10926                            mmu_idx, fi);
10927         if (fi->type != ARMFault_None) {
10928             goto do_fault;
10929         }
10930         switch (desc & 3) {
10931         case 0: /* Page translation fault.  */
10932             fi->type = ARMFault_Translation;
10933             goto do_fault;
10934         case 1: /* 64k page.  */
10935             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10936             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10937             *page_size = 0x10000;
10938             break;
10939         case 2: /* 4k page.  */
10940             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10941             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10942             *page_size = 0x1000;
10943             break;
10944         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10945             if (type == 1) {
10946                 /* ARMv6/XScale extended small page format */
10947                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10948                     || arm_feature(env, ARM_FEATURE_V6)) {
10949                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10950                     *page_size = 0x1000;
10951                 } else {
10952                     /* UNPREDICTABLE in ARMv5; we choose to take a
10953                      * page translation fault.
10954                      */
10955                     fi->type = ARMFault_Translation;
10956                     goto do_fault;
10957                 }
10958             } else {
10959                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10960                 *page_size = 0x400;
10961             }
10962             ap = (desc >> 4) & 3;
10963             break;
10964         default:
10965             /* Never happens, but compiler isn't smart enough to tell.  */
10966             abort();
10967         }
10968     }
10969     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10970     *prot |= *prot ? PAGE_EXEC : 0;
10971     if (!(*prot & (1 << access_type))) {
10972         /* Access permission fault.  */
10973         fi->type = ARMFault_Permission;
10974         goto do_fault;
10975     }
10976     *phys_ptr = phys_addr;
10977     return false;
10978 do_fault:
10979     fi->domain = domain;
10980     fi->level = level;
10981     return true;
10982 }
10983 
10984 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10985                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10986                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10987                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10988 {
10989     CPUState *cs = CPU(arm_env_get_cpu(env));
10990     int level = 1;
10991     uint32_t table;
10992     uint32_t desc;
10993     uint32_t xn;
10994     uint32_t pxn = 0;
10995     int type;
10996     int ap;
10997     int domain = 0;
10998     int domain_prot;
10999     hwaddr phys_addr;
11000     uint32_t dacr;
11001     bool ns;
11002 
11003     /* Pagetable walk.  */
11004     /* Lookup l1 descriptor.  */
11005     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11006         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11007         fi->type = ARMFault_Translation;
11008         goto do_fault;
11009     }
11010     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11011                        mmu_idx, fi);
11012     if (fi->type != ARMFault_None) {
11013         goto do_fault;
11014     }
11015     type = (desc & 3);
11016     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
11017         /* Section translation fault, or attempt to use the encoding
11018          * which is Reserved on implementations without PXN.
11019          */
11020         fi->type = ARMFault_Translation;
11021         goto do_fault;
11022     }
11023     if ((type == 1) || !(desc & (1 << 18))) {
11024         /* Page or Section.  */
11025         domain = (desc >> 5) & 0x0f;
11026     }
11027     if (regime_el(env, mmu_idx) == 1) {
11028         dacr = env->cp15.dacr_ns;
11029     } else {
11030         dacr = env->cp15.dacr_s;
11031     }
11032     if (type == 1) {
11033         level = 2;
11034     }
11035     domain_prot = (dacr >> (domain * 2)) & 3;
11036     if (domain_prot == 0 || domain_prot == 2) {
11037         /* Section or Page domain fault */
11038         fi->type = ARMFault_Domain;
11039         goto do_fault;
11040     }
11041     if (type != 1) {
11042         if (desc & (1 << 18)) {
11043             /* Supersection.  */
11044             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11045             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11046             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11047             *page_size = 0x1000000;
11048         } else {
11049             /* Section.  */
11050             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11051             *page_size = 0x100000;
11052         }
11053         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11054         xn = desc & (1 << 4);
11055         pxn = desc & 1;
11056         ns = extract32(desc, 19, 1);
11057     } else {
11058         if (arm_feature(env, ARM_FEATURE_PXN)) {
11059             pxn = (desc >> 2) & 1;
11060         }
11061         ns = extract32(desc, 3, 1);
11062         /* Lookup l2 entry.  */
11063         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11064         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11065                            mmu_idx, fi);
11066         if (fi->type != ARMFault_None) {
11067             goto do_fault;
11068         }
11069         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11070         switch (desc & 3) {
11071         case 0: /* Page translation fault.  */
11072             fi->type = ARMFault_Translation;
11073             goto do_fault;
11074         case 1: /* 64k page.  */
11075             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11076             xn = desc & (1 << 15);
11077             *page_size = 0x10000;
11078             break;
11079         case 2: case 3: /* 4k page.  */
11080             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11081             xn = desc & 1;
11082             *page_size = 0x1000;
11083             break;
11084         default:
11085             /* Never happens, but compiler isn't smart enough to tell.  */
11086             abort();
11087         }
11088     }
11089     if (domain_prot == 3) {
11090         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11091     } else {
11092         if (pxn && !regime_is_user(env, mmu_idx)) {
11093             xn = 1;
11094         }
11095         if (xn && access_type == MMU_INST_FETCH) {
11096             fi->type = ARMFault_Permission;
11097             goto do_fault;
11098         }
11099 
11100         if (arm_feature(env, ARM_FEATURE_V6K) &&
11101                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11102             /* The simplified model uses AP[0] as an access control bit.  */
11103             if ((ap & 1) == 0) {
11104                 /* Access flag fault.  */
11105                 fi->type = ARMFault_AccessFlag;
11106                 goto do_fault;
11107             }
11108             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11109         } else {
11110             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11111         }
11112         if (*prot && !xn) {
11113             *prot |= PAGE_EXEC;
11114         }
11115         if (!(*prot & (1 << access_type))) {
11116             /* Access permission fault.  */
11117             fi->type = ARMFault_Permission;
11118             goto do_fault;
11119         }
11120     }
11121     if (ns) {
11122         /* The NS bit will (as required by the architecture) have no effect if
11123          * the CPU doesn't support TZ or this is a non-secure translation
11124          * regime, because the attribute will already be non-secure.
11125          */
11126         attrs->secure = false;
11127     }
11128     *phys_ptr = phys_addr;
11129     return false;
11130 do_fault:
11131     fi->domain = domain;
11132     fi->level = level;
11133     return true;
11134 }
11135 
11136 /*
11137  * check_s2_mmu_setup
11138  * @cpu:        ARMCPU
11139  * @is_aa64:    True if the translation regime is in AArch64 state
11140  * @startlevel: Suggested starting level
11141  * @inputsize:  Bitsize of IPAs
11142  * @stride:     Page-table stride (See the ARM ARM)
11143  *
11144  * Returns true if the suggested S2 translation parameters are OK and
11145  * false otherwise.
11146  */
11147 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11148                                int inputsize, int stride)
11149 {
11150     const int grainsize = stride + 3;
11151     int startsizecheck;
11152 
11153     /* Negative levels are never allowed.  */
11154     if (level < 0) {
11155         return false;
11156     }
11157 
11158     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11159     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11160         return false;
11161     }
11162 
11163     if (is_aa64) {
11164         CPUARMState *env = &cpu->env;
11165         unsigned int pamax = arm_pamax(cpu);
11166 
11167         switch (stride) {
11168         case 13: /* 64KB Pages.  */
11169             if (level == 0 || (level == 1 && pamax <= 42)) {
11170                 return false;
11171             }
11172             break;
11173         case 11: /* 16KB Pages.  */
11174             if (level == 0 || (level == 1 && pamax <= 40)) {
11175                 return false;
11176             }
11177             break;
11178         case 9: /* 4KB Pages.  */
11179             if (level == 0 && pamax <= 42) {
11180                 return false;
11181             }
11182             break;
11183         default:
11184             g_assert_not_reached();
11185         }
11186 
11187         /* Inputsize checks.  */
11188         if (inputsize > pamax &&
11189             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11190             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11191             return false;
11192         }
11193     } else {
11194         /* AArch32 only supports 4KB pages. Assert on that.  */
11195         assert(stride == 9);
11196 
11197         if (level == 0) {
11198             return false;
11199         }
11200     }
11201     return true;
11202 }
11203 
11204 /* Translate from the 4-bit stage 2 representation of
11205  * memory attributes (without cache-allocation hints) to
11206  * the 8-bit representation of the stage 1 MAIR registers
11207  * (which includes allocation hints).
11208  *
11209  * ref: shared/translation/attrs/S2AttrDecode()
11210  *      .../S2ConvertAttrsHints()
11211  */
11212 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11213 {
11214     uint8_t hiattr = extract32(s2attrs, 2, 2);
11215     uint8_t loattr = extract32(s2attrs, 0, 2);
11216     uint8_t hihint = 0, lohint = 0;
11217 
11218     if (hiattr != 0) { /* normal memory */
11219         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
11220             hiattr = loattr = 1; /* non-cacheable */
11221         } else {
11222             if (hiattr != 1) { /* Write-through or write-back */
11223                 hihint = 3; /* RW allocate */
11224             }
11225             if (loattr != 1) { /* Write-through or write-back */
11226                 lohint = 3; /* RW allocate */
11227             }
11228         }
11229     }
11230 
11231     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11232 }
11233 #endif /* !CONFIG_USER_ONLY */
11234 
11235 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
11236                                         ARMMMUIdx mmu_idx)
11237 {
11238     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11239     uint32_t el = regime_el(env, mmu_idx);
11240     bool tbi, tbid, epd, hpd, using16k, using64k;
11241     int select, tsz;
11242 
11243     /*
11244      * Bit 55 is always between the two regions, and is canonical for
11245      * determining if address tagging is enabled.
11246      */
11247     select = extract64(va, 55, 1);
11248 
11249     if (el > 1) {
11250         tsz = extract32(tcr, 0, 6);
11251         using64k = extract32(tcr, 14, 1);
11252         using16k = extract32(tcr, 15, 1);
11253         if (mmu_idx == ARMMMUIdx_S2NS) {
11254             /* VTCR_EL2 */
11255             tbi = tbid = hpd = false;
11256         } else {
11257             tbi = extract32(tcr, 20, 1);
11258             hpd = extract32(tcr, 24, 1);
11259             tbid = extract32(tcr, 29, 1);
11260         }
11261         epd = false;
11262     } else if (!select) {
11263         tsz = extract32(tcr, 0, 6);
11264         epd = extract32(tcr, 7, 1);
11265         using64k = extract32(tcr, 14, 1);
11266         using16k = extract32(tcr, 15, 1);
11267         tbi = extract64(tcr, 37, 1);
11268         hpd = extract64(tcr, 41, 1);
11269         tbid = extract64(tcr, 51, 1);
11270     } else {
11271         int tg = extract32(tcr, 30, 2);
11272         using16k = tg == 1;
11273         using64k = tg == 3;
11274         tsz = extract32(tcr, 16, 6);
11275         epd = extract32(tcr, 23, 1);
11276         tbi = extract64(tcr, 38, 1);
11277         hpd = extract64(tcr, 42, 1);
11278         tbid = extract64(tcr, 52, 1);
11279     }
11280     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
11281     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11282 
11283     return (ARMVAParameters) {
11284         .tsz = tsz,
11285         .select = select,
11286         .tbi = tbi,
11287         .tbid = tbid,
11288         .epd = epd,
11289         .hpd = hpd,
11290         .using16k = using16k,
11291         .using64k = using64k,
11292     };
11293 }
11294 
11295 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11296                                    ARMMMUIdx mmu_idx, bool data)
11297 {
11298     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
11299 
11300     /* Present TBI as a composite with TBID.  */
11301     ret.tbi &= (data || !ret.tbid);
11302     return ret;
11303 }
11304 
11305 #ifndef CONFIG_USER_ONLY
11306 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11307                                           ARMMMUIdx mmu_idx)
11308 {
11309     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11310     uint32_t el = regime_el(env, mmu_idx);
11311     int select, tsz;
11312     bool epd, hpd;
11313 
11314     if (mmu_idx == ARMMMUIdx_S2NS) {
11315         /* VTCR */
11316         bool sext = extract32(tcr, 4, 1);
11317         bool sign = extract32(tcr, 3, 1);
11318 
11319         /*
11320          * If the sign-extend bit is not the same as t0sz[3], the result
11321          * is unpredictable. Flag this as a guest error.
11322          */
11323         if (sign != sext) {
11324             qemu_log_mask(LOG_GUEST_ERROR,
11325                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11326         }
11327         tsz = sextract32(tcr, 0, 4) + 8;
11328         select = 0;
11329         hpd = false;
11330         epd = false;
11331     } else if (el == 2) {
11332         /* HTCR */
11333         tsz = extract32(tcr, 0, 3);
11334         select = 0;
11335         hpd = extract64(tcr, 24, 1);
11336         epd = false;
11337     } else {
11338         int t0sz = extract32(tcr, 0, 3);
11339         int t1sz = extract32(tcr, 16, 3);
11340 
11341         if (t1sz == 0) {
11342             select = va > (0xffffffffu >> t0sz);
11343         } else {
11344             /* Note that we will detect errors later.  */
11345             select = va >= ~(0xffffffffu >> t1sz);
11346         }
11347         if (!select) {
11348             tsz = t0sz;
11349             epd = extract32(tcr, 7, 1);
11350             hpd = extract64(tcr, 41, 1);
11351         } else {
11352             tsz = t1sz;
11353             epd = extract32(tcr, 23, 1);
11354             hpd = extract64(tcr, 42, 1);
11355         }
11356         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11357         hpd &= extract32(tcr, 6, 1);
11358     }
11359 
11360     return (ARMVAParameters) {
11361         .tsz = tsz,
11362         .select = select,
11363         .epd = epd,
11364         .hpd = hpd,
11365     };
11366 }
11367 
11368 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
11369                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11370                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11371                                target_ulong *page_size_ptr,
11372                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11373 {
11374     ARMCPU *cpu = arm_env_get_cpu(env);
11375     CPUState *cs = CPU(cpu);
11376     /* Read an LPAE long-descriptor translation table. */
11377     ARMFaultType fault_type = ARMFault_Translation;
11378     uint32_t level;
11379     ARMVAParameters param;
11380     uint64_t ttbr;
11381     hwaddr descaddr, indexmask, indexmask_grainsize;
11382     uint32_t tableattrs;
11383     target_ulong page_size;
11384     uint32_t attrs;
11385     int32_t stride;
11386     int addrsize, inputsize;
11387     TCR *tcr = regime_tcr(env, mmu_idx);
11388     int ap, ns, xn, pxn;
11389     uint32_t el = regime_el(env, mmu_idx);
11390     bool ttbr1_valid;
11391     uint64_t descaddrmask;
11392     bool aarch64 = arm_el_is_aa64(env, el);
11393     bool guarded = false;
11394 
11395     /* TODO:
11396      * This code does not handle the different format TCR for VTCR_EL2.
11397      * This code also does not support shareability levels.
11398      * Attribute and permission bit handling should also be checked when adding
11399      * support for those page table walks.
11400      */
11401     if (aarch64) {
11402         param = aa64_va_parameters(env, address, mmu_idx,
11403                                    access_type != MMU_INST_FETCH);
11404         level = 0;
11405         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
11406          * invalid.
11407          */
11408         ttbr1_valid = (el < 2);
11409         addrsize = 64 - 8 * param.tbi;
11410         inputsize = 64 - param.tsz;
11411     } else {
11412         param = aa32_va_parameters(env, address, mmu_idx);
11413         level = 1;
11414         /* There is no TTBR1 for EL2 */
11415         ttbr1_valid = (el != 2);
11416         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
11417         inputsize = addrsize - param.tsz;
11418     }
11419 
11420     /*
11421      * We determined the region when collecting the parameters, but we
11422      * have not yet validated that the address is valid for the region.
11423      * Extract the top bits and verify that they all match select.
11424      *
11425      * For aa32, if inputsize == addrsize, then we have selected the
11426      * region by exclusion in aa32_va_parameters and there is no more
11427      * validation to do here.
11428      */
11429     if (inputsize < addrsize) {
11430         target_ulong top_bits = sextract64(address, inputsize,
11431                                            addrsize - inputsize);
11432         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
11433             /* The gap between the two regions is a Translation fault */
11434             fault_type = ARMFault_Translation;
11435             goto do_fault;
11436         }
11437     }
11438 
11439     if (param.using64k) {
11440         stride = 13;
11441     } else if (param.using16k) {
11442         stride = 11;
11443     } else {
11444         stride = 9;
11445     }
11446 
11447     /* Note that QEMU ignores shareability and cacheability attributes,
11448      * so we don't need to do anything with the SH, ORGN, IRGN fields
11449      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11450      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11451      * implement any ASID-like capability so we can ignore it (instead
11452      * we will always flush the TLB any time the ASID is changed).
11453      */
11454     ttbr = regime_ttbr(env, mmu_idx, param.select);
11455 
11456     /* Here we should have set up all the parameters for the translation:
11457      * inputsize, ttbr, epd, stride, tbi
11458      */
11459 
11460     if (param.epd) {
11461         /* Translation table walk disabled => Translation fault on TLB miss
11462          * Note: This is always 0 on 64-bit EL2 and EL3.
11463          */
11464         goto do_fault;
11465     }
11466 
11467     if (mmu_idx != ARMMMUIdx_S2NS) {
11468         /* The starting level depends on the virtual address size (which can
11469          * be up to 48 bits) and the translation granule size. It indicates
11470          * the number of strides (stride bits at a time) needed to
11471          * consume the bits of the input address. In the pseudocode this is:
11472          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11473          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11474          * our 'stride + 3' and 'stride' is our 'stride'.
11475          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11476          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11477          * = 4 - (inputsize - 4) / stride;
11478          */
11479         level = 4 - (inputsize - 4) / stride;
11480     } else {
11481         /* For stage 2 translations the starting level is specified by the
11482          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11483          */
11484         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11485         uint32_t startlevel;
11486         bool ok;
11487 
11488         if (!aarch64 || stride == 9) {
11489             /* AArch32 or 4KB pages */
11490             startlevel = 2 - sl0;
11491         } else {
11492             /* 16KB or 64KB pages */
11493             startlevel = 3 - sl0;
11494         }
11495 
11496         /* Check that the starting level is valid. */
11497         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11498                                 inputsize, stride);
11499         if (!ok) {
11500             fault_type = ARMFault_Translation;
11501             goto do_fault;
11502         }
11503         level = startlevel;
11504     }
11505 
11506     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11507     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11508 
11509     /* Now we can extract the actual base address from the TTBR */
11510     descaddr = extract64(ttbr, 0, 48);
11511     descaddr &= ~indexmask;
11512 
11513     /* The address field in the descriptor goes up to bit 39 for ARMv7
11514      * but up to bit 47 for ARMv8, but we use the descaddrmask
11515      * up to bit 39 for AArch32, because we don't need other bits in that case
11516      * to construct next descriptor address (anyway they should be all zeroes).
11517      */
11518     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11519                    ~indexmask_grainsize;
11520 
11521     /* Secure accesses start with the page table in secure memory and
11522      * can be downgraded to non-secure at any step. Non-secure accesses
11523      * remain non-secure. We implement this by just ORing in the NSTable/NS
11524      * bits at each step.
11525      */
11526     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11527     for (;;) {
11528         uint64_t descriptor;
11529         bool nstable;
11530 
11531         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11532         descaddr &= ~7ULL;
11533         nstable = extract32(tableattrs, 4, 1);
11534         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11535         if (fi->type != ARMFault_None) {
11536             goto do_fault;
11537         }
11538 
11539         if (!(descriptor & 1) ||
11540             (!(descriptor & 2) && (level == 3))) {
11541             /* Invalid, or the Reserved level 3 encoding */
11542             goto do_fault;
11543         }
11544         descaddr = descriptor & descaddrmask;
11545 
11546         if ((descriptor & 2) && (level < 3)) {
11547             /* Table entry. The top five bits are attributes which may
11548              * propagate down through lower levels of the table (and
11549              * which are all arranged so that 0 means "no effect", so
11550              * we can gather them up by ORing in the bits at each level).
11551              */
11552             tableattrs |= extract64(descriptor, 59, 5);
11553             level++;
11554             indexmask = indexmask_grainsize;
11555             continue;
11556         }
11557         /* Block entry at level 1 or 2, or page entry at level 3.
11558          * These are basically the same thing, although the number
11559          * of bits we pull in from the vaddr varies.
11560          */
11561         page_size = (1ULL << ((stride * (4 - level)) + 3));
11562         descaddr |= (address & (page_size - 1));
11563         /* Extract attributes from the descriptor */
11564         attrs = extract64(descriptor, 2, 10)
11565             | (extract64(descriptor, 52, 12) << 10);
11566 
11567         if (mmu_idx == ARMMMUIdx_S2NS) {
11568             /* Stage 2 table descriptors do not include any attribute fields */
11569             break;
11570         }
11571         /* Merge in attributes from table descriptors */
11572         attrs |= nstable << 3; /* NS */
11573         guarded = extract64(descriptor, 50, 1);  /* GP */
11574         if (param.hpd) {
11575             /* HPD disables all the table attributes except NSTable.  */
11576             break;
11577         }
11578         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11579         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11580          * means "force PL1 access only", which means forcing AP[1] to 0.
11581          */
11582         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11583         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11584         break;
11585     }
11586     /* Here descaddr is the final physical address, and attributes
11587      * are all in attrs.
11588      */
11589     fault_type = ARMFault_AccessFlag;
11590     if ((attrs & (1 << 8)) == 0) {
11591         /* Access flag */
11592         goto do_fault;
11593     }
11594 
11595     ap = extract32(attrs, 4, 2);
11596     xn = extract32(attrs, 12, 1);
11597 
11598     if (mmu_idx == ARMMMUIdx_S2NS) {
11599         ns = true;
11600         *prot = get_S2prot(env, ap, xn);
11601     } else {
11602         ns = extract32(attrs, 3, 1);
11603         pxn = extract32(attrs, 11, 1);
11604         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11605     }
11606 
11607     fault_type = ARMFault_Permission;
11608     if (!(*prot & (1 << access_type))) {
11609         goto do_fault;
11610     }
11611 
11612     if (ns) {
11613         /* The NS bit will (as required by the architecture) have no effect if
11614          * the CPU doesn't support TZ or this is a non-secure translation
11615          * regime, because the attribute will already be non-secure.
11616          */
11617         txattrs->secure = false;
11618     }
11619     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11620     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11621         txattrs->target_tlb_bit0 = true;
11622     }
11623 
11624     if (cacheattrs != NULL) {
11625         if (mmu_idx == ARMMMUIdx_S2NS) {
11626             cacheattrs->attrs = convert_stage2_attrs(env,
11627                                                      extract32(attrs, 0, 4));
11628         } else {
11629             /* Index into MAIR registers for cache attributes */
11630             uint8_t attrindx = extract32(attrs, 0, 3);
11631             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11632             assert(attrindx <= 7);
11633             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11634         }
11635         cacheattrs->shareability = extract32(attrs, 6, 2);
11636     }
11637 
11638     *phys_ptr = descaddr;
11639     *page_size_ptr = page_size;
11640     return false;
11641 
11642 do_fault:
11643     fi->type = fault_type;
11644     fi->level = level;
11645     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11646     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
11647     return true;
11648 }
11649 
11650 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11651                                                 ARMMMUIdx mmu_idx,
11652                                                 int32_t address, int *prot)
11653 {
11654     if (!arm_feature(env, ARM_FEATURE_M)) {
11655         *prot = PAGE_READ | PAGE_WRITE;
11656         switch (address) {
11657         case 0xF0000000 ... 0xFFFFFFFF:
11658             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11659                 /* hivecs execing is ok */
11660                 *prot |= PAGE_EXEC;
11661             }
11662             break;
11663         case 0x00000000 ... 0x7FFFFFFF:
11664             *prot |= PAGE_EXEC;
11665             break;
11666         }
11667     } else {
11668         /* Default system address map for M profile cores.
11669          * The architecture specifies which regions are execute-never;
11670          * at the MPU level no other checks are defined.
11671          */
11672         switch (address) {
11673         case 0x00000000 ... 0x1fffffff: /* ROM */
11674         case 0x20000000 ... 0x3fffffff: /* SRAM */
11675         case 0x60000000 ... 0x7fffffff: /* RAM */
11676         case 0x80000000 ... 0x9fffffff: /* RAM */
11677             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11678             break;
11679         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11680         case 0xa0000000 ... 0xbfffffff: /* Device */
11681         case 0xc0000000 ... 0xdfffffff: /* Device */
11682         case 0xe0000000 ... 0xffffffff: /* System */
11683             *prot = PAGE_READ | PAGE_WRITE;
11684             break;
11685         default:
11686             g_assert_not_reached();
11687         }
11688     }
11689 }
11690 
11691 static bool pmsav7_use_background_region(ARMCPU *cpu,
11692                                          ARMMMUIdx mmu_idx, bool is_user)
11693 {
11694     /* Return true if we should use the default memory map as a
11695      * "background" region if there are no hits against any MPU regions.
11696      */
11697     CPUARMState *env = &cpu->env;
11698 
11699     if (is_user) {
11700         return false;
11701     }
11702 
11703     if (arm_feature(env, ARM_FEATURE_M)) {
11704         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11705             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11706     } else {
11707         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11708     }
11709 }
11710 
11711 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11712 {
11713     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11714     return arm_feature(env, ARM_FEATURE_M) &&
11715         extract32(address, 20, 12) == 0xe00;
11716 }
11717 
11718 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11719 {
11720     /* True if address is in the M profile system region
11721      * 0xe0000000 - 0xffffffff
11722      */
11723     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11724 }
11725 
11726 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11727                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11728                                  hwaddr *phys_ptr, int *prot,
11729                                  target_ulong *page_size,
11730                                  ARMMMUFaultInfo *fi)
11731 {
11732     ARMCPU *cpu = arm_env_get_cpu(env);
11733     int n;
11734     bool is_user = regime_is_user(env, mmu_idx);
11735 
11736     *phys_ptr = address;
11737     *page_size = TARGET_PAGE_SIZE;
11738     *prot = 0;
11739 
11740     if (regime_translation_disabled(env, mmu_idx) ||
11741         m_is_ppb_region(env, address)) {
11742         /* MPU disabled or M profile PPB access: use default memory map.
11743          * The other case which uses the default memory map in the
11744          * v7M ARM ARM pseudocode is exception vector reads from the vector
11745          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11746          * which always does a direct read using address_space_ldl(), rather
11747          * than going via this function, so we don't need to check that here.
11748          */
11749         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11750     } else { /* MPU enabled */
11751         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11752             /* region search */
11753             uint32_t base = env->pmsav7.drbar[n];
11754             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11755             uint32_t rmask;
11756             bool srdis = false;
11757 
11758             if (!(env->pmsav7.drsr[n] & 0x1)) {
11759                 continue;
11760             }
11761 
11762             if (!rsize) {
11763                 qemu_log_mask(LOG_GUEST_ERROR,
11764                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11765                 continue;
11766             }
11767             rsize++;
11768             rmask = (1ull << rsize) - 1;
11769 
11770             if (base & rmask) {
11771                 qemu_log_mask(LOG_GUEST_ERROR,
11772                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11773                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11774                               n, base, rmask);
11775                 continue;
11776             }
11777 
11778             if (address < base || address > base + rmask) {
11779                 /*
11780                  * Address not in this region. We must check whether the
11781                  * region covers addresses in the same page as our address.
11782                  * In that case we must not report a size that covers the
11783                  * whole page for a subsequent hit against a different MPU
11784                  * region or the background region, because it would result in
11785                  * incorrect TLB hits for subsequent accesses to addresses that
11786                  * are in this MPU region.
11787                  */
11788                 if (ranges_overlap(base, rmask,
11789                                    address & TARGET_PAGE_MASK,
11790                                    TARGET_PAGE_SIZE)) {
11791                     *page_size = 1;
11792                 }
11793                 continue;
11794             }
11795 
11796             /* Region matched */
11797 
11798             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11799                 int i, snd;
11800                 uint32_t srdis_mask;
11801 
11802                 rsize -= 3; /* sub region size (power of 2) */
11803                 snd = ((address - base) >> rsize) & 0x7;
11804                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11805 
11806                 srdis_mask = srdis ? 0x3 : 0x0;
11807                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11808                     /* This will check in groups of 2, 4 and then 8, whether
11809                      * the subregion bits are consistent. rsize is incremented
11810                      * back up to give the region size, considering consistent
11811                      * adjacent subregions as one region. Stop testing if rsize
11812                      * is already big enough for an entire QEMU page.
11813                      */
11814                     int snd_rounded = snd & ~(i - 1);
11815                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11816                                                      snd_rounded + 8, i);
11817                     if (srdis_mask ^ srdis_multi) {
11818                         break;
11819                     }
11820                     srdis_mask = (srdis_mask << i) | srdis_mask;
11821                     rsize++;
11822                 }
11823             }
11824             if (srdis) {
11825                 continue;
11826             }
11827             if (rsize < TARGET_PAGE_BITS) {
11828                 *page_size = 1 << rsize;
11829             }
11830             break;
11831         }
11832 
11833         if (n == -1) { /* no hits */
11834             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11835                 /* background fault */
11836                 fi->type = ARMFault_Background;
11837                 return true;
11838             }
11839             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11840         } else { /* a MPU hit! */
11841             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11842             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11843 
11844             if (m_is_system_region(env, address)) {
11845                 /* System space is always execute never */
11846                 xn = 1;
11847             }
11848 
11849             if (is_user) { /* User mode AP bit decoding */
11850                 switch (ap) {
11851                 case 0:
11852                 case 1:
11853                 case 5:
11854                     break; /* no access */
11855                 case 3:
11856                     *prot |= PAGE_WRITE;
11857                     /* fall through */
11858                 case 2:
11859                 case 6:
11860                     *prot |= PAGE_READ | PAGE_EXEC;
11861                     break;
11862                 case 7:
11863                     /* for v7M, same as 6; for R profile a reserved value */
11864                     if (arm_feature(env, ARM_FEATURE_M)) {
11865                         *prot |= PAGE_READ | PAGE_EXEC;
11866                         break;
11867                     }
11868                     /* fall through */
11869                 default:
11870                     qemu_log_mask(LOG_GUEST_ERROR,
11871                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11872                                   PRIx32 "\n", n, ap);
11873                 }
11874             } else { /* Priv. mode AP bits decoding */
11875                 switch (ap) {
11876                 case 0:
11877                     break; /* no access */
11878                 case 1:
11879                 case 2:
11880                 case 3:
11881                     *prot |= PAGE_WRITE;
11882                     /* fall through */
11883                 case 5:
11884                 case 6:
11885                     *prot |= PAGE_READ | PAGE_EXEC;
11886                     break;
11887                 case 7:
11888                     /* for v7M, same as 6; for R profile a reserved value */
11889                     if (arm_feature(env, ARM_FEATURE_M)) {
11890                         *prot |= PAGE_READ | PAGE_EXEC;
11891                         break;
11892                     }
11893                     /* fall through */
11894                 default:
11895                     qemu_log_mask(LOG_GUEST_ERROR,
11896                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11897                                   PRIx32 "\n", n, ap);
11898                 }
11899             }
11900 
11901             /* execute never */
11902             if (xn) {
11903                 *prot &= ~PAGE_EXEC;
11904             }
11905         }
11906     }
11907 
11908     fi->type = ARMFault_Permission;
11909     fi->level = 1;
11910     return !(*prot & (1 << access_type));
11911 }
11912 
11913 static bool v8m_is_sau_exempt(CPUARMState *env,
11914                               uint32_t address, MMUAccessType access_type)
11915 {
11916     /* The architecture specifies that certain address ranges are
11917      * exempt from v8M SAU/IDAU checks.
11918      */
11919     return
11920         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11921         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11922         (address >= 0xe000e000 && address <= 0xe000efff) ||
11923         (address >= 0xe002e000 && address <= 0xe002efff) ||
11924         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11925         (address >= 0xe00ff000 && address <= 0xe00fffff);
11926 }
11927 
11928 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11929                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11930                                 V8M_SAttributes *sattrs)
11931 {
11932     /* Look up the security attributes for this address. Compare the
11933      * pseudocode SecurityCheck() function.
11934      * We assume the caller has zero-initialized *sattrs.
11935      */
11936     ARMCPU *cpu = arm_env_get_cpu(env);
11937     int r;
11938     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11939     int idau_region = IREGION_NOTVALID;
11940     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11941     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11942 
11943     if (cpu->idau) {
11944         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11945         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11946 
11947         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11948                    &idau_nsc);
11949     }
11950 
11951     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11952         /* 0xf0000000..0xffffffff is always S for insn fetches */
11953         return;
11954     }
11955 
11956     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11957         sattrs->ns = !regime_is_secure(env, mmu_idx);
11958         return;
11959     }
11960 
11961     if (idau_region != IREGION_NOTVALID) {
11962         sattrs->irvalid = true;
11963         sattrs->iregion = idau_region;
11964     }
11965 
11966     switch (env->sau.ctrl & 3) {
11967     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11968         break;
11969     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11970         sattrs->ns = true;
11971         break;
11972     default: /* SAU.ENABLE == 1 */
11973         for (r = 0; r < cpu->sau_sregion; r++) {
11974             if (env->sau.rlar[r] & 1) {
11975                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11976                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11977 
11978                 if (base <= address && limit >= address) {
11979                     if (base > addr_page_base || limit < addr_page_limit) {
11980                         sattrs->subpage = true;
11981                     }
11982                     if (sattrs->srvalid) {
11983                         /* If we hit in more than one region then we must report
11984                          * as Secure, not NS-Callable, with no valid region
11985                          * number info.
11986                          */
11987                         sattrs->ns = false;
11988                         sattrs->nsc = false;
11989                         sattrs->sregion = 0;
11990                         sattrs->srvalid = false;
11991                         break;
11992                     } else {
11993                         if (env->sau.rlar[r] & 2) {
11994                             sattrs->nsc = true;
11995                         } else {
11996                             sattrs->ns = true;
11997                         }
11998                         sattrs->srvalid = true;
11999                         sattrs->sregion = r;
12000                     }
12001                 } else {
12002                     /*
12003                      * Address not in this region. We must check whether the
12004                      * region covers addresses in the same page as our address.
12005                      * In that case we must not report a size that covers the
12006                      * whole page for a subsequent hit against a different MPU
12007                      * region or the background region, because it would result
12008                      * in incorrect TLB hits for subsequent accesses to
12009                      * addresses that are in this MPU region.
12010                      */
12011                     if (limit >= base &&
12012                         ranges_overlap(base, limit - base + 1,
12013                                        addr_page_base,
12014                                        TARGET_PAGE_SIZE)) {
12015                         sattrs->subpage = true;
12016                     }
12017                 }
12018             }
12019         }
12020         break;
12021     }
12022 
12023     /*
12024      * The IDAU will override the SAU lookup results if it specifies
12025      * higher security than the SAU does.
12026      */
12027     if (!idau_ns) {
12028         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12029             sattrs->ns = false;
12030             sattrs->nsc = idau_nsc;
12031         }
12032     }
12033 }
12034 
12035 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12036                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12037                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12038                               int *prot, bool *is_subpage,
12039                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12040 {
12041     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12042      * that a full phys-to-virt translation does).
12043      * mregion is (if not NULL) set to the region number which matched,
12044      * or -1 if no region number is returned (MPU off, address did not
12045      * hit a region, address hit in multiple regions).
12046      * We set is_subpage to true if the region hit doesn't cover the
12047      * entire TARGET_PAGE the address is within.
12048      */
12049     ARMCPU *cpu = arm_env_get_cpu(env);
12050     bool is_user = regime_is_user(env, mmu_idx);
12051     uint32_t secure = regime_is_secure(env, mmu_idx);
12052     int n;
12053     int matchregion = -1;
12054     bool hit = false;
12055     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12056     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12057 
12058     *is_subpage = false;
12059     *phys_ptr = address;
12060     *prot = 0;
12061     if (mregion) {
12062         *mregion = -1;
12063     }
12064 
12065     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12066      * was an exception vector read from the vector table (which is always
12067      * done using the default system address map), because those accesses
12068      * are done in arm_v7m_load_vector(), which always does a direct
12069      * read using address_space_ldl(), rather than going via this function.
12070      */
12071     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12072         hit = true;
12073     } else if (m_is_ppb_region(env, address)) {
12074         hit = true;
12075     } else {
12076         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12077             hit = true;
12078         }
12079 
12080         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12081             /* region search */
12082             /* Note that the base address is bits [31:5] from the register
12083              * with bits [4:0] all zeroes, but the limit address is bits
12084              * [31:5] from the register with bits [4:0] all ones.
12085              */
12086             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12087             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12088 
12089             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12090                 /* Region disabled */
12091                 continue;
12092             }
12093 
12094             if (address < base || address > limit) {
12095                 /*
12096                  * Address not in this region. We must check whether the
12097                  * region covers addresses in the same page as our address.
12098                  * In that case we must not report a size that covers the
12099                  * whole page for a subsequent hit against a different MPU
12100                  * region or the background region, because it would result in
12101                  * incorrect TLB hits for subsequent accesses to addresses that
12102                  * are in this MPU region.
12103                  */
12104                 if (limit >= base &&
12105                     ranges_overlap(base, limit - base + 1,
12106                                    addr_page_base,
12107                                    TARGET_PAGE_SIZE)) {
12108                     *is_subpage = true;
12109                 }
12110                 continue;
12111             }
12112 
12113             if (base > addr_page_base || limit < addr_page_limit) {
12114                 *is_subpage = true;
12115             }
12116 
12117             if (matchregion != -1) {
12118                 /* Multiple regions match -- always a failure (unlike
12119                  * PMSAv7 where highest-numbered-region wins)
12120                  */
12121                 fi->type = ARMFault_Permission;
12122                 fi->level = 1;
12123                 return true;
12124             }
12125 
12126             matchregion = n;
12127             hit = true;
12128         }
12129     }
12130 
12131     if (!hit) {
12132         /* background fault */
12133         fi->type = ARMFault_Background;
12134         return true;
12135     }
12136 
12137     if (matchregion == -1) {
12138         /* hit using the background region */
12139         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12140     } else {
12141         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12142         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12143 
12144         if (m_is_system_region(env, address)) {
12145             /* System space is always execute never */
12146             xn = 1;
12147         }
12148 
12149         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12150         if (*prot && !xn) {
12151             *prot |= PAGE_EXEC;
12152         }
12153         /* We don't need to look the attribute up in the MAIR0/MAIR1
12154          * registers because that only tells us about cacheability.
12155          */
12156         if (mregion) {
12157             *mregion = matchregion;
12158         }
12159     }
12160 
12161     fi->type = ARMFault_Permission;
12162     fi->level = 1;
12163     return !(*prot & (1 << access_type));
12164 }
12165 
12166 
12167 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12168                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12169                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12170                                  int *prot, target_ulong *page_size,
12171                                  ARMMMUFaultInfo *fi)
12172 {
12173     uint32_t secure = regime_is_secure(env, mmu_idx);
12174     V8M_SAttributes sattrs = {};
12175     bool ret;
12176     bool mpu_is_subpage;
12177 
12178     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12179         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12180         if (access_type == MMU_INST_FETCH) {
12181             /* Instruction fetches always use the MMU bank and the
12182              * transaction attribute determined by the fetch address,
12183              * regardless of CPU state. This is painful for QEMU
12184              * to handle, because it would mean we need to encode
12185              * into the mmu_idx not just the (user, negpri) information
12186              * for the current security state but also that for the
12187              * other security state, which would balloon the number
12188              * of mmu_idx values needed alarmingly.
12189              * Fortunately we can avoid this because it's not actually
12190              * possible to arbitrarily execute code from memory with
12191              * the wrong security attribute: it will always generate
12192              * an exception of some kind or another, apart from the
12193              * special case of an NS CPU executing an SG instruction
12194              * in S&NSC memory. So we always just fail the translation
12195              * here and sort things out in the exception handler
12196              * (including possibly emulating an SG instruction).
12197              */
12198             if (sattrs.ns != !secure) {
12199                 if (sattrs.nsc) {
12200                     fi->type = ARMFault_QEMU_NSCExec;
12201                 } else {
12202                     fi->type = ARMFault_QEMU_SFault;
12203                 }
12204                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12205                 *phys_ptr = address;
12206                 *prot = 0;
12207                 return true;
12208             }
12209         } else {
12210             /* For data accesses we always use the MMU bank indicated
12211              * by the current CPU state, but the security attributes
12212              * might downgrade a secure access to nonsecure.
12213              */
12214             if (sattrs.ns) {
12215                 txattrs->secure = false;
12216             } else if (!secure) {
12217                 /* NS access to S memory must fault.
12218                  * Architecturally we should first check whether the
12219                  * MPU information for this address indicates that we
12220                  * are doing an unaligned access to Device memory, which
12221                  * should generate a UsageFault instead. QEMU does not
12222                  * currently check for that kind of unaligned access though.
12223                  * If we added it we would need to do so as a special case
12224                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12225                  */
12226                 fi->type = ARMFault_QEMU_SFault;
12227                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12228                 *phys_ptr = address;
12229                 *prot = 0;
12230                 return true;
12231             }
12232         }
12233     }
12234 
12235     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12236                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12237     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12238     return ret;
12239 }
12240 
12241 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12242                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12243                                  hwaddr *phys_ptr, int *prot,
12244                                  ARMMMUFaultInfo *fi)
12245 {
12246     int n;
12247     uint32_t mask;
12248     uint32_t base;
12249     bool is_user = regime_is_user(env, mmu_idx);
12250 
12251     if (regime_translation_disabled(env, mmu_idx)) {
12252         /* MPU disabled.  */
12253         *phys_ptr = address;
12254         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12255         return false;
12256     }
12257 
12258     *phys_ptr = address;
12259     for (n = 7; n >= 0; n--) {
12260         base = env->cp15.c6_region[n];
12261         if ((base & 1) == 0) {
12262             continue;
12263         }
12264         mask = 1 << ((base >> 1) & 0x1f);
12265         /* Keep this shift separate from the above to avoid an
12266            (undefined) << 32.  */
12267         mask = (mask << 1) - 1;
12268         if (((base ^ address) & ~mask) == 0) {
12269             break;
12270         }
12271     }
12272     if (n < 0) {
12273         fi->type = ARMFault_Background;
12274         return true;
12275     }
12276 
12277     if (access_type == MMU_INST_FETCH) {
12278         mask = env->cp15.pmsav5_insn_ap;
12279     } else {
12280         mask = env->cp15.pmsav5_data_ap;
12281     }
12282     mask = (mask >> (n * 4)) & 0xf;
12283     switch (mask) {
12284     case 0:
12285         fi->type = ARMFault_Permission;
12286         fi->level = 1;
12287         return true;
12288     case 1:
12289         if (is_user) {
12290             fi->type = ARMFault_Permission;
12291             fi->level = 1;
12292             return true;
12293         }
12294         *prot = PAGE_READ | PAGE_WRITE;
12295         break;
12296     case 2:
12297         *prot = PAGE_READ;
12298         if (!is_user) {
12299             *prot |= PAGE_WRITE;
12300         }
12301         break;
12302     case 3:
12303         *prot = PAGE_READ | PAGE_WRITE;
12304         break;
12305     case 5:
12306         if (is_user) {
12307             fi->type = ARMFault_Permission;
12308             fi->level = 1;
12309             return true;
12310         }
12311         *prot = PAGE_READ;
12312         break;
12313     case 6:
12314         *prot = PAGE_READ;
12315         break;
12316     default:
12317         /* Bad permission.  */
12318         fi->type = ARMFault_Permission;
12319         fi->level = 1;
12320         return true;
12321     }
12322     *prot |= PAGE_EXEC;
12323     return false;
12324 }
12325 
12326 /* Combine either inner or outer cacheability attributes for normal
12327  * memory, according to table D4-42 and pseudocode procedure
12328  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12329  *
12330  * NB: only stage 1 includes allocation hints (RW bits), leading to
12331  * some asymmetry.
12332  */
12333 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12334 {
12335     if (s1 == 4 || s2 == 4) {
12336         /* non-cacheable has precedence */
12337         return 4;
12338     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12339         /* stage 1 write-through takes precedence */
12340         return s1;
12341     } else if (extract32(s2, 2, 2) == 2) {
12342         /* stage 2 write-through takes precedence, but the allocation hint
12343          * is still taken from stage 1
12344          */
12345         return (2 << 2) | extract32(s1, 0, 2);
12346     } else { /* write-back */
12347         return s1;
12348     }
12349 }
12350 
12351 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12352  * and CombineS1S2Desc()
12353  *
12354  * @s1:      Attributes from stage 1 walk
12355  * @s2:      Attributes from stage 2 walk
12356  */
12357 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12358 {
12359     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
12360     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
12361     ARMCacheAttrs ret;
12362 
12363     /* Combine shareability attributes (table D4-43) */
12364     if (s1.shareability == 2 || s2.shareability == 2) {
12365         /* if either are outer-shareable, the result is outer-shareable */
12366         ret.shareability = 2;
12367     } else if (s1.shareability == 3 || s2.shareability == 3) {
12368         /* if either are inner-shareable, the result is inner-shareable */
12369         ret.shareability = 3;
12370     } else {
12371         /* both non-shareable */
12372         ret.shareability = 0;
12373     }
12374 
12375     /* Combine memory type and cacheability attributes */
12376     if (s1hi == 0 || s2hi == 0) {
12377         /* Device has precedence over normal */
12378         if (s1lo == 0 || s2lo == 0) {
12379             /* nGnRnE has precedence over anything */
12380             ret.attrs = 0;
12381         } else if (s1lo == 4 || s2lo == 4) {
12382             /* non-Reordering has precedence over Reordering */
12383             ret.attrs = 4;  /* nGnRE */
12384         } else if (s1lo == 8 || s2lo == 8) {
12385             /* non-Gathering has precedence over Gathering */
12386             ret.attrs = 8;  /* nGRE */
12387         } else {
12388             ret.attrs = 0xc; /* GRE */
12389         }
12390 
12391         /* Any location for which the resultant memory type is any
12392          * type of Device memory is always treated as Outer Shareable.
12393          */
12394         ret.shareability = 2;
12395     } else { /* Normal memory */
12396         /* Outer/inner cacheability combine independently */
12397         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12398                   | combine_cacheattr_nibble(s1lo, s2lo);
12399 
12400         if (ret.attrs == 0x44) {
12401             /* Any location for which the resultant memory type is Normal
12402              * Inner Non-cacheable, Outer Non-cacheable is always treated
12403              * as Outer Shareable.
12404              */
12405             ret.shareability = 2;
12406         }
12407     }
12408 
12409     return ret;
12410 }
12411 
12412 
12413 /* get_phys_addr - get the physical address for this virtual address
12414  *
12415  * Find the physical address corresponding to the given virtual address,
12416  * by doing a translation table walk on MMU based systems or using the
12417  * MPU state on MPU based systems.
12418  *
12419  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12420  * prot and page_size may not be filled in, and the populated fsr value provides
12421  * information on why the translation aborted, in the format of a
12422  * DFSR/IFSR fault register, with the following caveats:
12423  *  * we honour the short vs long DFSR format differences.
12424  *  * the WnR bit is never set (the caller must do this).
12425  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12426  *    value.
12427  *
12428  * @env: CPUARMState
12429  * @address: virtual address to get physical address for
12430  * @access_type: 0 for read, 1 for write, 2 for execute
12431  * @mmu_idx: MMU index indicating required translation regime
12432  * @phys_ptr: set to the physical address corresponding to the virtual address
12433  * @attrs: set to the memory transaction attributes to use
12434  * @prot: set to the permissions for the page containing phys_ptr
12435  * @page_size: set to the size of the page containing phys_ptr
12436  * @fi: set to fault info if the translation fails
12437  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12438  */
12439 static bool get_phys_addr(CPUARMState *env, target_ulong address,
12440                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
12441                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12442                           target_ulong *page_size,
12443                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12444 {
12445     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
12446         /* Call ourselves recursively to do the stage 1 and then stage 2
12447          * translations.
12448          */
12449         if (arm_feature(env, ARM_FEATURE_EL2)) {
12450             hwaddr ipa;
12451             int s2_prot;
12452             int ret;
12453             ARMCacheAttrs cacheattrs2 = {};
12454 
12455             ret = get_phys_addr(env, address, access_type,
12456                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12457                                 prot, page_size, fi, cacheattrs);
12458 
12459             /* If S1 fails or S2 is disabled, return early.  */
12460             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
12461                 *phys_ptr = ipa;
12462                 return ret;
12463             }
12464 
12465             /* S1 is done. Now do S2 translation.  */
12466             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
12467                                      phys_ptr, attrs, &s2_prot,
12468                                      page_size, fi,
12469                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
12470             fi->s2addr = ipa;
12471             /* Combine the S1 and S2 perms.  */
12472             *prot &= s2_prot;
12473 
12474             /* Combine the S1 and S2 cache attributes, if needed */
12475             if (!ret && cacheattrs != NULL) {
12476                 if (env->cp15.hcr_el2 & HCR_DC) {
12477                     /*
12478                      * HCR.DC forces the first stage attributes to
12479                      *  Normal Non-Shareable,
12480                      *  Inner Write-Back Read-Allocate Write-Allocate,
12481                      *  Outer Write-Back Read-Allocate Write-Allocate.
12482                      */
12483                     cacheattrs->attrs = 0xff;
12484                     cacheattrs->shareability = 0;
12485                 }
12486                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12487             }
12488 
12489             return ret;
12490         } else {
12491             /*
12492              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12493              */
12494             mmu_idx = stage_1_mmu_idx(mmu_idx);
12495         }
12496     }
12497 
12498     /* The page table entries may downgrade secure to non-secure, but
12499      * cannot upgrade an non-secure translation regime's attributes
12500      * to secure.
12501      */
12502     attrs->secure = regime_is_secure(env, mmu_idx);
12503     attrs->user = regime_is_user(env, mmu_idx);
12504 
12505     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12506      * In v7 and earlier it affects all stage 1 translations.
12507      */
12508     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
12509         && !arm_feature(env, ARM_FEATURE_V8)) {
12510         if (regime_el(env, mmu_idx) == 3) {
12511             address += env->cp15.fcseidr_s;
12512         } else {
12513             address += env->cp15.fcseidr_ns;
12514         }
12515     }
12516 
12517     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12518         bool ret;
12519         *page_size = TARGET_PAGE_SIZE;
12520 
12521         if (arm_feature(env, ARM_FEATURE_V8)) {
12522             /* PMSAv8 */
12523             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12524                                        phys_ptr, attrs, prot, page_size, fi);
12525         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12526             /* PMSAv7 */
12527             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12528                                        phys_ptr, prot, page_size, fi);
12529         } else {
12530             /* Pre-v7 MPU */
12531             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12532                                        phys_ptr, prot, fi);
12533         }
12534         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12535                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12536                       access_type == MMU_DATA_LOAD ? "reading" :
12537                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12538                       (uint32_t)address, mmu_idx,
12539                       ret ? "Miss" : "Hit",
12540                       *prot & PAGE_READ ? 'r' : '-',
12541                       *prot & PAGE_WRITE ? 'w' : '-',
12542                       *prot & PAGE_EXEC ? 'x' : '-');
12543 
12544         return ret;
12545     }
12546 
12547     /* Definitely a real MMU, not an MPU */
12548 
12549     if (regime_translation_disabled(env, mmu_idx)) {
12550         /* MMU disabled. */
12551         *phys_ptr = address;
12552         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12553         *page_size = TARGET_PAGE_SIZE;
12554         return 0;
12555     }
12556 
12557     if (regime_using_lpae_format(env, mmu_idx)) {
12558         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
12559                                   phys_ptr, attrs, prot, page_size,
12560                                   fi, cacheattrs);
12561     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12562         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12563                                 phys_ptr, attrs, prot, page_size, fi);
12564     } else {
12565         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12566                                     phys_ptr, prot, page_size, fi);
12567     }
12568 }
12569 
12570 /* Walk the page table and (if the mapping exists) add the page
12571  * to the TLB. Return false on success, or true on failure. Populate
12572  * fsr with ARM DFSR/IFSR fault register format value on failure.
12573  */
12574 bool arm_tlb_fill(CPUState *cs, vaddr address,
12575                   MMUAccessType access_type, int mmu_idx,
12576                   ARMMMUFaultInfo *fi)
12577 {
12578     ARMCPU *cpu = ARM_CPU(cs);
12579     CPUARMState *env = &cpu->env;
12580     hwaddr phys_addr;
12581     target_ulong page_size;
12582     int prot;
12583     int ret;
12584     MemTxAttrs attrs = {};
12585 
12586     ret = get_phys_addr(env, address, access_type,
12587                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
12588                         &attrs, &prot, &page_size, fi, NULL);
12589     if (!ret) {
12590         /*
12591          * Map a single [sub]page. Regions smaller than our declared
12592          * target page size are handled specially, so for those we
12593          * pass in the exact addresses.
12594          */
12595         if (page_size >= TARGET_PAGE_SIZE) {
12596             phys_addr &= TARGET_PAGE_MASK;
12597             address &= TARGET_PAGE_MASK;
12598         }
12599         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
12600                                 prot, mmu_idx, page_size);
12601         return 0;
12602     }
12603 
12604     return ret;
12605 }
12606 
12607 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12608                                          MemTxAttrs *attrs)
12609 {
12610     ARMCPU *cpu = ARM_CPU(cs);
12611     CPUARMState *env = &cpu->env;
12612     hwaddr phys_addr;
12613     target_ulong page_size;
12614     int prot;
12615     bool ret;
12616     ARMMMUFaultInfo fi = {};
12617     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12618 
12619     *attrs = (MemTxAttrs) {};
12620 
12621     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12622                         attrs, &prot, &page_size, &fi, NULL);
12623 
12624     if (ret) {
12625         return -1;
12626     }
12627     return phys_addr;
12628 }
12629 
12630 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
12631 {
12632     uint32_t mask;
12633     unsigned el = arm_current_el(env);
12634 
12635     /* First handle registers which unprivileged can read */
12636 
12637     switch (reg) {
12638     case 0 ... 7: /* xPSR sub-fields */
12639         mask = 0;
12640         if ((reg & 1) && el) {
12641             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
12642         }
12643         if (!(reg & 4)) {
12644             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
12645         }
12646         /* EPSR reads as zero */
12647         return xpsr_read(env) & mask;
12648         break;
12649     case 20: /* CONTROL */
12650     {
12651         uint32_t value = env->v7m.control[env->v7m.secure];
12652         if (!env->v7m.secure) {
12653             /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
12654             value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
12655         }
12656         return value;
12657     }
12658     case 0x94: /* CONTROL_NS */
12659         /* We have to handle this here because unprivileged Secure code
12660          * can read the NS CONTROL register.
12661          */
12662         if (!env->v7m.secure) {
12663             return 0;
12664         }
12665         return env->v7m.control[M_REG_NS] |
12666             (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
12667     }
12668 
12669     if (el == 0) {
12670         return 0; /* unprivileged reads others as zero */
12671     }
12672 
12673     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12674         switch (reg) {
12675         case 0x88: /* MSP_NS */
12676             if (!env->v7m.secure) {
12677                 return 0;
12678             }
12679             return env->v7m.other_ss_msp;
12680         case 0x89: /* PSP_NS */
12681             if (!env->v7m.secure) {
12682                 return 0;
12683             }
12684             return env->v7m.other_ss_psp;
12685         case 0x8a: /* MSPLIM_NS */
12686             if (!env->v7m.secure) {
12687                 return 0;
12688             }
12689             return env->v7m.msplim[M_REG_NS];
12690         case 0x8b: /* PSPLIM_NS */
12691             if (!env->v7m.secure) {
12692                 return 0;
12693             }
12694             return env->v7m.psplim[M_REG_NS];
12695         case 0x90: /* PRIMASK_NS */
12696             if (!env->v7m.secure) {
12697                 return 0;
12698             }
12699             return env->v7m.primask[M_REG_NS];
12700         case 0x91: /* BASEPRI_NS */
12701             if (!env->v7m.secure) {
12702                 return 0;
12703             }
12704             return env->v7m.basepri[M_REG_NS];
12705         case 0x93: /* FAULTMASK_NS */
12706             if (!env->v7m.secure) {
12707                 return 0;
12708             }
12709             return env->v7m.faultmask[M_REG_NS];
12710         case 0x98: /* SP_NS */
12711         {
12712             /* This gives the non-secure SP selected based on whether we're
12713              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12714              */
12715             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12716 
12717             if (!env->v7m.secure) {
12718                 return 0;
12719             }
12720             if (!arm_v7m_is_handler_mode(env) && spsel) {
12721                 return env->v7m.other_ss_psp;
12722             } else {
12723                 return env->v7m.other_ss_msp;
12724             }
12725         }
12726         default:
12727             break;
12728         }
12729     }
12730 
12731     switch (reg) {
12732     case 8: /* MSP */
12733         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12734     case 9: /* PSP */
12735         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12736     case 10: /* MSPLIM */
12737         if (!arm_feature(env, ARM_FEATURE_V8)) {
12738             goto bad_reg;
12739         }
12740         return env->v7m.msplim[env->v7m.secure];
12741     case 11: /* PSPLIM */
12742         if (!arm_feature(env, ARM_FEATURE_V8)) {
12743             goto bad_reg;
12744         }
12745         return env->v7m.psplim[env->v7m.secure];
12746     case 16: /* PRIMASK */
12747         return env->v7m.primask[env->v7m.secure];
12748     case 17: /* BASEPRI */
12749     case 18: /* BASEPRI_MAX */
12750         return env->v7m.basepri[env->v7m.secure];
12751     case 19: /* FAULTMASK */
12752         return env->v7m.faultmask[env->v7m.secure];
12753     default:
12754     bad_reg:
12755         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12756                                        " register %d\n", reg);
12757         return 0;
12758     }
12759 }
12760 
12761 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12762 {
12763     /* We're passed bits [11..0] of the instruction; extract
12764      * SYSm and the mask bits.
12765      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12766      * we choose to treat them as if the mask bits were valid.
12767      * NB that the pseudocode 'mask' variable is bits [11..10],
12768      * whereas ours is [11..8].
12769      */
12770     uint32_t mask = extract32(maskreg, 8, 4);
12771     uint32_t reg = extract32(maskreg, 0, 8);
12772     int cur_el = arm_current_el(env);
12773 
12774     if (cur_el == 0 && reg > 7 && reg != 20) {
12775         /*
12776          * only xPSR sub-fields and CONTROL.SFPA may be written by
12777          * unprivileged code
12778          */
12779         return;
12780     }
12781 
12782     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12783         switch (reg) {
12784         case 0x88: /* MSP_NS */
12785             if (!env->v7m.secure) {
12786                 return;
12787             }
12788             env->v7m.other_ss_msp = val;
12789             return;
12790         case 0x89: /* PSP_NS */
12791             if (!env->v7m.secure) {
12792                 return;
12793             }
12794             env->v7m.other_ss_psp = val;
12795             return;
12796         case 0x8a: /* MSPLIM_NS */
12797             if (!env->v7m.secure) {
12798                 return;
12799             }
12800             env->v7m.msplim[M_REG_NS] = val & ~7;
12801             return;
12802         case 0x8b: /* PSPLIM_NS */
12803             if (!env->v7m.secure) {
12804                 return;
12805             }
12806             env->v7m.psplim[M_REG_NS] = val & ~7;
12807             return;
12808         case 0x90: /* PRIMASK_NS */
12809             if (!env->v7m.secure) {
12810                 return;
12811             }
12812             env->v7m.primask[M_REG_NS] = val & 1;
12813             return;
12814         case 0x91: /* BASEPRI_NS */
12815             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12816                 return;
12817             }
12818             env->v7m.basepri[M_REG_NS] = val & 0xff;
12819             return;
12820         case 0x93: /* FAULTMASK_NS */
12821             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12822                 return;
12823             }
12824             env->v7m.faultmask[M_REG_NS] = val & 1;
12825             return;
12826         case 0x94: /* CONTROL_NS */
12827             if (!env->v7m.secure) {
12828                 return;
12829             }
12830             write_v7m_control_spsel_for_secstate(env,
12831                                                  val & R_V7M_CONTROL_SPSEL_MASK,
12832                                                  M_REG_NS);
12833             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12834                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12835                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12836             }
12837             /*
12838              * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
12839              * RES0 if the FPU is not present, and is stored in the S bank
12840              */
12841             if (arm_feature(env, ARM_FEATURE_VFP) &&
12842                 extract32(env->v7m.nsacr, 10, 1)) {
12843                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12844                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12845             }
12846             return;
12847         case 0x98: /* SP_NS */
12848         {
12849             /* This gives the non-secure SP selected based on whether we're
12850              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12851              */
12852             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12853             bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12854             uint32_t limit;
12855 
12856             if (!env->v7m.secure) {
12857                 return;
12858             }
12859 
12860             limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12861 
12862             if (val < limit) {
12863                 CPUState *cs = CPU(arm_env_get_cpu(env));
12864 
12865                 cpu_restore_state(cs, GETPC(), true);
12866                 raise_exception(env, EXCP_STKOF, 0, 1);
12867             }
12868 
12869             if (is_psp) {
12870                 env->v7m.other_ss_psp = val;
12871             } else {
12872                 env->v7m.other_ss_msp = val;
12873             }
12874             return;
12875         }
12876         default:
12877             break;
12878         }
12879     }
12880 
12881     switch (reg) {
12882     case 0 ... 7: /* xPSR sub-fields */
12883         /* only APSR is actually writable */
12884         if (!(reg & 4)) {
12885             uint32_t apsrmask = 0;
12886 
12887             if (mask & 8) {
12888                 apsrmask |= XPSR_NZCV | XPSR_Q;
12889             }
12890             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12891                 apsrmask |= XPSR_GE;
12892             }
12893             xpsr_write(env, val, apsrmask);
12894         }
12895         break;
12896     case 8: /* MSP */
12897         if (v7m_using_psp(env)) {
12898             env->v7m.other_sp = val;
12899         } else {
12900             env->regs[13] = val;
12901         }
12902         break;
12903     case 9: /* PSP */
12904         if (v7m_using_psp(env)) {
12905             env->regs[13] = val;
12906         } else {
12907             env->v7m.other_sp = val;
12908         }
12909         break;
12910     case 10: /* MSPLIM */
12911         if (!arm_feature(env, ARM_FEATURE_V8)) {
12912             goto bad_reg;
12913         }
12914         env->v7m.msplim[env->v7m.secure] = val & ~7;
12915         break;
12916     case 11: /* PSPLIM */
12917         if (!arm_feature(env, ARM_FEATURE_V8)) {
12918             goto bad_reg;
12919         }
12920         env->v7m.psplim[env->v7m.secure] = val & ~7;
12921         break;
12922     case 16: /* PRIMASK */
12923         env->v7m.primask[env->v7m.secure] = val & 1;
12924         break;
12925     case 17: /* BASEPRI */
12926         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12927             goto bad_reg;
12928         }
12929         env->v7m.basepri[env->v7m.secure] = val & 0xff;
12930         break;
12931     case 18: /* BASEPRI_MAX */
12932         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12933             goto bad_reg;
12934         }
12935         val &= 0xff;
12936         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12937                          || env->v7m.basepri[env->v7m.secure] == 0)) {
12938             env->v7m.basepri[env->v7m.secure] = val;
12939         }
12940         break;
12941     case 19: /* FAULTMASK */
12942         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12943             goto bad_reg;
12944         }
12945         env->v7m.faultmask[env->v7m.secure] = val & 1;
12946         break;
12947     case 20: /* CONTROL */
12948         /*
12949          * Writing to the SPSEL bit only has an effect if we are in
12950          * thread mode; other bits can be updated by any privileged code.
12951          * write_v7m_control_spsel() deals with updating the SPSEL bit in
12952          * env->v7m.control, so we only need update the others.
12953          * For v7M, we must just ignore explicit writes to SPSEL in handler
12954          * mode; for v8M the write is permitted but will have no effect.
12955          * All these bits are writes-ignored from non-privileged code,
12956          * except for SFPA.
12957          */
12958         if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
12959                            !arm_v7m_is_handler_mode(env))) {
12960             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12961         }
12962         if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
12963             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12964             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12965         }
12966         if (arm_feature(env, ARM_FEATURE_VFP)) {
12967             /*
12968              * SFPA is RAZ/WI from NS or if no FPU.
12969              * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
12970              * Both are stored in the S bank.
12971              */
12972             if (env->v7m.secure) {
12973                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
12974                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
12975             }
12976             if (cur_el > 0 &&
12977                 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
12978                  extract32(env->v7m.nsacr, 10, 1))) {
12979                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12980                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12981             }
12982         }
12983         break;
12984     default:
12985     bad_reg:
12986         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12987                                        " register %d\n", reg);
12988         return;
12989     }
12990 }
12991 
12992 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12993 {
12994     /* Implement the TT instruction. op is bits [7:6] of the insn. */
12995     bool forceunpriv = op & 1;
12996     bool alt = op & 2;
12997     V8M_SAttributes sattrs = {};
12998     uint32_t tt_resp;
12999     bool r, rw, nsr, nsrw, mrvalid;
13000     int prot;
13001     ARMMMUFaultInfo fi = {};
13002     MemTxAttrs attrs = {};
13003     hwaddr phys_addr;
13004     ARMMMUIdx mmu_idx;
13005     uint32_t mregion;
13006     bool targetpriv;
13007     bool targetsec = env->v7m.secure;
13008     bool is_subpage;
13009 
13010     /* Work out what the security state and privilege level we're
13011      * interested in is...
13012      */
13013     if (alt) {
13014         targetsec = !targetsec;
13015     }
13016 
13017     if (forceunpriv) {
13018         targetpriv = false;
13019     } else {
13020         targetpriv = arm_v7m_is_handler_mode(env) ||
13021             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
13022     }
13023 
13024     /* ...and then figure out which MMU index this is */
13025     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
13026 
13027     /* We know that the MPU and SAU don't care about the access type
13028      * for our purposes beyond that we don't want to claim to be
13029      * an insn fetch, so we arbitrarily call this a read.
13030      */
13031 
13032     /* MPU region info only available for privileged or if
13033      * inspecting the other MPU state.
13034      */
13035     if (arm_current_el(env) != 0 || alt) {
13036         /* We can ignore the return value as prot is always set */
13037         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
13038                           &phys_addr, &attrs, &prot, &is_subpage,
13039                           &fi, &mregion);
13040         if (mregion == -1) {
13041             mrvalid = false;
13042             mregion = 0;
13043         } else {
13044             mrvalid = true;
13045         }
13046         r = prot & PAGE_READ;
13047         rw = prot & PAGE_WRITE;
13048     } else {
13049         r = false;
13050         rw = false;
13051         mrvalid = false;
13052         mregion = 0;
13053     }
13054 
13055     if (env->v7m.secure) {
13056         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
13057         nsr = sattrs.ns && r;
13058         nsrw = sattrs.ns && rw;
13059     } else {
13060         sattrs.ns = true;
13061         nsr = false;
13062         nsrw = false;
13063     }
13064 
13065     tt_resp = (sattrs.iregion << 24) |
13066         (sattrs.irvalid << 23) |
13067         ((!sattrs.ns) << 22) |
13068         (nsrw << 21) |
13069         (nsr << 20) |
13070         (rw << 19) |
13071         (r << 18) |
13072         (sattrs.srvalid << 17) |
13073         (mrvalid << 16) |
13074         (sattrs.sregion << 8) |
13075         mregion;
13076 
13077     return tt_resp;
13078 }
13079 
13080 #endif
13081 
13082 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
13083 {
13084     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
13085      * Note that we do not implement the (architecturally mandated)
13086      * alignment fault for attempts to use this on Device memory
13087      * (which matches the usual QEMU behaviour of not implementing either
13088      * alignment faults or any memory attribute handling).
13089      */
13090 
13091     ARMCPU *cpu = arm_env_get_cpu(env);
13092     uint64_t blocklen = 4 << cpu->dcz_blocksize;
13093     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
13094 
13095 #ifndef CONFIG_USER_ONLY
13096     {
13097         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
13098          * the block size so we might have to do more than one TLB lookup.
13099          * We know that in fact for any v8 CPU the page size is at least 4K
13100          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
13101          * 1K as an artefact of legacy v5 subpage support being present in the
13102          * same QEMU executable.
13103          */
13104         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
13105         void *hostaddr[maxidx];
13106         int try, i;
13107         unsigned mmu_idx = cpu_mmu_index(env, false);
13108         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
13109 
13110         for (try = 0; try < 2; try++) {
13111 
13112             for (i = 0; i < maxidx; i++) {
13113                 hostaddr[i] = tlb_vaddr_to_host(env,
13114                                                 vaddr + TARGET_PAGE_SIZE * i,
13115                                                 1, mmu_idx);
13116                 if (!hostaddr[i]) {
13117                     break;
13118                 }
13119             }
13120             if (i == maxidx) {
13121                 /* If it's all in the TLB it's fair game for just writing to;
13122                  * we know we don't need to update dirty status, etc.
13123                  */
13124                 for (i = 0; i < maxidx - 1; i++) {
13125                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
13126                 }
13127                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
13128                 return;
13129             }
13130             /* OK, try a store and see if we can populate the tlb. This
13131              * might cause an exception if the memory isn't writable,
13132              * in which case we will longjmp out of here. We must for
13133              * this purpose use the actual register value passed to us
13134              * so that we get the fault address right.
13135              */
13136             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
13137             /* Now we can populate the other TLB entries, if any */
13138             for (i = 0; i < maxidx; i++) {
13139                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
13140                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
13141                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
13142                 }
13143             }
13144         }
13145 
13146         /* Slow path (probably attempt to do this to an I/O device or
13147          * similar, or clearing of a block of code we have translations
13148          * cached for). Just do a series of byte writes as the architecture
13149          * demands. It's not worth trying to use a cpu_physical_memory_map(),
13150          * memset(), unmap() sequence here because:
13151          *  + we'd need to account for the blocksize being larger than a page
13152          *  + the direct-RAM access case is almost always going to be dealt
13153          *    with in the fastpath code above, so there's no speed benefit
13154          *  + we would have to deal with the map returning NULL because the
13155          *    bounce buffer was in use
13156          */
13157         for (i = 0; i < blocklen; i++) {
13158             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
13159         }
13160     }
13161 #else
13162     memset(g2h(vaddr), 0, blocklen);
13163 #endif
13164 }
13165 
13166 /* Note that signed overflow is undefined in C.  The following routines are
13167    careful to use unsigned types where modulo arithmetic is required.
13168    Failure to do so _will_ break on newer gcc.  */
13169 
13170 /* Signed saturating arithmetic.  */
13171 
13172 /* Perform 16-bit signed saturating addition.  */
13173 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
13174 {
13175     uint16_t res;
13176 
13177     res = a + b;
13178     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
13179         if (a & 0x8000)
13180             res = 0x8000;
13181         else
13182             res = 0x7fff;
13183     }
13184     return res;
13185 }
13186 
13187 /* Perform 8-bit signed saturating addition.  */
13188 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
13189 {
13190     uint8_t res;
13191 
13192     res = a + b;
13193     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
13194         if (a & 0x80)
13195             res = 0x80;
13196         else
13197             res = 0x7f;
13198     }
13199     return res;
13200 }
13201 
13202 /* Perform 16-bit signed saturating subtraction.  */
13203 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
13204 {
13205     uint16_t res;
13206 
13207     res = a - b;
13208     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
13209         if (a & 0x8000)
13210             res = 0x8000;
13211         else
13212             res = 0x7fff;
13213     }
13214     return res;
13215 }
13216 
13217 /* Perform 8-bit signed saturating subtraction.  */
13218 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
13219 {
13220     uint8_t res;
13221 
13222     res = a - b;
13223     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
13224         if (a & 0x80)
13225             res = 0x80;
13226         else
13227             res = 0x7f;
13228     }
13229     return res;
13230 }
13231 
13232 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
13233 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
13234 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
13235 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
13236 #define PFX q
13237 
13238 #include "op_addsub.h"
13239 
13240 /* Unsigned saturating arithmetic.  */
13241 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
13242 {
13243     uint16_t res;
13244     res = a + b;
13245     if (res < a)
13246         res = 0xffff;
13247     return res;
13248 }
13249 
13250 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
13251 {
13252     if (a > b)
13253         return a - b;
13254     else
13255         return 0;
13256 }
13257 
13258 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13259 {
13260     uint8_t res;
13261     res = a + b;
13262     if (res < a)
13263         res = 0xff;
13264     return res;
13265 }
13266 
13267 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13268 {
13269     if (a > b)
13270         return a - b;
13271     else
13272         return 0;
13273 }
13274 
13275 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13276 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13277 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
13278 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
13279 #define PFX uq
13280 
13281 #include "op_addsub.h"
13282 
13283 /* Signed modulo arithmetic.  */
13284 #define SARITH16(a, b, n, op) do { \
13285     int32_t sum; \
13286     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13287     RESULT(sum, n, 16); \
13288     if (sum >= 0) \
13289         ge |= 3 << (n * 2); \
13290     } while(0)
13291 
13292 #define SARITH8(a, b, n, op) do { \
13293     int32_t sum; \
13294     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13295     RESULT(sum, n, 8); \
13296     if (sum >= 0) \
13297         ge |= 1 << n; \
13298     } while(0)
13299 
13300 
13301 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13302 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13303 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
13304 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
13305 #define PFX s
13306 #define ARITH_GE
13307 
13308 #include "op_addsub.h"
13309 
13310 /* Unsigned modulo arithmetic.  */
13311 #define ADD16(a, b, n) do { \
13312     uint32_t sum; \
13313     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13314     RESULT(sum, n, 16); \
13315     if ((sum >> 16) == 1) \
13316         ge |= 3 << (n * 2); \
13317     } while(0)
13318 
13319 #define ADD8(a, b, n) do { \
13320     uint32_t sum; \
13321     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13322     RESULT(sum, n, 8); \
13323     if ((sum >> 8) == 1) \
13324         ge |= 1 << n; \
13325     } while(0)
13326 
13327 #define SUB16(a, b, n) do { \
13328     uint32_t sum; \
13329     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13330     RESULT(sum, n, 16); \
13331     if ((sum >> 16) == 0) \
13332         ge |= 3 << (n * 2); \
13333     } while(0)
13334 
13335 #define SUB8(a, b, n) do { \
13336     uint32_t sum; \
13337     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13338     RESULT(sum, n, 8); \
13339     if ((sum >> 8) == 0) \
13340         ge |= 1 << n; \
13341     } while(0)
13342 
13343 #define PFX u
13344 #define ARITH_GE
13345 
13346 #include "op_addsub.h"
13347 
13348 /* Halved signed arithmetic.  */
13349 #define ADD16(a, b, n) \
13350   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13351 #define SUB16(a, b, n) \
13352   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13353 #define ADD8(a, b, n) \
13354   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13355 #define SUB8(a, b, n) \
13356   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13357 #define PFX sh
13358 
13359 #include "op_addsub.h"
13360 
13361 /* Halved unsigned arithmetic.  */
13362 #define ADD16(a, b, n) \
13363   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13364 #define SUB16(a, b, n) \
13365   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13366 #define ADD8(a, b, n) \
13367   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13368 #define SUB8(a, b, n) \
13369   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13370 #define PFX uh
13371 
13372 #include "op_addsub.h"
13373 
13374 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13375 {
13376     if (a > b)
13377         return a - b;
13378     else
13379         return b - a;
13380 }
13381 
13382 /* Unsigned sum of absolute byte differences.  */
13383 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13384 {
13385     uint32_t sum;
13386     sum = do_usad(a, b);
13387     sum += do_usad(a >> 8, b >> 8);
13388     sum += do_usad(a >> 16, b >>16);
13389     sum += do_usad(a >> 24, b >> 24);
13390     return sum;
13391 }
13392 
13393 /* For ARMv6 SEL instruction.  */
13394 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13395 {
13396     uint32_t mask;
13397 
13398     mask = 0;
13399     if (flags & 1)
13400         mask |= 0xff;
13401     if (flags & 2)
13402         mask |= 0xff00;
13403     if (flags & 4)
13404         mask |= 0xff0000;
13405     if (flags & 8)
13406         mask |= 0xff000000;
13407     return (a & mask) | (b & ~mask);
13408 }
13409 
13410 /* CRC helpers.
13411  * The upper bytes of val (above the number specified by 'bytes') must have
13412  * been zeroed out by the caller.
13413  */
13414 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13415 {
13416     uint8_t buf[4];
13417 
13418     stl_le_p(buf, val);
13419 
13420     /* zlib crc32 converts the accumulator and output to one's complement.  */
13421     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13422 }
13423 
13424 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13425 {
13426     uint8_t buf[4];
13427 
13428     stl_le_p(buf, val);
13429 
13430     /* Linux crc32c converts the output to one's complement.  */
13431     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13432 }
13433 
13434 /* Return the exception level to which FP-disabled exceptions should
13435  * be taken, or 0 if FP is enabled.
13436  */
13437 int fp_exception_el(CPUARMState *env, int cur_el)
13438 {
13439 #ifndef CONFIG_USER_ONLY
13440     int fpen;
13441 
13442     /* CPACR and the CPTR registers don't exist before v6, so FP is
13443      * always accessible
13444      */
13445     if (!arm_feature(env, ARM_FEATURE_V6)) {
13446         return 0;
13447     }
13448 
13449     if (arm_feature(env, ARM_FEATURE_M)) {
13450         /* CPACR can cause a NOCP UsageFault taken to current security state */
13451         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13452             return 1;
13453         }
13454 
13455         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13456             if (!extract32(env->v7m.nsacr, 10, 1)) {
13457                 /* FP insns cause a NOCP UsageFault taken to Secure */
13458                 return 3;
13459             }
13460         }
13461 
13462         return 0;
13463     }
13464 
13465     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13466      * 0, 2 : trap EL0 and EL1/PL1 accesses
13467      * 1    : trap only EL0 accesses
13468      * 3    : trap no accesses
13469      */
13470     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13471     switch (fpen) {
13472     case 0:
13473     case 2:
13474         if (cur_el == 0 || cur_el == 1) {
13475             /* Trap to PL1, which might be EL1 or EL3 */
13476             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13477                 return 3;
13478             }
13479             return 1;
13480         }
13481         if (cur_el == 3 && !is_a64(env)) {
13482             /* Secure PL1 running at EL3 */
13483             return 3;
13484         }
13485         break;
13486     case 1:
13487         if (cur_el == 0) {
13488             return 1;
13489         }
13490         break;
13491     case 3:
13492         break;
13493     }
13494 
13495     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13496      * check because zero bits in the registers mean "don't trap".
13497      */
13498 
13499     /* CPTR_EL2 : present in v7VE or v8 */
13500     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13501         && !arm_is_secure_below_el3(env)) {
13502         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13503         return 2;
13504     }
13505 
13506     /* CPTR_EL3 : present in v8 */
13507     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13508         /* Trap all FP ops to EL3 */
13509         return 3;
13510     }
13511 #endif
13512     return 0;
13513 }
13514 
13515 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
13516                               bool secstate, bool priv, bool negpri)
13517 {
13518     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13519 
13520     if (priv) {
13521         mmu_idx |= ARM_MMU_IDX_M_PRIV;
13522     }
13523 
13524     if (negpri) {
13525         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13526     }
13527 
13528     if (secstate) {
13529         mmu_idx |= ARM_MMU_IDX_M_S;
13530     }
13531 
13532     return mmu_idx;
13533 }
13534 
13535 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13536                                                 bool secstate, bool priv)
13537 {
13538     bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
13539 
13540     return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
13541 }
13542 
13543 /* Return the MMU index for a v7M CPU in the specified security state */
13544 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13545 {
13546     bool priv = arm_current_el(env) != 0;
13547 
13548     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13549 }
13550 
13551 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13552 {
13553     int el;
13554 
13555     if (arm_feature(env, ARM_FEATURE_M)) {
13556         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13557     }
13558 
13559     el = arm_current_el(env);
13560     if (el < 2 && arm_is_secure_below_el3(env)) {
13561         return ARMMMUIdx_S1SE0 + el;
13562     } else {
13563         return ARMMMUIdx_S12NSE0 + el;
13564     }
13565 }
13566 
13567 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13568 {
13569     return arm_to_core_mmu_idx(arm_mmu_idx(env));
13570 }
13571 
13572 #ifndef CONFIG_USER_ONLY
13573 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13574 {
13575     return stage_1_mmu_idx(arm_mmu_idx(env));
13576 }
13577 #endif
13578 
13579 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13580                           target_ulong *cs_base, uint32_t *pflags)
13581 {
13582     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13583     int current_el = arm_current_el(env);
13584     int fp_el = fp_exception_el(env, current_el);
13585     uint32_t flags = 0;
13586 
13587     if (is_a64(env)) {
13588         ARMCPU *cpu = arm_env_get_cpu(env);
13589         uint64_t sctlr;
13590 
13591         *pc = env->pc;
13592         flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13593 
13594         /* Get control bits for tagged addresses.  */
13595         {
13596             ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13597             ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13598             int tbii, tbid;
13599 
13600             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
13601             if (regime_el(env, stage1) < 2) {
13602                 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13603                 tbid = (p1.tbi << 1) | p0.tbi;
13604                 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13605             } else {
13606                 tbid = p0.tbi;
13607                 tbii = tbid & !p0.tbid;
13608             }
13609 
13610             flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13611             flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13612         }
13613 
13614         if (cpu_isar_feature(aa64_sve, cpu)) {
13615             int sve_el = sve_exception_el(env, current_el);
13616             uint32_t zcr_len;
13617 
13618             /* If SVE is disabled, but FP is enabled,
13619              * then the effective len is 0.
13620              */
13621             if (sve_el != 0 && fp_el == 0) {
13622                 zcr_len = 0;
13623             } else {
13624                 zcr_len = sve_zcr_len_for_el(env, current_el);
13625             }
13626             flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13627             flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13628         }
13629 
13630         sctlr = arm_sctlr(env, current_el);
13631 
13632         if (cpu_isar_feature(aa64_pauth, cpu)) {
13633             /*
13634              * In order to save space in flags, we record only whether
13635              * pauth is "inactive", meaning all insns are implemented as
13636              * a nop, or "active" when some action must be performed.
13637              * The decision of which action to take is left to a helper.
13638              */
13639             if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13640                 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13641             }
13642         }
13643 
13644         if (cpu_isar_feature(aa64_bti, cpu)) {
13645             /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13646             if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13647                 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13648             }
13649             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13650         }
13651     } else {
13652         *pc = env->regs[15];
13653         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13654         flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13655         flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13656         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13657         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13658         flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13659         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13660             || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
13661             flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13662         }
13663         /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
13664         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13665             flags = FIELD_DP32(flags, TBFLAG_A32,
13666                                XSCALE_CPAR, env->cp15.c15_cpar);
13667         }
13668     }
13669 
13670     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13671 
13672     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13673      * states defined in the ARM ARM for software singlestep:
13674      *  SS_ACTIVE   PSTATE.SS   State
13675      *     0            x       Inactive (the TB flag for SS is always 0)
13676      *     1            0       Active-pending
13677      *     1            1       Active-not-pending
13678      */
13679     if (arm_singlestep_active(env)) {
13680         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13681         if (is_a64(env)) {
13682             if (env->pstate & PSTATE_SS) {
13683                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13684             }
13685         } else {
13686             if (env->uncached_cpsr & PSTATE_SS) {
13687                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13688             }
13689         }
13690     }
13691     if (arm_cpu_data_is_big_endian(env)) {
13692         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13693     }
13694     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13695 
13696     if (arm_v7m_is_handler_mode(env)) {
13697         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13698     }
13699 
13700     /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13701      * suppressing them because the requested execution priority is less than 0.
13702      */
13703     if (arm_feature(env, ARM_FEATURE_V8) &&
13704         arm_feature(env, ARM_FEATURE_M) &&
13705         !((mmu_idx  & ARM_MMU_IDX_M_NEGPRI) &&
13706           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13707         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13708     }
13709 
13710     if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13711         FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
13712         flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
13713     }
13714 
13715     if (arm_feature(env, ARM_FEATURE_M) &&
13716         (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13717         (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13718          (env->v7m.secure &&
13719           !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13720         /*
13721          * ASPEN is set, but FPCA/SFPA indicate that there is no active
13722          * FP context; we must create a new FP context before executing
13723          * any FP insn.
13724          */
13725         flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
13726     }
13727 
13728     if (arm_feature(env, ARM_FEATURE_M)) {
13729         bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13730 
13731         if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13732             flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
13733         }
13734     }
13735 
13736     *pflags = flags;
13737     *cs_base = 0;
13738 }
13739 
13740 #ifdef TARGET_AARCH64
13741 /*
13742  * The manual says that when SVE is enabled and VQ is widened the
13743  * implementation is allowed to zero the previously inaccessible
13744  * portion of the registers.  The corollary to that is that when
13745  * SVE is enabled and VQ is narrowed we are also allowed to zero
13746  * the now inaccessible portion of the registers.
13747  *
13748  * The intent of this is that no predicate bit beyond VQ is ever set.
13749  * Which means that some operations on predicate registers themselves
13750  * may operate on full uint64_t or even unrolled across the maximum
13751  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13752  * may well be cheaper than conditionals to restrict the operation
13753  * to the relevant portion of a uint16_t[16].
13754  */
13755 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13756 {
13757     int i, j;
13758     uint64_t pmask;
13759 
13760     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13761     assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13762 
13763     /* Zap the high bits of the zregs.  */
13764     for (i = 0; i < 32; i++) {
13765         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13766     }
13767 
13768     /* Zap the high bits of the pregs and ffr.  */
13769     pmask = 0;
13770     if (vq & 3) {
13771         pmask = ~(-1ULL << (16 * (vq & 3)));
13772     }
13773     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13774         for (i = 0; i < 17; ++i) {
13775             env->vfp.pregs[i].p[j] &= pmask;
13776         }
13777         pmask = 0;
13778     }
13779 }
13780 
13781 /*
13782  * Notice a change in SVE vector size when changing EL.
13783  */
13784 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13785                            int new_el, bool el0_a64)
13786 {
13787     ARMCPU *cpu = arm_env_get_cpu(env);
13788     int old_len, new_len;
13789     bool old_a64, new_a64;
13790 
13791     /* Nothing to do if no SVE.  */
13792     if (!cpu_isar_feature(aa64_sve, cpu)) {
13793         return;
13794     }
13795 
13796     /* Nothing to do if FP is disabled in either EL.  */
13797     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13798         return;
13799     }
13800 
13801     /*
13802      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13803      * at ELx, or not available because the EL is in AArch32 state, then
13804      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13805      * has an effective value of 0".
13806      *
13807      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13808      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13809      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13810      * we already have the correct register contents when encountering the
13811      * vq0->vq0 transition between EL0->EL1.
13812      */
13813     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13814     old_len = (old_a64 && !sve_exception_el(env, old_el)
13815                ? sve_zcr_len_for_el(env, old_el) : 0);
13816     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13817     new_len = (new_a64 && !sve_exception_el(env, new_el)
13818                ? sve_zcr_len_for_el(env, new_el) : 0);
13819 
13820     /* When changing vector length, clear inaccessible state.  */
13821     if (new_len < old_len) {
13822         aarch64_sve_narrow_vq(env, new_len + 1);
13823     }
13824 }
13825 #endif
13826