xref: /openbmc/qemu/target/arm/helper.c (revision 2038f8c8)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
36 
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
38 
39 #ifndef CONFIG_USER_ONLY
40 
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
43                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44                                target_ulong *page_size_ptr,
45                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
47 
48 static void switch_mode(CPUARMState *env, int mode);
49 
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
51 {
52     int nregs;
53 
54     /* VFP data registers are always little-endian.  */
55     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56     if (reg < nregs) {
57         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58         return 8;
59     }
60     if (arm_feature(env, ARM_FEATURE_NEON)) {
61         /* Aliases for Q regs.  */
62         nregs += 16;
63         if (reg < nregs) {
64             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65             stq_le_p(buf, q[0]);
66             stq_le_p(buf + 8, q[1]);
67             return 16;
68         }
69     }
70     switch (reg - nregs) {
71     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
74     }
75     return 0;
76 }
77 
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 {
80     int nregs;
81 
82     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83     if (reg < nregs) {
84         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85         return 8;
86     }
87     if (arm_feature(env, ARM_FEATURE_NEON)) {
88         nregs += 16;
89         if (reg < nregs) {
90             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91             q[0] = ldq_le_p(buf);
92             q[1] = ldq_le_p(buf + 8);
93             return 16;
94         }
95     }
96     switch (reg - nregs) {
97     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100     }
101     return 0;
102 }
103 
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
105 {
106     switch (reg) {
107     case 0 ... 31:
108         /* 128 bit FP register */
109         {
110             uint64_t *q = aa64_vfp_qreg(env, reg);
111             stq_le_p(buf, q[0]);
112             stq_le_p(buf + 8, q[1]);
113             return 16;
114         }
115     case 32:
116         /* FPSR */
117         stl_p(buf, vfp_get_fpsr(env));
118         return 4;
119     case 33:
120         /* FPCR */
121         stl_p(buf, vfp_get_fpcr(env));
122         return 4;
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
212 {
213     ARMCPU *cpu = env_archcpu(env);
214     const ARMCPRegInfo *ri;
215     uint32_t key;
216 
217     key = cpu->dyn_xml.cpregs_keys[reg];
218     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219     if (ri) {
220         if (cpreg_field_is_64bit(ri)) {
221             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222         } else {
223             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
224         }
225     }
226     return 0;
227 }
228 
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
230 {
231     return 0;
232 }
233 
234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
235 {
236    /* Return true if the regdef would cause an assertion if you called
237     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238     * program bug for it not to have the NO_RAW flag).
239     * NB that returning false here doesn't necessarily mean that calling
240     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241     * read/write access functions which are safe for raw use" from "has
242     * read/write access functions which have side effects but has forgotten
243     * to provide raw access functions".
244     * The tests here line up with the conditions in read/write_raw_cp_reg()
245     * and assertions in raw_read()/raw_write().
246     */
247     if ((ri->type & ARM_CP_CONST) ||
248         ri->fieldoffset ||
249         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250         return false;
251     }
252     return true;
253 }
254 
255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
256 {
257     /* Write the coprocessor state from cpu->env to the (index,value) list. */
258     int i;
259     bool ok = true;
260 
261     for (i = 0; i < cpu->cpreg_array_len; i++) {
262         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263         const ARMCPRegInfo *ri;
264         uint64_t newval;
265 
266         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267         if (!ri) {
268             ok = false;
269             continue;
270         }
271         if (ri->type & ARM_CP_NO_RAW) {
272             continue;
273         }
274 
275         newval = read_raw_cp_reg(&cpu->env, ri);
276         if (kvm_sync) {
277             /*
278              * Only sync if the previous list->cpustate sync succeeded.
279              * Rather than tracking the success/failure state for every
280              * item in the list, we just recheck "does the raw write we must
281              * have made in write_list_to_cpustate() read back OK" here.
282              */
283             uint64_t oldval = cpu->cpreg_values[i];
284 
285             if (oldval == newval) {
286                 continue;
287             }
288 
289             write_raw_cp_reg(&cpu->env, ri, oldval);
290             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291                 continue;
292             }
293 
294             write_raw_cp_reg(&cpu->env, ri, newval);
295         }
296         cpu->cpreg_values[i] = newval;
297     }
298     return ok;
299 }
300 
301 bool write_list_to_cpustate(ARMCPU *cpu)
302 {
303     int i;
304     bool ok = true;
305 
306     for (i = 0; i < cpu->cpreg_array_len; i++) {
307         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308         uint64_t v = cpu->cpreg_values[i];
309         const ARMCPRegInfo *ri;
310 
311         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312         if (!ri) {
313             ok = false;
314             continue;
315         }
316         if (ri->type & ARM_CP_NO_RAW) {
317             continue;
318         }
319         /* Write value and confirm it reads back as written
320          * (to catch read-only registers and partially read-only
321          * registers where the incoming migration value doesn't match)
322          */
323         write_raw_cp_reg(&cpu->env, ri, v);
324         if (read_raw_cp_reg(&cpu->env, ri) != v) {
325             ok = false;
326         }
327     }
328     return ok;
329 }
330 
331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
332 {
333     ARMCPU *cpu = opaque;
334     uint64_t regidx;
335     const ARMCPRegInfo *ri;
336 
337     regidx = *(uint32_t *)key;
338     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
339 
340     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342         /* The value array need not be initialized at this point */
343         cpu->cpreg_array_len++;
344     }
345 }
346 
347 static void count_cpreg(gpointer key, gpointer opaque)
348 {
349     ARMCPU *cpu = opaque;
350     uint64_t regidx;
351     const ARMCPRegInfo *ri;
352 
353     regidx = *(uint32_t *)key;
354     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
355 
356     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357         cpu->cpreg_array_len++;
358     }
359 }
360 
361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
362 {
363     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
365 
366     if (aidx > bidx) {
367         return 1;
368     }
369     if (aidx < bidx) {
370         return -1;
371     }
372     return 0;
373 }
374 
375 void init_cpreg_list(ARMCPU *cpu)
376 {
377     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378      * Note that we require cpreg_tuples[] to be sorted by key ID.
379      */
380     GList *keys;
381     int arraylen;
382 
383     keys = g_hash_table_get_keys(cpu->cp_regs);
384     keys = g_list_sort(keys, cpreg_key_compare);
385 
386     cpu->cpreg_array_len = 0;
387 
388     g_list_foreach(keys, count_cpreg, cpu);
389 
390     arraylen = cpu->cpreg_array_len;
391     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392     cpu->cpreg_values = g_new(uint64_t, arraylen);
393     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396     cpu->cpreg_array_len = 0;
397 
398     g_list_foreach(keys, add_cpreg_to_list, cpu);
399 
400     assert(cpu->cpreg_array_len == arraylen);
401 
402     g_list_free(keys);
403 }
404 
405 /*
406  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
408  *
409  * access_el3_aa32ns: Used to check AArch32 register views.
410  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
411  */
412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413                                         const ARMCPRegInfo *ri,
414                                         bool isread)
415 {
416     bool secure = arm_is_secure_below_el3(env);
417 
418     assert(!arm_el_is_aa64(env, 3));
419     if (secure) {
420         return CP_ACCESS_TRAP_UNCATEGORIZED;
421     }
422     return CP_ACCESS_OK;
423 }
424 
425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426                                                 const ARMCPRegInfo *ri,
427                                                 bool isread)
428 {
429     if (!arm_el_is_aa64(env, 3)) {
430         return access_el3_aa32ns(env, ri, isread);
431     }
432     return CP_ACCESS_OK;
433 }
434 
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438  * We assume that the .access field is set to PL1_RW.
439  */
440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441                                             const ARMCPRegInfo *ri,
442                                             bool isread)
443 {
444     if (arm_current_el(env) == 3) {
445         return CP_ACCESS_OK;
446     }
447     if (arm_is_secure_below_el3(env)) {
448         return CP_ACCESS_TRAP_EL3;
449     }
450     /* This will be EL1 NS and EL2 NS, which just UNDEF */
451     return CP_ACCESS_TRAP_UNCATEGORIZED;
452 }
453 
454 /* Check for traps to "powerdown debug" registers, which are controlled
455  * by MDCR.TDOSA
456  */
457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458                                    bool isread)
459 {
460     int el = arm_current_el(env);
461     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462         (env->cp15.mdcr_el2 & MDCR_TDE) ||
463         (arm_hcr_el2_eff(env) & HCR_TGE);
464 
465     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466         return CP_ACCESS_TRAP_EL2;
467     }
468     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469         return CP_ACCESS_TRAP_EL3;
470     }
471     return CP_ACCESS_OK;
472 }
473 
474 /* Check for traps to "debug ROM" registers, which are controlled
475  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
476  */
477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478                                   bool isread)
479 {
480     int el = arm_current_el(env);
481     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482         (env->cp15.mdcr_el2 & MDCR_TDE) ||
483         (arm_hcr_el2_eff(env) & HCR_TGE);
484 
485     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486         return CP_ACCESS_TRAP_EL2;
487     }
488     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489         return CP_ACCESS_TRAP_EL3;
490     }
491     return CP_ACCESS_OK;
492 }
493 
494 /* Check for traps to general debug registers, which are controlled
495  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
496  */
497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498                                   bool isread)
499 {
500     int el = arm_current_el(env);
501     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502         (env->cp15.mdcr_el2 & MDCR_TDE) ||
503         (arm_hcr_el2_eff(env) & HCR_TGE);
504 
505     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506         return CP_ACCESS_TRAP_EL2;
507     }
508     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509         return CP_ACCESS_TRAP_EL3;
510     }
511     return CP_ACCESS_OK;
512 }
513 
514 /* Check for traps to performance monitor registers, which are controlled
515  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
516  */
517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518                                  bool isread)
519 {
520     int el = arm_current_el(env);
521 
522     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523         && !arm_is_secure_below_el3(env)) {
524         return CP_ACCESS_TRAP_EL2;
525     }
526     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527         return CP_ACCESS_TRAP_EL3;
528     }
529     return CP_ACCESS_OK;
530 }
531 
532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
533 {
534     ARMCPU *cpu = env_archcpu(env);
535 
536     raw_write(env, ri, value);
537     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
538 }
539 
540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
541 {
542     ARMCPU *cpu = env_archcpu(env);
543 
544     if (raw_read(env, ri) != value) {
545         /* Unlike real hardware the qemu TLB uses virtual addresses,
546          * not modified virtual addresses, so this causes a TLB flush.
547          */
548         tlb_flush(CPU(cpu));
549         raw_write(env, ri, value);
550     }
551 }
552 
553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554                              uint64_t value)
555 {
556     ARMCPU *cpu = env_archcpu(env);
557 
558     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559         && !extended_addresses_enabled(env)) {
560         /* For VMSA (when not using the LPAE long descriptor page table
561          * format) this register includes the ASID, so do a TLB flush.
562          * For PMSA it is purely a process ID and no action is needed.
563          */
564         tlb_flush(CPU(cpu));
565     }
566     raw_write(env, ri, value);
567 }
568 
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                              uint64_t value)
572 {
573     CPUState *cs = env_cpu(env);
574 
575     tlb_flush_all_cpus_synced(cs);
576 }
577 
578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579                              uint64_t value)
580 {
581     CPUState *cs = env_cpu(env);
582 
583     tlb_flush_all_cpus_synced(cs);
584 }
585 
586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587                              uint64_t value)
588 {
589     CPUState *cs = env_cpu(env);
590 
591     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
592 }
593 
594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595                              uint64_t value)
596 {
597     CPUState *cs = env_cpu(env);
598 
599     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
600 }
601 
602 /*
603  * Non-IS variants of TLB operations are upgraded to
604  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605  * force broadcast of these operations.
606  */
607 static bool tlb_force_broadcast(CPUARMState *env)
608 {
609     return (env->cp15.hcr_el2 & HCR_FB) &&
610         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
611 }
612 
613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                           uint64_t value)
615 {
616     /* Invalidate all (TLBIALL) */
617     ARMCPU *cpu = env_archcpu(env);
618 
619     if (tlb_force_broadcast(env)) {
620         tlbiall_is_write(env, NULL, value);
621         return;
622     }
623 
624     tlb_flush(CPU(cpu));
625 }
626 
627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                           uint64_t value)
629 {
630     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631     ARMCPU *cpu = env_archcpu(env);
632 
633     if (tlb_force_broadcast(env)) {
634         tlbimva_is_write(env, NULL, value);
635         return;
636     }
637 
638     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
639 }
640 
641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642                            uint64_t value)
643 {
644     /* Invalidate by ASID (TLBIASID) */
645     ARMCPU *cpu = env_archcpu(env);
646 
647     if (tlb_force_broadcast(env)) {
648         tlbiasid_is_write(env, NULL, value);
649         return;
650     }
651 
652     tlb_flush(CPU(cpu));
653 }
654 
655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
656                            uint64_t value)
657 {
658     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659     ARMCPU *cpu = env_archcpu(env);
660 
661     if (tlb_force_broadcast(env)) {
662         tlbimvaa_is_write(env, NULL, value);
663         return;
664     }
665 
666     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
667 }
668 
669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
670                                uint64_t value)
671 {
672     CPUState *cs = env_cpu(env);
673 
674     tlb_flush_by_mmuidx(cs,
675                         ARMMMUIdxBit_S12NSE1 |
676                         ARMMMUIdxBit_S12NSE0 |
677                         ARMMMUIdxBit_S2NS);
678 }
679 
680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681                                   uint64_t value)
682 {
683     CPUState *cs = env_cpu(env);
684 
685     tlb_flush_by_mmuidx_all_cpus_synced(cs,
686                                         ARMMMUIdxBit_S12NSE1 |
687                                         ARMMMUIdxBit_S12NSE0 |
688                                         ARMMMUIdxBit_S2NS);
689 }
690 
691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692                             uint64_t value)
693 {
694     /* Invalidate by IPA. This has to invalidate any structures that
695      * contain only stage 2 translation information, but does not need
696      * to apply to structures that contain combined stage 1 and stage 2
697      * translation information.
698      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
699      */
700     CPUState *cs = env_cpu(env);
701     uint64_t pageaddr;
702 
703     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704         return;
705     }
706 
707     pageaddr = sextract64(value << 12, 0, 40);
708 
709     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
710 }
711 
712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713                                uint64_t value)
714 {
715     CPUState *cs = env_cpu(env);
716     uint64_t pageaddr;
717 
718     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719         return;
720     }
721 
722     pageaddr = sextract64(value << 12, 0, 40);
723 
724     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
725                                              ARMMMUIdxBit_S2NS);
726 }
727 
728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729                               uint64_t value)
730 {
731     CPUState *cs = env_cpu(env);
732 
733     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
734 }
735 
736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737                                  uint64_t value)
738 {
739     CPUState *cs = env_cpu(env);
740 
741     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
742 }
743 
744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745                               uint64_t value)
746 {
747     CPUState *cs = env_cpu(env);
748     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749 
750     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
751 }
752 
753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754                                  uint64_t value)
755 {
756     CPUState *cs = env_cpu(env);
757     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
758 
759     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
760                                              ARMMMUIdxBit_S1E2);
761 }
762 
763 static const ARMCPRegInfo cp_reginfo[] = {
764     /* Define the secure and non-secure FCSE identifier CP registers
765      * separately because there is no secure bank in V8 (no _EL3).  This allows
766      * the secure register to be properly reset and migrated. There is also no
767      * v8 EL1 version of the register so the non-secure instance stands alone.
768      */
769     { .name = "FCSEIDR",
770       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
774     { .name = "FCSEIDR_S",
775       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
778       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
779     /* Define the secure and non-secure context identifier CP registers
780      * separately because there is no secure bank in V8 (no _EL3).  This allows
781      * the secure register to be properly reset and migrated.  In the
782      * non-secure case, the 32-bit register will have reset and migration
783      * disabled during registration as it is handled by the 64-bit instance.
784      */
785     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
786       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
787       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
790     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
791       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
794       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
795     REGINFO_SENTINEL
796 };
797 
798 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799     /* NB: Some of these registers exist in v8 but with more precise
800      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
801      */
802     /* MMU Domain access control / MPU write buffer control */
803     { .name = "DACR",
804       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805       .access = PL1_RW, .resetvalue = 0,
806       .writefn = dacr_write, .raw_writefn = raw_write,
807       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
809     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810      * For v6 and v5, these mappings are overly broad.
811      */
812     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
819       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
820     /* Cache maintenance ops; some of this space may be overridden later. */
821     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
824     REGINFO_SENTINEL
825 };
826 
827 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828     /* Not all pre-v6 cores implemented this WFI, so this is slightly
829      * over-broad.
830      */
831     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832       .access = PL1_W, .type = ARM_CP_WFI },
833     REGINFO_SENTINEL
834 };
835 
836 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838      * is UNPREDICTABLE; we choose to NOP as most implementations do).
839      */
840     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841       .access = PL1_W, .type = ARM_CP_WFI },
842     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844      * OMAPCP will override this space.
845      */
846     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848       .resetvalue = 0 },
849     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851       .resetvalue = 0 },
852     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
854       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
855       .resetvalue = 0 },
856     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857      * implementing it as RAZ means the "debug architecture version" bits
858      * will read as a reserved value, which should cause Linux to not try
859      * to use the debug hardware.
860      */
861     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
863     /* MMU TLB control. Note that the wildcarding means we cover not just
864      * the unified TLB ops but also the dside/iside/inner-shareable variants.
865      */
866     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
868       .type = ARM_CP_NO_RAW },
869     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
871       .type = ARM_CP_NO_RAW },
872     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
874       .type = ARM_CP_NO_RAW },
875     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
877       .type = ARM_CP_NO_RAW },
878     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
882     REGINFO_SENTINEL
883 };
884 
885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886                         uint64_t value)
887 {
888     uint32_t mask = 0;
889 
890     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891     if (!arm_feature(env, ARM_FEATURE_V8)) {
892         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
895          */
896         if (arm_feature(env, ARM_FEATURE_VFP)) {
897             /* VFP coprocessor: cp10 & cp11 [23:20] */
898             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
899 
900             if (!arm_feature(env, ARM_FEATURE_NEON)) {
901                 /* ASEDIS [31] bit is RAO/WI */
902                 value |= (1 << 31);
903             }
904 
905             /* VFPv3 and upwards with NEON implement 32 double precision
906              * registers (D0-D31).
907              */
908             if (!arm_feature(env, ARM_FEATURE_NEON) ||
909                     !arm_feature(env, ARM_FEATURE_VFP3)) {
910                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911                 value |= (1 << 30);
912             }
913         }
914         value &= mask;
915     }
916 
917     /*
918      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
920      */
921     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923         value &= ~(0xf << 20);
924         value |= env->cp15.cpacr_el1 & (0xf << 20);
925     }
926 
927     env->cp15.cpacr_el1 = value;
928 }
929 
930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
931 {
932     /*
933      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
935      */
936     uint64_t value = env->cp15.cpacr_el1;
937 
938     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940         value &= ~(0xf << 20);
941     }
942     return value;
943 }
944 
945 
946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
947 {
948     /* Call cpacr_write() so that we reset with the correct RAO bits set
949      * for our CPU features.
950      */
951     cpacr_write(env, ri, 0);
952 }
953 
954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955                                    bool isread)
956 {
957     if (arm_feature(env, ARM_FEATURE_V8)) {
958         /* Check if CPACR accesses are to be trapped to EL2 */
959         if (arm_current_el(env) == 1 &&
960             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961             return CP_ACCESS_TRAP_EL2;
962         /* Check if CPACR accesses are to be trapped to EL3 */
963         } else if (arm_current_el(env) < 3 &&
964                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965             return CP_ACCESS_TRAP_EL3;
966         }
967     }
968 
969     return CP_ACCESS_OK;
970 }
971 
972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973                                   bool isread)
974 {
975     /* Check if CPTR accesses are set to trap to EL3 */
976     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977         return CP_ACCESS_TRAP_EL3;
978     }
979 
980     return CP_ACCESS_OK;
981 }
982 
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984     /* prefetch by MVA in v6, NOP in v7 */
985     { .name = "MVA_prefetch",
986       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987       .access = PL1_W, .type = ARM_CP_NOP },
988     /* We need to break the TB after ISB to execute self-modifying code
989      * correctly and also to take any pending interrupts immediately.
990      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
991      */
992     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995       .access = PL0_W, .type = ARM_CP_NOP },
996     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997       .access = PL0_W, .type = ARM_CP_NOP },
998     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999       .access = PL1_RW,
1000       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001                              offsetof(CPUARMState, cp15.ifar_ns) },
1002       .resetvalue = 0, },
1003     /* Watchpoint Fault Address Register : should actually only be present
1004      * for 1136, 1176, 11MPCore.
1005      */
1006     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012     REGINFO_SENTINEL
1013 };
1014 
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK  0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC  0x40
1019 #define PMCRDP  0x10
1020 #define PMCRD   0x8
1021 #define PMCRC   0x4
1022 #define PMCRP   0x2
1023 #define PMCRE   0x1
1024 
1025 #define PMXEVTYPER_P          0x80000000
1026 #define PMXEVTYPER_U          0x40000000
1027 #define PMXEVTYPER_NSK        0x20000000
1028 #define PMXEVTYPER_NSU        0x10000000
1029 #define PMXEVTYPER_NSH        0x08000000
1030 #define PMXEVTYPER_M          0x04000000
1031 #define PMXEVTYPER_MT         0x02000000
1032 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1033 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1036                                PMXEVTYPER_EVTCOUNT)
1037 
1038 #define PMCCFILTR             0xf8000000
1039 #define PMCCFILTR_M           PMXEVTYPER_M
1040 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1041 
1042 static inline uint32_t pmu_num_counters(CPUARMState *env)
1043 {
1044   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1045 }
1046 
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1049 {
1050   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1051 }
1052 
1053 typedef struct pm_event {
1054     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1055     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056     bool (*supported)(CPUARMState *);
1057     /*
1058      * Retrieve the current count of the underlying event. The programmed
1059      * counters hold a difference from the return value from this function
1060      */
1061     uint64_t (*get_count)(CPUARMState *);
1062     /*
1063      * Return how many nanoseconds it will take (at a minimum) for count events
1064      * to occur. A negative value indicates the counter will never overflow, or
1065      * that the counter has otherwise arranged for the overflow bit to be set
1066      * and the PMU interrupt to be raised on overflow.
1067      */
1068     int64_t (*ns_per_count)(uint64_t);
1069 } pm_event;
1070 
1071 static bool event_always_supported(CPUARMState *env)
1072 {
1073     return true;
1074 }
1075 
1076 static uint64_t swinc_get_count(CPUARMState *env)
1077 {
1078     /*
1079      * SW_INCR events are written directly to the pmevcntr's by writes to
1080      * PMSWINC, so there is no underlying count maintained by the PMU itself
1081      */
1082     return 0;
1083 }
1084 
1085 static int64_t swinc_ns_per(uint64_t ignored)
1086 {
1087     return -1;
1088 }
1089 
1090 /*
1091  * Return the underlying cycle count for the PMU cycle counters. If we're in
1092  * usermode, simply return 0.
1093  */
1094 static uint64_t cycles_get_count(CPUARMState *env)
1095 {
1096 #ifndef CONFIG_USER_ONLY
1097     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1098                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1099 #else
1100     return cpu_get_host_ticks();
1101 #endif
1102 }
1103 
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles)
1106 {
1107     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1108 }
1109 
1110 static bool instructions_supported(CPUARMState *env)
1111 {
1112     return use_icount == 1 /* Precise instruction counting */;
1113 }
1114 
1115 static uint64_t instructions_get_count(CPUARMState *env)
1116 {
1117     return (uint64_t)cpu_get_icount_raw();
1118 }
1119 
1120 static int64_t instructions_ns_per(uint64_t icount)
1121 {
1122     return cpu_icount_to_ns((int64_t)icount);
1123 }
1124 #endif
1125 
1126 static const pm_event pm_events[] = {
1127     { .number = 0x000, /* SW_INCR */
1128       .supported = event_always_supported,
1129       .get_count = swinc_get_count,
1130       .ns_per_count = swinc_ns_per,
1131     },
1132 #ifndef CONFIG_USER_ONLY
1133     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134       .supported = instructions_supported,
1135       .get_count = instructions_get_count,
1136       .ns_per_count = instructions_ns_per,
1137     },
1138     { .number = 0x011, /* CPU_CYCLES, Cycle */
1139       .supported = event_always_supported,
1140       .get_count = cycles_get_count,
1141       .ns_per_count = cycles_ns_per,
1142     }
1143 #endif
1144 };
1145 
1146 /*
1147  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148  * events (i.e. the statistical profiling extension), this implementation
1149  * should first be updated to something sparse instead of the current
1150  * supported_event_map[] array.
1151  */
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1155 
1156 /*
1157  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158  * of ARM event numbers to indices in our pm_events array.
1159  *
1160  * Note: Events in the 0x40XX range are not currently supported.
1161  */
1162 void pmu_init(ARMCPU *cpu)
1163 {
1164     unsigned int i;
1165 
1166     /*
1167      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1168      * events to them
1169      */
1170     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1171         supported_event_map[i] = UNSUPPORTED_EVENT;
1172     }
1173     cpu->pmceid0 = 0;
1174     cpu->pmceid1 = 0;
1175 
1176     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1177         const pm_event *cnt = &pm_events[i];
1178         assert(cnt->number <= MAX_EVENT_ID);
1179         /* We do not currently support events in the 0x40xx range */
1180         assert(cnt->number <= 0x3f);
1181 
1182         if (cnt->supported(&cpu->env)) {
1183             supported_event_map[cnt->number] = i;
1184             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1185             if (cnt->number & 0x20) {
1186                 cpu->pmceid1 |= event_mask;
1187             } else {
1188                 cpu->pmceid0 |= event_mask;
1189             }
1190         }
1191     }
1192 }
1193 
1194 /*
1195  * Check at runtime whether a PMU event is supported for the current machine
1196  */
1197 static bool event_supported(uint16_t number)
1198 {
1199     if (number > MAX_EVENT_ID) {
1200         return false;
1201     }
1202     return supported_event_map[number] != UNSUPPORTED_EVENT;
1203 }
1204 
1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1206                                    bool isread)
1207 {
1208     /* Performance monitor registers user accessibility is controlled
1209      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210      * trapping to EL2 or EL3 for other accesses.
1211      */
1212     int el = arm_current_el(env);
1213 
1214     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1215         return CP_ACCESS_TRAP;
1216     }
1217     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1218         && !arm_is_secure_below_el3(env)) {
1219         return CP_ACCESS_TRAP_EL2;
1220     }
1221     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1222         return CP_ACCESS_TRAP_EL3;
1223     }
1224 
1225     return CP_ACCESS_OK;
1226 }
1227 
1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1229                                            const ARMCPRegInfo *ri,
1230                                            bool isread)
1231 {
1232     /* ER: event counter read trap control */
1233     if (arm_feature(env, ARM_FEATURE_V8)
1234         && arm_current_el(env) == 0
1235         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1236         && isread) {
1237         return CP_ACCESS_OK;
1238     }
1239 
1240     return pmreg_access(env, ri, isread);
1241 }
1242 
1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1244                                          const ARMCPRegInfo *ri,
1245                                          bool isread)
1246 {
1247     /* SW: software increment write trap control */
1248     if (arm_feature(env, ARM_FEATURE_V8)
1249         && arm_current_el(env) == 0
1250         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1251         && !isread) {
1252         return CP_ACCESS_OK;
1253     }
1254 
1255     return pmreg_access(env, ri, isread);
1256 }
1257 
1258 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1259                                         const ARMCPRegInfo *ri,
1260                                         bool isread)
1261 {
1262     /* ER: event counter read trap control */
1263     if (arm_feature(env, ARM_FEATURE_V8)
1264         && arm_current_el(env) == 0
1265         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1266         return CP_ACCESS_OK;
1267     }
1268 
1269     return pmreg_access(env, ri, isread);
1270 }
1271 
1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1273                                          const ARMCPRegInfo *ri,
1274                                          bool isread)
1275 {
1276     /* CR: cycle counter read trap control */
1277     if (arm_feature(env, ARM_FEATURE_V8)
1278         && arm_current_el(env) == 0
1279         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1280         && isread) {
1281         return CP_ACCESS_OK;
1282     }
1283 
1284     return pmreg_access(env, ri, isread);
1285 }
1286 
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288  * the current EL, security state, and register configuration.
1289  */
1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1291 {
1292     uint64_t filter;
1293     bool e, p, u, nsk, nsu, nsh, m;
1294     bool enabled, prohibited, filtered;
1295     bool secure = arm_is_secure(env);
1296     int el = arm_current_el(env);
1297     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1298 
1299     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1300         return false;
1301     }
1302 
1303     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1304             (counter < hpmn || counter == 31)) {
1305         e = env->cp15.c9_pmcr & PMCRE;
1306     } else {
1307         e = env->cp15.mdcr_el2 & MDCR_HPME;
1308     }
1309     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1310 
1311     if (!secure) {
1312         if (el == 2 && (counter < hpmn || counter == 31)) {
1313             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1314         } else {
1315             prohibited = false;
1316         }
1317     } else {
1318         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1319            (env->cp15.mdcr_el3 & MDCR_SPME);
1320     }
1321 
1322     if (prohibited && counter == 31) {
1323         prohibited = env->cp15.c9_pmcr & PMCRDP;
1324     }
1325 
1326     if (counter == 31) {
1327         filter = env->cp15.pmccfiltr_el0;
1328     } else {
1329         filter = env->cp15.c14_pmevtyper[counter];
1330     }
1331 
1332     p   = filter & PMXEVTYPER_P;
1333     u   = filter & PMXEVTYPER_U;
1334     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1335     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1336     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1337     m   = arm_el_is_aa64(env, 1) &&
1338               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1339 
1340     if (el == 0) {
1341         filtered = secure ? u : u != nsu;
1342     } else if (el == 1) {
1343         filtered = secure ? p : p != nsk;
1344     } else if (el == 2) {
1345         filtered = !nsh;
1346     } else { /* EL3 */
1347         filtered = m != p;
1348     }
1349 
1350     if (counter != 31) {
1351         /*
1352          * If not checking PMCCNTR, ensure the counter is setup to an event we
1353          * support
1354          */
1355         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1356         if (!event_supported(event)) {
1357             return false;
1358         }
1359     }
1360 
1361     return enabled && !prohibited && !filtered;
1362 }
1363 
1364 static void pmu_update_irq(CPUARMState *env)
1365 {
1366     ARMCPU *cpu = env_archcpu(env);
1367     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1368             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1369 }
1370 
1371 /*
1372  * Ensure c15_ccnt is the guest-visible count so that operations such as
1373  * enabling/disabling the counter or filtering, modifying the count itself,
1374  * etc. can be done logically. This is essentially a no-op if the counter is
1375  * not enabled at the time of the call.
1376  */
1377 static void pmccntr_op_start(CPUARMState *env)
1378 {
1379     uint64_t cycles = cycles_get_count(env);
1380 
1381     if (pmu_counter_enabled(env, 31)) {
1382         uint64_t eff_cycles = cycles;
1383         if (env->cp15.c9_pmcr & PMCRD) {
1384             /* Increment once every 64 processor clock cycles */
1385             eff_cycles /= 64;
1386         }
1387 
1388         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1389 
1390         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1391                                  1ull << 63 : 1ull << 31;
1392         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1393             env->cp15.c9_pmovsr |= (1 << 31);
1394             pmu_update_irq(env);
1395         }
1396 
1397         env->cp15.c15_ccnt = new_pmccntr;
1398     }
1399     env->cp15.c15_ccnt_delta = cycles;
1400 }
1401 
1402 /*
1403  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1405  * pmccntr_op_start.
1406  */
1407 static void pmccntr_op_finish(CPUARMState *env)
1408 {
1409     if (pmu_counter_enabled(env, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411         /* Calculate when the counter will next overflow */
1412         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1413         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1414             remaining_cycles = (uint32_t)remaining_cycles;
1415         }
1416         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1417 
1418         if (overflow_in > 0) {
1419             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1420                 overflow_in;
1421             ARMCPU *cpu = env_archcpu(env);
1422             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1423         }
1424 #endif
1425 
1426         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1427         if (env->cp15.c9_pmcr & PMCRD) {
1428             /* Increment once every 64 processor clock cycles */
1429             prev_cycles /= 64;
1430         }
1431         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1432     }
1433 }
1434 
1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1436 {
1437 
1438     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1439     uint64_t count = 0;
1440     if (event_supported(event)) {
1441         uint16_t event_idx = supported_event_map[event];
1442         count = pm_events[event_idx].get_count(env);
1443     }
1444 
1445     if (pmu_counter_enabled(env, counter)) {
1446         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1447 
1448         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1449             env->cp15.c9_pmovsr |= (1 << counter);
1450             pmu_update_irq(env);
1451         }
1452         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1453     }
1454     env->cp15.c14_pmevcntr_delta[counter] = count;
1455 }
1456 
1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1458 {
1459     if (pmu_counter_enabled(env, counter)) {
1460 #ifndef CONFIG_USER_ONLY
1461         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1462         uint16_t event_idx = supported_event_map[event];
1463         uint64_t delta = UINT32_MAX -
1464             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1465         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1466 
1467         if (overflow_in > 0) {
1468             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1469                 overflow_in;
1470             ARMCPU *cpu = env_archcpu(env);
1471             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1472         }
1473 #endif
1474 
1475         env->cp15.c14_pmevcntr_delta[counter] -=
1476             env->cp15.c14_pmevcntr[counter];
1477     }
1478 }
1479 
1480 void pmu_op_start(CPUARMState *env)
1481 {
1482     unsigned int i;
1483     pmccntr_op_start(env);
1484     for (i = 0; i < pmu_num_counters(env); i++) {
1485         pmevcntr_op_start(env, i);
1486     }
1487 }
1488 
1489 void pmu_op_finish(CPUARMState *env)
1490 {
1491     unsigned int i;
1492     pmccntr_op_finish(env);
1493     for (i = 0; i < pmu_num_counters(env); i++) {
1494         pmevcntr_op_finish(env, i);
1495     }
1496 }
1497 
1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1499 {
1500     pmu_op_start(&cpu->env);
1501 }
1502 
1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1504 {
1505     pmu_op_finish(&cpu->env);
1506 }
1507 
1508 void arm_pmu_timer_cb(void *opaque)
1509 {
1510     ARMCPU *cpu = opaque;
1511 
1512     /*
1513      * Update all the counter values based on the current underlying counts,
1514      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516      * counter may expire.
1517      */
1518     pmu_op_start(&cpu->env);
1519     pmu_op_finish(&cpu->env);
1520 }
1521 
1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                        uint64_t value)
1524 {
1525     pmu_op_start(env);
1526 
1527     if (value & PMCRC) {
1528         /* The counter has been reset */
1529         env->cp15.c15_ccnt = 0;
1530     }
1531 
1532     if (value & PMCRP) {
1533         unsigned int i;
1534         for (i = 0; i < pmu_num_counters(env); i++) {
1535             env->cp15.c14_pmevcntr[i] = 0;
1536         }
1537     }
1538 
1539     /* only the DP, X, D and E bits are writable */
1540     env->cp15.c9_pmcr &= ~0x39;
1541     env->cp15.c9_pmcr |= (value & 0x39);
1542 
1543     pmu_op_finish(env);
1544 }
1545 
1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547                           uint64_t value)
1548 {
1549     unsigned int i;
1550     for (i = 0; i < pmu_num_counters(env); i++) {
1551         /* Increment a counter's count iff: */
1552         if ((value & (1 << i)) && /* counter's bit is set */
1553                 /* counter is enabled and not filtered */
1554                 pmu_counter_enabled(env, i) &&
1555                 /* counter is SW_INCR */
1556                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1557             pmevcntr_op_start(env, i);
1558 
1559             /*
1560              * Detect if this write causes an overflow since we can't predict
1561              * PMSWINC overflows like we can for other events
1562              */
1563             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1564 
1565             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1566                 env->cp15.c9_pmovsr |= (1 << i);
1567                 pmu_update_irq(env);
1568             }
1569 
1570             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1571 
1572             pmevcntr_op_finish(env, i);
1573         }
1574     }
1575 }
1576 
1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1578 {
1579     uint64_t ret;
1580     pmccntr_op_start(env);
1581     ret = env->cp15.c15_ccnt;
1582     pmccntr_op_finish(env);
1583     return ret;
1584 }
1585 
1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587                          uint64_t value)
1588 {
1589     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1592      * accessed.
1593      */
1594     env->cp15.c9_pmselr = value & 0x1f;
1595 }
1596 
1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598                         uint64_t value)
1599 {
1600     pmccntr_op_start(env);
1601     env->cp15.c15_ccnt = value;
1602     pmccntr_op_finish(env);
1603 }
1604 
1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1606                             uint64_t value)
1607 {
1608     uint64_t cur_val = pmccntr_read(env, NULL);
1609 
1610     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1611 }
1612 
1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614                             uint64_t value)
1615 {
1616     pmccntr_op_start(env);
1617     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1618     pmccntr_op_finish(env);
1619 }
1620 
1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1622                             uint64_t value)
1623 {
1624     pmccntr_op_start(env);
1625     /* M is not accessible from AArch32 */
1626     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1627         (value & PMCCFILTR);
1628     pmccntr_op_finish(env);
1629 }
1630 
1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1632 {
1633     /* M is not visible in AArch32 */
1634     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1635 }
1636 
1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638                             uint64_t value)
1639 {
1640     value &= pmu_counter_mask(env);
1641     env->cp15.c9_pmcnten |= value;
1642 }
1643 
1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645                              uint64_t value)
1646 {
1647     value &= pmu_counter_mask(env);
1648     env->cp15.c9_pmcnten &= ~value;
1649 }
1650 
1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652                          uint64_t value)
1653 {
1654     value &= pmu_counter_mask(env);
1655     env->cp15.c9_pmovsr &= ~value;
1656     pmu_update_irq(env);
1657 }
1658 
1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660                          uint64_t value)
1661 {
1662     value &= pmu_counter_mask(env);
1663     env->cp15.c9_pmovsr |= value;
1664     pmu_update_irq(env);
1665 }
1666 
1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668                              uint64_t value, const uint8_t counter)
1669 {
1670     if (counter == 31) {
1671         pmccfiltr_write(env, ri, value);
1672     } else if (counter < pmu_num_counters(env)) {
1673         pmevcntr_op_start(env, counter);
1674 
1675         /*
1676          * If this counter's event type is changing, store the current
1677          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678          * pmevcntr_op_finish has the correct baseline when it converts back to
1679          * a delta.
1680          */
1681         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1682             PMXEVTYPER_EVTCOUNT;
1683         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1684         if (old_event != new_event) {
1685             uint64_t count = 0;
1686             if (event_supported(new_event)) {
1687                 uint16_t event_idx = supported_event_map[new_event];
1688                 count = pm_events[event_idx].get_count(env);
1689             }
1690             env->cp15.c14_pmevcntr_delta[counter] = count;
1691         }
1692 
1693         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1694         pmevcntr_op_finish(env, counter);
1695     }
1696     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697      * PMSELR value is equal to or greater than the number of implemented
1698      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1699      */
1700 }
1701 
1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1703                                const uint8_t counter)
1704 {
1705     if (counter == 31) {
1706         return env->cp15.pmccfiltr_el0;
1707     } else if (counter < pmu_num_counters(env)) {
1708         return env->cp15.c14_pmevtyper[counter];
1709     } else {
1710       /*
1711        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1713        */
1714         return 0;
1715     }
1716 }
1717 
1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1719                               uint64_t value)
1720 {
1721     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1722     pmevtyper_write(env, ri, value, counter);
1723 }
1724 
1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1726                                uint64_t value)
1727 {
1728     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1729     env->cp15.c14_pmevtyper[counter] = value;
1730 
1731     /*
1732      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733      * pmu_op_finish calls when loading saved state for a migration. Because
1734      * we're potentially updating the type of event here, the value written to
1735      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736      * different counter type. Therefore, we need to set this value to the
1737      * current count for the counter type we're writing so that pmu_op_finish
1738      * has the correct count for its calculation.
1739      */
1740     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1741     if (event_supported(event)) {
1742         uint16_t event_idx = supported_event_map[event];
1743         env->cp15.c14_pmevcntr_delta[counter] =
1744             pm_events[event_idx].get_count(env);
1745     }
1746 }
1747 
1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     return pmevtyper_read(env, ri, counter);
1752 }
1753 
1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755                              uint64_t value)
1756 {
1757     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1758 }
1759 
1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1761 {
1762     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1763 }
1764 
1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766                              uint64_t value, uint8_t counter)
1767 {
1768     if (counter < pmu_num_counters(env)) {
1769         pmevcntr_op_start(env, counter);
1770         env->cp15.c14_pmevcntr[counter] = value;
1771         pmevcntr_op_finish(env, counter);
1772     }
1773     /*
1774      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775      * are CONSTRAINED UNPREDICTABLE.
1776      */
1777 }
1778 
1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1780                               uint8_t counter)
1781 {
1782     if (counter < pmu_num_counters(env)) {
1783         uint64_t ret;
1784         pmevcntr_op_start(env, counter);
1785         ret = env->cp15.c14_pmevcntr[counter];
1786         pmevcntr_op_finish(env, counter);
1787         return ret;
1788     } else {
1789       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790        * are CONSTRAINED UNPREDICTABLE. */
1791         return 0;
1792     }
1793 }
1794 
1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1796                              uint64_t value)
1797 {
1798     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799     pmevcntr_write(env, ri, value, counter);
1800 }
1801 
1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1803 {
1804     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1805     return pmevcntr_read(env, ri, counter);
1806 }
1807 
1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1809                              uint64_t value)
1810 {
1811     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1812     assert(counter < pmu_num_counters(env));
1813     env->cp15.c14_pmevcntr[counter] = value;
1814     pmevcntr_write(env, ri, value, counter);
1815 }
1816 
1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1820     assert(counter < pmu_num_counters(env));
1821     return env->cp15.c14_pmevcntr[counter];
1822 }
1823 
1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825                              uint64_t value)
1826 {
1827     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1828 }
1829 
1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1831 {
1832     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1833 }
1834 
1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836                             uint64_t value)
1837 {
1838     if (arm_feature(env, ARM_FEATURE_V8)) {
1839         env->cp15.c9_pmuserenr = value & 0xf;
1840     } else {
1841         env->cp15.c9_pmuserenr = value & 1;
1842     }
1843 }
1844 
1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846                              uint64_t value)
1847 {
1848     /* We have no event counters so only the C bit can be changed */
1849     value &= pmu_counter_mask(env);
1850     env->cp15.c9_pminten |= value;
1851     pmu_update_irq(env);
1852 }
1853 
1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855                              uint64_t value)
1856 {
1857     value &= pmu_counter_mask(env);
1858     env->cp15.c9_pminten &= ~value;
1859     pmu_update_irq(env);
1860 }
1861 
1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863                        uint64_t value)
1864 {
1865     /* Note that even though the AArch64 view of this register has bits
1866      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867      * architectural requirements for bits which are RES0 only in some
1868      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1870      */
1871     raw_write(env, ri, value & ~0x1FULL);
1872 }
1873 
1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1875 {
1876     /* Begin with base v8.0 state.  */
1877     uint32_t valid_mask = 0x3fff;
1878     ARMCPU *cpu = env_archcpu(env);
1879 
1880     if (arm_el_is_aa64(env, 3)) {
1881         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1882         valid_mask &= ~SCR_NET;
1883     } else {
1884         valid_mask &= ~(SCR_RW | SCR_ST);
1885     }
1886 
1887     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1888         valid_mask &= ~SCR_HCE;
1889 
1890         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891          * supported if EL2 exists. The bit is UNK/SBZP when
1892          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893          * when EL2 is unavailable.
1894          * On ARMv8, this bit is always available.
1895          */
1896         if (arm_feature(env, ARM_FEATURE_V7) &&
1897             !arm_feature(env, ARM_FEATURE_V8)) {
1898             valid_mask &= ~SCR_SMD;
1899         }
1900     }
1901     if (cpu_isar_feature(aa64_lor, cpu)) {
1902         valid_mask |= SCR_TLOR;
1903     }
1904     if (cpu_isar_feature(aa64_pauth, cpu)) {
1905         valid_mask |= SCR_API | SCR_APK;
1906     }
1907 
1908     /* Clear all-context RES0 bits.  */
1909     value &= valid_mask;
1910     raw_write(env, ri, value);
1911 }
1912 
1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1914 {
1915     ARMCPU *cpu = env_archcpu(env);
1916 
1917     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1918      * bank
1919      */
1920     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1921                                         ri->secure & ARM_CP_SECSTATE_S);
1922 
1923     return cpu->ccsidr[index];
1924 }
1925 
1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1927                          uint64_t value)
1928 {
1929     raw_write(env, ri, value & 0xf);
1930 }
1931 
1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1933 {
1934     CPUState *cs = env_cpu(env);
1935     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1936     uint64_t ret = 0;
1937 
1938     if (hcr_el2 & HCR_IMO) {
1939         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1940             ret |= CPSR_I;
1941         }
1942     } else {
1943         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1944             ret |= CPSR_I;
1945         }
1946     }
1947 
1948     if (hcr_el2 & HCR_FMO) {
1949         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1950             ret |= CPSR_F;
1951         }
1952     } else {
1953         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1954             ret |= CPSR_F;
1955         }
1956     }
1957 
1958     /* External aborts are not possible in QEMU so A bit is always clear */
1959     return ret;
1960 }
1961 
1962 static const ARMCPRegInfo v7_cp_reginfo[] = {
1963     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1964     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1965       .access = PL1_W, .type = ARM_CP_NOP },
1966     /* Performance monitors are implementation defined in v7,
1967      * but with an ARM recommended set of registers, which we
1968      * follow.
1969      *
1970      * Performance registers fall into three categories:
1971      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1972      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1973      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1974      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1975      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1976      */
1977     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1978       .access = PL0_RW, .type = ARM_CP_ALIAS,
1979       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1980       .writefn = pmcntenset_write,
1981       .accessfn = pmreg_access,
1982       .raw_writefn = raw_write },
1983     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1984       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1985       .access = PL0_RW, .accessfn = pmreg_access,
1986       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1987       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1988     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1989       .access = PL0_RW,
1990       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1991       .accessfn = pmreg_access,
1992       .writefn = pmcntenclr_write,
1993       .type = ARM_CP_ALIAS },
1994     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1995       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1996       .access = PL0_RW, .accessfn = pmreg_access,
1997       .type = ARM_CP_ALIAS,
1998       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1999       .writefn = pmcntenclr_write },
2000     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2001       .access = PL0_RW, .type = ARM_CP_IO,
2002       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2003       .accessfn = pmreg_access,
2004       .writefn = pmovsr_write,
2005       .raw_writefn = raw_write },
2006     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2007       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2008       .access = PL0_RW, .accessfn = pmreg_access,
2009       .type = ARM_CP_ALIAS | ARM_CP_IO,
2010       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2011       .writefn = pmovsr_write,
2012       .raw_writefn = raw_write },
2013     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2014       .access = PL0_W, .accessfn = pmreg_access_swinc,
2015       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2016       .writefn = pmswinc_write },
2017     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2018       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2019       .access = PL0_W, .accessfn = pmreg_access_swinc,
2020       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021       .writefn = pmswinc_write },
2022     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2023       .access = PL0_RW, .type = ARM_CP_ALIAS,
2024       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2025       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2026       .raw_writefn = raw_write},
2027     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2028       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2029       .access = PL0_RW, .accessfn = pmreg_access_selr,
2030       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2031       .writefn = pmselr_write, .raw_writefn = raw_write, },
2032     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2033       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2034       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2035       .accessfn = pmreg_access_ccntr },
2036     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2037       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2038       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2039       .type = ARM_CP_IO,
2040       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2041       .readfn = pmccntr_read, .writefn = pmccntr_write,
2042       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2043     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2044       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2045       .access = PL0_RW, .accessfn = pmreg_access,
2046       .type = ARM_CP_ALIAS | ARM_CP_IO,
2047       .resetvalue = 0, },
2048     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2049       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2050       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2051       .access = PL0_RW, .accessfn = pmreg_access,
2052       .type = ARM_CP_IO,
2053       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2054       .resetvalue = 0, },
2055     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2056       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2057       .accessfn = pmreg_access,
2058       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2059     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2060       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2061       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2062       .accessfn = pmreg_access,
2063       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2064     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2065       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2066       .accessfn = pmreg_access_xevcntr,
2067       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2068     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2069       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2070       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2071       .accessfn = pmreg_access_xevcntr,
2072       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2073     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2074       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2075       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2076       .resetvalue = 0,
2077       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2078     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2079       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2080       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2081       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2082       .resetvalue = 0,
2083       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2084     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2085       .access = PL1_RW, .accessfn = access_tpm,
2086       .type = ARM_CP_ALIAS | ARM_CP_IO,
2087       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2088       .resetvalue = 0,
2089       .writefn = pmintenset_write, .raw_writefn = raw_write },
2090     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2091       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2092       .access = PL1_RW, .accessfn = access_tpm,
2093       .type = ARM_CP_IO,
2094       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2095       .writefn = pmintenset_write, .raw_writefn = raw_write,
2096       .resetvalue = 0x0 },
2097     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2098       .access = PL1_RW, .accessfn = access_tpm,
2099       .type = ARM_CP_ALIAS | ARM_CP_IO,
2100       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2101       .writefn = pmintenclr_write, },
2102     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2103       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2104       .access = PL1_RW, .accessfn = access_tpm,
2105       .type = ARM_CP_ALIAS | ARM_CP_IO,
2106       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2107       .writefn = pmintenclr_write },
2108     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2109       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2110       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2111     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2112       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2113       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2114       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2115                              offsetof(CPUARMState, cp15.csselr_ns) } },
2116     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2117      * just RAZ for all cores:
2118      */
2119     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2120       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2121       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2122     /* Auxiliary fault status registers: these also are IMPDEF, and we
2123      * choose to RAZ/WI for all cores.
2124      */
2125     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2126       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2127       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2128     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2129       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2130       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2131     /* MAIR can just read-as-written because we don't implement caches
2132      * and so don't need to care about memory attributes.
2133      */
2134     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2135       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2136       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2137       .resetvalue = 0 },
2138     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2139       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2140       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2141       .resetvalue = 0 },
2142     /* For non-long-descriptor page tables these are PRRR and NMRR;
2143      * regardless they still act as reads-as-written for QEMU.
2144      */
2145      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2146       * allows them to assign the correct fieldoffset based on the endianness
2147       * handled in the field definitions.
2148       */
2149     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2150       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2151       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2152                              offsetof(CPUARMState, cp15.mair0_ns) },
2153       .resetfn = arm_cp_reset_ignore },
2154     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2155       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2156       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2157                              offsetof(CPUARMState, cp15.mair1_ns) },
2158       .resetfn = arm_cp_reset_ignore },
2159     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2160       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2161       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2162     /* 32 bit ITLB invalidates */
2163     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2164       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2165     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2166       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2167     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2168       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2169     /* 32 bit DTLB invalidates */
2170     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2171       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2172     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2173       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2174     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2175       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2176     /* 32 bit TLB invalidates */
2177     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2178       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2179     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2180       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2181     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2182       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2183     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2184       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2185     REGINFO_SENTINEL
2186 };
2187 
2188 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2189     /* 32 bit TLB invalidates, Inner Shareable */
2190     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2191       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2192     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2193       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2194     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2195       .type = ARM_CP_NO_RAW, .access = PL1_W,
2196       .writefn = tlbiasid_is_write },
2197     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2198       .type = ARM_CP_NO_RAW, .access = PL1_W,
2199       .writefn = tlbimvaa_is_write },
2200     REGINFO_SENTINEL
2201 };
2202 
2203 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2204     /* PMOVSSET is not implemented in v7 before v7ve */
2205     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2206       .access = PL0_RW, .accessfn = pmreg_access,
2207       .type = ARM_CP_ALIAS | ARM_CP_IO,
2208       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2209       .writefn = pmovsset_write,
2210       .raw_writefn = raw_write },
2211     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2212       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2213       .access = PL0_RW, .accessfn = pmreg_access,
2214       .type = ARM_CP_ALIAS | ARM_CP_IO,
2215       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2216       .writefn = pmovsset_write,
2217       .raw_writefn = raw_write },
2218     REGINFO_SENTINEL
2219 };
2220 
2221 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2222                         uint64_t value)
2223 {
2224     value &= 1;
2225     env->teecr = value;
2226 }
2227 
2228 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2229                                     bool isread)
2230 {
2231     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2232         return CP_ACCESS_TRAP;
2233     }
2234     return CP_ACCESS_OK;
2235 }
2236 
2237 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2238     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2239       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2240       .resetvalue = 0,
2241       .writefn = teecr_write },
2242     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2243       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2244       .accessfn = teehbr_access, .resetvalue = 0 },
2245     REGINFO_SENTINEL
2246 };
2247 
2248 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2249     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2250       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2251       .access = PL0_RW,
2252       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2253     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2254       .access = PL0_RW,
2255       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2256                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2257       .resetfn = arm_cp_reset_ignore },
2258     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2259       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2260       .access = PL0_R|PL1_W,
2261       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2262       .resetvalue = 0},
2263     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2264       .access = PL0_R|PL1_W,
2265       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2266                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2267       .resetfn = arm_cp_reset_ignore },
2268     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2269       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2270       .access = PL1_RW,
2271       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2272     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2273       .access = PL1_RW,
2274       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2275                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2276       .resetvalue = 0 },
2277     REGINFO_SENTINEL
2278 };
2279 
2280 #ifndef CONFIG_USER_ONLY
2281 
2282 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2283                                        bool isread)
2284 {
2285     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2286      * Writable only at the highest implemented exception level.
2287      */
2288     int el = arm_current_el(env);
2289 
2290     switch (el) {
2291     case 0:
2292         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2293             return CP_ACCESS_TRAP;
2294         }
2295         break;
2296     case 1:
2297         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2298             arm_is_secure_below_el3(env)) {
2299             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2300             return CP_ACCESS_TRAP_UNCATEGORIZED;
2301         }
2302         break;
2303     case 2:
2304     case 3:
2305         break;
2306     }
2307 
2308     if (!isread && el < arm_highest_el(env)) {
2309         return CP_ACCESS_TRAP_UNCATEGORIZED;
2310     }
2311 
2312     return CP_ACCESS_OK;
2313 }
2314 
2315 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2316                                         bool isread)
2317 {
2318     unsigned int cur_el = arm_current_el(env);
2319     bool secure = arm_is_secure(env);
2320 
2321     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2322     if (cur_el == 0 &&
2323         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2324         return CP_ACCESS_TRAP;
2325     }
2326 
2327     if (arm_feature(env, ARM_FEATURE_EL2) &&
2328         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2329         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2330         return CP_ACCESS_TRAP_EL2;
2331     }
2332     return CP_ACCESS_OK;
2333 }
2334 
2335 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2336                                       bool isread)
2337 {
2338     unsigned int cur_el = arm_current_el(env);
2339     bool secure = arm_is_secure(env);
2340 
2341     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2342      * EL0[PV]TEN is zero.
2343      */
2344     if (cur_el == 0 &&
2345         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2346         return CP_ACCESS_TRAP;
2347     }
2348 
2349     if (arm_feature(env, ARM_FEATURE_EL2) &&
2350         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2351         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2352         return CP_ACCESS_TRAP_EL2;
2353     }
2354     return CP_ACCESS_OK;
2355 }
2356 
2357 static CPAccessResult gt_pct_access(CPUARMState *env,
2358                                     const ARMCPRegInfo *ri,
2359                                     bool isread)
2360 {
2361     return gt_counter_access(env, GTIMER_PHYS, isread);
2362 }
2363 
2364 static CPAccessResult gt_vct_access(CPUARMState *env,
2365                                     const ARMCPRegInfo *ri,
2366                                     bool isread)
2367 {
2368     return gt_counter_access(env, GTIMER_VIRT, isread);
2369 }
2370 
2371 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2372                                        bool isread)
2373 {
2374     return gt_timer_access(env, GTIMER_PHYS, isread);
2375 }
2376 
2377 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2378                                        bool isread)
2379 {
2380     return gt_timer_access(env, GTIMER_VIRT, isread);
2381 }
2382 
2383 static CPAccessResult gt_stimer_access(CPUARMState *env,
2384                                        const ARMCPRegInfo *ri,
2385                                        bool isread)
2386 {
2387     /* The AArch64 register view of the secure physical timer is
2388      * always accessible from EL3, and configurably accessible from
2389      * Secure EL1.
2390      */
2391     switch (arm_current_el(env)) {
2392     case 1:
2393         if (!arm_is_secure(env)) {
2394             return CP_ACCESS_TRAP;
2395         }
2396         if (!(env->cp15.scr_el3 & SCR_ST)) {
2397             return CP_ACCESS_TRAP_EL3;
2398         }
2399         return CP_ACCESS_OK;
2400     case 0:
2401     case 2:
2402         return CP_ACCESS_TRAP;
2403     case 3:
2404         return CP_ACCESS_OK;
2405     default:
2406         g_assert_not_reached();
2407     }
2408 }
2409 
2410 static uint64_t gt_get_countervalue(CPUARMState *env)
2411 {
2412     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2413 }
2414 
2415 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2416 {
2417     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2418 
2419     if (gt->ctl & 1) {
2420         /* Timer enabled: calculate and set current ISTATUS, irq, and
2421          * reset timer to when ISTATUS next has to change
2422          */
2423         uint64_t offset = timeridx == GTIMER_VIRT ?
2424                                       cpu->env.cp15.cntvoff_el2 : 0;
2425         uint64_t count = gt_get_countervalue(&cpu->env);
2426         /* Note that this must be unsigned 64 bit arithmetic: */
2427         int istatus = count - offset >= gt->cval;
2428         uint64_t nexttick;
2429         int irqstate;
2430 
2431         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2432 
2433         irqstate = (istatus && !(gt->ctl & 2));
2434         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2435 
2436         if (istatus) {
2437             /* Next transition is when count rolls back over to zero */
2438             nexttick = UINT64_MAX;
2439         } else {
2440             /* Next transition is when we hit cval */
2441             nexttick = gt->cval + offset;
2442         }
2443         /* Note that the desired next expiry time might be beyond the
2444          * signed-64-bit range of a QEMUTimer -- in this case we just
2445          * set the timer for as far in the future as possible. When the
2446          * timer expires we will reset the timer for any remaining period.
2447          */
2448         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2449             nexttick = INT64_MAX / GTIMER_SCALE;
2450         }
2451         timer_mod(cpu->gt_timer[timeridx], nexttick);
2452         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2453     } else {
2454         /* Timer disabled: ISTATUS and timer output always clear */
2455         gt->ctl &= ~4;
2456         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2457         timer_del(cpu->gt_timer[timeridx]);
2458         trace_arm_gt_recalc_disabled(timeridx);
2459     }
2460 }
2461 
2462 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2463                            int timeridx)
2464 {
2465     ARMCPU *cpu = env_archcpu(env);
2466 
2467     timer_del(cpu->gt_timer[timeridx]);
2468 }
2469 
2470 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2471 {
2472     return gt_get_countervalue(env);
2473 }
2474 
2475 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2476 {
2477     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2478 }
2479 
2480 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2481                           int timeridx,
2482                           uint64_t value)
2483 {
2484     trace_arm_gt_cval_write(timeridx, value);
2485     env->cp15.c14_timer[timeridx].cval = value;
2486     gt_recalc_timer(env_archcpu(env), timeridx);
2487 }
2488 
2489 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2490                              int timeridx)
2491 {
2492     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2493 
2494     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2495                       (gt_get_countervalue(env) - offset));
2496 }
2497 
2498 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2499                           int timeridx,
2500                           uint64_t value)
2501 {
2502     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2503 
2504     trace_arm_gt_tval_write(timeridx, value);
2505     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2506                                          sextract64(value, 0, 32);
2507     gt_recalc_timer(env_archcpu(env), timeridx);
2508 }
2509 
2510 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511                          int timeridx,
2512                          uint64_t value)
2513 {
2514     ARMCPU *cpu = env_archcpu(env);
2515     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2516 
2517     trace_arm_gt_ctl_write(timeridx, value);
2518     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2519     if ((oldval ^ value) & 1) {
2520         /* Enable toggled */
2521         gt_recalc_timer(cpu, timeridx);
2522     } else if ((oldval ^ value) & 2) {
2523         /* IMASK toggled: don't need to recalculate,
2524          * just set the interrupt line based on ISTATUS
2525          */
2526         int irqstate = (oldval & 4) && !(value & 2);
2527 
2528         trace_arm_gt_imask_toggle(timeridx, irqstate);
2529         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2530     }
2531 }
2532 
2533 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2534 {
2535     gt_timer_reset(env, ri, GTIMER_PHYS);
2536 }
2537 
2538 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2539                                uint64_t value)
2540 {
2541     gt_cval_write(env, ri, GTIMER_PHYS, value);
2542 }
2543 
2544 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2545 {
2546     return gt_tval_read(env, ri, GTIMER_PHYS);
2547 }
2548 
2549 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2550                                uint64_t value)
2551 {
2552     gt_tval_write(env, ri, GTIMER_PHYS, value);
2553 }
2554 
2555 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556                               uint64_t value)
2557 {
2558     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2559 }
2560 
2561 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2562 {
2563     gt_timer_reset(env, ri, GTIMER_VIRT);
2564 }
2565 
2566 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2567                                uint64_t value)
2568 {
2569     gt_cval_write(env, ri, GTIMER_VIRT, value);
2570 }
2571 
2572 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2573 {
2574     return gt_tval_read(env, ri, GTIMER_VIRT);
2575 }
2576 
2577 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2578                                uint64_t value)
2579 {
2580     gt_tval_write(env, ri, GTIMER_VIRT, value);
2581 }
2582 
2583 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584                               uint64_t value)
2585 {
2586     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2587 }
2588 
2589 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2590                               uint64_t value)
2591 {
2592     ARMCPU *cpu = env_archcpu(env);
2593 
2594     trace_arm_gt_cntvoff_write(value);
2595     raw_write(env, ri, value);
2596     gt_recalc_timer(cpu, GTIMER_VIRT);
2597 }
2598 
2599 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2600 {
2601     gt_timer_reset(env, ri, GTIMER_HYP);
2602 }
2603 
2604 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2605                               uint64_t value)
2606 {
2607     gt_cval_write(env, ri, GTIMER_HYP, value);
2608 }
2609 
2610 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2611 {
2612     return gt_tval_read(env, ri, GTIMER_HYP);
2613 }
2614 
2615 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2616                               uint64_t value)
2617 {
2618     gt_tval_write(env, ri, GTIMER_HYP, value);
2619 }
2620 
2621 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2622                               uint64_t value)
2623 {
2624     gt_ctl_write(env, ri, GTIMER_HYP, value);
2625 }
2626 
2627 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2628 {
2629     gt_timer_reset(env, ri, GTIMER_SEC);
2630 }
2631 
2632 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2633                               uint64_t value)
2634 {
2635     gt_cval_write(env, ri, GTIMER_SEC, value);
2636 }
2637 
2638 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2639 {
2640     return gt_tval_read(env, ri, GTIMER_SEC);
2641 }
2642 
2643 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2644                               uint64_t value)
2645 {
2646     gt_tval_write(env, ri, GTIMER_SEC, value);
2647 }
2648 
2649 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2650                               uint64_t value)
2651 {
2652     gt_ctl_write(env, ri, GTIMER_SEC, value);
2653 }
2654 
2655 void arm_gt_ptimer_cb(void *opaque)
2656 {
2657     ARMCPU *cpu = opaque;
2658 
2659     gt_recalc_timer(cpu, GTIMER_PHYS);
2660 }
2661 
2662 void arm_gt_vtimer_cb(void *opaque)
2663 {
2664     ARMCPU *cpu = opaque;
2665 
2666     gt_recalc_timer(cpu, GTIMER_VIRT);
2667 }
2668 
2669 void arm_gt_htimer_cb(void *opaque)
2670 {
2671     ARMCPU *cpu = opaque;
2672 
2673     gt_recalc_timer(cpu, GTIMER_HYP);
2674 }
2675 
2676 void arm_gt_stimer_cb(void *opaque)
2677 {
2678     ARMCPU *cpu = opaque;
2679 
2680     gt_recalc_timer(cpu, GTIMER_SEC);
2681 }
2682 
2683 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2684     /* Note that CNTFRQ is purely reads-as-written for the benefit
2685      * of software; writing it doesn't actually change the timer frequency.
2686      * Our reset value matches the fixed frequency we implement the timer at.
2687      */
2688     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2689       .type = ARM_CP_ALIAS,
2690       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2691       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2692     },
2693     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2694       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2695       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2696       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2697       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2698     },
2699     /* overall control: mostly access permissions */
2700     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2701       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2702       .access = PL1_RW,
2703       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2704       .resetvalue = 0,
2705     },
2706     /* per-timer control */
2707     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2708       .secure = ARM_CP_SECSTATE_NS,
2709       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2710       .accessfn = gt_ptimer_access,
2711       .fieldoffset = offsetoflow32(CPUARMState,
2712                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2713       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2714     },
2715     { .name = "CNTP_CTL_S",
2716       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2717       .secure = ARM_CP_SECSTATE_S,
2718       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2719       .accessfn = gt_ptimer_access,
2720       .fieldoffset = offsetoflow32(CPUARMState,
2721                                    cp15.c14_timer[GTIMER_SEC].ctl),
2722       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2723     },
2724     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2725       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2726       .type = ARM_CP_IO, .access = PL0_RW,
2727       .accessfn = gt_ptimer_access,
2728       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2729       .resetvalue = 0,
2730       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2731     },
2732     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2733       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2734       .accessfn = gt_vtimer_access,
2735       .fieldoffset = offsetoflow32(CPUARMState,
2736                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2737       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2738     },
2739     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2740       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2741       .type = ARM_CP_IO, .access = PL0_RW,
2742       .accessfn = gt_vtimer_access,
2743       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2744       .resetvalue = 0,
2745       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2746     },
2747     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2748     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2749       .secure = ARM_CP_SECSTATE_NS,
2750       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2751       .accessfn = gt_ptimer_access,
2752       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2753     },
2754     { .name = "CNTP_TVAL_S",
2755       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2756       .secure = ARM_CP_SECSTATE_S,
2757       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2758       .accessfn = gt_ptimer_access,
2759       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2760     },
2761     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2762       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2763       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2764       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2765       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2766     },
2767     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2768       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2769       .accessfn = gt_vtimer_access,
2770       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2771     },
2772     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2773       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2774       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2775       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2776       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2777     },
2778     /* The counter itself */
2779     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2780       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2781       .accessfn = gt_pct_access,
2782       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2783     },
2784     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2785       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2786       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2787       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2788     },
2789     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2790       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2791       .accessfn = gt_vct_access,
2792       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2793     },
2794     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2795       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2796       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2797       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2798     },
2799     /* Comparison value, indicating when the timer goes off */
2800     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2801       .secure = ARM_CP_SECSTATE_NS,
2802       .access = PL0_RW,
2803       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2804       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2805       .accessfn = gt_ptimer_access,
2806       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2807     },
2808     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2809       .secure = ARM_CP_SECSTATE_S,
2810       .access = PL0_RW,
2811       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2812       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2813       .accessfn = gt_ptimer_access,
2814       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2815     },
2816     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2817       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2818       .access = PL0_RW,
2819       .type = ARM_CP_IO,
2820       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2821       .resetvalue = 0, .accessfn = gt_ptimer_access,
2822       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2823     },
2824     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2825       .access = PL0_RW,
2826       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2827       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2828       .accessfn = gt_vtimer_access,
2829       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2830     },
2831     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2832       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2833       .access = PL0_RW,
2834       .type = ARM_CP_IO,
2835       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2836       .resetvalue = 0, .accessfn = gt_vtimer_access,
2837       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2838     },
2839     /* Secure timer -- this is actually restricted to only EL3
2840      * and configurably Secure-EL1 via the accessfn.
2841      */
2842     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2843       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2844       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2845       .accessfn = gt_stimer_access,
2846       .readfn = gt_sec_tval_read,
2847       .writefn = gt_sec_tval_write,
2848       .resetfn = gt_sec_timer_reset,
2849     },
2850     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2851       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2852       .type = ARM_CP_IO, .access = PL1_RW,
2853       .accessfn = gt_stimer_access,
2854       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2855       .resetvalue = 0,
2856       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2857     },
2858     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2859       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2860       .type = ARM_CP_IO, .access = PL1_RW,
2861       .accessfn = gt_stimer_access,
2862       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2863       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2864     },
2865     REGINFO_SENTINEL
2866 };
2867 
2868 #else
2869 
2870 /* In user-mode most of the generic timer registers are inaccessible
2871  * however modern kernels (4.12+) allow access to cntvct_el0
2872  */
2873 
2874 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876     /* Currently we have no support for QEMUTimer in linux-user so we
2877      * can't call gt_get_countervalue(env), instead we directly
2878      * call the lower level functions.
2879      */
2880     return cpu_get_clock() / GTIMER_SCALE;
2881 }
2882 
2883 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2884     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2885       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2886       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2887       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2888       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2889     },
2890     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2891       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2892       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2893       .readfn = gt_virt_cnt_read,
2894     },
2895     REGINFO_SENTINEL
2896 };
2897 
2898 #endif
2899 
2900 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2901 {
2902     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2903         raw_write(env, ri, value);
2904     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2905         raw_write(env, ri, value & 0xfffff6ff);
2906     } else {
2907         raw_write(env, ri, value & 0xfffff1ff);
2908     }
2909 }
2910 
2911 #ifndef CONFIG_USER_ONLY
2912 /* get_phys_addr() isn't present for user-mode-only targets */
2913 
2914 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2915                                  bool isread)
2916 {
2917     if (ri->opc2 & 4) {
2918         /* The ATS12NSO* operations must trap to EL3 if executed in
2919          * Secure EL1 (which can only happen if EL3 is AArch64).
2920          * They are simply UNDEF if executed from NS EL1.
2921          * They function normally from EL2 or EL3.
2922          */
2923         if (arm_current_el(env) == 1) {
2924             if (arm_is_secure_below_el3(env)) {
2925                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2926             }
2927             return CP_ACCESS_TRAP_UNCATEGORIZED;
2928         }
2929     }
2930     return CP_ACCESS_OK;
2931 }
2932 
2933 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2934                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2935 {
2936     hwaddr phys_addr;
2937     target_ulong page_size;
2938     int prot;
2939     bool ret;
2940     uint64_t par64;
2941     bool format64 = false;
2942     MemTxAttrs attrs = {};
2943     ARMMMUFaultInfo fi = {};
2944     ARMCacheAttrs cacheattrs = {};
2945 
2946     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2947                         &prot, &page_size, &fi, &cacheattrs);
2948 
2949     if (ret) {
2950         /*
2951          * Some kinds of translation fault must cause exceptions rather
2952          * than being reported in the PAR.
2953          */
2954         int current_el = arm_current_el(env);
2955         int target_el;
2956         uint32_t syn, fsr, fsc;
2957         bool take_exc = false;
2958 
2959         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
2960             && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) {
2961             /*
2962              * Synchronous stage 2 fault on an access made as part of the
2963              * translation table walk for AT S1E0* or AT S1E1* insn
2964              * executed from NS EL1. If this is a synchronous external abort
2965              * and SCR_EL3.EA == 1, then we take a synchronous external abort
2966              * to EL3. Otherwise the fault is taken as an exception to EL2,
2967              * and HPFAR_EL2 holds the faulting IPA.
2968              */
2969             if (fi.type == ARMFault_SyncExternalOnWalk &&
2970                 (env->cp15.scr_el3 & SCR_EA)) {
2971                 target_el = 3;
2972             } else {
2973                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
2974                 target_el = 2;
2975             }
2976             take_exc = true;
2977         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
2978             /*
2979              * Synchronous external aborts during a translation table walk
2980              * are taken as Data Abort exceptions.
2981              */
2982             if (fi.stage2) {
2983                 if (current_el == 3) {
2984                     target_el = 3;
2985                 } else {
2986                     target_el = 2;
2987                 }
2988             } else {
2989                 target_el = exception_target_el(env);
2990             }
2991             take_exc = true;
2992         }
2993 
2994         if (take_exc) {
2995             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
2996             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
2997                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
2998                 fsr = arm_fi_to_lfsc(&fi);
2999                 fsc = extract32(fsr, 0, 6);
3000             } else {
3001                 fsr = arm_fi_to_sfsc(&fi);
3002                 fsc = 0x3f;
3003             }
3004             /*
3005              * Report exception with ESR indicating a fault due to a
3006              * translation table walk for a cache maintenance instruction.
3007              */
3008             syn = syn_data_abort_no_iss(current_el == target_el,
3009                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3010             env->exception.vaddress = value;
3011             env->exception.fsr = fsr;
3012             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3013         }
3014     }
3015 
3016     if (is_a64(env)) {
3017         format64 = true;
3018     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3019         /*
3020          * ATS1Cxx:
3021          * * TTBCR.EAE determines whether the result is returned using the
3022          *   32-bit or the 64-bit PAR format
3023          * * Instructions executed in Hyp mode always use the 64bit format
3024          *
3025          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3026          * * The Non-secure TTBCR.EAE bit is set to 1
3027          * * The implementation includes EL2, and the value of HCR.VM is 1
3028          *
3029          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3030          *
3031          * ATS1Hx always uses the 64bit format.
3032          */
3033         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3034 
3035         if (arm_feature(env, ARM_FEATURE_EL2)) {
3036             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
3037                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3038             } else {
3039                 format64 |= arm_current_el(env) == 2;
3040             }
3041         }
3042     }
3043 
3044     if (format64) {
3045         /* Create a 64-bit PAR */
3046         par64 = (1 << 11); /* LPAE bit always set */
3047         if (!ret) {
3048             par64 |= phys_addr & ~0xfffULL;
3049             if (!attrs.secure) {
3050                 par64 |= (1 << 9); /* NS */
3051             }
3052             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3053             par64 |= cacheattrs.shareability << 7; /* SH */
3054         } else {
3055             uint32_t fsr = arm_fi_to_lfsc(&fi);
3056 
3057             par64 |= 1; /* F */
3058             par64 |= (fsr & 0x3f) << 1; /* FS */
3059             if (fi.stage2) {
3060                 par64 |= (1 << 9); /* S */
3061             }
3062             if (fi.s1ptw) {
3063                 par64 |= (1 << 8); /* PTW */
3064             }
3065         }
3066     } else {
3067         /* fsr is a DFSR/IFSR value for the short descriptor
3068          * translation table format (with WnR always clear).
3069          * Convert it to a 32-bit PAR.
3070          */
3071         if (!ret) {
3072             /* We do not set any attribute bits in the PAR */
3073             if (page_size == (1 << 24)
3074                 && arm_feature(env, ARM_FEATURE_V7)) {
3075                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3076             } else {
3077                 par64 = phys_addr & 0xfffff000;
3078             }
3079             if (!attrs.secure) {
3080                 par64 |= (1 << 9); /* NS */
3081             }
3082         } else {
3083             uint32_t fsr = arm_fi_to_sfsc(&fi);
3084 
3085             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3086                     ((fsr & 0xf) << 1) | 1;
3087         }
3088     }
3089     return par64;
3090 }
3091 
3092 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3093 {
3094     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3095     uint64_t par64;
3096     ARMMMUIdx mmu_idx;
3097     int el = arm_current_el(env);
3098     bool secure = arm_is_secure_below_el3(env);
3099 
3100     switch (ri->opc2 & 6) {
3101     case 0:
3102         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3103         switch (el) {
3104         case 3:
3105             mmu_idx = ARMMMUIdx_S1E3;
3106             break;
3107         case 2:
3108             mmu_idx = ARMMMUIdx_S1NSE1;
3109             break;
3110         case 1:
3111             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3112             break;
3113         default:
3114             g_assert_not_reached();
3115         }
3116         break;
3117     case 2:
3118         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3119         switch (el) {
3120         case 3:
3121             mmu_idx = ARMMMUIdx_S1SE0;
3122             break;
3123         case 2:
3124             mmu_idx = ARMMMUIdx_S1NSE0;
3125             break;
3126         case 1:
3127             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3128             break;
3129         default:
3130             g_assert_not_reached();
3131         }
3132         break;
3133     case 4:
3134         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3135         mmu_idx = ARMMMUIdx_S12NSE1;
3136         break;
3137     case 6:
3138         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3139         mmu_idx = ARMMMUIdx_S12NSE0;
3140         break;
3141     default:
3142         g_assert_not_reached();
3143     }
3144 
3145     par64 = do_ats_write(env, value, access_type, mmu_idx);
3146 
3147     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3148 }
3149 
3150 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3151                         uint64_t value)
3152 {
3153     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3154     uint64_t par64;
3155 
3156     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3157 
3158     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3159 }
3160 
3161 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3162                                      bool isread)
3163 {
3164     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3165         return CP_ACCESS_TRAP;
3166     }
3167     return CP_ACCESS_OK;
3168 }
3169 
3170 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3171                         uint64_t value)
3172 {
3173     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3174     ARMMMUIdx mmu_idx;
3175     int secure = arm_is_secure_below_el3(env);
3176 
3177     switch (ri->opc2 & 6) {
3178     case 0:
3179         switch (ri->opc1) {
3180         case 0: /* AT S1E1R, AT S1E1W */
3181             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3182             break;
3183         case 4: /* AT S1E2R, AT S1E2W */
3184             mmu_idx = ARMMMUIdx_S1E2;
3185             break;
3186         case 6: /* AT S1E3R, AT S1E3W */
3187             mmu_idx = ARMMMUIdx_S1E3;
3188             break;
3189         default:
3190             g_assert_not_reached();
3191         }
3192         break;
3193     case 2: /* AT S1E0R, AT S1E0W */
3194         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3195         break;
3196     case 4: /* AT S12E1R, AT S12E1W */
3197         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3198         break;
3199     case 6: /* AT S12E0R, AT S12E0W */
3200         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3201         break;
3202     default:
3203         g_assert_not_reached();
3204     }
3205 
3206     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3207 }
3208 #endif
3209 
3210 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3211     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3212       .access = PL1_RW, .resetvalue = 0,
3213       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3214                              offsetoflow32(CPUARMState, cp15.par_ns) },
3215       .writefn = par_write },
3216 #ifndef CONFIG_USER_ONLY
3217     /* This underdecoding is safe because the reginfo is NO_RAW. */
3218     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3219       .access = PL1_W, .accessfn = ats_access,
3220       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3221 #endif
3222     REGINFO_SENTINEL
3223 };
3224 
3225 /* Return basic MPU access permission bits.  */
3226 static uint32_t simple_mpu_ap_bits(uint32_t val)
3227 {
3228     uint32_t ret;
3229     uint32_t mask;
3230     int i;
3231     ret = 0;
3232     mask = 3;
3233     for (i = 0; i < 16; i += 2) {
3234         ret |= (val >> i) & mask;
3235         mask <<= 2;
3236     }
3237     return ret;
3238 }
3239 
3240 /* Pad basic MPU access permission bits to extended format.  */
3241 static uint32_t extended_mpu_ap_bits(uint32_t val)
3242 {
3243     uint32_t ret;
3244     uint32_t mask;
3245     int i;
3246     ret = 0;
3247     mask = 3;
3248     for (i = 0; i < 16; i += 2) {
3249         ret |= (val & mask) << i;
3250         mask <<= 2;
3251     }
3252     return ret;
3253 }
3254 
3255 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3256                                  uint64_t value)
3257 {
3258     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3259 }
3260 
3261 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3262 {
3263     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3264 }
3265 
3266 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3267                                  uint64_t value)
3268 {
3269     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3270 }
3271 
3272 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3273 {
3274     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3275 }
3276 
3277 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3278 {
3279     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3280 
3281     if (!u32p) {
3282         return 0;
3283     }
3284 
3285     u32p += env->pmsav7.rnr[M_REG_NS];
3286     return *u32p;
3287 }
3288 
3289 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3290                          uint64_t value)
3291 {
3292     ARMCPU *cpu = env_archcpu(env);
3293     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3294 
3295     if (!u32p) {
3296         return;
3297     }
3298 
3299     u32p += env->pmsav7.rnr[M_REG_NS];
3300     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3301     *u32p = value;
3302 }
3303 
3304 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3305                               uint64_t value)
3306 {
3307     ARMCPU *cpu = env_archcpu(env);
3308     uint32_t nrgs = cpu->pmsav7_dregion;
3309 
3310     if (value >= nrgs) {
3311         qemu_log_mask(LOG_GUEST_ERROR,
3312                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3313                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3314         return;
3315     }
3316 
3317     raw_write(env, ri, value);
3318 }
3319 
3320 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3321     /* Reset for all these registers is handled in arm_cpu_reset(),
3322      * because the PMSAv7 is also used by M-profile CPUs, which do
3323      * not register cpregs but still need the state to be reset.
3324      */
3325     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3326       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3327       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3328       .readfn = pmsav7_read, .writefn = pmsav7_write,
3329       .resetfn = arm_cp_reset_ignore },
3330     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3331       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3332       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3333       .readfn = pmsav7_read, .writefn = pmsav7_write,
3334       .resetfn = arm_cp_reset_ignore },
3335     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3336       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3337       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3338       .readfn = pmsav7_read, .writefn = pmsav7_write,
3339       .resetfn = arm_cp_reset_ignore },
3340     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3341       .access = PL1_RW,
3342       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3343       .writefn = pmsav7_rgnr_write,
3344       .resetfn = arm_cp_reset_ignore },
3345     REGINFO_SENTINEL
3346 };
3347 
3348 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3349     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3350       .access = PL1_RW, .type = ARM_CP_ALIAS,
3351       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3352       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3353     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3354       .access = PL1_RW, .type = ARM_CP_ALIAS,
3355       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3356       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3357     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3358       .access = PL1_RW,
3359       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3360       .resetvalue = 0, },
3361     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3362       .access = PL1_RW,
3363       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3364       .resetvalue = 0, },
3365     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3366       .access = PL1_RW,
3367       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3368     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3369       .access = PL1_RW,
3370       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3371     /* Protection region base and size registers */
3372     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3373       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3374       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3375     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3376       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3377       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3378     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3379       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3380       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3381     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3382       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3383       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3384     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3385       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3386       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3387     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3388       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3389       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3390     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3391       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3392       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3393     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3394       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3395       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3396     REGINFO_SENTINEL
3397 };
3398 
3399 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3400                                  uint64_t value)
3401 {
3402     TCR *tcr = raw_ptr(env, ri);
3403     int maskshift = extract32(value, 0, 3);
3404 
3405     if (!arm_feature(env, ARM_FEATURE_V8)) {
3406         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3407             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3408              * using Long-desciptor translation table format */
3409             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3410         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3411             /* In an implementation that includes the Security Extensions
3412              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3413              * Short-descriptor translation table format.
3414              */
3415             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3416         } else {
3417             value &= TTBCR_N;
3418         }
3419     }
3420 
3421     /* Update the masks corresponding to the TCR bank being written
3422      * Note that we always calculate mask and base_mask, but
3423      * they are only used for short-descriptor tables (ie if EAE is 0);
3424      * for long-descriptor tables the TCR fields are used differently
3425      * and the mask and base_mask values are meaningless.
3426      */
3427     tcr->raw_tcr = value;
3428     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3429     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3430 }
3431 
3432 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3433                              uint64_t value)
3434 {
3435     ARMCPU *cpu = env_archcpu(env);
3436     TCR *tcr = raw_ptr(env, ri);
3437 
3438     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3439         /* With LPAE the TTBCR could result in a change of ASID
3440          * via the TTBCR.A1 bit, so do a TLB flush.
3441          */
3442         tlb_flush(CPU(cpu));
3443     }
3444     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3445     value = deposit64(tcr->raw_tcr, 0, 32, value);
3446     vmsa_ttbcr_raw_write(env, ri, value);
3447 }
3448 
3449 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3450 {
3451     TCR *tcr = raw_ptr(env, ri);
3452 
3453     /* Reset both the TCR as well as the masks corresponding to the bank of
3454      * the TCR being reset.
3455      */
3456     tcr->raw_tcr = 0;
3457     tcr->mask = 0;
3458     tcr->base_mask = 0xffffc000u;
3459 }
3460 
3461 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3462                                uint64_t value)
3463 {
3464     ARMCPU *cpu = env_archcpu(env);
3465     TCR *tcr = raw_ptr(env, ri);
3466 
3467     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3468     tlb_flush(CPU(cpu));
3469     tcr->raw_tcr = value;
3470 }
3471 
3472 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3473                             uint64_t value)
3474 {
3475     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3476     if (cpreg_field_is_64bit(ri) &&
3477         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3478         ARMCPU *cpu = env_archcpu(env);
3479         tlb_flush(CPU(cpu));
3480     }
3481     raw_write(env, ri, value);
3482 }
3483 
3484 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3485                         uint64_t value)
3486 {
3487     ARMCPU *cpu = env_archcpu(env);
3488     CPUState *cs = CPU(cpu);
3489 
3490     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3491     if (raw_read(env, ri) != value) {
3492         tlb_flush_by_mmuidx(cs,
3493                             ARMMMUIdxBit_S12NSE1 |
3494                             ARMMMUIdxBit_S12NSE0 |
3495                             ARMMMUIdxBit_S2NS);
3496         raw_write(env, ri, value);
3497     }
3498 }
3499 
3500 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3501     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3502       .access = PL1_RW, .type = ARM_CP_ALIAS,
3503       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3504                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3505     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3506       .access = PL1_RW, .resetvalue = 0,
3507       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3508                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3509     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3510       .access = PL1_RW, .resetvalue = 0,
3511       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3512                              offsetof(CPUARMState, cp15.dfar_ns) } },
3513     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3514       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3515       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3516       .resetvalue = 0, },
3517     REGINFO_SENTINEL
3518 };
3519 
3520 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3521     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3522       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3523       .access = PL1_RW,
3524       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3525     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3526       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3527       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3528       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3529                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3530     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3531       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3532       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3533       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3534                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3535     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3536       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3537       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3538       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3539       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3540     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3541       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3542       .raw_writefn = vmsa_ttbcr_raw_write,
3543       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3544                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3545     REGINFO_SENTINEL
3546 };
3547 
3548 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3549  * qemu tlbs nor adjusting cached masks.
3550  */
3551 static const ARMCPRegInfo ttbcr2_reginfo = {
3552     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3553     .access = PL1_RW, .type = ARM_CP_ALIAS,
3554     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3555                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3556 };
3557 
3558 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3559                                 uint64_t value)
3560 {
3561     env->cp15.c15_ticonfig = value & 0xe7;
3562     /* The OS_TYPE bit in this register changes the reported CPUID! */
3563     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3564         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3565 }
3566 
3567 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3568                                 uint64_t value)
3569 {
3570     env->cp15.c15_threadid = value & 0xffff;
3571 }
3572 
3573 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3574                            uint64_t value)
3575 {
3576     /* Wait-for-interrupt (deprecated) */
3577     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3578 }
3579 
3580 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581                                   uint64_t value)
3582 {
3583     /* On OMAP there are registers indicating the max/min index of dcache lines
3584      * containing a dirty line; cache flush operations have to reset these.
3585      */
3586     env->cp15.c15_i_max = 0x000;
3587     env->cp15.c15_i_min = 0xff0;
3588 }
3589 
3590 static const ARMCPRegInfo omap_cp_reginfo[] = {
3591     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3592       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3593       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3594       .resetvalue = 0, },
3595     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3596       .access = PL1_RW, .type = ARM_CP_NOP },
3597     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3598       .access = PL1_RW,
3599       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3600       .writefn = omap_ticonfig_write },
3601     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3602       .access = PL1_RW,
3603       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3604     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3605       .access = PL1_RW, .resetvalue = 0xff0,
3606       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3607     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3608       .access = PL1_RW,
3609       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3610       .writefn = omap_threadid_write },
3611     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3612       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3613       .type = ARM_CP_NO_RAW,
3614       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3615     /* TODO: Peripheral port remap register:
3616      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3617      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3618      * when MMU is off.
3619      */
3620     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3621       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3622       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3623       .writefn = omap_cachemaint_write },
3624     { .name = "C9", .cp = 15, .crn = 9,
3625       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3626       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3627     REGINFO_SENTINEL
3628 };
3629 
3630 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3631                               uint64_t value)
3632 {
3633     env->cp15.c15_cpar = value & 0x3fff;
3634 }
3635 
3636 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3637     { .name = "XSCALE_CPAR",
3638       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3639       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3640       .writefn = xscale_cpar_write, },
3641     { .name = "XSCALE_AUXCR",
3642       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3643       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3644       .resetvalue = 0, },
3645     /* XScale specific cache-lockdown: since we have no cache we NOP these
3646      * and hope the guest does not really rely on cache behaviour.
3647      */
3648     { .name = "XSCALE_LOCK_ICACHE_LINE",
3649       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3650       .access = PL1_W, .type = ARM_CP_NOP },
3651     { .name = "XSCALE_UNLOCK_ICACHE",
3652       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3653       .access = PL1_W, .type = ARM_CP_NOP },
3654     { .name = "XSCALE_DCACHE_LOCK",
3655       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3656       .access = PL1_RW, .type = ARM_CP_NOP },
3657     { .name = "XSCALE_UNLOCK_DCACHE",
3658       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3659       .access = PL1_W, .type = ARM_CP_NOP },
3660     REGINFO_SENTINEL
3661 };
3662 
3663 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3664     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3665      * implementation of this implementation-defined space.
3666      * Ideally this should eventually disappear in favour of actually
3667      * implementing the correct behaviour for all cores.
3668      */
3669     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3670       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671       .access = PL1_RW,
3672       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3673       .resetvalue = 0 },
3674     REGINFO_SENTINEL
3675 };
3676 
3677 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3678     /* Cache status: RAZ because we have no cache so it's always clean */
3679     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3680       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3681       .resetvalue = 0 },
3682     REGINFO_SENTINEL
3683 };
3684 
3685 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3686     /* We never have a a block transfer operation in progress */
3687     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3688       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3689       .resetvalue = 0 },
3690     /* The cache ops themselves: these all NOP for QEMU */
3691     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3692       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3693     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3694       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3695     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3696       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3697     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3698       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3699     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3700       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3701     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3702       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3703     REGINFO_SENTINEL
3704 };
3705 
3706 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3707     /* The cache test-and-clean instructions always return (1 << 30)
3708      * to indicate that there are no dirty cache lines.
3709      */
3710     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3711       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3712       .resetvalue = (1 << 30) },
3713     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3714       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3715       .resetvalue = (1 << 30) },
3716     REGINFO_SENTINEL
3717 };
3718 
3719 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3720     /* Ignore ReadBuffer accesses */
3721     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3722       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3723       .access = PL1_RW, .resetvalue = 0,
3724       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3725     REGINFO_SENTINEL
3726 };
3727 
3728 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3729 {
3730     ARMCPU *cpu = env_archcpu(env);
3731     unsigned int cur_el = arm_current_el(env);
3732     bool secure = arm_is_secure(env);
3733 
3734     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3735         return env->cp15.vpidr_el2;
3736     }
3737     return raw_read(env, ri);
3738 }
3739 
3740 static uint64_t mpidr_read_val(CPUARMState *env)
3741 {
3742     ARMCPU *cpu = env_archcpu(env);
3743     uint64_t mpidr = cpu->mp_affinity;
3744 
3745     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3746         mpidr |= (1U << 31);
3747         /* Cores which are uniprocessor (non-coherent)
3748          * but still implement the MP extensions set
3749          * bit 30. (For instance, Cortex-R5).
3750          */
3751         if (cpu->mp_is_up) {
3752             mpidr |= (1u << 30);
3753         }
3754     }
3755     return mpidr;
3756 }
3757 
3758 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3759 {
3760     unsigned int cur_el = arm_current_el(env);
3761     bool secure = arm_is_secure(env);
3762 
3763     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3764         return env->cp15.vmpidr_el2;
3765     }
3766     return mpidr_read_val(env);
3767 }
3768 
3769 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3770     /* NOP AMAIR0/1 */
3771     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3772       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3773       .access = PL1_RW, .type = ARM_CP_CONST,
3774       .resetvalue = 0 },
3775     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3776     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3777       .access = PL1_RW, .type = ARM_CP_CONST,
3778       .resetvalue = 0 },
3779     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3780       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3781       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3782                              offsetof(CPUARMState, cp15.par_ns)} },
3783     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3784       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3785       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3786                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3787       .writefn = vmsa_ttbr_write, },
3788     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3789       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3790       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3791                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3792       .writefn = vmsa_ttbr_write, },
3793     REGINFO_SENTINEL
3794 };
3795 
3796 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3797 {
3798     return vfp_get_fpcr(env);
3799 }
3800 
3801 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3802                             uint64_t value)
3803 {
3804     vfp_set_fpcr(env, value);
3805 }
3806 
3807 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3808 {
3809     return vfp_get_fpsr(env);
3810 }
3811 
3812 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3813                             uint64_t value)
3814 {
3815     vfp_set_fpsr(env, value);
3816 }
3817 
3818 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3819                                        bool isread)
3820 {
3821     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3822         return CP_ACCESS_TRAP;
3823     }
3824     return CP_ACCESS_OK;
3825 }
3826 
3827 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3828                             uint64_t value)
3829 {
3830     env->daif = value & PSTATE_DAIF;
3831 }
3832 
3833 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3834                                           const ARMCPRegInfo *ri,
3835                                           bool isread)
3836 {
3837     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3838      * SCTLR_EL1.UCI is set.
3839      */
3840     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3841         return CP_ACCESS_TRAP;
3842     }
3843     return CP_ACCESS_OK;
3844 }
3845 
3846 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3847  * Page D4-1736 (DDI0487A.b)
3848  */
3849 
3850 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3851                                       uint64_t value)
3852 {
3853     CPUState *cs = env_cpu(env);
3854     bool sec = arm_is_secure_below_el3(env);
3855 
3856     if (sec) {
3857         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3858                                             ARMMMUIdxBit_S1SE1 |
3859                                             ARMMMUIdxBit_S1SE0);
3860     } else {
3861         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3862                                             ARMMMUIdxBit_S12NSE1 |
3863                                             ARMMMUIdxBit_S12NSE0);
3864     }
3865 }
3866 
3867 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3868                                     uint64_t value)
3869 {
3870     CPUState *cs = env_cpu(env);
3871 
3872     if (tlb_force_broadcast(env)) {
3873         tlbi_aa64_vmalle1is_write(env, NULL, value);
3874         return;
3875     }
3876 
3877     if (arm_is_secure_below_el3(env)) {
3878         tlb_flush_by_mmuidx(cs,
3879                             ARMMMUIdxBit_S1SE1 |
3880                             ARMMMUIdxBit_S1SE0);
3881     } else {
3882         tlb_flush_by_mmuidx(cs,
3883                             ARMMMUIdxBit_S12NSE1 |
3884                             ARMMMUIdxBit_S12NSE0);
3885     }
3886 }
3887 
3888 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889                                   uint64_t value)
3890 {
3891     /* Note that the 'ALL' scope must invalidate both stage 1 and
3892      * stage 2 translations, whereas most other scopes only invalidate
3893      * stage 1 translations.
3894      */
3895     ARMCPU *cpu = env_archcpu(env);
3896     CPUState *cs = CPU(cpu);
3897 
3898     if (arm_is_secure_below_el3(env)) {
3899         tlb_flush_by_mmuidx(cs,
3900                             ARMMMUIdxBit_S1SE1 |
3901                             ARMMMUIdxBit_S1SE0);
3902     } else {
3903         if (arm_feature(env, ARM_FEATURE_EL2)) {
3904             tlb_flush_by_mmuidx(cs,
3905                                 ARMMMUIdxBit_S12NSE1 |
3906                                 ARMMMUIdxBit_S12NSE0 |
3907                                 ARMMMUIdxBit_S2NS);
3908         } else {
3909             tlb_flush_by_mmuidx(cs,
3910                                 ARMMMUIdxBit_S12NSE1 |
3911                                 ARMMMUIdxBit_S12NSE0);
3912         }
3913     }
3914 }
3915 
3916 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3917                                   uint64_t value)
3918 {
3919     ARMCPU *cpu = env_archcpu(env);
3920     CPUState *cs = CPU(cpu);
3921 
3922     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3923 }
3924 
3925 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3926                                   uint64_t value)
3927 {
3928     ARMCPU *cpu = env_archcpu(env);
3929     CPUState *cs = CPU(cpu);
3930 
3931     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3932 }
3933 
3934 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3935                                     uint64_t value)
3936 {
3937     /* Note that the 'ALL' scope must invalidate both stage 1 and
3938      * stage 2 translations, whereas most other scopes only invalidate
3939      * stage 1 translations.
3940      */
3941     CPUState *cs = env_cpu(env);
3942     bool sec = arm_is_secure_below_el3(env);
3943     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3944 
3945     if (sec) {
3946         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3947                                             ARMMMUIdxBit_S1SE1 |
3948                                             ARMMMUIdxBit_S1SE0);
3949     } else if (has_el2) {
3950         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3951                                             ARMMMUIdxBit_S12NSE1 |
3952                                             ARMMMUIdxBit_S12NSE0 |
3953                                             ARMMMUIdxBit_S2NS);
3954     } else {
3955           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3956                                               ARMMMUIdxBit_S12NSE1 |
3957                                               ARMMMUIdxBit_S12NSE0);
3958     }
3959 }
3960 
3961 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962                                     uint64_t value)
3963 {
3964     CPUState *cs = env_cpu(env);
3965 
3966     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3967 }
3968 
3969 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3970                                     uint64_t value)
3971 {
3972     CPUState *cs = env_cpu(env);
3973 
3974     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3975 }
3976 
3977 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978                                  uint64_t value)
3979 {
3980     /* Invalidate by VA, EL2
3981      * Currently handles both VAE2 and VALE2, since we don't support
3982      * flush-last-level-only.
3983      */
3984     ARMCPU *cpu = env_archcpu(env);
3985     CPUState *cs = CPU(cpu);
3986     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3987 
3988     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3989 }
3990 
3991 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992                                  uint64_t value)
3993 {
3994     /* Invalidate by VA, EL3
3995      * Currently handles both VAE3 and VALE3, since we don't support
3996      * flush-last-level-only.
3997      */
3998     ARMCPU *cpu = env_archcpu(env);
3999     CPUState *cs = CPU(cpu);
4000     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4001 
4002     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
4003 }
4004 
4005 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4006                                    uint64_t value)
4007 {
4008     ARMCPU *cpu = env_archcpu(env);
4009     CPUState *cs = CPU(cpu);
4010     bool sec = arm_is_secure_below_el3(env);
4011     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4012 
4013     if (sec) {
4014         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4015                                                  ARMMMUIdxBit_S1SE1 |
4016                                                  ARMMMUIdxBit_S1SE0);
4017     } else {
4018         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4019                                                  ARMMMUIdxBit_S12NSE1 |
4020                                                  ARMMMUIdxBit_S12NSE0);
4021     }
4022 }
4023 
4024 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4025                                  uint64_t value)
4026 {
4027     /* Invalidate by VA, EL1&0 (AArch64 version).
4028      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4029      * since we don't support flush-for-specific-ASID-only or
4030      * flush-last-level-only.
4031      */
4032     ARMCPU *cpu = env_archcpu(env);
4033     CPUState *cs = CPU(cpu);
4034     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4035 
4036     if (tlb_force_broadcast(env)) {
4037         tlbi_aa64_vae1is_write(env, NULL, value);
4038         return;
4039     }
4040 
4041     if (arm_is_secure_below_el3(env)) {
4042         tlb_flush_page_by_mmuidx(cs, pageaddr,
4043                                  ARMMMUIdxBit_S1SE1 |
4044                                  ARMMMUIdxBit_S1SE0);
4045     } else {
4046         tlb_flush_page_by_mmuidx(cs, pageaddr,
4047                                  ARMMMUIdxBit_S12NSE1 |
4048                                  ARMMMUIdxBit_S12NSE0);
4049     }
4050 }
4051 
4052 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4053                                    uint64_t value)
4054 {
4055     CPUState *cs = env_cpu(env);
4056     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4057 
4058     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4059                                              ARMMMUIdxBit_S1E2);
4060 }
4061 
4062 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4063                                    uint64_t value)
4064 {
4065     CPUState *cs = env_cpu(env);
4066     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4067 
4068     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4069                                              ARMMMUIdxBit_S1E3);
4070 }
4071 
4072 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4073                                     uint64_t value)
4074 {
4075     /* Invalidate by IPA. This has to invalidate any structures that
4076      * contain only stage 2 translation information, but does not need
4077      * to apply to structures that contain combined stage 1 and stage 2
4078      * translation information.
4079      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4080      */
4081     ARMCPU *cpu = env_archcpu(env);
4082     CPUState *cs = CPU(cpu);
4083     uint64_t pageaddr;
4084 
4085     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4086         return;
4087     }
4088 
4089     pageaddr = sextract64(value << 12, 0, 48);
4090 
4091     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4092 }
4093 
4094 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095                                       uint64_t value)
4096 {
4097     CPUState *cs = env_cpu(env);
4098     uint64_t pageaddr;
4099 
4100     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4101         return;
4102     }
4103 
4104     pageaddr = sextract64(value << 12, 0, 48);
4105 
4106     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4107                                              ARMMMUIdxBit_S2NS);
4108 }
4109 
4110 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4111                                       bool isread)
4112 {
4113     /* We don't implement EL2, so the only control on DC ZVA is the
4114      * bit in the SCTLR which can prohibit access for EL0.
4115      */
4116     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4117         return CP_ACCESS_TRAP;
4118     }
4119     return CP_ACCESS_OK;
4120 }
4121 
4122 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4123 {
4124     ARMCPU *cpu = env_archcpu(env);
4125     int dzp_bit = 1 << 4;
4126 
4127     /* DZP indicates whether DC ZVA access is allowed */
4128     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4129         dzp_bit = 0;
4130     }
4131     return cpu->dcz_blocksize | dzp_bit;
4132 }
4133 
4134 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4135                                     bool isread)
4136 {
4137     if (!(env->pstate & PSTATE_SP)) {
4138         /* Access to SP_EL0 is undefined if it's being used as
4139          * the stack pointer.
4140          */
4141         return CP_ACCESS_TRAP_UNCATEGORIZED;
4142     }
4143     return CP_ACCESS_OK;
4144 }
4145 
4146 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4147 {
4148     return env->pstate & PSTATE_SP;
4149 }
4150 
4151 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4152 {
4153     update_spsel(env, val);
4154 }
4155 
4156 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4157                         uint64_t value)
4158 {
4159     ARMCPU *cpu = env_archcpu(env);
4160 
4161     if (raw_read(env, ri) == value) {
4162         /* Skip the TLB flush if nothing actually changed; Linux likes
4163          * to do a lot of pointless SCTLR writes.
4164          */
4165         return;
4166     }
4167 
4168     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4169         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4170         value &= ~SCTLR_M;
4171     }
4172 
4173     raw_write(env, ri, value);
4174     /* ??? Lots of these bits are not implemented.  */
4175     /* This may enable/disable the MMU, so do a TLB flush.  */
4176     tlb_flush(CPU(cpu));
4177 }
4178 
4179 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4180                                      bool isread)
4181 {
4182     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4183         return CP_ACCESS_TRAP_FP_EL2;
4184     }
4185     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4186         return CP_ACCESS_TRAP_FP_EL3;
4187     }
4188     return CP_ACCESS_OK;
4189 }
4190 
4191 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4192                        uint64_t value)
4193 {
4194     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4195 }
4196 
4197 static const ARMCPRegInfo v8_cp_reginfo[] = {
4198     /* Minimal set of EL0-visible registers. This will need to be expanded
4199      * significantly for system emulation of AArch64 CPUs.
4200      */
4201     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4202       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4203       .access = PL0_RW, .type = ARM_CP_NZCV },
4204     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4205       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4206       .type = ARM_CP_NO_RAW,
4207       .access = PL0_RW, .accessfn = aa64_daif_access,
4208       .fieldoffset = offsetof(CPUARMState, daif),
4209       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4210     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4211       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4212       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4213       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4214     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4215       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4216       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4217       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4218     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4219       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4220       .access = PL0_R, .type = ARM_CP_NO_RAW,
4221       .readfn = aa64_dczid_read },
4222     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4223       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4224       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4225 #ifndef CONFIG_USER_ONLY
4226       /* Avoid overhead of an access check that always passes in user-mode */
4227       .accessfn = aa64_zva_access,
4228 #endif
4229     },
4230     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4231       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4232       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4233     /* Cache ops: all NOPs since we don't emulate caches */
4234     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4235       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4236       .access = PL1_W, .type = ARM_CP_NOP },
4237     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4238       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4239       .access = PL1_W, .type = ARM_CP_NOP },
4240     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4241       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4242       .access = PL0_W, .type = ARM_CP_NOP,
4243       .accessfn = aa64_cacheop_access },
4244     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4245       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4246       .access = PL1_W, .type = ARM_CP_NOP },
4247     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4248       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4249       .access = PL1_W, .type = ARM_CP_NOP },
4250     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4251       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4252       .access = PL0_W, .type = ARM_CP_NOP,
4253       .accessfn = aa64_cacheop_access },
4254     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4255       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4256       .access = PL1_W, .type = ARM_CP_NOP },
4257     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4258       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4259       .access = PL0_W, .type = ARM_CP_NOP,
4260       .accessfn = aa64_cacheop_access },
4261     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4262       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4263       .access = PL0_W, .type = ARM_CP_NOP,
4264       .accessfn = aa64_cacheop_access },
4265     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4266       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4267       .access = PL1_W, .type = ARM_CP_NOP },
4268     /* TLBI operations */
4269     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4270       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4271       .access = PL1_W, .type = ARM_CP_NO_RAW,
4272       .writefn = tlbi_aa64_vmalle1is_write },
4273     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4274       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4275       .access = PL1_W, .type = ARM_CP_NO_RAW,
4276       .writefn = tlbi_aa64_vae1is_write },
4277     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4278       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4279       .access = PL1_W, .type = ARM_CP_NO_RAW,
4280       .writefn = tlbi_aa64_vmalle1is_write },
4281     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4282       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4283       .access = PL1_W, .type = ARM_CP_NO_RAW,
4284       .writefn = tlbi_aa64_vae1is_write },
4285     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4286       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4287       .access = PL1_W, .type = ARM_CP_NO_RAW,
4288       .writefn = tlbi_aa64_vae1is_write },
4289     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4290       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4291       .access = PL1_W, .type = ARM_CP_NO_RAW,
4292       .writefn = tlbi_aa64_vae1is_write },
4293     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4294       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4295       .access = PL1_W, .type = ARM_CP_NO_RAW,
4296       .writefn = tlbi_aa64_vmalle1_write },
4297     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4298       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4299       .access = PL1_W, .type = ARM_CP_NO_RAW,
4300       .writefn = tlbi_aa64_vae1_write },
4301     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4302       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4303       .access = PL1_W, .type = ARM_CP_NO_RAW,
4304       .writefn = tlbi_aa64_vmalle1_write },
4305     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4306       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4307       .access = PL1_W, .type = ARM_CP_NO_RAW,
4308       .writefn = tlbi_aa64_vae1_write },
4309     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4310       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4311       .access = PL1_W, .type = ARM_CP_NO_RAW,
4312       .writefn = tlbi_aa64_vae1_write },
4313     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4314       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4315       .access = PL1_W, .type = ARM_CP_NO_RAW,
4316       .writefn = tlbi_aa64_vae1_write },
4317     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4318       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4319       .access = PL2_W, .type = ARM_CP_NO_RAW,
4320       .writefn = tlbi_aa64_ipas2e1is_write },
4321     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4322       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4323       .access = PL2_W, .type = ARM_CP_NO_RAW,
4324       .writefn = tlbi_aa64_ipas2e1is_write },
4325     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4326       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4327       .access = PL2_W, .type = ARM_CP_NO_RAW,
4328       .writefn = tlbi_aa64_alle1is_write },
4329     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4330       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4331       .access = PL2_W, .type = ARM_CP_NO_RAW,
4332       .writefn = tlbi_aa64_alle1is_write },
4333     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4334       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4335       .access = PL2_W, .type = ARM_CP_NO_RAW,
4336       .writefn = tlbi_aa64_ipas2e1_write },
4337     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4338       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4339       .access = PL2_W, .type = ARM_CP_NO_RAW,
4340       .writefn = tlbi_aa64_ipas2e1_write },
4341     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4342       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4343       .access = PL2_W, .type = ARM_CP_NO_RAW,
4344       .writefn = tlbi_aa64_alle1_write },
4345     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4346       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4347       .access = PL2_W, .type = ARM_CP_NO_RAW,
4348       .writefn = tlbi_aa64_alle1is_write },
4349 #ifndef CONFIG_USER_ONLY
4350     /* 64 bit address translation operations */
4351     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4352       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4353       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4354       .writefn = ats_write64 },
4355     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4356       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4357       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4358       .writefn = ats_write64 },
4359     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4360       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4361       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4362       .writefn = ats_write64 },
4363     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4364       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4365       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4366       .writefn = ats_write64 },
4367     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4368       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4369       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4370       .writefn = ats_write64 },
4371     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4372       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4373       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4374       .writefn = ats_write64 },
4375     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4376       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4377       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4378       .writefn = ats_write64 },
4379     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4380       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4381       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4382       .writefn = ats_write64 },
4383     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4384     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4385       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4386       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4387       .writefn = ats_write64 },
4388     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4389       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4390       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4391       .writefn = ats_write64 },
4392     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4393       .type = ARM_CP_ALIAS,
4394       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4395       .access = PL1_RW, .resetvalue = 0,
4396       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4397       .writefn = par_write },
4398 #endif
4399     /* TLB invalidate last level of translation table walk */
4400     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4401       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4402     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4403       .type = ARM_CP_NO_RAW, .access = PL1_W,
4404       .writefn = tlbimvaa_is_write },
4405     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4406       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4407     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4408       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4409     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4410       .type = ARM_CP_NO_RAW, .access = PL2_W,
4411       .writefn = tlbimva_hyp_write },
4412     { .name = "TLBIMVALHIS",
4413       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4414       .type = ARM_CP_NO_RAW, .access = PL2_W,
4415       .writefn = tlbimva_hyp_is_write },
4416     { .name = "TLBIIPAS2",
4417       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4418       .type = ARM_CP_NO_RAW, .access = PL2_W,
4419       .writefn = tlbiipas2_write },
4420     { .name = "TLBIIPAS2IS",
4421       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4422       .type = ARM_CP_NO_RAW, .access = PL2_W,
4423       .writefn = tlbiipas2_is_write },
4424     { .name = "TLBIIPAS2L",
4425       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4426       .type = ARM_CP_NO_RAW, .access = PL2_W,
4427       .writefn = tlbiipas2_write },
4428     { .name = "TLBIIPAS2LIS",
4429       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4430       .type = ARM_CP_NO_RAW, .access = PL2_W,
4431       .writefn = tlbiipas2_is_write },
4432     /* 32 bit cache operations */
4433     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4434       .type = ARM_CP_NOP, .access = PL1_W },
4435     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4436       .type = ARM_CP_NOP, .access = PL1_W },
4437     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4438       .type = ARM_CP_NOP, .access = PL1_W },
4439     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4440       .type = ARM_CP_NOP, .access = PL1_W },
4441     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4442       .type = ARM_CP_NOP, .access = PL1_W },
4443     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4444       .type = ARM_CP_NOP, .access = PL1_W },
4445     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4446       .type = ARM_CP_NOP, .access = PL1_W },
4447     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4448       .type = ARM_CP_NOP, .access = PL1_W },
4449     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4450       .type = ARM_CP_NOP, .access = PL1_W },
4451     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4452       .type = ARM_CP_NOP, .access = PL1_W },
4453     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4454       .type = ARM_CP_NOP, .access = PL1_W },
4455     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4456       .type = ARM_CP_NOP, .access = PL1_W },
4457     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4458       .type = ARM_CP_NOP, .access = PL1_W },
4459     /* MMU Domain access control / MPU write buffer control */
4460     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4461       .access = PL1_RW, .resetvalue = 0,
4462       .writefn = dacr_write, .raw_writefn = raw_write,
4463       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4464                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4465     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4466       .type = ARM_CP_ALIAS,
4467       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4468       .access = PL1_RW,
4469       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4470     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4471       .type = ARM_CP_ALIAS,
4472       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4473       .access = PL1_RW,
4474       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4475     /* We rely on the access checks not allowing the guest to write to the
4476      * state field when SPSel indicates that it's being used as the stack
4477      * pointer.
4478      */
4479     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4480       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4481       .access = PL1_RW, .accessfn = sp_el0_access,
4482       .type = ARM_CP_ALIAS,
4483       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4484     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4485       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4486       .access = PL2_RW, .type = ARM_CP_ALIAS,
4487       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4488     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4489       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4490       .type = ARM_CP_NO_RAW,
4491       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4492     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4493       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4494       .type = ARM_CP_ALIAS,
4495       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4496       .access = PL2_RW, .accessfn = fpexc32_access },
4497     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4498       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4499       .access = PL2_RW, .resetvalue = 0,
4500       .writefn = dacr_write, .raw_writefn = raw_write,
4501       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4502     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4503       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4504       .access = PL2_RW, .resetvalue = 0,
4505       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4506     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4507       .type = ARM_CP_ALIAS,
4508       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4509       .access = PL2_RW,
4510       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4511     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4512       .type = ARM_CP_ALIAS,
4513       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4514       .access = PL2_RW,
4515       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4516     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4517       .type = ARM_CP_ALIAS,
4518       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4519       .access = PL2_RW,
4520       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4521     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4522       .type = ARM_CP_ALIAS,
4523       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4524       .access = PL2_RW,
4525       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4526     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4527       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4528       .resetvalue = 0,
4529       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4530     { .name = "SDCR", .type = ARM_CP_ALIAS,
4531       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4532       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4533       .writefn = sdcr_write,
4534       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4535     REGINFO_SENTINEL
4536 };
4537 
4538 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4539 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4540     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4541       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4542       .access = PL2_RW,
4543       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4544     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4545       .type = ARM_CP_NO_RAW,
4546       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4547       .access = PL2_RW,
4548       .type = ARM_CP_CONST, .resetvalue = 0 },
4549     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4550       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4551       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4552     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4553       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4554       .access = PL2_RW,
4555       .type = ARM_CP_CONST, .resetvalue = 0 },
4556     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4557       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4558       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4559     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4560       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4561       .access = PL2_RW, .type = ARM_CP_CONST,
4562       .resetvalue = 0 },
4563     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4564       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4565       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4566     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4567       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4568       .access = PL2_RW, .type = ARM_CP_CONST,
4569       .resetvalue = 0 },
4570     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4571       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4572       .access = PL2_RW, .type = ARM_CP_CONST,
4573       .resetvalue = 0 },
4574     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4575       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4576       .access = PL2_RW, .type = ARM_CP_CONST,
4577       .resetvalue = 0 },
4578     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4579       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4580       .access = PL2_RW, .type = ARM_CP_CONST,
4581       .resetvalue = 0 },
4582     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4583       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4584       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4585     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4586       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4587       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4588       .type = ARM_CP_CONST, .resetvalue = 0 },
4589     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4590       .cp = 15, .opc1 = 6, .crm = 2,
4591       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4592       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4593     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4594       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4595       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4596     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4597       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4598       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4599     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4600       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4601       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4602     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4603       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4604       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4605     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4606       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4607       .resetvalue = 0 },
4608     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4609       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4610       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4611     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4612       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4613       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4614     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4615       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4616       .resetvalue = 0 },
4617     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4618       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4619       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4620     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4621       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4622       .resetvalue = 0 },
4623     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4624       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4625       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4626     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4627       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4628       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4629     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4630       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4631       .access = PL2_RW, .accessfn = access_tda,
4632       .type = ARM_CP_CONST, .resetvalue = 0 },
4633     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4634       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4635       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4636       .type = ARM_CP_CONST, .resetvalue = 0 },
4637     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4638       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4639       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4640     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4641       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4642       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4643     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4644       .type = ARM_CP_CONST,
4645       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4646       .access = PL2_RW, .resetvalue = 0 },
4647     REGINFO_SENTINEL
4648 };
4649 
4650 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4651 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4652     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4653       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4654       .access = PL2_RW,
4655       .type = ARM_CP_CONST, .resetvalue = 0 },
4656     REGINFO_SENTINEL
4657 };
4658 
4659 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4660 {
4661     ARMCPU *cpu = env_archcpu(env);
4662     uint64_t valid_mask = HCR_MASK;
4663 
4664     if (arm_feature(env, ARM_FEATURE_EL3)) {
4665         valid_mask &= ~HCR_HCD;
4666     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4667         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4668          * However, if we're using the SMC PSCI conduit then QEMU is
4669          * effectively acting like EL3 firmware and so the guest at
4670          * EL2 should retain the ability to prevent EL1 from being
4671          * able to make SMC calls into the ersatz firmware, so in
4672          * that case HCR.TSC should be read/write.
4673          */
4674         valid_mask &= ~HCR_TSC;
4675     }
4676     if (cpu_isar_feature(aa64_lor, cpu)) {
4677         valid_mask |= HCR_TLOR;
4678     }
4679     if (cpu_isar_feature(aa64_pauth, cpu)) {
4680         valid_mask |= HCR_API | HCR_APK;
4681     }
4682 
4683     /* Clear RES0 bits.  */
4684     value &= valid_mask;
4685 
4686     /* These bits change the MMU setup:
4687      * HCR_VM enables stage 2 translation
4688      * HCR_PTW forbids certain page-table setups
4689      * HCR_DC Disables stage1 and enables stage2 translation
4690      */
4691     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4692         tlb_flush(CPU(cpu));
4693     }
4694     env->cp15.hcr_el2 = value;
4695 
4696     /*
4697      * Updates to VI and VF require us to update the status of
4698      * virtual interrupts, which are the logical OR of these bits
4699      * and the state of the input lines from the GIC. (This requires
4700      * that we have the iothread lock, which is done by marking the
4701      * reginfo structs as ARM_CP_IO.)
4702      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4703      * possible for it to be taken immediately, because VIRQ and
4704      * VFIQ are masked unless running at EL0 or EL1, and HCR
4705      * can only be written at EL2.
4706      */
4707     g_assert(qemu_mutex_iothread_locked());
4708     arm_cpu_update_virq(cpu);
4709     arm_cpu_update_vfiq(cpu);
4710 }
4711 
4712 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4713                           uint64_t value)
4714 {
4715     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4716     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4717     hcr_write(env, NULL, value);
4718 }
4719 
4720 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4721                          uint64_t value)
4722 {
4723     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4724     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4725     hcr_write(env, NULL, value);
4726 }
4727 
4728 /*
4729  * Return the effective value of HCR_EL2.
4730  * Bits that are not included here:
4731  * RW       (read from SCR_EL3.RW as needed)
4732  */
4733 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4734 {
4735     uint64_t ret = env->cp15.hcr_el2;
4736 
4737     if (arm_is_secure_below_el3(env)) {
4738         /*
4739          * "This register has no effect if EL2 is not enabled in the
4740          * current Security state".  This is ARMv8.4-SecEL2 speak for
4741          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4742          *
4743          * Prior to that, the language was "In an implementation that
4744          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4745          * as if this field is 0 for all purposes other than a direct
4746          * read or write access of HCR_EL2".  With lots of enumeration
4747          * on a per-field basis.  In current QEMU, this is condition
4748          * is arm_is_secure_below_el3.
4749          *
4750          * Since the v8.4 language applies to the entire register, and
4751          * appears to be backward compatible, use that.
4752          */
4753         ret = 0;
4754     } else if (ret & HCR_TGE) {
4755         /* These bits are up-to-date as of ARMv8.4.  */
4756         if (ret & HCR_E2H) {
4757             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4758                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4759                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4760                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4761         } else {
4762             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4763         }
4764         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4765                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4766                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4767                  HCR_TLOR);
4768     }
4769 
4770     return ret;
4771 }
4772 
4773 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4774                            uint64_t value)
4775 {
4776     /*
4777      * For A-profile AArch32 EL3, if NSACR.CP10
4778      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4779      */
4780     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4781         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4782         value &= ~(0x3 << 10);
4783         value |= env->cp15.cptr_el[2] & (0x3 << 10);
4784     }
4785     env->cp15.cptr_el[2] = value;
4786 }
4787 
4788 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4789 {
4790     /*
4791      * For A-profile AArch32 EL3, if NSACR.CP10
4792      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4793      */
4794     uint64_t value = env->cp15.cptr_el[2];
4795 
4796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4798         value |= 0x3 << 10;
4799     }
4800     return value;
4801 }
4802 
4803 static const ARMCPRegInfo el2_cp_reginfo[] = {
4804     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4805       .type = ARM_CP_IO,
4806       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4807       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4808       .writefn = hcr_write },
4809     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4810       .type = ARM_CP_ALIAS | ARM_CP_IO,
4811       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4812       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4813       .writefn = hcr_writelow },
4814     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4815       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4816       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4817     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4818       .type = ARM_CP_ALIAS,
4819       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4820       .access = PL2_RW,
4821       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4822     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4823       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4824       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4825     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4826       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4827       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4828     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4829       .type = ARM_CP_ALIAS,
4830       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4831       .access = PL2_RW,
4832       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4833     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4834       .type = ARM_CP_ALIAS,
4835       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4836       .access = PL2_RW,
4837       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4838     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4839       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4840       .access = PL2_RW, .writefn = vbar_write,
4841       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4842       .resetvalue = 0 },
4843     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4844       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4845       .access = PL3_RW, .type = ARM_CP_ALIAS,
4846       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4847     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4848       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4849       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4850       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4851       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4852     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4853       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4854       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4855       .resetvalue = 0 },
4856     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4857       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4858       .access = PL2_RW, .type = ARM_CP_ALIAS,
4859       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4860     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4861       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4862       .access = PL2_RW, .type = ARM_CP_CONST,
4863       .resetvalue = 0 },
4864     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4865     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4866       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4867       .access = PL2_RW, .type = ARM_CP_CONST,
4868       .resetvalue = 0 },
4869     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4870       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4871       .access = PL2_RW, .type = ARM_CP_CONST,
4872       .resetvalue = 0 },
4873     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4874       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4875       .access = PL2_RW, .type = ARM_CP_CONST,
4876       .resetvalue = 0 },
4877     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4878       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4879       .access = PL2_RW,
4880       /* no .writefn needed as this can't cause an ASID change;
4881        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4882        */
4883       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4884     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4885       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4886       .type = ARM_CP_ALIAS,
4887       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4888       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4889     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4890       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4891       .access = PL2_RW,
4892       /* no .writefn needed as this can't cause an ASID change;
4893        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4894        */
4895       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4896     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4897       .cp = 15, .opc1 = 6, .crm = 2,
4898       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4899       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4900       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4901       .writefn = vttbr_write },
4902     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4903       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4904       .access = PL2_RW, .writefn = vttbr_write,
4905       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4906     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4907       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4908       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4909       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4910     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4911       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4912       .access = PL2_RW, .resetvalue = 0,
4913       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4914     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4915       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4916       .access = PL2_RW, .resetvalue = 0,
4917       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4918     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4919       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4920       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4921     { .name = "TLBIALLNSNH",
4922       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4923       .type = ARM_CP_NO_RAW, .access = PL2_W,
4924       .writefn = tlbiall_nsnh_write },
4925     { .name = "TLBIALLNSNHIS",
4926       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4927       .type = ARM_CP_NO_RAW, .access = PL2_W,
4928       .writefn = tlbiall_nsnh_is_write },
4929     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4930       .type = ARM_CP_NO_RAW, .access = PL2_W,
4931       .writefn = tlbiall_hyp_write },
4932     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4933       .type = ARM_CP_NO_RAW, .access = PL2_W,
4934       .writefn = tlbiall_hyp_is_write },
4935     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4936       .type = ARM_CP_NO_RAW, .access = PL2_W,
4937       .writefn = tlbimva_hyp_write },
4938     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4939       .type = ARM_CP_NO_RAW, .access = PL2_W,
4940       .writefn = tlbimva_hyp_is_write },
4941     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4942       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4943       .type = ARM_CP_NO_RAW, .access = PL2_W,
4944       .writefn = tlbi_aa64_alle2_write },
4945     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4946       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4947       .type = ARM_CP_NO_RAW, .access = PL2_W,
4948       .writefn = tlbi_aa64_vae2_write },
4949     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4950       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4951       .access = PL2_W, .type = ARM_CP_NO_RAW,
4952       .writefn = tlbi_aa64_vae2_write },
4953     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4954       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4955       .access = PL2_W, .type = ARM_CP_NO_RAW,
4956       .writefn = tlbi_aa64_alle2is_write },
4957     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4958       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4959       .type = ARM_CP_NO_RAW, .access = PL2_W,
4960       .writefn = tlbi_aa64_vae2is_write },
4961     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4962       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4963       .access = PL2_W, .type = ARM_CP_NO_RAW,
4964       .writefn = tlbi_aa64_vae2is_write },
4965 #ifndef CONFIG_USER_ONLY
4966     /* Unlike the other EL2-related AT operations, these must
4967      * UNDEF from EL3 if EL2 is not implemented, which is why we
4968      * define them here rather than with the rest of the AT ops.
4969      */
4970     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4971       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4972       .access = PL2_W, .accessfn = at_s1e2_access,
4973       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4974     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4975       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4976       .access = PL2_W, .accessfn = at_s1e2_access,
4977       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
4978     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4979      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4980      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4981      * to behave as if SCR.NS was 1.
4982      */
4983     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4984       .access = PL2_W,
4985       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
4986     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4987       .access = PL2_W,
4988       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
4989     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4990       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4991       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4992        * reset values as IMPDEF. We choose to reset to 3 to comply with
4993        * both ARMv7 and ARMv8.
4994        */
4995       .access = PL2_RW, .resetvalue = 3,
4996       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4997     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4998       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4999       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5000       .writefn = gt_cntvoff_write,
5001       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5002     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5003       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5004       .writefn = gt_cntvoff_write,
5005       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5006     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5007       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5008       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5009       .type = ARM_CP_IO, .access = PL2_RW,
5010       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5011     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5012       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5013       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5014       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5015     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5016       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5017       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5018       .resetfn = gt_hyp_timer_reset,
5019       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5020     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5021       .type = ARM_CP_IO,
5022       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5023       .access = PL2_RW,
5024       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5025       .resetvalue = 0,
5026       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5027 #endif
5028     /* The only field of MDCR_EL2 that has a defined architectural reset value
5029      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5030      * don't implement any PMU event counters, so using zero as a reset
5031      * value for MDCR_EL2 is okay
5032      */
5033     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5034       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5035       .access = PL2_RW, .resetvalue = 0,
5036       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5037     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5038       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5039       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5040       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5041     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5042       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5043       .access = PL2_RW,
5044       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5045     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5046       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5047       .access = PL2_RW,
5048       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5049     REGINFO_SENTINEL
5050 };
5051 
5052 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5053     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5054       .type = ARM_CP_ALIAS | ARM_CP_IO,
5055       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5056       .access = PL2_RW,
5057       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5058       .writefn = hcr_writehigh },
5059     REGINFO_SENTINEL
5060 };
5061 
5062 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5063                                    bool isread)
5064 {
5065     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5066      * At Secure EL1 it traps to EL3.
5067      */
5068     if (arm_current_el(env) == 3) {
5069         return CP_ACCESS_OK;
5070     }
5071     if (arm_is_secure_below_el3(env)) {
5072         return CP_ACCESS_TRAP_EL3;
5073     }
5074     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5075     if (isread) {
5076         return CP_ACCESS_OK;
5077     }
5078     return CP_ACCESS_TRAP_UNCATEGORIZED;
5079 }
5080 
5081 static const ARMCPRegInfo el3_cp_reginfo[] = {
5082     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5083       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5084       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5085       .resetvalue = 0, .writefn = scr_write },
5086     { .name = "SCR",  .type = ARM_CP_ALIAS,
5087       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5088       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5089       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5090       .writefn = scr_write },
5091     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5092       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5093       .access = PL3_RW, .resetvalue = 0,
5094       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5095     { .name = "SDER",
5096       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5097       .access = PL3_RW, .resetvalue = 0,
5098       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5099     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5100       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5101       .writefn = vbar_write, .resetvalue = 0,
5102       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5103     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5104       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5105       .access = PL3_RW, .resetvalue = 0,
5106       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5107     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5108       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5109       .access = PL3_RW,
5110       /* no .writefn needed as this can't cause an ASID change;
5111        * we must provide a .raw_writefn and .resetfn because we handle
5112        * reset and migration for the AArch32 TTBCR(S), which might be
5113        * using mask and base_mask.
5114        */
5115       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5116       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5117     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5118       .type = ARM_CP_ALIAS,
5119       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5120       .access = PL3_RW,
5121       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5122     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5123       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5124       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5125     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5126       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5127       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5128     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5129       .type = ARM_CP_ALIAS,
5130       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5131       .access = PL3_RW,
5132       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5133     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5134       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5135       .access = PL3_RW, .writefn = vbar_write,
5136       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5137       .resetvalue = 0 },
5138     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5139       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5140       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5141       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5142     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5143       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5144       .access = PL3_RW, .resetvalue = 0,
5145       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5146     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5147       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5148       .access = PL3_RW, .type = ARM_CP_CONST,
5149       .resetvalue = 0 },
5150     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5151       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5152       .access = PL3_RW, .type = ARM_CP_CONST,
5153       .resetvalue = 0 },
5154     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5155       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5156       .access = PL3_RW, .type = ARM_CP_CONST,
5157       .resetvalue = 0 },
5158     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5159       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5160       .access = PL3_W, .type = ARM_CP_NO_RAW,
5161       .writefn = tlbi_aa64_alle3is_write },
5162     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5163       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5164       .access = PL3_W, .type = ARM_CP_NO_RAW,
5165       .writefn = tlbi_aa64_vae3is_write },
5166     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5167       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5168       .access = PL3_W, .type = ARM_CP_NO_RAW,
5169       .writefn = tlbi_aa64_vae3is_write },
5170     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5171       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5172       .access = PL3_W, .type = ARM_CP_NO_RAW,
5173       .writefn = tlbi_aa64_alle3_write },
5174     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5175       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5176       .access = PL3_W, .type = ARM_CP_NO_RAW,
5177       .writefn = tlbi_aa64_vae3_write },
5178     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5179       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5180       .access = PL3_W, .type = ARM_CP_NO_RAW,
5181       .writefn = tlbi_aa64_vae3_write },
5182     REGINFO_SENTINEL
5183 };
5184 
5185 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5186                                      bool isread)
5187 {
5188     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5189      * but the AArch32 CTR has its own reginfo struct)
5190      */
5191     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5192         return CP_ACCESS_TRAP;
5193     }
5194     return CP_ACCESS_OK;
5195 }
5196 
5197 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5198                         uint64_t value)
5199 {
5200     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5201      * read via a bit in OSLSR_EL1.
5202      */
5203     int oslock;
5204 
5205     if (ri->state == ARM_CP_STATE_AA32) {
5206         oslock = (value == 0xC5ACCE55);
5207     } else {
5208         oslock = value & 1;
5209     }
5210 
5211     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5212 }
5213 
5214 static const ARMCPRegInfo debug_cp_reginfo[] = {
5215     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5216      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5217      * unlike DBGDRAR it is never accessible from EL0.
5218      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5219      * accessor.
5220      */
5221     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5222       .access = PL0_R, .accessfn = access_tdra,
5223       .type = ARM_CP_CONST, .resetvalue = 0 },
5224     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5225       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5226       .access = PL1_R, .accessfn = access_tdra,
5227       .type = ARM_CP_CONST, .resetvalue = 0 },
5228     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5229       .access = PL0_R, .accessfn = access_tdra,
5230       .type = ARM_CP_CONST, .resetvalue = 0 },
5231     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5232     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5233       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5234       .access = PL1_RW, .accessfn = access_tda,
5235       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5236       .resetvalue = 0 },
5237     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5238      * We don't implement the configurable EL0 access.
5239      */
5240     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5241       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5242       .type = ARM_CP_ALIAS,
5243       .access = PL1_R, .accessfn = access_tda,
5244       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5245     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5246       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5247       .access = PL1_W, .type = ARM_CP_NO_RAW,
5248       .accessfn = access_tdosa,
5249       .writefn = oslar_write },
5250     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5251       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5252       .access = PL1_R, .resetvalue = 10,
5253       .accessfn = access_tdosa,
5254       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5255     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5256     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5257       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5258       .access = PL1_RW, .accessfn = access_tdosa,
5259       .type = ARM_CP_NOP },
5260     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5261      * implement vector catch debug events yet.
5262      */
5263     { .name = "DBGVCR",
5264       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5265       .access = PL1_RW, .accessfn = access_tda,
5266       .type = ARM_CP_NOP },
5267     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5268      * to save and restore a 32-bit guest's DBGVCR)
5269      */
5270     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5271       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5272       .access = PL2_RW, .accessfn = access_tda,
5273       .type = ARM_CP_NOP },
5274     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5275      * Channel but Linux may try to access this register. The 32-bit
5276      * alias is DBGDCCINT.
5277      */
5278     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5279       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5280       .access = PL1_RW, .accessfn = access_tda,
5281       .type = ARM_CP_NOP },
5282     REGINFO_SENTINEL
5283 };
5284 
5285 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5286     /* 64 bit access versions of the (dummy) debug registers */
5287     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5288       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5289     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5290       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5291     REGINFO_SENTINEL
5292 };
5293 
5294 /* Return the exception level to which exceptions should be taken
5295  * via SVEAccessTrap.  If an exception should be routed through
5296  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5297  * take care of raising that exception.
5298  * C.f. the ARM pseudocode function CheckSVEEnabled.
5299  */
5300 int sve_exception_el(CPUARMState *env, int el)
5301 {
5302 #ifndef CONFIG_USER_ONLY
5303     if (el <= 1) {
5304         bool disabled = false;
5305 
5306         /* The CPACR.ZEN controls traps to EL1:
5307          * 0, 2 : trap EL0 and EL1 accesses
5308          * 1    : trap only EL0 accesses
5309          * 3    : trap no accesses
5310          */
5311         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5312             disabled = true;
5313         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5314             disabled = el == 0;
5315         }
5316         if (disabled) {
5317             /* route_to_el2 */
5318             return (arm_feature(env, ARM_FEATURE_EL2)
5319                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5320         }
5321 
5322         /* Check CPACR.FPEN.  */
5323         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5324             disabled = true;
5325         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5326             disabled = el == 0;
5327         }
5328         if (disabled) {
5329             return 0;
5330         }
5331     }
5332 
5333     /* CPTR_EL2.  Since TZ and TFP are positive,
5334      * they will be zero when EL2 is not present.
5335      */
5336     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5337         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5338             return 2;
5339         }
5340         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5341             return 0;
5342         }
5343     }
5344 
5345     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5346     if (arm_feature(env, ARM_FEATURE_EL3)
5347         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5348         return 3;
5349     }
5350 #endif
5351     return 0;
5352 }
5353 
5354 /*
5355  * Given that SVE is enabled, return the vector length for EL.
5356  */
5357 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5358 {
5359     ARMCPU *cpu = env_archcpu(env);
5360     uint32_t zcr_len = cpu->sve_max_vq - 1;
5361 
5362     if (el <= 1) {
5363         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5364     }
5365     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5366         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5367     }
5368     if (arm_feature(env, ARM_FEATURE_EL3)) {
5369         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5370     }
5371     return zcr_len;
5372 }
5373 
5374 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5375                       uint64_t value)
5376 {
5377     int cur_el = arm_current_el(env);
5378     int old_len = sve_zcr_len_for_el(env, cur_el);
5379     int new_len;
5380 
5381     /* Bits other than [3:0] are RAZ/WI.  */
5382     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5383     raw_write(env, ri, value & 0xf);
5384 
5385     /*
5386      * Because we arrived here, we know both FP and SVE are enabled;
5387      * otherwise we would have trapped access to the ZCR_ELn register.
5388      */
5389     new_len = sve_zcr_len_for_el(env, cur_el);
5390     if (new_len < old_len) {
5391         aarch64_sve_narrow_vq(env, new_len + 1);
5392     }
5393 }
5394 
5395 static const ARMCPRegInfo zcr_el1_reginfo = {
5396     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5397     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5398     .access = PL1_RW, .type = ARM_CP_SVE,
5399     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5400     .writefn = zcr_write, .raw_writefn = raw_write
5401 };
5402 
5403 static const ARMCPRegInfo zcr_el2_reginfo = {
5404     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5405     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5406     .access = PL2_RW, .type = ARM_CP_SVE,
5407     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5408     .writefn = zcr_write, .raw_writefn = raw_write
5409 };
5410 
5411 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5412     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5413     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5414     .access = PL2_RW, .type = ARM_CP_SVE,
5415     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5416 };
5417 
5418 static const ARMCPRegInfo zcr_el3_reginfo = {
5419     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5420     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5421     .access = PL3_RW, .type = ARM_CP_SVE,
5422     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5423     .writefn = zcr_write, .raw_writefn = raw_write
5424 };
5425 
5426 void hw_watchpoint_update(ARMCPU *cpu, int n)
5427 {
5428     CPUARMState *env = &cpu->env;
5429     vaddr len = 0;
5430     vaddr wvr = env->cp15.dbgwvr[n];
5431     uint64_t wcr = env->cp15.dbgwcr[n];
5432     int mask;
5433     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5434 
5435     if (env->cpu_watchpoint[n]) {
5436         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5437         env->cpu_watchpoint[n] = NULL;
5438     }
5439 
5440     if (!extract64(wcr, 0, 1)) {
5441         /* E bit clear : watchpoint disabled */
5442         return;
5443     }
5444 
5445     switch (extract64(wcr, 3, 2)) {
5446     case 0:
5447         /* LSC 00 is reserved and must behave as if the wp is disabled */
5448         return;
5449     case 1:
5450         flags |= BP_MEM_READ;
5451         break;
5452     case 2:
5453         flags |= BP_MEM_WRITE;
5454         break;
5455     case 3:
5456         flags |= BP_MEM_ACCESS;
5457         break;
5458     }
5459 
5460     /* Attempts to use both MASK and BAS fields simultaneously are
5461      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5462      * thus generating a watchpoint for every byte in the masked region.
5463      */
5464     mask = extract64(wcr, 24, 4);
5465     if (mask == 1 || mask == 2) {
5466         /* Reserved values of MASK; we must act as if the mask value was
5467          * some non-reserved value, or as if the watchpoint were disabled.
5468          * We choose the latter.
5469          */
5470         return;
5471     } else if (mask) {
5472         /* Watchpoint covers an aligned area up to 2GB in size */
5473         len = 1ULL << mask;
5474         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5475          * whether the watchpoint fires when the unmasked bits match; we opt
5476          * to generate the exceptions.
5477          */
5478         wvr &= ~(len - 1);
5479     } else {
5480         /* Watchpoint covers bytes defined by the byte address select bits */
5481         int bas = extract64(wcr, 5, 8);
5482         int basstart;
5483 
5484         if (bas == 0) {
5485             /* This must act as if the watchpoint is disabled */
5486             return;
5487         }
5488 
5489         if (extract64(wvr, 2, 1)) {
5490             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5491              * ignored, and BAS[3:0] define which bytes to watch.
5492              */
5493             bas &= 0xf;
5494         }
5495         /* The BAS bits are supposed to be programmed to indicate a contiguous
5496          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5497          * we fire for each byte in the word/doubleword addressed by the WVR.
5498          * We choose to ignore any non-zero bits after the first range of 1s.
5499          */
5500         basstart = ctz32(bas);
5501         len = cto32(bas >> basstart);
5502         wvr += basstart;
5503     }
5504 
5505     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5506                           &env->cpu_watchpoint[n]);
5507 }
5508 
5509 void hw_watchpoint_update_all(ARMCPU *cpu)
5510 {
5511     int i;
5512     CPUARMState *env = &cpu->env;
5513 
5514     /* Completely clear out existing QEMU watchpoints and our array, to
5515      * avoid possible stale entries following migration load.
5516      */
5517     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5518     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5519 
5520     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5521         hw_watchpoint_update(cpu, i);
5522     }
5523 }
5524 
5525 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5526                          uint64_t value)
5527 {
5528     ARMCPU *cpu = env_archcpu(env);
5529     int i = ri->crm;
5530 
5531     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5532      * register reads and behaves as if values written are sign extended.
5533      * Bits [1:0] are RES0.
5534      */
5535     value = sextract64(value, 0, 49) & ~3ULL;
5536 
5537     raw_write(env, ri, value);
5538     hw_watchpoint_update(cpu, i);
5539 }
5540 
5541 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5542                          uint64_t value)
5543 {
5544     ARMCPU *cpu = env_archcpu(env);
5545     int i = ri->crm;
5546 
5547     raw_write(env, ri, value);
5548     hw_watchpoint_update(cpu, i);
5549 }
5550 
5551 void hw_breakpoint_update(ARMCPU *cpu, int n)
5552 {
5553     CPUARMState *env = &cpu->env;
5554     uint64_t bvr = env->cp15.dbgbvr[n];
5555     uint64_t bcr = env->cp15.dbgbcr[n];
5556     vaddr addr;
5557     int bt;
5558     int flags = BP_CPU;
5559 
5560     if (env->cpu_breakpoint[n]) {
5561         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5562         env->cpu_breakpoint[n] = NULL;
5563     }
5564 
5565     if (!extract64(bcr, 0, 1)) {
5566         /* E bit clear : watchpoint disabled */
5567         return;
5568     }
5569 
5570     bt = extract64(bcr, 20, 4);
5571 
5572     switch (bt) {
5573     case 4: /* unlinked address mismatch (reserved if AArch64) */
5574     case 5: /* linked address mismatch (reserved if AArch64) */
5575         qemu_log_mask(LOG_UNIMP,
5576                       "arm: address mismatch breakpoint types not implemented\n");
5577         return;
5578     case 0: /* unlinked address match */
5579     case 1: /* linked address match */
5580     {
5581         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5582          * we behave as if the register was sign extended. Bits [1:0] are
5583          * RES0. The BAS field is used to allow setting breakpoints on 16
5584          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5585          * a bp will fire if the addresses covered by the bp and the addresses
5586          * covered by the insn overlap but the insn doesn't start at the
5587          * start of the bp address range. We choose to require the insn and
5588          * the bp to have the same address. The constraints on writing to
5589          * BAS enforced in dbgbcr_write mean we have only four cases:
5590          *  0b0000  => no breakpoint
5591          *  0b0011  => breakpoint on addr
5592          *  0b1100  => breakpoint on addr + 2
5593          *  0b1111  => breakpoint on addr
5594          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5595          */
5596         int bas = extract64(bcr, 5, 4);
5597         addr = sextract64(bvr, 0, 49) & ~3ULL;
5598         if (bas == 0) {
5599             return;
5600         }
5601         if (bas == 0xc) {
5602             addr += 2;
5603         }
5604         break;
5605     }
5606     case 2: /* unlinked context ID match */
5607     case 8: /* unlinked VMID match (reserved if no EL2) */
5608     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5609         qemu_log_mask(LOG_UNIMP,
5610                       "arm: unlinked context breakpoint types not implemented\n");
5611         return;
5612     case 9: /* linked VMID match (reserved if no EL2) */
5613     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5614     case 3: /* linked context ID match */
5615     default:
5616         /* We must generate no events for Linked context matches (unless
5617          * they are linked to by some other bp/wp, which is handled in
5618          * updates for the linking bp/wp). We choose to also generate no events
5619          * for reserved values.
5620          */
5621         return;
5622     }
5623 
5624     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5625 }
5626 
5627 void hw_breakpoint_update_all(ARMCPU *cpu)
5628 {
5629     int i;
5630     CPUARMState *env = &cpu->env;
5631 
5632     /* Completely clear out existing QEMU breakpoints and our array, to
5633      * avoid possible stale entries following migration load.
5634      */
5635     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5636     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5637 
5638     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5639         hw_breakpoint_update(cpu, i);
5640     }
5641 }
5642 
5643 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5644                          uint64_t value)
5645 {
5646     ARMCPU *cpu = env_archcpu(env);
5647     int i = ri->crm;
5648 
5649     raw_write(env, ri, value);
5650     hw_breakpoint_update(cpu, i);
5651 }
5652 
5653 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5654                          uint64_t value)
5655 {
5656     ARMCPU *cpu = env_archcpu(env);
5657     int i = ri->crm;
5658 
5659     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5660      * copy of BAS[0].
5661      */
5662     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5663     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5664 
5665     raw_write(env, ri, value);
5666     hw_breakpoint_update(cpu, i);
5667 }
5668 
5669 static void define_debug_regs(ARMCPU *cpu)
5670 {
5671     /* Define v7 and v8 architectural debug registers.
5672      * These are just dummy implementations for now.
5673      */
5674     int i;
5675     int wrps, brps, ctx_cmps;
5676     ARMCPRegInfo dbgdidr = {
5677         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5678         .access = PL0_R, .accessfn = access_tda,
5679         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5680     };
5681 
5682     /* Note that all these register fields hold "number of Xs minus 1". */
5683     brps = extract32(cpu->dbgdidr, 24, 4);
5684     wrps = extract32(cpu->dbgdidr, 28, 4);
5685     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5686 
5687     assert(ctx_cmps <= brps);
5688 
5689     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5690      * of the debug registers such as number of breakpoints;
5691      * check that if they both exist then they agree.
5692      */
5693     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5694         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5695         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5696         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5697     }
5698 
5699     define_one_arm_cp_reg(cpu, &dbgdidr);
5700     define_arm_cp_regs(cpu, debug_cp_reginfo);
5701 
5702     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5703         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5704     }
5705 
5706     for (i = 0; i < brps + 1; i++) {
5707         ARMCPRegInfo dbgregs[] = {
5708             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5709               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5710               .access = PL1_RW, .accessfn = access_tda,
5711               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5712               .writefn = dbgbvr_write, .raw_writefn = raw_write
5713             },
5714             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5715               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5716               .access = PL1_RW, .accessfn = access_tda,
5717               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5718               .writefn = dbgbcr_write, .raw_writefn = raw_write
5719             },
5720             REGINFO_SENTINEL
5721         };
5722         define_arm_cp_regs(cpu, dbgregs);
5723     }
5724 
5725     for (i = 0; i < wrps + 1; i++) {
5726         ARMCPRegInfo dbgregs[] = {
5727             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5728               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5729               .access = PL1_RW, .accessfn = access_tda,
5730               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5731               .writefn = dbgwvr_write, .raw_writefn = raw_write
5732             },
5733             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5734               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5735               .access = PL1_RW, .accessfn = access_tda,
5736               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5737               .writefn = dbgwcr_write, .raw_writefn = raw_write
5738             },
5739             REGINFO_SENTINEL
5740         };
5741         define_arm_cp_regs(cpu, dbgregs);
5742     }
5743 }
5744 
5745 /* We don't know until after realize whether there's a GICv3
5746  * attached, and that is what registers the gicv3 sysregs.
5747  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5748  * at runtime.
5749  */
5750 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5751 {
5752     ARMCPU *cpu = env_archcpu(env);
5753     uint64_t pfr1 = cpu->id_pfr1;
5754 
5755     if (env->gicv3state) {
5756         pfr1 |= 1 << 28;
5757     }
5758     return pfr1;
5759 }
5760 
5761 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5762 {
5763     ARMCPU *cpu = env_archcpu(env);
5764     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5765 
5766     if (env->gicv3state) {
5767         pfr0 |= 1 << 24;
5768     }
5769     return pfr0;
5770 }
5771 
5772 /* Shared logic between LORID and the rest of the LOR* registers.
5773  * Secure state has already been delt with.
5774  */
5775 static CPAccessResult access_lor_ns(CPUARMState *env)
5776 {
5777     int el = arm_current_el(env);
5778 
5779     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5780         return CP_ACCESS_TRAP_EL2;
5781     }
5782     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5783         return CP_ACCESS_TRAP_EL3;
5784     }
5785     return CP_ACCESS_OK;
5786 }
5787 
5788 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5789                                    bool isread)
5790 {
5791     if (arm_is_secure_below_el3(env)) {
5792         /* Access ok in secure mode.  */
5793         return CP_ACCESS_OK;
5794     }
5795     return access_lor_ns(env);
5796 }
5797 
5798 static CPAccessResult access_lor_other(CPUARMState *env,
5799                                        const ARMCPRegInfo *ri, bool isread)
5800 {
5801     if (arm_is_secure_below_el3(env)) {
5802         /* Access denied in secure mode.  */
5803         return CP_ACCESS_TRAP;
5804     }
5805     return access_lor_ns(env);
5806 }
5807 
5808 #ifdef TARGET_AARCH64
5809 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5810                                    bool isread)
5811 {
5812     int el = arm_current_el(env);
5813 
5814     if (el < 2 &&
5815         arm_feature(env, ARM_FEATURE_EL2) &&
5816         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5817         return CP_ACCESS_TRAP_EL2;
5818     }
5819     if (el < 3 &&
5820         arm_feature(env, ARM_FEATURE_EL3) &&
5821         !(env->cp15.scr_el3 & SCR_APK)) {
5822         return CP_ACCESS_TRAP_EL3;
5823     }
5824     return CP_ACCESS_OK;
5825 }
5826 
5827 static const ARMCPRegInfo pauth_reginfo[] = {
5828     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5829       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5830       .access = PL1_RW, .accessfn = access_pauth,
5831       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5832     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5833       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5834       .access = PL1_RW, .accessfn = access_pauth,
5835       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5836     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5837       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5838       .access = PL1_RW, .accessfn = access_pauth,
5839       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5840     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5841       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5842       .access = PL1_RW, .accessfn = access_pauth,
5843       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5844     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5845       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5846       .access = PL1_RW, .accessfn = access_pauth,
5847       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5848     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5849       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5850       .access = PL1_RW, .accessfn = access_pauth,
5851       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5852     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5853       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5854       .access = PL1_RW, .accessfn = access_pauth,
5855       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5856     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5857       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5858       .access = PL1_RW, .accessfn = access_pauth,
5859       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5860     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5861       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5862       .access = PL1_RW, .accessfn = access_pauth,
5863       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5864     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5865       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5866       .access = PL1_RW, .accessfn = access_pauth,
5867       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5868     REGINFO_SENTINEL
5869 };
5870 
5871 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5872 {
5873     Error *err = NULL;
5874     uint64_t ret;
5875 
5876     /* Success sets NZCV = 0000.  */
5877     env->NF = env->CF = env->VF = 0, env->ZF = 1;
5878 
5879     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5880         /*
5881          * ??? Failed, for unknown reasons in the crypto subsystem.
5882          * The best we can do is log the reason and return the
5883          * timed-out indication to the guest.  There is no reason
5884          * we know to expect this failure to be transitory, so the
5885          * guest may well hang retrying the operation.
5886          */
5887         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5888                       ri->name, error_get_pretty(err));
5889         error_free(err);
5890 
5891         env->ZF = 0; /* NZCF = 0100 */
5892         return 0;
5893     }
5894     return ret;
5895 }
5896 
5897 /* We do not support re-seeding, so the two registers operate the same.  */
5898 static const ARMCPRegInfo rndr_reginfo[] = {
5899     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5900       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5901       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5902       .access = PL0_R, .readfn = rndr_readfn },
5903     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5904       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5905       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5906       .access = PL0_R, .readfn = rndr_readfn },
5907     REGINFO_SENTINEL
5908 };
5909 #endif
5910 
5911 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5912                                      bool isread)
5913 {
5914     int el = arm_current_el(env);
5915 
5916     if (el == 0) {
5917         uint64_t sctlr = arm_sctlr(env, el);
5918         if (!(sctlr & SCTLR_EnRCTX)) {
5919             return CP_ACCESS_TRAP;
5920         }
5921     } else if (el == 1) {
5922         uint64_t hcr = arm_hcr_el2_eff(env);
5923         if (hcr & HCR_NV) {
5924             return CP_ACCESS_TRAP_EL2;
5925         }
5926     }
5927     return CP_ACCESS_OK;
5928 }
5929 
5930 static const ARMCPRegInfo predinv_reginfo[] = {
5931     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5932       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5933       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5934     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5935       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5936       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5937     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5938       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5939       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5940     /*
5941      * Note the AArch32 opcodes have a different OPC1.
5942      */
5943     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5944       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5945       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5946     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5947       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5948       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5949     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5950       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5951       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5952     REGINFO_SENTINEL
5953 };
5954 
5955 void register_cp_regs_for_features(ARMCPU *cpu)
5956 {
5957     /* Register all the coprocessor registers based on feature bits */
5958     CPUARMState *env = &cpu->env;
5959     if (arm_feature(env, ARM_FEATURE_M)) {
5960         /* M profile has no coprocessor registers */
5961         return;
5962     }
5963 
5964     define_arm_cp_regs(cpu, cp_reginfo);
5965     if (!arm_feature(env, ARM_FEATURE_V8)) {
5966         /* Must go early as it is full of wildcards that may be
5967          * overridden by later definitions.
5968          */
5969         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5970     }
5971 
5972     if (arm_feature(env, ARM_FEATURE_V6)) {
5973         /* The ID registers all have impdef reset values */
5974         ARMCPRegInfo v6_idregs[] = {
5975             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5976               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5977               .access = PL1_R, .type = ARM_CP_CONST,
5978               .resetvalue = cpu->id_pfr0 },
5979             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5980              * the value of the GIC field until after we define these regs.
5981              */
5982             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5983               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5984               .access = PL1_R, .type = ARM_CP_NO_RAW,
5985               .readfn = id_pfr1_read,
5986               .writefn = arm_cp_write_ignore },
5987             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5988               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5989               .access = PL1_R, .type = ARM_CP_CONST,
5990               .resetvalue = cpu->id_dfr0 },
5991             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5992               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5993               .access = PL1_R, .type = ARM_CP_CONST,
5994               .resetvalue = cpu->id_afr0 },
5995             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5996               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5997               .access = PL1_R, .type = ARM_CP_CONST,
5998               .resetvalue = cpu->id_mmfr0 },
5999             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6000               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6001               .access = PL1_R, .type = ARM_CP_CONST,
6002               .resetvalue = cpu->id_mmfr1 },
6003             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6004               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6005               .access = PL1_R, .type = ARM_CP_CONST,
6006               .resetvalue = cpu->id_mmfr2 },
6007             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6008               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6009               .access = PL1_R, .type = ARM_CP_CONST,
6010               .resetvalue = cpu->id_mmfr3 },
6011             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6012               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6013               .access = PL1_R, .type = ARM_CP_CONST,
6014               .resetvalue = cpu->isar.id_isar0 },
6015             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6016               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6017               .access = PL1_R, .type = ARM_CP_CONST,
6018               .resetvalue = cpu->isar.id_isar1 },
6019             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6020               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6021               .access = PL1_R, .type = ARM_CP_CONST,
6022               .resetvalue = cpu->isar.id_isar2 },
6023             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6024               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6025               .access = PL1_R, .type = ARM_CP_CONST,
6026               .resetvalue = cpu->isar.id_isar3 },
6027             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6028               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6029               .access = PL1_R, .type = ARM_CP_CONST,
6030               .resetvalue = cpu->isar.id_isar4 },
6031             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6032               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6033               .access = PL1_R, .type = ARM_CP_CONST,
6034               .resetvalue = cpu->isar.id_isar5 },
6035             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6036               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6037               .access = PL1_R, .type = ARM_CP_CONST,
6038               .resetvalue = cpu->id_mmfr4 },
6039             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6040               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6041               .access = PL1_R, .type = ARM_CP_CONST,
6042               .resetvalue = cpu->isar.id_isar6 },
6043             REGINFO_SENTINEL
6044         };
6045         define_arm_cp_regs(cpu, v6_idregs);
6046         define_arm_cp_regs(cpu, v6_cp_reginfo);
6047     } else {
6048         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6049     }
6050     if (arm_feature(env, ARM_FEATURE_V6K)) {
6051         define_arm_cp_regs(cpu, v6k_cp_reginfo);
6052     }
6053     if (arm_feature(env, ARM_FEATURE_V7MP) &&
6054         !arm_feature(env, ARM_FEATURE_PMSA)) {
6055         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6056     }
6057     if (arm_feature(env, ARM_FEATURE_V7VE)) {
6058         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6059     }
6060     if (arm_feature(env, ARM_FEATURE_V7)) {
6061         /* v7 performance monitor control register: same implementor
6062          * field as main ID register, and we implement four counters in
6063          * addition to the cycle count register.
6064          */
6065         unsigned int i, pmcrn = 4;
6066         ARMCPRegInfo pmcr = {
6067             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6068             .access = PL0_RW,
6069             .type = ARM_CP_IO | ARM_CP_ALIAS,
6070             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6071             .accessfn = pmreg_access, .writefn = pmcr_write,
6072             .raw_writefn = raw_write,
6073         };
6074         ARMCPRegInfo pmcr64 = {
6075             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6076             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6077             .access = PL0_RW, .accessfn = pmreg_access,
6078             .type = ARM_CP_IO,
6079             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6080             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6081             .writefn = pmcr_write, .raw_writefn = raw_write,
6082         };
6083         define_one_arm_cp_reg(cpu, &pmcr);
6084         define_one_arm_cp_reg(cpu, &pmcr64);
6085         for (i = 0; i < pmcrn; i++) {
6086             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6087             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6088             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6089             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6090             ARMCPRegInfo pmev_regs[] = {
6091                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6092                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6093                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6094                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6095                   .accessfn = pmreg_access },
6096                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6097                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6098                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6099                   .type = ARM_CP_IO,
6100                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6101                   .raw_readfn = pmevcntr_rawread,
6102                   .raw_writefn = pmevcntr_rawwrite },
6103                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6104                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6105                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6106                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6107                   .accessfn = pmreg_access },
6108                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6109                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6110                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6111                   .type = ARM_CP_IO,
6112                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6113                   .raw_writefn = pmevtyper_rawwrite },
6114                 REGINFO_SENTINEL
6115             };
6116             define_arm_cp_regs(cpu, pmev_regs);
6117             g_free(pmevcntr_name);
6118             g_free(pmevcntr_el0_name);
6119             g_free(pmevtyper_name);
6120             g_free(pmevtyper_el0_name);
6121         }
6122         ARMCPRegInfo clidr = {
6123             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6124             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6125             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6126         };
6127         define_one_arm_cp_reg(cpu, &clidr);
6128         define_arm_cp_regs(cpu, v7_cp_reginfo);
6129         define_debug_regs(cpu);
6130     } else {
6131         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6132     }
6133     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6134             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6135         ARMCPRegInfo v81_pmu_regs[] = {
6136             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6137               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6138               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6139               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6140             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6141               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6142               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6143               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6144             REGINFO_SENTINEL
6145         };
6146         define_arm_cp_regs(cpu, v81_pmu_regs);
6147     }
6148     if (arm_feature(env, ARM_FEATURE_V8)) {
6149         /* AArch64 ID registers, which all have impdef reset values.
6150          * Note that within the ID register ranges the unused slots
6151          * must all RAZ, not UNDEF; future architecture versions may
6152          * define new registers here.
6153          */
6154         ARMCPRegInfo v8_idregs[] = {
6155             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6156              * know the right value for the GIC field until after we
6157              * define these regs.
6158              */
6159             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6160               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6161               .access = PL1_R, .type = ARM_CP_NO_RAW,
6162               .readfn = id_aa64pfr0_read,
6163               .writefn = arm_cp_write_ignore },
6164             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6165               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6166               .access = PL1_R, .type = ARM_CP_CONST,
6167               .resetvalue = cpu->isar.id_aa64pfr1},
6168             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6169               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6170               .access = PL1_R, .type = ARM_CP_CONST,
6171               .resetvalue = 0 },
6172             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6173               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6174               .access = PL1_R, .type = ARM_CP_CONST,
6175               .resetvalue = 0 },
6176             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6177               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6178               .access = PL1_R, .type = ARM_CP_CONST,
6179               /* At present, only SVEver == 0 is defined anyway.  */
6180               .resetvalue = 0 },
6181             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6182               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6183               .access = PL1_R, .type = ARM_CP_CONST,
6184               .resetvalue = 0 },
6185             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6186               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6187               .access = PL1_R, .type = ARM_CP_CONST,
6188               .resetvalue = 0 },
6189             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6190               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6191               .access = PL1_R, .type = ARM_CP_CONST,
6192               .resetvalue = 0 },
6193             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6194               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6195               .access = PL1_R, .type = ARM_CP_CONST,
6196               .resetvalue = cpu->id_aa64dfr0 },
6197             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6198               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6199               .access = PL1_R, .type = ARM_CP_CONST,
6200               .resetvalue = cpu->id_aa64dfr1 },
6201             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6202               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6203               .access = PL1_R, .type = ARM_CP_CONST,
6204               .resetvalue = 0 },
6205             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6206               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6207               .access = PL1_R, .type = ARM_CP_CONST,
6208               .resetvalue = 0 },
6209             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6210               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6211               .access = PL1_R, .type = ARM_CP_CONST,
6212               .resetvalue = cpu->id_aa64afr0 },
6213             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6214               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6215               .access = PL1_R, .type = ARM_CP_CONST,
6216               .resetvalue = cpu->id_aa64afr1 },
6217             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6218               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6219               .access = PL1_R, .type = ARM_CP_CONST,
6220               .resetvalue = 0 },
6221             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6222               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6223               .access = PL1_R, .type = ARM_CP_CONST,
6224               .resetvalue = 0 },
6225             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6226               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6227               .access = PL1_R, .type = ARM_CP_CONST,
6228               .resetvalue = cpu->isar.id_aa64isar0 },
6229             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6230               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6231               .access = PL1_R, .type = ARM_CP_CONST,
6232               .resetvalue = cpu->isar.id_aa64isar1 },
6233             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6234               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6235               .access = PL1_R, .type = ARM_CP_CONST,
6236               .resetvalue = 0 },
6237             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6238               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6239               .access = PL1_R, .type = ARM_CP_CONST,
6240               .resetvalue = 0 },
6241             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6242               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6243               .access = PL1_R, .type = ARM_CP_CONST,
6244               .resetvalue = 0 },
6245             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6246               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6247               .access = PL1_R, .type = ARM_CP_CONST,
6248               .resetvalue = 0 },
6249             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6250               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6251               .access = PL1_R, .type = ARM_CP_CONST,
6252               .resetvalue = 0 },
6253             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6254               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6255               .access = PL1_R, .type = ARM_CP_CONST,
6256               .resetvalue = 0 },
6257             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6258               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6259               .access = PL1_R, .type = ARM_CP_CONST,
6260               .resetvalue = cpu->isar.id_aa64mmfr0 },
6261             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6262               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6263               .access = PL1_R, .type = ARM_CP_CONST,
6264               .resetvalue = cpu->isar.id_aa64mmfr1 },
6265             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6266               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6267               .access = PL1_R, .type = ARM_CP_CONST,
6268               .resetvalue = 0 },
6269             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6270               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6271               .access = PL1_R, .type = ARM_CP_CONST,
6272               .resetvalue = 0 },
6273             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6274               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6275               .access = PL1_R, .type = ARM_CP_CONST,
6276               .resetvalue = 0 },
6277             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6278               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6279               .access = PL1_R, .type = ARM_CP_CONST,
6280               .resetvalue = 0 },
6281             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6282               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6283               .access = PL1_R, .type = ARM_CP_CONST,
6284               .resetvalue = 0 },
6285             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6286               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6287               .access = PL1_R, .type = ARM_CP_CONST,
6288               .resetvalue = 0 },
6289             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6290               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6291               .access = PL1_R, .type = ARM_CP_CONST,
6292               .resetvalue = cpu->isar.mvfr0 },
6293             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6294               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6295               .access = PL1_R, .type = ARM_CP_CONST,
6296               .resetvalue = cpu->isar.mvfr1 },
6297             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6298               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6299               .access = PL1_R, .type = ARM_CP_CONST,
6300               .resetvalue = cpu->isar.mvfr2 },
6301             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6302               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6303               .access = PL1_R, .type = ARM_CP_CONST,
6304               .resetvalue = 0 },
6305             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6306               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6307               .access = PL1_R, .type = ARM_CP_CONST,
6308               .resetvalue = 0 },
6309             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6310               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6311               .access = PL1_R, .type = ARM_CP_CONST,
6312               .resetvalue = 0 },
6313             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6314               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6315               .access = PL1_R, .type = ARM_CP_CONST,
6316               .resetvalue = 0 },
6317             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6318               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6319               .access = PL1_R, .type = ARM_CP_CONST,
6320               .resetvalue = 0 },
6321             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6322               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6323               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6324               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6325             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6326               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6327               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6328               .resetvalue = cpu->pmceid0 },
6329             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6330               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6331               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6332               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6333             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6334               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6335               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6336               .resetvalue = cpu->pmceid1 },
6337             REGINFO_SENTINEL
6338         };
6339 #ifdef CONFIG_USER_ONLY
6340         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6341             { .name = "ID_AA64PFR0_EL1",
6342               .exported_bits = 0x000f000f00ff0000,
6343               .fixed_bits    = 0x0000000000000011 },
6344             { .name = "ID_AA64PFR1_EL1",
6345               .exported_bits = 0x00000000000000f0 },
6346             { .name = "ID_AA64PFR*_EL1_RESERVED",
6347               .is_glob = true                     },
6348             { .name = "ID_AA64ZFR0_EL1"           },
6349             { .name = "ID_AA64MMFR0_EL1",
6350               .fixed_bits    = 0x00000000ff000000 },
6351             { .name = "ID_AA64MMFR1_EL1"          },
6352             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6353               .is_glob = true                     },
6354             { .name = "ID_AA64DFR0_EL1",
6355               .fixed_bits    = 0x0000000000000006 },
6356             { .name = "ID_AA64DFR1_EL1"           },
6357             { .name = "ID_AA64DFR*_EL1_RESERVED",
6358               .is_glob = true                     },
6359             { .name = "ID_AA64AFR*",
6360               .is_glob = true                     },
6361             { .name = "ID_AA64ISAR0_EL1",
6362               .exported_bits = 0x00fffffff0fffff0 },
6363             { .name = "ID_AA64ISAR1_EL1",
6364               .exported_bits = 0x000000f0ffffffff },
6365             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6366               .is_glob = true                     },
6367             REGUSERINFO_SENTINEL
6368         };
6369         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6370 #endif
6371         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6372         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6373             !arm_feature(env, ARM_FEATURE_EL2)) {
6374             ARMCPRegInfo rvbar = {
6375                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6376                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6377                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6378             };
6379             define_one_arm_cp_reg(cpu, &rvbar);
6380         }
6381         define_arm_cp_regs(cpu, v8_idregs);
6382         define_arm_cp_regs(cpu, v8_cp_reginfo);
6383     }
6384     if (arm_feature(env, ARM_FEATURE_EL2)) {
6385         uint64_t vmpidr_def = mpidr_read_val(env);
6386         ARMCPRegInfo vpidr_regs[] = {
6387             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6388               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6389               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6390               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6391               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6392             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6393               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6394               .access = PL2_RW, .resetvalue = cpu->midr,
6395               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6396             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6397               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6398               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6399               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6400               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6401             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6402               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6403               .access = PL2_RW,
6404               .resetvalue = vmpidr_def,
6405               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6406             REGINFO_SENTINEL
6407         };
6408         define_arm_cp_regs(cpu, vpidr_regs);
6409         define_arm_cp_regs(cpu, el2_cp_reginfo);
6410         if (arm_feature(env, ARM_FEATURE_V8)) {
6411             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6412         }
6413         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6414         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6415             ARMCPRegInfo rvbar = {
6416                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6417                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6418                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6419             };
6420             define_one_arm_cp_reg(cpu, &rvbar);
6421         }
6422     } else {
6423         /* If EL2 is missing but higher ELs are enabled, we need to
6424          * register the no_el2 reginfos.
6425          */
6426         if (arm_feature(env, ARM_FEATURE_EL3)) {
6427             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6428              * of MIDR_EL1 and MPIDR_EL1.
6429              */
6430             ARMCPRegInfo vpidr_regs[] = {
6431                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6432                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6433                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6434                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6435                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6436                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6437                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6438                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6439                   .type = ARM_CP_NO_RAW,
6440                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6441                 REGINFO_SENTINEL
6442             };
6443             define_arm_cp_regs(cpu, vpidr_regs);
6444             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6445             if (arm_feature(env, ARM_FEATURE_V8)) {
6446                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6447             }
6448         }
6449     }
6450     if (arm_feature(env, ARM_FEATURE_EL3)) {
6451         define_arm_cp_regs(cpu, el3_cp_reginfo);
6452         ARMCPRegInfo el3_regs[] = {
6453             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6454               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6455               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6456             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6457               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6458               .access = PL3_RW,
6459               .raw_writefn = raw_write, .writefn = sctlr_write,
6460               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6461               .resetvalue = cpu->reset_sctlr },
6462             REGINFO_SENTINEL
6463         };
6464 
6465         define_arm_cp_regs(cpu, el3_regs);
6466     }
6467     /* The behaviour of NSACR is sufficiently various that we don't
6468      * try to describe it in a single reginfo:
6469      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6470      *     reads as constant 0xc00 from NS EL1 and NS EL2
6471      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6472      *  if v7 without EL3, register doesn't exist
6473      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6474      */
6475     if (arm_feature(env, ARM_FEATURE_EL3)) {
6476         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6477             ARMCPRegInfo nsacr = {
6478                 .name = "NSACR", .type = ARM_CP_CONST,
6479                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6480                 .access = PL1_RW, .accessfn = nsacr_access,
6481                 .resetvalue = 0xc00
6482             };
6483             define_one_arm_cp_reg(cpu, &nsacr);
6484         } else {
6485             ARMCPRegInfo nsacr = {
6486                 .name = "NSACR",
6487                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6488                 .access = PL3_RW | PL1_R,
6489                 .resetvalue = 0,
6490                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6491             };
6492             define_one_arm_cp_reg(cpu, &nsacr);
6493         }
6494     } else {
6495         if (arm_feature(env, ARM_FEATURE_V8)) {
6496             ARMCPRegInfo nsacr = {
6497                 .name = "NSACR", .type = ARM_CP_CONST,
6498                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6499                 .access = PL1_R,
6500                 .resetvalue = 0xc00
6501             };
6502             define_one_arm_cp_reg(cpu, &nsacr);
6503         }
6504     }
6505 
6506     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6507         if (arm_feature(env, ARM_FEATURE_V6)) {
6508             /* PMSAv6 not implemented */
6509             assert(arm_feature(env, ARM_FEATURE_V7));
6510             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6511             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6512         } else {
6513             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6514         }
6515     } else {
6516         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6517         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6518         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6519         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6520             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6521         }
6522     }
6523     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6524         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6525     }
6526     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6527         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6528     }
6529     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6530         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6531     }
6532     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6533         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6534     }
6535     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6536         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6537     }
6538     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6539         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6540     }
6541     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6542         define_arm_cp_regs(cpu, omap_cp_reginfo);
6543     }
6544     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6545         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6546     }
6547     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6548         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6549     }
6550     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6551         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6552     }
6553     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6554         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6555     }
6556     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6557      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6558      * be read-only (ie write causes UNDEF exception).
6559      */
6560     {
6561         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6562             /* Pre-v8 MIDR space.
6563              * Note that the MIDR isn't a simple constant register because
6564              * of the TI925 behaviour where writes to another register can
6565              * cause the MIDR value to change.
6566              *
6567              * Unimplemented registers in the c15 0 0 0 space default to
6568              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6569              * and friends override accordingly.
6570              */
6571             { .name = "MIDR",
6572               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6573               .access = PL1_R, .resetvalue = cpu->midr,
6574               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6575               .readfn = midr_read,
6576               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6577               .type = ARM_CP_OVERRIDE },
6578             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6579             { .name = "DUMMY",
6580               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6581               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6582             { .name = "DUMMY",
6583               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6584               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6585             { .name = "DUMMY",
6586               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6587               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6588             { .name = "DUMMY",
6589               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6590               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6591             { .name = "DUMMY",
6592               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6593               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6594             REGINFO_SENTINEL
6595         };
6596         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6597             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6598               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6599               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6600               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6601               .readfn = midr_read },
6602             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6603             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6604               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6605               .access = PL1_R, .resetvalue = cpu->midr },
6606             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6607               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6608               .access = PL1_R, .resetvalue = cpu->midr },
6609             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6610               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6611               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6612             REGINFO_SENTINEL
6613         };
6614         ARMCPRegInfo id_cp_reginfo[] = {
6615             /* These are common to v8 and pre-v8 */
6616             { .name = "CTR",
6617               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6618               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6619             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6620               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6621               .access = PL0_R, .accessfn = ctr_el0_access,
6622               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6623             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6624             { .name = "TCMTR",
6625               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6626               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6627             REGINFO_SENTINEL
6628         };
6629         /* TLBTR is specific to VMSA */
6630         ARMCPRegInfo id_tlbtr_reginfo = {
6631               .name = "TLBTR",
6632               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6633               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6634         };
6635         /* MPUIR is specific to PMSA V6+ */
6636         ARMCPRegInfo id_mpuir_reginfo = {
6637               .name = "MPUIR",
6638               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6639               .access = PL1_R, .type = ARM_CP_CONST,
6640               .resetvalue = cpu->pmsav7_dregion << 8
6641         };
6642         ARMCPRegInfo crn0_wi_reginfo = {
6643             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6644             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6645             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6646         };
6647 #ifdef CONFIG_USER_ONLY
6648         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6649             { .name = "MIDR_EL1",
6650               .exported_bits = 0x00000000ffffffff },
6651             { .name = "REVIDR_EL1"                },
6652             REGUSERINFO_SENTINEL
6653         };
6654         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6655 #endif
6656         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6657             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6658             ARMCPRegInfo *r;
6659             /* Register the blanket "writes ignored" value first to cover the
6660              * whole space. Then update the specific ID registers to allow write
6661              * access, so that they ignore writes rather than causing them to
6662              * UNDEF.
6663              */
6664             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6665             for (r = id_pre_v8_midr_cp_reginfo;
6666                  r->type != ARM_CP_SENTINEL; r++) {
6667                 r->access = PL1_RW;
6668             }
6669             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6670                 r->access = PL1_RW;
6671             }
6672             id_mpuir_reginfo.access = PL1_RW;
6673             id_tlbtr_reginfo.access = PL1_RW;
6674         }
6675         if (arm_feature(env, ARM_FEATURE_V8)) {
6676             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6677         } else {
6678             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6679         }
6680         define_arm_cp_regs(cpu, id_cp_reginfo);
6681         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6682             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6683         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6684             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6685         }
6686     }
6687 
6688     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6689         ARMCPRegInfo mpidr_cp_reginfo[] = {
6690             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6691               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6692               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6693             REGINFO_SENTINEL
6694         };
6695 #ifdef CONFIG_USER_ONLY
6696         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6697             { .name = "MPIDR_EL1",
6698               .fixed_bits = 0x0000000080000000 },
6699             REGUSERINFO_SENTINEL
6700         };
6701         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6702 #endif
6703         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6704     }
6705 
6706     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6707         ARMCPRegInfo auxcr_reginfo[] = {
6708             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6709               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6710               .access = PL1_RW, .type = ARM_CP_CONST,
6711               .resetvalue = cpu->reset_auxcr },
6712             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6713               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6714               .access = PL2_RW, .type = ARM_CP_CONST,
6715               .resetvalue = 0 },
6716             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6717               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6718               .access = PL3_RW, .type = ARM_CP_CONST,
6719               .resetvalue = 0 },
6720             REGINFO_SENTINEL
6721         };
6722         define_arm_cp_regs(cpu, auxcr_reginfo);
6723         if (arm_feature(env, ARM_FEATURE_V8)) {
6724             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6725             ARMCPRegInfo hactlr2_reginfo = {
6726                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6727                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6728                 .access = PL2_RW, .type = ARM_CP_CONST,
6729                 .resetvalue = 0
6730             };
6731             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6732         }
6733     }
6734 
6735     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6736         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6737             /* 32 bit view is [31:18] 0...0 [43:32]. */
6738             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6739                 | extract64(cpu->reset_cbar, 32, 12);
6740             ARMCPRegInfo cbar_reginfo[] = {
6741                 { .name = "CBAR",
6742                   .type = ARM_CP_CONST,
6743                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6744                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6745                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6746                   .type = ARM_CP_CONST,
6747                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6748                   .access = PL1_R, .resetvalue = cbar32 },
6749                 REGINFO_SENTINEL
6750             };
6751             /* We don't implement a r/w 64 bit CBAR currently */
6752             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6753             define_arm_cp_regs(cpu, cbar_reginfo);
6754         } else {
6755             ARMCPRegInfo cbar = {
6756                 .name = "CBAR",
6757                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6758                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6759                 .fieldoffset = offsetof(CPUARMState,
6760                                         cp15.c15_config_base_address)
6761             };
6762             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6763                 cbar.access = PL1_R;
6764                 cbar.fieldoffset = 0;
6765                 cbar.type = ARM_CP_CONST;
6766             }
6767             define_one_arm_cp_reg(cpu, &cbar);
6768         }
6769     }
6770 
6771     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6772         ARMCPRegInfo vbar_cp_reginfo[] = {
6773             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6774               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6775               .access = PL1_RW, .writefn = vbar_write,
6776               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6777                                      offsetof(CPUARMState, cp15.vbar_ns) },
6778               .resetvalue = 0 },
6779             REGINFO_SENTINEL
6780         };
6781         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6782     }
6783 
6784     /* Generic registers whose values depend on the implementation */
6785     {
6786         ARMCPRegInfo sctlr = {
6787             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6788             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6789             .access = PL1_RW,
6790             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6791                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6792             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6793             .raw_writefn = raw_write,
6794         };
6795         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6796             /* Normally we would always end the TB on an SCTLR write, but Linux
6797              * arch/arm/mach-pxa/sleep.S expects two instructions following
6798              * an MMU enable to execute from cache.  Imitate this behaviour.
6799              */
6800             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6801         }
6802         define_one_arm_cp_reg(cpu, &sctlr);
6803     }
6804 
6805     if (cpu_isar_feature(aa64_lor, cpu)) {
6806         /*
6807          * A trivial implementation of ARMv8.1-LOR leaves all of these
6808          * registers fixed at 0, which indicates that there are zero
6809          * supported Limited Ordering regions.
6810          */
6811         static const ARMCPRegInfo lor_reginfo[] = {
6812             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6813               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6814               .access = PL1_RW, .accessfn = access_lor_other,
6815               .type = ARM_CP_CONST, .resetvalue = 0 },
6816             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6817               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6818               .access = PL1_RW, .accessfn = access_lor_other,
6819               .type = ARM_CP_CONST, .resetvalue = 0 },
6820             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6821               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6822               .access = PL1_RW, .accessfn = access_lor_other,
6823               .type = ARM_CP_CONST, .resetvalue = 0 },
6824             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6825               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6826               .access = PL1_RW, .accessfn = access_lor_other,
6827               .type = ARM_CP_CONST, .resetvalue = 0 },
6828             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6829               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6830               .access = PL1_R, .accessfn = access_lorid,
6831               .type = ARM_CP_CONST, .resetvalue = 0 },
6832             REGINFO_SENTINEL
6833         };
6834         define_arm_cp_regs(cpu, lor_reginfo);
6835     }
6836 
6837     if (cpu_isar_feature(aa64_sve, cpu)) {
6838         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6839         if (arm_feature(env, ARM_FEATURE_EL2)) {
6840             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6841         } else {
6842             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6843         }
6844         if (arm_feature(env, ARM_FEATURE_EL3)) {
6845             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6846         }
6847     }
6848 
6849 #ifdef TARGET_AARCH64
6850     if (cpu_isar_feature(aa64_pauth, cpu)) {
6851         define_arm_cp_regs(cpu, pauth_reginfo);
6852     }
6853     if (cpu_isar_feature(aa64_rndr, cpu)) {
6854         define_arm_cp_regs(cpu, rndr_reginfo);
6855     }
6856 #endif
6857 
6858     /*
6859      * While all v8.0 cpus support aarch64, QEMU does have configurations
6860      * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6861      * which will set ID_ISAR6.
6862      */
6863     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6864         ? cpu_isar_feature(aa64_predinv, cpu)
6865         : cpu_isar_feature(aa32_predinv, cpu)) {
6866         define_arm_cp_regs(cpu, predinv_reginfo);
6867     }
6868 }
6869 
6870 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6871 {
6872     CPUState *cs = CPU(cpu);
6873     CPUARMState *env = &cpu->env;
6874 
6875     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6876         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6877                                  aarch64_fpu_gdb_set_reg,
6878                                  34, "aarch64-fpu.xml", 0);
6879     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6880         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6881                                  51, "arm-neon.xml", 0);
6882     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6883         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6884                                  35, "arm-vfp3.xml", 0);
6885     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6886         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6887                                  19, "arm-vfp.xml", 0);
6888     }
6889     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6890                              arm_gen_dynamic_xml(cs),
6891                              "system-registers.xml", 0);
6892 }
6893 
6894 /* Sort alphabetically by type name, except for "any". */
6895 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6896 {
6897     ObjectClass *class_a = (ObjectClass *)a;
6898     ObjectClass *class_b = (ObjectClass *)b;
6899     const char *name_a, *name_b;
6900 
6901     name_a = object_class_get_name(class_a);
6902     name_b = object_class_get_name(class_b);
6903     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6904         return 1;
6905     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6906         return -1;
6907     } else {
6908         return strcmp(name_a, name_b);
6909     }
6910 }
6911 
6912 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6913 {
6914     ObjectClass *oc = data;
6915     const char *typename;
6916     char *name;
6917 
6918     typename = object_class_get_name(oc);
6919     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6920     qemu_printf("  %s\n", name);
6921     g_free(name);
6922 }
6923 
6924 void arm_cpu_list(void)
6925 {
6926     GSList *list;
6927 
6928     list = object_class_get_list(TYPE_ARM_CPU, false);
6929     list = g_slist_sort(list, arm_cpu_list_compare);
6930     qemu_printf("Available CPUs:\n");
6931     g_slist_foreach(list, arm_cpu_list_entry, NULL);
6932     g_slist_free(list);
6933 }
6934 
6935 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6936 {
6937     ObjectClass *oc = data;
6938     CpuDefinitionInfoList **cpu_list = user_data;
6939     CpuDefinitionInfoList *entry;
6940     CpuDefinitionInfo *info;
6941     const char *typename;
6942 
6943     typename = object_class_get_name(oc);
6944     info = g_malloc0(sizeof(*info));
6945     info->name = g_strndup(typename,
6946                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
6947     info->q_typename = g_strdup(typename);
6948 
6949     entry = g_malloc0(sizeof(*entry));
6950     entry->value = info;
6951     entry->next = *cpu_list;
6952     *cpu_list = entry;
6953 }
6954 
6955 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6956 {
6957     CpuDefinitionInfoList *cpu_list = NULL;
6958     GSList *list;
6959 
6960     list = object_class_get_list(TYPE_ARM_CPU, false);
6961     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6962     g_slist_free(list);
6963 
6964     return cpu_list;
6965 }
6966 
6967 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6968                                    void *opaque, int state, int secstate,
6969                                    int crm, int opc1, int opc2,
6970                                    const char *name)
6971 {
6972     /* Private utility function for define_one_arm_cp_reg_with_opaque():
6973      * add a single reginfo struct to the hash table.
6974      */
6975     uint32_t *key = g_new(uint32_t, 1);
6976     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6977     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6978     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6979 
6980     r2->name = g_strdup(name);
6981     /* Reset the secure state to the specific incoming state.  This is
6982      * necessary as the register may have been defined with both states.
6983      */
6984     r2->secure = secstate;
6985 
6986     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6987         /* Register is banked (using both entries in array).
6988          * Overwriting fieldoffset as the array is only used to define
6989          * banked registers but later only fieldoffset is used.
6990          */
6991         r2->fieldoffset = r->bank_fieldoffsets[ns];
6992     }
6993 
6994     if (state == ARM_CP_STATE_AA32) {
6995         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6996             /* If the register is banked then we don't need to migrate or
6997              * reset the 32-bit instance in certain cases:
6998              *
6999              * 1) If the register has both 32-bit and 64-bit instances then we
7000              *    can count on the 64-bit instance taking care of the
7001              *    non-secure bank.
7002              * 2) If ARMv8 is enabled then we can count on a 64-bit version
7003              *    taking care of the secure bank.  This requires that separate
7004              *    32 and 64-bit definitions are provided.
7005              */
7006             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7007                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7008                 r2->type |= ARM_CP_ALIAS;
7009             }
7010         } else if ((secstate != r->secure) && !ns) {
7011             /* The register is not banked so we only want to allow migration of
7012              * the non-secure instance.
7013              */
7014             r2->type |= ARM_CP_ALIAS;
7015         }
7016 
7017         if (r->state == ARM_CP_STATE_BOTH) {
7018             /* We assume it is a cp15 register if the .cp field is left unset.
7019              */
7020             if (r2->cp == 0) {
7021                 r2->cp = 15;
7022             }
7023 
7024 #ifdef HOST_WORDS_BIGENDIAN
7025             if (r2->fieldoffset) {
7026                 r2->fieldoffset += sizeof(uint32_t);
7027             }
7028 #endif
7029         }
7030     }
7031     if (state == ARM_CP_STATE_AA64) {
7032         /* To allow abbreviation of ARMCPRegInfo
7033          * definitions, we treat cp == 0 as equivalent to
7034          * the value for "standard guest-visible sysreg".
7035          * STATE_BOTH definitions are also always "standard
7036          * sysreg" in their AArch64 view (the .cp value may
7037          * be non-zero for the benefit of the AArch32 view).
7038          */
7039         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7040             r2->cp = CP_REG_ARM64_SYSREG_CP;
7041         }
7042         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7043                                   r2->opc0, opc1, opc2);
7044     } else {
7045         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7046     }
7047     if (opaque) {
7048         r2->opaque = opaque;
7049     }
7050     /* reginfo passed to helpers is correct for the actual access,
7051      * and is never ARM_CP_STATE_BOTH:
7052      */
7053     r2->state = state;
7054     /* Make sure reginfo passed to helpers for wildcarded regs
7055      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7056      */
7057     r2->crm = crm;
7058     r2->opc1 = opc1;
7059     r2->opc2 = opc2;
7060     /* By convention, for wildcarded registers only the first
7061      * entry is used for migration; the others are marked as
7062      * ALIAS so we don't try to transfer the register
7063      * multiple times. Special registers (ie NOP/WFI) are
7064      * never migratable and not even raw-accessible.
7065      */
7066     if ((r->type & ARM_CP_SPECIAL)) {
7067         r2->type |= ARM_CP_NO_RAW;
7068     }
7069     if (((r->crm == CP_ANY) && crm != 0) ||
7070         ((r->opc1 == CP_ANY) && opc1 != 0) ||
7071         ((r->opc2 == CP_ANY) && opc2 != 0)) {
7072         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7073     }
7074 
7075     /* Check that raw accesses are either forbidden or handled. Note that
7076      * we can't assert this earlier because the setup of fieldoffset for
7077      * banked registers has to be done first.
7078      */
7079     if (!(r2->type & ARM_CP_NO_RAW)) {
7080         assert(!raw_accessors_invalid(r2));
7081     }
7082 
7083     /* Overriding of an existing definition must be explicitly
7084      * requested.
7085      */
7086     if (!(r->type & ARM_CP_OVERRIDE)) {
7087         ARMCPRegInfo *oldreg;
7088         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7089         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7090             fprintf(stderr, "Register redefined: cp=%d %d bit "
7091                     "crn=%d crm=%d opc1=%d opc2=%d, "
7092                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7093                     r2->crn, r2->crm, r2->opc1, r2->opc2,
7094                     oldreg->name, r2->name);
7095             g_assert_not_reached();
7096         }
7097     }
7098     g_hash_table_insert(cpu->cp_regs, key, r2);
7099 }
7100 
7101 
7102 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7103                                        const ARMCPRegInfo *r, void *opaque)
7104 {
7105     /* Define implementations of coprocessor registers.
7106      * We store these in a hashtable because typically
7107      * there are less than 150 registers in a space which
7108      * is 16*16*16*8*8 = 262144 in size.
7109      * Wildcarding is supported for the crm, opc1 and opc2 fields.
7110      * If a register is defined twice then the second definition is
7111      * used, so this can be used to define some generic registers and
7112      * then override them with implementation specific variations.
7113      * At least one of the original and the second definition should
7114      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7115      * against accidental use.
7116      *
7117      * The state field defines whether the register is to be
7118      * visible in the AArch32 or AArch64 execution state. If the
7119      * state is set to ARM_CP_STATE_BOTH then we synthesise a
7120      * reginfo structure for the AArch32 view, which sees the lower
7121      * 32 bits of the 64 bit register.
7122      *
7123      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7124      * be wildcarded. AArch64 registers are always considered to be 64
7125      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7126      * the register, if any.
7127      */
7128     int crm, opc1, opc2, state;
7129     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7130     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7131     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7132     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7133     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7134     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7135     /* 64 bit registers have only CRm and Opc1 fields */
7136     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7137     /* op0 only exists in the AArch64 encodings */
7138     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7139     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7140     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7141     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7142      * encodes a minimum access level for the register. We roll this
7143      * runtime check into our general permission check code, so check
7144      * here that the reginfo's specified permissions are strict enough
7145      * to encompass the generic architectural permission check.
7146      */
7147     if (r->state != ARM_CP_STATE_AA32) {
7148         int mask = 0;
7149         switch (r->opc1) {
7150         case 0:
7151             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7152             mask = PL0U_R | PL1_RW;
7153             break;
7154         case 1: case 2:
7155             /* min_EL EL1 */
7156             mask = PL1_RW;
7157             break;
7158         case 3:
7159             /* min_EL EL0 */
7160             mask = PL0_RW;
7161             break;
7162         case 4:
7163             /* min_EL EL2 */
7164             mask = PL2_RW;
7165             break;
7166         case 5:
7167             /* unallocated encoding, so not possible */
7168             assert(false);
7169             break;
7170         case 6:
7171             /* min_EL EL3 */
7172             mask = PL3_RW;
7173             break;
7174         case 7:
7175             /* min_EL EL1, secure mode only (we don't check the latter) */
7176             mask = PL1_RW;
7177             break;
7178         default:
7179             /* broken reginfo with out-of-range opc1 */
7180             assert(false);
7181             break;
7182         }
7183         /* assert our permissions are not too lax (stricter is fine) */
7184         assert((r->access & ~mask) == 0);
7185     }
7186 
7187     /* Check that the register definition has enough info to handle
7188      * reads and writes if they are permitted.
7189      */
7190     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7191         if (r->access & PL3_R) {
7192             assert((r->fieldoffset ||
7193                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7194                    r->readfn);
7195         }
7196         if (r->access & PL3_W) {
7197             assert((r->fieldoffset ||
7198                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7199                    r->writefn);
7200         }
7201     }
7202     /* Bad type field probably means missing sentinel at end of reg list */
7203     assert(cptype_valid(r->type));
7204     for (crm = crmmin; crm <= crmmax; crm++) {
7205         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7206             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7207                 for (state = ARM_CP_STATE_AA32;
7208                      state <= ARM_CP_STATE_AA64; state++) {
7209                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7210                         continue;
7211                     }
7212                     if (state == ARM_CP_STATE_AA32) {
7213                         /* Under AArch32 CP registers can be common
7214                          * (same for secure and non-secure world) or banked.
7215                          */
7216                         char *name;
7217 
7218                         switch (r->secure) {
7219                         case ARM_CP_SECSTATE_S:
7220                         case ARM_CP_SECSTATE_NS:
7221                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7222                                                    r->secure, crm, opc1, opc2,
7223                                                    r->name);
7224                             break;
7225                         default:
7226                             name = g_strdup_printf("%s_S", r->name);
7227                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7228                                                    ARM_CP_SECSTATE_S,
7229                                                    crm, opc1, opc2, name);
7230                             g_free(name);
7231                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7232                                                    ARM_CP_SECSTATE_NS,
7233                                                    crm, opc1, opc2, r->name);
7234                             break;
7235                         }
7236                     } else {
7237                         /* AArch64 registers get mapped to non-secure instance
7238                          * of AArch32 */
7239                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7240                                                ARM_CP_SECSTATE_NS,
7241                                                crm, opc1, opc2, r->name);
7242                     }
7243                 }
7244             }
7245         }
7246     }
7247 }
7248 
7249 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7250                                     const ARMCPRegInfo *regs, void *opaque)
7251 {
7252     /* Define a whole list of registers */
7253     const ARMCPRegInfo *r;
7254     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7255         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7256     }
7257 }
7258 
7259 /*
7260  * Modify ARMCPRegInfo for access from userspace.
7261  *
7262  * This is a data driven modification directed by
7263  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7264  * user-space cannot alter any values and dynamic values pertaining to
7265  * execution state are hidden from user space view anyway.
7266  */
7267 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7268 {
7269     const ARMCPRegUserSpaceInfo *m;
7270     ARMCPRegInfo *r;
7271 
7272     for (m = mods; m->name; m++) {
7273         GPatternSpec *pat = NULL;
7274         if (m->is_glob) {
7275             pat = g_pattern_spec_new(m->name);
7276         }
7277         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7278             if (pat && g_pattern_match_string(pat, r->name)) {
7279                 r->type = ARM_CP_CONST;
7280                 r->access = PL0U_R;
7281                 r->resetvalue = 0;
7282                 /* continue */
7283             } else if (strcmp(r->name, m->name) == 0) {
7284                 r->type = ARM_CP_CONST;
7285                 r->access = PL0U_R;
7286                 r->resetvalue &= m->exported_bits;
7287                 r->resetvalue |= m->fixed_bits;
7288                 break;
7289             }
7290         }
7291         if (pat) {
7292             g_pattern_spec_free(pat);
7293         }
7294     }
7295 }
7296 
7297 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7298 {
7299     return g_hash_table_lookup(cpregs, &encoded_cp);
7300 }
7301 
7302 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7303                          uint64_t value)
7304 {
7305     /* Helper coprocessor write function for write-ignore registers */
7306 }
7307 
7308 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7309 {
7310     /* Helper coprocessor write function for read-as-zero registers */
7311     return 0;
7312 }
7313 
7314 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7315 {
7316     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7317 }
7318 
7319 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7320 {
7321     /* Return true if it is not valid for us to switch to
7322      * this CPU mode (ie all the UNPREDICTABLE cases in
7323      * the ARM ARM CPSRWriteByInstr pseudocode).
7324      */
7325 
7326     /* Changes to or from Hyp via MSR and CPS are illegal. */
7327     if (write_type == CPSRWriteByInstr &&
7328         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7329          mode == ARM_CPU_MODE_HYP)) {
7330         return 1;
7331     }
7332 
7333     switch (mode) {
7334     case ARM_CPU_MODE_USR:
7335         return 0;
7336     case ARM_CPU_MODE_SYS:
7337     case ARM_CPU_MODE_SVC:
7338     case ARM_CPU_MODE_ABT:
7339     case ARM_CPU_MODE_UND:
7340     case ARM_CPU_MODE_IRQ:
7341     case ARM_CPU_MODE_FIQ:
7342         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7343          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7344          */
7345         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7346          * and CPS are treated as illegal mode changes.
7347          */
7348         if (write_type == CPSRWriteByInstr &&
7349             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7350             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7351             return 1;
7352         }
7353         return 0;
7354     case ARM_CPU_MODE_HYP:
7355         return !arm_feature(env, ARM_FEATURE_EL2)
7356             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7357     case ARM_CPU_MODE_MON:
7358         return arm_current_el(env) < 3;
7359     default:
7360         return 1;
7361     }
7362 }
7363 
7364 uint32_t cpsr_read(CPUARMState *env)
7365 {
7366     int ZF;
7367     ZF = (env->ZF == 0);
7368     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7369         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7370         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7371         | ((env->condexec_bits & 0xfc) << 8)
7372         | (env->GE << 16) | (env->daif & CPSR_AIF);
7373 }
7374 
7375 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7376                 CPSRWriteType write_type)
7377 {
7378     uint32_t changed_daif;
7379 
7380     if (mask & CPSR_NZCV) {
7381         env->ZF = (~val) & CPSR_Z;
7382         env->NF = val;
7383         env->CF = (val >> 29) & 1;
7384         env->VF = (val << 3) & 0x80000000;
7385     }
7386     if (mask & CPSR_Q)
7387         env->QF = ((val & CPSR_Q) != 0);
7388     if (mask & CPSR_T)
7389         env->thumb = ((val & CPSR_T) != 0);
7390     if (mask & CPSR_IT_0_1) {
7391         env->condexec_bits &= ~3;
7392         env->condexec_bits |= (val >> 25) & 3;
7393     }
7394     if (mask & CPSR_IT_2_7) {
7395         env->condexec_bits &= 3;
7396         env->condexec_bits |= (val >> 8) & 0xfc;
7397     }
7398     if (mask & CPSR_GE) {
7399         env->GE = (val >> 16) & 0xf;
7400     }
7401 
7402     /* In a V7 implementation that includes the security extensions but does
7403      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7404      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7405      * bits respectively.
7406      *
7407      * In a V8 implementation, it is permitted for privileged software to
7408      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7409      */
7410     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7411         arm_feature(env, ARM_FEATURE_EL3) &&
7412         !arm_feature(env, ARM_FEATURE_EL2) &&
7413         !arm_is_secure(env)) {
7414 
7415         changed_daif = (env->daif ^ val) & mask;
7416 
7417         if (changed_daif & CPSR_A) {
7418             /* Check to see if we are allowed to change the masking of async
7419              * abort exceptions from a non-secure state.
7420              */
7421             if (!(env->cp15.scr_el3 & SCR_AW)) {
7422                 qemu_log_mask(LOG_GUEST_ERROR,
7423                               "Ignoring attempt to switch CPSR_A flag from "
7424                               "non-secure world with SCR.AW bit clear\n");
7425                 mask &= ~CPSR_A;
7426             }
7427         }
7428 
7429         if (changed_daif & CPSR_F) {
7430             /* Check to see if we are allowed to change the masking of FIQ
7431              * exceptions from a non-secure state.
7432              */
7433             if (!(env->cp15.scr_el3 & SCR_FW)) {
7434                 qemu_log_mask(LOG_GUEST_ERROR,
7435                               "Ignoring attempt to switch CPSR_F flag from "
7436                               "non-secure world with SCR.FW bit clear\n");
7437                 mask &= ~CPSR_F;
7438             }
7439 
7440             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7441              * If this bit is set software is not allowed to mask
7442              * FIQs, but is allowed to set CPSR_F to 0.
7443              */
7444             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7445                 (val & CPSR_F)) {
7446                 qemu_log_mask(LOG_GUEST_ERROR,
7447                               "Ignoring attempt to enable CPSR_F flag "
7448                               "(non-maskable FIQ [NMFI] support enabled)\n");
7449                 mask &= ~CPSR_F;
7450             }
7451         }
7452     }
7453 
7454     env->daif &= ~(CPSR_AIF & mask);
7455     env->daif |= val & CPSR_AIF & mask;
7456 
7457     if (write_type != CPSRWriteRaw &&
7458         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7459         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7460             /* Note that we can only get here in USR mode if this is a
7461              * gdb stub write; for this case we follow the architectural
7462              * behaviour for guest writes in USR mode of ignoring an attempt
7463              * to switch mode. (Those are caught by translate.c for writes
7464              * triggered by guest instructions.)
7465              */
7466             mask &= ~CPSR_M;
7467         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7468             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7469              * v7, and has defined behaviour in v8:
7470              *  + leave CPSR.M untouched
7471              *  + allow changes to the other CPSR fields
7472              *  + set PSTATE.IL
7473              * For user changes via the GDB stub, we don't set PSTATE.IL,
7474              * as this would be unnecessarily harsh for a user error.
7475              */
7476             mask &= ~CPSR_M;
7477             if (write_type != CPSRWriteByGDBStub &&
7478                 arm_feature(env, ARM_FEATURE_V8)) {
7479                 mask |= CPSR_IL;
7480                 val |= CPSR_IL;
7481             }
7482             qemu_log_mask(LOG_GUEST_ERROR,
7483                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7484                           aarch32_mode_name(env->uncached_cpsr),
7485                           aarch32_mode_name(val));
7486         } else {
7487             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7488                           write_type == CPSRWriteExceptionReturn ?
7489                           "Exception return from AArch32" :
7490                           "AArch32 mode switch from",
7491                           aarch32_mode_name(env->uncached_cpsr),
7492                           aarch32_mode_name(val), env->regs[15]);
7493             switch_mode(env, val & CPSR_M);
7494         }
7495     }
7496     mask &= ~CACHED_CPSR_BITS;
7497     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7498 }
7499 
7500 /* Sign/zero extend */
7501 uint32_t HELPER(sxtb16)(uint32_t x)
7502 {
7503     uint32_t res;
7504     res = (uint16_t)(int8_t)x;
7505     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7506     return res;
7507 }
7508 
7509 uint32_t HELPER(uxtb16)(uint32_t x)
7510 {
7511     uint32_t res;
7512     res = (uint16_t)(uint8_t)x;
7513     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7514     return res;
7515 }
7516 
7517 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7518 {
7519     if (den == 0)
7520       return 0;
7521     if (num == INT_MIN && den == -1)
7522       return INT_MIN;
7523     return num / den;
7524 }
7525 
7526 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7527 {
7528     if (den == 0)
7529       return 0;
7530     return num / den;
7531 }
7532 
7533 uint32_t HELPER(rbit)(uint32_t x)
7534 {
7535     return revbit32(x);
7536 }
7537 
7538 #ifdef CONFIG_USER_ONLY
7539 
7540 static void switch_mode(CPUARMState *env, int mode)
7541 {
7542     ARMCPU *cpu = env_archcpu(env);
7543 
7544     if (mode != ARM_CPU_MODE_USR) {
7545         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7546     }
7547 }
7548 
7549 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7550                                  uint32_t cur_el, bool secure)
7551 {
7552     return 1;
7553 }
7554 
7555 void aarch64_sync_64_to_32(CPUARMState *env)
7556 {
7557     g_assert_not_reached();
7558 }
7559 
7560 #else
7561 
7562 static void switch_mode(CPUARMState *env, int mode)
7563 {
7564     int old_mode;
7565     int i;
7566 
7567     old_mode = env->uncached_cpsr & CPSR_M;
7568     if (mode == old_mode)
7569         return;
7570 
7571     if (old_mode == ARM_CPU_MODE_FIQ) {
7572         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7573         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7574     } else if (mode == ARM_CPU_MODE_FIQ) {
7575         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7576         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7577     }
7578 
7579     i = bank_number(old_mode);
7580     env->banked_r13[i] = env->regs[13];
7581     env->banked_spsr[i] = env->spsr;
7582 
7583     i = bank_number(mode);
7584     env->regs[13] = env->banked_r13[i];
7585     env->spsr = env->banked_spsr[i];
7586 
7587     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7588     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7589 }
7590 
7591 /* Physical Interrupt Target EL Lookup Table
7592  *
7593  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7594  *
7595  * The below multi-dimensional table is used for looking up the target
7596  * exception level given numerous condition criteria.  Specifically, the
7597  * target EL is based on SCR and HCR routing controls as well as the
7598  * currently executing EL and secure state.
7599  *
7600  *    Dimensions:
7601  *    target_el_table[2][2][2][2][2][4]
7602  *                    |  |  |  |  |  +--- Current EL
7603  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7604  *                    |  |  |  +--------- HCR mask override
7605  *                    |  |  +------------ SCR exec state control
7606  *                    |  +--------------- SCR mask override
7607  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7608  *
7609  *    The table values are as such:
7610  *    0-3 = EL0-EL3
7611  *     -1 = Cannot occur
7612  *
7613  * The ARM ARM target EL table includes entries indicating that an "exception
7614  * is not taken".  The two cases where this is applicable are:
7615  *    1) An exception is taken from EL3 but the SCR does not have the exception
7616  *    routed to EL3.
7617  *    2) An exception is taken from EL2 but the HCR does not have the exception
7618  *    routed to EL2.
7619  * In these two cases, the below table contain a target of EL1.  This value is
7620  * returned as it is expected that the consumer of the table data will check
7621  * for "target EL >= current EL" to ensure the exception is not taken.
7622  *
7623  *            SCR     HCR
7624  *         64  EA     AMO                 From
7625  *        BIT IRQ     IMO      Non-secure         Secure
7626  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7627  */
7628 static const int8_t target_el_table[2][2][2][2][2][4] = {
7629     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7630        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7631       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7632        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7633      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7634        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7635       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7636        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7637     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7638        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7639       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7640        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7641      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7642        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7643       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7644        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7645 };
7646 
7647 /*
7648  * Determine the target EL for physical exceptions
7649  */
7650 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7651                                  uint32_t cur_el, bool secure)
7652 {
7653     CPUARMState *env = cs->env_ptr;
7654     bool rw;
7655     bool scr;
7656     bool hcr;
7657     int target_el;
7658     /* Is the highest EL AArch64? */
7659     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7660     uint64_t hcr_el2;
7661 
7662     if (arm_feature(env, ARM_FEATURE_EL3)) {
7663         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7664     } else {
7665         /* Either EL2 is the highest EL (and so the EL2 register width
7666          * is given by is64); or there is no EL2 or EL3, in which case
7667          * the value of 'rw' does not affect the table lookup anyway.
7668          */
7669         rw = is64;
7670     }
7671 
7672     hcr_el2 = arm_hcr_el2_eff(env);
7673     switch (excp_idx) {
7674     case EXCP_IRQ:
7675         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7676         hcr = hcr_el2 & HCR_IMO;
7677         break;
7678     case EXCP_FIQ:
7679         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7680         hcr = hcr_el2 & HCR_FMO;
7681         break;
7682     default:
7683         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7684         hcr = hcr_el2 & HCR_AMO;
7685         break;
7686     };
7687 
7688     /* Perform a table-lookup for the target EL given the current state */
7689     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7690 
7691     assert(target_el > 0);
7692 
7693     return target_el;
7694 }
7695 
7696 void arm_log_exception(int idx)
7697 {
7698     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7699         const char *exc = NULL;
7700         static const char * const excnames[] = {
7701             [EXCP_UDEF] = "Undefined Instruction",
7702             [EXCP_SWI] = "SVC",
7703             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7704             [EXCP_DATA_ABORT] = "Data Abort",
7705             [EXCP_IRQ] = "IRQ",
7706             [EXCP_FIQ] = "FIQ",
7707             [EXCP_BKPT] = "Breakpoint",
7708             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7709             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7710             [EXCP_HVC] = "Hypervisor Call",
7711             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7712             [EXCP_SMC] = "Secure Monitor Call",
7713             [EXCP_VIRQ] = "Virtual IRQ",
7714             [EXCP_VFIQ] = "Virtual FIQ",
7715             [EXCP_SEMIHOST] = "Semihosting call",
7716             [EXCP_NOCP] = "v7M NOCP UsageFault",
7717             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7718             [EXCP_STKOF] = "v8M STKOF UsageFault",
7719             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7720             [EXCP_LSERR] = "v8M LSERR UsageFault",
7721             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7722         };
7723 
7724         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7725             exc = excnames[idx];
7726         }
7727         if (!exc) {
7728             exc = "unknown";
7729         }
7730         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7731     }
7732 }
7733 
7734 /*
7735  * Function used to synchronize QEMU's AArch64 register set with AArch32
7736  * register set.  This is necessary when switching between AArch32 and AArch64
7737  * execution state.
7738  */
7739 void aarch64_sync_32_to_64(CPUARMState *env)
7740 {
7741     int i;
7742     uint32_t mode = env->uncached_cpsr & CPSR_M;
7743 
7744     /* We can blanket copy R[0:7] to X[0:7] */
7745     for (i = 0; i < 8; i++) {
7746         env->xregs[i] = env->regs[i];
7747     }
7748 
7749     /*
7750      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7751      * Otherwise, they come from the banked user regs.
7752      */
7753     if (mode == ARM_CPU_MODE_FIQ) {
7754         for (i = 8; i < 13; i++) {
7755             env->xregs[i] = env->usr_regs[i - 8];
7756         }
7757     } else {
7758         for (i = 8; i < 13; i++) {
7759             env->xregs[i] = env->regs[i];
7760         }
7761     }
7762 
7763     /*
7764      * Registers x13-x23 are the various mode SP and FP registers. Registers
7765      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7766      * from the mode banked register.
7767      */
7768     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7769         env->xregs[13] = env->regs[13];
7770         env->xregs[14] = env->regs[14];
7771     } else {
7772         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7773         /* HYP is an exception in that it is copied from r14 */
7774         if (mode == ARM_CPU_MODE_HYP) {
7775             env->xregs[14] = env->regs[14];
7776         } else {
7777             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
7778         }
7779     }
7780 
7781     if (mode == ARM_CPU_MODE_HYP) {
7782         env->xregs[15] = env->regs[13];
7783     } else {
7784         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7785     }
7786 
7787     if (mode == ARM_CPU_MODE_IRQ) {
7788         env->xregs[16] = env->regs[14];
7789         env->xregs[17] = env->regs[13];
7790     } else {
7791         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
7792         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7793     }
7794 
7795     if (mode == ARM_CPU_MODE_SVC) {
7796         env->xregs[18] = env->regs[14];
7797         env->xregs[19] = env->regs[13];
7798     } else {
7799         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
7800         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7801     }
7802 
7803     if (mode == ARM_CPU_MODE_ABT) {
7804         env->xregs[20] = env->regs[14];
7805         env->xregs[21] = env->regs[13];
7806     } else {
7807         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
7808         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7809     }
7810 
7811     if (mode == ARM_CPU_MODE_UND) {
7812         env->xregs[22] = env->regs[14];
7813         env->xregs[23] = env->regs[13];
7814     } else {
7815         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
7816         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7817     }
7818 
7819     /*
7820      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7821      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7822      * FIQ bank for r8-r14.
7823      */
7824     if (mode == ARM_CPU_MODE_FIQ) {
7825         for (i = 24; i < 31; i++) {
7826             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7827         }
7828     } else {
7829         for (i = 24; i < 29; i++) {
7830             env->xregs[i] = env->fiq_regs[i - 24];
7831         }
7832         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7833         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
7834     }
7835 
7836     env->pc = env->regs[15];
7837 }
7838 
7839 /*
7840  * Function used to synchronize QEMU's AArch32 register set with AArch64
7841  * register set.  This is necessary when switching between AArch32 and AArch64
7842  * execution state.
7843  */
7844 void aarch64_sync_64_to_32(CPUARMState *env)
7845 {
7846     int i;
7847     uint32_t mode = env->uncached_cpsr & CPSR_M;
7848 
7849     /* We can blanket copy X[0:7] to R[0:7] */
7850     for (i = 0; i < 8; i++) {
7851         env->regs[i] = env->xregs[i];
7852     }
7853 
7854     /*
7855      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7856      * Otherwise, we copy x8-x12 into the banked user regs.
7857      */
7858     if (mode == ARM_CPU_MODE_FIQ) {
7859         for (i = 8; i < 13; i++) {
7860             env->usr_regs[i - 8] = env->xregs[i];
7861         }
7862     } else {
7863         for (i = 8; i < 13; i++) {
7864             env->regs[i] = env->xregs[i];
7865         }
7866     }
7867 
7868     /*
7869      * Registers r13 & r14 depend on the current mode.
7870      * If we are in a given mode, we copy the corresponding x registers to r13
7871      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7872      * for the mode.
7873      */
7874     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7875         env->regs[13] = env->xregs[13];
7876         env->regs[14] = env->xregs[14];
7877     } else {
7878         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7879 
7880         /*
7881          * HYP is an exception in that it does not have its own banked r14 but
7882          * shares the USR r14
7883          */
7884         if (mode == ARM_CPU_MODE_HYP) {
7885             env->regs[14] = env->xregs[14];
7886         } else {
7887             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7888         }
7889     }
7890 
7891     if (mode == ARM_CPU_MODE_HYP) {
7892         env->regs[13] = env->xregs[15];
7893     } else {
7894         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7895     }
7896 
7897     if (mode == ARM_CPU_MODE_IRQ) {
7898         env->regs[14] = env->xregs[16];
7899         env->regs[13] = env->xregs[17];
7900     } else {
7901         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7902         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7903     }
7904 
7905     if (mode == ARM_CPU_MODE_SVC) {
7906         env->regs[14] = env->xregs[18];
7907         env->regs[13] = env->xregs[19];
7908     } else {
7909         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7910         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7911     }
7912 
7913     if (mode == ARM_CPU_MODE_ABT) {
7914         env->regs[14] = env->xregs[20];
7915         env->regs[13] = env->xregs[21];
7916     } else {
7917         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7918         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7919     }
7920 
7921     if (mode == ARM_CPU_MODE_UND) {
7922         env->regs[14] = env->xregs[22];
7923         env->regs[13] = env->xregs[23];
7924     } else {
7925         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7926         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7927     }
7928 
7929     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7930      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7931      * FIQ bank for r8-r14.
7932      */
7933     if (mode == ARM_CPU_MODE_FIQ) {
7934         for (i = 24; i < 31; i++) {
7935             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7936         }
7937     } else {
7938         for (i = 24; i < 29; i++) {
7939             env->fiq_regs[i - 24] = env->xregs[i];
7940         }
7941         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7942         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7943     }
7944 
7945     env->regs[15] = env->pc;
7946 }
7947 
7948 static void take_aarch32_exception(CPUARMState *env, int new_mode,
7949                                    uint32_t mask, uint32_t offset,
7950                                    uint32_t newpc)
7951 {
7952     /* Change the CPU state so as to actually take the exception. */
7953     switch_mode(env, new_mode);
7954     /*
7955      * For exceptions taken to AArch32 we must clear the SS bit in both
7956      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7957      */
7958     env->uncached_cpsr &= ~PSTATE_SS;
7959     env->spsr = cpsr_read(env);
7960     /* Clear IT bits.  */
7961     env->condexec_bits = 0;
7962     /* Switch to the new mode, and to the correct instruction set.  */
7963     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7964     /* Set new mode endianness */
7965     env->uncached_cpsr &= ~CPSR_E;
7966     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7967         env->uncached_cpsr |= CPSR_E;
7968     }
7969     /* J and IL must always be cleared for exception entry */
7970     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
7971     env->daif |= mask;
7972 
7973     if (new_mode == ARM_CPU_MODE_HYP) {
7974         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
7975         env->elr_el[2] = env->regs[15];
7976     } else {
7977         /*
7978          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
7979          * and we should just guard the thumb mode on V4
7980          */
7981         if (arm_feature(env, ARM_FEATURE_V4T)) {
7982             env->thumb =
7983                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7984         }
7985         env->regs[14] = env->regs[15] + offset;
7986     }
7987     env->regs[15] = newpc;
7988 }
7989 
7990 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
7991 {
7992     /*
7993      * Handle exception entry to Hyp mode; this is sufficiently
7994      * different to entry to other AArch32 modes that we handle it
7995      * separately here.
7996      *
7997      * The vector table entry used is always the 0x14 Hyp mode entry point,
7998      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
7999      * The offset applied to the preferred return address is always zero
8000      * (see DDI0487C.a section G1.12.3).
8001      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8002      */
8003     uint32_t addr, mask;
8004     ARMCPU *cpu = ARM_CPU(cs);
8005     CPUARMState *env = &cpu->env;
8006 
8007     switch (cs->exception_index) {
8008     case EXCP_UDEF:
8009         addr = 0x04;
8010         break;
8011     case EXCP_SWI:
8012         addr = 0x14;
8013         break;
8014     case EXCP_BKPT:
8015         /* Fall through to prefetch abort.  */
8016     case EXCP_PREFETCH_ABORT:
8017         env->cp15.ifar_s = env->exception.vaddress;
8018         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8019                       (uint32_t)env->exception.vaddress);
8020         addr = 0x0c;
8021         break;
8022     case EXCP_DATA_ABORT:
8023         env->cp15.dfar_s = env->exception.vaddress;
8024         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8025                       (uint32_t)env->exception.vaddress);
8026         addr = 0x10;
8027         break;
8028     case EXCP_IRQ:
8029         addr = 0x18;
8030         break;
8031     case EXCP_FIQ:
8032         addr = 0x1c;
8033         break;
8034     case EXCP_HVC:
8035         addr = 0x08;
8036         break;
8037     case EXCP_HYP_TRAP:
8038         addr = 0x14;
8039         break;
8040     default:
8041         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8042     }
8043 
8044     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8045         if (!arm_feature(env, ARM_FEATURE_V8)) {
8046             /*
8047              * QEMU syndrome values are v8-style. v7 has the IL bit
8048              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8049              * If this is a v7 CPU, squash the IL bit in those cases.
8050              */
8051             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8052                 (cs->exception_index == EXCP_DATA_ABORT &&
8053                  !(env->exception.syndrome & ARM_EL_ISV)) ||
8054                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8055                 env->exception.syndrome &= ~ARM_EL_IL;
8056             }
8057         }
8058         env->cp15.esr_el[2] = env->exception.syndrome;
8059     }
8060 
8061     if (arm_current_el(env) != 2 && addr < 0x14) {
8062         addr = 0x14;
8063     }
8064 
8065     mask = 0;
8066     if (!(env->cp15.scr_el3 & SCR_EA)) {
8067         mask |= CPSR_A;
8068     }
8069     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8070         mask |= CPSR_I;
8071     }
8072     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8073         mask |= CPSR_F;
8074     }
8075 
8076     addr += env->cp15.hvbar;
8077 
8078     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8079 }
8080 
8081 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8082 {
8083     ARMCPU *cpu = ARM_CPU(cs);
8084     CPUARMState *env = &cpu->env;
8085     uint32_t addr;
8086     uint32_t mask;
8087     int new_mode;
8088     uint32_t offset;
8089     uint32_t moe;
8090 
8091     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8092     switch (syn_get_ec(env->exception.syndrome)) {
8093     case EC_BREAKPOINT:
8094     case EC_BREAKPOINT_SAME_EL:
8095         moe = 1;
8096         break;
8097     case EC_WATCHPOINT:
8098     case EC_WATCHPOINT_SAME_EL:
8099         moe = 10;
8100         break;
8101     case EC_AA32_BKPT:
8102         moe = 3;
8103         break;
8104     case EC_VECTORCATCH:
8105         moe = 5;
8106         break;
8107     default:
8108         moe = 0;
8109         break;
8110     }
8111 
8112     if (moe) {
8113         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8114     }
8115 
8116     if (env->exception.target_el == 2) {
8117         arm_cpu_do_interrupt_aarch32_hyp(cs);
8118         return;
8119     }
8120 
8121     switch (cs->exception_index) {
8122     case EXCP_UDEF:
8123         new_mode = ARM_CPU_MODE_UND;
8124         addr = 0x04;
8125         mask = CPSR_I;
8126         if (env->thumb)
8127             offset = 2;
8128         else
8129             offset = 4;
8130         break;
8131     case EXCP_SWI:
8132         new_mode = ARM_CPU_MODE_SVC;
8133         addr = 0x08;
8134         mask = CPSR_I;
8135         /* The PC already points to the next instruction.  */
8136         offset = 0;
8137         break;
8138     case EXCP_BKPT:
8139         /* Fall through to prefetch abort.  */
8140     case EXCP_PREFETCH_ABORT:
8141         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8142         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8143         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8144                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8145         new_mode = ARM_CPU_MODE_ABT;
8146         addr = 0x0c;
8147         mask = CPSR_A | CPSR_I;
8148         offset = 4;
8149         break;
8150     case EXCP_DATA_ABORT:
8151         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8152         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8153         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8154                       env->exception.fsr,
8155                       (uint32_t)env->exception.vaddress);
8156         new_mode = ARM_CPU_MODE_ABT;
8157         addr = 0x10;
8158         mask = CPSR_A | CPSR_I;
8159         offset = 8;
8160         break;
8161     case EXCP_IRQ:
8162         new_mode = ARM_CPU_MODE_IRQ;
8163         addr = 0x18;
8164         /* Disable IRQ and imprecise data aborts.  */
8165         mask = CPSR_A | CPSR_I;
8166         offset = 4;
8167         if (env->cp15.scr_el3 & SCR_IRQ) {
8168             /* IRQ routed to monitor mode */
8169             new_mode = ARM_CPU_MODE_MON;
8170             mask |= CPSR_F;
8171         }
8172         break;
8173     case EXCP_FIQ:
8174         new_mode = ARM_CPU_MODE_FIQ;
8175         addr = 0x1c;
8176         /* Disable FIQ, IRQ and imprecise data aborts.  */
8177         mask = CPSR_A | CPSR_I | CPSR_F;
8178         if (env->cp15.scr_el3 & SCR_FIQ) {
8179             /* FIQ routed to monitor mode */
8180             new_mode = ARM_CPU_MODE_MON;
8181         }
8182         offset = 4;
8183         break;
8184     case EXCP_VIRQ:
8185         new_mode = ARM_CPU_MODE_IRQ;
8186         addr = 0x18;
8187         /* Disable IRQ and imprecise data aborts.  */
8188         mask = CPSR_A | CPSR_I;
8189         offset = 4;
8190         break;
8191     case EXCP_VFIQ:
8192         new_mode = ARM_CPU_MODE_FIQ;
8193         addr = 0x1c;
8194         /* Disable FIQ, IRQ and imprecise data aborts.  */
8195         mask = CPSR_A | CPSR_I | CPSR_F;
8196         offset = 4;
8197         break;
8198     case EXCP_SMC:
8199         new_mode = ARM_CPU_MODE_MON;
8200         addr = 0x08;
8201         mask = CPSR_A | CPSR_I | CPSR_F;
8202         offset = 0;
8203         break;
8204     default:
8205         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8206         return; /* Never happens.  Keep compiler happy.  */
8207     }
8208 
8209     if (new_mode == ARM_CPU_MODE_MON) {
8210         addr += env->cp15.mvbar;
8211     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8212         /* High vectors. When enabled, base address cannot be remapped. */
8213         addr += 0xffff0000;
8214     } else {
8215         /* ARM v7 architectures provide a vector base address register to remap
8216          * the interrupt vector table.
8217          * This register is only followed in non-monitor mode, and is banked.
8218          * Note: only bits 31:5 are valid.
8219          */
8220         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8221     }
8222 
8223     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8224         env->cp15.scr_el3 &= ~SCR_NS;
8225     }
8226 
8227     take_aarch32_exception(env, new_mode, mask, offset, addr);
8228 }
8229 
8230 /* Handle exception entry to a target EL which is using AArch64 */
8231 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8232 {
8233     ARMCPU *cpu = ARM_CPU(cs);
8234     CPUARMState *env = &cpu->env;
8235     unsigned int new_el = env->exception.target_el;
8236     target_ulong addr = env->cp15.vbar_el[new_el];
8237     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8238     unsigned int cur_el = arm_current_el(env);
8239 
8240     /*
8241      * Note that new_el can never be 0.  If cur_el is 0, then
8242      * el0_a64 is is_a64(), else el0_a64 is ignored.
8243      */
8244     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8245 
8246     if (cur_el < new_el) {
8247         /* Entry vector offset depends on whether the implemented EL
8248          * immediately lower than the target level is using AArch32 or AArch64
8249          */
8250         bool is_aa64;
8251 
8252         switch (new_el) {
8253         case 3:
8254             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8255             break;
8256         case 2:
8257             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8258             break;
8259         case 1:
8260             is_aa64 = is_a64(env);
8261             break;
8262         default:
8263             g_assert_not_reached();
8264         }
8265 
8266         if (is_aa64) {
8267             addr += 0x400;
8268         } else {
8269             addr += 0x600;
8270         }
8271     } else if (pstate_read(env) & PSTATE_SP) {
8272         addr += 0x200;
8273     }
8274 
8275     switch (cs->exception_index) {
8276     case EXCP_PREFETCH_ABORT:
8277     case EXCP_DATA_ABORT:
8278         env->cp15.far_el[new_el] = env->exception.vaddress;
8279         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8280                       env->cp15.far_el[new_el]);
8281         /* fall through */
8282     case EXCP_BKPT:
8283     case EXCP_UDEF:
8284     case EXCP_SWI:
8285     case EXCP_HVC:
8286     case EXCP_HYP_TRAP:
8287     case EXCP_SMC:
8288         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8289             /*
8290              * QEMU internal FP/SIMD syndromes from AArch32 include the
8291              * TA and coproc fields which are only exposed if the exception
8292              * is taken to AArch32 Hyp mode. Mask them out to get a valid
8293              * AArch64 format syndrome.
8294              */
8295             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8296         }
8297         env->cp15.esr_el[new_el] = env->exception.syndrome;
8298         break;
8299     case EXCP_IRQ:
8300     case EXCP_VIRQ:
8301         addr += 0x80;
8302         break;
8303     case EXCP_FIQ:
8304     case EXCP_VFIQ:
8305         addr += 0x100;
8306         break;
8307     case EXCP_SEMIHOST:
8308         qemu_log_mask(CPU_LOG_INT,
8309                       "...handling as semihosting call 0x%" PRIx64 "\n",
8310                       env->xregs[0]);
8311         env->xregs[0] = do_arm_semihosting(env);
8312         return;
8313     default:
8314         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8315     }
8316 
8317     if (is_a64(env)) {
8318         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8319         aarch64_save_sp(env, arm_current_el(env));
8320         env->elr_el[new_el] = env->pc;
8321     } else {
8322         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8323         env->elr_el[new_el] = env->regs[15];
8324 
8325         aarch64_sync_32_to_64(env);
8326 
8327         env->condexec_bits = 0;
8328     }
8329     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8330                   env->elr_el[new_el]);
8331 
8332     pstate_write(env, PSTATE_DAIF | new_mode);
8333     env->aarch64 = 1;
8334     aarch64_restore_sp(env, new_el);
8335 
8336     env->pc = addr;
8337 
8338     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8339                   new_el, env->pc, pstate_read(env));
8340 }
8341 
8342 static inline bool check_for_semihosting(CPUState *cs)
8343 {
8344 #ifdef CONFIG_TCG
8345     /* Check whether this exception is a semihosting call; if so
8346      * then handle it and return true; otherwise return false.
8347      */
8348     ARMCPU *cpu = ARM_CPU(cs);
8349     CPUARMState *env = &cpu->env;
8350 
8351     if (is_a64(env)) {
8352         if (cs->exception_index == EXCP_SEMIHOST) {
8353             /* This is always the 64-bit semihosting exception.
8354              * The "is this usermode" and "is semihosting enabled"
8355              * checks have been done at translate time.
8356              */
8357             qemu_log_mask(CPU_LOG_INT,
8358                           "...handling as semihosting call 0x%" PRIx64 "\n",
8359                           env->xregs[0]);
8360             env->xregs[0] = do_arm_semihosting(env);
8361             return true;
8362         }
8363         return false;
8364     } else {
8365         uint32_t imm;
8366 
8367         /* Only intercept calls from privileged modes, to provide some
8368          * semblance of security.
8369          */
8370         if (cs->exception_index != EXCP_SEMIHOST &&
8371             (!semihosting_enabled() ||
8372              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8373             return false;
8374         }
8375 
8376         switch (cs->exception_index) {
8377         case EXCP_SEMIHOST:
8378             /* This is always a semihosting call; the "is this usermode"
8379              * and "is semihosting enabled" checks have been done at
8380              * translate time.
8381              */
8382             break;
8383         case EXCP_SWI:
8384             /* Check for semihosting interrupt.  */
8385             if (env->thumb) {
8386                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8387                     & 0xff;
8388                 if (imm == 0xab) {
8389                     break;
8390                 }
8391             } else {
8392                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8393                     & 0xffffff;
8394                 if (imm == 0x123456) {
8395                     break;
8396                 }
8397             }
8398             return false;
8399         case EXCP_BKPT:
8400             /* See if this is a semihosting syscall.  */
8401             if (env->thumb) {
8402                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8403                     & 0xff;
8404                 if (imm == 0xab) {
8405                     env->regs[15] += 2;
8406                     break;
8407                 }
8408             }
8409             return false;
8410         default:
8411             return false;
8412         }
8413 
8414         qemu_log_mask(CPU_LOG_INT,
8415                       "...handling as semihosting call 0x%x\n",
8416                       env->regs[0]);
8417         env->regs[0] = do_arm_semihosting(env);
8418         return true;
8419     }
8420 #else
8421     return false;
8422 #endif
8423 }
8424 
8425 /* Handle a CPU exception for A and R profile CPUs.
8426  * Do any appropriate logging, handle PSCI calls, and then hand off
8427  * to the AArch64-entry or AArch32-entry function depending on the
8428  * target exception level's register width.
8429  */
8430 void arm_cpu_do_interrupt(CPUState *cs)
8431 {
8432     ARMCPU *cpu = ARM_CPU(cs);
8433     CPUARMState *env = &cpu->env;
8434     unsigned int new_el = env->exception.target_el;
8435 
8436     assert(!arm_feature(env, ARM_FEATURE_M));
8437 
8438     arm_log_exception(cs->exception_index);
8439     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8440                   new_el);
8441     if (qemu_loglevel_mask(CPU_LOG_INT)
8442         && !excp_is_internal(cs->exception_index)) {
8443         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8444                       syn_get_ec(env->exception.syndrome),
8445                       env->exception.syndrome);
8446     }
8447 
8448     if (arm_is_psci_call(cpu, cs->exception_index)) {
8449         arm_handle_psci_call(cpu);
8450         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8451         return;
8452     }
8453 
8454     /* Semihosting semantics depend on the register width of the
8455      * code that caused the exception, not the target exception level,
8456      * so must be handled here.
8457      */
8458     if (check_for_semihosting(cs)) {
8459         return;
8460     }
8461 
8462     /* Hooks may change global state so BQL should be held, also the
8463      * BQL needs to be held for any modification of
8464      * cs->interrupt_request.
8465      */
8466     g_assert(qemu_mutex_iothread_locked());
8467 
8468     arm_call_pre_el_change_hook(cpu);
8469 
8470     assert(!excp_is_internal(cs->exception_index));
8471     if (arm_el_is_aa64(env, new_el)) {
8472         arm_cpu_do_interrupt_aarch64(cs);
8473     } else {
8474         arm_cpu_do_interrupt_aarch32(cs);
8475     }
8476 
8477     arm_call_el_change_hook(cpu);
8478 
8479     if (!kvm_enabled()) {
8480         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8481     }
8482 }
8483 #endif /* !CONFIG_USER_ONLY */
8484 
8485 /* Return the exception level which controls this address translation regime */
8486 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8487 {
8488     switch (mmu_idx) {
8489     case ARMMMUIdx_S2NS:
8490     case ARMMMUIdx_S1E2:
8491         return 2;
8492     case ARMMMUIdx_S1E3:
8493         return 3;
8494     case ARMMMUIdx_S1SE0:
8495         return arm_el_is_aa64(env, 3) ? 1 : 3;
8496     case ARMMMUIdx_S1SE1:
8497     case ARMMMUIdx_S1NSE0:
8498     case ARMMMUIdx_S1NSE1:
8499     case ARMMMUIdx_MPrivNegPri:
8500     case ARMMMUIdx_MUserNegPri:
8501     case ARMMMUIdx_MPriv:
8502     case ARMMMUIdx_MUser:
8503     case ARMMMUIdx_MSPrivNegPri:
8504     case ARMMMUIdx_MSUserNegPri:
8505     case ARMMMUIdx_MSPriv:
8506     case ARMMMUIdx_MSUser:
8507         return 1;
8508     default:
8509         g_assert_not_reached();
8510     }
8511 }
8512 
8513 #ifndef CONFIG_USER_ONLY
8514 
8515 /* Return the SCTLR value which controls this address translation regime */
8516 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8517 {
8518     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8519 }
8520 
8521 /* Return true if the specified stage of address translation is disabled */
8522 static inline bool regime_translation_disabled(CPUARMState *env,
8523                                                ARMMMUIdx mmu_idx)
8524 {
8525     if (arm_feature(env, ARM_FEATURE_M)) {
8526         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8527                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8528         case R_V7M_MPU_CTRL_ENABLE_MASK:
8529             /* Enabled, but not for HardFault and NMI */
8530             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8531         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8532             /* Enabled for all cases */
8533             return false;
8534         case 0:
8535         default:
8536             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8537              * we warned about that in armv7m_nvic.c when the guest set it.
8538              */
8539             return true;
8540         }
8541     }
8542 
8543     if (mmu_idx == ARMMMUIdx_S2NS) {
8544         /* HCR.DC means HCR.VM behaves as 1 */
8545         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8546     }
8547 
8548     if (env->cp15.hcr_el2 & HCR_TGE) {
8549         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8550         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8551             return true;
8552         }
8553     }
8554 
8555     if ((env->cp15.hcr_el2 & HCR_DC) &&
8556         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8557         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8558         return true;
8559     }
8560 
8561     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8562 }
8563 
8564 static inline bool regime_translation_big_endian(CPUARMState *env,
8565                                                  ARMMMUIdx mmu_idx)
8566 {
8567     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8568 }
8569 
8570 /* Return the TTBR associated with this translation regime */
8571 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8572                                    int ttbrn)
8573 {
8574     if (mmu_idx == ARMMMUIdx_S2NS) {
8575         return env->cp15.vttbr_el2;
8576     }
8577     if (ttbrn == 0) {
8578         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8579     } else {
8580         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8581     }
8582 }
8583 
8584 #endif /* !CONFIG_USER_ONLY */
8585 
8586 /* Return the TCR controlling this translation regime */
8587 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8588 {
8589     if (mmu_idx == ARMMMUIdx_S2NS) {
8590         return &env->cp15.vtcr_el2;
8591     }
8592     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8593 }
8594 
8595 /* Convert a possible stage1+2 MMU index into the appropriate
8596  * stage 1 MMU index
8597  */
8598 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8599 {
8600     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8601         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8602     }
8603     return mmu_idx;
8604 }
8605 
8606 /* Return true if the translation regime is using LPAE format page tables */
8607 static inline bool regime_using_lpae_format(CPUARMState *env,
8608                                             ARMMMUIdx mmu_idx)
8609 {
8610     int el = regime_el(env, mmu_idx);
8611     if (el == 2 || arm_el_is_aa64(env, el)) {
8612         return true;
8613     }
8614     if (arm_feature(env, ARM_FEATURE_LPAE)
8615         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8616         return true;
8617     }
8618     return false;
8619 }
8620 
8621 /* Returns true if the stage 1 translation regime is using LPAE format page
8622  * tables. Used when raising alignment exceptions, whose FSR changes depending
8623  * on whether the long or short descriptor format is in use. */
8624 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8625 {
8626     mmu_idx = stage_1_mmu_idx(mmu_idx);
8627 
8628     return regime_using_lpae_format(env, mmu_idx);
8629 }
8630 
8631 #ifndef CONFIG_USER_ONLY
8632 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8633 {
8634     switch (mmu_idx) {
8635     case ARMMMUIdx_S1SE0:
8636     case ARMMMUIdx_S1NSE0:
8637     case ARMMMUIdx_MUser:
8638     case ARMMMUIdx_MSUser:
8639     case ARMMMUIdx_MUserNegPri:
8640     case ARMMMUIdx_MSUserNegPri:
8641         return true;
8642     default:
8643         return false;
8644     case ARMMMUIdx_S12NSE0:
8645     case ARMMMUIdx_S12NSE1:
8646         g_assert_not_reached();
8647     }
8648 }
8649 
8650 /* Translate section/page access permissions to page
8651  * R/W protection flags
8652  *
8653  * @env:         CPUARMState
8654  * @mmu_idx:     MMU index indicating required translation regime
8655  * @ap:          The 3-bit access permissions (AP[2:0])
8656  * @domain_prot: The 2-bit domain access permissions
8657  */
8658 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8659                                 int ap, int domain_prot)
8660 {
8661     bool is_user = regime_is_user(env, mmu_idx);
8662 
8663     if (domain_prot == 3) {
8664         return PAGE_READ | PAGE_WRITE;
8665     }
8666 
8667     switch (ap) {
8668     case 0:
8669         if (arm_feature(env, ARM_FEATURE_V7)) {
8670             return 0;
8671         }
8672         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8673         case SCTLR_S:
8674             return is_user ? 0 : PAGE_READ;
8675         case SCTLR_R:
8676             return PAGE_READ;
8677         default:
8678             return 0;
8679         }
8680     case 1:
8681         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8682     case 2:
8683         if (is_user) {
8684             return PAGE_READ;
8685         } else {
8686             return PAGE_READ | PAGE_WRITE;
8687         }
8688     case 3:
8689         return PAGE_READ | PAGE_WRITE;
8690     case 4: /* Reserved.  */
8691         return 0;
8692     case 5:
8693         return is_user ? 0 : PAGE_READ;
8694     case 6:
8695         return PAGE_READ;
8696     case 7:
8697         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8698             return 0;
8699         }
8700         return PAGE_READ;
8701     default:
8702         g_assert_not_reached();
8703     }
8704 }
8705 
8706 /* Translate section/page access permissions to page
8707  * R/W protection flags.
8708  *
8709  * @ap:      The 2-bit simple AP (AP[2:1])
8710  * @is_user: TRUE if accessing from PL0
8711  */
8712 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8713 {
8714     switch (ap) {
8715     case 0:
8716         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8717     case 1:
8718         return PAGE_READ | PAGE_WRITE;
8719     case 2:
8720         return is_user ? 0 : PAGE_READ;
8721     case 3:
8722         return PAGE_READ;
8723     default:
8724         g_assert_not_reached();
8725     }
8726 }
8727 
8728 static inline int
8729 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8730 {
8731     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8732 }
8733 
8734 /* Translate S2 section/page access permissions to protection flags
8735  *
8736  * @env:     CPUARMState
8737  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8738  * @xn:      XN (execute-never) bit
8739  */
8740 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8741 {
8742     int prot = 0;
8743 
8744     if (s2ap & 1) {
8745         prot |= PAGE_READ;
8746     }
8747     if (s2ap & 2) {
8748         prot |= PAGE_WRITE;
8749     }
8750     if (!xn) {
8751         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8752             prot |= PAGE_EXEC;
8753         }
8754     }
8755     return prot;
8756 }
8757 
8758 /* Translate section/page access permissions to protection flags
8759  *
8760  * @env:     CPUARMState
8761  * @mmu_idx: MMU index indicating required translation regime
8762  * @is_aa64: TRUE if AArch64
8763  * @ap:      The 2-bit simple AP (AP[2:1])
8764  * @ns:      NS (non-secure) bit
8765  * @xn:      XN (execute-never) bit
8766  * @pxn:     PXN (privileged execute-never) bit
8767  */
8768 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8769                       int ap, int ns, int xn, int pxn)
8770 {
8771     bool is_user = regime_is_user(env, mmu_idx);
8772     int prot_rw, user_rw;
8773     bool have_wxn;
8774     int wxn = 0;
8775 
8776     assert(mmu_idx != ARMMMUIdx_S2NS);
8777 
8778     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8779     if (is_user) {
8780         prot_rw = user_rw;
8781     } else {
8782         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8783     }
8784 
8785     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8786         return prot_rw;
8787     }
8788 
8789     /* TODO have_wxn should be replaced with
8790      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8791      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8792      * compatible processors have EL2, which is required for [U]WXN.
8793      */
8794     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8795 
8796     if (have_wxn) {
8797         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8798     }
8799 
8800     if (is_aa64) {
8801         switch (regime_el(env, mmu_idx)) {
8802         case 1:
8803             if (!is_user) {
8804                 xn = pxn || (user_rw & PAGE_WRITE);
8805             }
8806             break;
8807         case 2:
8808         case 3:
8809             break;
8810         }
8811     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8812         switch (regime_el(env, mmu_idx)) {
8813         case 1:
8814         case 3:
8815             if (is_user) {
8816                 xn = xn || !(user_rw & PAGE_READ);
8817             } else {
8818                 int uwxn = 0;
8819                 if (have_wxn) {
8820                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8821                 }
8822                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8823                      (uwxn && (user_rw & PAGE_WRITE));
8824             }
8825             break;
8826         case 2:
8827             break;
8828         }
8829     } else {
8830         xn = wxn = 0;
8831     }
8832 
8833     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8834         return prot_rw;
8835     }
8836     return prot_rw | PAGE_EXEC;
8837 }
8838 
8839 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8840                                      uint32_t *table, uint32_t address)
8841 {
8842     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8843     TCR *tcr = regime_tcr(env, mmu_idx);
8844 
8845     if (address & tcr->mask) {
8846         if (tcr->raw_tcr & TTBCR_PD1) {
8847             /* Translation table walk disabled for TTBR1 */
8848             return false;
8849         }
8850         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8851     } else {
8852         if (tcr->raw_tcr & TTBCR_PD0) {
8853             /* Translation table walk disabled for TTBR0 */
8854             return false;
8855         }
8856         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8857     }
8858     *table |= (address >> 18) & 0x3ffc;
8859     return true;
8860 }
8861 
8862 /* Translate a S1 pagetable walk through S2 if needed.  */
8863 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8864                                hwaddr addr, MemTxAttrs txattrs,
8865                                ARMMMUFaultInfo *fi)
8866 {
8867     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8868         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8869         target_ulong s2size;
8870         hwaddr s2pa;
8871         int s2prot;
8872         int ret;
8873         ARMCacheAttrs cacheattrs = {};
8874         ARMCacheAttrs *pcacheattrs = NULL;
8875 
8876         if (env->cp15.hcr_el2 & HCR_PTW) {
8877             /*
8878              * PTW means we must fault if this S1 walk touches S2 Device
8879              * memory; otherwise we don't care about the attributes and can
8880              * save the S2 translation the effort of computing them.
8881              */
8882             pcacheattrs = &cacheattrs;
8883         }
8884 
8885         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8886                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
8887         if (ret) {
8888             assert(fi->type != ARMFault_None);
8889             fi->s2addr = addr;
8890             fi->stage2 = true;
8891             fi->s1ptw = true;
8892             return ~0;
8893         }
8894         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
8895             /* Access was to Device memory: generate Permission fault */
8896             fi->type = ARMFault_Permission;
8897             fi->s2addr = addr;
8898             fi->stage2 = true;
8899             fi->s1ptw = true;
8900             return ~0;
8901         }
8902         addr = s2pa;
8903     }
8904     return addr;
8905 }
8906 
8907 /* All loads done in the course of a page table walk go through here. */
8908 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8909                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8910 {
8911     ARMCPU *cpu = ARM_CPU(cs);
8912     CPUARMState *env = &cpu->env;
8913     MemTxAttrs attrs = {};
8914     MemTxResult result = MEMTX_OK;
8915     AddressSpace *as;
8916     uint32_t data;
8917 
8918     attrs.secure = is_secure;
8919     as = arm_addressspace(cs, attrs);
8920     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8921     if (fi->s1ptw) {
8922         return 0;
8923     }
8924     if (regime_translation_big_endian(env, mmu_idx)) {
8925         data = address_space_ldl_be(as, addr, attrs, &result);
8926     } else {
8927         data = address_space_ldl_le(as, addr, attrs, &result);
8928     }
8929     if (result == MEMTX_OK) {
8930         return data;
8931     }
8932     fi->type = ARMFault_SyncExternalOnWalk;
8933     fi->ea = arm_extabort_type(result);
8934     return 0;
8935 }
8936 
8937 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8938                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8939 {
8940     ARMCPU *cpu = ARM_CPU(cs);
8941     CPUARMState *env = &cpu->env;
8942     MemTxAttrs attrs = {};
8943     MemTxResult result = MEMTX_OK;
8944     AddressSpace *as;
8945     uint64_t data;
8946 
8947     attrs.secure = is_secure;
8948     as = arm_addressspace(cs, attrs);
8949     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8950     if (fi->s1ptw) {
8951         return 0;
8952     }
8953     if (regime_translation_big_endian(env, mmu_idx)) {
8954         data = address_space_ldq_be(as, addr, attrs, &result);
8955     } else {
8956         data = address_space_ldq_le(as, addr, attrs, &result);
8957     }
8958     if (result == MEMTX_OK) {
8959         return data;
8960     }
8961     fi->type = ARMFault_SyncExternalOnWalk;
8962     fi->ea = arm_extabort_type(result);
8963     return 0;
8964 }
8965 
8966 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8967                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8968                              hwaddr *phys_ptr, int *prot,
8969                              target_ulong *page_size,
8970                              ARMMMUFaultInfo *fi)
8971 {
8972     CPUState *cs = env_cpu(env);
8973     int level = 1;
8974     uint32_t table;
8975     uint32_t desc;
8976     int type;
8977     int ap;
8978     int domain = 0;
8979     int domain_prot;
8980     hwaddr phys_addr;
8981     uint32_t dacr;
8982 
8983     /* Pagetable walk.  */
8984     /* Lookup l1 descriptor.  */
8985     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8986         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8987         fi->type = ARMFault_Translation;
8988         goto do_fault;
8989     }
8990     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8991                        mmu_idx, fi);
8992     if (fi->type != ARMFault_None) {
8993         goto do_fault;
8994     }
8995     type = (desc & 3);
8996     domain = (desc >> 5) & 0x0f;
8997     if (regime_el(env, mmu_idx) == 1) {
8998         dacr = env->cp15.dacr_ns;
8999     } else {
9000         dacr = env->cp15.dacr_s;
9001     }
9002     domain_prot = (dacr >> (domain * 2)) & 3;
9003     if (type == 0) {
9004         /* Section translation fault.  */
9005         fi->type = ARMFault_Translation;
9006         goto do_fault;
9007     }
9008     if (type != 2) {
9009         level = 2;
9010     }
9011     if (domain_prot == 0 || domain_prot == 2) {
9012         fi->type = ARMFault_Domain;
9013         goto do_fault;
9014     }
9015     if (type == 2) {
9016         /* 1Mb section.  */
9017         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9018         ap = (desc >> 10) & 3;
9019         *page_size = 1024 * 1024;
9020     } else {
9021         /* Lookup l2 entry.  */
9022         if (type == 1) {
9023             /* Coarse pagetable.  */
9024             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9025         } else {
9026             /* Fine pagetable.  */
9027             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9028         }
9029         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9030                            mmu_idx, fi);
9031         if (fi->type != ARMFault_None) {
9032             goto do_fault;
9033         }
9034         switch (desc & 3) {
9035         case 0: /* Page translation fault.  */
9036             fi->type = ARMFault_Translation;
9037             goto do_fault;
9038         case 1: /* 64k page.  */
9039             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9040             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9041             *page_size = 0x10000;
9042             break;
9043         case 2: /* 4k page.  */
9044             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9045             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9046             *page_size = 0x1000;
9047             break;
9048         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9049             if (type == 1) {
9050                 /* ARMv6/XScale extended small page format */
9051                 if (arm_feature(env, ARM_FEATURE_XSCALE)
9052                     || arm_feature(env, ARM_FEATURE_V6)) {
9053                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9054                     *page_size = 0x1000;
9055                 } else {
9056                     /* UNPREDICTABLE in ARMv5; we choose to take a
9057                      * page translation fault.
9058                      */
9059                     fi->type = ARMFault_Translation;
9060                     goto do_fault;
9061                 }
9062             } else {
9063                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9064                 *page_size = 0x400;
9065             }
9066             ap = (desc >> 4) & 3;
9067             break;
9068         default:
9069             /* Never happens, but compiler isn't smart enough to tell.  */
9070             abort();
9071         }
9072     }
9073     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9074     *prot |= *prot ? PAGE_EXEC : 0;
9075     if (!(*prot & (1 << access_type))) {
9076         /* Access permission fault.  */
9077         fi->type = ARMFault_Permission;
9078         goto do_fault;
9079     }
9080     *phys_ptr = phys_addr;
9081     return false;
9082 do_fault:
9083     fi->domain = domain;
9084     fi->level = level;
9085     return true;
9086 }
9087 
9088 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9089                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9090                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9091                              target_ulong *page_size, ARMMMUFaultInfo *fi)
9092 {
9093     CPUState *cs = env_cpu(env);
9094     int level = 1;
9095     uint32_t table;
9096     uint32_t desc;
9097     uint32_t xn;
9098     uint32_t pxn = 0;
9099     int type;
9100     int ap;
9101     int domain = 0;
9102     int domain_prot;
9103     hwaddr phys_addr;
9104     uint32_t dacr;
9105     bool ns;
9106 
9107     /* Pagetable walk.  */
9108     /* Lookup l1 descriptor.  */
9109     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9110         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9111         fi->type = ARMFault_Translation;
9112         goto do_fault;
9113     }
9114     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9115                        mmu_idx, fi);
9116     if (fi->type != ARMFault_None) {
9117         goto do_fault;
9118     }
9119     type = (desc & 3);
9120     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9121         /* Section translation fault, or attempt to use the encoding
9122          * which is Reserved on implementations without PXN.
9123          */
9124         fi->type = ARMFault_Translation;
9125         goto do_fault;
9126     }
9127     if ((type == 1) || !(desc & (1 << 18))) {
9128         /* Page or Section.  */
9129         domain = (desc >> 5) & 0x0f;
9130     }
9131     if (regime_el(env, mmu_idx) == 1) {
9132         dacr = env->cp15.dacr_ns;
9133     } else {
9134         dacr = env->cp15.dacr_s;
9135     }
9136     if (type == 1) {
9137         level = 2;
9138     }
9139     domain_prot = (dacr >> (domain * 2)) & 3;
9140     if (domain_prot == 0 || domain_prot == 2) {
9141         /* Section or Page domain fault */
9142         fi->type = ARMFault_Domain;
9143         goto do_fault;
9144     }
9145     if (type != 1) {
9146         if (desc & (1 << 18)) {
9147             /* Supersection.  */
9148             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9149             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9150             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9151             *page_size = 0x1000000;
9152         } else {
9153             /* Section.  */
9154             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9155             *page_size = 0x100000;
9156         }
9157         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9158         xn = desc & (1 << 4);
9159         pxn = desc & 1;
9160         ns = extract32(desc, 19, 1);
9161     } else {
9162         if (arm_feature(env, ARM_FEATURE_PXN)) {
9163             pxn = (desc >> 2) & 1;
9164         }
9165         ns = extract32(desc, 3, 1);
9166         /* Lookup l2 entry.  */
9167         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9168         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9169                            mmu_idx, fi);
9170         if (fi->type != ARMFault_None) {
9171             goto do_fault;
9172         }
9173         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9174         switch (desc & 3) {
9175         case 0: /* Page translation fault.  */
9176             fi->type = ARMFault_Translation;
9177             goto do_fault;
9178         case 1: /* 64k page.  */
9179             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9180             xn = desc & (1 << 15);
9181             *page_size = 0x10000;
9182             break;
9183         case 2: case 3: /* 4k page.  */
9184             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9185             xn = desc & 1;
9186             *page_size = 0x1000;
9187             break;
9188         default:
9189             /* Never happens, but compiler isn't smart enough to tell.  */
9190             abort();
9191         }
9192     }
9193     if (domain_prot == 3) {
9194         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9195     } else {
9196         if (pxn && !regime_is_user(env, mmu_idx)) {
9197             xn = 1;
9198         }
9199         if (xn && access_type == MMU_INST_FETCH) {
9200             fi->type = ARMFault_Permission;
9201             goto do_fault;
9202         }
9203 
9204         if (arm_feature(env, ARM_FEATURE_V6K) &&
9205                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9206             /* The simplified model uses AP[0] as an access control bit.  */
9207             if ((ap & 1) == 0) {
9208                 /* Access flag fault.  */
9209                 fi->type = ARMFault_AccessFlag;
9210                 goto do_fault;
9211             }
9212             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9213         } else {
9214             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9215         }
9216         if (*prot && !xn) {
9217             *prot |= PAGE_EXEC;
9218         }
9219         if (!(*prot & (1 << access_type))) {
9220             /* Access permission fault.  */
9221             fi->type = ARMFault_Permission;
9222             goto do_fault;
9223         }
9224     }
9225     if (ns) {
9226         /* The NS bit will (as required by the architecture) have no effect if
9227          * the CPU doesn't support TZ or this is a non-secure translation
9228          * regime, because the attribute will already be non-secure.
9229          */
9230         attrs->secure = false;
9231     }
9232     *phys_ptr = phys_addr;
9233     return false;
9234 do_fault:
9235     fi->domain = domain;
9236     fi->level = level;
9237     return true;
9238 }
9239 
9240 /*
9241  * check_s2_mmu_setup
9242  * @cpu:        ARMCPU
9243  * @is_aa64:    True if the translation regime is in AArch64 state
9244  * @startlevel: Suggested starting level
9245  * @inputsize:  Bitsize of IPAs
9246  * @stride:     Page-table stride (See the ARM ARM)
9247  *
9248  * Returns true if the suggested S2 translation parameters are OK and
9249  * false otherwise.
9250  */
9251 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9252                                int inputsize, int stride)
9253 {
9254     const int grainsize = stride + 3;
9255     int startsizecheck;
9256 
9257     /* Negative levels are never allowed.  */
9258     if (level < 0) {
9259         return false;
9260     }
9261 
9262     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9263     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9264         return false;
9265     }
9266 
9267     if (is_aa64) {
9268         CPUARMState *env = &cpu->env;
9269         unsigned int pamax = arm_pamax(cpu);
9270 
9271         switch (stride) {
9272         case 13: /* 64KB Pages.  */
9273             if (level == 0 || (level == 1 && pamax <= 42)) {
9274                 return false;
9275             }
9276             break;
9277         case 11: /* 16KB Pages.  */
9278             if (level == 0 || (level == 1 && pamax <= 40)) {
9279                 return false;
9280             }
9281             break;
9282         case 9: /* 4KB Pages.  */
9283             if (level == 0 && pamax <= 42) {
9284                 return false;
9285             }
9286             break;
9287         default:
9288             g_assert_not_reached();
9289         }
9290 
9291         /* Inputsize checks.  */
9292         if (inputsize > pamax &&
9293             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9294             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9295             return false;
9296         }
9297     } else {
9298         /* AArch32 only supports 4KB pages. Assert on that.  */
9299         assert(stride == 9);
9300 
9301         if (level == 0) {
9302             return false;
9303         }
9304     }
9305     return true;
9306 }
9307 
9308 /* Translate from the 4-bit stage 2 representation of
9309  * memory attributes (without cache-allocation hints) to
9310  * the 8-bit representation of the stage 1 MAIR registers
9311  * (which includes allocation hints).
9312  *
9313  * ref: shared/translation/attrs/S2AttrDecode()
9314  *      .../S2ConvertAttrsHints()
9315  */
9316 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9317 {
9318     uint8_t hiattr = extract32(s2attrs, 2, 2);
9319     uint8_t loattr = extract32(s2attrs, 0, 2);
9320     uint8_t hihint = 0, lohint = 0;
9321 
9322     if (hiattr != 0) { /* normal memory */
9323         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9324             hiattr = loattr = 1; /* non-cacheable */
9325         } else {
9326             if (hiattr != 1) { /* Write-through or write-back */
9327                 hihint = 3; /* RW allocate */
9328             }
9329             if (loattr != 1) { /* Write-through or write-back */
9330                 lohint = 3; /* RW allocate */
9331             }
9332         }
9333     }
9334 
9335     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9336 }
9337 #endif /* !CONFIG_USER_ONLY */
9338 
9339 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9340                                         ARMMMUIdx mmu_idx)
9341 {
9342     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9343     uint32_t el = regime_el(env, mmu_idx);
9344     bool tbi, tbid, epd, hpd, using16k, using64k;
9345     int select, tsz;
9346 
9347     /*
9348      * Bit 55 is always between the two regions, and is canonical for
9349      * determining if address tagging is enabled.
9350      */
9351     select = extract64(va, 55, 1);
9352 
9353     if (el > 1) {
9354         tsz = extract32(tcr, 0, 6);
9355         using64k = extract32(tcr, 14, 1);
9356         using16k = extract32(tcr, 15, 1);
9357         if (mmu_idx == ARMMMUIdx_S2NS) {
9358             /* VTCR_EL2 */
9359             tbi = tbid = hpd = false;
9360         } else {
9361             tbi = extract32(tcr, 20, 1);
9362             hpd = extract32(tcr, 24, 1);
9363             tbid = extract32(tcr, 29, 1);
9364         }
9365         epd = false;
9366     } else if (!select) {
9367         tsz = extract32(tcr, 0, 6);
9368         epd = extract32(tcr, 7, 1);
9369         using64k = extract32(tcr, 14, 1);
9370         using16k = extract32(tcr, 15, 1);
9371         tbi = extract64(tcr, 37, 1);
9372         hpd = extract64(tcr, 41, 1);
9373         tbid = extract64(tcr, 51, 1);
9374     } else {
9375         int tg = extract32(tcr, 30, 2);
9376         using16k = tg == 1;
9377         using64k = tg == 3;
9378         tsz = extract32(tcr, 16, 6);
9379         epd = extract32(tcr, 23, 1);
9380         tbi = extract64(tcr, 38, 1);
9381         hpd = extract64(tcr, 42, 1);
9382         tbid = extract64(tcr, 52, 1);
9383     }
9384     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
9385     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
9386 
9387     return (ARMVAParameters) {
9388         .tsz = tsz,
9389         .select = select,
9390         .tbi = tbi,
9391         .tbid = tbid,
9392         .epd = epd,
9393         .hpd = hpd,
9394         .using16k = using16k,
9395         .using64k = using64k,
9396     };
9397 }
9398 
9399 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9400                                    ARMMMUIdx mmu_idx, bool data)
9401 {
9402     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9403 
9404     /* Present TBI as a composite with TBID.  */
9405     ret.tbi &= (data || !ret.tbid);
9406     return ret;
9407 }
9408 
9409 #ifndef CONFIG_USER_ONLY
9410 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9411                                           ARMMMUIdx mmu_idx)
9412 {
9413     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9414     uint32_t el = regime_el(env, mmu_idx);
9415     int select, tsz;
9416     bool epd, hpd;
9417 
9418     if (mmu_idx == ARMMMUIdx_S2NS) {
9419         /* VTCR */
9420         bool sext = extract32(tcr, 4, 1);
9421         bool sign = extract32(tcr, 3, 1);
9422 
9423         /*
9424          * If the sign-extend bit is not the same as t0sz[3], the result
9425          * is unpredictable. Flag this as a guest error.
9426          */
9427         if (sign != sext) {
9428             qemu_log_mask(LOG_GUEST_ERROR,
9429                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9430         }
9431         tsz = sextract32(tcr, 0, 4) + 8;
9432         select = 0;
9433         hpd = false;
9434         epd = false;
9435     } else if (el == 2) {
9436         /* HTCR */
9437         tsz = extract32(tcr, 0, 3);
9438         select = 0;
9439         hpd = extract64(tcr, 24, 1);
9440         epd = false;
9441     } else {
9442         int t0sz = extract32(tcr, 0, 3);
9443         int t1sz = extract32(tcr, 16, 3);
9444 
9445         if (t1sz == 0) {
9446             select = va > (0xffffffffu >> t0sz);
9447         } else {
9448             /* Note that we will detect errors later.  */
9449             select = va >= ~(0xffffffffu >> t1sz);
9450         }
9451         if (!select) {
9452             tsz = t0sz;
9453             epd = extract32(tcr, 7, 1);
9454             hpd = extract64(tcr, 41, 1);
9455         } else {
9456             tsz = t1sz;
9457             epd = extract32(tcr, 23, 1);
9458             hpd = extract64(tcr, 42, 1);
9459         }
9460         /* For aarch32, hpd0 is not enabled without t2e as well.  */
9461         hpd &= extract32(tcr, 6, 1);
9462     }
9463 
9464     return (ARMVAParameters) {
9465         .tsz = tsz,
9466         .select = select,
9467         .epd = epd,
9468         .hpd = hpd,
9469     };
9470 }
9471 
9472 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9473                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9474                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9475                                target_ulong *page_size_ptr,
9476                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9477 {
9478     ARMCPU *cpu = env_archcpu(env);
9479     CPUState *cs = CPU(cpu);
9480     /* Read an LPAE long-descriptor translation table. */
9481     ARMFaultType fault_type = ARMFault_Translation;
9482     uint32_t level;
9483     ARMVAParameters param;
9484     uint64_t ttbr;
9485     hwaddr descaddr, indexmask, indexmask_grainsize;
9486     uint32_t tableattrs;
9487     target_ulong page_size;
9488     uint32_t attrs;
9489     int32_t stride;
9490     int addrsize, inputsize;
9491     TCR *tcr = regime_tcr(env, mmu_idx);
9492     int ap, ns, xn, pxn;
9493     uint32_t el = regime_el(env, mmu_idx);
9494     bool ttbr1_valid;
9495     uint64_t descaddrmask;
9496     bool aarch64 = arm_el_is_aa64(env, el);
9497     bool guarded = false;
9498 
9499     /* TODO:
9500      * This code does not handle the different format TCR for VTCR_EL2.
9501      * This code also does not support shareability levels.
9502      * Attribute and permission bit handling should also be checked when adding
9503      * support for those page table walks.
9504      */
9505     if (aarch64) {
9506         param = aa64_va_parameters(env, address, mmu_idx,
9507                                    access_type != MMU_INST_FETCH);
9508         level = 0;
9509         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9510          * invalid.
9511          */
9512         ttbr1_valid = (el < 2);
9513         addrsize = 64 - 8 * param.tbi;
9514         inputsize = 64 - param.tsz;
9515     } else {
9516         param = aa32_va_parameters(env, address, mmu_idx);
9517         level = 1;
9518         /* There is no TTBR1 for EL2 */
9519         ttbr1_valid = (el != 2);
9520         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9521         inputsize = addrsize - param.tsz;
9522     }
9523 
9524     /*
9525      * We determined the region when collecting the parameters, but we
9526      * have not yet validated that the address is valid for the region.
9527      * Extract the top bits and verify that they all match select.
9528      *
9529      * For aa32, if inputsize == addrsize, then we have selected the
9530      * region by exclusion in aa32_va_parameters and there is no more
9531      * validation to do here.
9532      */
9533     if (inputsize < addrsize) {
9534         target_ulong top_bits = sextract64(address, inputsize,
9535                                            addrsize - inputsize);
9536         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9537             /* The gap between the two regions is a Translation fault */
9538             fault_type = ARMFault_Translation;
9539             goto do_fault;
9540         }
9541     }
9542 
9543     if (param.using64k) {
9544         stride = 13;
9545     } else if (param.using16k) {
9546         stride = 11;
9547     } else {
9548         stride = 9;
9549     }
9550 
9551     /* Note that QEMU ignores shareability and cacheability attributes,
9552      * so we don't need to do anything with the SH, ORGN, IRGN fields
9553      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9554      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9555      * implement any ASID-like capability so we can ignore it (instead
9556      * we will always flush the TLB any time the ASID is changed).
9557      */
9558     ttbr = regime_ttbr(env, mmu_idx, param.select);
9559 
9560     /* Here we should have set up all the parameters for the translation:
9561      * inputsize, ttbr, epd, stride, tbi
9562      */
9563 
9564     if (param.epd) {
9565         /* Translation table walk disabled => Translation fault on TLB miss
9566          * Note: This is always 0 on 64-bit EL2 and EL3.
9567          */
9568         goto do_fault;
9569     }
9570 
9571     if (mmu_idx != ARMMMUIdx_S2NS) {
9572         /* The starting level depends on the virtual address size (which can
9573          * be up to 48 bits) and the translation granule size. It indicates
9574          * the number of strides (stride bits at a time) needed to
9575          * consume the bits of the input address. In the pseudocode this is:
9576          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9577          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9578          * our 'stride + 3' and 'stride' is our 'stride'.
9579          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9580          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9581          * = 4 - (inputsize - 4) / stride;
9582          */
9583         level = 4 - (inputsize - 4) / stride;
9584     } else {
9585         /* For stage 2 translations the starting level is specified by the
9586          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9587          */
9588         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9589         uint32_t startlevel;
9590         bool ok;
9591 
9592         if (!aarch64 || stride == 9) {
9593             /* AArch32 or 4KB pages */
9594             startlevel = 2 - sl0;
9595         } else {
9596             /* 16KB or 64KB pages */
9597             startlevel = 3 - sl0;
9598         }
9599 
9600         /* Check that the starting level is valid. */
9601         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9602                                 inputsize, stride);
9603         if (!ok) {
9604             fault_type = ARMFault_Translation;
9605             goto do_fault;
9606         }
9607         level = startlevel;
9608     }
9609 
9610     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9611     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9612 
9613     /* Now we can extract the actual base address from the TTBR */
9614     descaddr = extract64(ttbr, 0, 48);
9615     descaddr &= ~indexmask;
9616 
9617     /* The address field in the descriptor goes up to bit 39 for ARMv7
9618      * but up to bit 47 for ARMv8, but we use the descaddrmask
9619      * up to bit 39 for AArch32, because we don't need other bits in that case
9620      * to construct next descriptor address (anyway they should be all zeroes).
9621      */
9622     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9623                    ~indexmask_grainsize;
9624 
9625     /* Secure accesses start with the page table in secure memory and
9626      * can be downgraded to non-secure at any step. Non-secure accesses
9627      * remain non-secure. We implement this by just ORing in the NSTable/NS
9628      * bits at each step.
9629      */
9630     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9631     for (;;) {
9632         uint64_t descriptor;
9633         bool nstable;
9634 
9635         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9636         descaddr &= ~7ULL;
9637         nstable = extract32(tableattrs, 4, 1);
9638         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9639         if (fi->type != ARMFault_None) {
9640             goto do_fault;
9641         }
9642 
9643         if (!(descriptor & 1) ||
9644             (!(descriptor & 2) && (level == 3))) {
9645             /* Invalid, or the Reserved level 3 encoding */
9646             goto do_fault;
9647         }
9648         descaddr = descriptor & descaddrmask;
9649 
9650         if ((descriptor & 2) && (level < 3)) {
9651             /* Table entry. The top five bits are attributes which may
9652              * propagate down through lower levels of the table (and
9653              * which are all arranged so that 0 means "no effect", so
9654              * we can gather them up by ORing in the bits at each level).
9655              */
9656             tableattrs |= extract64(descriptor, 59, 5);
9657             level++;
9658             indexmask = indexmask_grainsize;
9659             continue;
9660         }
9661         /* Block entry at level 1 or 2, or page entry at level 3.
9662          * These are basically the same thing, although the number
9663          * of bits we pull in from the vaddr varies.
9664          */
9665         page_size = (1ULL << ((stride * (4 - level)) + 3));
9666         descaddr |= (address & (page_size - 1));
9667         /* Extract attributes from the descriptor */
9668         attrs = extract64(descriptor, 2, 10)
9669             | (extract64(descriptor, 52, 12) << 10);
9670 
9671         if (mmu_idx == ARMMMUIdx_S2NS) {
9672             /* Stage 2 table descriptors do not include any attribute fields */
9673             break;
9674         }
9675         /* Merge in attributes from table descriptors */
9676         attrs |= nstable << 3; /* NS */
9677         guarded = extract64(descriptor, 50, 1);  /* GP */
9678         if (param.hpd) {
9679             /* HPD disables all the table attributes except NSTable.  */
9680             break;
9681         }
9682         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
9683         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9684          * means "force PL1 access only", which means forcing AP[1] to 0.
9685          */
9686         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
9687         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
9688         break;
9689     }
9690     /* Here descaddr is the final physical address, and attributes
9691      * are all in attrs.
9692      */
9693     fault_type = ARMFault_AccessFlag;
9694     if ((attrs & (1 << 8)) == 0) {
9695         /* Access flag */
9696         goto do_fault;
9697     }
9698 
9699     ap = extract32(attrs, 4, 2);
9700     xn = extract32(attrs, 12, 1);
9701 
9702     if (mmu_idx == ARMMMUIdx_S2NS) {
9703         ns = true;
9704         *prot = get_S2prot(env, ap, xn);
9705     } else {
9706         ns = extract32(attrs, 3, 1);
9707         pxn = extract32(attrs, 11, 1);
9708         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9709     }
9710 
9711     fault_type = ARMFault_Permission;
9712     if (!(*prot & (1 << access_type))) {
9713         goto do_fault;
9714     }
9715 
9716     if (ns) {
9717         /* The NS bit will (as required by the architecture) have no effect if
9718          * the CPU doesn't support TZ or this is a non-secure translation
9719          * regime, because the attribute will already be non-secure.
9720          */
9721         txattrs->secure = false;
9722     }
9723     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
9724     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9725         txattrs->target_tlb_bit0 = true;
9726     }
9727 
9728     if (cacheattrs != NULL) {
9729         if (mmu_idx == ARMMMUIdx_S2NS) {
9730             cacheattrs->attrs = convert_stage2_attrs(env,
9731                                                      extract32(attrs, 0, 4));
9732         } else {
9733             /* Index into MAIR registers for cache attributes */
9734             uint8_t attrindx = extract32(attrs, 0, 3);
9735             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9736             assert(attrindx <= 7);
9737             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9738         }
9739         cacheattrs->shareability = extract32(attrs, 6, 2);
9740     }
9741 
9742     *phys_ptr = descaddr;
9743     *page_size_ptr = page_size;
9744     return false;
9745 
9746 do_fault:
9747     fi->type = fault_type;
9748     fi->level = level;
9749     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9750     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9751     return true;
9752 }
9753 
9754 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9755                                                 ARMMMUIdx mmu_idx,
9756                                                 int32_t address, int *prot)
9757 {
9758     if (!arm_feature(env, ARM_FEATURE_M)) {
9759         *prot = PAGE_READ | PAGE_WRITE;
9760         switch (address) {
9761         case 0xF0000000 ... 0xFFFFFFFF:
9762             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9763                 /* hivecs execing is ok */
9764                 *prot |= PAGE_EXEC;
9765             }
9766             break;
9767         case 0x00000000 ... 0x7FFFFFFF:
9768             *prot |= PAGE_EXEC;
9769             break;
9770         }
9771     } else {
9772         /* Default system address map for M profile cores.
9773          * The architecture specifies which regions are execute-never;
9774          * at the MPU level no other checks are defined.
9775          */
9776         switch (address) {
9777         case 0x00000000 ... 0x1fffffff: /* ROM */
9778         case 0x20000000 ... 0x3fffffff: /* SRAM */
9779         case 0x60000000 ... 0x7fffffff: /* RAM */
9780         case 0x80000000 ... 0x9fffffff: /* RAM */
9781             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9782             break;
9783         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9784         case 0xa0000000 ... 0xbfffffff: /* Device */
9785         case 0xc0000000 ... 0xdfffffff: /* Device */
9786         case 0xe0000000 ... 0xffffffff: /* System */
9787             *prot = PAGE_READ | PAGE_WRITE;
9788             break;
9789         default:
9790             g_assert_not_reached();
9791         }
9792     }
9793 }
9794 
9795 static bool pmsav7_use_background_region(ARMCPU *cpu,
9796                                          ARMMMUIdx mmu_idx, bool is_user)
9797 {
9798     /* Return true if we should use the default memory map as a
9799      * "background" region if there are no hits against any MPU regions.
9800      */
9801     CPUARMState *env = &cpu->env;
9802 
9803     if (is_user) {
9804         return false;
9805     }
9806 
9807     if (arm_feature(env, ARM_FEATURE_M)) {
9808         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9809             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9810     } else {
9811         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9812     }
9813 }
9814 
9815 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9816 {
9817     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9818     return arm_feature(env, ARM_FEATURE_M) &&
9819         extract32(address, 20, 12) == 0xe00;
9820 }
9821 
9822 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9823 {
9824     /* True if address is in the M profile system region
9825      * 0xe0000000 - 0xffffffff
9826      */
9827     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9828 }
9829 
9830 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9831                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9832                                  hwaddr *phys_ptr, int *prot,
9833                                  target_ulong *page_size,
9834                                  ARMMMUFaultInfo *fi)
9835 {
9836     ARMCPU *cpu = env_archcpu(env);
9837     int n;
9838     bool is_user = regime_is_user(env, mmu_idx);
9839 
9840     *phys_ptr = address;
9841     *page_size = TARGET_PAGE_SIZE;
9842     *prot = 0;
9843 
9844     if (regime_translation_disabled(env, mmu_idx) ||
9845         m_is_ppb_region(env, address)) {
9846         /* MPU disabled or M profile PPB access: use default memory map.
9847          * The other case which uses the default memory map in the
9848          * v7M ARM ARM pseudocode is exception vector reads from the vector
9849          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9850          * which always does a direct read using address_space_ldl(), rather
9851          * than going via this function, so we don't need to check that here.
9852          */
9853         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9854     } else { /* MPU enabled */
9855         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9856             /* region search */
9857             uint32_t base = env->pmsav7.drbar[n];
9858             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9859             uint32_t rmask;
9860             bool srdis = false;
9861 
9862             if (!(env->pmsav7.drsr[n] & 0x1)) {
9863                 continue;
9864             }
9865 
9866             if (!rsize) {
9867                 qemu_log_mask(LOG_GUEST_ERROR,
9868                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9869                 continue;
9870             }
9871             rsize++;
9872             rmask = (1ull << rsize) - 1;
9873 
9874             if (base & rmask) {
9875                 qemu_log_mask(LOG_GUEST_ERROR,
9876                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9877                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9878                               n, base, rmask);
9879                 continue;
9880             }
9881 
9882             if (address < base || address > base + rmask) {
9883                 /*
9884                  * Address not in this region. We must check whether the
9885                  * region covers addresses in the same page as our address.
9886                  * In that case we must not report a size that covers the
9887                  * whole page for a subsequent hit against a different MPU
9888                  * region or the background region, because it would result in
9889                  * incorrect TLB hits for subsequent accesses to addresses that
9890                  * are in this MPU region.
9891                  */
9892                 if (ranges_overlap(base, rmask,
9893                                    address & TARGET_PAGE_MASK,
9894                                    TARGET_PAGE_SIZE)) {
9895                     *page_size = 1;
9896                 }
9897                 continue;
9898             }
9899 
9900             /* Region matched */
9901 
9902             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9903                 int i, snd;
9904                 uint32_t srdis_mask;
9905 
9906                 rsize -= 3; /* sub region size (power of 2) */
9907                 snd = ((address - base) >> rsize) & 0x7;
9908                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9909 
9910                 srdis_mask = srdis ? 0x3 : 0x0;
9911                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9912                     /* This will check in groups of 2, 4 and then 8, whether
9913                      * the subregion bits are consistent. rsize is incremented
9914                      * back up to give the region size, considering consistent
9915                      * adjacent subregions as one region. Stop testing if rsize
9916                      * is already big enough for an entire QEMU page.
9917                      */
9918                     int snd_rounded = snd & ~(i - 1);
9919                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9920                                                      snd_rounded + 8, i);
9921                     if (srdis_mask ^ srdis_multi) {
9922                         break;
9923                     }
9924                     srdis_mask = (srdis_mask << i) | srdis_mask;
9925                     rsize++;
9926                 }
9927             }
9928             if (srdis) {
9929                 continue;
9930             }
9931             if (rsize < TARGET_PAGE_BITS) {
9932                 *page_size = 1 << rsize;
9933             }
9934             break;
9935         }
9936 
9937         if (n == -1) { /* no hits */
9938             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9939                 /* background fault */
9940                 fi->type = ARMFault_Background;
9941                 return true;
9942             }
9943             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9944         } else { /* a MPU hit! */
9945             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9946             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9947 
9948             if (m_is_system_region(env, address)) {
9949                 /* System space is always execute never */
9950                 xn = 1;
9951             }
9952 
9953             if (is_user) { /* User mode AP bit decoding */
9954                 switch (ap) {
9955                 case 0:
9956                 case 1:
9957                 case 5:
9958                     break; /* no access */
9959                 case 3:
9960                     *prot |= PAGE_WRITE;
9961                     /* fall through */
9962                 case 2:
9963                 case 6:
9964                     *prot |= PAGE_READ | PAGE_EXEC;
9965                     break;
9966                 case 7:
9967                     /* for v7M, same as 6; for R profile a reserved value */
9968                     if (arm_feature(env, ARM_FEATURE_M)) {
9969                         *prot |= PAGE_READ | PAGE_EXEC;
9970                         break;
9971                     }
9972                     /* fall through */
9973                 default:
9974                     qemu_log_mask(LOG_GUEST_ERROR,
9975                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9976                                   PRIx32 "\n", n, ap);
9977                 }
9978             } else { /* Priv. mode AP bits decoding */
9979                 switch (ap) {
9980                 case 0:
9981                     break; /* no access */
9982                 case 1:
9983                 case 2:
9984                 case 3:
9985                     *prot |= PAGE_WRITE;
9986                     /* fall through */
9987                 case 5:
9988                 case 6:
9989                     *prot |= PAGE_READ | PAGE_EXEC;
9990                     break;
9991                 case 7:
9992                     /* for v7M, same as 6; for R profile a reserved value */
9993                     if (arm_feature(env, ARM_FEATURE_M)) {
9994                         *prot |= PAGE_READ | PAGE_EXEC;
9995                         break;
9996                     }
9997                     /* fall through */
9998                 default:
9999                     qemu_log_mask(LOG_GUEST_ERROR,
10000                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10001                                   PRIx32 "\n", n, ap);
10002                 }
10003             }
10004 
10005             /* execute never */
10006             if (xn) {
10007                 *prot &= ~PAGE_EXEC;
10008             }
10009         }
10010     }
10011 
10012     fi->type = ARMFault_Permission;
10013     fi->level = 1;
10014     return !(*prot & (1 << access_type));
10015 }
10016 
10017 static bool v8m_is_sau_exempt(CPUARMState *env,
10018                               uint32_t address, MMUAccessType access_type)
10019 {
10020     /* The architecture specifies that certain address ranges are
10021      * exempt from v8M SAU/IDAU checks.
10022      */
10023     return
10024         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10025         (address >= 0xe0000000 && address <= 0xe0002fff) ||
10026         (address >= 0xe000e000 && address <= 0xe000efff) ||
10027         (address >= 0xe002e000 && address <= 0xe002efff) ||
10028         (address >= 0xe0040000 && address <= 0xe0041fff) ||
10029         (address >= 0xe00ff000 && address <= 0xe00fffff);
10030 }
10031 
10032 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10033                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10034                                 V8M_SAttributes *sattrs)
10035 {
10036     /* Look up the security attributes for this address. Compare the
10037      * pseudocode SecurityCheck() function.
10038      * We assume the caller has zero-initialized *sattrs.
10039      */
10040     ARMCPU *cpu = env_archcpu(env);
10041     int r;
10042     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10043     int idau_region = IREGION_NOTVALID;
10044     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10045     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10046 
10047     if (cpu->idau) {
10048         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10049         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10050 
10051         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10052                    &idau_nsc);
10053     }
10054 
10055     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10056         /* 0xf0000000..0xffffffff is always S for insn fetches */
10057         return;
10058     }
10059 
10060     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10061         sattrs->ns = !regime_is_secure(env, mmu_idx);
10062         return;
10063     }
10064 
10065     if (idau_region != IREGION_NOTVALID) {
10066         sattrs->irvalid = true;
10067         sattrs->iregion = idau_region;
10068     }
10069 
10070     switch (env->sau.ctrl & 3) {
10071     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10072         break;
10073     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10074         sattrs->ns = true;
10075         break;
10076     default: /* SAU.ENABLE == 1 */
10077         for (r = 0; r < cpu->sau_sregion; r++) {
10078             if (env->sau.rlar[r] & 1) {
10079                 uint32_t base = env->sau.rbar[r] & ~0x1f;
10080                 uint32_t limit = env->sau.rlar[r] | 0x1f;
10081 
10082                 if (base <= address && limit >= address) {
10083                     if (base > addr_page_base || limit < addr_page_limit) {
10084                         sattrs->subpage = true;
10085                     }
10086                     if (sattrs->srvalid) {
10087                         /* If we hit in more than one region then we must report
10088                          * as Secure, not NS-Callable, with no valid region
10089                          * number info.
10090                          */
10091                         sattrs->ns = false;
10092                         sattrs->nsc = false;
10093                         sattrs->sregion = 0;
10094                         sattrs->srvalid = false;
10095                         break;
10096                     } else {
10097                         if (env->sau.rlar[r] & 2) {
10098                             sattrs->nsc = true;
10099                         } else {
10100                             sattrs->ns = true;
10101                         }
10102                         sattrs->srvalid = true;
10103                         sattrs->sregion = r;
10104                     }
10105                 } else {
10106                     /*
10107                      * Address not in this region. We must check whether the
10108                      * region covers addresses in the same page as our address.
10109                      * In that case we must not report a size that covers the
10110                      * whole page for a subsequent hit against a different MPU
10111                      * region or the background region, because it would result
10112                      * in incorrect TLB hits for subsequent accesses to
10113                      * addresses that are in this MPU region.
10114                      */
10115                     if (limit >= base &&
10116                         ranges_overlap(base, limit - base + 1,
10117                                        addr_page_base,
10118                                        TARGET_PAGE_SIZE)) {
10119                         sattrs->subpage = true;
10120                     }
10121                 }
10122             }
10123         }
10124         break;
10125     }
10126 
10127     /*
10128      * The IDAU will override the SAU lookup results if it specifies
10129      * higher security than the SAU does.
10130      */
10131     if (!idau_ns) {
10132         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10133             sattrs->ns = false;
10134             sattrs->nsc = idau_nsc;
10135         }
10136     }
10137 }
10138 
10139 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10140                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
10141                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
10142                               int *prot, bool *is_subpage,
10143                               ARMMMUFaultInfo *fi, uint32_t *mregion)
10144 {
10145     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10146      * that a full phys-to-virt translation does).
10147      * mregion is (if not NULL) set to the region number which matched,
10148      * or -1 if no region number is returned (MPU off, address did not
10149      * hit a region, address hit in multiple regions).
10150      * We set is_subpage to true if the region hit doesn't cover the
10151      * entire TARGET_PAGE the address is within.
10152      */
10153     ARMCPU *cpu = env_archcpu(env);
10154     bool is_user = regime_is_user(env, mmu_idx);
10155     uint32_t secure = regime_is_secure(env, mmu_idx);
10156     int n;
10157     int matchregion = -1;
10158     bool hit = false;
10159     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10160     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10161 
10162     *is_subpage = false;
10163     *phys_ptr = address;
10164     *prot = 0;
10165     if (mregion) {
10166         *mregion = -1;
10167     }
10168 
10169     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10170      * was an exception vector read from the vector table (which is always
10171      * done using the default system address map), because those accesses
10172      * are done in arm_v7m_load_vector(), which always does a direct
10173      * read using address_space_ldl(), rather than going via this function.
10174      */
10175     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10176         hit = true;
10177     } else if (m_is_ppb_region(env, address)) {
10178         hit = true;
10179     } else {
10180         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10181             hit = true;
10182         }
10183 
10184         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10185             /* region search */
10186             /* Note that the base address is bits [31:5] from the register
10187              * with bits [4:0] all zeroes, but the limit address is bits
10188              * [31:5] from the register with bits [4:0] all ones.
10189              */
10190             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10191             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10192 
10193             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10194                 /* Region disabled */
10195                 continue;
10196             }
10197 
10198             if (address < base || address > limit) {
10199                 /*
10200                  * Address not in this region. We must check whether the
10201                  * region covers addresses in the same page as our address.
10202                  * In that case we must not report a size that covers the
10203                  * whole page for a subsequent hit against a different MPU
10204                  * region or the background region, because it would result in
10205                  * incorrect TLB hits for subsequent accesses to addresses that
10206                  * are in this MPU region.
10207                  */
10208                 if (limit >= base &&
10209                     ranges_overlap(base, limit - base + 1,
10210                                    addr_page_base,
10211                                    TARGET_PAGE_SIZE)) {
10212                     *is_subpage = true;
10213                 }
10214                 continue;
10215             }
10216 
10217             if (base > addr_page_base || limit < addr_page_limit) {
10218                 *is_subpage = true;
10219             }
10220 
10221             if (matchregion != -1) {
10222                 /* Multiple regions match -- always a failure (unlike
10223                  * PMSAv7 where highest-numbered-region wins)
10224                  */
10225                 fi->type = ARMFault_Permission;
10226                 fi->level = 1;
10227                 return true;
10228             }
10229 
10230             matchregion = n;
10231             hit = true;
10232         }
10233     }
10234 
10235     if (!hit) {
10236         /* background fault */
10237         fi->type = ARMFault_Background;
10238         return true;
10239     }
10240 
10241     if (matchregion == -1) {
10242         /* hit using the background region */
10243         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10244     } else {
10245         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10246         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10247 
10248         if (m_is_system_region(env, address)) {
10249             /* System space is always execute never */
10250             xn = 1;
10251         }
10252 
10253         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10254         if (*prot && !xn) {
10255             *prot |= PAGE_EXEC;
10256         }
10257         /* We don't need to look the attribute up in the MAIR0/MAIR1
10258          * registers because that only tells us about cacheability.
10259          */
10260         if (mregion) {
10261             *mregion = matchregion;
10262         }
10263     }
10264 
10265     fi->type = ARMFault_Permission;
10266     fi->level = 1;
10267     return !(*prot & (1 << access_type));
10268 }
10269 
10270 
10271 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10272                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10273                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
10274                                  int *prot, target_ulong *page_size,
10275                                  ARMMMUFaultInfo *fi)
10276 {
10277     uint32_t secure = regime_is_secure(env, mmu_idx);
10278     V8M_SAttributes sattrs = {};
10279     bool ret;
10280     bool mpu_is_subpage;
10281 
10282     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10283         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10284         if (access_type == MMU_INST_FETCH) {
10285             /* Instruction fetches always use the MMU bank and the
10286              * transaction attribute determined by the fetch address,
10287              * regardless of CPU state. This is painful for QEMU
10288              * to handle, because it would mean we need to encode
10289              * into the mmu_idx not just the (user, negpri) information
10290              * for the current security state but also that for the
10291              * other security state, which would balloon the number
10292              * of mmu_idx values needed alarmingly.
10293              * Fortunately we can avoid this because it's not actually
10294              * possible to arbitrarily execute code from memory with
10295              * the wrong security attribute: it will always generate
10296              * an exception of some kind or another, apart from the
10297              * special case of an NS CPU executing an SG instruction
10298              * in S&NSC memory. So we always just fail the translation
10299              * here and sort things out in the exception handler
10300              * (including possibly emulating an SG instruction).
10301              */
10302             if (sattrs.ns != !secure) {
10303                 if (sattrs.nsc) {
10304                     fi->type = ARMFault_QEMU_NSCExec;
10305                 } else {
10306                     fi->type = ARMFault_QEMU_SFault;
10307                 }
10308                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10309                 *phys_ptr = address;
10310                 *prot = 0;
10311                 return true;
10312             }
10313         } else {
10314             /* For data accesses we always use the MMU bank indicated
10315              * by the current CPU state, but the security attributes
10316              * might downgrade a secure access to nonsecure.
10317              */
10318             if (sattrs.ns) {
10319                 txattrs->secure = false;
10320             } else if (!secure) {
10321                 /* NS access to S memory must fault.
10322                  * Architecturally we should first check whether the
10323                  * MPU information for this address indicates that we
10324                  * are doing an unaligned access to Device memory, which
10325                  * should generate a UsageFault instead. QEMU does not
10326                  * currently check for that kind of unaligned access though.
10327                  * If we added it we would need to do so as a special case
10328                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10329                  */
10330                 fi->type = ARMFault_QEMU_SFault;
10331                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10332                 *phys_ptr = address;
10333                 *prot = 0;
10334                 return true;
10335             }
10336         }
10337     }
10338 
10339     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10340                             txattrs, prot, &mpu_is_subpage, fi, NULL);
10341     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10342     return ret;
10343 }
10344 
10345 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10346                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10347                                  hwaddr *phys_ptr, int *prot,
10348                                  ARMMMUFaultInfo *fi)
10349 {
10350     int n;
10351     uint32_t mask;
10352     uint32_t base;
10353     bool is_user = regime_is_user(env, mmu_idx);
10354 
10355     if (regime_translation_disabled(env, mmu_idx)) {
10356         /* MPU disabled.  */
10357         *phys_ptr = address;
10358         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10359         return false;
10360     }
10361 
10362     *phys_ptr = address;
10363     for (n = 7; n >= 0; n--) {
10364         base = env->cp15.c6_region[n];
10365         if ((base & 1) == 0) {
10366             continue;
10367         }
10368         mask = 1 << ((base >> 1) & 0x1f);
10369         /* Keep this shift separate from the above to avoid an
10370            (undefined) << 32.  */
10371         mask = (mask << 1) - 1;
10372         if (((base ^ address) & ~mask) == 0) {
10373             break;
10374         }
10375     }
10376     if (n < 0) {
10377         fi->type = ARMFault_Background;
10378         return true;
10379     }
10380 
10381     if (access_type == MMU_INST_FETCH) {
10382         mask = env->cp15.pmsav5_insn_ap;
10383     } else {
10384         mask = env->cp15.pmsav5_data_ap;
10385     }
10386     mask = (mask >> (n * 4)) & 0xf;
10387     switch (mask) {
10388     case 0:
10389         fi->type = ARMFault_Permission;
10390         fi->level = 1;
10391         return true;
10392     case 1:
10393         if (is_user) {
10394             fi->type = ARMFault_Permission;
10395             fi->level = 1;
10396             return true;
10397         }
10398         *prot = PAGE_READ | PAGE_WRITE;
10399         break;
10400     case 2:
10401         *prot = PAGE_READ;
10402         if (!is_user) {
10403             *prot |= PAGE_WRITE;
10404         }
10405         break;
10406     case 3:
10407         *prot = PAGE_READ | PAGE_WRITE;
10408         break;
10409     case 5:
10410         if (is_user) {
10411             fi->type = ARMFault_Permission;
10412             fi->level = 1;
10413             return true;
10414         }
10415         *prot = PAGE_READ;
10416         break;
10417     case 6:
10418         *prot = PAGE_READ;
10419         break;
10420     default:
10421         /* Bad permission.  */
10422         fi->type = ARMFault_Permission;
10423         fi->level = 1;
10424         return true;
10425     }
10426     *prot |= PAGE_EXEC;
10427     return false;
10428 }
10429 
10430 /* Combine either inner or outer cacheability attributes for normal
10431  * memory, according to table D4-42 and pseudocode procedure
10432  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10433  *
10434  * NB: only stage 1 includes allocation hints (RW bits), leading to
10435  * some asymmetry.
10436  */
10437 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10438 {
10439     if (s1 == 4 || s2 == 4) {
10440         /* non-cacheable has precedence */
10441         return 4;
10442     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10443         /* stage 1 write-through takes precedence */
10444         return s1;
10445     } else if (extract32(s2, 2, 2) == 2) {
10446         /* stage 2 write-through takes precedence, but the allocation hint
10447          * is still taken from stage 1
10448          */
10449         return (2 << 2) | extract32(s1, 0, 2);
10450     } else { /* write-back */
10451         return s1;
10452     }
10453 }
10454 
10455 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10456  * and CombineS1S2Desc()
10457  *
10458  * @s1:      Attributes from stage 1 walk
10459  * @s2:      Attributes from stage 2 walk
10460  */
10461 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10462 {
10463     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10464     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10465     ARMCacheAttrs ret;
10466 
10467     /* Combine shareability attributes (table D4-43) */
10468     if (s1.shareability == 2 || s2.shareability == 2) {
10469         /* if either are outer-shareable, the result is outer-shareable */
10470         ret.shareability = 2;
10471     } else if (s1.shareability == 3 || s2.shareability == 3) {
10472         /* if either are inner-shareable, the result is inner-shareable */
10473         ret.shareability = 3;
10474     } else {
10475         /* both non-shareable */
10476         ret.shareability = 0;
10477     }
10478 
10479     /* Combine memory type and cacheability attributes */
10480     if (s1hi == 0 || s2hi == 0) {
10481         /* Device has precedence over normal */
10482         if (s1lo == 0 || s2lo == 0) {
10483             /* nGnRnE has precedence over anything */
10484             ret.attrs = 0;
10485         } else if (s1lo == 4 || s2lo == 4) {
10486             /* non-Reordering has precedence over Reordering */
10487             ret.attrs = 4;  /* nGnRE */
10488         } else if (s1lo == 8 || s2lo == 8) {
10489             /* non-Gathering has precedence over Gathering */
10490             ret.attrs = 8;  /* nGRE */
10491         } else {
10492             ret.attrs = 0xc; /* GRE */
10493         }
10494 
10495         /* Any location for which the resultant memory type is any
10496          * type of Device memory is always treated as Outer Shareable.
10497          */
10498         ret.shareability = 2;
10499     } else { /* Normal memory */
10500         /* Outer/inner cacheability combine independently */
10501         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10502                   | combine_cacheattr_nibble(s1lo, s2lo);
10503 
10504         if (ret.attrs == 0x44) {
10505             /* Any location for which the resultant memory type is Normal
10506              * Inner Non-cacheable, Outer Non-cacheable is always treated
10507              * as Outer Shareable.
10508              */
10509             ret.shareability = 2;
10510         }
10511     }
10512 
10513     return ret;
10514 }
10515 
10516 
10517 /* get_phys_addr - get the physical address for this virtual address
10518  *
10519  * Find the physical address corresponding to the given virtual address,
10520  * by doing a translation table walk on MMU based systems or using the
10521  * MPU state on MPU based systems.
10522  *
10523  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10524  * prot and page_size may not be filled in, and the populated fsr value provides
10525  * information on why the translation aborted, in the format of a
10526  * DFSR/IFSR fault register, with the following caveats:
10527  *  * we honour the short vs long DFSR format differences.
10528  *  * the WnR bit is never set (the caller must do this).
10529  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10530  *    value.
10531  *
10532  * @env: CPUARMState
10533  * @address: virtual address to get physical address for
10534  * @access_type: 0 for read, 1 for write, 2 for execute
10535  * @mmu_idx: MMU index indicating required translation regime
10536  * @phys_ptr: set to the physical address corresponding to the virtual address
10537  * @attrs: set to the memory transaction attributes to use
10538  * @prot: set to the permissions for the page containing phys_ptr
10539  * @page_size: set to the size of the page containing phys_ptr
10540  * @fi: set to fault info if the translation fails
10541  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10542  */
10543 bool get_phys_addr(CPUARMState *env, target_ulong address,
10544                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
10545                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10546                    target_ulong *page_size,
10547                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10548 {
10549     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10550         /* Call ourselves recursively to do the stage 1 and then stage 2
10551          * translations.
10552          */
10553         if (arm_feature(env, ARM_FEATURE_EL2)) {
10554             hwaddr ipa;
10555             int s2_prot;
10556             int ret;
10557             ARMCacheAttrs cacheattrs2 = {};
10558 
10559             ret = get_phys_addr(env, address, access_type,
10560                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10561                                 prot, page_size, fi, cacheattrs);
10562 
10563             /* If S1 fails or S2 is disabled, return early.  */
10564             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10565                 *phys_ptr = ipa;
10566                 return ret;
10567             }
10568 
10569             /* S1 is done. Now do S2 translation.  */
10570             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10571                                      phys_ptr, attrs, &s2_prot,
10572                                      page_size, fi,
10573                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10574             fi->s2addr = ipa;
10575             /* Combine the S1 and S2 perms.  */
10576             *prot &= s2_prot;
10577 
10578             /* Combine the S1 and S2 cache attributes, if needed */
10579             if (!ret && cacheattrs != NULL) {
10580                 if (env->cp15.hcr_el2 & HCR_DC) {
10581                     /*
10582                      * HCR.DC forces the first stage attributes to
10583                      *  Normal Non-Shareable,
10584                      *  Inner Write-Back Read-Allocate Write-Allocate,
10585                      *  Outer Write-Back Read-Allocate Write-Allocate.
10586                      */
10587                     cacheattrs->attrs = 0xff;
10588                     cacheattrs->shareability = 0;
10589                 }
10590                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10591             }
10592 
10593             return ret;
10594         } else {
10595             /*
10596              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10597              */
10598             mmu_idx = stage_1_mmu_idx(mmu_idx);
10599         }
10600     }
10601 
10602     /* The page table entries may downgrade secure to non-secure, but
10603      * cannot upgrade an non-secure translation regime's attributes
10604      * to secure.
10605      */
10606     attrs->secure = regime_is_secure(env, mmu_idx);
10607     attrs->user = regime_is_user(env, mmu_idx);
10608 
10609     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10610      * In v7 and earlier it affects all stage 1 translations.
10611      */
10612     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10613         && !arm_feature(env, ARM_FEATURE_V8)) {
10614         if (regime_el(env, mmu_idx) == 3) {
10615             address += env->cp15.fcseidr_s;
10616         } else {
10617             address += env->cp15.fcseidr_ns;
10618         }
10619     }
10620 
10621     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10622         bool ret;
10623         *page_size = TARGET_PAGE_SIZE;
10624 
10625         if (arm_feature(env, ARM_FEATURE_V8)) {
10626             /* PMSAv8 */
10627             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10628                                        phys_ptr, attrs, prot, page_size, fi);
10629         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10630             /* PMSAv7 */
10631             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10632                                        phys_ptr, prot, page_size, fi);
10633         } else {
10634             /* Pre-v7 MPU */
10635             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10636                                        phys_ptr, prot, fi);
10637         }
10638         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10639                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10640                       access_type == MMU_DATA_LOAD ? "reading" :
10641                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10642                       (uint32_t)address, mmu_idx,
10643                       ret ? "Miss" : "Hit",
10644                       *prot & PAGE_READ ? 'r' : '-',
10645                       *prot & PAGE_WRITE ? 'w' : '-',
10646                       *prot & PAGE_EXEC ? 'x' : '-');
10647 
10648         return ret;
10649     }
10650 
10651     /* Definitely a real MMU, not an MPU */
10652 
10653     if (regime_translation_disabled(env, mmu_idx)) {
10654         /* MMU disabled. */
10655         *phys_ptr = address;
10656         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10657         *page_size = TARGET_PAGE_SIZE;
10658         return 0;
10659     }
10660 
10661     if (regime_using_lpae_format(env, mmu_idx)) {
10662         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10663                                   phys_ptr, attrs, prot, page_size,
10664                                   fi, cacheattrs);
10665     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10666         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10667                                 phys_ptr, attrs, prot, page_size, fi);
10668     } else {
10669         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10670                                     phys_ptr, prot, page_size, fi);
10671     }
10672 }
10673 
10674 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10675                                          MemTxAttrs *attrs)
10676 {
10677     ARMCPU *cpu = ARM_CPU(cs);
10678     CPUARMState *env = &cpu->env;
10679     hwaddr phys_addr;
10680     target_ulong page_size;
10681     int prot;
10682     bool ret;
10683     ARMMMUFaultInfo fi = {};
10684     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10685 
10686     *attrs = (MemTxAttrs) {};
10687 
10688     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10689                         attrs, &prot, &page_size, &fi, NULL);
10690 
10691     if (ret) {
10692         return -1;
10693     }
10694     return phys_addr;
10695 }
10696 
10697 #endif
10698 
10699 /* Note that signed overflow is undefined in C.  The following routines are
10700    careful to use unsigned types where modulo arithmetic is required.
10701    Failure to do so _will_ break on newer gcc.  */
10702 
10703 /* Signed saturating arithmetic.  */
10704 
10705 /* Perform 16-bit signed saturating addition.  */
10706 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10707 {
10708     uint16_t res;
10709 
10710     res = a + b;
10711     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10712         if (a & 0x8000)
10713             res = 0x8000;
10714         else
10715             res = 0x7fff;
10716     }
10717     return res;
10718 }
10719 
10720 /* Perform 8-bit signed saturating addition.  */
10721 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10722 {
10723     uint8_t res;
10724 
10725     res = a + b;
10726     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10727         if (a & 0x80)
10728             res = 0x80;
10729         else
10730             res = 0x7f;
10731     }
10732     return res;
10733 }
10734 
10735 /* Perform 16-bit signed saturating subtraction.  */
10736 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10737 {
10738     uint16_t res;
10739 
10740     res = a - b;
10741     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10742         if (a & 0x8000)
10743             res = 0x8000;
10744         else
10745             res = 0x7fff;
10746     }
10747     return res;
10748 }
10749 
10750 /* Perform 8-bit signed saturating subtraction.  */
10751 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10752 {
10753     uint8_t res;
10754 
10755     res = a - b;
10756     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10757         if (a & 0x80)
10758             res = 0x80;
10759         else
10760             res = 0x7f;
10761     }
10762     return res;
10763 }
10764 
10765 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10766 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10767 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10768 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10769 #define PFX q
10770 
10771 #include "op_addsub.h"
10772 
10773 /* Unsigned saturating arithmetic.  */
10774 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10775 {
10776     uint16_t res;
10777     res = a + b;
10778     if (res < a)
10779         res = 0xffff;
10780     return res;
10781 }
10782 
10783 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10784 {
10785     if (a > b)
10786         return a - b;
10787     else
10788         return 0;
10789 }
10790 
10791 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10792 {
10793     uint8_t res;
10794     res = a + b;
10795     if (res < a)
10796         res = 0xff;
10797     return res;
10798 }
10799 
10800 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10801 {
10802     if (a > b)
10803         return a - b;
10804     else
10805         return 0;
10806 }
10807 
10808 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10809 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10810 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10811 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10812 #define PFX uq
10813 
10814 #include "op_addsub.h"
10815 
10816 /* Signed modulo arithmetic.  */
10817 #define SARITH16(a, b, n, op) do { \
10818     int32_t sum; \
10819     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10820     RESULT(sum, n, 16); \
10821     if (sum >= 0) \
10822         ge |= 3 << (n * 2); \
10823     } while(0)
10824 
10825 #define SARITH8(a, b, n, op) do { \
10826     int32_t sum; \
10827     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10828     RESULT(sum, n, 8); \
10829     if (sum >= 0) \
10830         ge |= 1 << n; \
10831     } while(0)
10832 
10833 
10834 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10835 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10836 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10837 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10838 #define PFX s
10839 #define ARITH_GE
10840 
10841 #include "op_addsub.h"
10842 
10843 /* Unsigned modulo arithmetic.  */
10844 #define ADD16(a, b, n) do { \
10845     uint32_t sum; \
10846     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10847     RESULT(sum, n, 16); \
10848     if ((sum >> 16) == 1) \
10849         ge |= 3 << (n * 2); \
10850     } while(0)
10851 
10852 #define ADD8(a, b, n) do { \
10853     uint32_t sum; \
10854     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10855     RESULT(sum, n, 8); \
10856     if ((sum >> 8) == 1) \
10857         ge |= 1 << n; \
10858     } while(0)
10859 
10860 #define SUB16(a, b, n) do { \
10861     uint32_t sum; \
10862     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10863     RESULT(sum, n, 16); \
10864     if ((sum >> 16) == 0) \
10865         ge |= 3 << (n * 2); \
10866     } while(0)
10867 
10868 #define SUB8(a, b, n) do { \
10869     uint32_t sum; \
10870     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10871     RESULT(sum, n, 8); \
10872     if ((sum >> 8) == 0) \
10873         ge |= 1 << n; \
10874     } while(0)
10875 
10876 #define PFX u
10877 #define ARITH_GE
10878 
10879 #include "op_addsub.h"
10880 
10881 /* Halved signed arithmetic.  */
10882 #define ADD16(a, b, n) \
10883   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10884 #define SUB16(a, b, n) \
10885   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10886 #define ADD8(a, b, n) \
10887   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10888 #define SUB8(a, b, n) \
10889   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10890 #define PFX sh
10891 
10892 #include "op_addsub.h"
10893 
10894 /* Halved unsigned arithmetic.  */
10895 #define ADD16(a, b, n) \
10896   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10897 #define SUB16(a, b, n) \
10898   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10899 #define ADD8(a, b, n) \
10900   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10901 #define SUB8(a, b, n) \
10902   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10903 #define PFX uh
10904 
10905 #include "op_addsub.h"
10906 
10907 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10908 {
10909     if (a > b)
10910         return a - b;
10911     else
10912         return b - a;
10913 }
10914 
10915 /* Unsigned sum of absolute byte differences.  */
10916 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10917 {
10918     uint32_t sum;
10919     sum = do_usad(a, b);
10920     sum += do_usad(a >> 8, b >> 8);
10921     sum += do_usad(a >> 16, b >>16);
10922     sum += do_usad(a >> 24, b >> 24);
10923     return sum;
10924 }
10925 
10926 /* For ARMv6 SEL instruction.  */
10927 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10928 {
10929     uint32_t mask;
10930 
10931     mask = 0;
10932     if (flags & 1)
10933         mask |= 0xff;
10934     if (flags & 2)
10935         mask |= 0xff00;
10936     if (flags & 4)
10937         mask |= 0xff0000;
10938     if (flags & 8)
10939         mask |= 0xff000000;
10940     return (a & mask) | (b & ~mask);
10941 }
10942 
10943 /* CRC helpers.
10944  * The upper bytes of val (above the number specified by 'bytes') must have
10945  * been zeroed out by the caller.
10946  */
10947 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10948 {
10949     uint8_t buf[4];
10950 
10951     stl_le_p(buf, val);
10952 
10953     /* zlib crc32 converts the accumulator and output to one's complement.  */
10954     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10955 }
10956 
10957 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10958 {
10959     uint8_t buf[4];
10960 
10961     stl_le_p(buf, val);
10962 
10963     /* Linux crc32c converts the output to one's complement.  */
10964     return crc32c(acc, buf, bytes) ^ 0xffffffff;
10965 }
10966 
10967 /* Return the exception level to which FP-disabled exceptions should
10968  * be taken, or 0 if FP is enabled.
10969  */
10970 int fp_exception_el(CPUARMState *env, int cur_el)
10971 {
10972 #ifndef CONFIG_USER_ONLY
10973     int fpen;
10974 
10975     /* CPACR and the CPTR registers don't exist before v6, so FP is
10976      * always accessible
10977      */
10978     if (!arm_feature(env, ARM_FEATURE_V6)) {
10979         return 0;
10980     }
10981 
10982     if (arm_feature(env, ARM_FEATURE_M)) {
10983         /* CPACR can cause a NOCP UsageFault taken to current security state */
10984         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10985             return 1;
10986         }
10987 
10988         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10989             if (!extract32(env->v7m.nsacr, 10, 1)) {
10990                 /* FP insns cause a NOCP UsageFault taken to Secure */
10991                 return 3;
10992             }
10993         }
10994 
10995         return 0;
10996     }
10997 
10998     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10999      * 0, 2 : trap EL0 and EL1/PL1 accesses
11000      * 1    : trap only EL0 accesses
11001      * 3    : trap no accesses
11002      */
11003     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11004     switch (fpen) {
11005     case 0:
11006     case 2:
11007         if (cur_el == 0 || cur_el == 1) {
11008             /* Trap to PL1, which might be EL1 or EL3 */
11009             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11010                 return 3;
11011             }
11012             return 1;
11013         }
11014         if (cur_el == 3 && !is_a64(env)) {
11015             /* Secure PL1 running at EL3 */
11016             return 3;
11017         }
11018         break;
11019     case 1:
11020         if (cur_el == 0) {
11021             return 1;
11022         }
11023         break;
11024     case 3:
11025         break;
11026     }
11027 
11028     /*
11029      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11030      * to control non-secure access to the FPU. It doesn't have any
11031      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11032      */
11033     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11034          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11035         if (!extract32(env->cp15.nsacr, 10, 1)) {
11036             /* FP insns act as UNDEF */
11037             return cur_el == 2 ? 2 : 1;
11038         }
11039     }
11040 
11041     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11042      * check because zero bits in the registers mean "don't trap".
11043      */
11044 
11045     /* CPTR_EL2 : present in v7VE or v8 */
11046     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11047         && !arm_is_secure_below_el3(env)) {
11048         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11049         return 2;
11050     }
11051 
11052     /* CPTR_EL3 : present in v8 */
11053     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11054         /* Trap all FP ops to EL3 */
11055         return 3;
11056     }
11057 #endif
11058     return 0;
11059 }
11060 
11061 #ifndef CONFIG_TCG
11062 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11063 {
11064     g_assert_not_reached();
11065 }
11066 #endif
11067 
11068 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11069 {
11070     int el;
11071 
11072     if (arm_feature(env, ARM_FEATURE_M)) {
11073         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11074     }
11075 
11076     el = arm_current_el(env);
11077     if (el < 2 && arm_is_secure_below_el3(env)) {
11078         return ARMMMUIdx_S1SE0 + el;
11079     } else {
11080         return ARMMMUIdx_S12NSE0 + el;
11081     }
11082 }
11083 
11084 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11085 {
11086     return arm_to_core_mmu_idx(arm_mmu_idx(env));
11087 }
11088 
11089 #ifndef CONFIG_USER_ONLY
11090 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11091 {
11092     return stage_1_mmu_idx(arm_mmu_idx(env));
11093 }
11094 #endif
11095 
11096 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11097                           target_ulong *cs_base, uint32_t *pflags)
11098 {
11099     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11100     int current_el = arm_current_el(env);
11101     int fp_el = fp_exception_el(env, current_el);
11102     uint32_t flags = 0;
11103 
11104     if (is_a64(env)) {
11105         ARMCPU *cpu = env_archcpu(env);
11106         uint64_t sctlr;
11107 
11108         *pc = env->pc;
11109         flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11110 
11111         /* Get control bits for tagged addresses.  */
11112         {
11113             ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11114             ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11115             int tbii, tbid;
11116 
11117             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
11118             if (regime_el(env, stage1) < 2) {
11119                 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11120                 tbid = (p1.tbi << 1) | p0.tbi;
11121                 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11122             } else {
11123                 tbid = p0.tbi;
11124                 tbii = tbid & !p0.tbid;
11125             }
11126 
11127             flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11128             flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11129         }
11130 
11131         if (cpu_isar_feature(aa64_sve, cpu)) {
11132             int sve_el = sve_exception_el(env, current_el);
11133             uint32_t zcr_len;
11134 
11135             /* If SVE is disabled, but FP is enabled,
11136              * then the effective len is 0.
11137              */
11138             if (sve_el != 0 && fp_el == 0) {
11139                 zcr_len = 0;
11140             } else {
11141                 zcr_len = sve_zcr_len_for_el(env, current_el);
11142             }
11143             flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11144             flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11145         }
11146 
11147         sctlr = arm_sctlr(env, current_el);
11148 
11149         if (cpu_isar_feature(aa64_pauth, cpu)) {
11150             /*
11151              * In order to save space in flags, we record only whether
11152              * pauth is "inactive", meaning all insns are implemented as
11153              * a nop, or "active" when some action must be performed.
11154              * The decision of which action to take is left to a helper.
11155              */
11156             if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11157                 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11158             }
11159         }
11160 
11161         if (cpu_isar_feature(aa64_bti, cpu)) {
11162             /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
11163             if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11164                 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11165             }
11166             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11167         }
11168     } else {
11169         *pc = env->regs[15];
11170         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11171         flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
11172         flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
11173         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11174         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
11175         flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11176         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
11177             || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
11178             flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11179         }
11180         /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
11181         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11182             flags = FIELD_DP32(flags, TBFLAG_A32,
11183                                XSCALE_CPAR, env->cp15.c15_cpar);
11184         }
11185     }
11186 
11187     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
11188 
11189     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11190      * states defined in the ARM ARM for software singlestep:
11191      *  SS_ACTIVE   PSTATE.SS   State
11192      *     0            x       Inactive (the TB flag for SS is always 0)
11193      *     1            0       Active-pending
11194      *     1            1       Active-not-pending
11195      */
11196     if (arm_singlestep_active(env)) {
11197         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11198         if (is_a64(env)) {
11199             if (env->pstate & PSTATE_SS) {
11200                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11201             }
11202         } else {
11203             if (env->uncached_cpsr & PSTATE_SS) {
11204                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11205             }
11206         }
11207     }
11208     if (arm_cpu_data_is_big_endian(env)) {
11209         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11210     }
11211     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11212 
11213     if (arm_v7m_is_handler_mode(env)) {
11214         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11215     }
11216 
11217     /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
11218      * suppressing them because the requested execution priority is less than 0.
11219      */
11220     if (arm_feature(env, ARM_FEATURE_V8) &&
11221         arm_feature(env, ARM_FEATURE_M) &&
11222         !((mmu_idx  & ARM_MMU_IDX_M_NEGPRI) &&
11223           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11224         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11225     }
11226 
11227     if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11228         FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
11229         flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11230     }
11231 
11232     if (arm_feature(env, ARM_FEATURE_M) &&
11233         (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11234         (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11235          (env->v7m.secure &&
11236           !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11237         /*
11238          * ASPEN is set, but FPCA/SFPA indicate that there is no active
11239          * FP context; we must create a new FP context before executing
11240          * any FP insn.
11241          */
11242         flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11243     }
11244 
11245     if (arm_feature(env, ARM_FEATURE_M)) {
11246         bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11247 
11248         if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11249             flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11250         }
11251     }
11252 
11253     if (!arm_feature(env, ARM_FEATURE_M)) {
11254         int target_el = arm_debug_target_el(env);
11255 
11256         flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, target_el);
11257     }
11258 
11259     *pflags = flags;
11260     *cs_base = 0;
11261 }
11262 
11263 #ifdef TARGET_AARCH64
11264 /*
11265  * The manual says that when SVE is enabled and VQ is widened the
11266  * implementation is allowed to zero the previously inaccessible
11267  * portion of the registers.  The corollary to that is that when
11268  * SVE is enabled and VQ is narrowed we are also allowed to zero
11269  * the now inaccessible portion of the registers.
11270  *
11271  * The intent of this is that no predicate bit beyond VQ is ever set.
11272  * Which means that some operations on predicate registers themselves
11273  * may operate on full uint64_t or even unrolled across the maximum
11274  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
11275  * may well be cheaper than conditionals to restrict the operation
11276  * to the relevant portion of a uint16_t[16].
11277  */
11278 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11279 {
11280     int i, j;
11281     uint64_t pmask;
11282 
11283     assert(vq >= 1 && vq <= ARM_MAX_VQ);
11284     assert(vq <= env_archcpu(env)->sve_max_vq);
11285 
11286     /* Zap the high bits of the zregs.  */
11287     for (i = 0; i < 32; i++) {
11288         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11289     }
11290 
11291     /* Zap the high bits of the pregs and ffr.  */
11292     pmask = 0;
11293     if (vq & 3) {
11294         pmask = ~(-1ULL << (16 * (vq & 3)));
11295     }
11296     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11297         for (i = 0; i < 17; ++i) {
11298             env->vfp.pregs[i].p[j] &= pmask;
11299         }
11300         pmask = 0;
11301     }
11302 }
11303 
11304 /*
11305  * Notice a change in SVE vector size when changing EL.
11306  */
11307 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11308                            int new_el, bool el0_a64)
11309 {
11310     ARMCPU *cpu = env_archcpu(env);
11311     int old_len, new_len;
11312     bool old_a64, new_a64;
11313 
11314     /* Nothing to do if no SVE.  */
11315     if (!cpu_isar_feature(aa64_sve, cpu)) {
11316         return;
11317     }
11318 
11319     /* Nothing to do if FP is disabled in either EL.  */
11320     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11321         return;
11322     }
11323 
11324     /*
11325      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11326      * at ELx, or not available because the EL is in AArch32 state, then
11327      * for all purposes other than a direct read, the ZCR_ELx.LEN field
11328      * has an effective value of 0".
11329      *
11330      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11331      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11332      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
11333      * we already have the correct register contents when encountering the
11334      * vq0->vq0 transition between EL0->EL1.
11335      */
11336     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11337     old_len = (old_a64 && !sve_exception_el(env, old_el)
11338                ? sve_zcr_len_for_el(env, old_el) : 0);
11339     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11340     new_len = (new_a64 && !sve_exception_el(env, new_el)
11341                ? sve_zcr_len_for_el(env, new_el) : 0);
11342 
11343     /* When changing vector length, clear inaccessible state.  */
11344     if (new_len < old_len) {
11345         aarch64_sve_narrow_vq(env, new_len + 1);
11346     }
11347 }
11348 #endif
11349