1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 373 return CP_ACCESS_TRAP_EL2; 374 } 375 return CP_ACCESS_OK; 376 } 377 378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 if (arm_current_el(env) == 1 && 383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 384 return CP_ACCESS_TRAP_EL2; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 #ifdef TARGET_AARCH64 390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 1 && 395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 396 return CP_ACCESS_TRAP_EL2; 397 } 398 return CP_ACCESS_OK; 399 } 400 #endif 401 402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 403 { 404 ARMCPU *cpu = env_archcpu(env); 405 406 raw_write(env, ri, value); 407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 408 } 409 410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 411 { 412 ARMCPU *cpu = env_archcpu(env); 413 414 if (raw_read(env, ri) != value) { 415 /* 416 * Unlike real hardware the qemu TLB uses virtual addresses, 417 * not modified virtual addresses, so this causes a TLB flush. 418 */ 419 tlb_flush(CPU(cpu)); 420 raw_write(env, ri, value); 421 } 422 } 423 424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 ARMCPU *cpu = env_archcpu(env); 428 429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 430 && !extended_addresses_enabled(env)) { 431 /* 432 * For VMSA (when not using the LPAE long descriptor page table 433 * format) this register includes the ASID, so do a TLB flush. 434 * For PMSA it is purely a process ID and no action is needed. 435 */ 436 tlb_flush(CPU(cpu)); 437 } 438 raw_write(env, ri, value); 439 } 440 441 static int alle1_tlbmask(CPUARMState *env) 442 { 443 /* 444 * Note that the 'ALL' scope must invalidate both stage 1 and 445 * stage 2 translations, whereas most other scopes only invalidate 446 * stage 1 translations. 447 */ 448 return (ARMMMUIdxBit_E10_1 | 449 ARMMMUIdxBit_E10_1_PAN | 450 ARMMMUIdxBit_E10_0 | 451 ARMMMUIdxBit_Stage2 | 452 ARMMMUIdxBit_Stage2_S); 453 } 454 455 456 /* IS variants of TLB operations must affect all cores */ 457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 458 uint64_t value) 459 { 460 CPUState *cs = env_cpu(env); 461 462 tlb_flush_all_cpus_synced(cs); 463 } 464 465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 466 uint64_t value) 467 { 468 CPUState *cs = env_cpu(env); 469 470 tlb_flush_all_cpus_synced(cs); 471 } 472 473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 CPUState *cs = env_cpu(env); 477 478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 479 } 480 481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 482 uint64_t value) 483 { 484 CPUState *cs = env_cpu(env); 485 486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 487 } 488 489 /* 490 * Non-IS variants of TLB operations are upgraded to 491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 492 * force broadcast of these operations. 493 */ 494 static bool tlb_force_broadcast(CPUARMState *env) 495 { 496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 CPUState *cs = env_cpu(env); 504 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_all_cpus_synced(cs); 507 } else { 508 tlb_flush(cs); 509 } 510 } 511 512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 516 CPUState *cs = env_cpu(env); 517 518 value &= TARGET_PAGE_MASK; 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_page_all_cpus_synced(cs, value); 521 } else { 522 tlb_flush_page(cs, value); 523 } 524 } 525 526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate by ASID (TLBIASID) */ 530 CPUState *cs = env_cpu(env); 531 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_all_cpus_synced(cs); 534 } else { 535 tlb_flush(cs); 536 } 537 } 538 539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 543 CPUState *cs = env_cpu(env); 544 545 value &= TARGET_PAGE_MASK; 546 if (tlb_force_broadcast(env)) { 547 tlb_flush_page_all_cpus_synced(cs, value); 548 } else { 549 tlb_flush_page(cs, value); 550 } 551 } 552 553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 CPUState *cs = env_cpu(env); 557 558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 559 } 560 561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = env_cpu(env); 565 566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 567 } 568 569 570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 576 } 577 578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 584 } 585 586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 591 592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 593 } 594 595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 600 601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 602 ARMMMUIdxBit_E2); 603 } 604 605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 610 611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 612 } 613 614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 619 620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* 625 * Define the secure and non-secure FCSE identifier CP registers 626 * separately because there is no secure bank in V8 (no _EL3). This allows 627 * the secure register to be properly reset and migrated. There is also no 628 * v8 EL1 version of the register so the non-secure instance stands alone. 629 */ 630 { .name = "FCSEIDR", 631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 635 { .name = "FCSEIDR_S", 636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 640 /* 641 * Define the secure and non-secure context identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. In the 644 * non-secure case, the 32-bit register will have reset and migration 645 * disabled during registration as it is handled by the 64-bit instance. 646 */ 647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 649 .access = PL1_RW, .accessfn = access_tvm_trvm, 650 .fgt = FGT_CONTEXTIDR_EL1, 651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 652 .secure = ARM_CP_SECSTATE_NS, 653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, 658 .secure = ARM_CP_SECSTATE_S, 659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 661 }; 662 663 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 664 /* 665 * NB: Some of these registers exist in v8 but with more precise 666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 667 */ 668 /* MMU Domain access control / MPU write buffer control */ 669 { .name = "DACR", 670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 672 .writefn = dacr_write, .raw_writefn = raw_write, 673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 674 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 675 /* 676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 677 * For v6 and v5, these mappings are overly broad. 678 */ 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 687 /* Cache maintenance ops; some of this space may be overridden later. */ 688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 691 }; 692 693 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 694 /* 695 * Not all pre-v6 cores implemented this WFI, so this is slightly 696 * over-broad. 697 */ 698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 699 .access = PL1_W, .type = ARM_CP_WFI }, 700 }; 701 702 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 703 /* 704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 705 * is UNPREDICTABLE; we choose to NOP as most implementations do). 706 */ 707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 708 .access = PL1_W, .type = ARM_CP_WFI }, 709 /* 710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 712 * OMAPCP will override this space. 713 */ 714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 716 .resetvalue = 0 }, 717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 719 .resetvalue = 0 }, 720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 723 .resetvalue = 0 }, 724 /* 725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 726 * implementing it as RAZ means the "debug architecture version" bits 727 * will read as a reserved value, which should cause Linux to not try 728 * to use the debug hardware. 729 */ 730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 732 /* 733 * MMU TLB control. Note that the wildcarding means we cover not just 734 * the unified TLB ops but also the dside/iside/inner-shareable variants. 735 */ 736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 738 .type = ARM_CP_NO_RAW }, 739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 752 }; 753 754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 uint32_t mask = 0; 758 759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 760 if (!arm_feature(env, ARM_FEATURE_V8)) { 761 /* 762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 765 */ 766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 767 /* VFP coprocessor: cp10 & cp11 [23:20] */ 768 mask |= R_CPACR_ASEDIS_MASK | 769 R_CPACR_D32DIS_MASK | 770 R_CPACR_CP11_MASK | 771 R_CPACR_CP10_MASK; 772 773 if (!arm_feature(env, ARM_FEATURE_NEON)) { 774 /* ASEDIS [31] bit is RAO/WI */ 775 value |= R_CPACR_ASEDIS_MASK; 776 } 777 778 /* 779 * VFPv3 and upwards with NEON implement 32 double precision 780 * registers (D0-D31). 781 */ 782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 784 value |= R_CPACR_D32DIS_MASK; 785 } 786 } 787 value &= mask; 788 } 789 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 798 } 799 800 env->cp15.cpacr_el1 = value; 801 } 802 803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 808 */ 809 uint64_t value = env->cp15.cpacr_el1; 810 811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 814 } 815 return value; 816 } 817 818 819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 820 { 821 /* 822 * Call cpacr_write() so that we reset with the correct RAO bits set 823 * for our CPU features. 824 */ 825 cpacr_write(env, ri, 0); 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && 851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 852 return CP_ACCESS_TRAP_EL3; 853 } 854 855 return CP_ACCESS_OK; 856 } 857 858 static const ARMCPRegInfo v6_cp_reginfo[] = { 859 /* prefetch by MVA in v6, NOP in v7 */ 860 { .name = "MVA_prefetch", 861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 862 .access = PL1_W, .type = ARM_CP_NOP }, 863 /* 864 * We need to break the TB after ISB to execute self-modifying code 865 * correctly and also to take any pending interrupts immediately. 866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 867 */ 868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 875 .access = PL1_RW, .accessfn = access_tvm_trvm, 876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 877 offsetof(CPUARMState, cp15.ifar_ns) }, 878 .resetvalue = 0, }, 879 /* 880 * Watchpoint Fault Address Register : should actually only be present 881 * for 1136, 1176, 11MPCore. 882 */ 883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 887 .fgt = FGT_CPACR_EL1, 888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 /* Precise instruction counting */ 953 return icount_enabled() == ICOUNT_PRECISE; 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 assert(icount_enabled() == ICOUNT_PRECISE); 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 assert(icount_enabled() == ICOUNT_PRECISE); 965 return icount_to_ns((int64_t)icount); 966 } 967 #endif 968 969 static bool pmuv3p1_events_supported(CPUARMState *env) 970 { 971 /* For events which are supported in any v8.1 PMU */ 972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 973 } 974 975 static bool pmuv3p4_events_supported(CPUARMState *env) 976 { 977 /* For events which are supported in any v8.1 PMU */ 978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 979 } 980 981 static uint64_t zero_event_get_count(CPUARMState *env) 982 { 983 /* For events which on QEMU never fire, so their count is always zero */ 984 return 0; 985 } 986 987 static int64_t zero_event_ns_per(uint64_t cycles) 988 { 989 /* An event which never fires can never overflow */ 990 return -1; 991 } 992 993 static const pm_event pm_events[] = { 994 { .number = 0x000, /* SW_INCR */ 995 .supported = event_always_supported, 996 .get_count = swinc_get_count, 997 .ns_per_count = swinc_ns_per, 998 }, 999 #ifndef CONFIG_USER_ONLY 1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1001 .supported = instructions_supported, 1002 .get_count = instructions_get_count, 1003 .ns_per_count = instructions_ns_per, 1004 }, 1005 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1006 .supported = event_always_supported, 1007 .get_count = cycles_get_count, 1008 .ns_per_count = cycles_ns_per, 1009 }, 1010 #endif 1011 { .number = 0x023, /* STALL_FRONTEND */ 1012 .supported = pmuv3p1_events_supported, 1013 .get_count = zero_event_get_count, 1014 .ns_per_count = zero_event_ns_per, 1015 }, 1016 { .number = 0x024, /* STALL_BACKEND */ 1017 .supported = pmuv3p1_events_supported, 1018 .get_count = zero_event_get_count, 1019 .ns_per_count = zero_event_ns_per, 1020 }, 1021 { .number = 0x03c, /* STALL */ 1022 .supported = pmuv3p4_events_supported, 1023 .get_count = zero_event_get_count, 1024 .ns_per_count = zero_event_ns_per, 1025 }, 1026 }; 1027 1028 /* 1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1030 * events (i.e. the statistical profiling extension), this implementation 1031 * should first be updated to something sparse instead of the current 1032 * supported_event_map[] array. 1033 */ 1034 #define MAX_EVENT_ID 0x3c 1035 #define UNSUPPORTED_EVENT UINT16_MAX 1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1037 1038 /* 1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1040 * of ARM event numbers to indices in our pm_events array. 1041 * 1042 * Note: Events in the 0x40XX range are not currently supported. 1043 */ 1044 void pmu_init(ARMCPU *cpu) 1045 { 1046 unsigned int i; 1047 1048 /* 1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1050 * events to them 1051 */ 1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1053 supported_event_map[i] = UNSUPPORTED_EVENT; 1054 } 1055 cpu->pmceid0 = 0; 1056 cpu->pmceid1 = 0; 1057 1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1059 const pm_event *cnt = &pm_events[i]; 1060 assert(cnt->number <= MAX_EVENT_ID); 1061 /* We do not currently support events in the 0x40xx range */ 1062 assert(cnt->number <= 0x3f); 1063 1064 if (cnt->supported(&cpu->env)) { 1065 supported_event_map[cnt->number] = i; 1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1067 if (cnt->number & 0x20) { 1068 cpu->pmceid1 |= event_mask; 1069 } else { 1070 cpu->pmceid0 |= event_mask; 1071 } 1072 } 1073 } 1074 } 1075 1076 /* 1077 * Check at runtime whether a PMU event is supported for the current machine 1078 */ 1079 static bool event_supported(uint16_t number) 1080 { 1081 if (number > MAX_EVENT_ID) { 1082 return false; 1083 } 1084 return supported_event_map[number] != UNSUPPORTED_EVENT; 1085 } 1086 1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1088 bool isread) 1089 { 1090 /* 1091 * Performance monitor registers user accessibility is controlled 1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1093 * trapping to EL2 or EL3 for other accesses. 1094 */ 1095 int el = arm_current_el(env); 1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1097 1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1099 return CP_ACCESS_TRAP; 1100 } 1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL2; 1103 } 1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1105 return CP_ACCESS_TRAP_EL3; 1106 } 1107 1108 return CP_ACCESS_OK; 1109 } 1110 1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1112 const ARMCPRegInfo *ri, 1113 bool isread) 1114 { 1115 /* ER: event counter read trap control */ 1116 if (arm_feature(env, ARM_FEATURE_V8) 1117 && arm_current_el(env) == 0 1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1119 && isread) { 1120 return CP_ACCESS_OK; 1121 } 1122 1123 return pmreg_access(env, ri, isread); 1124 } 1125 1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1127 const ARMCPRegInfo *ri, 1128 bool isread) 1129 { 1130 /* SW: software increment write trap control */ 1131 if (arm_feature(env, ARM_FEATURE_V8) 1132 && arm_current_el(env) == 0 1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1134 && !isread) { 1135 return CP_ACCESS_OK; 1136 } 1137 1138 return pmreg_access(env, ri, isread); 1139 } 1140 1141 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1142 const ARMCPRegInfo *ri, 1143 bool isread) 1144 { 1145 /* ER: event counter read trap control */ 1146 if (arm_feature(env, ARM_FEATURE_V8) 1147 && arm_current_el(env) == 0 1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1149 return CP_ACCESS_OK; 1150 } 1151 1152 return pmreg_access(env, ri, isread); 1153 } 1154 1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1156 const ARMCPRegInfo *ri, 1157 bool isread) 1158 { 1159 /* CR: cycle counter read trap control */ 1160 if (arm_feature(env, ARM_FEATURE_V8) 1161 && arm_current_el(env) == 0 1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1163 && isread) { 1164 return CP_ACCESS_OK; 1165 } 1166 1167 return pmreg_access(env, ri, isread); 1168 } 1169 1170 /* 1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1172 * We use these to decide whether we need to wrap a write to MDCR_EL2 1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1174 */ 1175 #define MDCR_EL2_PMU_ENABLE_BITS \ 1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1178 1179 /* 1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1181 * the current EL, security state, and register configuration. 1182 */ 1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1184 { 1185 uint64_t filter; 1186 bool e, p, u, nsk, nsu, nsh, m; 1187 bool enabled, prohibited = false, filtered; 1188 bool secure = arm_is_secure(env); 1189 int el = arm_current_el(env); 1190 uint64_t mdcr_el2; 1191 uint8_t hpmn; 1192 1193 /* 1194 * We might be called for M-profile cores where MDCR_EL2 doesn't 1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 1196 * must be before we read that value. 1197 */ 1198 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1199 return false; 1200 } 1201 1202 mdcr_el2 = arm_mdcr_el2_eff(env); 1203 hpmn = mdcr_el2 & MDCR_HPMN; 1204 1205 if (!arm_feature(env, ARM_FEATURE_EL2) || 1206 (counter < hpmn || counter == 31)) { 1207 e = env->cp15.c9_pmcr & PMCRE; 1208 } else { 1209 e = mdcr_el2 & MDCR_HPME; 1210 } 1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1212 1213 /* Is event counting prohibited? */ 1214 if (el == 2 && (counter < hpmn || counter == 31)) { 1215 prohibited = mdcr_el2 & MDCR_HPMD; 1216 } 1217 if (secure) { 1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1219 } 1220 1221 if (counter == 31) { 1222 /* 1223 * The cycle counter defaults to running. PMCR.DP says "disable 1224 * the cycle counter when event counting is prohibited". 1225 * Some MDCR bits disable the cycle counter specifically. 1226 */ 1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1229 if (secure) { 1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1231 } 1232 if (el == 2) { 1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1234 } 1235 } 1236 } 1237 1238 if (counter == 31) { 1239 filter = env->cp15.pmccfiltr_el0; 1240 } else { 1241 filter = env->cp15.c14_pmevtyper[counter]; 1242 } 1243 1244 p = filter & PMXEVTYPER_P; 1245 u = filter & PMXEVTYPER_U; 1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1249 m = arm_el_is_aa64(env, 1) && 1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1251 1252 if (el == 0) { 1253 filtered = secure ? u : u != nsu; 1254 } else if (el == 1) { 1255 filtered = secure ? p : p != nsk; 1256 } else if (el == 2) { 1257 filtered = !nsh; 1258 } else { /* EL3 */ 1259 filtered = m != p; 1260 } 1261 1262 if (counter != 31) { 1263 /* 1264 * If not checking PMCCNTR, ensure the counter is setup to an event we 1265 * support 1266 */ 1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1268 if (!event_supported(event)) { 1269 return false; 1270 } 1271 } 1272 1273 return enabled && !prohibited && !filtered; 1274 } 1275 1276 static void pmu_update_irq(CPUARMState *env) 1277 { 1278 ARMCPU *cpu = env_archcpu(env); 1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1281 } 1282 1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1284 { 1285 /* 1286 * Return true if the clock divider is enabled and the cycle counter 1287 * is supposed to tick only once every 64 clock cycles. This is 1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1289 * (64-bit) cycle counter PMCR.D has no effect. 1290 */ 1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1292 } 1293 1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1295 { 1296 /* Return true if the specified event counter is configured to be 64 bit */ 1297 1298 /* This isn't intended to be used with the cycle counter */ 1299 assert(counter < 31); 1300 1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1302 return false; 1303 } 1304 1305 if (arm_feature(env, ARM_FEATURE_EL2)) { 1306 /* 1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1308 * current security state, so we don't use arm_mdcr_el2_eff() here. 1309 */ 1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1312 1313 if (counter >= hpmn) { 1314 return hlp; 1315 } 1316 } 1317 return env->cp15.c9_pmcr & PMCRLP; 1318 } 1319 1320 /* 1321 * Ensure c15_ccnt is the guest-visible count so that operations such as 1322 * enabling/disabling the counter or filtering, modifying the count itself, 1323 * etc. can be done logically. This is essentially a no-op if the counter is 1324 * not enabled at the time of the call. 1325 */ 1326 static void pmccntr_op_start(CPUARMState *env) 1327 { 1328 uint64_t cycles = cycles_get_count(env); 1329 1330 if (pmu_counter_enabled(env, 31)) { 1331 uint64_t eff_cycles = cycles; 1332 if (pmccntr_clockdiv_enabled(env)) { 1333 eff_cycles /= 64; 1334 } 1335 1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1337 1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1339 1ull << 63 : 1ull << 31; 1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1341 env->cp15.c9_pmovsr |= (1ULL << 31); 1342 pmu_update_irq(env); 1343 } 1344 1345 env->cp15.c15_ccnt = new_pmccntr; 1346 } 1347 env->cp15.c15_ccnt_delta = cycles; 1348 } 1349 1350 /* 1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1353 * pmccntr_op_start. 1354 */ 1355 static void pmccntr_op_finish(CPUARMState *env) 1356 { 1357 if (pmu_counter_enabled(env, 31)) { 1358 #ifndef CONFIG_USER_ONLY 1359 /* Calculate when the counter will next overflow */ 1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1361 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1362 remaining_cycles = (uint32_t)remaining_cycles; 1363 } 1364 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1365 1366 if (overflow_in > 0) { 1367 int64_t overflow_at; 1368 1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1370 overflow_in, &overflow_at)) { 1371 ARMCPU *cpu = env_archcpu(env); 1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1373 } 1374 } 1375 #endif 1376 1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1378 if (pmccntr_clockdiv_enabled(env)) { 1379 prev_cycles /= 64; 1380 } 1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1382 } 1383 } 1384 1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1386 { 1387 1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1389 uint64_t count = 0; 1390 if (event_supported(event)) { 1391 uint16_t event_idx = supported_event_map[event]; 1392 count = pm_events[event_idx].get_count(env); 1393 } 1394 1395 if (pmu_counter_enabled(env, counter)) { 1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1398 1ULL << 63 : 1ULL << 31; 1399 1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1401 env->cp15.c9_pmovsr |= (1 << counter); 1402 pmu_update_irq(env); 1403 } 1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1405 } 1406 env->cp15.c14_pmevcntr_delta[counter] = count; 1407 } 1408 1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1410 { 1411 if (pmu_counter_enabled(env, counter)) { 1412 #ifndef CONFIG_USER_ONLY 1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1414 uint16_t event_idx = supported_event_map[event]; 1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1416 int64_t overflow_in; 1417 1418 if (!pmevcntr_is_64_bit(env, counter)) { 1419 delta = (uint32_t)delta; 1420 } 1421 overflow_in = pm_events[event_idx].ns_per_count(delta); 1422 1423 if (overflow_in > 0) { 1424 int64_t overflow_at; 1425 1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1427 overflow_in, &overflow_at)) { 1428 ARMCPU *cpu = env_archcpu(env); 1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1430 } 1431 } 1432 #endif 1433 1434 env->cp15.c14_pmevcntr_delta[counter] -= 1435 env->cp15.c14_pmevcntr[counter]; 1436 } 1437 } 1438 1439 void pmu_op_start(CPUARMState *env) 1440 { 1441 unsigned int i; 1442 pmccntr_op_start(env); 1443 for (i = 0; i < pmu_num_counters(env); i++) { 1444 pmevcntr_op_start(env, i); 1445 } 1446 } 1447 1448 void pmu_op_finish(CPUARMState *env) 1449 { 1450 unsigned int i; 1451 pmccntr_op_finish(env); 1452 for (i = 0; i < pmu_num_counters(env); i++) { 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1458 { 1459 pmu_op_start(&cpu->env); 1460 } 1461 1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1463 { 1464 pmu_op_finish(&cpu->env); 1465 } 1466 1467 void arm_pmu_timer_cb(void *opaque) 1468 { 1469 ARMCPU *cpu = opaque; 1470 1471 /* 1472 * Update all the counter values based on the current underlying counts, 1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1475 * counter may expire. 1476 */ 1477 pmu_op_start(&cpu->env); 1478 pmu_op_finish(&cpu->env); 1479 } 1480 1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1482 uint64_t value) 1483 { 1484 pmu_op_start(env); 1485 1486 if (value & PMCRC) { 1487 /* The counter has been reset */ 1488 env->cp15.c15_ccnt = 0; 1489 } 1490 1491 if (value & PMCRP) { 1492 unsigned int i; 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 env->cp15.c14_pmevcntr[i] = 0; 1495 } 1496 } 1497 1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1500 1501 pmu_op_finish(env); 1502 } 1503 1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1505 { 1506 uint64_t pmcr = env->cp15.c9_pmcr; 1507 1508 /* 1509 * If EL2 is implemented and enabled for the current security state, reads 1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1511 */ 1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1513 pmcr &= ~PMCRN_MASK; 1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1515 } 1516 1517 return pmcr; 1518 } 1519 1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 unsigned int i; 1524 uint64_t overflow_mask, new_pmswinc; 1525 1526 for (i = 0; i < pmu_num_counters(env); i++) { 1527 /* Increment a counter's count iff: */ 1528 if ((value & (1 << i)) && /* counter's bit is set */ 1529 /* counter is enabled and not filtered */ 1530 pmu_counter_enabled(env, i) && 1531 /* counter is SW_INCR */ 1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1533 pmevcntr_op_start(env, i); 1534 1535 /* 1536 * Detect if this write causes an overflow since we can't predict 1537 * PMSWINC overflows like we can for other events 1538 */ 1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1540 1541 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1542 1ULL << 63 : 1ULL << 31; 1543 1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1545 env->cp15.c9_pmovsr |= (1 << i); 1546 pmu_update_irq(env); 1547 } 1548 1549 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1550 1551 pmevcntr_op_finish(env, i); 1552 } 1553 } 1554 } 1555 1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1557 { 1558 uint64_t ret; 1559 pmccntr_op_start(env); 1560 ret = env->cp15.c15_ccnt; 1561 pmccntr_op_finish(env); 1562 return ret; 1563 } 1564 1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1566 uint64_t value) 1567 { 1568 /* 1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1572 * accessed. 1573 */ 1574 env->cp15.c9_pmselr = value & 0x1f; 1575 } 1576 1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1578 uint64_t value) 1579 { 1580 pmccntr_op_start(env); 1581 env->cp15.c15_ccnt = value; 1582 pmccntr_op_finish(env); 1583 } 1584 1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1586 uint64_t value) 1587 { 1588 uint64_t cur_val = pmccntr_read(env, NULL); 1589 1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1591 } 1592 1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 pmccntr_op_start(env); 1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1598 pmccntr_op_finish(env); 1599 } 1600 1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 pmccntr_op_start(env); 1605 /* M is not accessible from AArch32 */ 1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1607 (value & PMCCFILTR); 1608 pmccntr_op_finish(env); 1609 } 1610 1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 /* M is not visible in AArch32 */ 1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1615 } 1616 1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 pmu_op_start(env); 1621 value &= pmu_counter_mask(env); 1622 env->cp15.c9_pmcnten |= value; 1623 pmu_op_finish(env); 1624 } 1625 1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 pmu_op_start(env); 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pmcnten &= ~value; 1632 pmu_op_finish(env); 1633 } 1634 1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pmovsr &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 value &= pmu_counter_mask(env); 1647 env->cp15.c9_pmovsr |= value; 1648 pmu_update_irq(env); 1649 } 1650 1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value, const uint8_t counter) 1653 { 1654 if (counter == 31) { 1655 pmccfiltr_write(env, ri, value); 1656 } else if (counter < pmu_num_counters(env)) { 1657 pmevcntr_op_start(env, counter); 1658 1659 /* 1660 * If this counter's event type is changing, store the current 1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1662 * pmevcntr_op_finish has the correct baseline when it converts back to 1663 * a delta. 1664 */ 1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1666 PMXEVTYPER_EVTCOUNT; 1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1668 if (old_event != new_event) { 1669 uint64_t count = 0; 1670 if (event_supported(new_event)) { 1671 uint16_t event_idx = supported_event_map[new_event]; 1672 count = pm_events[event_idx].get_count(env); 1673 } 1674 env->cp15.c14_pmevcntr_delta[counter] = count; 1675 } 1676 1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1678 pmevcntr_op_finish(env, counter); 1679 } 1680 /* 1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1682 * PMSELR value is equal to or greater than the number of implemented 1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1684 */ 1685 } 1686 1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1688 const uint8_t counter) 1689 { 1690 if (counter == 31) { 1691 return env->cp15.pmccfiltr_el0; 1692 } else if (counter < pmu_num_counters(env)) { 1693 return env->cp15.c14_pmevtyper[counter]; 1694 } else { 1695 /* 1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1698 */ 1699 return 0; 1700 } 1701 } 1702 1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1707 pmevtyper_write(env, ri, value, counter); 1708 } 1709 1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1714 env->cp15.c14_pmevtyper[counter] = value; 1715 1716 /* 1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1718 * pmu_op_finish calls when loading saved state for a migration. Because 1719 * we're potentially updating the type of event here, the value written to 1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1721 * different counter type. Therefore, we need to set this value to the 1722 * current count for the counter type we're writing so that pmu_op_finish 1723 * has the correct count for its calculation. 1724 */ 1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1726 if (event_supported(event)) { 1727 uint16_t event_idx = supported_event_map[event]; 1728 env->cp15.c14_pmevcntr_delta[counter] = 1729 pm_events[event_idx].get_count(env); 1730 } 1731 } 1732 1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1736 return pmevtyper_read(env, ri, counter); 1737 } 1738 1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1743 } 1744 1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1746 { 1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1748 } 1749 1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value, uint8_t counter) 1752 { 1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1755 value &= MAKE_64BIT_MASK(0, 32); 1756 } 1757 if (counter < pmu_num_counters(env)) { 1758 pmevcntr_op_start(env, counter); 1759 env->cp15.c14_pmevcntr[counter] = value; 1760 pmevcntr_op_finish(env, counter); 1761 } 1762 /* 1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1764 * are CONSTRAINED UNPREDICTABLE. 1765 */ 1766 } 1767 1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint8_t counter) 1770 { 1771 if (counter < pmu_num_counters(env)) { 1772 uint64_t ret; 1773 pmevcntr_op_start(env, counter); 1774 ret = env->cp15.c14_pmevcntr[counter]; 1775 pmevcntr_op_finish(env, counter); 1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1778 ret &= MAKE_64BIT_MASK(0, 32); 1779 } 1780 return ret; 1781 } else { 1782 /* 1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1784 * are CONSTRAINED UNPREDICTABLE. 1785 */ 1786 return 0; 1787 } 1788 } 1789 1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1794 pmevcntr_write(env, ri, value, counter); 1795 } 1796 1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1800 return pmevcntr_read(env, ri, counter); 1801 } 1802 1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value) 1805 { 1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1807 assert(counter < pmu_num_counters(env)); 1808 env->cp15.c14_pmevcntr[counter] = value; 1809 pmevcntr_write(env, ri, value, counter); 1810 } 1811 1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1813 { 1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1815 assert(counter < pmu_num_counters(env)); 1816 return env->cp15.c14_pmevcntr[counter]; 1817 } 1818 1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1823 } 1824 1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 if (arm_feature(env, ARM_FEATURE_V8)) { 1834 env->cp15.c9_pmuserenr = value & 0xf; 1835 } else { 1836 env->cp15.c9_pmuserenr = value & 1; 1837 } 1838 } 1839 1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1841 uint64_t value) 1842 { 1843 /* We have no event counters so only the C bit can be changed */ 1844 value &= pmu_counter_mask(env); 1845 env->cp15.c9_pminten |= value; 1846 pmu_update_irq(env); 1847 } 1848 1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 value &= pmu_counter_mask(env); 1853 env->cp15.c9_pminten &= ~value; 1854 pmu_update_irq(env); 1855 } 1856 1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 /* 1861 * Note that even though the AArch64 view of this register has bits 1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1863 * architectural requirements for bits which are RES0 only in some 1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1866 */ 1867 raw_write(env, ri, value & ~0x1FULL); 1868 } 1869 1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1871 { 1872 /* Begin with base v8.0 state. */ 1873 uint64_t valid_mask = 0x3fff; 1874 ARMCPU *cpu = env_archcpu(env); 1875 uint64_t changed; 1876 1877 /* 1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1880 * Instead, choose the format based on the mode of EL3. 1881 */ 1882 if (arm_el_is_aa64(env, 3)) { 1883 value |= SCR_FW | SCR_AW; /* RES1 */ 1884 valid_mask &= ~SCR_NET; /* RES0 */ 1885 1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1888 value |= SCR_RW; /* RAO/WI */ 1889 } 1890 if (cpu_isar_feature(aa64_ras, cpu)) { 1891 valid_mask |= SCR_TERR; 1892 } 1893 if (cpu_isar_feature(aa64_lor, cpu)) { 1894 valid_mask |= SCR_TLOR; 1895 } 1896 if (cpu_isar_feature(aa64_pauth, cpu)) { 1897 valid_mask |= SCR_API | SCR_APK; 1898 } 1899 if (cpu_isar_feature(aa64_sel2, cpu)) { 1900 valid_mask |= SCR_EEL2; 1901 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1903 value |= SCR_NS; 1904 } 1905 if (cpu_isar_feature(aa64_mte, cpu)) { 1906 valid_mask |= SCR_ATA; 1907 } 1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1909 valid_mask |= SCR_ENSCXT; 1910 } 1911 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1912 valid_mask |= SCR_EASE | SCR_NMEA; 1913 } 1914 if (cpu_isar_feature(aa64_sme, cpu)) { 1915 valid_mask |= SCR_ENTP2; 1916 } 1917 if (cpu_isar_feature(aa64_hcx, cpu)) { 1918 valid_mask |= SCR_HXEN; 1919 } 1920 if (cpu_isar_feature(aa64_fgt, cpu)) { 1921 valid_mask |= SCR_FGTEN; 1922 } 1923 if (cpu_isar_feature(aa64_rme, cpu)) { 1924 valid_mask |= SCR_NSE | SCR_GPF; 1925 } 1926 if (cpu_isar_feature(aa64_ecv, cpu)) { 1927 valid_mask |= SCR_ECVEN; 1928 } 1929 } else { 1930 valid_mask &= ~(SCR_RW | SCR_ST); 1931 if (cpu_isar_feature(aa32_ras, cpu)) { 1932 valid_mask |= SCR_TERR; 1933 } 1934 } 1935 1936 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1937 valid_mask &= ~SCR_HCE; 1938 1939 /* 1940 * On ARMv7, SMD (or SCD as it is called in v7) is only 1941 * supported if EL2 exists. The bit is UNK/SBZP when 1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1943 * when EL2 is unavailable. 1944 * On ARMv8, this bit is always available. 1945 */ 1946 if (arm_feature(env, ARM_FEATURE_V7) && 1947 !arm_feature(env, ARM_FEATURE_V8)) { 1948 valid_mask &= ~SCR_SMD; 1949 } 1950 } 1951 1952 /* Clear all-context RES0 bits. */ 1953 value &= valid_mask; 1954 changed = env->cp15.scr_el3 ^ value; 1955 env->cp15.scr_el3 = value; 1956 1957 /* 1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1959 * we must invalidate all TLBs below EL3. 1960 */ 1961 if (changed & (SCR_NS | SCR_NSE)) { 1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1963 ARMMMUIdxBit_E20_0 | 1964 ARMMMUIdxBit_E10_1 | 1965 ARMMMUIdxBit_E20_2 | 1966 ARMMMUIdxBit_E10_1_PAN | 1967 ARMMMUIdxBit_E20_2_PAN | 1968 ARMMMUIdxBit_E2)); 1969 } 1970 } 1971 1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1973 { 1974 /* 1975 * scr_write will set the RES1 bits on an AArch64-only CPU. 1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1977 */ 1978 scr_write(env, ri, 0); 1979 } 1980 1981 static CPAccessResult access_tid4(CPUARMState *env, 1982 const ARMCPRegInfo *ri, 1983 bool isread) 1984 { 1985 if (arm_current_el(env) == 1 && 1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1987 return CP_ACCESS_TRAP_EL2; 1988 } 1989 1990 return CP_ACCESS_OK; 1991 } 1992 1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1994 { 1995 ARMCPU *cpu = env_archcpu(env); 1996 1997 /* 1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1999 * bank 2000 */ 2001 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2002 ri->secure & ARM_CP_SECSTATE_S); 2003 2004 return cpu->ccsidr[index]; 2005 } 2006 2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2008 uint64_t value) 2009 { 2010 raw_write(env, ri, value & 0xf); 2011 } 2012 2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2014 { 2015 CPUState *cs = env_cpu(env); 2016 bool el1 = arm_current_el(env) == 1; 2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2018 uint64_t ret = 0; 2019 2020 if (hcr_el2 & HCR_IMO) { 2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2022 ret |= CPSR_I; 2023 } 2024 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 2025 ret |= ISR_IS; 2026 ret |= CPSR_I; 2027 } 2028 } else { 2029 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2030 ret |= CPSR_I; 2031 } 2032 2033 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 2034 ret |= ISR_IS; 2035 ret |= CPSR_I; 2036 } 2037 } 2038 2039 if (hcr_el2 & HCR_FMO) { 2040 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2041 ret |= CPSR_F; 2042 } 2043 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 2044 ret |= ISR_FS; 2045 ret |= CPSR_F; 2046 } 2047 } else { 2048 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2049 ret |= CPSR_F; 2050 } 2051 } 2052 2053 if (hcr_el2 & HCR_AMO) { 2054 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2055 ret |= CPSR_A; 2056 } 2057 } 2058 2059 return ret; 2060 } 2061 2062 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2063 bool isread) 2064 { 2065 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2066 return CP_ACCESS_TRAP_EL2; 2067 } 2068 2069 return CP_ACCESS_OK; 2070 } 2071 2072 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2073 bool isread) 2074 { 2075 if (arm_feature(env, ARM_FEATURE_V8)) { 2076 return access_aa64_tid1(env, ri, isread); 2077 } 2078 2079 return CP_ACCESS_OK; 2080 } 2081 2082 static const ARMCPRegInfo v7_cp_reginfo[] = { 2083 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2084 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2085 .access = PL1_W, .type = ARM_CP_NOP }, 2086 /* 2087 * Performance monitors are implementation defined in v7, 2088 * but with an ARM recommended set of registers, which we 2089 * follow. 2090 * 2091 * Performance registers fall into three categories: 2092 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2093 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2094 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2095 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2096 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2097 */ 2098 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2099 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2101 .writefn = pmcntenset_write, 2102 .accessfn = pmreg_access, 2103 .fgt = FGT_PMCNTEN, 2104 .raw_writefn = raw_write }, 2105 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2107 .access = PL0_RW, .accessfn = pmreg_access, 2108 .fgt = FGT_PMCNTEN, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2110 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2111 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2112 .access = PL0_RW, 2113 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2114 .accessfn = pmreg_access, 2115 .fgt = FGT_PMCNTEN, 2116 .writefn = pmcntenclr_write, 2117 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2118 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2119 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCNTEN, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2124 .writefn = pmcntenclr_write }, 2125 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2126 .access = PL0_RW, .type = ARM_CP_IO, 2127 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2128 .accessfn = pmreg_access, 2129 .fgt = FGT_PMOVS, 2130 .writefn = pmovsr_write, 2131 .raw_writefn = raw_write }, 2132 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2134 .access = PL0_RW, .accessfn = pmreg_access, 2135 .fgt = FGT_PMOVS, 2136 .type = ARM_CP_ALIAS | ARM_CP_IO, 2137 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2138 .writefn = pmovsr_write, 2139 .raw_writefn = raw_write }, 2140 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2141 .access = PL0_W, .accessfn = pmreg_access_swinc, 2142 .fgt = FGT_PMSWINC_EL0, 2143 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .writefn = pmswinc_write }, 2145 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2146 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2147 .access = PL0_W, .accessfn = pmreg_access_swinc, 2148 .fgt = FGT_PMSWINC_EL0, 2149 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .writefn = pmswinc_write }, 2151 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2152 .access = PL0_RW, .type = ARM_CP_ALIAS, 2153 .fgt = FGT_PMSELR_EL0, 2154 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2155 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2156 .raw_writefn = raw_write}, 2157 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2159 .access = PL0_RW, .accessfn = pmreg_access_selr, 2160 .fgt = FGT_PMSELR_EL0, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2162 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2163 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2164 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fgt = FGT_PMCCNTR_EL0, 2166 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2167 .accessfn = pmreg_access_ccntr }, 2168 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2170 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2171 .fgt = FGT_PMCCNTR_EL0, 2172 .type = ARM_CP_IO, 2173 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2174 .readfn = pmccntr_read, .writefn = pmccntr_write, 2175 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2176 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2177 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2178 .access = PL0_RW, .accessfn = pmreg_access, 2179 .fgt = FGT_PMCCFILTR_EL0, 2180 .type = ARM_CP_ALIAS | ARM_CP_IO, 2181 .resetvalue = 0, }, 2182 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2184 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2185 .access = PL0_RW, .accessfn = pmreg_access, 2186 .fgt = FGT_PMCCFILTR_EL0, 2187 .type = ARM_CP_IO, 2188 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2189 .resetvalue = 0, }, 2190 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2191 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2192 .accessfn = pmreg_access, 2193 .fgt = FGT_PMEVTYPERN_EL0, 2194 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2195 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2197 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2198 .accessfn = pmreg_access, 2199 .fgt = FGT_PMEVTYPERN_EL0, 2200 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2201 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2202 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2203 .accessfn = pmreg_access_xevcntr, 2204 .fgt = FGT_PMEVCNTRN_EL0, 2205 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2206 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2208 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2209 .accessfn = pmreg_access_xevcntr, 2210 .fgt = FGT_PMEVCNTRN_EL0, 2211 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2212 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2213 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2215 .resetvalue = 0, 2216 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2217 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2219 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2221 .resetvalue = 0, 2222 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2223 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2224 .access = PL1_RW, .accessfn = access_tpm, 2225 .fgt = FGT_PMINTEN, 2226 .type = ARM_CP_ALIAS | ARM_CP_IO, 2227 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2228 .resetvalue = 0, 2229 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2230 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2231 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2232 .access = PL1_RW, .accessfn = access_tpm, 2233 .fgt = FGT_PMINTEN, 2234 .type = ARM_CP_IO, 2235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2236 .writefn = pmintenset_write, .raw_writefn = raw_write, 2237 .resetvalue = 0x0 }, 2238 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2239 .access = PL1_RW, .accessfn = access_tpm, 2240 .fgt = FGT_PMINTEN, 2241 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2242 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2243 .writefn = pmintenclr_write, }, 2244 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2245 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2246 .access = PL1_RW, .accessfn = access_tpm, 2247 .fgt = FGT_PMINTEN, 2248 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2249 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2250 .writefn = pmintenclr_write }, 2251 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2252 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2253 .access = PL1_R, 2254 .accessfn = access_tid4, 2255 .fgt = FGT_CCSIDR_EL1, 2256 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2257 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2258 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2259 .access = PL1_RW, 2260 .accessfn = access_tid4, 2261 .fgt = FGT_CSSELR_EL1, 2262 .writefn = csselr_write, .resetvalue = 0, 2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2264 offsetof(CPUARMState, cp15.csselr_ns) } }, 2265 /* 2266 * Auxiliary ID register: this actually has an IMPDEF value but for now 2267 * just RAZ for all cores: 2268 */ 2269 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2270 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2271 .access = PL1_R, .type = ARM_CP_CONST, 2272 .accessfn = access_aa64_tid1, 2273 .fgt = FGT_AIDR_EL1, 2274 .resetvalue = 0 }, 2275 /* 2276 * Auxiliary fault status registers: these also are IMPDEF, and we 2277 * choose to RAZ/WI for all cores. 2278 */ 2279 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2280 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2281 .access = PL1_RW, .accessfn = access_tvm_trvm, 2282 .fgt = FGT_AFSR0_EL1, 2283 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2284 .type = ARM_CP_CONST, .resetvalue = 0 }, 2285 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2286 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2287 .access = PL1_RW, .accessfn = access_tvm_trvm, 2288 .fgt = FGT_AFSR1_EL1, 2289 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2290 .type = ARM_CP_CONST, .resetvalue = 0 }, 2291 /* 2292 * MAIR can just read-as-written because we don't implement caches 2293 * and so don't need to care about memory attributes. 2294 */ 2295 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2296 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2297 .access = PL1_RW, .accessfn = access_tvm_trvm, 2298 .fgt = FGT_MAIR_EL1, 2299 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2300 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2301 .resetvalue = 0 }, 2302 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2303 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2304 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2305 .resetvalue = 0 }, 2306 /* 2307 * For non-long-descriptor page tables these are PRRR and NMRR; 2308 * regardless they still act as reads-as-written for QEMU. 2309 */ 2310 /* 2311 * MAIR0/1 are defined separately from their 64-bit counterpart which 2312 * allows them to assign the correct fieldoffset based on the endianness 2313 * handled in the field definitions. 2314 */ 2315 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2316 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2317 .access = PL1_RW, .accessfn = access_tvm_trvm, 2318 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2319 offsetof(CPUARMState, cp15.mair0_ns) }, 2320 .resetfn = arm_cp_reset_ignore }, 2321 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2322 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2323 .access = PL1_RW, .accessfn = access_tvm_trvm, 2324 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2325 offsetof(CPUARMState, cp15.mair1_ns) }, 2326 .resetfn = arm_cp_reset_ignore }, 2327 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2328 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2329 .fgt = FGT_ISR_EL1, 2330 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2331 /* 32 bit ITLB invalidates */ 2332 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2334 .writefn = tlbiall_write }, 2335 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2337 .writefn = tlbimva_write }, 2338 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2340 .writefn = tlbiasid_write }, 2341 /* 32 bit DTLB invalidates */ 2342 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2344 .writefn = tlbiall_write }, 2345 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbimva_write }, 2348 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbiasid_write }, 2351 /* 32 bit TLB invalidates */ 2352 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2354 .writefn = tlbiall_write }, 2355 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2357 .writefn = tlbimva_write }, 2358 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2360 .writefn = tlbiasid_write }, 2361 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2363 .writefn = tlbimvaa_write }, 2364 }; 2365 2366 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2367 /* 32 bit TLB invalidates, Inner Shareable */ 2368 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2370 .writefn = tlbiall_is_write }, 2371 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2373 .writefn = tlbimva_is_write }, 2374 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2376 .writefn = tlbiasid_is_write }, 2377 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2379 .writefn = tlbimvaa_is_write }, 2380 }; 2381 2382 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2383 /* PMOVSSET is not implemented in v7 before v7ve */ 2384 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2385 .access = PL0_RW, .accessfn = pmreg_access, 2386 .fgt = FGT_PMOVS, 2387 .type = ARM_CP_ALIAS | ARM_CP_IO, 2388 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2389 .writefn = pmovsset_write, 2390 .raw_writefn = raw_write }, 2391 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2393 .access = PL0_RW, .accessfn = pmreg_access, 2394 .fgt = FGT_PMOVS, 2395 .type = ARM_CP_ALIAS | ARM_CP_IO, 2396 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2397 .writefn = pmovsset_write, 2398 .raw_writefn = raw_write }, 2399 }; 2400 2401 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2402 uint64_t value) 2403 { 2404 value &= 1; 2405 env->teecr = value; 2406 } 2407 2408 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2409 bool isread) 2410 { 2411 /* 2412 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2413 * at all, so we don't need to check whether we're v8A. 2414 */ 2415 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2416 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2417 return CP_ACCESS_TRAP_EL2; 2418 } 2419 return CP_ACCESS_OK; 2420 } 2421 2422 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2423 bool isread) 2424 { 2425 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2426 return CP_ACCESS_TRAP; 2427 } 2428 return teecr_access(env, ri, isread); 2429 } 2430 2431 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2432 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2433 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2434 .resetvalue = 0, 2435 .writefn = teecr_write, .accessfn = teecr_access }, 2436 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2437 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2438 .accessfn = teehbr_access, .resetvalue = 0 }, 2439 }; 2440 2441 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2442 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2443 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2444 .access = PL0_RW, 2445 .fgt = FGT_TPIDR_EL0, 2446 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2447 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2448 .access = PL0_RW, 2449 .fgt = FGT_TPIDR_EL0, 2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2451 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2452 .resetfn = arm_cp_reset_ignore }, 2453 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2454 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2455 .access = PL0_R | PL1_W, 2456 .fgt = FGT_TPIDRRO_EL0, 2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2458 .resetvalue = 0}, 2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2460 .access = PL0_R | PL1_W, 2461 .fgt = FGT_TPIDRRO_EL0, 2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2464 .resetfn = arm_cp_reset_ignore }, 2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2467 .access = PL1_RW, 2468 .fgt = FGT_TPIDR_EL1, 2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2470 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2471 .access = PL1_RW, 2472 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2473 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2474 .resetvalue = 0 }, 2475 }; 2476 2477 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2478 { 2479 ARMCPU *cpu = env_archcpu(env); 2480 2481 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2482 } 2483 2484 #ifndef CONFIG_USER_ONLY 2485 2486 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2487 bool isread) 2488 { 2489 /* 2490 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2491 * Writable only at the highest implemented exception level. 2492 */ 2493 int el = arm_current_el(env); 2494 uint64_t hcr; 2495 uint32_t cntkctl; 2496 2497 switch (el) { 2498 case 0: 2499 hcr = arm_hcr_el2_eff(env); 2500 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2501 cntkctl = env->cp15.cnthctl_el2; 2502 } else { 2503 cntkctl = env->cp15.c14_cntkctl; 2504 } 2505 if (!extract32(cntkctl, 0, 2)) { 2506 return CP_ACCESS_TRAP; 2507 } 2508 break; 2509 case 1: 2510 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2511 arm_is_secure_below_el3(env)) { 2512 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2513 return CP_ACCESS_TRAP_UNCATEGORIZED; 2514 } 2515 break; 2516 case 2: 2517 case 3: 2518 break; 2519 } 2520 2521 if (!isread && el < arm_highest_el(env)) { 2522 return CP_ACCESS_TRAP_UNCATEGORIZED; 2523 } 2524 2525 return CP_ACCESS_OK; 2526 } 2527 2528 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2529 bool isread) 2530 { 2531 unsigned int cur_el = arm_current_el(env); 2532 bool has_el2 = arm_is_el2_enabled(env); 2533 uint64_t hcr = arm_hcr_el2_eff(env); 2534 2535 switch (cur_el) { 2536 case 0: 2537 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2538 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2539 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2540 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2541 } 2542 2543 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2544 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2545 return CP_ACCESS_TRAP; 2546 } 2547 /* fall through */ 2548 case 1: 2549 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2550 if (has_el2 && timeridx == GTIMER_PHYS && 2551 (hcr & HCR_E2H 2552 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2553 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2554 return CP_ACCESS_TRAP_EL2; 2555 } 2556 if (has_el2 && timeridx == GTIMER_VIRT) { 2557 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2558 return CP_ACCESS_TRAP_EL2; 2559 } 2560 } 2561 break; 2562 } 2563 return CP_ACCESS_OK; 2564 } 2565 2566 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2567 bool isread) 2568 { 2569 unsigned int cur_el = arm_current_el(env); 2570 bool has_el2 = arm_is_el2_enabled(env); 2571 uint64_t hcr = arm_hcr_el2_eff(env); 2572 2573 switch (cur_el) { 2574 case 0: 2575 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2576 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2577 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2578 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2579 } 2580 2581 /* 2582 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2583 * EL0 if EL0[PV]TEN is zero. 2584 */ 2585 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2586 return CP_ACCESS_TRAP; 2587 } 2588 /* fall through */ 2589 2590 case 1: 2591 if (has_el2 && timeridx == GTIMER_PHYS) { 2592 if (hcr & HCR_E2H) { 2593 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2594 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2595 return CP_ACCESS_TRAP_EL2; 2596 } 2597 } else { 2598 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2599 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2600 return CP_ACCESS_TRAP_EL2; 2601 } 2602 } 2603 } 2604 if (has_el2 && timeridx == GTIMER_VIRT) { 2605 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2606 return CP_ACCESS_TRAP_EL2; 2607 } 2608 } 2609 break; 2610 } 2611 return CP_ACCESS_OK; 2612 } 2613 2614 static CPAccessResult gt_pct_access(CPUARMState *env, 2615 const ARMCPRegInfo *ri, 2616 bool isread) 2617 { 2618 return gt_counter_access(env, GTIMER_PHYS, isread); 2619 } 2620 2621 static CPAccessResult gt_vct_access(CPUARMState *env, 2622 const ARMCPRegInfo *ri, 2623 bool isread) 2624 { 2625 return gt_counter_access(env, GTIMER_VIRT, isread); 2626 } 2627 2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2629 bool isread) 2630 { 2631 return gt_timer_access(env, GTIMER_PHYS, isread); 2632 } 2633 2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2635 bool isread) 2636 { 2637 return gt_timer_access(env, GTIMER_VIRT, isread); 2638 } 2639 2640 static CPAccessResult gt_stimer_access(CPUARMState *env, 2641 const ARMCPRegInfo *ri, 2642 bool isread) 2643 { 2644 /* 2645 * The AArch64 register view of the secure physical timer is 2646 * always accessible from EL3, and configurably accessible from 2647 * Secure EL1. 2648 */ 2649 switch (arm_current_el(env)) { 2650 case 1: 2651 if (!arm_is_secure(env)) { 2652 return CP_ACCESS_TRAP; 2653 } 2654 if (!(env->cp15.scr_el3 & SCR_ST)) { 2655 return CP_ACCESS_TRAP_EL3; 2656 } 2657 return CP_ACCESS_OK; 2658 case 0: 2659 case 2: 2660 return CP_ACCESS_TRAP; 2661 case 3: 2662 return CP_ACCESS_OK; 2663 default: 2664 g_assert_not_reached(); 2665 } 2666 } 2667 2668 uint64_t gt_get_countervalue(CPUARMState *env) 2669 { 2670 ARMCPU *cpu = env_archcpu(env); 2671 2672 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2673 } 2674 2675 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2676 { 2677 CPUARMState *env = &cpu->env; 2678 uint64_t cnthctl = env->cp15.cnthctl_el2; 2679 ARMSecuritySpace ss = arm_security_space(env); 2680 /* ISTATUS && !IMASK */ 2681 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2682 2683 /* 2684 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2685 * It is RES0 in Secure and NonSecure state. 2686 */ 2687 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2688 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2689 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2690 irqstate = 0; 2691 } 2692 2693 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2694 trace_arm_gt_update_irq(timeridx, irqstate); 2695 } 2696 2697 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2698 { 2699 /* 2700 * Changing security state between Root and Secure/NonSecure, which may 2701 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2702 * mask bits. Update the IRQ state accordingly. 2703 */ 2704 gt_update_irq(cpu, GTIMER_VIRT); 2705 gt_update_irq(cpu, GTIMER_PHYS); 2706 } 2707 2708 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2709 { 2710 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2711 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2712 arm_is_el2_enabled(env) && 2713 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2714 return env->cp15.cntpoff_el2; 2715 } 2716 return 0; 2717 } 2718 2719 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2720 { 2721 if (arm_current_el(env) >= 2) { 2722 return 0; 2723 } 2724 return gt_phys_raw_cnt_offset(env); 2725 } 2726 2727 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2728 { 2729 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2730 2731 if (gt->ctl & 1) { 2732 /* 2733 * Timer enabled: calculate and set current ISTATUS, irq, and 2734 * reset timer to when ISTATUS next has to change 2735 */ 2736 uint64_t offset = timeridx == GTIMER_VIRT ? 2737 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2738 uint64_t count = gt_get_countervalue(&cpu->env); 2739 /* Note that this must be unsigned 64 bit arithmetic: */ 2740 int istatus = count - offset >= gt->cval; 2741 uint64_t nexttick; 2742 2743 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2744 2745 if (istatus) { 2746 /* 2747 * Next transition is when (count - offset) rolls back over to 0. 2748 * If offset > count then this is when count == offset; 2749 * if offset <= count then this is when count == offset + 2^64 2750 * For the latter case we set nexttick to an "as far in future 2751 * as possible" value and let the code below handle it. 2752 */ 2753 if (offset > count) { 2754 nexttick = offset; 2755 } else { 2756 nexttick = UINT64_MAX; 2757 } 2758 } else { 2759 /* 2760 * Next transition is when (count - offset) == cval, i.e. 2761 * when count == (cval + offset). 2762 * If that would overflow, then again we set up the next interrupt 2763 * for "as far in the future as possible" for the code below. 2764 */ 2765 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2766 nexttick = UINT64_MAX; 2767 } 2768 } 2769 /* 2770 * Note that the desired next expiry time might be beyond the 2771 * signed-64-bit range of a QEMUTimer -- in this case we just 2772 * set the timer for as far in the future as possible. When the 2773 * timer expires we will reset the timer for any remaining period. 2774 */ 2775 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2776 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2777 } else { 2778 timer_mod(cpu->gt_timer[timeridx], nexttick); 2779 } 2780 trace_arm_gt_recalc(timeridx, nexttick); 2781 } else { 2782 /* Timer disabled: ISTATUS and timer output always clear */ 2783 gt->ctl &= ~4; 2784 timer_del(cpu->gt_timer[timeridx]); 2785 trace_arm_gt_recalc_disabled(timeridx); 2786 } 2787 gt_update_irq(cpu, timeridx); 2788 } 2789 2790 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2791 int timeridx) 2792 { 2793 ARMCPU *cpu = env_archcpu(env); 2794 2795 timer_del(cpu->gt_timer[timeridx]); 2796 } 2797 2798 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2799 { 2800 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2801 } 2802 2803 uint64_t gt_virt_cnt_offset(CPUARMState *env) 2804 { 2805 uint64_t hcr; 2806 2807 switch (arm_current_el(env)) { 2808 case 2: 2809 hcr = arm_hcr_el2_eff(env); 2810 if (hcr & HCR_E2H) { 2811 return 0; 2812 } 2813 break; 2814 case 0: 2815 hcr = arm_hcr_el2_eff(env); 2816 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2817 return 0; 2818 } 2819 break; 2820 } 2821 2822 return env->cp15.cntvoff_el2; 2823 } 2824 2825 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2826 { 2827 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2828 } 2829 2830 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2831 int timeridx, 2832 uint64_t value) 2833 { 2834 trace_arm_gt_cval_write(timeridx, value); 2835 env->cp15.c14_timer[timeridx].cval = value; 2836 gt_recalc_timer(env_archcpu(env), timeridx); 2837 } 2838 2839 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2840 int timeridx) 2841 { 2842 uint64_t offset = 0; 2843 2844 switch (timeridx) { 2845 case GTIMER_VIRT: 2846 case GTIMER_HYPVIRT: 2847 offset = gt_virt_cnt_offset(env); 2848 break; 2849 case GTIMER_PHYS: 2850 offset = gt_phys_cnt_offset(env); 2851 break; 2852 } 2853 2854 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2855 (gt_get_countervalue(env) - offset)); 2856 } 2857 2858 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2859 int timeridx, 2860 uint64_t value) 2861 { 2862 uint64_t offset = 0; 2863 2864 switch (timeridx) { 2865 case GTIMER_VIRT: 2866 case GTIMER_HYPVIRT: 2867 offset = gt_virt_cnt_offset(env); 2868 break; 2869 case GTIMER_PHYS: 2870 offset = gt_phys_cnt_offset(env); 2871 break; 2872 } 2873 2874 trace_arm_gt_tval_write(timeridx, value); 2875 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2876 sextract64(value, 0, 32); 2877 gt_recalc_timer(env_archcpu(env), timeridx); 2878 } 2879 2880 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2881 int timeridx, 2882 uint64_t value) 2883 { 2884 ARMCPU *cpu = env_archcpu(env); 2885 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2886 2887 trace_arm_gt_ctl_write(timeridx, value); 2888 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2889 if ((oldval ^ value) & 1) { 2890 /* Enable toggled */ 2891 gt_recalc_timer(cpu, timeridx); 2892 } else if ((oldval ^ value) & 2) { 2893 /* 2894 * IMASK toggled: don't need to recalculate, 2895 * just set the interrupt line based on ISTATUS 2896 */ 2897 trace_arm_gt_imask_toggle(timeridx); 2898 gt_update_irq(cpu, timeridx); 2899 } 2900 } 2901 2902 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2903 { 2904 gt_timer_reset(env, ri, GTIMER_PHYS); 2905 } 2906 2907 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2908 uint64_t value) 2909 { 2910 gt_cval_write(env, ri, GTIMER_PHYS, value); 2911 } 2912 2913 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2914 { 2915 return gt_tval_read(env, ri, GTIMER_PHYS); 2916 } 2917 2918 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2919 uint64_t value) 2920 { 2921 gt_tval_write(env, ri, GTIMER_PHYS, value); 2922 } 2923 2924 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2925 uint64_t value) 2926 { 2927 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2928 } 2929 2930 static int gt_phys_redir_timeridx(CPUARMState *env) 2931 { 2932 switch (arm_mmu_idx(env)) { 2933 case ARMMMUIdx_E20_0: 2934 case ARMMMUIdx_E20_2: 2935 case ARMMMUIdx_E20_2_PAN: 2936 return GTIMER_HYP; 2937 default: 2938 return GTIMER_PHYS; 2939 } 2940 } 2941 2942 static int gt_virt_redir_timeridx(CPUARMState *env) 2943 { 2944 switch (arm_mmu_idx(env)) { 2945 case ARMMMUIdx_E20_0: 2946 case ARMMMUIdx_E20_2: 2947 case ARMMMUIdx_E20_2_PAN: 2948 return GTIMER_HYPVIRT; 2949 default: 2950 return GTIMER_VIRT; 2951 } 2952 } 2953 2954 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2955 const ARMCPRegInfo *ri) 2956 { 2957 int timeridx = gt_phys_redir_timeridx(env); 2958 return env->cp15.c14_timer[timeridx].cval; 2959 } 2960 2961 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2962 uint64_t value) 2963 { 2964 int timeridx = gt_phys_redir_timeridx(env); 2965 gt_cval_write(env, ri, timeridx, value); 2966 } 2967 2968 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2969 const ARMCPRegInfo *ri) 2970 { 2971 int timeridx = gt_phys_redir_timeridx(env); 2972 return gt_tval_read(env, ri, timeridx); 2973 } 2974 2975 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2976 uint64_t value) 2977 { 2978 int timeridx = gt_phys_redir_timeridx(env); 2979 gt_tval_write(env, ri, timeridx, value); 2980 } 2981 2982 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2983 const ARMCPRegInfo *ri) 2984 { 2985 int timeridx = gt_phys_redir_timeridx(env); 2986 return env->cp15.c14_timer[timeridx].ctl; 2987 } 2988 2989 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2990 uint64_t value) 2991 { 2992 int timeridx = gt_phys_redir_timeridx(env); 2993 gt_ctl_write(env, ri, timeridx, value); 2994 } 2995 2996 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2997 { 2998 gt_timer_reset(env, ri, GTIMER_VIRT); 2999 } 3000 3001 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3002 uint64_t value) 3003 { 3004 gt_cval_write(env, ri, GTIMER_VIRT, value); 3005 } 3006 3007 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3008 { 3009 return gt_tval_read(env, ri, GTIMER_VIRT); 3010 } 3011 3012 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3013 uint64_t value) 3014 { 3015 gt_tval_write(env, ri, GTIMER_VIRT, value); 3016 } 3017 3018 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3019 uint64_t value) 3020 { 3021 gt_ctl_write(env, ri, GTIMER_VIRT, value); 3022 } 3023 3024 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 ARMCPU *cpu = env_archcpu(env); 3028 uint32_t oldval = env->cp15.cnthctl_el2; 3029 uint32_t valid_mask = 3030 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 3031 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 3032 R_CNTHCTL_EVNTEN_MASK | 3033 R_CNTHCTL_EVNTDIR_MASK | 3034 R_CNTHCTL_EVNTI_MASK | 3035 R_CNTHCTL_EL0VTEN_MASK | 3036 R_CNTHCTL_EL0PTEN_MASK | 3037 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 3038 R_CNTHCTL_EL1PTEN_MASK; 3039 3040 if (cpu_isar_feature(aa64_rme, cpu)) { 3041 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 3042 } 3043 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 3044 valid_mask |= 3045 R_CNTHCTL_EL1TVT_MASK | 3046 R_CNTHCTL_EL1TVCT_MASK | 3047 R_CNTHCTL_EL1NVPCT_MASK | 3048 R_CNTHCTL_EL1NVVCT_MASK | 3049 R_CNTHCTL_EVNTIS_MASK; 3050 } 3051 if (cpu_isar_feature(aa64_ecv, cpu)) { 3052 valid_mask |= R_CNTHCTL_ECV_MASK; 3053 } 3054 3055 /* Clear RES0 bits */ 3056 value &= valid_mask; 3057 3058 raw_write(env, ri, value); 3059 3060 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 3061 gt_update_irq(cpu, GTIMER_VIRT); 3062 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 3063 gt_update_irq(cpu, GTIMER_PHYS); 3064 } 3065 } 3066 3067 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3068 uint64_t value) 3069 { 3070 ARMCPU *cpu = env_archcpu(env); 3071 3072 trace_arm_gt_cntvoff_write(value); 3073 raw_write(env, ri, value); 3074 gt_recalc_timer(cpu, GTIMER_VIRT); 3075 } 3076 3077 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3078 const ARMCPRegInfo *ri) 3079 { 3080 int timeridx = gt_virt_redir_timeridx(env); 3081 return env->cp15.c14_timer[timeridx].cval; 3082 } 3083 3084 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3085 uint64_t value) 3086 { 3087 int timeridx = gt_virt_redir_timeridx(env); 3088 gt_cval_write(env, ri, timeridx, value); 3089 } 3090 3091 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3092 const ARMCPRegInfo *ri) 3093 { 3094 int timeridx = gt_virt_redir_timeridx(env); 3095 return gt_tval_read(env, ri, timeridx); 3096 } 3097 3098 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3099 uint64_t value) 3100 { 3101 int timeridx = gt_virt_redir_timeridx(env); 3102 gt_tval_write(env, ri, timeridx, value); 3103 } 3104 3105 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3106 const ARMCPRegInfo *ri) 3107 { 3108 int timeridx = gt_virt_redir_timeridx(env); 3109 return env->cp15.c14_timer[timeridx].ctl; 3110 } 3111 3112 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3113 uint64_t value) 3114 { 3115 int timeridx = gt_virt_redir_timeridx(env); 3116 gt_ctl_write(env, ri, timeridx, value); 3117 } 3118 3119 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3120 { 3121 gt_timer_reset(env, ri, GTIMER_HYP); 3122 } 3123 3124 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3125 uint64_t value) 3126 { 3127 gt_cval_write(env, ri, GTIMER_HYP, value); 3128 } 3129 3130 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3131 { 3132 return gt_tval_read(env, ri, GTIMER_HYP); 3133 } 3134 3135 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3136 uint64_t value) 3137 { 3138 gt_tval_write(env, ri, GTIMER_HYP, value); 3139 } 3140 3141 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3142 uint64_t value) 3143 { 3144 gt_ctl_write(env, ri, GTIMER_HYP, value); 3145 } 3146 3147 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3148 { 3149 gt_timer_reset(env, ri, GTIMER_SEC); 3150 } 3151 3152 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3153 uint64_t value) 3154 { 3155 gt_cval_write(env, ri, GTIMER_SEC, value); 3156 } 3157 3158 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3159 { 3160 return gt_tval_read(env, ri, GTIMER_SEC); 3161 } 3162 3163 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3164 uint64_t value) 3165 { 3166 gt_tval_write(env, ri, GTIMER_SEC, value); 3167 } 3168 3169 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3170 uint64_t value) 3171 { 3172 gt_ctl_write(env, ri, GTIMER_SEC, value); 3173 } 3174 3175 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3176 { 3177 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3178 } 3179 3180 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3181 uint64_t value) 3182 { 3183 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3184 } 3185 3186 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3187 { 3188 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3189 } 3190 3191 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3192 uint64_t value) 3193 { 3194 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3195 } 3196 3197 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3198 uint64_t value) 3199 { 3200 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3201 } 3202 3203 void arm_gt_ptimer_cb(void *opaque) 3204 { 3205 ARMCPU *cpu = opaque; 3206 3207 gt_recalc_timer(cpu, GTIMER_PHYS); 3208 } 3209 3210 void arm_gt_vtimer_cb(void *opaque) 3211 { 3212 ARMCPU *cpu = opaque; 3213 3214 gt_recalc_timer(cpu, GTIMER_VIRT); 3215 } 3216 3217 void arm_gt_htimer_cb(void *opaque) 3218 { 3219 ARMCPU *cpu = opaque; 3220 3221 gt_recalc_timer(cpu, GTIMER_HYP); 3222 } 3223 3224 void arm_gt_stimer_cb(void *opaque) 3225 { 3226 ARMCPU *cpu = opaque; 3227 3228 gt_recalc_timer(cpu, GTIMER_SEC); 3229 } 3230 3231 void arm_gt_hvtimer_cb(void *opaque) 3232 { 3233 ARMCPU *cpu = opaque; 3234 3235 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3236 } 3237 3238 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3239 /* 3240 * Note that CNTFRQ is purely reads-as-written for the benefit 3241 * of software; writing it doesn't actually change the timer frequency. 3242 * Our reset value matches the fixed frequency we implement the timer at. 3243 */ 3244 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_ALIAS, 3246 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3247 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3248 }, 3249 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3251 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3253 .resetfn = arm_gt_cntfrq_reset, 3254 }, 3255 /* overall control: mostly access permissions */ 3256 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3257 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3258 .access = PL1_RW, 3259 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3260 .resetvalue = 0, 3261 }, 3262 /* per-timer control */ 3263 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3264 .secure = ARM_CP_SECSTATE_NS, 3265 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3266 .accessfn = gt_ptimer_access, 3267 .fieldoffset = offsetoflow32(CPUARMState, 3268 cp15.c14_timer[GTIMER_PHYS].ctl), 3269 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3270 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3271 }, 3272 { .name = "CNTP_CTL_S", 3273 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3274 .secure = ARM_CP_SECSTATE_S, 3275 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3276 .accessfn = gt_ptimer_access, 3277 .fieldoffset = offsetoflow32(CPUARMState, 3278 cp15.c14_timer[GTIMER_SEC].ctl), 3279 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3280 }, 3281 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3283 .type = ARM_CP_IO, .access = PL0_RW, 3284 .accessfn = gt_ptimer_access, 3285 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3287 .resetvalue = 0, 3288 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3289 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3290 }, 3291 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3292 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3293 .accessfn = gt_vtimer_access, 3294 .fieldoffset = offsetoflow32(CPUARMState, 3295 cp15.c14_timer[GTIMER_VIRT].ctl), 3296 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3297 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3298 }, 3299 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3300 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3301 .type = ARM_CP_IO, .access = PL0_RW, 3302 .accessfn = gt_vtimer_access, 3303 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3305 .resetvalue = 0, 3306 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3307 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3308 }, 3309 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3310 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3311 .secure = ARM_CP_SECSTATE_NS, 3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3313 .accessfn = gt_ptimer_access, 3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3315 }, 3316 { .name = "CNTP_TVAL_S", 3317 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3318 .secure = ARM_CP_SECSTATE_S, 3319 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3320 .accessfn = gt_ptimer_access, 3321 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3322 }, 3323 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3326 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3327 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3328 }, 3329 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3330 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3331 .accessfn = gt_vtimer_access, 3332 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3333 }, 3334 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3335 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3336 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3337 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3338 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3339 }, 3340 /* The counter itself */ 3341 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3342 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3343 .accessfn = gt_pct_access, 3344 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3345 }, 3346 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3347 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3348 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3349 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3350 }, 3351 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3352 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3353 .accessfn = gt_vct_access, 3354 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3355 }, 3356 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3357 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3358 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3359 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3360 }, 3361 /* Comparison value, indicating when the timer goes off */ 3362 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3363 .secure = ARM_CP_SECSTATE_NS, 3364 .access = PL0_RW, 3365 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3367 .accessfn = gt_ptimer_access, 3368 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3369 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3370 }, 3371 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3372 .secure = ARM_CP_SECSTATE_S, 3373 .access = PL0_RW, 3374 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3375 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3376 .accessfn = gt_ptimer_access, 3377 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3378 }, 3379 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3381 .access = PL0_RW, 3382 .type = ARM_CP_IO, 3383 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3384 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3385 .resetvalue = 0, .accessfn = gt_ptimer_access, 3386 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3387 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3388 }, 3389 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3390 .access = PL0_RW, 3391 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3392 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3393 .accessfn = gt_vtimer_access, 3394 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3395 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3396 }, 3397 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3398 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3399 .access = PL0_RW, 3400 .type = ARM_CP_IO, 3401 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3402 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3403 .resetvalue = 0, .accessfn = gt_vtimer_access, 3404 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3405 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3406 }, 3407 /* 3408 * Secure timer -- this is actually restricted to only EL3 3409 * and configurably Secure-EL1 via the accessfn. 3410 */ 3411 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3412 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3413 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3414 .accessfn = gt_stimer_access, 3415 .readfn = gt_sec_tval_read, 3416 .writefn = gt_sec_tval_write, 3417 .resetfn = gt_sec_timer_reset, 3418 }, 3419 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3420 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3421 .type = ARM_CP_IO, .access = PL1_RW, 3422 .accessfn = gt_stimer_access, 3423 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3424 .resetvalue = 0, 3425 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3426 }, 3427 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3429 .type = ARM_CP_IO, .access = PL1_RW, 3430 .accessfn = gt_stimer_access, 3431 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3432 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3433 }, 3434 }; 3435 3436 /* 3437 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3438 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3439 * so our implementations here are identical to the normal registers. 3440 */ 3441 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3442 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3443 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3444 .accessfn = gt_vct_access, 3445 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3446 }, 3447 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3448 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3449 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3450 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3451 }, 3452 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3453 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3454 .accessfn = gt_pct_access, 3455 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3456 }, 3457 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3458 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3459 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3460 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3461 }, 3462 }; 3463 3464 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3465 const ARMCPRegInfo *ri, 3466 bool isread) 3467 { 3468 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3469 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3470 return CP_ACCESS_TRAP_EL3; 3471 } 3472 return CP_ACCESS_OK; 3473 } 3474 3475 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3476 uint64_t value) 3477 { 3478 ARMCPU *cpu = env_archcpu(env); 3479 3480 trace_arm_gt_cntpoff_write(value); 3481 raw_write(env, ri, value); 3482 gt_recalc_timer(cpu, GTIMER_PHYS); 3483 } 3484 3485 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3486 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3487 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3488 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3489 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3490 .nv2_redirect_offset = 0x1a8, 3491 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3492 }; 3493 #else 3494 3495 /* 3496 * In user-mode most of the generic timer registers are inaccessible 3497 * however modern kernels (4.12+) allow access to cntvct_el0 3498 */ 3499 3500 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3501 { 3502 ARMCPU *cpu = env_archcpu(env); 3503 3504 /* 3505 * Currently we have no support for QEMUTimer in linux-user so we 3506 * can't call gt_get_countervalue(env), instead we directly 3507 * call the lower level functions. 3508 */ 3509 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3510 } 3511 3512 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3513 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3515 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3516 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3517 .resetfn = arm_gt_cntfrq_reset, 3518 }, 3519 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3521 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3522 .readfn = gt_virt_cnt_read, 3523 }, 3524 }; 3525 3526 /* 3527 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3528 * is exposed to userspace by Linux. 3529 */ 3530 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3531 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3532 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3533 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3534 .readfn = gt_virt_cnt_read, 3535 }, 3536 }; 3537 3538 #endif 3539 3540 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3541 { 3542 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3543 raw_write(env, ri, value); 3544 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3545 raw_write(env, ri, value & 0xfffff6ff); 3546 } else { 3547 raw_write(env, ri, value & 0xfffff1ff); 3548 } 3549 } 3550 3551 #ifndef CONFIG_USER_ONLY 3552 /* get_phys_addr() isn't present for user-mode-only targets */ 3553 3554 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3555 bool isread) 3556 { 3557 if (ri->opc2 & 4) { 3558 /* 3559 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3560 * Secure EL1 (which can only happen if EL3 is AArch64). 3561 * They are simply UNDEF if executed from NS EL1. 3562 * They function normally from EL2 or EL3. 3563 */ 3564 if (arm_current_el(env) == 1) { 3565 if (arm_is_secure_below_el3(env)) { 3566 if (env->cp15.scr_el3 & SCR_EEL2) { 3567 return CP_ACCESS_TRAP_EL2; 3568 } 3569 return CP_ACCESS_TRAP_EL3; 3570 } 3571 return CP_ACCESS_TRAP_UNCATEGORIZED; 3572 } 3573 } 3574 return CP_ACCESS_OK; 3575 } 3576 3577 #ifdef CONFIG_TCG 3578 static int par_el1_shareability(GetPhysAddrResult *res) 3579 { 3580 /* 3581 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3582 * memory -- see pseudocode PAREncodeShareability(). 3583 */ 3584 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3585 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3586 return 2; 3587 } 3588 return res->cacheattrs.shareability; 3589 } 3590 3591 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3592 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3593 ARMSecuritySpace ss) 3594 { 3595 bool ret; 3596 uint64_t par64; 3597 bool format64 = false; 3598 ARMMMUFaultInfo fi = {}; 3599 GetPhysAddrResult res = {}; 3600 3601 /* 3602 * I_MXTJT: Granule protection checks are not performed on the final address 3603 * of a successful translation. 3604 */ 3605 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3606 &res, &fi); 3607 3608 /* 3609 * ATS operations only do S1 or S1+S2 translations, so we never 3610 * have to deal with the ARMCacheAttrs format for S2 only. 3611 */ 3612 assert(!res.cacheattrs.is_s2_format); 3613 3614 if (ret) { 3615 /* 3616 * Some kinds of translation fault must cause exceptions rather 3617 * than being reported in the PAR. 3618 */ 3619 int current_el = arm_current_el(env); 3620 int target_el; 3621 uint32_t syn, fsr, fsc; 3622 bool take_exc = false; 3623 3624 if (fi.s1ptw && current_el == 1 3625 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3626 /* 3627 * Synchronous stage 2 fault on an access made as part of the 3628 * translation table walk for AT S1E0* or AT S1E1* insn 3629 * executed from NS EL1. If this is a synchronous external abort 3630 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3631 * to EL3. Otherwise the fault is taken as an exception to EL2, 3632 * and HPFAR_EL2 holds the faulting IPA. 3633 */ 3634 if (fi.type == ARMFault_SyncExternalOnWalk && 3635 (env->cp15.scr_el3 & SCR_EA)) { 3636 target_el = 3; 3637 } else { 3638 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3639 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3640 env->cp15.hpfar_el2 |= HPFAR_NS; 3641 } 3642 target_el = 2; 3643 } 3644 take_exc = true; 3645 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3646 /* 3647 * Synchronous external aborts during a translation table walk 3648 * are taken as Data Abort exceptions. 3649 */ 3650 if (fi.stage2) { 3651 if (current_el == 3) { 3652 target_el = 3; 3653 } else { 3654 target_el = 2; 3655 } 3656 } else { 3657 target_el = exception_target_el(env); 3658 } 3659 take_exc = true; 3660 } 3661 3662 if (take_exc) { 3663 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3664 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3665 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3666 fsr = arm_fi_to_lfsc(&fi); 3667 fsc = extract32(fsr, 0, 6); 3668 } else { 3669 fsr = arm_fi_to_sfsc(&fi); 3670 fsc = 0x3f; 3671 } 3672 /* 3673 * Report exception with ESR indicating a fault due to a 3674 * translation table walk for a cache maintenance instruction. 3675 */ 3676 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3677 fi.ea, 1, fi.s1ptw, 1, fsc); 3678 env->exception.vaddress = value; 3679 env->exception.fsr = fsr; 3680 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3681 } 3682 } 3683 3684 if (is_a64(env)) { 3685 format64 = true; 3686 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3687 /* 3688 * ATS1Cxx: 3689 * * TTBCR.EAE determines whether the result is returned using the 3690 * 32-bit or the 64-bit PAR format 3691 * * Instructions executed in Hyp mode always use the 64bit format 3692 * 3693 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3694 * * The Non-secure TTBCR.EAE bit is set to 1 3695 * * The implementation includes EL2, and the value of HCR.VM is 1 3696 * 3697 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3698 * 3699 * ATS1Hx always uses the 64bit format. 3700 */ 3701 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3702 3703 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_aa32_secure_pl1_0(env)) { 3704 if (mmu_idx == ARMMMUIdx_E10_0 || 3705 mmu_idx == ARMMMUIdx_E10_1 || 3706 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3707 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3708 } else { 3709 format64 |= arm_current_el(env) == 2; 3710 } 3711 } 3712 } 3713 3714 if (format64) { 3715 /* Create a 64-bit PAR */ 3716 par64 = (1 << 11); /* LPAE bit always set */ 3717 if (!ret) { 3718 par64 |= res.f.phys_addr & ~0xfffULL; 3719 if (!res.f.attrs.secure) { 3720 par64 |= (1 << 9); /* NS */ 3721 } 3722 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3723 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3724 } else { 3725 uint32_t fsr = arm_fi_to_lfsc(&fi); 3726 3727 par64 |= 1; /* F */ 3728 par64 |= (fsr & 0x3f) << 1; /* FS */ 3729 if (fi.stage2) { 3730 par64 |= (1 << 9); /* S */ 3731 } 3732 if (fi.s1ptw) { 3733 par64 |= (1 << 8); /* PTW */ 3734 } 3735 } 3736 } else { 3737 /* 3738 * fsr is a DFSR/IFSR value for the short descriptor 3739 * translation table format (with WnR always clear). 3740 * Convert it to a 32-bit PAR. 3741 */ 3742 if (!ret) { 3743 /* We do not set any attribute bits in the PAR */ 3744 if (res.f.lg_page_size == 24 3745 && arm_feature(env, ARM_FEATURE_V7)) { 3746 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3747 } else { 3748 par64 = res.f.phys_addr & 0xfffff000; 3749 } 3750 if (!res.f.attrs.secure) { 3751 par64 |= (1 << 9); /* NS */ 3752 } 3753 } else { 3754 uint32_t fsr = arm_fi_to_sfsc(&fi); 3755 3756 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3757 ((fsr & 0xf) << 1) | 1; 3758 } 3759 } 3760 return par64; 3761 } 3762 #endif /* CONFIG_TCG */ 3763 3764 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3765 { 3766 #ifdef CONFIG_TCG 3767 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3768 uint64_t par64; 3769 ARMMMUIdx mmu_idx; 3770 int el = arm_current_el(env); 3771 ARMSecuritySpace ss = arm_security_space(env); 3772 3773 switch (ri->opc2 & 6) { 3774 case 0: 3775 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3776 switch (el) { 3777 case 2: 3778 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3779 /* fall through */ 3780 case 1: 3781 case 3: 3782 if (ri->crm == 9 && arm_pan_enabled(env)) { 3783 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3784 } else { 3785 mmu_idx = ARMMMUIdx_Stage1_E1; 3786 } 3787 break; 3788 default: 3789 g_assert_not_reached(); 3790 } 3791 break; 3792 case 2: 3793 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3794 switch (el) { 3795 case 3: 3796 mmu_idx = ARMMMUIdx_E10_0; 3797 break; 3798 case 2: 3799 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3800 mmu_idx = ARMMMUIdx_Stage1_E0; 3801 break; 3802 case 1: 3803 mmu_idx = ARMMMUIdx_Stage1_E0; 3804 break; 3805 default: 3806 g_assert_not_reached(); 3807 } 3808 break; 3809 case 4: 3810 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3811 mmu_idx = ARMMMUIdx_E10_1; 3812 ss = ARMSS_NonSecure; 3813 break; 3814 case 6: 3815 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3816 mmu_idx = ARMMMUIdx_E10_0; 3817 ss = ARMSS_NonSecure; 3818 break; 3819 default: 3820 g_assert_not_reached(); 3821 } 3822 3823 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3824 3825 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3826 #else 3827 /* Handled by hardware accelerator. */ 3828 g_assert_not_reached(); 3829 #endif /* CONFIG_TCG */ 3830 } 3831 3832 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3833 uint64_t value) 3834 { 3835 #ifdef CONFIG_TCG 3836 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3837 uint64_t par64; 3838 3839 /* There is no SecureEL2 for AArch32. */ 3840 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3841 ARMSS_NonSecure); 3842 3843 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3844 #else 3845 /* Handled by hardware accelerator. */ 3846 g_assert_not_reached(); 3847 #endif /* CONFIG_TCG */ 3848 } 3849 3850 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3851 bool isread) 3852 { 3853 /* 3854 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3855 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3856 * only happen when executing at EL3 because that combination also causes an 3857 * illegal exception return. We don't need to check FEAT_RME either, because 3858 * scr_write() ensures that the NSE bit is not set otherwise. 3859 */ 3860 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3861 return CP_ACCESS_TRAP; 3862 } 3863 return CP_ACCESS_OK; 3864 } 3865 3866 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3867 bool isread) 3868 { 3869 if (arm_current_el(env) == 3 && 3870 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3871 return CP_ACCESS_TRAP; 3872 } 3873 return at_e012_access(env, ri, isread); 3874 } 3875 3876 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3877 bool isread) 3878 { 3879 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3880 return CP_ACCESS_TRAP_EL2; 3881 } 3882 return at_e012_access(env, ri, isread); 3883 } 3884 3885 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3886 uint64_t value) 3887 { 3888 #ifdef CONFIG_TCG 3889 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3890 ARMMMUIdx mmu_idx; 3891 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3892 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3893 bool for_el3 = false; 3894 ARMSecuritySpace ss; 3895 3896 switch (ri->opc2 & 6) { 3897 case 0: 3898 switch (ri->opc1) { 3899 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3900 if (ri->crm == 9 && arm_pan_enabled(env)) { 3901 mmu_idx = regime_e20 ? 3902 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3903 } else { 3904 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3905 } 3906 break; 3907 case 4: /* AT S1E2R, AT S1E2W */ 3908 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3909 break; 3910 case 6: /* AT S1E3R, AT S1E3W */ 3911 mmu_idx = ARMMMUIdx_E3; 3912 for_el3 = true; 3913 break; 3914 default: 3915 g_assert_not_reached(); 3916 } 3917 break; 3918 case 2: /* AT S1E0R, AT S1E0W */ 3919 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3920 break; 3921 case 4: /* AT S12E1R, AT S12E1W */ 3922 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3923 break; 3924 case 6: /* AT S12E0R, AT S12E0W */ 3925 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3926 break; 3927 default: 3928 g_assert_not_reached(); 3929 } 3930 3931 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3932 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3933 #else 3934 /* Handled by hardware accelerator. */ 3935 g_assert_not_reached(); 3936 #endif /* CONFIG_TCG */ 3937 } 3938 #endif 3939 3940 /* Return basic MPU access permission bits. */ 3941 static uint32_t simple_mpu_ap_bits(uint32_t val) 3942 { 3943 uint32_t ret; 3944 uint32_t mask; 3945 int i; 3946 ret = 0; 3947 mask = 3; 3948 for (i = 0; i < 16; i += 2) { 3949 ret |= (val >> i) & mask; 3950 mask <<= 2; 3951 } 3952 return ret; 3953 } 3954 3955 /* Pad basic MPU access permission bits to extended format. */ 3956 static uint32_t extended_mpu_ap_bits(uint32_t val) 3957 { 3958 uint32_t ret; 3959 uint32_t mask; 3960 int i; 3961 ret = 0; 3962 mask = 3; 3963 for (i = 0; i < 16; i += 2) { 3964 ret |= (val & mask) << i; 3965 mask <<= 2; 3966 } 3967 return ret; 3968 } 3969 3970 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3971 uint64_t value) 3972 { 3973 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3974 } 3975 3976 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3977 { 3978 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3979 } 3980 3981 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3982 uint64_t value) 3983 { 3984 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3985 } 3986 3987 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3988 { 3989 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3990 } 3991 3992 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3993 { 3994 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3995 3996 if (!u32p) { 3997 return 0; 3998 } 3999 4000 u32p += env->pmsav7.rnr[M_REG_NS]; 4001 return *u32p; 4002 } 4003 4004 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 4005 uint64_t value) 4006 { 4007 ARMCPU *cpu = env_archcpu(env); 4008 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 4009 4010 if (!u32p) { 4011 return; 4012 } 4013 4014 u32p += env->pmsav7.rnr[M_REG_NS]; 4015 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4016 *u32p = value; 4017 } 4018 4019 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4020 uint64_t value) 4021 { 4022 ARMCPU *cpu = env_archcpu(env); 4023 uint32_t nrgs = cpu->pmsav7_dregion; 4024 4025 if (value >= nrgs) { 4026 qemu_log_mask(LOG_GUEST_ERROR, 4027 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 4028 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 4029 return; 4030 } 4031 4032 raw_write(env, ri, value); 4033 } 4034 4035 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4036 uint64_t value) 4037 { 4038 ARMCPU *cpu = env_archcpu(env); 4039 4040 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4041 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4042 } 4043 4044 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4045 { 4046 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4047 } 4048 4049 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4050 uint64_t value) 4051 { 4052 ARMCPU *cpu = env_archcpu(env); 4053 4054 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4055 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4056 } 4057 4058 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4059 { 4060 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4061 } 4062 4063 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4064 uint64_t value) 4065 { 4066 ARMCPU *cpu = env_archcpu(env); 4067 4068 /* 4069 * Ignore writes that would select not implemented region. 4070 * This is architecturally UNPREDICTABLE. 4071 */ 4072 if (value >= cpu->pmsav7_dregion) { 4073 return; 4074 } 4075 4076 env->pmsav7.rnr[M_REG_NS] = value; 4077 } 4078 4079 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4080 uint64_t value) 4081 { 4082 ARMCPU *cpu = env_archcpu(env); 4083 4084 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4085 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 4086 } 4087 4088 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4089 { 4090 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 4091 } 4092 4093 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4094 uint64_t value) 4095 { 4096 ARMCPU *cpu = env_archcpu(env); 4097 4098 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4099 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4100 } 4101 4102 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4103 { 4104 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4105 } 4106 4107 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4108 uint64_t value) 4109 { 4110 uint32_t n; 4111 uint32_t bit; 4112 ARMCPU *cpu = env_archcpu(env); 4113 4114 /* Ignore writes to unimplemented regions */ 4115 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4116 value &= MAKE_64BIT_MASK(0, rmax); 4117 4118 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4119 4120 /* Register alias is only valid for first 32 indexes */ 4121 for (n = 0; n < rmax; ++n) { 4122 bit = extract32(value, n, 1); 4123 env->pmsav8.hprlar[n] = deposit32( 4124 env->pmsav8.hprlar[n], 0, 1, bit); 4125 } 4126 } 4127 4128 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4129 { 4130 uint32_t n; 4131 uint32_t result = 0x0; 4132 ARMCPU *cpu = env_archcpu(env); 4133 4134 /* Register alias is only valid for first 32 indexes */ 4135 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4136 if (env->pmsav8.hprlar[n] & 0x1) { 4137 result |= (0x1 << n); 4138 } 4139 } 4140 return result; 4141 } 4142 4143 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 ARMCPU *cpu = env_archcpu(env); 4147 4148 /* 4149 * Ignore writes that would select not implemented region. 4150 * This is architecturally UNPREDICTABLE. 4151 */ 4152 if (value >= cpu->pmsav8r_hdregion) { 4153 return; 4154 } 4155 4156 env->pmsav8.hprselr = value; 4157 } 4158 4159 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4160 uint64_t value) 4161 { 4162 ARMCPU *cpu = env_archcpu(env); 4163 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4164 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4165 4166 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4167 4168 if (ri->opc1 & 4) { 4169 if (index >= cpu->pmsav8r_hdregion) { 4170 return; 4171 } 4172 if (ri->opc2 & 0x1) { 4173 env->pmsav8.hprlar[index] = value; 4174 } else { 4175 env->pmsav8.hprbar[index] = value; 4176 } 4177 } else { 4178 if (index >= cpu->pmsav7_dregion) { 4179 return; 4180 } 4181 if (ri->opc2 & 0x1) { 4182 env->pmsav8.rlar[M_REG_NS][index] = value; 4183 } else { 4184 env->pmsav8.rbar[M_REG_NS][index] = value; 4185 } 4186 } 4187 } 4188 4189 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4190 { 4191 ARMCPU *cpu = env_archcpu(env); 4192 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4193 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4194 4195 if (ri->opc1 & 4) { 4196 if (index >= cpu->pmsav8r_hdregion) { 4197 return 0x0; 4198 } 4199 if (ri->opc2 & 0x1) { 4200 return env->pmsav8.hprlar[index]; 4201 } else { 4202 return env->pmsav8.hprbar[index]; 4203 } 4204 } else { 4205 if (index >= cpu->pmsav7_dregion) { 4206 return 0x0; 4207 } 4208 if (ri->opc2 & 0x1) { 4209 return env->pmsav8.rlar[M_REG_NS][index]; 4210 } else { 4211 return env->pmsav8.rbar[M_REG_NS][index]; 4212 } 4213 } 4214 } 4215 4216 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4217 { .name = "PRBAR", 4218 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4219 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4220 .accessfn = access_tvm_trvm, 4221 .readfn = prbar_read, .writefn = prbar_write }, 4222 { .name = "PRLAR", 4223 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4224 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4225 .accessfn = access_tvm_trvm, 4226 .readfn = prlar_read, .writefn = prlar_write }, 4227 { .name = "PRSELR", .resetvalue = 0, 4228 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4229 .access = PL1_RW, .accessfn = access_tvm_trvm, 4230 .writefn = prselr_write, 4231 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4232 { .name = "HPRBAR", .resetvalue = 0, 4233 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4234 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4235 .readfn = hprbar_read, .writefn = hprbar_write }, 4236 { .name = "HPRLAR", 4237 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4238 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4239 .readfn = hprlar_read, .writefn = hprlar_write }, 4240 { .name = "HPRSELR", .resetvalue = 0, 4241 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4242 .access = PL2_RW, 4243 .writefn = hprselr_write, 4244 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4245 { .name = "HPRENR", 4246 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4247 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4248 .readfn = hprenr_read, .writefn = hprenr_write }, 4249 }; 4250 4251 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4252 /* 4253 * Reset for all these registers is handled in arm_cpu_reset(), 4254 * because the PMSAv7 is also used by M-profile CPUs, which do 4255 * not register cpregs but still need the state to be reset. 4256 */ 4257 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4258 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4259 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4260 .readfn = pmsav7_read, .writefn = pmsav7_write, 4261 .resetfn = arm_cp_reset_ignore }, 4262 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4263 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4264 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4265 .readfn = pmsav7_read, .writefn = pmsav7_write, 4266 .resetfn = arm_cp_reset_ignore }, 4267 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4268 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4269 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4270 .readfn = pmsav7_read, .writefn = pmsav7_write, 4271 .resetfn = arm_cp_reset_ignore }, 4272 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4273 .access = PL1_RW, 4274 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4275 .writefn = pmsav7_rgnr_write, 4276 .resetfn = arm_cp_reset_ignore }, 4277 }; 4278 4279 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4280 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4281 .access = PL1_RW, .type = ARM_CP_ALIAS, 4282 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4283 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4284 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4285 .access = PL1_RW, .type = ARM_CP_ALIAS, 4286 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4287 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4288 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4289 .access = PL1_RW, 4290 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4291 .resetvalue = 0, }, 4292 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4293 .access = PL1_RW, 4294 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4295 .resetvalue = 0, }, 4296 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4297 .access = PL1_RW, 4298 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4299 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4300 .access = PL1_RW, 4301 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4302 /* Protection region base and size registers */ 4303 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4304 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4305 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4306 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4307 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4308 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4309 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4310 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4311 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4312 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4313 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4314 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4315 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4316 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4317 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4318 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4319 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4320 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4321 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4322 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4323 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4324 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4325 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4326 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4327 }; 4328 4329 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4330 uint64_t value) 4331 { 4332 ARMCPU *cpu = env_archcpu(env); 4333 4334 if (!arm_feature(env, ARM_FEATURE_V8)) { 4335 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4336 /* 4337 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4338 * using Long-descriptor translation table format 4339 */ 4340 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4341 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4342 /* 4343 * In an implementation that includes the Security Extensions 4344 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4345 * Short-descriptor translation table format. 4346 */ 4347 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4348 } else { 4349 value &= TTBCR_N; 4350 } 4351 } 4352 4353 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4354 /* 4355 * With LPAE the TTBCR could result in a change of ASID 4356 * via the TTBCR.A1 bit, so do a TLB flush. 4357 */ 4358 tlb_flush(CPU(cpu)); 4359 } 4360 raw_write(env, ri, value); 4361 } 4362 4363 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4364 uint64_t value) 4365 { 4366 ARMCPU *cpu = env_archcpu(env); 4367 4368 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4369 tlb_flush(CPU(cpu)); 4370 raw_write(env, ri, value); 4371 } 4372 4373 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4374 uint64_t value) 4375 { 4376 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4377 if (cpreg_field_is_64bit(ri) && 4378 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4379 ARMCPU *cpu = env_archcpu(env); 4380 tlb_flush(CPU(cpu)); 4381 } 4382 raw_write(env, ri, value); 4383 } 4384 4385 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4386 uint64_t value) 4387 { 4388 /* 4389 * If we are running with E2&0 regime, then an ASID is active. 4390 * Flush if that might be changing. Note we're not checking 4391 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4392 * holds the active ASID, only checking the field that might. 4393 */ 4394 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4395 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4396 uint16_t mask = ARMMMUIdxBit_E20_2 | 4397 ARMMMUIdxBit_E20_2_PAN | 4398 ARMMMUIdxBit_E20_0; 4399 tlb_flush_by_mmuidx(env_cpu(env), mask); 4400 } 4401 raw_write(env, ri, value); 4402 } 4403 4404 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 ARMCPU *cpu = env_archcpu(env); 4408 CPUState *cs = CPU(cpu); 4409 4410 /* 4411 * A change in VMID to the stage2 page table (Stage2) invalidates 4412 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4413 */ 4414 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4415 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4416 } 4417 raw_write(env, ri, value); 4418 } 4419 4420 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4421 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4422 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4423 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4424 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4425 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4426 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4428 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4429 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4430 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4431 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4432 offsetof(CPUARMState, cp15.dfar_ns) } }, 4433 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4434 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4435 .access = PL1_RW, .accessfn = access_tvm_trvm, 4436 .fgt = FGT_FAR_EL1, 4437 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4438 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4439 .resetvalue = 0, }, 4440 }; 4441 4442 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4443 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4444 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4445 .access = PL1_RW, .accessfn = access_tvm_trvm, 4446 .fgt = FGT_ESR_EL1, 4447 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4448 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4449 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4450 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4451 .access = PL1_RW, .accessfn = access_tvm_trvm, 4452 .fgt = FGT_TTBR0_EL1, 4453 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4454 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4455 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4456 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4457 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4458 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4459 .access = PL1_RW, .accessfn = access_tvm_trvm, 4460 .fgt = FGT_TTBR1_EL1, 4461 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4462 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4463 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4464 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4465 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4466 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4467 .access = PL1_RW, .accessfn = access_tvm_trvm, 4468 .fgt = FGT_TCR_EL1, 4469 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4470 .writefn = vmsa_tcr_el12_write, 4471 .raw_writefn = raw_write, 4472 .resetvalue = 0, 4473 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4474 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4475 .access = PL1_RW, .accessfn = access_tvm_trvm, 4476 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4477 .raw_writefn = raw_write, 4478 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4479 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4480 }; 4481 4482 /* 4483 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4484 * qemu tlbs nor adjusting cached masks. 4485 */ 4486 static const ARMCPRegInfo ttbcr2_reginfo = { 4487 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4488 .access = PL1_RW, .accessfn = access_tvm_trvm, 4489 .type = ARM_CP_ALIAS, 4490 .bank_fieldoffsets = { 4491 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4492 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4493 }, 4494 }; 4495 4496 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4497 uint64_t value) 4498 { 4499 env->cp15.c15_ticonfig = value & 0xe7; 4500 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4501 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4502 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4503 } 4504 4505 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4506 uint64_t value) 4507 { 4508 env->cp15.c15_threadid = value & 0xffff; 4509 } 4510 4511 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4512 uint64_t value) 4513 { 4514 /* Wait-for-interrupt (deprecated) */ 4515 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4516 } 4517 4518 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4519 uint64_t value) 4520 { 4521 /* 4522 * On OMAP there are registers indicating the max/min index of dcache lines 4523 * containing a dirty line; cache flush operations have to reset these. 4524 */ 4525 env->cp15.c15_i_max = 0x000; 4526 env->cp15.c15_i_min = 0xff0; 4527 } 4528 4529 static const ARMCPRegInfo omap_cp_reginfo[] = { 4530 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4531 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4532 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4533 .resetvalue = 0, }, 4534 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4535 .access = PL1_RW, .type = ARM_CP_NOP }, 4536 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4537 .access = PL1_RW, 4538 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4539 .writefn = omap_ticonfig_write }, 4540 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4541 .access = PL1_RW, 4542 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4543 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4544 .access = PL1_RW, .resetvalue = 0xff0, 4545 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4546 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4547 .access = PL1_RW, 4548 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4549 .writefn = omap_threadid_write }, 4550 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4551 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4552 .type = ARM_CP_NO_RAW, 4553 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4554 /* 4555 * TODO: Peripheral port remap register: 4556 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4557 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4558 * when MMU is off. 4559 */ 4560 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4561 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4562 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4563 .writefn = omap_cachemaint_write }, 4564 { .name = "C9", .cp = 15, .crn = 9, 4565 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4566 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4567 }; 4568 4569 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4570 uint64_t value) 4571 { 4572 env->cp15.c15_cpar = value & 0x3fff; 4573 } 4574 4575 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4576 { .name = "XSCALE_CPAR", 4577 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4578 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4579 .writefn = xscale_cpar_write, }, 4580 { .name = "XSCALE_AUXCR", 4581 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4582 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4583 .resetvalue = 0, }, 4584 /* 4585 * XScale specific cache-lockdown: since we have no cache we NOP these 4586 * and hope the guest does not really rely on cache behaviour. 4587 */ 4588 { .name = "XSCALE_LOCK_ICACHE_LINE", 4589 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4590 .access = PL1_W, .type = ARM_CP_NOP }, 4591 { .name = "XSCALE_UNLOCK_ICACHE", 4592 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4593 .access = PL1_W, .type = ARM_CP_NOP }, 4594 { .name = "XSCALE_DCACHE_LOCK", 4595 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4596 .access = PL1_RW, .type = ARM_CP_NOP }, 4597 { .name = "XSCALE_UNLOCK_DCACHE", 4598 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4599 .access = PL1_W, .type = ARM_CP_NOP }, 4600 }; 4601 4602 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4603 /* 4604 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4605 * implementation of this implementation-defined space. 4606 * Ideally this should eventually disappear in favour of actually 4607 * implementing the correct behaviour for all cores. 4608 */ 4609 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4610 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4611 .access = PL1_RW, 4612 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4613 .resetvalue = 0 }, 4614 }; 4615 4616 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4617 /* Cache status: RAZ because we have no cache so it's always clean */ 4618 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4619 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4620 .resetvalue = 0 }, 4621 }; 4622 4623 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4624 /* We never have a block transfer operation in progress */ 4625 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4626 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4627 .resetvalue = 0 }, 4628 /* The cache ops themselves: these all NOP for QEMU */ 4629 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4630 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4631 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4632 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4633 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4634 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4635 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4636 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4637 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4638 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4639 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4640 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4641 }; 4642 4643 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4644 /* 4645 * The cache test-and-clean instructions always return (1 << 30) 4646 * to indicate that there are no dirty cache lines. 4647 */ 4648 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4649 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4650 .resetvalue = (1 << 30) }, 4651 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4652 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4653 .resetvalue = (1 << 30) }, 4654 }; 4655 4656 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4657 /* Ignore ReadBuffer accesses */ 4658 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4659 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4660 .access = PL1_RW, .resetvalue = 0, 4661 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4662 }; 4663 4664 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4665 { 4666 unsigned int cur_el = arm_current_el(env); 4667 4668 if (arm_is_el2_enabled(env) && cur_el == 1) { 4669 return env->cp15.vpidr_el2; 4670 } 4671 return raw_read(env, ri); 4672 } 4673 4674 static uint64_t mpidr_read_val(CPUARMState *env) 4675 { 4676 ARMCPU *cpu = env_archcpu(env); 4677 uint64_t mpidr = cpu->mp_affinity; 4678 4679 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4680 mpidr |= (1U << 31); 4681 /* 4682 * Cores which are uniprocessor (non-coherent) 4683 * but still implement the MP extensions set 4684 * bit 30. (For instance, Cortex-R5). 4685 */ 4686 if (cpu->mp_is_up) { 4687 mpidr |= (1u << 30); 4688 } 4689 } 4690 return mpidr; 4691 } 4692 4693 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4694 { 4695 unsigned int cur_el = arm_current_el(env); 4696 4697 if (arm_is_el2_enabled(env) && cur_el == 1) { 4698 return env->cp15.vmpidr_el2; 4699 } 4700 return mpidr_read_val(env); 4701 } 4702 4703 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4704 /* NOP AMAIR0/1 */ 4705 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4706 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4707 .access = PL1_RW, .accessfn = access_tvm_trvm, 4708 .fgt = FGT_AMAIR_EL1, 4709 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4710 .type = ARM_CP_CONST, .resetvalue = 0 }, 4711 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4712 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4713 .access = PL1_RW, .accessfn = access_tvm_trvm, 4714 .type = ARM_CP_CONST, .resetvalue = 0 }, 4715 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4716 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4717 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4718 offsetof(CPUARMState, cp15.par_ns)} }, 4719 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4720 .access = PL1_RW, .accessfn = access_tvm_trvm, 4721 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4722 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4723 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4724 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4725 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4726 .access = PL1_RW, .accessfn = access_tvm_trvm, 4727 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4728 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4729 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4730 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4731 }; 4732 4733 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4734 { 4735 return vfp_get_fpcr(env); 4736 } 4737 4738 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4739 uint64_t value) 4740 { 4741 vfp_set_fpcr(env, value); 4742 } 4743 4744 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4745 { 4746 return vfp_get_fpsr(env); 4747 } 4748 4749 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4750 uint64_t value) 4751 { 4752 vfp_set_fpsr(env, value); 4753 } 4754 4755 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4756 bool isread) 4757 { 4758 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4759 return CP_ACCESS_TRAP; 4760 } 4761 return CP_ACCESS_OK; 4762 } 4763 4764 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4765 uint64_t value) 4766 { 4767 env->daif = value & PSTATE_DAIF; 4768 } 4769 4770 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4771 { 4772 return env->pstate & PSTATE_PAN; 4773 } 4774 4775 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4776 uint64_t value) 4777 { 4778 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4779 } 4780 4781 static const ARMCPRegInfo pan_reginfo = { 4782 .name = "PAN", .state = ARM_CP_STATE_AA64, 4783 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4784 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4785 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4786 }; 4787 4788 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4789 { 4790 return env->pstate & PSTATE_UAO; 4791 } 4792 4793 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4794 uint64_t value) 4795 { 4796 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4797 } 4798 4799 static const ARMCPRegInfo uao_reginfo = { 4800 .name = "UAO", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4802 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4803 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4804 }; 4805 4806 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4807 { 4808 return env->pstate & PSTATE_DIT; 4809 } 4810 4811 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4812 uint64_t value) 4813 { 4814 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4815 } 4816 4817 static const ARMCPRegInfo dit_reginfo = { 4818 .name = "DIT", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4820 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4821 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4822 }; 4823 4824 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4825 { 4826 return env->pstate & PSTATE_SSBS; 4827 } 4828 4829 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4830 uint64_t value) 4831 { 4832 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4833 } 4834 4835 static const ARMCPRegInfo ssbs_reginfo = { 4836 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4838 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4839 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4840 }; 4841 4842 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4843 const ARMCPRegInfo *ri, 4844 bool isread) 4845 { 4846 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4847 switch (arm_current_el(env)) { 4848 case 0: 4849 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4850 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4851 return CP_ACCESS_TRAP; 4852 } 4853 /* fall through */ 4854 case 1: 4855 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4856 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4857 return CP_ACCESS_TRAP_EL2; 4858 } 4859 break; 4860 } 4861 return CP_ACCESS_OK; 4862 } 4863 4864 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4865 { 4866 /* Cache invalidate/clean to Point of Unification... */ 4867 switch (arm_current_el(env)) { 4868 case 0: 4869 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4870 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4871 return CP_ACCESS_TRAP; 4872 } 4873 /* fall through */ 4874 case 1: 4875 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4876 if (arm_hcr_el2_eff(env) & hcrflags) { 4877 return CP_ACCESS_TRAP_EL2; 4878 } 4879 break; 4880 } 4881 return CP_ACCESS_OK; 4882 } 4883 4884 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4885 bool isread) 4886 { 4887 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4888 } 4889 4890 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4891 bool isread) 4892 { 4893 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4894 } 4895 4896 /* 4897 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4898 * Page D4-1736 (DDI0487A.b) 4899 */ 4900 4901 static int vae1_tlbmask(CPUARMState *env) 4902 { 4903 uint64_t hcr = arm_hcr_el2_eff(env); 4904 uint16_t mask; 4905 4906 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4907 mask = ARMMMUIdxBit_E20_2 | 4908 ARMMMUIdxBit_E20_2_PAN | 4909 ARMMMUIdxBit_E20_0; 4910 } else { 4911 mask = ARMMMUIdxBit_E10_1 | 4912 ARMMMUIdxBit_E10_1_PAN | 4913 ARMMMUIdxBit_E10_0; 4914 } 4915 return mask; 4916 } 4917 4918 static int vae2_tlbmask(CPUARMState *env) 4919 { 4920 uint64_t hcr = arm_hcr_el2_eff(env); 4921 uint16_t mask; 4922 4923 if (hcr & HCR_E2H) { 4924 mask = ARMMMUIdxBit_E20_2 | 4925 ARMMMUIdxBit_E20_2_PAN | 4926 ARMMMUIdxBit_E20_0; 4927 } else { 4928 mask = ARMMMUIdxBit_E2; 4929 } 4930 return mask; 4931 } 4932 4933 /* Return 56 if TBI is enabled, 64 otherwise. */ 4934 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4935 uint64_t addr) 4936 { 4937 uint64_t tcr = regime_tcr(env, mmu_idx); 4938 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4939 int select = extract64(addr, 55, 1); 4940 4941 return (tbi >> select) & 1 ? 56 : 64; 4942 } 4943 4944 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4945 { 4946 uint64_t hcr = arm_hcr_el2_eff(env); 4947 ARMMMUIdx mmu_idx; 4948 4949 /* Only the regime of the mmu_idx below is significant. */ 4950 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4951 mmu_idx = ARMMMUIdx_E20_0; 4952 } else { 4953 mmu_idx = ARMMMUIdx_E10_0; 4954 } 4955 4956 return tlbbits_for_regime(env, mmu_idx, addr); 4957 } 4958 4959 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4960 { 4961 uint64_t hcr = arm_hcr_el2_eff(env); 4962 ARMMMUIdx mmu_idx; 4963 4964 /* 4965 * Only the regime of the mmu_idx below is significant. 4966 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4967 * only has one. 4968 */ 4969 if (hcr & HCR_E2H) { 4970 mmu_idx = ARMMMUIdx_E20_2; 4971 } else { 4972 mmu_idx = ARMMMUIdx_E2; 4973 } 4974 4975 return tlbbits_for_regime(env, mmu_idx, addr); 4976 } 4977 4978 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4979 uint64_t value) 4980 { 4981 CPUState *cs = env_cpu(env); 4982 int mask = vae1_tlbmask(env); 4983 4984 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4985 } 4986 4987 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4988 uint64_t value) 4989 { 4990 CPUState *cs = env_cpu(env); 4991 int mask = vae1_tlbmask(env); 4992 4993 if (tlb_force_broadcast(env)) { 4994 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4995 } else { 4996 tlb_flush_by_mmuidx(cs, mask); 4997 } 4998 } 4999 5000 static int e2_tlbmask(CPUARMState *env) 5001 { 5002 return (ARMMMUIdxBit_E20_0 | 5003 ARMMMUIdxBit_E20_2 | 5004 ARMMMUIdxBit_E20_2_PAN | 5005 ARMMMUIdxBit_E2); 5006 } 5007 5008 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5009 uint64_t value) 5010 { 5011 CPUState *cs = env_cpu(env); 5012 int mask = alle1_tlbmask(env); 5013 5014 tlb_flush_by_mmuidx(cs, mask); 5015 } 5016 5017 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5018 uint64_t value) 5019 { 5020 CPUState *cs = env_cpu(env); 5021 int mask = e2_tlbmask(env); 5022 5023 tlb_flush_by_mmuidx(cs, mask); 5024 } 5025 5026 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5027 uint64_t value) 5028 { 5029 ARMCPU *cpu = env_archcpu(env); 5030 CPUState *cs = CPU(cpu); 5031 5032 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 5033 } 5034 5035 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5036 uint64_t value) 5037 { 5038 CPUState *cs = env_cpu(env); 5039 int mask = alle1_tlbmask(env); 5040 5041 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5042 } 5043 5044 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5045 uint64_t value) 5046 { 5047 CPUState *cs = env_cpu(env); 5048 int mask = e2_tlbmask(env); 5049 5050 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5051 } 5052 5053 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5054 uint64_t value) 5055 { 5056 CPUState *cs = env_cpu(env); 5057 5058 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 5059 } 5060 5061 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5062 uint64_t value) 5063 { 5064 /* 5065 * Invalidate by VA, EL2 5066 * Currently handles both VAE2 and VALE2, since we don't support 5067 * flush-last-level-only. 5068 */ 5069 CPUState *cs = env_cpu(env); 5070 int mask = vae2_tlbmask(env); 5071 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5072 int bits = vae2_tlbbits(env, pageaddr); 5073 5074 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5075 } 5076 5077 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5078 uint64_t value) 5079 { 5080 /* 5081 * Invalidate by VA, EL3 5082 * Currently handles both VAE3 and VALE3, since we don't support 5083 * flush-last-level-only. 5084 */ 5085 ARMCPU *cpu = env_archcpu(env); 5086 CPUState *cs = CPU(cpu); 5087 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5088 5089 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 5090 } 5091 5092 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5093 uint64_t value) 5094 { 5095 CPUState *cs = env_cpu(env); 5096 int mask = vae1_tlbmask(env); 5097 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5098 int bits = vae1_tlbbits(env, pageaddr); 5099 5100 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5101 } 5102 5103 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5104 uint64_t value) 5105 { 5106 /* 5107 * Invalidate by VA, EL1&0 (AArch64 version). 5108 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 5109 * since we don't support flush-for-specific-ASID-only or 5110 * flush-last-level-only. 5111 */ 5112 CPUState *cs = env_cpu(env); 5113 int mask = vae1_tlbmask(env); 5114 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5115 int bits = vae1_tlbbits(env, pageaddr); 5116 5117 if (tlb_force_broadcast(env)) { 5118 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5119 } else { 5120 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5121 } 5122 } 5123 5124 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5125 uint64_t value) 5126 { 5127 CPUState *cs = env_cpu(env); 5128 int mask = vae2_tlbmask(env); 5129 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5130 int bits = vae2_tlbbits(env, pageaddr); 5131 5132 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5133 } 5134 5135 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5136 uint64_t value) 5137 { 5138 CPUState *cs = env_cpu(env); 5139 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5140 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 5141 5142 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 5143 ARMMMUIdxBit_E3, bits); 5144 } 5145 5146 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 5147 { 5148 /* 5149 * The MSB of value is the NS field, which only applies if SEL2 5150 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5151 */ 5152 return (value >= 0 5153 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5154 && arm_is_secure_below_el3(env) 5155 ? ARMMMUIdxBit_Stage2_S 5156 : ARMMMUIdxBit_Stage2); 5157 } 5158 5159 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5160 uint64_t value) 5161 { 5162 CPUState *cs = env_cpu(env); 5163 int mask = ipas2e1_tlbmask(env, value); 5164 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5165 5166 if (tlb_force_broadcast(env)) { 5167 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5168 } else { 5169 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5170 } 5171 } 5172 5173 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5174 uint64_t value) 5175 { 5176 CPUState *cs = env_cpu(env); 5177 int mask = ipas2e1_tlbmask(env, value); 5178 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5179 5180 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5181 } 5182 5183 #ifdef TARGET_AARCH64 5184 typedef struct { 5185 uint64_t base; 5186 uint64_t length; 5187 } TLBIRange; 5188 5189 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5190 { 5191 /* 5192 * Note that the TLBI range TG field encoding differs from both 5193 * TG0 and TG1 encodings. 5194 */ 5195 switch (tg) { 5196 case 1: 5197 return Gran4K; 5198 case 2: 5199 return Gran16K; 5200 case 3: 5201 return Gran64K; 5202 default: 5203 return GranInvalid; 5204 } 5205 } 5206 5207 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5208 uint64_t value) 5209 { 5210 unsigned int page_size_granule, page_shift, num, scale, exponent; 5211 /* Extract one bit to represent the va selector in use. */ 5212 uint64_t select = sextract64(value, 36, 1); 5213 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5214 TLBIRange ret = { }; 5215 ARMGranuleSize gran; 5216 5217 page_size_granule = extract64(value, 46, 2); 5218 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5219 5220 /* The granule encoded in value must match the granule in use. */ 5221 if (gran != param.gran) { 5222 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5223 page_size_granule); 5224 return ret; 5225 } 5226 5227 page_shift = arm_granule_bits(gran); 5228 num = extract64(value, 39, 5); 5229 scale = extract64(value, 44, 2); 5230 exponent = (5 * scale) + 1; 5231 5232 ret.length = (num + 1) << (exponent + page_shift); 5233 5234 if (param.select) { 5235 ret.base = sextract64(value, 0, 37); 5236 } else { 5237 ret.base = extract64(value, 0, 37); 5238 } 5239 if (param.ds) { 5240 /* 5241 * With DS=1, BaseADDR is always shifted 16 so that it is able 5242 * to address all 52 va bits. The input address is perforce 5243 * aligned on a 64k boundary regardless of translation granule. 5244 */ 5245 page_shift = 16; 5246 } 5247 ret.base <<= page_shift; 5248 5249 return ret; 5250 } 5251 5252 static void do_rvae_write(CPUARMState *env, uint64_t value, 5253 int idxmap, bool synced) 5254 { 5255 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5256 TLBIRange range; 5257 int bits; 5258 5259 range = tlbi_aa64_get_range(env, one_idx, value); 5260 bits = tlbbits_for_regime(env, one_idx, range.base); 5261 5262 if (synced) { 5263 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5264 range.base, 5265 range.length, 5266 idxmap, 5267 bits); 5268 } else { 5269 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5270 range.length, idxmap, bits); 5271 } 5272 } 5273 5274 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5275 const ARMCPRegInfo *ri, 5276 uint64_t value) 5277 { 5278 /* 5279 * Invalidate by VA range, EL1&0. 5280 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5281 * since we don't support flush-for-specific-ASID-only or 5282 * flush-last-level-only. 5283 */ 5284 5285 do_rvae_write(env, value, vae1_tlbmask(env), 5286 tlb_force_broadcast(env)); 5287 } 5288 5289 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5290 const ARMCPRegInfo *ri, 5291 uint64_t value) 5292 { 5293 /* 5294 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5295 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5296 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5297 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5298 * shareable specific flushes. 5299 */ 5300 5301 do_rvae_write(env, value, vae1_tlbmask(env), true); 5302 } 5303 5304 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5305 const ARMCPRegInfo *ri, 5306 uint64_t value) 5307 { 5308 /* 5309 * Invalidate by VA range, EL2. 5310 * Currently handles all of RVAE2 and RVALE2, 5311 * since we don't support flush-for-specific-ASID-only or 5312 * flush-last-level-only. 5313 */ 5314 5315 do_rvae_write(env, value, vae2_tlbmask(env), 5316 tlb_force_broadcast(env)); 5317 5318 5319 } 5320 5321 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5322 const ARMCPRegInfo *ri, 5323 uint64_t value) 5324 { 5325 /* 5326 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5327 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5328 * since we don't support flush-for-specific-ASID-only, 5329 * flush-last-level-only or inner/outer shareable specific flushes. 5330 */ 5331 5332 do_rvae_write(env, value, vae2_tlbmask(env), true); 5333 5334 } 5335 5336 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5337 const ARMCPRegInfo *ri, 5338 uint64_t value) 5339 { 5340 /* 5341 * Invalidate by VA range, EL3. 5342 * Currently handles all of RVAE3 and RVALE3, 5343 * since we don't support flush-for-specific-ASID-only or 5344 * flush-last-level-only. 5345 */ 5346 5347 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5348 } 5349 5350 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5351 const ARMCPRegInfo *ri, 5352 uint64_t value) 5353 { 5354 /* 5355 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5356 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5357 * since we don't support flush-for-specific-ASID-only, 5358 * flush-last-level-only or inner/outer specific flushes. 5359 */ 5360 5361 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5362 } 5363 5364 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5365 uint64_t value) 5366 { 5367 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5368 tlb_force_broadcast(env)); 5369 } 5370 5371 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5372 const ARMCPRegInfo *ri, 5373 uint64_t value) 5374 { 5375 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5376 } 5377 #endif 5378 5379 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5380 bool isread) 5381 { 5382 int cur_el = arm_current_el(env); 5383 5384 if (cur_el < 2) { 5385 uint64_t hcr = arm_hcr_el2_eff(env); 5386 5387 if (cur_el == 0) { 5388 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5389 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5390 return CP_ACCESS_TRAP_EL2; 5391 } 5392 } else { 5393 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5394 return CP_ACCESS_TRAP; 5395 } 5396 if (hcr & HCR_TDZ) { 5397 return CP_ACCESS_TRAP_EL2; 5398 } 5399 } 5400 } else if (hcr & HCR_TDZ) { 5401 return CP_ACCESS_TRAP_EL2; 5402 } 5403 } 5404 return CP_ACCESS_OK; 5405 } 5406 5407 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5408 { 5409 ARMCPU *cpu = env_archcpu(env); 5410 int dzp_bit = 1 << 4; 5411 5412 /* DZP indicates whether DC ZVA access is allowed */ 5413 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5414 dzp_bit = 0; 5415 } 5416 return cpu->dcz_blocksize | dzp_bit; 5417 } 5418 5419 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5420 bool isread) 5421 { 5422 if (!(env->pstate & PSTATE_SP)) { 5423 /* 5424 * Access to SP_EL0 is undefined if it's being used as 5425 * the stack pointer. 5426 */ 5427 return CP_ACCESS_TRAP_UNCATEGORIZED; 5428 } 5429 return CP_ACCESS_OK; 5430 } 5431 5432 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5433 { 5434 return env->pstate & PSTATE_SP; 5435 } 5436 5437 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5438 { 5439 update_spsel(env, val); 5440 } 5441 5442 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5443 uint64_t value) 5444 { 5445 ARMCPU *cpu = env_archcpu(env); 5446 5447 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5448 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5449 value &= ~SCTLR_M; 5450 } 5451 5452 /* ??? Lots of these bits are not implemented. */ 5453 5454 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5455 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5456 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5457 } else { 5458 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5459 SCTLR_ATA0 | SCTLR_ATA); 5460 } 5461 } 5462 5463 if (raw_read(env, ri) == value) { 5464 /* 5465 * Skip the TLB flush if nothing actually changed; Linux likes 5466 * to do a lot of pointless SCTLR writes. 5467 */ 5468 return; 5469 } 5470 5471 raw_write(env, ri, value); 5472 5473 /* This may enable/disable the MMU, so do a TLB flush. */ 5474 tlb_flush(CPU(cpu)); 5475 5476 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5477 /* 5478 * Normally we would always end the TB on an SCTLR write; see the 5479 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5480 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5481 * of hflags from the translator, so do it here. 5482 */ 5483 arm_rebuild_hflags(env); 5484 } 5485 } 5486 5487 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5488 uint64_t value) 5489 { 5490 /* 5491 * Some MDCR_EL3 bits affect whether PMU counters are running: 5492 * if we are trying to change any of those then we must 5493 * bracket this update with PMU start/finish calls. 5494 */ 5495 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5496 5497 if (pmu_op) { 5498 pmu_op_start(env); 5499 } 5500 env->cp15.mdcr_el3 = value; 5501 if (pmu_op) { 5502 pmu_op_finish(env); 5503 } 5504 } 5505 5506 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5507 uint64_t value) 5508 { 5509 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5510 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5511 } 5512 5513 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5514 uint64_t value) 5515 { 5516 /* 5517 * Some MDCR_EL2 bits affect whether PMU counters are running: 5518 * if we are trying to change any of those then we must 5519 * bracket this update with PMU start/finish calls. 5520 */ 5521 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5522 5523 if (pmu_op) { 5524 pmu_op_start(env); 5525 } 5526 env->cp15.mdcr_el2 = value; 5527 if (pmu_op) { 5528 pmu_op_finish(env); 5529 } 5530 } 5531 5532 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5533 bool isread) 5534 { 5535 if (arm_current_el(env) == 1) { 5536 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5537 5538 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5539 return CP_ACCESS_TRAP_EL2; 5540 } 5541 } 5542 return CP_ACCESS_OK; 5543 } 5544 5545 #ifdef CONFIG_USER_ONLY 5546 /* 5547 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5548 * code to get around W^X restrictions, where one region is writable and the 5549 * other is executable. 5550 * 5551 * Since the executable region is never written to we cannot detect code 5552 * changes when running in user mode, and rely on the emulated JIT telling us 5553 * that the code has changed by executing this instruction. 5554 */ 5555 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5556 uint64_t value) 5557 { 5558 uint64_t icache_line_mask, start_address, end_address; 5559 const ARMCPU *cpu; 5560 5561 cpu = env_archcpu(env); 5562 5563 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5564 start_address = value & ~icache_line_mask; 5565 end_address = value | icache_line_mask; 5566 5567 mmap_lock(); 5568 5569 tb_invalidate_phys_range(start_address, end_address); 5570 5571 mmap_unlock(); 5572 } 5573 #endif 5574 5575 static const ARMCPRegInfo v8_cp_reginfo[] = { 5576 /* 5577 * Minimal set of EL0-visible registers. This will need to be expanded 5578 * significantly for system emulation of AArch64 CPUs. 5579 */ 5580 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5581 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5582 .access = PL0_RW, .type = ARM_CP_NZCV }, 5583 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5584 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5585 .type = ARM_CP_NO_RAW, 5586 .access = PL0_RW, .accessfn = aa64_daif_access, 5587 .fieldoffset = offsetof(CPUARMState, daif), 5588 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5589 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5591 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5592 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5593 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5595 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5596 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5597 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5599 .access = PL0_R, .type = ARM_CP_NO_RAW, 5600 .fgt = FGT_DCZID_EL0, 5601 .readfn = aa64_dczid_read }, 5602 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5603 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5604 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5605 #ifndef CONFIG_USER_ONLY 5606 /* Avoid overhead of an access check that always passes in user-mode */ 5607 .accessfn = aa64_zva_access, 5608 .fgt = FGT_DCZVA, 5609 #endif 5610 }, 5611 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5612 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5613 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5614 /* 5615 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5616 * don't emulate caches. 5617 */ 5618 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5619 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5620 .access = PL1_W, .type = ARM_CP_NOP, 5621 .fgt = FGT_ICIALLUIS, 5622 .accessfn = access_ticab }, 5623 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5624 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5625 .access = PL1_W, .type = ARM_CP_NOP, 5626 .fgt = FGT_ICIALLU, 5627 .accessfn = access_tocu }, 5628 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5629 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5630 .access = PL0_W, 5631 .fgt = FGT_ICIVAU, 5632 .accessfn = access_tocu, 5633 #ifdef CONFIG_USER_ONLY 5634 .type = ARM_CP_NO_RAW, 5635 .writefn = ic_ivau_write 5636 #else 5637 .type = ARM_CP_NOP 5638 #endif 5639 }, 5640 /* Cache ops: all NOPs since we don't emulate caches */ 5641 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5642 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5643 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5644 .fgt = FGT_DCIVAC, 5645 .type = ARM_CP_NOP }, 5646 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5647 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5648 .fgt = FGT_DCISW, 5649 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5650 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5651 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5652 .access = PL0_W, .type = ARM_CP_NOP, 5653 .fgt = FGT_DCCVAC, 5654 .accessfn = aa64_cacheop_poc_access }, 5655 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5656 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5657 .fgt = FGT_DCCSW, 5658 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5659 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5660 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5661 .access = PL0_W, .type = ARM_CP_NOP, 5662 .fgt = FGT_DCCVAU, 5663 .accessfn = access_tocu }, 5664 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5665 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5666 .access = PL0_W, .type = ARM_CP_NOP, 5667 .fgt = FGT_DCCIVAC, 5668 .accessfn = aa64_cacheop_poc_access }, 5669 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5671 .fgt = FGT_DCCISW, 5672 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5673 /* TLBI operations */ 5674 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5675 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5676 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5677 .fgt = FGT_TLBIVMALLE1IS, 5678 .writefn = tlbi_aa64_vmalle1is_write }, 5679 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5680 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5681 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5682 .fgt = FGT_TLBIVAE1IS, 5683 .writefn = tlbi_aa64_vae1is_write }, 5684 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5686 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5687 .fgt = FGT_TLBIASIDE1IS, 5688 .writefn = tlbi_aa64_vmalle1is_write }, 5689 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5690 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5691 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5692 .fgt = FGT_TLBIVAAE1IS, 5693 .writefn = tlbi_aa64_vae1is_write }, 5694 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5695 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5696 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5697 .fgt = FGT_TLBIVALE1IS, 5698 .writefn = tlbi_aa64_vae1is_write }, 5699 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5701 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5702 .fgt = FGT_TLBIVAALE1IS, 5703 .writefn = tlbi_aa64_vae1is_write }, 5704 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5706 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5707 .fgt = FGT_TLBIVMALLE1, 5708 .writefn = tlbi_aa64_vmalle1_write }, 5709 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5710 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5711 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5712 .fgt = FGT_TLBIVAE1, 5713 .writefn = tlbi_aa64_vae1_write }, 5714 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5715 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5716 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5717 .fgt = FGT_TLBIASIDE1, 5718 .writefn = tlbi_aa64_vmalle1_write }, 5719 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5720 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5721 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5722 .fgt = FGT_TLBIVAAE1, 5723 .writefn = tlbi_aa64_vae1_write }, 5724 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5725 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5726 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5727 .fgt = FGT_TLBIVALE1, 5728 .writefn = tlbi_aa64_vae1_write }, 5729 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5730 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5731 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5732 .fgt = FGT_TLBIVAALE1, 5733 .writefn = tlbi_aa64_vae1_write }, 5734 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5735 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5736 .access = PL2_W, .type = ARM_CP_NO_RAW, 5737 .writefn = tlbi_aa64_ipas2e1is_write }, 5738 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5740 .access = PL2_W, .type = ARM_CP_NO_RAW, 5741 .writefn = tlbi_aa64_ipas2e1is_write }, 5742 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5744 .access = PL2_W, .type = ARM_CP_NO_RAW, 5745 .writefn = tlbi_aa64_alle1is_write }, 5746 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5747 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5748 .access = PL2_W, .type = ARM_CP_NO_RAW, 5749 .writefn = tlbi_aa64_alle1is_write }, 5750 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5751 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5752 .access = PL2_W, .type = ARM_CP_NO_RAW, 5753 .writefn = tlbi_aa64_ipas2e1_write }, 5754 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5755 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5756 .access = PL2_W, .type = ARM_CP_NO_RAW, 5757 .writefn = tlbi_aa64_ipas2e1_write }, 5758 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5760 .access = PL2_W, .type = ARM_CP_NO_RAW, 5761 .writefn = tlbi_aa64_alle1_write }, 5762 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5764 .access = PL2_W, .type = ARM_CP_NO_RAW, 5765 .writefn = tlbi_aa64_alle1is_write }, 5766 #ifndef CONFIG_USER_ONLY 5767 /* 64 bit address translation operations */ 5768 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5770 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5771 .fgt = FGT_ATS1E1R, 5772 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5773 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5775 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5776 .fgt = FGT_ATS1E1W, 5777 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5778 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5779 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5780 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5781 .fgt = FGT_ATS1E0R, 5782 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5783 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5784 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5785 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5786 .fgt = FGT_ATS1E0W, 5787 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5788 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5789 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5790 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5791 .accessfn = at_e012_access, .writefn = ats_write64 }, 5792 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5794 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5795 .accessfn = at_e012_access, .writefn = ats_write64 }, 5796 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5798 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5799 .accessfn = at_e012_access, .writefn = ats_write64 }, 5800 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5801 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5802 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5803 .accessfn = at_e012_access, .writefn = ats_write64 }, 5804 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5805 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5806 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5807 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5808 .writefn = ats_write64 }, 5809 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5810 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5811 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5812 .writefn = ats_write64 }, 5813 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5814 .type = ARM_CP_ALIAS, 5815 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5816 .access = PL1_RW, .resetvalue = 0, 5817 .fgt = FGT_PAR_EL1, 5818 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5819 .writefn = par_write }, 5820 #endif 5821 /* TLB invalidate last level of translation table walk */ 5822 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5823 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5824 .writefn = tlbimva_is_write }, 5825 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5826 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5827 .writefn = tlbimvaa_is_write }, 5828 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5829 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5830 .writefn = tlbimva_write }, 5831 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5832 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5833 .writefn = tlbimvaa_write }, 5834 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5835 .type = ARM_CP_NO_RAW, .access = PL2_W, 5836 .writefn = tlbimva_hyp_write }, 5837 { .name = "TLBIMVALHIS", 5838 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5839 .type = ARM_CP_NO_RAW, .access = PL2_W, 5840 .writefn = tlbimva_hyp_is_write }, 5841 { .name = "TLBIIPAS2", 5842 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5843 .type = ARM_CP_NO_RAW, .access = PL2_W, 5844 .writefn = tlbiipas2_hyp_write }, 5845 { .name = "TLBIIPAS2IS", 5846 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5847 .type = ARM_CP_NO_RAW, .access = PL2_W, 5848 .writefn = tlbiipas2is_hyp_write }, 5849 { .name = "TLBIIPAS2L", 5850 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5851 .type = ARM_CP_NO_RAW, .access = PL2_W, 5852 .writefn = tlbiipas2_hyp_write }, 5853 { .name = "TLBIIPAS2LIS", 5854 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5855 .type = ARM_CP_NO_RAW, .access = PL2_W, 5856 .writefn = tlbiipas2is_hyp_write }, 5857 /* 32 bit cache operations */ 5858 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5859 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5860 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5861 .type = ARM_CP_NOP, .access = PL1_W }, 5862 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5863 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5864 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5865 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5866 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5867 .type = ARM_CP_NOP, .access = PL1_W }, 5868 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5869 .type = ARM_CP_NOP, .access = PL1_W }, 5870 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5871 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5872 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5873 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5874 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5875 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5876 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5877 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5878 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5879 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5880 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5881 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5882 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5883 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5884 /* MMU Domain access control / MPU write buffer control */ 5885 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5886 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5887 .writefn = dacr_write, .raw_writefn = raw_write, 5888 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5889 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5890 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5891 .type = ARM_CP_ALIAS, 5892 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5893 .access = PL1_RW, .accessfn = access_nv1, 5894 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5895 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5896 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5897 .type = ARM_CP_ALIAS, 5898 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5899 .access = PL1_RW, .accessfn = access_nv1, 5900 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5901 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5902 /* 5903 * We rely on the access checks not allowing the guest to write to the 5904 * state field when SPSel indicates that it's being used as the stack 5905 * pointer. 5906 */ 5907 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5908 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5909 .access = PL1_RW, .accessfn = sp_el0_access, 5910 .type = ARM_CP_ALIAS, 5911 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5912 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5913 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5914 .nv2_redirect_offset = 0x240, 5915 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5916 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5917 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5918 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5919 .type = ARM_CP_NO_RAW, 5920 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5921 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5922 .type = ARM_CP_ALIAS, 5923 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5924 .access = PL2_RW, 5925 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5926 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5927 .type = ARM_CP_ALIAS, 5928 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5929 .access = PL2_RW, 5930 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5931 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5932 .type = ARM_CP_ALIAS, 5933 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5934 .access = PL2_RW, 5935 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5936 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5937 .type = ARM_CP_ALIAS, 5938 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5939 .access = PL2_RW, 5940 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5941 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5942 .type = ARM_CP_IO, 5943 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5944 .resetvalue = 0, 5945 .access = PL3_RW, 5946 .writefn = mdcr_el3_write, 5947 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5948 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5949 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5950 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5951 .writefn = sdcr_write, 5952 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5953 }; 5954 5955 /* These are present only when EL1 supports AArch32 */ 5956 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5957 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5958 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5959 .access = PL2_RW, 5960 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5961 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5962 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5963 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5964 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5965 .writefn = dacr_write, .raw_writefn = raw_write, 5966 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5967 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5968 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5969 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5970 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5971 }; 5972 5973 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5974 { 5975 ARMCPU *cpu = env_archcpu(env); 5976 5977 if (arm_feature(env, ARM_FEATURE_V8)) { 5978 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5979 } else { 5980 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5981 } 5982 5983 if (arm_feature(env, ARM_FEATURE_EL3)) { 5984 valid_mask &= ~HCR_HCD; 5985 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5986 /* 5987 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5988 * However, if we're using the SMC PSCI conduit then QEMU is 5989 * effectively acting like EL3 firmware and so the guest at 5990 * EL2 should retain the ability to prevent EL1 from being 5991 * able to make SMC calls into the ersatz firmware, so in 5992 * that case HCR.TSC should be read/write. 5993 */ 5994 valid_mask &= ~HCR_TSC; 5995 } 5996 5997 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5998 if (cpu_isar_feature(aa64_vh, cpu)) { 5999 valid_mask |= HCR_E2H; 6000 } 6001 if (cpu_isar_feature(aa64_ras, cpu)) { 6002 valid_mask |= HCR_TERR | HCR_TEA; 6003 } 6004 if (cpu_isar_feature(aa64_lor, cpu)) { 6005 valid_mask |= HCR_TLOR; 6006 } 6007 if (cpu_isar_feature(aa64_pauth, cpu)) { 6008 valid_mask |= HCR_API | HCR_APK; 6009 } 6010 if (cpu_isar_feature(aa64_mte, cpu)) { 6011 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 6012 } 6013 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 6014 valid_mask |= HCR_ENSCXT; 6015 } 6016 if (cpu_isar_feature(aa64_fwb, cpu)) { 6017 valid_mask |= HCR_FWB; 6018 } 6019 if (cpu_isar_feature(aa64_rme, cpu)) { 6020 valid_mask |= HCR_GPF; 6021 } 6022 if (cpu_isar_feature(aa64_nv, cpu)) { 6023 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 6024 } 6025 if (cpu_isar_feature(aa64_nv2, cpu)) { 6026 valid_mask |= HCR_NV2; 6027 } 6028 } 6029 6030 if (cpu_isar_feature(any_evt, cpu)) { 6031 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 6032 } else if (cpu_isar_feature(any_half_evt, cpu)) { 6033 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 6034 } 6035 6036 /* Clear RES0 bits. */ 6037 value &= valid_mask; 6038 6039 /* 6040 * These bits change the MMU setup: 6041 * HCR_VM enables stage 2 translation 6042 * HCR_PTW forbids certain page-table setups 6043 * HCR_DC disables stage1 and enables stage2 translation 6044 * HCR_DCT enables tagging on (disabled) stage1 translation 6045 * HCR_FWB changes the interpretation of stage2 descriptor bits 6046 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 6047 */ 6048 if ((env->cp15.hcr_el2 ^ value) & 6049 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 6050 tlb_flush(CPU(cpu)); 6051 } 6052 env->cp15.hcr_el2 = value; 6053 6054 /* 6055 * Updates to VI and VF require us to update the status of 6056 * virtual interrupts, which are the logical OR of these bits 6057 * and the state of the input lines from the GIC. (This requires 6058 * that we have the BQL, which is done by marking the 6059 * reginfo structs as ARM_CP_IO.) 6060 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 6061 * VFNMI, it is never possible for it to be taken immediately 6062 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 6063 * at EL0 or EL1, and HCR can only be written at EL2. 6064 */ 6065 g_assert(bql_locked()); 6066 arm_cpu_update_virq(cpu); 6067 arm_cpu_update_vfiq(cpu); 6068 arm_cpu_update_vserr(cpu); 6069 if (cpu_isar_feature(aa64_nmi, cpu)) { 6070 arm_cpu_update_vinmi(cpu); 6071 arm_cpu_update_vfnmi(cpu); 6072 } 6073 } 6074 6075 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 6076 { 6077 do_hcr_write(env, value, 0); 6078 } 6079 6080 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 6081 uint64_t value) 6082 { 6083 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 6084 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 6085 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 6086 } 6087 6088 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 6089 uint64_t value) 6090 { 6091 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 6092 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 6093 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 6094 } 6095 6096 /* 6097 * Return the effective value of HCR_EL2, at the given security state. 6098 * Bits that are not included here: 6099 * RW (read from SCR_EL3.RW as needed) 6100 */ 6101 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 6102 { 6103 uint64_t ret = env->cp15.hcr_el2; 6104 6105 assert(space != ARMSS_Root); 6106 6107 if (!arm_is_el2_enabled_secstate(env, space)) { 6108 /* 6109 * "This register has no effect if EL2 is not enabled in the 6110 * current Security state". This is ARMv8.4-SecEL2 speak for 6111 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 6112 * 6113 * Prior to that, the language was "In an implementation that 6114 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 6115 * as if this field is 0 for all purposes other than a direct 6116 * read or write access of HCR_EL2". With lots of enumeration 6117 * on a per-field basis. In current QEMU, this is condition 6118 * is arm_is_secure_below_el3. 6119 * 6120 * Since the v8.4 language applies to the entire register, and 6121 * appears to be backward compatible, use that. 6122 */ 6123 return 0; 6124 } 6125 6126 /* 6127 * For a cpu that supports both aarch64 and aarch32, we can set bits 6128 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 6129 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 6130 */ 6131 if (!arm_el_is_aa64(env, 2)) { 6132 uint64_t aa32_valid; 6133 6134 /* 6135 * These bits are up-to-date as of ARMv8.6. 6136 * For HCR, it's easiest to list just the 2 bits that are invalid. 6137 * For HCR2, list those that are valid. 6138 */ 6139 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 6140 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 6141 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 6142 ret &= aa32_valid; 6143 } 6144 6145 if (ret & HCR_TGE) { 6146 /* These bits are up-to-date as of ARMv8.6. */ 6147 if (ret & HCR_E2H) { 6148 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 6149 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 6150 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 6151 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 6152 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6153 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6154 } else { 6155 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6156 } 6157 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6158 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6159 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6160 HCR_TLOR); 6161 } 6162 6163 return ret; 6164 } 6165 6166 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6167 { 6168 if (arm_feature(env, ARM_FEATURE_M)) { 6169 return 0; 6170 } 6171 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6172 } 6173 6174 /* 6175 * Corresponds to ARM pseudocode function ELIsInHost(). 6176 */ 6177 bool el_is_in_host(CPUARMState *env, int el) 6178 { 6179 uint64_t mask; 6180 6181 /* 6182 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6183 * Perform the simplest bit tests first, and validate EL2 afterward. 6184 */ 6185 if (el & 1) { 6186 return false; /* EL1 or EL3 */ 6187 } 6188 6189 /* 6190 * Note that hcr_write() checks isar_feature_aa64_vh(), 6191 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6192 */ 6193 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6194 if ((env->cp15.hcr_el2 & mask) != mask) { 6195 return false; 6196 } 6197 6198 /* TGE and/or E2H set: double check those bits are currently legal. */ 6199 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6200 } 6201 6202 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6203 uint64_t value) 6204 { 6205 ARMCPU *cpu = env_archcpu(env); 6206 uint64_t valid_mask = 0; 6207 6208 /* FEAT_MOPS adds MSCEn and MCE2 */ 6209 if (cpu_isar_feature(aa64_mops, cpu)) { 6210 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6211 } 6212 6213 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 6214 if (cpu_isar_feature(aa64_nmi, cpu)) { 6215 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 6216 } 6217 6218 /* Clear RES0 bits. */ 6219 env->cp15.hcrx_el2 = value & valid_mask; 6220 6221 /* 6222 * Updates to VINMI and VFNMI require us to update the status of 6223 * virtual NMI, which are the logical OR of these bits 6224 * and the state of the input lines from the GIC. (This requires 6225 * that we have the BQL, which is done by marking the 6226 * reginfo structs as ARM_CP_IO.) 6227 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 6228 * possible for it to be taken immediately, because VINMI and 6229 * VFNMI are masked unless running at EL0 or EL1, and HCRX 6230 * can only be written at EL2. 6231 */ 6232 if (cpu_isar_feature(aa64_nmi, cpu)) { 6233 g_assert(bql_locked()); 6234 arm_cpu_update_vinmi(cpu); 6235 arm_cpu_update_vfnmi(cpu); 6236 } 6237 } 6238 6239 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6240 bool isread) 6241 { 6242 if (arm_current_el(env) == 2 6243 && arm_feature(env, ARM_FEATURE_EL3) 6244 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6245 return CP_ACCESS_TRAP_EL3; 6246 } 6247 return CP_ACCESS_OK; 6248 } 6249 6250 static const ARMCPRegInfo hcrx_el2_reginfo = { 6251 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6252 .type = ARM_CP_IO, 6253 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6254 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6255 .nv2_redirect_offset = 0xa0, 6256 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6257 }; 6258 6259 /* Return the effective value of HCRX_EL2. */ 6260 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6261 { 6262 /* 6263 * The bits in this register behave as 0 for all purposes other than 6264 * direct reads of the register if SCR_EL3.HXEn is 0. 6265 * If EL2 is not enabled in the current security state, then the 6266 * bit may behave as if 0, or as if 1, depending on the bit. 6267 * For the moment, we treat the EL2-disabled case as taking 6268 * priority over the HXEn-disabled case. This is true for the only 6269 * bit for a feature which we implement where the answer is different 6270 * for the two cases (MSCEn for FEAT_MOPS). 6271 * This may need to be revisited for future bits. 6272 */ 6273 if (!arm_is_el2_enabled(env)) { 6274 uint64_t hcrx = 0; 6275 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6276 /* MSCEn behaves as 1 if EL2 is not enabled */ 6277 hcrx |= HCRX_MSCEN; 6278 } 6279 return hcrx; 6280 } 6281 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6282 return 0; 6283 } 6284 return env->cp15.hcrx_el2; 6285 } 6286 6287 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6288 uint64_t value) 6289 { 6290 /* 6291 * For A-profile AArch32 EL3, if NSACR.CP10 6292 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6293 */ 6294 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6295 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6296 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6297 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6298 } 6299 env->cp15.cptr_el[2] = value; 6300 } 6301 6302 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6303 { 6304 /* 6305 * For A-profile AArch32 EL3, if NSACR.CP10 6306 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6307 */ 6308 uint64_t value = env->cp15.cptr_el[2]; 6309 6310 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6311 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6312 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6313 } 6314 return value; 6315 } 6316 6317 static const ARMCPRegInfo el2_cp_reginfo[] = { 6318 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6319 .type = ARM_CP_IO, 6320 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6321 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6322 .nv2_redirect_offset = 0x78, 6323 .writefn = hcr_write, .raw_writefn = raw_write }, 6324 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6325 .type = ARM_CP_ALIAS | ARM_CP_IO, 6326 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6327 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6328 .writefn = hcr_writelow }, 6329 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6330 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6331 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6332 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6333 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6334 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6335 .access = PL2_RW, 6336 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6337 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6338 .type = ARM_CP_NV2_REDIRECT, 6339 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6340 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6341 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6342 .type = ARM_CP_NV2_REDIRECT, 6343 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6344 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6345 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6346 .type = ARM_CP_ALIAS, 6347 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6348 .access = PL2_RW, 6349 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6350 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6351 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6352 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6353 .access = PL2_RW, 6354 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6355 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6356 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6357 .access = PL2_RW, .writefn = vbar_write, 6358 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6359 .resetvalue = 0 }, 6360 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6361 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6362 .access = PL3_RW, .type = ARM_CP_ALIAS, 6363 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6364 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6365 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6366 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6367 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6368 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6369 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6370 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6371 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6372 .resetvalue = 0 }, 6373 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6374 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6375 .access = PL2_RW, .type = ARM_CP_ALIAS, 6376 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6377 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6378 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6379 .access = PL2_RW, .type = ARM_CP_CONST, 6380 .resetvalue = 0 }, 6381 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6382 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6383 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6384 .access = PL2_RW, .type = ARM_CP_CONST, 6385 .resetvalue = 0 }, 6386 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6387 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6388 .access = PL2_RW, .type = ARM_CP_CONST, 6389 .resetvalue = 0 }, 6390 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6391 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6392 .access = PL2_RW, .type = ARM_CP_CONST, 6393 .resetvalue = 0 }, 6394 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6395 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6396 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6397 .raw_writefn = raw_write, 6398 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6399 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6400 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6401 .type = ARM_CP_ALIAS, 6402 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6403 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6404 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6405 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6406 .access = PL2_RW, 6407 .nv2_redirect_offset = 0x40, 6408 /* no .writefn needed as this can't cause an ASID change */ 6409 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6410 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6411 .cp = 15, .opc1 = 6, .crm = 2, 6412 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6413 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6414 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6415 .writefn = vttbr_write, .raw_writefn = raw_write }, 6416 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6417 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6418 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6419 .nv2_redirect_offset = 0x20, 6420 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6421 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6423 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6424 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6425 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6426 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6427 .access = PL2_RW, .resetvalue = 0, 6428 .nv2_redirect_offset = 0x90, 6429 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6430 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6431 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6432 .access = PL2_RW, .resetvalue = 0, 6433 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6434 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6435 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6436 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6437 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6438 { .name = "TLBIALLNSNH", 6439 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6440 .type = ARM_CP_NO_RAW, .access = PL2_W, 6441 .writefn = tlbiall_nsnh_write }, 6442 { .name = "TLBIALLNSNHIS", 6443 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6444 .type = ARM_CP_NO_RAW, .access = PL2_W, 6445 .writefn = tlbiall_nsnh_is_write }, 6446 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6447 .type = ARM_CP_NO_RAW, .access = PL2_W, 6448 .writefn = tlbiall_hyp_write }, 6449 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6450 .type = ARM_CP_NO_RAW, .access = PL2_W, 6451 .writefn = tlbiall_hyp_is_write }, 6452 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6453 .type = ARM_CP_NO_RAW, .access = PL2_W, 6454 .writefn = tlbimva_hyp_write }, 6455 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6456 .type = ARM_CP_NO_RAW, .access = PL2_W, 6457 .writefn = tlbimva_hyp_is_write }, 6458 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6459 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6460 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6461 .writefn = tlbi_aa64_alle2_write }, 6462 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6464 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6465 .writefn = tlbi_aa64_vae2_write }, 6466 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6468 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6469 .writefn = tlbi_aa64_vae2_write }, 6470 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6472 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6473 .writefn = tlbi_aa64_alle2is_write }, 6474 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6476 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6477 .writefn = tlbi_aa64_vae2is_write }, 6478 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6480 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6481 .writefn = tlbi_aa64_vae2is_write }, 6482 #ifndef CONFIG_USER_ONLY 6483 /* 6484 * Unlike the other EL2-related AT operations, these must 6485 * UNDEF from EL3 if EL2 is not implemented, which is why we 6486 * define them here rather than with the rest of the AT ops. 6487 */ 6488 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6489 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6490 .access = PL2_W, .accessfn = at_s1e2_access, 6491 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6492 .writefn = ats_write64 }, 6493 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6494 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6495 .access = PL2_W, .accessfn = at_s1e2_access, 6496 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6497 .writefn = ats_write64 }, 6498 /* 6499 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6500 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6501 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6502 * to behave as if SCR.NS was 1. 6503 */ 6504 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6505 .access = PL2_W, 6506 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6507 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6508 .access = PL2_W, 6509 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6510 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6511 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6512 /* 6513 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6514 * reset values as IMPDEF. We choose to reset to 3 to comply with 6515 * both ARMv7 and ARMv8. 6516 */ 6517 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6518 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6519 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6520 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6521 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6522 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6523 .writefn = gt_cntvoff_write, 6524 .nv2_redirect_offset = 0x60, 6525 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6526 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6527 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6528 .writefn = gt_cntvoff_write, 6529 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6530 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6532 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6533 .type = ARM_CP_IO, .access = PL2_RW, 6534 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6535 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6536 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6537 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6538 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6539 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6540 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6541 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6542 .resetfn = gt_hyp_timer_reset, 6543 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6544 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6545 .type = ARM_CP_IO, 6546 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6547 .access = PL2_RW, 6548 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6549 .resetvalue = 0, 6550 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6551 #endif 6552 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6553 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6554 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6555 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6556 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6557 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6558 .access = PL2_RW, 6559 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6560 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6561 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6562 .access = PL2_RW, 6563 .nv2_redirect_offset = 0x80, 6564 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6565 }; 6566 6567 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6568 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6569 .type = ARM_CP_ALIAS | ARM_CP_IO, 6570 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6571 .access = PL2_RW, 6572 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6573 .writefn = hcr_writehigh }, 6574 }; 6575 6576 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6577 bool isread) 6578 { 6579 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6580 return CP_ACCESS_OK; 6581 } 6582 return CP_ACCESS_TRAP_UNCATEGORIZED; 6583 } 6584 6585 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6586 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6587 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6588 .access = PL2_RW, .accessfn = sel2_access, 6589 .nv2_redirect_offset = 0x30, 6590 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6591 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6593 .access = PL2_RW, .accessfn = sel2_access, 6594 .nv2_redirect_offset = 0x48, 6595 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6596 }; 6597 6598 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6599 bool isread) 6600 { 6601 /* 6602 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6603 * At Secure EL1 it traps to EL3 or EL2. 6604 */ 6605 if (arm_current_el(env) == 3) { 6606 return CP_ACCESS_OK; 6607 } 6608 if (arm_is_secure_below_el3(env)) { 6609 if (env->cp15.scr_el3 & SCR_EEL2) { 6610 return CP_ACCESS_TRAP_EL2; 6611 } 6612 return CP_ACCESS_TRAP_EL3; 6613 } 6614 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6615 if (isread) { 6616 return CP_ACCESS_OK; 6617 } 6618 return CP_ACCESS_TRAP_UNCATEGORIZED; 6619 } 6620 6621 static const ARMCPRegInfo el3_cp_reginfo[] = { 6622 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6623 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6624 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6625 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6626 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6627 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6628 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6629 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6630 .writefn = scr_write, .raw_writefn = raw_write }, 6631 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6632 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6633 .access = PL3_RW, .resetvalue = 0, 6634 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6635 { .name = "SDER", 6636 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6637 .access = PL3_RW, .resetvalue = 0, 6638 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6639 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6640 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6641 .writefn = vbar_write, .resetvalue = 0, 6642 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6643 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6644 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6645 .access = PL3_RW, .resetvalue = 0, 6646 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6647 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6648 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6649 .access = PL3_RW, 6650 /* no .writefn needed as this can't cause an ASID change */ 6651 .resetvalue = 0, 6652 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6653 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6654 .type = ARM_CP_ALIAS, 6655 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6656 .access = PL3_RW, 6657 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6658 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6659 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6660 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6661 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6662 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6663 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6664 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6665 .type = ARM_CP_ALIAS, 6666 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6667 .access = PL3_RW, 6668 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6669 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6670 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6671 .access = PL3_RW, .writefn = vbar_write, 6672 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6673 .resetvalue = 0 }, 6674 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6675 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6676 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6677 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6678 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6679 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6680 .access = PL3_RW, .resetvalue = 0, 6681 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6682 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6683 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6684 .access = PL3_RW, .type = ARM_CP_CONST, 6685 .resetvalue = 0 }, 6686 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6687 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6688 .access = PL3_RW, .type = ARM_CP_CONST, 6689 .resetvalue = 0 }, 6690 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6691 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6692 .access = PL3_RW, .type = ARM_CP_CONST, 6693 .resetvalue = 0 }, 6694 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6695 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6696 .access = PL3_W, .type = ARM_CP_NO_RAW, 6697 .writefn = tlbi_aa64_alle3is_write }, 6698 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6699 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6700 .access = PL3_W, .type = ARM_CP_NO_RAW, 6701 .writefn = tlbi_aa64_vae3is_write }, 6702 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6703 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6704 .access = PL3_W, .type = ARM_CP_NO_RAW, 6705 .writefn = tlbi_aa64_vae3is_write }, 6706 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6707 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6708 .access = PL3_W, .type = ARM_CP_NO_RAW, 6709 .writefn = tlbi_aa64_alle3_write }, 6710 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6711 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6712 .access = PL3_W, .type = ARM_CP_NO_RAW, 6713 .writefn = tlbi_aa64_vae3_write }, 6714 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6715 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6716 .access = PL3_W, .type = ARM_CP_NO_RAW, 6717 .writefn = tlbi_aa64_vae3_write }, 6718 }; 6719 6720 #ifndef CONFIG_USER_ONLY 6721 6722 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6723 bool isread) 6724 { 6725 if (arm_current_el(env) == 1) { 6726 /* This must be a FEAT_NV access */ 6727 return CP_ACCESS_OK; 6728 } 6729 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6730 return CP_ACCESS_TRAP_UNCATEGORIZED; 6731 } 6732 return CP_ACCESS_OK; 6733 } 6734 6735 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6736 bool isread) 6737 { 6738 if (arm_current_el(env) == 1) { 6739 /* This must be a FEAT_NV access with NVx == 101 */ 6740 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6741 return CP_ACCESS_TRAP_EL2; 6742 } 6743 } 6744 return e2h_access(env, ri, isread); 6745 } 6746 6747 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6748 bool isread) 6749 { 6750 if (arm_current_el(env) == 1) { 6751 /* This must be a FEAT_NV access with NVx == 101 */ 6752 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6753 return CP_ACCESS_TRAP_EL2; 6754 } 6755 } 6756 return e2h_access(env, ri, isread); 6757 } 6758 6759 /* Test if system register redirection is to occur in the current state. */ 6760 static bool redirect_for_e2h(CPUARMState *env) 6761 { 6762 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6763 } 6764 6765 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6766 { 6767 CPReadFn *readfn; 6768 6769 if (redirect_for_e2h(env)) { 6770 /* Switch to the saved EL2 version of the register. */ 6771 ri = ri->opaque; 6772 readfn = ri->readfn; 6773 } else { 6774 readfn = ri->orig_readfn; 6775 } 6776 if (readfn == NULL) { 6777 readfn = raw_read; 6778 } 6779 return readfn(env, ri); 6780 } 6781 6782 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6783 uint64_t value) 6784 { 6785 CPWriteFn *writefn; 6786 6787 if (redirect_for_e2h(env)) { 6788 /* Switch to the saved EL2 version of the register. */ 6789 ri = ri->opaque; 6790 writefn = ri->writefn; 6791 } else { 6792 writefn = ri->orig_writefn; 6793 } 6794 if (writefn == NULL) { 6795 writefn = raw_write; 6796 } 6797 writefn(env, ri, value); 6798 } 6799 6800 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6801 { 6802 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6803 return ri->orig_readfn(env, ri->opaque); 6804 } 6805 6806 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6807 uint64_t value) 6808 { 6809 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6810 return ri->orig_writefn(env, ri->opaque, value); 6811 } 6812 6813 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6814 const ARMCPRegInfo *ri, 6815 bool isread) 6816 { 6817 if (arm_current_el(env) == 1) { 6818 /* 6819 * This must be a FEAT_NV access (will either trap or redirect 6820 * to memory). None of the registers with _EL12 aliases want to 6821 * apply their trap controls for this kind of access, so don't 6822 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6823 */ 6824 return CP_ACCESS_OK; 6825 } 6826 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6827 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6828 return CP_ACCESS_TRAP_UNCATEGORIZED; 6829 } 6830 if (ri->orig_accessfn) { 6831 return ri->orig_accessfn(env, ri->opaque, isread); 6832 } 6833 return CP_ACCESS_OK; 6834 } 6835 6836 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6837 { 6838 struct E2HAlias { 6839 uint32_t src_key, dst_key, new_key; 6840 const char *src_name, *dst_name, *new_name; 6841 bool (*feature)(const ARMISARegisters *id); 6842 }; 6843 6844 #define K(op0, op1, crn, crm, op2) \ 6845 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6846 6847 static const struct E2HAlias aliases[] = { 6848 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6849 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6850 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6851 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6852 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6853 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6854 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6855 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6856 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6857 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6858 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6859 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6860 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6861 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6862 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6863 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6864 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6865 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6866 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6867 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6868 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6869 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6870 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6871 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6872 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6873 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6874 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6875 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6876 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6877 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6878 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6879 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6880 6881 /* 6882 * Note that redirection of ZCR is mentioned in the description 6883 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6884 * not in the summary table. 6885 */ 6886 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6887 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6888 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6889 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6890 6891 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6892 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6893 6894 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6895 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6896 isar_feature_aa64_scxtnum }, 6897 6898 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6899 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6900 }; 6901 #undef K 6902 6903 size_t i; 6904 6905 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6906 const struct E2HAlias *a = &aliases[i]; 6907 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6908 bool ok; 6909 6910 if (a->feature && !a->feature(&cpu->isar)) { 6911 continue; 6912 } 6913 6914 src_reg = g_hash_table_lookup(cpu->cp_regs, 6915 (gpointer)(uintptr_t)a->src_key); 6916 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6917 (gpointer)(uintptr_t)a->dst_key); 6918 g_assert(src_reg != NULL); 6919 g_assert(dst_reg != NULL); 6920 6921 /* Cross-compare names to detect typos in the keys. */ 6922 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6923 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6924 6925 /* None of the core system registers use opaque; we will. */ 6926 g_assert(src_reg->opaque == NULL); 6927 6928 /* Create alias before redirection so we dup the right data. */ 6929 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6930 6931 new_reg->name = a->new_name; 6932 new_reg->type |= ARM_CP_ALIAS; 6933 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6934 new_reg->access &= PL2_RW | PL3_RW; 6935 /* The new_reg op fields are as per new_key, not the target reg */ 6936 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6937 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6938 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6939 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6940 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6941 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6942 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6943 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6944 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6945 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6946 new_reg->opaque = src_reg; 6947 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6948 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6949 new_reg->orig_accessfn = src_reg->accessfn; 6950 if (!new_reg->raw_readfn) { 6951 new_reg->raw_readfn = raw_read; 6952 } 6953 if (!new_reg->raw_writefn) { 6954 new_reg->raw_writefn = raw_write; 6955 } 6956 new_reg->readfn = el2_e2h_e12_read; 6957 new_reg->writefn = el2_e2h_e12_write; 6958 new_reg->accessfn = el2_e2h_e12_access; 6959 6960 /* 6961 * If the _EL1 register is redirected to memory by FEAT_NV2, 6962 * then it shares the offset with the _EL12 register, 6963 * and which one is redirected depends on HCR_EL2.NV1. 6964 */ 6965 if (new_reg->nv2_redirect_offset) { 6966 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6967 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6968 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6969 } 6970 6971 ok = g_hash_table_insert(cpu->cp_regs, 6972 (gpointer)(uintptr_t)a->new_key, new_reg); 6973 g_assert(ok); 6974 6975 src_reg->opaque = dst_reg; 6976 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6977 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6978 if (!src_reg->raw_readfn) { 6979 src_reg->raw_readfn = raw_read; 6980 } 6981 if (!src_reg->raw_writefn) { 6982 src_reg->raw_writefn = raw_write; 6983 } 6984 src_reg->readfn = el2_e2h_read; 6985 src_reg->writefn = el2_e2h_write; 6986 } 6987 } 6988 #endif 6989 6990 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6991 bool isread) 6992 { 6993 int cur_el = arm_current_el(env); 6994 6995 if (cur_el < 2) { 6996 uint64_t hcr = arm_hcr_el2_eff(env); 6997 6998 if (cur_el == 0) { 6999 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 7000 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 7001 return CP_ACCESS_TRAP_EL2; 7002 } 7003 } else { 7004 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 7005 return CP_ACCESS_TRAP; 7006 } 7007 if (hcr & HCR_TID2) { 7008 return CP_ACCESS_TRAP_EL2; 7009 } 7010 } 7011 } else if (hcr & HCR_TID2) { 7012 return CP_ACCESS_TRAP_EL2; 7013 } 7014 } 7015 7016 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 7017 return CP_ACCESS_TRAP_EL2; 7018 } 7019 7020 return CP_ACCESS_OK; 7021 } 7022 7023 /* 7024 * Check for traps to RAS registers, which are controlled 7025 * by HCR_EL2.TERR and SCR_EL3.TERR. 7026 */ 7027 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 7028 bool isread) 7029 { 7030 int el = arm_current_el(env); 7031 7032 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 7033 return CP_ACCESS_TRAP_EL2; 7034 } 7035 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 7036 return CP_ACCESS_TRAP_EL3; 7037 } 7038 return CP_ACCESS_OK; 7039 } 7040 7041 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 7042 { 7043 int el = arm_current_el(env); 7044 7045 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7046 return env->cp15.vdisr_el2; 7047 } 7048 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7049 return 0; /* RAZ/WI */ 7050 } 7051 return env->cp15.disr_el1; 7052 } 7053 7054 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7055 { 7056 int el = arm_current_el(env); 7057 7058 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7059 env->cp15.vdisr_el2 = val; 7060 return; 7061 } 7062 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7063 return; /* RAZ/WI */ 7064 } 7065 env->cp15.disr_el1 = val; 7066 } 7067 7068 /* 7069 * Minimal RAS implementation with no Error Records. 7070 * Which means that all of the Error Record registers: 7071 * ERXADDR_EL1 7072 * ERXCTLR_EL1 7073 * ERXFR_EL1 7074 * ERXMISC0_EL1 7075 * ERXMISC1_EL1 7076 * ERXMISC2_EL1 7077 * ERXMISC3_EL1 7078 * ERXPFGCDN_EL1 (RASv1p1) 7079 * ERXPFGCTL_EL1 (RASv1p1) 7080 * ERXPFGF_EL1 (RASv1p1) 7081 * ERXSTATUS_EL1 7082 * and 7083 * ERRSELR_EL1 7084 * may generate UNDEFINED, which is the effect we get by not 7085 * listing them at all. 7086 * 7087 * These registers have fine-grained trap bits, but UNDEF-to-EL1 7088 * is higher priority than FGT-to-EL2 so we do not need to list them 7089 * in order to check for an FGT. 7090 */ 7091 static const ARMCPRegInfo minimal_ras_reginfo[] = { 7092 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 7093 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 7094 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 7095 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 7096 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 7097 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 7098 .access = PL1_R, .accessfn = access_terr, 7099 .fgt = FGT_ERRIDR_EL1, 7100 .type = ARM_CP_CONST, .resetvalue = 0 }, 7101 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 7102 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 7103 .nv2_redirect_offset = 0x500, 7104 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 7105 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 7106 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 7107 .nv2_redirect_offset = 0x508, 7108 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 7109 }; 7110 7111 /* 7112 * Return the exception level to which exceptions should be taken 7113 * via SVEAccessTrap. This excludes the check for whether the exception 7114 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 7115 * be found by testing 0 < fp_exception_el < sve_exception_el. 7116 * 7117 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 7118 * pseudocode does *not* separate out the FP trap checks, but has them 7119 * all in one function. 7120 */ 7121 int sve_exception_el(CPUARMState *env, int el) 7122 { 7123 #ifndef CONFIG_USER_ONLY 7124 if (el <= 1 && !el_is_in_host(env, el)) { 7125 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 7126 case 1: 7127 if (el != 0) { 7128 break; 7129 } 7130 /* fall through */ 7131 case 0: 7132 case 2: 7133 return 1; 7134 } 7135 } 7136 7137 if (el <= 2 && arm_is_el2_enabled(env)) { 7138 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7139 if (env->cp15.hcr_el2 & HCR_E2H) { 7140 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 7141 case 1: 7142 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7143 break; 7144 } 7145 /* fall through */ 7146 case 0: 7147 case 2: 7148 return 2; 7149 } 7150 } else { 7151 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 7152 return 2; 7153 } 7154 } 7155 } 7156 7157 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 7158 if (arm_feature(env, ARM_FEATURE_EL3) 7159 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 7160 return 3; 7161 } 7162 #endif 7163 return 0; 7164 } 7165 7166 /* 7167 * Return the exception level to which exceptions should be taken for SME. 7168 * C.f. the ARM pseudocode function CheckSMEAccess. 7169 */ 7170 int sme_exception_el(CPUARMState *env, int el) 7171 { 7172 #ifndef CONFIG_USER_ONLY 7173 if (el <= 1 && !el_is_in_host(env, el)) { 7174 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 7175 case 1: 7176 if (el != 0) { 7177 break; 7178 } 7179 /* fall through */ 7180 case 0: 7181 case 2: 7182 return 1; 7183 } 7184 } 7185 7186 if (el <= 2 && arm_is_el2_enabled(env)) { 7187 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7188 if (env->cp15.hcr_el2 & HCR_E2H) { 7189 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 7190 case 1: 7191 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7192 break; 7193 } 7194 /* fall through */ 7195 case 0: 7196 case 2: 7197 return 2; 7198 } 7199 } else { 7200 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 7201 return 2; 7202 } 7203 } 7204 } 7205 7206 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 7207 if (arm_feature(env, ARM_FEATURE_EL3) 7208 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7209 return 3; 7210 } 7211 #endif 7212 return 0; 7213 } 7214 7215 /* 7216 * Given that SVE is enabled, return the vector length for EL. 7217 */ 7218 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7219 { 7220 ARMCPU *cpu = env_archcpu(env); 7221 uint64_t *cr = env->vfp.zcr_el; 7222 uint32_t map = cpu->sve_vq.map; 7223 uint32_t len = ARM_MAX_VQ - 1; 7224 7225 if (sm) { 7226 cr = env->vfp.smcr_el; 7227 map = cpu->sme_vq.map; 7228 } 7229 7230 if (el <= 1 && !el_is_in_host(env, el)) { 7231 len = MIN(len, 0xf & (uint32_t)cr[1]); 7232 } 7233 if (el <= 2 && arm_is_el2_enabled(env)) { 7234 len = MIN(len, 0xf & (uint32_t)cr[2]); 7235 } 7236 if (arm_feature(env, ARM_FEATURE_EL3)) { 7237 len = MIN(len, 0xf & (uint32_t)cr[3]); 7238 } 7239 7240 map &= MAKE_64BIT_MASK(0, len + 1); 7241 if (map != 0) { 7242 return 31 - clz32(map); 7243 } 7244 7245 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7246 assert(sm); 7247 return ctz32(cpu->sme_vq.map); 7248 } 7249 7250 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7251 { 7252 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7253 } 7254 7255 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7256 uint64_t value) 7257 { 7258 int cur_el = arm_current_el(env); 7259 int old_len = sve_vqm1_for_el(env, cur_el); 7260 int new_len; 7261 7262 /* Bits other than [3:0] are RAZ/WI. */ 7263 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7264 raw_write(env, ri, value & 0xf); 7265 7266 /* 7267 * Because we arrived here, we know both FP and SVE are enabled; 7268 * otherwise we would have trapped access to the ZCR_ELn register. 7269 */ 7270 new_len = sve_vqm1_for_el(env, cur_el); 7271 if (new_len < old_len) { 7272 aarch64_sve_narrow_vq(env, new_len + 1); 7273 } 7274 } 7275 7276 static const ARMCPRegInfo zcr_reginfo[] = { 7277 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7279 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7280 .access = PL1_RW, .type = ARM_CP_SVE, 7281 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7282 .writefn = zcr_write, .raw_writefn = raw_write }, 7283 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7285 .access = PL2_RW, .type = ARM_CP_SVE, 7286 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7287 .writefn = zcr_write, .raw_writefn = raw_write }, 7288 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7290 .access = PL3_RW, .type = ARM_CP_SVE, 7291 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7292 .writefn = zcr_write, .raw_writefn = raw_write }, 7293 }; 7294 7295 #ifdef TARGET_AARCH64 7296 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7297 bool isread) 7298 { 7299 int el = arm_current_el(env); 7300 7301 if (el == 0) { 7302 uint64_t sctlr = arm_sctlr(env, el); 7303 if (!(sctlr & SCTLR_EnTP2)) { 7304 return CP_ACCESS_TRAP; 7305 } 7306 } 7307 /* TODO: FEAT_FGT */ 7308 if (el < 3 7309 && arm_feature(env, ARM_FEATURE_EL3) 7310 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7311 return CP_ACCESS_TRAP_EL3; 7312 } 7313 return CP_ACCESS_OK; 7314 } 7315 7316 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7317 bool isread) 7318 { 7319 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7320 if (arm_current_el(env) == 2 7321 && arm_feature(env, ARM_FEATURE_EL3) 7322 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7323 return CP_ACCESS_TRAP_EL3; 7324 } 7325 return CP_ACCESS_OK; 7326 } 7327 7328 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7329 bool isread) 7330 { 7331 if (arm_current_el(env) < 3 7332 && arm_feature(env, ARM_FEATURE_EL3) 7333 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7334 return CP_ACCESS_TRAP_EL3; 7335 } 7336 return CP_ACCESS_OK; 7337 } 7338 7339 /* ResetSVEState */ 7340 static void arm_reset_sve_state(CPUARMState *env) 7341 { 7342 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7343 /* Recall that FFR is stored as pregs[16]. */ 7344 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7345 vfp_set_fpcr(env, 0x0800009f); 7346 } 7347 7348 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7349 { 7350 uint64_t change = (env->svcr ^ new) & mask; 7351 7352 if (change == 0) { 7353 return; 7354 } 7355 env->svcr ^= change; 7356 7357 if (change & R_SVCR_SM_MASK) { 7358 arm_reset_sve_state(env); 7359 } 7360 7361 /* 7362 * ResetSMEState. 7363 * 7364 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7365 * on enable: while disabled, the storage is inaccessible and the 7366 * value does not matter. We're not saving the storage in vmstate 7367 * when disabled either. 7368 */ 7369 if (change & new & R_SVCR_ZA_MASK) { 7370 memset(env->zarray, 0, sizeof(env->zarray)); 7371 } 7372 7373 if (tcg_enabled()) { 7374 arm_rebuild_hflags(env); 7375 } 7376 } 7377 7378 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7379 uint64_t value) 7380 { 7381 aarch64_set_svcr(env, value, -1); 7382 } 7383 7384 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7385 uint64_t value) 7386 { 7387 int cur_el = arm_current_el(env); 7388 int old_len = sve_vqm1_for_el(env, cur_el); 7389 int new_len; 7390 7391 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7392 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7393 raw_write(env, ri, value); 7394 7395 /* 7396 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7397 * when SVL is widened (old values kept, or zeros). Choose to keep the 7398 * current values for simplicity. But for QEMU internals, we must still 7399 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7400 * above aarch64_sve_narrow_vq. 7401 */ 7402 new_len = sve_vqm1_for_el(env, cur_el); 7403 if (new_len < old_len) { 7404 aarch64_sve_narrow_vq(env, new_len + 1); 7405 } 7406 } 7407 7408 static const ARMCPRegInfo sme_reginfo[] = { 7409 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7411 .access = PL0_RW, .accessfn = access_tpidr2, 7412 .fgt = FGT_NTPIDR2_EL0, 7413 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7414 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7416 .access = PL0_RW, .type = ARM_CP_SME, 7417 .fieldoffset = offsetof(CPUARMState, svcr), 7418 .writefn = svcr_write, .raw_writefn = raw_write }, 7419 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7420 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7421 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7422 .access = PL1_RW, .type = ARM_CP_SME, 7423 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7424 .writefn = smcr_write, .raw_writefn = raw_write }, 7425 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7427 .access = PL2_RW, .type = ARM_CP_SME, 7428 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7429 .writefn = smcr_write, .raw_writefn = raw_write }, 7430 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7432 .access = PL3_RW, .type = ARM_CP_SME, 7433 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7434 .writefn = smcr_write, .raw_writefn = raw_write }, 7435 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7437 .access = PL1_R, .accessfn = access_aa64_tid1, 7438 /* 7439 * IMPLEMENTOR = 0 (software) 7440 * REVISION = 0 (implementation defined) 7441 * SMPS = 0 (no streaming execution priority in QEMU) 7442 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7443 */ 7444 .type = ARM_CP_CONST, .resetvalue = 0, }, 7445 /* 7446 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7447 */ 7448 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7450 .access = PL1_RW, .accessfn = access_smpri, 7451 .fgt = FGT_NSMPRI_EL1, 7452 .type = ARM_CP_CONST, .resetvalue = 0 }, 7453 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7455 .nv2_redirect_offset = 0x1f8, 7456 .access = PL2_RW, .accessfn = access_smprimap, 7457 .type = ARM_CP_CONST, .resetvalue = 0 }, 7458 }; 7459 7460 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7461 uint64_t value) 7462 { 7463 CPUState *cs = env_cpu(env); 7464 7465 tlb_flush(cs); 7466 } 7467 7468 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7469 uint64_t value) 7470 { 7471 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7472 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7473 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7474 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7475 7476 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7477 } 7478 7479 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7480 { 7481 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7482 env_archcpu(env)->reset_l0gptsz); 7483 } 7484 7485 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7486 uint64_t value) 7487 { 7488 CPUState *cs = env_cpu(env); 7489 7490 tlb_flush_all_cpus_synced(cs); 7491 } 7492 7493 static const ARMCPRegInfo rme_reginfo[] = { 7494 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7495 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7496 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7497 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7498 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7500 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7501 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7503 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7504 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7506 .access = PL3_W, .type = ARM_CP_NO_RAW, 7507 .writefn = tlbi_aa64_paall_write }, 7508 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7510 .access = PL3_W, .type = ARM_CP_NO_RAW, 7511 .writefn = tlbi_aa64_paallos_write }, 7512 /* 7513 * QEMU does not have a way to invalidate by physical address, thus 7514 * invalidating a range of physical addresses is accomplished by 7515 * flushing all tlb entries in the outer shareable domain, 7516 * just like PAALLOS. 7517 */ 7518 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7520 .access = PL3_W, .type = ARM_CP_NO_RAW, 7521 .writefn = tlbi_aa64_paallos_write }, 7522 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7524 .access = PL3_W, .type = ARM_CP_NO_RAW, 7525 .writefn = tlbi_aa64_paallos_write }, 7526 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7528 .access = PL3_W, .type = ARM_CP_NOP }, 7529 }; 7530 7531 static const ARMCPRegInfo rme_mte_reginfo[] = { 7532 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7534 .access = PL3_W, .type = ARM_CP_NOP }, 7535 }; 7536 7537 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 7538 uint64_t value) 7539 { 7540 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 7541 } 7542 7543 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 7544 { 7545 return env->pstate & PSTATE_ALLINT; 7546 } 7547 7548 static CPAccessResult aa64_allint_access(CPUARMState *env, 7549 const ARMCPRegInfo *ri, bool isread) 7550 { 7551 if (!isread && arm_current_el(env) == 1 && 7552 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 7553 return CP_ACCESS_TRAP_EL2; 7554 } 7555 return CP_ACCESS_OK; 7556 } 7557 7558 static const ARMCPRegInfo nmi_reginfo[] = { 7559 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 7560 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 7561 .type = ARM_CP_NO_RAW, 7562 .access = PL1_RW, .accessfn = aa64_allint_access, 7563 .fieldoffset = offsetof(CPUARMState, pstate), 7564 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 7565 .resetfn = arm_cp_reset_ignore }, 7566 }; 7567 #endif /* TARGET_AARCH64 */ 7568 7569 static void define_pmu_regs(ARMCPU *cpu) 7570 { 7571 /* 7572 * v7 performance monitor control register: same implementor 7573 * field as main ID register, and we implement four counters in 7574 * addition to the cycle count register. 7575 */ 7576 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7577 ARMCPRegInfo pmcr = { 7578 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7579 .access = PL0_RW, 7580 .fgt = FGT_PMCR_EL0, 7581 .type = ARM_CP_IO | ARM_CP_ALIAS, 7582 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7583 .accessfn = pmreg_access, 7584 .readfn = pmcr_read, .raw_readfn = raw_read, 7585 .writefn = pmcr_write, .raw_writefn = raw_write, 7586 }; 7587 ARMCPRegInfo pmcr64 = { 7588 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7590 .access = PL0_RW, .accessfn = pmreg_access, 7591 .fgt = FGT_PMCR_EL0, 7592 .type = ARM_CP_IO, 7593 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7594 .resetvalue = cpu->isar.reset_pmcr_el0, 7595 .readfn = pmcr_read, .raw_readfn = raw_read, 7596 .writefn = pmcr_write, .raw_writefn = raw_write, 7597 }; 7598 7599 define_one_arm_cp_reg(cpu, &pmcr); 7600 define_one_arm_cp_reg(cpu, &pmcr64); 7601 for (i = 0; i < pmcrn; i++) { 7602 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7603 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7604 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7605 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7606 ARMCPRegInfo pmev_regs[] = { 7607 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7608 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7609 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7610 .fgt = FGT_PMEVCNTRN_EL0, 7611 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7612 .accessfn = pmreg_access_xevcntr }, 7613 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7614 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7615 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7616 .type = ARM_CP_IO, 7617 .fgt = FGT_PMEVCNTRN_EL0, 7618 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7619 .raw_readfn = pmevcntr_rawread, 7620 .raw_writefn = pmevcntr_rawwrite }, 7621 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7622 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7623 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7624 .fgt = FGT_PMEVTYPERN_EL0, 7625 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7626 .accessfn = pmreg_access }, 7627 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7628 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7629 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7630 .fgt = FGT_PMEVTYPERN_EL0, 7631 .type = ARM_CP_IO, 7632 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7633 .raw_writefn = pmevtyper_rawwrite }, 7634 }; 7635 define_arm_cp_regs(cpu, pmev_regs); 7636 g_free(pmevcntr_name); 7637 g_free(pmevcntr_el0_name); 7638 g_free(pmevtyper_name); 7639 g_free(pmevtyper_el0_name); 7640 } 7641 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7642 ARMCPRegInfo v81_pmu_regs[] = { 7643 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7644 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7645 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7646 .fgt = FGT_PMCEIDN_EL0, 7647 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7648 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7649 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7650 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7651 .fgt = FGT_PMCEIDN_EL0, 7652 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7653 }; 7654 define_arm_cp_regs(cpu, v81_pmu_regs); 7655 } 7656 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7657 static const ARMCPRegInfo v84_pmmir = { 7658 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7659 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7660 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7661 .fgt = FGT_PMMIR_EL1, 7662 .resetvalue = 0 7663 }; 7664 define_one_arm_cp_reg(cpu, &v84_pmmir); 7665 } 7666 } 7667 7668 #ifndef CONFIG_USER_ONLY 7669 /* 7670 * We don't know until after realize whether there's a GICv3 7671 * attached, and that is what registers the gicv3 sysregs. 7672 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7673 * at runtime. 7674 */ 7675 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7676 { 7677 ARMCPU *cpu = env_archcpu(env); 7678 uint64_t pfr1 = cpu->isar.id_pfr1; 7679 7680 if (env->gicv3state) { 7681 pfr1 |= 1 << 28; 7682 } 7683 return pfr1; 7684 } 7685 7686 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7687 { 7688 ARMCPU *cpu = env_archcpu(env); 7689 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7690 7691 if (env->gicv3state) { 7692 pfr0 |= 1 << 24; 7693 } 7694 return pfr0; 7695 } 7696 #endif 7697 7698 /* 7699 * Shared logic between LORID and the rest of the LOR* registers. 7700 * Secure state exclusion has already been dealt with. 7701 */ 7702 static CPAccessResult access_lor_ns(CPUARMState *env, 7703 const ARMCPRegInfo *ri, bool isread) 7704 { 7705 int el = arm_current_el(env); 7706 7707 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7708 return CP_ACCESS_TRAP_EL2; 7709 } 7710 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7711 return CP_ACCESS_TRAP_EL3; 7712 } 7713 return CP_ACCESS_OK; 7714 } 7715 7716 static CPAccessResult access_lor_other(CPUARMState *env, 7717 const ARMCPRegInfo *ri, bool isread) 7718 { 7719 if (arm_is_secure_below_el3(env)) { 7720 /* Access denied in secure mode. */ 7721 return CP_ACCESS_TRAP; 7722 } 7723 return access_lor_ns(env, ri, isread); 7724 } 7725 7726 /* 7727 * A trivial implementation of ARMv8.1-LOR leaves all of these 7728 * registers fixed at 0, which indicates that there are zero 7729 * supported Limited Ordering regions. 7730 */ 7731 static const ARMCPRegInfo lor_reginfo[] = { 7732 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7733 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7734 .access = PL1_RW, .accessfn = access_lor_other, 7735 .fgt = FGT_LORSA_EL1, 7736 .type = ARM_CP_CONST, .resetvalue = 0 }, 7737 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7738 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7739 .access = PL1_RW, .accessfn = access_lor_other, 7740 .fgt = FGT_LOREA_EL1, 7741 .type = ARM_CP_CONST, .resetvalue = 0 }, 7742 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7743 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7744 .access = PL1_RW, .accessfn = access_lor_other, 7745 .fgt = FGT_LORN_EL1, 7746 .type = ARM_CP_CONST, .resetvalue = 0 }, 7747 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7748 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7749 .access = PL1_RW, .accessfn = access_lor_other, 7750 .fgt = FGT_LORC_EL1, 7751 .type = ARM_CP_CONST, .resetvalue = 0 }, 7752 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7753 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7754 .access = PL1_R, .accessfn = access_lor_ns, 7755 .fgt = FGT_LORID_EL1, 7756 .type = ARM_CP_CONST, .resetvalue = 0 }, 7757 }; 7758 7759 #ifdef TARGET_AARCH64 7760 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7761 bool isread) 7762 { 7763 int el = arm_current_el(env); 7764 7765 if (el < 2 && 7766 arm_is_el2_enabled(env) && 7767 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7768 return CP_ACCESS_TRAP_EL2; 7769 } 7770 if (el < 3 && 7771 arm_feature(env, ARM_FEATURE_EL3) && 7772 !(env->cp15.scr_el3 & SCR_APK)) { 7773 return CP_ACCESS_TRAP_EL3; 7774 } 7775 return CP_ACCESS_OK; 7776 } 7777 7778 static const ARMCPRegInfo pauth_reginfo[] = { 7779 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7780 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7781 .access = PL1_RW, .accessfn = access_pauth, 7782 .fgt = FGT_APDAKEY, 7783 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7784 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7786 .access = PL1_RW, .accessfn = access_pauth, 7787 .fgt = FGT_APDAKEY, 7788 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7789 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7791 .access = PL1_RW, .accessfn = access_pauth, 7792 .fgt = FGT_APDBKEY, 7793 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7794 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7796 .access = PL1_RW, .accessfn = access_pauth, 7797 .fgt = FGT_APDBKEY, 7798 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7799 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7801 .access = PL1_RW, .accessfn = access_pauth, 7802 .fgt = FGT_APGAKEY, 7803 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7804 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7806 .access = PL1_RW, .accessfn = access_pauth, 7807 .fgt = FGT_APGAKEY, 7808 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7809 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7810 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7811 .access = PL1_RW, .accessfn = access_pauth, 7812 .fgt = FGT_APIAKEY, 7813 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7814 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7815 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7816 .access = PL1_RW, .accessfn = access_pauth, 7817 .fgt = FGT_APIAKEY, 7818 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7819 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7820 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7821 .access = PL1_RW, .accessfn = access_pauth, 7822 .fgt = FGT_APIBKEY, 7823 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7824 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7826 .access = PL1_RW, .accessfn = access_pauth, 7827 .fgt = FGT_APIBKEY, 7828 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7829 }; 7830 7831 static const ARMCPRegInfo tlbirange_reginfo[] = { 7832 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7834 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7835 .fgt = FGT_TLBIRVAE1IS, 7836 .writefn = tlbi_aa64_rvae1is_write }, 7837 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7839 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7840 .fgt = FGT_TLBIRVAAE1IS, 7841 .writefn = tlbi_aa64_rvae1is_write }, 7842 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7844 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7845 .fgt = FGT_TLBIRVALE1IS, 7846 .writefn = tlbi_aa64_rvae1is_write }, 7847 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7848 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7849 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7850 .fgt = FGT_TLBIRVAALE1IS, 7851 .writefn = tlbi_aa64_rvae1is_write }, 7852 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7854 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7855 .fgt = FGT_TLBIRVAE1OS, 7856 .writefn = tlbi_aa64_rvae1is_write }, 7857 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7859 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7860 .fgt = FGT_TLBIRVAAE1OS, 7861 .writefn = tlbi_aa64_rvae1is_write }, 7862 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7864 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7865 .fgt = FGT_TLBIRVALE1OS, 7866 .writefn = tlbi_aa64_rvae1is_write }, 7867 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7869 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7870 .fgt = FGT_TLBIRVAALE1OS, 7871 .writefn = tlbi_aa64_rvae1is_write }, 7872 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7875 .fgt = FGT_TLBIRVAE1, 7876 .writefn = tlbi_aa64_rvae1_write }, 7877 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7880 .fgt = FGT_TLBIRVAAE1, 7881 .writefn = tlbi_aa64_rvae1_write }, 7882 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7885 .fgt = FGT_TLBIRVALE1, 7886 .writefn = tlbi_aa64_rvae1_write }, 7887 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7889 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7890 .fgt = FGT_TLBIRVAALE1, 7891 .writefn = tlbi_aa64_rvae1_write }, 7892 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7893 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7894 .access = PL2_W, .type = ARM_CP_NO_RAW, 7895 .writefn = tlbi_aa64_ripas2e1is_write }, 7896 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7898 .access = PL2_W, .type = ARM_CP_NO_RAW, 7899 .writefn = tlbi_aa64_ripas2e1is_write }, 7900 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7901 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7902 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7903 .writefn = tlbi_aa64_rvae2is_write }, 7904 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7906 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7907 .writefn = tlbi_aa64_rvae2is_write }, 7908 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7910 .access = PL2_W, .type = ARM_CP_NO_RAW, 7911 .writefn = tlbi_aa64_ripas2e1_write }, 7912 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7914 .access = PL2_W, .type = ARM_CP_NO_RAW, 7915 .writefn = tlbi_aa64_ripas2e1_write }, 7916 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7918 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7919 .writefn = tlbi_aa64_rvae2is_write }, 7920 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7922 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7923 .writefn = tlbi_aa64_rvae2is_write }, 7924 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7926 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7927 .writefn = tlbi_aa64_rvae2_write }, 7928 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7930 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7931 .writefn = tlbi_aa64_rvae2_write }, 7932 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7933 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7934 .access = PL3_W, .type = ARM_CP_NO_RAW, 7935 .writefn = tlbi_aa64_rvae3is_write }, 7936 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7937 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7938 .access = PL3_W, .type = ARM_CP_NO_RAW, 7939 .writefn = tlbi_aa64_rvae3is_write }, 7940 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7941 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7942 .access = PL3_W, .type = ARM_CP_NO_RAW, 7943 .writefn = tlbi_aa64_rvae3is_write }, 7944 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7945 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7946 .access = PL3_W, .type = ARM_CP_NO_RAW, 7947 .writefn = tlbi_aa64_rvae3is_write }, 7948 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7949 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7950 .access = PL3_W, .type = ARM_CP_NO_RAW, 7951 .writefn = tlbi_aa64_rvae3_write }, 7952 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7953 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7954 .access = PL3_W, .type = ARM_CP_NO_RAW, 7955 .writefn = tlbi_aa64_rvae3_write }, 7956 }; 7957 7958 static const ARMCPRegInfo tlbios_reginfo[] = { 7959 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7960 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7961 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7962 .fgt = FGT_TLBIVMALLE1OS, 7963 .writefn = tlbi_aa64_vmalle1is_write }, 7964 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7965 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7966 .fgt = FGT_TLBIVAE1OS, 7967 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7968 .writefn = tlbi_aa64_vae1is_write }, 7969 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7970 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7971 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7972 .fgt = FGT_TLBIASIDE1OS, 7973 .writefn = tlbi_aa64_vmalle1is_write }, 7974 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7976 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7977 .fgt = FGT_TLBIVAAE1OS, 7978 .writefn = tlbi_aa64_vae1is_write }, 7979 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7980 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7981 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7982 .fgt = FGT_TLBIVALE1OS, 7983 .writefn = tlbi_aa64_vae1is_write }, 7984 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7985 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7986 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7987 .fgt = FGT_TLBIVAALE1OS, 7988 .writefn = tlbi_aa64_vae1is_write }, 7989 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7990 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7991 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7992 .writefn = tlbi_aa64_alle2is_write }, 7993 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7995 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7996 .writefn = tlbi_aa64_vae2is_write }, 7997 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7999 .access = PL2_W, .type = ARM_CP_NO_RAW, 8000 .writefn = tlbi_aa64_alle1is_write }, 8001 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 8002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 8003 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 8004 .writefn = tlbi_aa64_vae2is_write }, 8005 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 8006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 8007 .access = PL2_W, .type = ARM_CP_NO_RAW, 8008 .writefn = tlbi_aa64_alle1is_write }, 8009 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 8010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 8011 .access = PL2_W, .type = ARM_CP_NOP }, 8012 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 8013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 8014 .access = PL2_W, .type = ARM_CP_NOP }, 8015 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 8017 .access = PL2_W, .type = ARM_CP_NOP }, 8018 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 8020 .access = PL2_W, .type = ARM_CP_NOP }, 8021 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 8022 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 8023 .access = PL3_W, .type = ARM_CP_NO_RAW, 8024 .writefn = tlbi_aa64_alle3is_write }, 8025 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 8026 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 8027 .access = PL3_W, .type = ARM_CP_NO_RAW, 8028 .writefn = tlbi_aa64_vae3is_write }, 8029 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 8030 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 8031 .access = PL3_W, .type = ARM_CP_NO_RAW, 8032 .writefn = tlbi_aa64_vae3is_write }, 8033 }; 8034 8035 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 8036 { 8037 Error *err = NULL; 8038 uint64_t ret; 8039 8040 /* Success sets NZCV = 0000. */ 8041 env->NF = env->CF = env->VF = 0, env->ZF = 1; 8042 8043 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 8044 /* 8045 * ??? Failed, for unknown reasons in the crypto subsystem. 8046 * The best we can do is log the reason and return the 8047 * timed-out indication to the guest. There is no reason 8048 * we know to expect this failure to be transitory, so the 8049 * guest may well hang retrying the operation. 8050 */ 8051 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 8052 ri->name, error_get_pretty(err)); 8053 error_free(err); 8054 8055 env->ZF = 0; /* NZCF = 0100 */ 8056 return 0; 8057 } 8058 return ret; 8059 } 8060 8061 /* We do not support re-seeding, so the two registers operate the same. */ 8062 static const ARMCPRegInfo rndr_reginfo[] = { 8063 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 8064 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8065 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 8066 .access = PL0_R, .readfn = rndr_readfn }, 8067 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 8068 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8069 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 8070 .access = PL0_R, .readfn = rndr_readfn }, 8071 }; 8072 8073 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 8074 uint64_t value) 8075 { 8076 #ifdef CONFIG_TCG 8077 ARMCPU *cpu = env_archcpu(env); 8078 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 8079 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 8080 uint64_t vaddr_in = (uint64_t) value; 8081 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 8082 void *haddr; 8083 int mem_idx = arm_env_mmu_index(env); 8084 8085 /* This won't be crossing page boundaries */ 8086 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 8087 if (haddr) { 8088 #ifndef CONFIG_USER_ONLY 8089 8090 ram_addr_t offset; 8091 MemoryRegion *mr; 8092 8093 /* RCU lock is already being held */ 8094 mr = memory_region_from_host(haddr, &offset); 8095 8096 if (mr) { 8097 memory_region_writeback(mr, offset, dline_size); 8098 } 8099 #endif /*CONFIG_USER_ONLY*/ 8100 } 8101 #else 8102 /* Handled by hardware accelerator. */ 8103 g_assert_not_reached(); 8104 #endif /* CONFIG_TCG */ 8105 } 8106 8107 static const ARMCPRegInfo dcpop_reg[] = { 8108 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 8109 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 8110 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8111 .fgt = FGT_DCCVAP, 8112 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8113 }; 8114 8115 static const ARMCPRegInfo dcpodp_reg[] = { 8116 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 8117 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 8118 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8119 .fgt = FGT_DCCVADP, 8120 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8121 }; 8122 8123 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 8124 bool isread) 8125 { 8126 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 8127 return CP_ACCESS_TRAP_EL2; 8128 } 8129 8130 return CP_ACCESS_OK; 8131 } 8132 8133 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 8134 bool isread) 8135 { 8136 int el = arm_current_el(env); 8137 if (el < 2 && arm_is_el2_enabled(env)) { 8138 uint64_t hcr = arm_hcr_el2_eff(env); 8139 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8140 return CP_ACCESS_TRAP_EL2; 8141 } 8142 } 8143 if (el < 3 && 8144 arm_feature(env, ARM_FEATURE_EL3) && 8145 !(env->cp15.scr_el3 & SCR_ATA)) { 8146 return CP_ACCESS_TRAP_EL3; 8147 } 8148 return CP_ACCESS_OK; 8149 } 8150 8151 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 8152 bool isread) 8153 { 8154 CPAccessResult nv1 = access_nv1(env, ri, isread); 8155 8156 if (nv1 != CP_ACCESS_OK) { 8157 return nv1; 8158 } 8159 return access_mte(env, ri, isread); 8160 } 8161 8162 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 8163 bool isread) 8164 { 8165 /* 8166 * TFSR_EL2: similar to generic access_mte(), but we need to 8167 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 8168 * if NV2 is enabled then we will redirect this to TFSR_EL1 8169 * after doing the HCR and SCR ATA traps; otherwise this will 8170 * be a trap to EL2 and the HCR/SCR traps do not apply. 8171 */ 8172 int el = arm_current_el(env); 8173 8174 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 8175 return CP_ACCESS_OK; 8176 } 8177 if (el < 2 && arm_is_el2_enabled(env)) { 8178 uint64_t hcr = arm_hcr_el2_eff(env); 8179 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8180 return CP_ACCESS_TRAP_EL2; 8181 } 8182 } 8183 if (el < 3 && 8184 arm_feature(env, ARM_FEATURE_EL3) && 8185 !(env->cp15.scr_el3 & SCR_ATA)) { 8186 return CP_ACCESS_TRAP_EL3; 8187 } 8188 return CP_ACCESS_OK; 8189 } 8190 8191 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 8192 { 8193 return env->pstate & PSTATE_TCO; 8194 } 8195 8196 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 8197 { 8198 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 8199 } 8200 8201 static const ARMCPRegInfo mte_reginfo[] = { 8202 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 8203 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 8204 .access = PL1_RW, .accessfn = access_mte, 8205 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 8206 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 8207 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 8208 .access = PL1_RW, .accessfn = access_tfsr_el1, 8209 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 8210 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 8211 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 8212 .type = ARM_CP_NV2_REDIRECT, 8213 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 8214 .access = PL2_RW, .accessfn = access_tfsr_el2, 8215 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 8216 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 8217 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 8218 .access = PL3_RW, 8219 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 8220 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 8221 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 8222 .access = PL1_RW, .accessfn = access_mte, 8223 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 8224 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 8225 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 8226 .access = PL1_RW, .accessfn = access_mte, 8227 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 8228 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8229 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8230 .type = ARM_CP_NO_RAW, 8231 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 8232 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 8233 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 8234 .type = ARM_CP_NOP, .access = PL1_W, 8235 .fgt = FGT_DCIVAC, 8236 .accessfn = aa64_cacheop_poc_access }, 8237 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 8238 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 8239 .fgt = FGT_DCISW, 8240 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8241 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 8242 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 8243 .type = ARM_CP_NOP, .access = PL1_W, 8244 .fgt = FGT_DCIVAC, 8245 .accessfn = aa64_cacheop_poc_access }, 8246 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8248 .fgt = FGT_DCISW, 8249 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8250 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8252 .fgt = FGT_DCCSW, 8253 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8254 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8255 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8256 .fgt = FGT_DCCSW, 8257 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8258 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8259 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8260 .fgt = FGT_DCCISW, 8261 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8262 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8263 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8264 .fgt = FGT_DCCISW, 8265 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8266 }; 8267 8268 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8269 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8270 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8271 .type = ARM_CP_CONST, .access = PL0_RW, }, 8272 }; 8273 8274 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8275 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8276 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8277 .type = ARM_CP_NOP, .access = PL0_W, 8278 .fgt = FGT_DCCVAC, 8279 .accessfn = aa64_cacheop_poc_access }, 8280 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8282 .type = ARM_CP_NOP, .access = PL0_W, 8283 .fgt = FGT_DCCVAC, 8284 .accessfn = aa64_cacheop_poc_access }, 8285 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8286 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8287 .type = ARM_CP_NOP, .access = PL0_W, 8288 .fgt = FGT_DCCVAP, 8289 .accessfn = aa64_cacheop_poc_access }, 8290 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8291 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8292 .type = ARM_CP_NOP, .access = PL0_W, 8293 .fgt = FGT_DCCVAP, 8294 .accessfn = aa64_cacheop_poc_access }, 8295 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8296 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8297 .type = ARM_CP_NOP, .access = PL0_W, 8298 .fgt = FGT_DCCVADP, 8299 .accessfn = aa64_cacheop_poc_access }, 8300 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8301 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8302 .type = ARM_CP_NOP, .access = PL0_W, 8303 .fgt = FGT_DCCVADP, 8304 .accessfn = aa64_cacheop_poc_access }, 8305 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8307 .type = ARM_CP_NOP, .access = PL0_W, 8308 .fgt = FGT_DCCIVAC, 8309 .accessfn = aa64_cacheop_poc_access }, 8310 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8312 .type = ARM_CP_NOP, .access = PL0_W, 8313 .fgt = FGT_DCCIVAC, 8314 .accessfn = aa64_cacheop_poc_access }, 8315 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8317 .access = PL0_W, .type = ARM_CP_DC_GVA, 8318 #ifndef CONFIG_USER_ONLY 8319 /* Avoid overhead of an access check that always passes in user-mode */ 8320 .accessfn = aa64_zva_access, 8321 .fgt = FGT_DCZVA, 8322 #endif 8323 }, 8324 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8325 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8326 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8327 #ifndef CONFIG_USER_ONLY 8328 /* Avoid overhead of an access check that always passes in user-mode */ 8329 .accessfn = aa64_zva_access, 8330 .fgt = FGT_DCZVA, 8331 #endif 8332 }, 8333 }; 8334 8335 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8336 bool isread) 8337 { 8338 uint64_t hcr = arm_hcr_el2_eff(env); 8339 int el = arm_current_el(env); 8340 8341 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8342 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8343 if (hcr & HCR_TGE) { 8344 return CP_ACCESS_TRAP_EL2; 8345 } 8346 return CP_ACCESS_TRAP; 8347 } 8348 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8349 return CP_ACCESS_TRAP_EL2; 8350 } 8351 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8352 return CP_ACCESS_TRAP_EL2; 8353 } 8354 if (el < 3 8355 && arm_feature(env, ARM_FEATURE_EL3) 8356 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8357 return CP_ACCESS_TRAP_EL3; 8358 } 8359 return CP_ACCESS_OK; 8360 } 8361 8362 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8363 const ARMCPRegInfo *ri, 8364 bool isread) 8365 { 8366 CPAccessResult nv1 = access_nv1(env, ri, isread); 8367 8368 if (nv1 != CP_ACCESS_OK) { 8369 return nv1; 8370 } 8371 return access_scxtnum(env, ri, isread); 8372 } 8373 8374 static const ARMCPRegInfo scxtnum_reginfo[] = { 8375 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8376 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8377 .access = PL0_RW, .accessfn = access_scxtnum, 8378 .fgt = FGT_SCXTNUM_EL0, 8379 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8380 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8381 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8382 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8383 .fgt = FGT_SCXTNUM_EL1, 8384 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8385 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8386 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8387 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8388 .access = PL2_RW, .accessfn = access_scxtnum, 8389 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8390 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8391 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8392 .access = PL3_RW, 8393 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8394 }; 8395 8396 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8397 bool isread) 8398 { 8399 if (arm_current_el(env) == 2 && 8400 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8401 return CP_ACCESS_TRAP_EL3; 8402 } 8403 return CP_ACCESS_OK; 8404 } 8405 8406 static const ARMCPRegInfo fgt_reginfo[] = { 8407 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8408 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8409 .nv2_redirect_offset = 0x1b8, 8410 .access = PL2_RW, .accessfn = access_fgt, 8411 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8412 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8414 .nv2_redirect_offset = 0x1c0, 8415 .access = PL2_RW, .accessfn = access_fgt, 8416 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8417 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8418 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8419 .nv2_redirect_offset = 0x1d0, 8420 .access = PL2_RW, .accessfn = access_fgt, 8421 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8422 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8423 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8424 .nv2_redirect_offset = 0x1d8, 8425 .access = PL2_RW, .accessfn = access_fgt, 8426 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8427 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8428 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8429 .nv2_redirect_offset = 0x1c8, 8430 .access = PL2_RW, .accessfn = access_fgt, 8431 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8432 }; 8433 8434 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8435 uint64_t value) 8436 { 8437 /* 8438 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8439 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8440 * about the RESS bits at the top -- we choose the "generate an EL2 8441 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8442 * the ptw.c code detect the resulting invalid address). 8443 */ 8444 env->cp15.vncr_el2 = value & ~0xfffULL; 8445 } 8446 8447 static const ARMCPRegInfo nv2_reginfo[] = { 8448 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8450 .access = PL2_RW, 8451 .writefn = vncr_write, 8452 .nv2_redirect_offset = 0xb0, 8453 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8454 }; 8455 8456 #endif /* TARGET_AARCH64 */ 8457 8458 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8459 bool isread) 8460 { 8461 int el = arm_current_el(env); 8462 8463 if (el == 0) { 8464 uint64_t sctlr = arm_sctlr(env, el); 8465 if (!(sctlr & SCTLR_EnRCTX)) { 8466 return CP_ACCESS_TRAP; 8467 } 8468 } else if (el == 1) { 8469 uint64_t hcr = arm_hcr_el2_eff(env); 8470 if (hcr & HCR_NV) { 8471 return CP_ACCESS_TRAP_EL2; 8472 } 8473 } 8474 return CP_ACCESS_OK; 8475 } 8476 8477 static const ARMCPRegInfo predinv_reginfo[] = { 8478 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8479 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8480 .fgt = FGT_CFPRCTX, 8481 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8482 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8483 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8484 .fgt = FGT_DVPRCTX, 8485 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8486 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8487 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8488 .fgt = FGT_CPPRCTX, 8489 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8490 /* 8491 * Note the AArch32 opcodes have a different OPC1. 8492 */ 8493 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8494 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8495 .fgt = FGT_CFPRCTX, 8496 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8497 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8498 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8499 .fgt = FGT_DVPRCTX, 8500 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8501 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8502 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8503 .fgt = FGT_CPPRCTX, 8504 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8505 }; 8506 8507 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8508 { 8509 /* Read the high 32 bits of the current CCSIDR */ 8510 return extract64(ccsidr_read(env, ri), 32, 32); 8511 } 8512 8513 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8514 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8515 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8516 .access = PL1_R, 8517 .accessfn = access_tid4, 8518 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8519 }; 8520 8521 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8522 bool isread) 8523 { 8524 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8525 return CP_ACCESS_TRAP_EL2; 8526 } 8527 8528 return CP_ACCESS_OK; 8529 } 8530 8531 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8532 bool isread) 8533 { 8534 if (arm_feature(env, ARM_FEATURE_V8)) { 8535 return access_aa64_tid3(env, ri, isread); 8536 } 8537 8538 return CP_ACCESS_OK; 8539 } 8540 8541 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8542 bool isread) 8543 { 8544 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8545 return CP_ACCESS_TRAP_EL2; 8546 } 8547 8548 return CP_ACCESS_OK; 8549 } 8550 8551 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8552 const ARMCPRegInfo *ri, bool isread) 8553 { 8554 /* 8555 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8556 * in v7A, not in v8A. 8557 */ 8558 if (!arm_feature(env, ARM_FEATURE_V8) && 8559 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8560 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8561 return CP_ACCESS_TRAP_EL2; 8562 } 8563 return CP_ACCESS_OK; 8564 } 8565 8566 static const ARMCPRegInfo jazelle_regs[] = { 8567 { .name = "JIDR", 8568 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8569 .access = PL1_R, .accessfn = access_jazelle, 8570 .type = ARM_CP_CONST, .resetvalue = 0 }, 8571 { .name = "JOSCR", 8572 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8573 .accessfn = access_joscr_jmcr, 8574 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8575 { .name = "JMCR", 8576 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8577 .accessfn = access_joscr_jmcr, 8578 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8579 }; 8580 8581 static const ARMCPRegInfo contextidr_el2 = { 8582 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8583 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8584 .access = PL2_RW, 8585 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8586 }; 8587 8588 static const ARMCPRegInfo vhe_reginfo[] = { 8589 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8590 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8591 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8592 .raw_writefn = raw_write, 8593 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8594 #ifndef CONFIG_USER_ONLY 8595 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8596 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8597 .fieldoffset = 8598 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8599 .type = ARM_CP_IO, .access = PL2_RW, 8600 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8601 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8602 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8603 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8604 .resetfn = gt_hv_timer_reset, 8605 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8606 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8607 .type = ARM_CP_IO, 8608 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8609 .access = PL2_RW, 8610 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8611 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8612 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8613 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8614 .type = ARM_CP_IO | ARM_CP_ALIAS, 8615 .access = PL2_RW, .accessfn = access_el1nvpct, 8616 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8617 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8618 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8619 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8620 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8621 .type = ARM_CP_IO | ARM_CP_ALIAS, 8622 .access = PL2_RW, .accessfn = access_el1nvvct, 8623 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8624 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8625 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8626 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8627 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8628 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8629 .access = PL2_RW, .accessfn = e2h_access, 8630 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8631 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8632 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8633 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8634 .access = PL2_RW, .accessfn = e2h_access, 8635 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8636 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8637 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8638 .type = ARM_CP_IO | ARM_CP_ALIAS, 8639 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8640 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8641 .access = PL2_RW, .accessfn = access_el1nvpct, 8642 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8643 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8644 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8645 .type = ARM_CP_IO | ARM_CP_ALIAS, 8646 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8647 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8648 .access = PL2_RW, .accessfn = access_el1nvvct, 8649 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8650 #endif 8651 }; 8652 8653 #ifndef CONFIG_USER_ONLY 8654 static const ARMCPRegInfo ats1e1_reginfo[] = { 8655 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8656 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8657 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8658 .fgt = FGT_ATS1E1RP, 8659 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8660 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8661 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8662 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8663 .fgt = FGT_ATS1E1WP, 8664 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8665 }; 8666 8667 static const ARMCPRegInfo ats1cp_reginfo[] = { 8668 { .name = "ATS1CPRP", 8669 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8670 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8671 .writefn = ats_write }, 8672 { .name = "ATS1CPWP", 8673 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8674 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8675 .writefn = ats_write }, 8676 }; 8677 #endif 8678 8679 /* 8680 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8681 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8682 * is non-zero, which is never for ARMv7, optionally in ARMv8 8683 * and mandatorily for ARMv8.2 and up. 8684 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8685 * implementation is RAZ/WI we can ignore this detail, as we 8686 * do for ACTLR. 8687 */ 8688 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8689 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8690 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8691 .access = PL1_RW, .accessfn = access_tacr, 8692 .type = ARM_CP_CONST, .resetvalue = 0 }, 8693 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8694 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8695 .access = PL2_RW, .type = ARM_CP_CONST, 8696 .resetvalue = 0 }, 8697 }; 8698 8699 void register_cp_regs_for_features(ARMCPU *cpu) 8700 { 8701 /* Register all the coprocessor registers based on feature bits */ 8702 CPUARMState *env = &cpu->env; 8703 if (arm_feature(env, ARM_FEATURE_M)) { 8704 /* M profile has no coprocessor registers */ 8705 return; 8706 } 8707 8708 define_arm_cp_regs(cpu, cp_reginfo); 8709 if (!arm_feature(env, ARM_FEATURE_V8)) { 8710 /* 8711 * Must go early as it is full of wildcards that may be 8712 * overridden by later definitions. 8713 */ 8714 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8715 } 8716 8717 if (arm_feature(env, ARM_FEATURE_V6)) { 8718 /* The ID registers all have impdef reset values */ 8719 ARMCPRegInfo v6_idregs[] = { 8720 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8722 .access = PL1_R, .type = ARM_CP_CONST, 8723 .accessfn = access_aa32_tid3, 8724 .resetvalue = cpu->isar.id_pfr0 }, 8725 /* 8726 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8727 * the value of the GIC field until after we define these regs. 8728 */ 8729 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8731 .access = PL1_R, .type = ARM_CP_NO_RAW, 8732 .accessfn = access_aa32_tid3, 8733 #ifdef CONFIG_USER_ONLY 8734 .type = ARM_CP_CONST, 8735 .resetvalue = cpu->isar.id_pfr1, 8736 #else 8737 .type = ARM_CP_NO_RAW, 8738 .accessfn = access_aa32_tid3, 8739 .readfn = id_pfr1_read, 8740 .writefn = arm_cp_write_ignore 8741 #endif 8742 }, 8743 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8745 .access = PL1_R, .type = ARM_CP_CONST, 8746 .accessfn = access_aa32_tid3, 8747 .resetvalue = cpu->isar.id_dfr0 }, 8748 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8749 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8750 .access = PL1_R, .type = ARM_CP_CONST, 8751 .accessfn = access_aa32_tid3, 8752 .resetvalue = cpu->id_afr0 }, 8753 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8755 .access = PL1_R, .type = ARM_CP_CONST, 8756 .accessfn = access_aa32_tid3, 8757 .resetvalue = cpu->isar.id_mmfr0 }, 8758 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8760 .access = PL1_R, .type = ARM_CP_CONST, 8761 .accessfn = access_aa32_tid3, 8762 .resetvalue = cpu->isar.id_mmfr1 }, 8763 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8765 .access = PL1_R, .type = ARM_CP_CONST, 8766 .accessfn = access_aa32_tid3, 8767 .resetvalue = cpu->isar.id_mmfr2 }, 8768 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8770 .access = PL1_R, .type = ARM_CP_CONST, 8771 .accessfn = access_aa32_tid3, 8772 .resetvalue = cpu->isar.id_mmfr3 }, 8773 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8775 .access = PL1_R, .type = ARM_CP_CONST, 8776 .accessfn = access_aa32_tid3, 8777 .resetvalue = cpu->isar.id_isar0 }, 8778 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8780 .access = PL1_R, .type = ARM_CP_CONST, 8781 .accessfn = access_aa32_tid3, 8782 .resetvalue = cpu->isar.id_isar1 }, 8783 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8785 .access = PL1_R, .type = ARM_CP_CONST, 8786 .accessfn = access_aa32_tid3, 8787 .resetvalue = cpu->isar.id_isar2 }, 8788 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8790 .access = PL1_R, .type = ARM_CP_CONST, 8791 .accessfn = access_aa32_tid3, 8792 .resetvalue = cpu->isar.id_isar3 }, 8793 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8795 .access = PL1_R, .type = ARM_CP_CONST, 8796 .accessfn = access_aa32_tid3, 8797 .resetvalue = cpu->isar.id_isar4 }, 8798 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8800 .access = PL1_R, .type = ARM_CP_CONST, 8801 .accessfn = access_aa32_tid3, 8802 .resetvalue = cpu->isar.id_isar5 }, 8803 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8805 .access = PL1_R, .type = ARM_CP_CONST, 8806 .accessfn = access_aa32_tid3, 8807 .resetvalue = cpu->isar.id_mmfr4 }, 8808 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8810 .access = PL1_R, .type = ARM_CP_CONST, 8811 .accessfn = access_aa32_tid3, 8812 .resetvalue = cpu->isar.id_isar6 }, 8813 }; 8814 define_arm_cp_regs(cpu, v6_idregs); 8815 define_arm_cp_regs(cpu, v6_cp_reginfo); 8816 } else { 8817 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8818 } 8819 if (arm_feature(env, ARM_FEATURE_V6K)) { 8820 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8821 } 8822 if (arm_feature(env, ARM_FEATURE_V7MP) && 8823 !arm_feature(env, ARM_FEATURE_PMSA)) { 8824 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8825 } 8826 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8827 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8828 } 8829 if (arm_feature(env, ARM_FEATURE_V7)) { 8830 ARMCPRegInfo clidr = { 8831 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8832 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8833 .access = PL1_R, .type = ARM_CP_CONST, 8834 .accessfn = access_tid4, 8835 .fgt = FGT_CLIDR_EL1, 8836 .resetvalue = cpu->clidr 8837 }; 8838 define_one_arm_cp_reg(cpu, &clidr); 8839 define_arm_cp_regs(cpu, v7_cp_reginfo); 8840 define_debug_regs(cpu); 8841 define_pmu_regs(cpu); 8842 } else { 8843 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8844 } 8845 if (arm_feature(env, ARM_FEATURE_V8)) { 8846 /* 8847 * v8 ID registers, which all have impdef reset values. 8848 * Note that within the ID register ranges the unused slots 8849 * must all RAZ, not UNDEF; future architecture versions may 8850 * define new registers here. 8851 * ID registers which are AArch64 views of the AArch32 ID registers 8852 * which already existed in v6 and v7 are handled elsewhere, 8853 * in v6_idregs[]. 8854 */ 8855 int i; 8856 ARMCPRegInfo v8_idregs[] = { 8857 /* 8858 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8859 * emulation because we don't know the right value for the 8860 * GIC field until after we define these regs. 8861 */ 8862 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8864 .access = PL1_R, 8865 #ifdef CONFIG_USER_ONLY 8866 .type = ARM_CP_CONST, 8867 .resetvalue = cpu->isar.id_aa64pfr0 8868 #else 8869 .type = ARM_CP_NO_RAW, 8870 .accessfn = access_aa64_tid3, 8871 .readfn = id_aa64pfr0_read, 8872 .writefn = arm_cp_write_ignore 8873 #endif 8874 }, 8875 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8877 .access = PL1_R, .type = ARM_CP_CONST, 8878 .accessfn = access_aa64_tid3, 8879 .resetvalue = cpu->isar.id_aa64pfr1}, 8880 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8882 .access = PL1_R, .type = ARM_CP_CONST, 8883 .accessfn = access_aa64_tid3, 8884 .resetvalue = 0 }, 8885 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8887 .access = PL1_R, .type = ARM_CP_CONST, 8888 .accessfn = access_aa64_tid3, 8889 .resetvalue = 0 }, 8890 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8892 .access = PL1_R, .type = ARM_CP_CONST, 8893 .accessfn = access_aa64_tid3, 8894 .resetvalue = cpu->isar.id_aa64zfr0 }, 8895 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8897 .access = PL1_R, .type = ARM_CP_CONST, 8898 .accessfn = access_aa64_tid3, 8899 .resetvalue = cpu->isar.id_aa64smfr0 }, 8900 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8902 .access = PL1_R, .type = ARM_CP_CONST, 8903 .accessfn = access_aa64_tid3, 8904 .resetvalue = 0 }, 8905 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8907 .access = PL1_R, .type = ARM_CP_CONST, 8908 .accessfn = access_aa64_tid3, 8909 .resetvalue = 0 }, 8910 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8912 .access = PL1_R, .type = ARM_CP_CONST, 8913 .accessfn = access_aa64_tid3, 8914 .resetvalue = cpu->isar.id_aa64dfr0 }, 8915 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8917 .access = PL1_R, .type = ARM_CP_CONST, 8918 .accessfn = access_aa64_tid3, 8919 .resetvalue = cpu->isar.id_aa64dfr1 }, 8920 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8922 .access = PL1_R, .type = ARM_CP_CONST, 8923 .accessfn = access_aa64_tid3, 8924 .resetvalue = 0 }, 8925 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8927 .access = PL1_R, .type = ARM_CP_CONST, 8928 .accessfn = access_aa64_tid3, 8929 .resetvalue = 0 }, 8930 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8932 .access = PL1_R, .type = ARM_CP_CONST, 8933 .accessfn = access_aa64_tid3, 8934 .resetvalue = cpu->id_aa64afr0 }, 8935 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8937 .access = PL1_R, .type = ARM_CP_CONST, 8938 .accessfn = access_aa64_tid3, 8939 .resetvalue = cpu->id_aa64afr1 }, 8940 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8942 .access = PL1_R, .type = ARM_CP_CONST, 8943 .accessfn = access_aa64_tid3, 8944 .resetvalue = 0 }, 8945 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8947 .access = PL1_R, .type = ARM_CP_CONST, 8948 .accessfn = access_aa64_tid3, 8949 .resetvalue = 0 }, 8950 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8952 .access = PL1_R, .type = ARM_CP_CONST, 8953 .accessfn = access_aa64_tid3, 8954 .resetvalue = cpu->isar.id_aa64isar0 }, 8955 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8957 .access = PL1_R, .type = ARM_CP_CONST, 8958 .accessfn = access_aa64_tid3, 8959 .resetvalue = cpu->isar.id_aa64isar1 }, 8960 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8962 .access = PL1_R, .type = ARM_CP_CONST, 8963 .accessfn = access_aa64_tid3, 8964 .resetvalue = cpu->isar.id_aa64isar2 }, 8965 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8967 .access = PL1_R, .type = ARM_CP_CONST, 8968 .accessfn = access_aa64_tid3, 8969 .resetvalue = 0 }, 8970 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8972 .access = PL1_R, .type = ARM_CP_CONST, 8973 .accessfn = access_aa64_tid3, 8974 .resetvalue = 0 }, 8975 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8977 .access = PL1_R, .type = ARM_CP_CONST, 8978 .accessfn = access_aa64_tid3, 8979 .resetvalue = 0 }, 8980 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8982 .access = PL1_R, .type = ARM_CP_CONST, 8983 .accessfn = access_aa64_tid3, 8984 .resetvalue = 0 }, 8985 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8987 .access = PL1_R, .type = ARM_CP_CONST, 8988 .accessfn = access_aa64_tid3, 8989 .resetvalue = 0 }, 8990 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8992 .access = PL1_R, .type = ARM_CP_CONST, 8993 .accessfn = access_aa64_tid3, 8994 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8995 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8997 .access = PL1_R, .type = ARM_CP_CONST, 8998 .accessfn = access_aa64_tid3, 8999 .resetvalue = cpu->isar.id_aa64mmfr1 }, 9000 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 9001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 9002 .access = PL1_R, .type = ARM_CP_CONST, 9003 .accessfn = access_aa64_tid3, 9004 .resetvalue = cpu->isar.id_aa64mmfr2 }, 9005 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 9006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 9007 .access = PL1_R, .type = ARM_CP_CONST, 9008 .accessfn = access_aa64_tid3, 9009 .resetvalue = cpu->isar.id_aa64mmfr3 }, 9010 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 9012 .access = PL1_R, .type = ARM_CP_CONST, 9013 .accessfn = access_aa64_tid3, 9014 .resetvalue = 0 }, 9015 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 9017 .access = PL1_R, .type = ARM_CP_CONST, 9018 .accessfn = access_aa64_tid3, 9019 .resetvalue = 0 }, 9020 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 9022 .access = PL1_R, .type = ARM_CP_CONST, 9023 .accessfn = access_aa64_tid3, 9024 .resetvalue = 0 }, 9025 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 9027 .access = PL1_R, .type = ARM_CP_CONST, 9028 .accessfn = access_aa64_tid3, 9029 .resetvalue = 0 }, 9030 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 9031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9032 .access = PL1_R, .type = ARM_CP_CONST, 9033 .accessfn = access_aa64_tid3, 9034 .resetvalue = cpu->isar.mvfr0 }, 9035 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 9036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9037 .access = PL1_R, .type = ARM_CP_CONST, 9038 .accessfn = access_aa64_tid3, 9039 .resetvalue = cpu->isar.mvfr1 }, 9040 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 9041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9042 .access = PL1_R, .type = ARM_CP_CONST, 9043 .accessfn = access_aa64_tid3, 9044 .resetvalue = cpu->isar.mvfr2 }, 9045 /* 9046 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 9047 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 9048 * as RAZ, since it is in the "reserved for future ID 9049 * registers, RAZ" part of the AArch32 encoding space. 9050 */ 9051 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 9052 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9053 .access = PL1_R, .type = ARM_CP_CONST, 9054 .accessfn = access_aa64_tid3, 9055 .resetvalue = 0 }, 9056 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 9057 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9058 .access = PL1_R, .type = ARM_CP_CONST, 9059 .accessfn = access_aa64_tid3, 9060 .resetvalue = 0 }, 9061 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 9062 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9063 .access = PL1_R, .type = ARM_CP_CONST, 9064 .accessfn = access_aa64_tid3, 9065 .resetvalue = 0 }, 9066 /* 9067 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 9068 * they're also RAZ for AArch64, and in v8 are gradually 9069 * being filled with AArch64-view-of-AArch32-ID-register 9070 * for new ID registers. 9071 */ 9072 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 9073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 9074 .access = PL1_R, .type = ARM_CP_CONST, 9075 .accessfn = access_aa64_tid3, 9076 .resetvalue = 0 }, 9077 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 9078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 9079 .access = PL1_R, .type = ARM_CP_CONST, 9080 .accessfn = access_aa64_tid3, 9081 .resetvalue = cpu->isar.id_pfr2 }, 9082 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 9083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 9084 .access = PL1_R, .type = ARM_CP_CONST, 9085 .accessfn = access_aa64_tid3, 9086 .resetvalue = cpu->isar.id_dfr1 }, 9087 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 9088 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 9089 .access = PL1_R, .type = ARM_CP_CONST, 9090 .accessfn = access_aa64_tid3, 9091 .resetvalue = cpu->isar.id_mmfr5 }, 9092 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 9093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 9094 .access = PL1_R, .type = ARM_CP_CONST, 9095 .accessfn = access_aa64_tid3, 9096 .resetvalue = 0 }, 9097 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 9098 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 9099 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9100 .fgt = FGT_PMCEIDN_EL0, 9101 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 9102 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 9103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 9104 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9105 .fgt = FGT_PMCEIDN_EL0, 9106 .resetvalue = cpu->pmceid0 }, 9107 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 9108 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 9109 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9110 .fgt = FGT_PMCEIDN_EL0, 9111 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 9112 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 9113 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 9114 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9115 .fgt = FGT_PMCEIDN_EL0, 9116 .resetvalue = cpu->pmceid1 }, 9117 }; 9118 #ifdef CONFIG_USER_ONLY 9119 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 9120 { .name = "ID_AA64PFR0_EL1", 9121 .exported_bits = R_ID_AA64PFR0_FP_MASK | 9122 R_ID_AA64PFR0_ADVSIMD_MASK | 9123 R_ID_AA64PFR0_SVE_MASK | 9124 R_ID_AA64PFR0_DIT_MASK, 9125 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 9126 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 9127 { .name = "ID_AA64PFR1_EL1", 9128 .exported_bits = R_ID_AA64PFR1_BT_MASK | 9129 R_ID_AA64PFR1_SSBS_MASK | 9130 R_ID_AA64PFR1_MTE_MASK | 9131 R_ID_AA64PFR1_SME_MASK }, 9132 { .name = "ID_AA64PFR*_EL1_RESERVED", 9133 .is_glob = true }, 9134 { .name = "ID_AA64ZFR0_EL1", 9135 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 9136 R_ID_AA64ZFR0_AES_MASK | 9137 R_ID_AA64ZFR0_BITPERM_MASK | 9138 R_ID_AA64ZFR0_BFLOAT16_MASK | 9139 R_ID_AA64ZFR0_B16B16_MASK | 9140 R_ID_AA64ZFR0_SHA3_MASK | 9141 R_ID_AA64ZFR0_SM4_MASK | 9142 R_ID_AA64ZFR0_I8MM_MASK | 9143 R_ID_AA64ZFR0_F32MM_MASK | 9144 R_ID_AA64ZFR0_F64MM_MASK }, 9145 { .name = "ID_AA64SMFR0_EL1", 9146 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 9147 R_ID_AA64SMFR0_BI32I32_MASK | 9148 R_ID_AA64SMFR0_B16F32_MASK | 9149 R_ID_AA64SMFR0_F16F32_MASK | 9150 R_ID_AA64SMFR0_I8I32_MASK | 9151 R_ID_AA64SMFR0_F16F16_MASK | 9152 R_ID_AA64SMFR0_B16B16_MASK | 9153 R_ID_AA64SMFR0_I16I32_MASK | 9154 R_ID_AA64SMFR0_F64F64_MASK | 9155 R_ID_AA64SMFR0_I16I64_MASK | 9156 R_ID_AA64SMFR0_SMEVER_MASK | 9157 R_ID_AA64SMFR0_FA64_MASK }, 9158 { .name = "ID_AA64MMFR0_EL1", 9159 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 9160 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 9161 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 9162 { .name = "ID_AA64MMFR1_EL1", 9163 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 9164 { .name = "ID_AA64MMFR2_EL1", 9165 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 9166 { .name = "ID_AA64MMFR3_EL1", 9167 .exported_bits = 0 }, 9168 { .name = "ID_AA64MMFR*_EL1_RESERVED", 9169 .is_glob = true }, 9170 { .name = "ID_AA64DFR0_EL1", 9171 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 9172 { .name = "ID_AA64DFR1_EL1" }, 9173 { .name = "ID_AA64DFR*_EL1_RESERVED", 9174 .is_glob = true }, 9175 { .name = "ID_AA64AFR*", 9176 .is_glob = true }, 9177 { .name = "ID_AA64ISAR0_EL1", 9178 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 9179 R_ID_AA64ISAR0_SHA1_MASK | 9180 R_ID_AA64ISAR0_SHA2_MASK | 9181 R_ID_AA64ISAR0_CRC32_MASK | 9182 R_ID_AA64ISAR0_ATOMIC_MASK | 9183 R_ID_AA64ISAR0_RDM_MASK | 9184 R_ID_AA64ISAR0_SHA3_MASK | 9185 R_ID_AA64ISAR0_SM3_MASK | 9186 R_ID_AA64ISAR0_SM4_MASK | 9187 R_ID_AA64ISAR0_DP_MASK | 9188 R_ID_AA64ISAR0_FHM_MASK | 9189 R_ID_AA64ISAR0_TS_MASK | 9190 R_ID_AA64ISAR0_RNDR_MASK }, 9191 { .name = "ID_AA64ISAR1_EL1", 9192 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 9193 R_ID_AA64ISAR1_APA_MASK | 9194 R_ID_AA64ISAR1_API_MASK | 9195 R_ID_AA64ISAR1_JSCVT_MASK | 9196 R_ID_AA64ISAR1_FCMA_MASK | 9197 R_ID_AA64ISAR1_LRCPC_MASK | 9198 R_ID_AA64ISAR1_GPA_MASK | 9199 R_ID_AA64ISAR1_GPI_MASK | 9200 R_ID_AA64ISAR1_FRINTTS_MASK | 9201 R_ID_AA64ISAR1_SB_MASK | 9202 R_ID_AA64ISAR1_BF16_MASK | 9203 R_ID_AA64ISAR1_DGH_MASK | 9204 R_ID_AA64ISAR1_I8MM_MASK }, 9205 { .name = "ID_AA64ISAR2_EL1", 9206 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 9207 R_ID_AA64ISAR2_RPRES_MASK | 9208 R_ID_AA64ISAR2_GPA3_MASK | 9209 R_ID_AA64ISAR2_APA3_MASK | 9210 R_ID_AA64ISAR2_MOPS_MASK | 9211 R_ID_AA64ISAR2_BC_MASK | 9212 R_ID_AA64ISAR2_RPRFM_MASK | 9213 R_ID_AA64ISAR2_CSSC_MASK }, 9214 { .name = "ID_AA64ISAR*_EL1_RESERVED", 9215 .is_glob = true }, 9216 }; 9217 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 9218 #endif 9219 /* 9220 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 9221 * TODO: For RMR, a write with bit 1 set should do something with 9222 * cpu_reset(). In the meantime, "the bit is strictly a request", 9223 * so we are in spec just ignoring writes. 9224 */ 9225 if (!arm_feature(env, ARM_FEATURE_EL3) && 9226 !arm_feature(env, ARM_FEATURE_EL2)) { 9227 ARMCPRegInfo el1_reset_regs[] = { 9228 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 9229 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9230 .access = PL1_R, 9231 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9232 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 9233 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9234 .access = PL1_RW, .type = ARM_CP_CONST, 9235 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 9236 }; 9237 define_arm_cp_regs(cpu, el1_reset_regs); 9238 } 9239 define_arm_cp_regs(cpu, v8_idregs); 9240 define_arm_cp_regs(cpu, v8_cp_reginfo); 9241 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 9242 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 9243 } 9244 9245 for (i = 4; i < 16; i++) { 9246 /* 9247 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9248 * For pre-v8 cores there are RAZ patterns for these in 9249 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9250 * v8 extends the "must RAZ" part of the ID register space 9251 * to also cover c0, 0, c{8-15}, {0-7}. 9252 * These are STATE_AA32 because in the AArch64 sysreg space 9253 * c4-c7 is where the AArch64 ID registers live (and we've 9254 * already defined those in v8_idregs[]), and c8-c15 are not 9255 * "must RAZ" for AArch64. 9256 */ 9257 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9258 ARMCPRegInfo v8_aa32_raz_idregs = { 9259 .name = name, 9260 .state = ARM_CP_STATE_AA32, 9261 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9262 .access = PL1_R, .type = ARM_CP_CONST, 9263 .accessfn = access_aa64_tid3, 9264 .resetvalue = 0 }; 9265 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9266 } 9267 } 9268 9269 /* 9270 * Register the base EL2 cpregs. 9271 * Pre v8, these registers are implemented only as part of the 9272 * Virtualization Extensions (EL2 present). Beginning with v8, 9273 * if EL2 is missing but EL3 is enabled, mostly these become 9274 * RES0 from EL3, with some specific exceptions. 9275 */ 9276 if (arm_feature(env, ARM_FEATURE_EL2) 9277 || (arm_feature(env, ARM_FEATURE_EL3) 9278 && arm_feature(env, ARM_FEATURE_V8))) { 9279 uint64_t vmpidr_def = mpidr_read_val(env); 9280 ARMCPRegInfo vpidr_regs[] = { 9281 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9282 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9283 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9284 .resetvalue = cpu->midr, 9285 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9286 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9287 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9288 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9289 .access = PL2_RW, .resetvalue = cpu->midr, 9290 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9291 .nv2_redirect_offset = 0x88, 9292 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9293 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9294 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9295 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9296 .resetvalue = vmpidr_def, 9297 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9298 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9299 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9300 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9301 .access = PL2_RW, .resetvalue = vmpidr_def, 9302 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9303 .nv2_redirect_offset = 0x50, 9304 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9305 }; 9306 /* 9307 * The only field of MDCR_EL2 that has a defined architectural reset 9308 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9309 */ 9310 ARMCPRegInfo mdcr_el2 = { 9311 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9312 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9313 .writefn = mdcr_el2_write, 9314 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9315 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9316 }; 9317 define_one_arm_cp_reg(cpu, &mdcr_el2); 9318 define_arm_cp_regs(cpu, vpidr_regs); 9319 define_arm_cp_regs(cpu, el2_cp_reginfo); 9320 if (arm_feature(env, ARM_FEATURE_V8)) { 9321 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9322 } 9323 if (cpu_isar_feature(aa64_sel2, cpu)) { 9324 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9325 } 9326 /* 9327 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9328 * See commentary near RMR_EL1. 9329 */ 9330 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9331 static const ARMCPRegInfo el2_reset_regs[] = { 9332 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9333 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9334 .access = PL2_R, 9335 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9336 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9337 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9338 .access = PL2_R, 9339 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9340 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9341 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9342 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9343 }; 9344 define_arm_cp_regs(cpu, el2_reset_regs); 9345 } 9346 } 9347 9348 /* Register the base EL3 cpregs. */ 9349 if (arm_feature(env, ARM_FEATURE_EL3)) { 9350 define_arm_cp_regs(cpu, el3_cp_reginfo); 9351 ARMCPRegInfo el3_regs[] = { 9352 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9353 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9354 .access = PL3_R, 9355 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9356 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9357 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9358 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9359 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9360 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9361 .access = PL3_RW, .type = ARM_CP_CONST, 9362 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9363 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9364 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9365 .access = PL3_RW, 9366 .raw_writefn = raw_write, .writefn = sctlr_write, 9367 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9368 .resetvalue = cpu->reset_sctlr }, 9369 }; 9370 9371 define_arm_cp_regs(cpu, el3_regs); 9372 } 9373 /* 9374 * The behaviour of NSACR is sufficiently various that we don't 9375 * try to describe it in a single reginfo: 9376 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9377 * reads as constant 0xc00 from NS EL1 and NS EL2 9378 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9379 * if v7 without EL3, register doesn't exist 9380 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9381 */ 9382 if (arm_feature(env, ARM_FEATURE_EL3)) { 9383 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9384 static const ARMCPRegInfo nsacr = { 9385 .name = "NSACR", .type = ARM_CP_CONST, 9386 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9387 .access = PL1_RW, .accessfn = nsacr_access, 9388 .resetvalue = 0xc00 9389 }; 9390 define_one_arm_cp_reg(cpu, &nsacr); 9391 } else { 9392 static const ARMCPRegInfo nsacr = { 9393 .name = "NSACR", 9394 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9395 .access = PL3_RW | PL1_R, 9396 .resetvalue = 0, 9397 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9398 }; 9399 define_one_arm_cp_reg(cpu, &nsacr); 9400 } 9401 } else { 9402 if (arm_feature(env, ARM_FEATURE_V8)) { 9403 static const ARMCPRegInfo nsacr = { 9404 .name = "NSACR", .type = ARM_CP_CONST, 9405 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9406 .access = PL1_R, 9407 .resetvalue = 0xc00 9408 }; 9409 define_one_arm_cp_reg(cpu, &nsacr); 9410 } 9411 } 9412 9413 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9414 if (arm_feature(env, ARM_FEATURE_V6)) { 9415 /* PMSAv6 not implemented */ 9416 assert(arm_feature(env, ARM_FEATURE_V7)); 9417 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9418 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9419 } else { 9420 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9421 } 9422 } else { 9423 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9424 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9425 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9426 if (cpu_isar_feature(aa32_hpd, cpu)) { 9427 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9428 } 9429 } 9430 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9431 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9432 } 9433 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9434 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9435 } 9436 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 9437 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 9438 } 9439 #ifndef CONFIG_USER_ONLY 9440 if (cpu_isar_feature(aa64_ecv, cpu)) { 9441 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 9442 } 9443 #endif 9444 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9445 ARMCPRegInfo vapa_cp_reginfo[] = { 9446 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9447 .access = PL1_RW, .resetvalue = 0, 9448 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9449 offsetoflow32(CPUARMState, cp15.par_ns) }, 9450 .writefn = par_write}, 9451 #ifndef CONFIG_USER_ONLY 9452 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9453 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9454 .access = PL1_W, .accessfn = ats_access, 9455 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9456 #endif 9457 }; 9458 9459 /* 9460 * When LPAE exists this 32-bit PAR register is an alias of the 9461 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9462 */ 9463 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9464 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9465 } 9466 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9467 } 9468 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9469 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9470 } 9471 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9472 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9473 } 9474 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9475 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9476 } 9477 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9478 define_arm_cp_regs(cpu, omap_cp_reginfo); 9479 } 9480 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9481 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9482 } 9483 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9484 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9485 } 9486 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9487 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9488 } 9489 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9490 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9491 } 9492 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9493 define_arm_cp_regs(cpu, jazelle_regs); 9494 } 9495 /* 9496 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9497 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9498 * be read-only (ie write causes UNDEF exception). 9499 */ 9500 { 9501 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9502 /* 9503 * Pre-v8 MIDR space. 9504 * Note that the MIDR isn't a simple constant register because 9505 * of the TI925 behaviour where writes to another register can 9506 * cause the MIDR value to change. 9507 * 9508 * Unimplemented registers in the c15 0 0 0 space default to 9509 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9510 * and friends override accordingly. 9511 */ 9512 { .name = "MIDR", 9513 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9514 .access = PL1_R, .resetvalue = cpu->midr, 9515 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9516 .readfn = midr_read, 9517 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9518 .type = ARM_CP_OVERRIDE }, 9519 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9520 { .name = "DUMMY", 9521 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9522 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9523 { .name = "DUMMY", 9524 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9525 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9526 { .name = "DUMMY", 9527 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9528 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9529 { .name = "DUMMY", 9530 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9531 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9532 { .name = "DUMMY", 9533 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9534 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9535 }; 9536 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9537 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9539 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9540 .fgt = FGT_MIDR_EL1, 9541 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9542 .readfn = midr_read }, 9543 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9544 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9545 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9546 .access = PL1_R, .resetvalue = cpu->midr }, 9547 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9549 .access = PL1_R, 9550 .accessfn = access_aa64_tid1, 9551 .fgt = FGT_REVIDR_EL1, 9552 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9553 }; 9554 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9555 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9556 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9557 .access = PL1_R, .resetvalue = cpu->midr 9558 }; 9559 ARMCPRegInfo id_cp_reginfo[] = { 9560 /* These are common to v8 and pre-v8 */ 9561 { .name = "CTR", 9562 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9563 .access = PL1_R, .accessfn = ctr_el0_access, 9564 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9565 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9566 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9567 .access = PL0_R, .accessfn = ctr_el0_access, 9568 .fgt = FGT_CTR_EL0, 9569 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9570 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9571 { .name = "TCMTR", 9572 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9573 .access = PL1_R, 9574 .accessfn = access_aa32_tid1, 9575 .type = ARM_CP_CONST, .resetvalue = 0 }, 9576 }; 9577 /* TLBTR is specific to VMSA */ 9578 ARMCPRegInfo id_tlbtr_reginfo = { 9579 .name = "TLBTR", 9580 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9581 .access = PL1_R, 9582 .accessfn = access_aa32_tid1, 9583 .type = ARM_CP_CONST, .resetvalue = 0, 9584 }; 9585 /* MPUIR is specific to PMSA V6+ */ 9586 ARMCPRegInfo id_mpuir_reginfo = { 9587 .name = "MPUIR", 9588 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9589 .access = PL1_R, .type = ARM_CP_CONST, 9590 .resetvalue = cpu->pmsav7_dregion << 8 9591 }; 9592 /* HMPUIR is specific to PMSA V8 */ 9593 ARMCPRegInfo id_hmpuir_reginfo = { 9594 .name = "HMPUIR", 9595 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9596 .access = PL2_R, .type = ARM_CP_CONST, 9597 .resetvalue = cpu->pmsav8r_hdregion 9598 }; 9599 static const ARMCPRegInfo crn0_wi_reginfo = { 9600 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9601 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9602 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9603 }; 9604 #ifdef CONFIG_USER_ONLY 9605 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9606 { .name = "MIDR_EL1", 9607 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9608 R_MIDR_EL1_PARTNUM_MASK | 9609 R_MIDR_EL1_ARCHITECTURE_MASK | 9610 R_MIDR_EL1_VARIANT_MASK | 9611 R_MIDR_EL1_IMPLEMENTER_MASK }, 9612 { .name = "REVIDR_EL1" }, 9613 }; 9614 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9615 #endif 9616 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9617 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9618 size_t i; 9619 /* 9620 * Register the blanket "writes ignored" value first to cover the 9621 * whole space. Then update the specific ID registers to allow write 9622 * access, so that they ignore writes rather than causing them to 9623 * UNDEF. 9624 */ 9625 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9626 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9627 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9628 } 9629 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9630 id_cp_reginfo[i].access = PL1_RW; 9631 } 9632 id_mpuir_reginfo.access = PL1_RW; 9633 id_tlbtr_reginfo.access = PL1_RW; 9634 } 9635 if (arm_feature(env, ARM_FEATURE_V8)) { 9636 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9637 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9638 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9639 } 9640 } else { 9641 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9642 } 9643 define_arm_cp_regs(cpu, id_cp_reginfo); 9644 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9645 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9646 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9647 arm_feature(env, ARM_FEATURE_V8)) { 9648 uint32_t i = 0; 9649 char *tmp_string; 9650 9651 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9652 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9653 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9654 9655 /* Register alias is only valid for first 32 indexes */ 9656 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9657 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9658 uint8_t opc1 = extract32(i, 4, 1); 9659 uint8_t opc2 = extract32(i, 0, 1) << 2; 9660 9661 tmp_string = g_strdup_printf("PRBAR%u", i); 9662 ARMCPRegInfo tmp_prbarn_reginfo = { 9663 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9664 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9665 .access = PL1_RW, .resetvalue = 0, 9666 .accessfn = access_tvm_trvm, 9667 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9668 }; 9669 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9670 g_free(tmp_string); 9671 9672 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9673 tmp_string = g_strdup_printf("PRLAR%u", i); 9674 ARMCPRegInfo tmp_prlarn_reginfo = { 9675 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9676 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9677 .access = PL1_RW, .resetvalue = 0, 9678 .accessfn = access_tvm_trvm, 9679 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9680 }; 9681 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9682 g_free(tmp_string); 9683 } 9684 9685 /* Register alias is only valid for first 32 indexes */ 9686 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9687 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9688 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9689 uint8_t opc2 = extract32(i, 0, 1) << 2; 9690 9691 tmp_string = g_strdup_printf("HPRBAR%u", i); 9692 ARMCPRegInfo tmp_hprbarn_reginfo = { 9693 .name = tmp_string, 9694 .type = ARM_CP_NO_RAW, 9695 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9696 .access = PL2_RW, .resetvalue = 0, 9697 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9698 }; 9699 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9700 g_free(tmp_string); 9701 9702 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9703 tmp_string = g_strdup_printf("HPRLAR%u", i); 9704 ARMCPRegInfo tmp_hprlarn_reginfo = { 9705 .name = tmp_string, 9706 .type = ARM_CP_NO_RAW, 9707 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9708 .access = PL2_RW, .resetvalue = 0, 9709 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9710 }; 9711 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9712 g_free(tmp_string); 9713 } 9714 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9715 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9716 } 9717 } 9718 9719 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9720 ARMCPRegInfo mpidr_cp_reginfo[] = { 9721 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9722 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9723 .fgt = FGT_MPIDR_EL1, 9724 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9725 }; 9726 #ifdef CONFIG_USER_ONLY 9727 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9728 { .name = "MPIDR_EL1", 9729 .fixed_bits = 0x0000000080000000 }, 9730 }; 9731 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9732 #endif 9733 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9734 } 9735 9736 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9737 ARMCPRegInfo auxcr_reginfo[] = { 9738 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9739 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9740 .access = PL1_RW, .accessfn = access_tacr, 9741 .nv2_redirect_offset = 0x118, 9742 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9743 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9744 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9745 .access = PL2_RW, .type = ARM_CP_CONST, 9746 .resetvalue = 0 }, 9747 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9749 .access = PL3_RW, .type = ARM_CP_CONST, 9750 .resetvalue = 0 }, 9751 }; 9752 define_arm_cp_regs(cpu, auxcr_reginfo); 9753 if (cpu_isar_feature(aa32_ac2, cpu)) { 9754 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9755 } 9756 } 9757 9758 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9759 /* 9760 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9761 * There are two flavours: 9762 * (1) older 32-bit only cores have a simple 32-bit CBAR 9763 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9764 * 32-bit register visible to AArch32 at a different encoding 9765 * to the "flavour 1" register and with the bits rearranged to 9766 * be able to squash a 64-bit address into the 32-bit view. 9767 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9768 * in future if we support AArch32-only configs of some of the 9769 * AArch64 cores we might need to add a specific feature flag 9770 * to indicate cores with "flavour 2" CBAR. 9771 */ 9772 if (arm_feature(env, ARM_FEATURE_V8)) { 9773 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9774 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9775 | extract64(cpu->reset_cbar, 32, 12); 9776 ARMCPRegInfo cbar_reginfo[] = { 9777 { .name = "CBAR", 9778 .type = ARM_CP_CONST, 9779 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9780 .access = PL1_R, .resetvalue = cbar32 }, 9781 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9782 .type = ARM_CP_CONST, 9783 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9784 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9785 }; 9786 /* We don't implement a r/w 64 bit CBAR currently */ 9787 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9788 define_arm_cp_regs(cpu, cbar_reginfo); 9789 } else { 9790 ARMCPRegInfo cbar = { 9791 .name = "CBAR", 9792 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9793 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9794 .fieldoffset = offsetof(CPUARMState, 9795 cp15.c15_config_base_address) 9796 }; 9797 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9798 cbar.access = PL1_R; 9799 cbar.fieldoffset = 0; 9800 cbar.type = ARM_CP_CONST; 9801 } 9802 define_one_arm_cp_reg(cpu, &cbar); 9803 } 9804 } 9805 9806 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9807 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9808 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9809 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9810 .access = PL1_RW, .writefn = vbar_write, 9811 .accessfn = access_nv1, 9812 .fgt = FGT_VBAR_EL1, 9813 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9814 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9815 offsetof(CPUARMState, cp15.vbar_ns) }, 9816 .resetvalue = 0 }, 9817 }; 9818 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9819 } 9820 9821 /* Generic registers whose values depend on the implementation */ 9822 { 9823 ARMCPRegInfo sctlr = { 9824 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9825 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9826 .access = PL1_RW, .accessfn = access_tvm_trvm, 9827 .fgt = FGT_SCTLR_EL1, 9828 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9829 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9830 offsetof(CPUARMState, cp15.sctlr_ns) }, 9831 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9832 .raw_writefn = raw_write, 9833 }; 9834 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9835 /* 9836 * Normally we would always end the TB on an SCTLR write, but Linux 9837 * arch/arm/mach-pxa/sleep.S expects two instructions following 9838 * an MMU enable to execute from cache. Imitate this behaviour. 9839 */ 9840 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9841 } 9842 define_one_arm_cp_reg(cpu, &sctlr); 9843 9844 if (arm_feature(env, ARM_FEATURE_PMSA) && 9845 arm_feature(env, ARM_FEATURE_V8)) { 9846 ARMCPRegInfo vsctlr = { 9847 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9848 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9849 .access = PL2_RW, .resetvalue = 0x0, 9850 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9851 }; 9852 define_one_arm_cp_reg(cpu, &vsctlr); 9853 } 9854 } 9855 9856 if (cpu_isar_feature(aa64_lor, cpu)) { 9857 define_arm_cp_regs(cpu, lor_reginfo); 9858 } 9859 if (cpu_isar_feature(aa64_pan, cpu)) { 9860 define_one_arm_cp_reg(cpu, &pan_reginfo); 9861 } 9862 #ifndef CONFIG_USER_ONLY 9863 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9864 define_arm_cp_regs(cpu, ats1e1_reginfo); 9865 } 9866 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9867 define_arm_cp_regs(cpu, ats1cp_reginfo); 9868 } 9869 #endif 9870 if (cpu_isar_feature(aa64_uao, cpu)) { 9871 define_one_arm_cp_reg(cpu, &uao_reginfo); 9872 } 9873 9874 if (cpu_isar_feature(aa64_dit, cpu)) { 9875 define_one_arm_cp_reg(cpu, &dit_reginfo); 9876 } 9877 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9878 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9879 } 9880 if (cpu_isar_feature(any_ras, cpu)) { 9881 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9882 } 9883 9884 if (cpu_isar_feature(aa64_vh, cpu) || 9885 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9886 define_one_arm_cp_reg(cpu, &contextidr_el2); 9887 } 9888 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9889 define_arm_cp_regs(cpu, vhe_reginfo); 9890 } 9891 9892 if (cpu_isar_feature(aa64_sve, cpu)) { 9893 define_arm_cp_regs(cpu, zcr_reginfo); 9894 } 9895 9896 if (cpu_isar_feature(aa64_hcx, cpu)) { 9897 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9898 } 9899 9900 #ifdef TARGET_AARCH64 9901 if (cpu_isar_feature(aa64_sme, cpu)) { 9902 define_arm_cp_regs(cpu, sme_reginfo); 9903 } 9904 if (cpu_isar_feature(aa64_pauth, cpu)) { 9905 define_arm_cp_regs(cpu, pauth_reginfo); 9906 } 9907 if (cpu_isar_feature(aa64_rndr, cpu)) { 9908 define_arm_cp_regs(cpu, rndr_reginfo); 9909 } 9910 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9911 define_arm_cp_regs(cpu, tlbirange_reginfo); 9912 } 9913 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9914 define_arm_cp_regs(cpu, tlbios_reginfo); 9915 } 9916 /* Data Cache clean instructions up to PoP */ 9917 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9918 define_one_arm_cp_reg(cpu, dcpop_reg); 9919 9920 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9921 define_one_arm_cp_reg(cpu, dcpodp_reg); 9922 } 9923 } 9924 9925 /* 9926 * If full MTE is enabled, add all of the system registers. 9927 * If only "instructions available at EL0" are enabled, 9928 * then define only a RAZ/WI version of PSTATE.TCO. 9929 */ 9930 if (cpu_isar_feature(aa64_mte, cpu)) { 9931 ARMCPRegInfo gmid_reginfo = { 9932 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9933 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9934 .access = PL1_R, .accessfn = access_aa64_tid5, 9935 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9936 }; 9937 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9938 define_arm_cp_regs(cpu, mte_reginfo); 9939 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9940 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9941 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9942 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9943 } 9944 9945 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9946 define_arm_cp_regs(cpu, scxtnum_reginfo); 9947 } 9948 9949 if (cpu_isar_feature(aa64_fgt, cpu)) { 9950 define_arm_cp_regs(cpu, fgt_reginfo); 9951 } 9952 9953 if (cpu_isar_feature(aa64_rme, cpu)) { 9954 define_arm_cp_regs(cpu, rme_reginfo); 9955 if (cpu_isar_feature(aa64_mte, cpu)) { 9956 define_arm_cp_regs(cpu, rme_mte_reginfo); 9957 } 9958 } 9959 9960 if (cpu_isar_feature(aa64_nv2, cpu)) { 9961 define_arm_cp_regs(cpu, nv2_reginfo); 9962 } 9963 9964 if (cpu_isar_feature(aa64_nmi, cpu)) { 9965 define_arm_cp_regs(cpu, nmi_reginfo); 9966 } 9967 #endif 9968 9969 if (cpu_isar_feature(any_predinv, cpu)) { 9970 define_arm_cp_regs(cpu, predinv_reginfo); 9971 } 9972 9973 if (cpu_isar_feature(any_ccidx, cpu)) { 9974 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9975 } 9976 9977 #ifndef CONFIG_USER_ONLY 9978 /* 9979 * Register redirections and aliases must be done last, 9980 * after the registers from the other extensions have been defined. 9981 */ 9982 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9983 define_arm_vh_e2h_redirects_aliases(cpu); 9984 } 9985 #endif 9986 } 9987 9988 /* 9989 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9990 * add a single reginfo struct to the hash table. 9991 */ 9992 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9993 void *opaque, CPState state, 9994 CPSecureState secstate, 9995 int crm, int opc1, int opc2, 9996 const char *name) 9997 { 9998 CPUARMState *env = &cpu->env; 9999 uint32_t key; 10000 ARMCPRegInfo *r2; 10001 bool is64 = r->type & ARM_CP_64BIT; 10002 bool ns = secstate & ARM_CP_SECSTATE_NS; 10003 int cp = r->cp; 10004 size_t name_len; 10005 bool make_const; 10006 10007 switch (state) { 10008 case ARM_CP_STATE_AA32: 10009 /* We assume it is a cp15 register if the .cp field is left unset. */ 10010 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 10011 cp = 15; 10012 } 10013 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 10014 break; 10015 case ARM_CP_STATE_AA64: 10016 /* 10017 * To allow abbreviation of ARMCPRegInfo definitions, we treat 10018 * cp == 0 as equivalent to the value for "standard guest-visible 10019 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 10020 * in their AArch64 view (the .cp value may be non-zero for the 10021 * benefit of the AArch32 view). 10022 */ 10023 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 10024 cp = CP_REG_ARM64_SYSREG_CP; 10025 } 10026 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 10027 break; 10028 default: 10029 g_assert_not_reached(); 10030 } 10031 10032 /* Overriding of an existing definition must be explicitly requested. */ 10033 if (!(r->type & ARM_CP_OVERRIDE)) { 10034 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 10035 if (oldreg) { 10036 assert(oldreg->type & ARM_CP_OVERRIDE); 10037 } 10038 } 10039 10040 /* 10041 * Eliminate registers that are not present because the EL is missing. 10042 * Doing this here makes it easier to put all registers for a given 10043 * feature into the same ARMCPRegInfo array and define them all at once. 10044 */ 10045 make_const = false; 10046 if (arm_feature(env, ARM_FEATURE_EL3)) { 10047 /* 10048 * An EL2 register without EL2 but with EL3 is (usually) RES0. 10049 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 10050 */ 10051 int min_el = ctz32(r->access) / 2; 10052 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 10053 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 10054 return; 10055 } 10056 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 10057 } 10058 } else { 10059 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 10060 ? PL2_RW : PL1_RW); 10061 if ((r->access & max_el) == 0) { 10062 return; 10063 } 10064 } 10065 10066 /* Combine cpreg and name into one allocation. */ 10067 name_len = strlen(name) + 1; 10068 r2 = g_malloc(sizeof(*r2) + name_len); 10069 *r2 = *r; 10070 r2->name = memcpy(r2 + 1, name, name_len); 10071 10072 /* 10073 * Update fields to match the instantiation, overwiting wildcards 10074 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 10075 */ 10076 r2->cp = cp; 10077 r2->crm = crm; 10078 r2->opc1 = opc1; 10079 r2->opc2 = opc2; 10080 r2->state = state; 10081 r2->secure = secstate; 10082 if (opaque) { 10083 r2->opaque = opaque; 10084 } 10085 10086 if (make_const) { 10087 /* This should not have been a very special register to begin. */ 10088 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 10089 assert(old_special == 0 || old_special == ARM_CP_NOP); 10090 /* 10091 * Set the special function to CONST, retaining the other flags. 10092 * This is important for e.g. ARM_CP_SVE so that we still 10093 * take the SVE trap if CPTR_EL3.EZ == 0. 10094 */ 10095 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 10096 /* 10097 * Usually, these registers become RES0, but there are a few 10098 * special cases like VPIDR_EL2 which have a constant non-zero 10099 * value with writes ignored. 10100 */ 10101 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 10102 r2->resetvalue = 0; 10103 } 10104 /* 10105 * ARM_CP_CONST has precedence, so removing the callbacks and 10106 * offsets are not strictly necessary, but it is potentially 10107 * less confusing to debug later. 10108 */ 10109 r2->readfn = NULL; 10110 r2->writefn = NULL; 10111 r2->raw_readfn = NULL; 10112 r2->raw_writefn = NULL; 10113 r2->resetfn = NULL; 10114 r2->fieldoffset = 0; 10115 r2->bank_fieldoffsets[0] = 0; 10116 r2->bank_fieldoffsets[1] = 0; 10117 } else { 10118 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 10119 10120 if (isbanked) { 10121 /* 10122 * Register is banked (using both entries in array). 10123 * Overwriting fieldoffset as the array is only used to define 10124 * banked registers but later only fieldoffset is used. 10125 */ 10126 r2->fieldoffset = r->bank_fieldoffsets[ns]; 10127 } 10128 if (state == ARM_CP_STATE_AA32) { 10129 if (isbanked) { 10130 /* 10131 * If the register is banked then we don't need to migrate or 10132 * reset the 32-bit instance in certain cases: 10133 * 10134 * 1) If the register has both 32-bit and 64-bit instances 10135 * then we can count on the 64-bit instance taking care 10136 * of the non-secure bank. 10137 * 2) If ARMv8 is enabled then we can count on a 64-bit 10138 * version taking care of the secure bank. This requires 10139 * that separate 32 and 64-bit definitions are provided. 10140 */ 10141 if ((r->state == ARM_CP_STATE_BOTH && ns) || 10142 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 10143 r2->type |= ARM_CP_ALIAS; 10144 } 10145 } else if ((secstate != r->secure) && !ns) { 10146 /* 10147 * The register is not banked so we only want to allow 10148 * migration of the non-secure instance. 10149 */ 10150 r2->type |= ARM_CP_ALIAS; 10151 } 10152 10153 if (HOST_BIG_ENDIAN && 10154 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 10155 r2->fieldoffset += sizeof(uint32_t); 10156 } 10157 } 10158 } 10159 10160 /* 10161 * By convention, for wildcarded registers only the first 10162 * entry is used for migration; the others are marked as 10163 * ALIAS so we don't try to transfer the register 10164 * multiple times. Special registers (ie NOP/WFI) are 10165 * never migratable and not even raw-accessible. 10166 */ 10167 if (r2->type & ARM_CP_SPECIAL_MASK) { 10168 r2->type |= ARM_CP_NO_RAW; 10169 } 10170 if (((r->crm == CP_ANY) && crm != 0) || 10171 ((r->opc1 == CP_ANY) && opc1 != 0) || 10172 ((r->opc2 == CP_ANY) && opc2 != 0)) { 10173 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 10174 } 10175 10176 /* 10177 * Check that raw accesses are either forbidden or handled. Note that 10178 * we can't assert this earlier because the setup of fieldoffset for 10179 * banked registers has to be done first. 10180 */ 10181 if (!(r2->type & ARM_CP_NO_RAW)) { 10182 assert(!raw_accessors_invalid(r2)); 10183 } 10184 10185 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 10186 } 10187 10188 10189 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 10190 const ARMCPRegInfo *r, void *opaque) 10191 { 10192 /* 10193 * Define implementations of coprocessor registers. 10194 * We store these in a hashtable because typically 10195 * there are less than 150 registers in a space which 10196 * is 16*16*16*8*8 = 262144 in size. 10197 * Wildcarding is supported for the crm, opc1 and opc2 fields. 10198 * If a register is defined twice then the second definition is 10199 * used, so this can be used to define some generic registers and 10200 * then override them with implementation specific variations. 10201 * At least one of the original and the second definition should 10202 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 10203 * against accidental use. 10204 * 10205 * The state field defines whether the register is to be 10206 * visible in the AArch32 or AArch64 execution state. If the 10207 * state is set to ARM_CP_STATE_BOTH then we synthesise a 10208 * reginfo structure for the AArch32 view, which sees the lower 10209 * 32 bits of the 64 bit register. 10210 * 10211 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 10212 * be wildcarded. AArch64 registers are always considered to be 64 10213 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 10214 * the register, if any. 10215 */ 10216 int crm, opc1, opc2; 10217 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 10218 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 10219 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 10220 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 10221 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 10222 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 10223 CPState state; 10224 10225 /* 64 bit registers have only CRm and Opc1 fields */ 10226 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 10227 /* op0 only exists in the AArch64 encodings */ 10228 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 10229 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 10230 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 10231 /* 10232 * This API is only for Arm's system coprocessors (14 and 15) or 10233 * (M-profile or v7A-and-earlier only) for implementation defined 10234 * coprocessors in the range 0..7. Our decode assumes this, since 10235 * 8..13 can be used for other insns including VFP and Neon. See 10236 * valid_cp() in translate.c. Assert here that we haven't tried 10237 * to use an invalid coprocessor number. 10238 */ 10239 switch (r->state) { 10240 case ARM_CP_STATE_BOTH: 10241 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 10242 if (r->cp == 0) { 10243 break; 10244 } 10245 /* fall through */ 10246 case ARM_CP_STATE_AA32: 10247 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 10248 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 10249 assert(r->cp >= 14 && r->cp <= 15); 10250 } else { 10251 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 10252 } 10253 break; 10254 case ARM_CP_STATE_AA64: 10255 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 10256 break; 10257 default: 10258 g_assert_not_reached(); 10259 } 10260 /* 10261 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10262 * encodes a minimum access level for the register. We roll this 10263 * runtime check into our general permission check code, so check 10264 * here that the reginfo's specified permissions are strict enough 10265 * to encompass the generic architectural permission check. 10266 */ 10267 if (r->state != ARM_CP_STATE_AA32) { 10268 CPAccessRights mask; 10269 switch (r->opc1) { 10270 case 0: 10271 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10272 mask = PL0U_R | PL1_RW; 10273 break; 10274 case 1: case 2: 10275 /* min_EL EL1 */ 10276 mask = PL1_RW; 10277 break; 10278 case 3: 10279 /* min_EL EL0 */ 10280 mask = PL0_RW; 10281 break; 10282 case 4: 10283 case 5: 10284 /* min_EL EL2 */ 10285 mask = PL2_RW; 10286 break; 10287 case 6: 10288 /* min_EL EL3 */ 10289 mask = PL3_RW; 10290 break; 10291 case 7: 10292 /* min_EL EL1, secure mode only (we don't check the latter) */ 10293 mask = PL1_RW; 10294 break; 10295 default: 10296 /* broken reginfo with out-of-range opc1 */ 10297 g_assert_not_reached(); 10298 } 10299 /* assert our permissions are not too lax (stricter is fine) */ 10300 assert((r->access & ~mask) == 0); 10301 } 10302 10303 /* 10304 * Check that the register definition has enough info to handle 10305 * reads and writes if they are permitted. 10306 */ 10307 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10308 if (r->access & PL3_R) { 10309 assert((r->fieldoffset || 10310 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10311 r->readfn); 10312 } 10313 if (r->access & PL3_W) { 10314 assert((r->fieldoffset || 10315 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10316 r->writefn); 10317 } 10318 } 10319 10320 for (crm = crmmin; crm <= crmmax; crm++) { 10321 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10322 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10323 for (state = ARM_CP_STATE_AA32; 10324 state <= ARM_CP_STATE_AA64; state++) { 10325 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10326 continue; 10327 } 10328 if (state == ARM_CP_STATE_AA32) { 10329 /* 10330 * Under AArch32 CP registers can be common 10331 * (same for secure and non-secure world) or banked. 10332 */ 10333 char *name; 10334 10335 switch (r->secure) { 10336 case ARM_CP_SECSTATE_S: 10337 case ARM_CP_SECSTATE_NS: 10338 add_cpreg_to_hashtable(cpu, r, opaque, state, 10339 r->secure, crm, opc1, opc2, 10340 r->name); 10341 break; 10342 case ARM_CP_SECSTATE_BOTH: 10343 name = g_strdup_printf("%s_S", r->name); 10344 add_cpreg_to_hashtable(cpu, r, opaque, state, 10345 ARM_CP_SECSTATE_S, 10346 crm, opc1, opc2, name); 10347 g_free(name); 10348 add_cpreg_to_hashtable(cpu, r, opaque, state, 10349 ARM_CP_SECSTATE_NS, 10350 crm, opc1, opc2, r->name); 10351 break; 10352 default: 10353 g_assert_not_reached(); 10354 } 10355 } else { 10356 /* 10357 * AArch64 registers get mapped to non-secure instance 10358 * of AArch32 10359 */ 10360 add_cpreg_to_hashtable(cpu, r, opaque, state, 10361 ARM_CP_SECSTATE_NS, 10362 crm, opc1, opc2, r->name); 10363 } 10364 } 10365 } 10366 } 10367 } 10368 } 10369 10370 /* Define a whole list of registers */ 10371 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10372 void *opaque, size_t len) 10373 { 10374 size_t i; 10375 for (i = 0; i < len; ++i) { 10376 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10377 } 10378 } 10379 10380 /* 10381 * Modify ARMCPRegInfo for access from userspace. 10382 * 10383 * This is a data driven modification directed by 10384 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10385 * user-space cannot alter any values and dynamic values pertaining to 10386 * execution state are hidden from user space view anyway. 10387 */ 10388 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10389 const ARMCPRegUserSpaceInfo *mods, 10390 size_t mods_len) 10391 { 10392 for (size_t mi = 0; mi < mods_len; ++mi) { 10393 const ARMCPRegUserSpaceInfo *m = mods + mi; 10394 GPatternSpec *pat = NULL; 10395 10396 if (m->is_glob) { 10397 pat = g_pattern_spec_new(m->name); 10398 } 10399 for (size_t ri = 0; ri < regs_len; ++ri) { 10400 ARMCPRegInfo *r = regs + ri; 10401 10402 if (pat && g_pattern_match_string(pat, r->name)) { 10403 r->type = ARM_CP_CONST; 10404 r->access = PL0U_R; 10405 r->resetvalue = 0; 10406 /* continue */ 10407 } else if (strcmp(r->name, m->name) == 0) { 10408 r->type = ARM_CP_CONST; 10409 r->access = PL0U_R; 10410 r->resetvalue &= m->exported_bits; 10411 r->resetvalue |= m->fixed_bits; 10412 break; 10413 } 10414 } 10415 if (pat) { 10416 g_pattern_spec_free(pat); 10417 } 10418 } 10419 } 10420 10421 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10422 { 10423 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10424 } 10425 10426 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10427 uint64_t value) 10428 { 10429 /* Helper coprocessor write function for write-ignore registers */ 10430 } 10431 10432 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10433 { 10434 /* Helper coprocessor write function for read-as-zero registers */ 10435 return 0; 10436 } 10437 10438 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10439 { 10440 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10441 } 10442 10443 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10444 { 10445 /* 10446 * Return true if it is not valid for us to switch to 10447 * this CPU mode (ie all the UNPREDICTABLE cases in 10448 * the ARM ARM CPSRWriteByInstr pseudocode). 10449 */ 10450 10451 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10452 if (write_type == CPSRWriteByInstr && 10453 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10454 mode == ARM_CPU_MODE_HYP)) { 10455 return 1; 10456 } 10457 10458 switch (mode) { 10459 case ARM_CPU_MODE_USR: 10460 return 0; 10461 case ARM_CPU_MODE_SYS: 10462 case ARM_CPU_MODE_SVC: 10463 case ARM_CPU_MODE_ABT: 10464 case ARM_CPU_MODE_UND: 10465 case ARM_CPU_MODE_IRQ: 10466 case ARM_CPU_MODE_FIQ: 10467 /* 10468 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10469 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10470 */ 10471 /* 10472 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10473 * and CPS are treated as illegal mode changes. 10474 */ 10475 if (write_type == CPSRWriteByInstr && 10476 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10477 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10478 return 1; 10479 } 10480 return 0; 10481 case ARM_CPU_MODE_HYP: 10482 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10483 case ARM_CPU_MODE_MON: 10484 return arm_current_el(env) < 3; 10485 default: 10486 return 1; 10487 } 10488 } 10489 10490 uint32_t cpsr_read(CPUARMState *env) 10491 { 10492 int ZF; 10493 ZF = (env->ZF == 0); 10494 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10495 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10496 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10497 | ((env->condexec_bits & 0xfc) << 8) 10498 | (env->GE << 16) | (env->daif & CPSR_AIF); 10499 } 10500 10501 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10502 CPSRWriteType write_type) 10503 { 10504 uint32_t changed_daif; 10505 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10506 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10507 10508 if (mask & CPSR_NZCV) { 10509 env->ZF = (~val) & CPSR_Z; 10510 env->NF = val; 10511 env->CF = (val >> 29) & 1; 10512 env->VF = (val << 3) & 0x80000000; 10513 } 10514 if (mask & CPSR_Q) { 10515 env->QF = ((val & CPSR_Q) != 0); 10516 } 10517 if (mask & CPSR_T) { 10518 env->thumb = ((val & CPSR_T) != 0); 10519 } 10520 if (mask & CPSR_IT_0_1) { 10521 env->condexec_bits &= ~3; 10522 env->condexec_bits |= (val >> 25) & 3; 10523 } 10524 if (mask & CPSR_IT_2_7) { 10525 env->condexec_bits &= 3; 10526 env->condexec_bits |= (val >> 8) & 0xfc; 10527 } 10528 if (mask & CPSR_GE) { 10529 env->GE = (val >> 16) & 0xf; 10530 } 10531 10532 /* 10533 * In a V7 implementation that includes the security extensions but does 10534 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10535 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10536 * bits respectively. 10537 * 10538 * In a V8 implementation, it is permitted for privileged software to 10539 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10540 */ 10541 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10542 arm_feature(env, ARM_FEATURE_EL3) && 10543 !arm_feature(env, ARM_FEATURE_EL2) && 10544 !arm_is_secure(env)) { 10545 10546 changed_daif = (env->daif ^ val) & mask; 10547 10548 if (changed_daif & CPSR_A) { 10549 /* 10550 * Check to see if we are allowed to change the masking of async 10551 * abort exceptions from a non-secure state. 10552 */ 10553 if (!(env->cp15.scr_el3 & SCR_AW)) { 10554 qemu_log_mask(LOG_GUEST_ERROR, 10555 "Ignoring attempt to switch CPSR_A flag from " 10556 "non-secure world with SCR.AW bit clear\n"); 10557 mask &= ~CPSR_A; 10558 } 10559 } 10560 10561 if (changed_daif & CPSR_F) { 10562 /* 10563 * Check to see if we are allowed to change the masking of FIQ 10564 * exceptions from a non-secure state. 10565 */ 10566 if (!(env->cp15.scr_el3 & SCR_FW)) { 10567 qemu_log_mask(LOG_GUEST_ERROR, 10568 "Ignoring attempt to switch CPSR_F flag from " 10569 "non-secure world with SCR.FW bit clear\n"); 10570 mask &= ~CPSR_F; 10571 } 10572 10573 /* 10574 * Check whether non-maskable FIQ (NMFI) support is enabled. 10575 * If this bit is set software is not allowed to mask 10576 * FIQs, but is allowed to set CPSR_F to 0. 10577 */ 10578 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10579 (val & CPSR_F)) { 10580 qemu_log_mask(LOG_GUEST_ERROR, 10581 "Ignoring attempt to enable CPSR_F flag " 10582 "(non-maskable FIQ [NMFI] support enabled)\n"); 10583 mask &= ~CPSR_F; 10584 } 10585 } 10586 } 10587 10588 env->daif &= ~(CPSR_AIF & mask); 10589 env->daif |= val & CPSR_AIF & mask; 10590 10591 if (write_type != CPSRWriteRaw && 10592 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10593 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10594 /* 10595 * Note that we can only get here in USR mode if this is a 10596 * gdb stub write; for this case we follow the architectural 10597 * behaviour for guest writes in USR mode of ignoring an attempt 10598 * to switch mode. (Those are caught by translate.c for writes 10599 * triggered by guest instructions.) 10600 */ 10601 mask &= ~CPSR_M; 10602 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10603 /* 10604 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10605 * v7, and has defined behaviour in v8: 10606 * + leave CPSR.M untouched 10607 * + allow changes to the other CPSR fields 10608 * + set PSTATE.IL 10609 * For user changes via the GDB stub, we don't set PSTATE.IL, 10610 * as this would be unnecessarily harsh for a user error. 10611 */ 10612 mask &= ~CPSR_M; 10613 if (write_type != CPSRWriteByGDBStub && 10614 arm_feature(env, ARM_FEATURE_V8)) { 10615 mask |= CPSR_IL; 10616 val |= CPSR_IL; 10617 } 10618 qemu_log_mask(LOG_GUEST_ERROR, 10619 "Illegal AArch32 mode switch attempt from %s to %s\n", 10620 aarch32_mode_name(env->uncached_cpsr), 10621 aarch32_mode_name(val)); 10622 } else { 10623 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10624 write_type == CPSRWriteExceptionReturn ? 10625 "Exception return from AArch32" : 10626 "AArch32 mode switch from", 10627 aarch32_mode_name(env->uncached_cpsr), 10628 aarch32_mode_name(val), env->regs[15]); 10629 switch_mode(env, val & CPSR_M); 10630 } 10631 } 10632 mask &= ~CACHED_CPSR_BITS; 10633 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10634 if (tcg_enabled() && rebuild_hflags) { 10635 arm_rebuild_hflags(env); 10636 } 10637 } 10638 10639 #ifdef CONFIG_USER_ONLY 10640 10641 static void switch_mode(CPUARMState *env, int mode) 10642 { 10643 ARMCPU *cpu = env_archcpu(env); 10644 10645 if (mode != ARM_CPU_MODE_USR) { 10646 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10647 } 10648 } 10649 10650 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10651 uint32_t cur_el, bool secure) 10652 { 10653 return 1; 10654 } 10655 10656 void aarch64_sync_64_to_32(CPUARMState *env) 10657 { 10658 g_assert_not_reached(); 10659 } 10660 10661 #else 10662 10663 static void switch_mode(CPUARMState *env, int mode) 10664 { 10665 int old_mode; 10666 int i; 10667 10668 old_mode = env->uncached_cpsr & CPSR_M; 10669 if (mode == old_mode) { 10670 return; 10671 } 10672 10673 if (old_mode == ARM_CPU_MODE_FIQ) { 10674 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10675 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10676 } else if (mode == ARM_CPU_MODE_FIQ) { 10677 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10678 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10679 } 10680 10681 i = bank_number(old_mode); 10682 env->banked_r13[i] = env->regs[13]; 10683 env->banked_spsr[i] = env->spsr; 10684 10685 i = bank_number(mode); 10686 env->regs[13] = env->banked_r13[i]; 10687 env->spsr = env->banked_spsr[i]; 10688 10689 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10690 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10691 } 10692 10693 /* 10694 * Physical Interrupt Target EL Lookup Table 10695 * 10696 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10697 * 10698 * The below multi-dimensional table is used for looking up the target 10699 * exception level given numerous condition criteria. Specifically, the 10700 * target EL is based on SCR and HCR routing controls as well as the 10701 * currently executing EL and secure state. 10702 * 10703 * Dimensions: 10704 * target_el_table[2][2][2][2][2][4] 10705 * | | | | | +--- Current EL 10706 * | | | | +------ Non-secure(0)/Secure(1) 10707 * | | | +--------- HCR mask override 10708 * | | +------------ SCR exec state control 10709 * | +--------------- SCR mask override 10710 * +------------------ 32-bit(0)/64-bit(1) EL3 10711 * 10712 * The table values are as such: 10713 * 0-3 = EL0-EL3 10714 * -1 = Cannot occur 10715 * 10716 * The ARM ARM target EL table includes entries indicating that an "exception 10717 * is not taken". The two cases where this is applicable are: 10718 * 1) An exception is taken from EL3 but the SCR does not have the exception 10719 * routed to EL3. 10720 * 2) An exception is taken from EL2 but the HCR does not have the exception 10721 * routed to EL2. 10722 * In these two cases, the below table contain a target of EL1. This value is 10723 * returned as it is expected that the consumer of the table data will check 10724 * for "target EL >= current EL" to ensure the exception is not taken. 10725 * 10726 * SCR HCR 10727 * 64 EA AMO From 10728 * BIT IRQ IMO Non-secure Secure 10729 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10730 */ 10731 static const int8_t target_el_table[2][2][2][2][2][4] = { 10732 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10733 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10734 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10735 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10736 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10737 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10738 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10739 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10740 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10741 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10742 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10743 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10744 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10745 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10746 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10747 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10748 }; 10749 10750 /* 10751 * Determine the target EL for physical exceptions 10752 */ 10753 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10754 uint32_t cur_el, bool secure) 10755 { 10756 CPUARMState *env = cpu_env(cs); 10757 bool rw; 10758 bool scr; 10759 bool hcr; 10760 int target_el; 10761 /* Is the highest EL AArch64? */ 10762 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10763 uint64_t hcr_el2; 10764 10765 if (arm_feature(env, ARM_FEATURE_EL3)) { 10766 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10767 } else { 10768 /* 10769 * Either EL2 is the highest EL (and so the EL2 register width 10770 * is given by is64); or there is no EL2 or EL3, in which case 10771 * the value of 'rw' does not affect the table lookup anyway. 10772 */ 10773 rw = is64; 10774 } 10775 10776 hcr_el2 = arm_hcr_el2_eff(env); 10777 switch (excp_idx) { 10778 case EXCP_IRQ: 10779 case EXCP_NMI: 10780 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10781 hcr = hcr_el2 & HCR_IMO; 10782 break; 10783 case EXCP_FIQ: 10784 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10785 hcr = hcr_el2 & HCR_FMO; 10786 break; 10787 default: 10788 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10789 hcr = hcr_el2 & HCR_AMO; 10790 break; 10791 }; 10792 10793 /* 10794 * For these purposes, TGE and AMO/IMO/FMO both force the 10795 * interrupt to EL2. Fold TGE into the bit extracted above. 10796 */ 10797 hcr |= (hcr_el2 & HCR_TGE) != 0; 10798 10799 /* Perform a table-lookup for the target EL given the current state */ 10800 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10801 10802 assert(target_el > 0); 10803 10804 return target_el; 10805 } 10806 10807 void arm_log_exception(CPUState *cs) 10808 { 10809 int idx = cs->exception_index; 10810 10811 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10812 const char *exc = NULL; 10813 static const char * const excnames[] = { 10814 [EXCP_UDEF] = "Undefined Instruction", 10815 [EXCP_SWI] = "SVC", 10816 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10817 [EXCP_DATA_ABORT] = "Data Abort", 10818 [EXCP_IRQ] = "IRQ", 10819 [EXCP_FIQ] = "FIQ", 10820 [EXCP_BKPT] = "Breakpoint", 10821 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10822 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10823 [EXCP_HVC] = "Hypervisor Call", 10824 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10825 [EXCP_SMC] = "Secure Monitor Call", 10826 [EXCP_VIRQ] = "Virtual IRQ", 10827 [EXCP_VFIQ] = "Virtual FIQ", 10828 [EXCP_SEMIHOST] = "Semihosting call", 10829 [EXCP_NOCP] = "v7M NOCP UsageFault", 10830 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10831 [EXCP_STKOF] = "v8M STKOF UsageFault", 10832 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10833 [EXCP_LSERR] = "v8M LSERR UsageFault", 10834 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10835 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10836 [EXCP_VSERR] = "Virtual SERR", 10837 [EXCP_GPC] = "Granule Protection Check", 10838 [EXCP_NMI] = "NMI", 10839 [EXCP_VINMI] = "Virtual IRQ NMI", 10840 [EXCP_VFNMI] = "Virtual FIQ NMI", 10841 }; 10842 10843 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10844 exc = excnames[idx]; 10845 } 10846 if (!exc) { 10847 exc = "unknown"; 10848 } 10849 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10850 idx, exc, cs->cpu_index); 10851 } 10852 } 10853 10854 /* 10855 * Function used to synchronize QEMU's AArch64 register set with AArch32 10856 * register set. This is necessary when switching between AArch32 and AArch64 10857 * execution state. 10858 */ 10859 void aarch64_sync_32_to_64(CPUARMState *env) 10860 { 10861 int i; 10862 uint32_t mode = env->uncached_cpsr & CPSR_M; 10863 10864 /* We can blanket copy R[0:7] to X[0:7] */ 10865 for (i = 0; i < 8; i++) { 10866 env->xregs[i] = env->regs[i]; 10867 } 10868 10869 /* 10870 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10871 * Otherwise, they come from the banked user regs. 10872 */ 10873 if (mode == ARM_CPU_MODE_FIQ) { 10874 for (i = 8; i < 13; i++) { 10875 env->xregs[i] = env->usr_regs[i - 8]; 10876 } 10877 } else { 10878 for (i = 8; i < 13; i++) { 10879 env->xregs[i] = env->regs[i]; 10880 } 10881 } 10882 10883 /* 10884 * Registers x13-x23 are the various mode SP and FP registers. Registers 10885 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10886 * from the mode banked register. 10887 */ 10888 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10889 env->xregs[13] = env->regs[13]; 10890 env->xregs[14] = env->regs[14]; 10891 } else { 10892 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10893 /* HYP is an exception in that it is copied from r14 */ 10894 if (mode == ARM_CPU_MODE_HYP) { 10895 env->xregs[14] = env->regs[14]; 10896 } else { 10897 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10898 } 10899 } 10900 10901 if (mode == ARM_CPU_MODE_HYP) { 10902 env->xregs[15] = env->regs[13]; 10903 } else { 10904 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10905 } 10906 10907 if (mode == ARM_CPU_MODE_IRQ) { 10908 env->xregs[16] = env->regs[14]; 10909 env->xregs[17] = env->regs[13]; 10910 } else { 10911 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10912 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10913 } 10914 10915 if (mode == ARM_CPU_MODE_SVC) { 10916 env->xregs[18] = env->regs[14]; 10917 env->xregs[19] = env->regs[13]; 10918 } else { 10919 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10920 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10921 } 10922 10923 if (mode == ARM_CPU_MODE_ABT) { 10924 env->xregs[20] = env->regs[14]; 10925 env->xregs[21] = env->regs[13]; 10926 } else { 10927 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10928 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10929 } 10930 10931 if (mode == ARM_CPU_MODE_UND) { 10932 env->xregs[22] = env->regs[14]; 10933 env->xregs[23] = env->regs[13]; 10934 } else { 10935 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10936 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10937 } 10938 10939 /* 10940 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10941 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10942 * FIQ bank for r8-r14. 10943 */ 10944 if (mode == ARM_CPU_MODE_FIQ) { 10945 for (i = 24; i < 31; i++) { 10946 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10947 } 10948 } else { 10949 for (i = 24; i < 29; i++) { 10950 env->xregs[i] = env->fiq_regs[i - 24]; 10951 } 10952 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10953 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10954 } 10955 10956 env->pc = env->regs[15]; 10957 } 10958 10959 /* 10960 * Function used to synchronize QEMU's AArch32 register set with AArch64 10961 * register set. This is necessary when switching between AArch32 and AArch64 10962 * execution state. 10963 */ 10964 void aarch64_sync_64_to_32(CPUARMState *env) 10965 { 10966 int i; 10967 uint32_t mode = env->uncached_cpsr & CPSR_M; 10968 10969 /* We can blanket copy X[0:7] to R[0:7] */ 10970 for (i = 0; i < 8; i++) { 10971 env->regs[i] = env->xregs[i]; 10972 } 10973 10974 /* 10975 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10976 * Otherwise, we copy x8-x12 into the banked user regs. 10977 */ 10978 if (mode == ARM_CPU_MODE_FIQ) { 10979 for (i = 8; i < 13; i++) { 10980 env->usr_regs[i - 8] = env->xregs[i]; 10981 } 10982 } else { 10983 for (i = 8; i < 13; i++) { 10984 env->regs[i] = env->xregs[i]; 10985 } 10986 } 10987 10988 /* 10989 * Registers r13 & r14 depend on the current mode. 10990 * If we are in a given mode, we copy the corresponding x registers to r13 10991 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10992 * for the mode. 10993 */ 10994 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10995 env->regs[13] = env->xregs[13]; 10996 env->regs[14] = env->xregs[14]; 10997 } else { 10998 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10999 11000 /* 11001 * HYP is an exception in that it does not have its own banked r14 but 11002 * shares the USR r14 11003 */ 11004 if (mode == ARM_CPU_MODE_HYP) { 11005 env->regs[14] = env->xregs[14]; 11006 } else { 11007 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 11008 } 11009 } 11010 11011 if (mode == ARM_CPU_MODE_HYP) { 11012 env->regs[13] = env->xregs[15]; 11013 } else { 11014 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 11015 } 11016 11017 if (mode == ARM_CPU_MODE_IRQ) { 11018 env->regs[14] = env->xregs[16]; 11019 env->regs[13] = env->xregs[17]; 11020 } else { 11021 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 11022 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 11023 } 11024 11025 if (mode == ARM_CPU_MODE_SVC) { 11026 env->regs[14] = env->xregs[18]; 11027 env->regs[13] = env->xregs[19]; 11028 } else { 11029 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 11030 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 11031 } 11032 11033 if (mode == ARM_CPU_MODE_ABT) { 11034 env->regs[14] = env->xregs[20]; 11035 env->regs[13] = env->xregs[21]; 11036 } else { 11037 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 11038 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 11039 } 11040 11041 if (mode == ARM_CPU_MODE_UND) { 11042 env->regs[14] = env->xregs[22]; 11043 env->regs[13] = env->xregs[23]; 11044 } else { 11045 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 11046 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 11047 } 11048 11049 /* 11050 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 11051 * mode, then we can copy to r8-r14. Otherwise, we copy to the 11052 * FIQ bank for r8-r14. 11053 */ 11054 if (mode == ARM_CPU_MODE_FIQ) { 11055 for (i = 24; i < 31; i++) { 11056 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 11057 } 11058 } else { 11059 for (i = 24; i < 29; i++) { 11060 env->fiq_regs[i - 24] = env->xregs[i]; 11061 } 11062 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 11063 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 11064 } 11065 11066 env->regs[15] = env->pc; 11067 } 11068 11069 static void take_aarch32_exception(CPUARMState *env, int new_mode, 11070 uint32_t mask, uint32_t offset, 11071 uint32_t newpc) 11072 { 11073 int new_el; 11074 11075 /* Change the CPU state so as to actually take the exception. */ 11076 switch_mode(env, new_mode); 11077 11078 /* 11079 * For exceptions taken to AArch32 we must clear the SS bit in both 11080 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 11081 */ 11082 env->pstate &= ~PSTATE_SS; 11083 env->spsr = cpsr_read(env); 11084 /* Clear IT bits. */ 11085 env->condexec_bits = 0; 11086 /* Switch to the new mode, and to the correct instruction set. */ 11087 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 11088 11089 /* This must be after mode switching. */ 11090 new_el = arm_current_el(env); 11091 11092 /* Set new mode endianness */ 11093 env->uncached_cpsr &= ~CPSR_E; 11094 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 11095 env->uncached_cpsr |= CPSR_E; 11096 } 11097 /* J and IL must always be cleared for exception entry */ 11098 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 11099 env->daif |= mask; 11100 11101 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 11102 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 11103 env->uncached_cpsr |= CPSR_SSBS; 11104 } else { 11105 env->uncached_cpsr &= ~CPSR_SSBS; 11106 } 11107 } 11108 11109 if (new_mode == ARM_CPU_MODE_HYP) { 11110 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 11111 env->elr_el[2] = env->regs[15]; 11112 } else { 11113 /* CPSR.PAN is normally preserved preserved unless... */ 11114 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 11115 switch (new_el) { 11116 case 3: 11117 if (!arm_is_secure_below_el3(env)) { 11118 /* ... the target is EL3, from non-secure state. */ 11119 env->uncached_cpsr &= ~CPSR_PAN; 11120 break; 11121 } 11122 /* ... the target is EL3, from secure state ... */ 11123 /* fall through */ 11124 case 1: 11125 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 11126 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 11127 env->uncached_cpsr |= CPSR_PAN; 11128 } 11129 break; 11130 } 11131 } 11132 /* 11133 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 11134 * and we should just guard the thumb mode on V4 11135 */ 11136 if (arm_feature(env, ARM_FEATURE_V4T)) { 11137 env->thumb = 11138 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 11139 } 11140 env->regs[14] = env->regs[15] + offset; 11141 } 11142 env->regs[15] = newpc; 11143 11144 if (tcg_enabled()) { 11145 arm_rebuild_hflags(env); 11146 } 11147 } 11148 11149 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 11150 { 11151 /* 11152 * Handle exception entry to Hyp mode; this is sufficiently 11153 * different to entry to other AArch32 modes that we handle it 11154 * separately here. 11155 * 11156 * The vector table entry used is always the 0x14 Hyp mode entry point, 11157 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 11158 * The offset applied to the preferred return address is always zero 11159 * (see DDI0487C.a section G1.12.3). 11160 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 11161 */ 11162 uint32_t addr, mask; 11163 ARMCPU *cpu = ARM_CPU(cs); 11164 CPUARMState *env = &cpu->env; 11165 11166 switch (cs->exception_index) { 11167 case EXCP_UDEF: 11168 addr = 0x04; 11169 break; 11170 case EXCP_SWI: 11171 addr = 0x08; 11172 break; 11173 case EXCP_BKPT: 11174 /* Fall through to prefetch abort. */ 11175 case EXCP_PREFETCH_ABORT: 11176 env->cp15.ifar_s = env->exception.vaddress; 11177 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 11178 (uint32_t)env->exception.vaddress); 11179 addr = 0x0c; 11180 break; 11181 case EXCP_DATA_ABORT: 11182 env->cp15.dfar_s = env->exception.vaddress; 11183 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 11184 (uint32_t)env->exception.vaddress); 11185 addr = 0x10; 11186 break; 11187 case EXCP_IRQ: 11188 addr = 0x18; 11189 break; 11190 case EXCP_FIQ: 11191 addr = 0x1c; 11192 break; 11193 case EXCP_HVC: 11194 addr = 0x08; 11195 break; 11196 case EXCP_HYP_TRAP: 11197 addr = 0x14; 11198 break; 11199 default: 11200 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11201 } 11202 11203 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 11204 if (!arm_feature(env, ARM_FEATURE_V8)) { 11205 /* 11206 * QEMU syndrome values are v8-style. v7 has the IL bit 11207 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 11208 * If this is a v7 CPU, squash the IL bit in those cases. 11209 */ 11210 if (cs->exception_index == EXCP_PREFETCH_ABORT || 11211 (cs->exception_index == EXCP_DATA_ABORT && 11212 !(env->exception.syndrome & ARM_EL_ISV)) || 11213 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 11214 env->exception.syndrome &= ~ARM_EL_IL; 11215 } 11216 } 11217 env->cp15.esr_el[2] = env->exception.syndrome; 11218 } 11219 11220 if (arm_current_el(env) != 2 && addr < 0x14) { 11221 addr = 0x14; 11222 } 11223 11224 mask = 0; 11225 if (!(env->cp15.scr_el3 & SCR_EA)) { 11226 mask |= CPSR_A; 11227 } 11228 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 11229 mask |= CPSR_I; 11230 } 11231 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 11232 mask |= CPSR_F; 11233 } 11234 11235 addr += env->cp15.hvbar; 11236 11237 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 11238 } 11239 11240 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 11241 { 11242 ARMCPU *cpu = ARM_CPU(cs); 11243 CPUARMState *env = &cpu->env; 11244 uint32_t addr; 11245 uint32_t mask; 11246 int new_mode; 11247 uint32_t offset; 11248 uint32_t moe; 11249 11250 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 11251 switch (syn_get_ec(env->exception.syndrome)) { 11252 case EC_BREAKPOINT: 11253 case EC_BREAKPOINT_SAME_EL: 11254 moe = 1; 11255 break; 11256 case EC_WATCHPOINT: 11257 case EC_WATCHPOINT_SAME_EL: 11258 moe = 10; 11259 break; 11260 case EC_AA32_BKPT: 11261 moe = 3; 11262 break; 11263 case EC_VECTORCATCH: 11264 moe = 5; 11265 break; 11266 default: 11267 moe = 0; 11268 break; 11269 } 11270 11271 if (moe) { 11272 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11273 } 11274 11275 if (env->exception.target_el == 2) { 11276 /* Debug exceptions are reported differently on AArch32 */ 11277 switch (syn_get_ec(env->exception.syndrome)) { 11278 case EC_BREAKPOINT: 11279 case EC_BREAKPOINT_SAME_EL: 11280 case EC_AA32_BKPT: 11281 case EC_VECTORCATCH: 11282 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 11283 0, 0, 0x22); 11284 break; 11285 case EC_WATCHPOINT: 11286 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11287 EC_DATAABORT); 11288 break; 11289 case EC_WATCHPOINT_SAME_EL: 11290 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11291 EC_DATAABORT_SAME_EL); 11292 break; 11293 } 11294 arm_cpu_do_interrupt_aarch32_hyp(cs); 11295 return; 11296 } 11297 11298 switch (cs->exception_index) { 11299 case EXCP_UDEF: 11300 new_mode = ARM_CPU_MODE_UND; 11301 addr = 0x04; 11302 mask = CPSR_I; 11303 if (env->thumb) { 11304 offset = 2; 11305 } else { 11306 offset = 4; 11307 } 11308 break; 11309 case EXCP_SWI: 11310 new_mode = ARM_CPU_MODE_SVC; 11311 addr = 0x08; 11312 mask = CPSR_I; 11313 /* The PC already points to the next instruction. */ 11314 offset = 0; 11315 break; 11316 case EXCP_BKPT: 11317 /* Fall through to prefetch abort. */ 11318 case EXCP_PREFETCH_ABORT: 11319 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11320 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11321 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11322 env->exception.fsr, (uint32_t)env->exception.vaddress); 11323 new_mode = ARM_CPU_MODE_ABT; 11324 addr = 0x0c; 11325 mask = CPSR_A | CPSR_I; 11326 offset = 4; 11327 break; 11328 case EXCP_DATA_ABORT: 11329 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11330 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11331 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11332 env->exception.fsr, 11333 (uint32_t)env->exception.vaddress); 11334 new_mode = ARM_CPU_MODE_ABT; 11335 addr = 0x10; 11336 mask = CPSR_A | CPSR_I; 11337 offset = 8; 11338 break; 11339 case EXCP_IRQ: 11340 new_mode = ARM_CPU_MODE_IRQ; 11341 addr = 0x18; 11342 /* Disable IRQ and imprecise data aborts. */ 11343 mask = CPSR_A | CPSR_I; 11344 offset = 4; 11345 if (env->cp15.scr_el3 & SCR_IRQ) { 11346 /* IRQ routed to monitor mode */ 11347 new_mode = ARM_CPU_MODE_MON; 11348 mask |= CPSR_F; 11349 } 11350 break; 11351 case EXCP_FIQ: 11352 new_mode = ARM_CPU_MODE_FIQ; 11353 addr = 0x1c; 11354 /* Disable FIQ, IRQ and imprecise data aborts. */ 11355 mask = CPSR_A | CPSR_I | CPSR_F; 11356 if (env->cp15.scr_el3 & SCR_FIQ) { 11357 /* FIQ routed to monitor mode */ 11358 new_mode = ARM_CPU_MODE_MON; 11359 } 11360 offset = 4; 11361 break; 11362 case EXCP_VIRQ: 11363 new_mode = ARM_CPU_MODE_IRQ; 11364 addr = 0x18; 11365 /* Disable IRQ and imprecise data aborts. */ 11366 mask = CPSR_A | CPSR_I; 11367 offset = 4; 11368 break; 11369 case EXCP_VFIQ: 11370 new_mode = ARM_CPU_MODE_FIQ; 11371 addr = 0x1c; 11372 /* Disable FIQ, IRQ and imprecise data aborts. */ 11373 mask = CPSR_A | CPSR_I | CPSR_F; 11374 offset = 4; 11375 break; 11376 case EXCP_VSERR: 11377 { 11378 /* 11379 * Note that this is reported as a data abort, but the DFAR 11380 * has an UNKNOWN value. Construct the SError syndrome from 11381 * AET and ExT fields. 11382 */ 11383 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11384 11385 if (extended_addresses_enabled(env)) { 11386 env->exception.fsr = arm_fi_to_lfsc(&fi); 11387 } else { 11388 env->exception.fsr = arm_fi_to_sfsc(&fi); 11389 } 11390 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11391 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11392 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11393 env->exception.fsr); 11394 11395 new_mode = ARM_CPU_MODE_ABT; 11396 addr = 0x10; 11397 mask = CPSR_A | CPSR_I; 11398 offset = 8; 11399 } 11400 break; 11401 case EXCP_SMC: 11402 new_mode = ARM_CPU_MODE_MON; 11403 addr = 0x08; 11404 mask = CPSR_A | CPSR_I | CPSR_F; 11405 offset = 0; 11406 break; 11407 default: 11408 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11409 return; /* Never happens. Keep compiler happy. */ 11410 } 11411 11412 if (new_mode == ARM_CPU_MODE_MON) { 11413 addr += env->cp15.mvbar; 11414 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11415 /* High vectors. When enabled, base address cannot be remapped. */ 11416 addr += 0xffff0000; 11417 } else { 11418 /* 11419 * ARM v7 architectures provide a vector base address register to remap 11420 * the interrupt vector table. 11421 * This register is only followed in non-monitor mode, and is banked. 11422 * Note: only bits 31:5 are valid. 11423 */ 11424 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11425 } 11426 11427 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11428 env->cp15.scr_el3 &= ~SCR_NS; 11429 } 11430 11431 take_aarch32_exception(env, new_mode, mask, offset, addr); 11432 } 11433 11434 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11435 { 11436 /* 11437 * Return the register number of the AArch64 view of the AArch32 11438 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11439 * be that of the AArch32 mode the exception came from. 11440 */ 11441 int mode = env->uncached_cpsr & CPSR_M; 11442 11443 switch (aarch32_reg) { 11444 case 0 ... 7: 11445 return aarch32_reg; 11446 case 8 ... 12: 11447 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11448 case 13: 11449 switch (mode) { 11450 case ARM_CPU_MODE_USR: 11451 case ARM_CPU_MODE_SYS: 11452 return 13; 11453 case ARM_CPU_MODE_HYP: 11454 return 15; 11455 case ARM_CPU_MODE_IRQ: 11456 return 17; 11457 case ARM_CPU_MODE_SVC: 11458 return 19; 11459 case ARM_CPU_MODE_ABT: 11460 return 21; 11461 case ARM_CPU_MODE_UND: 11462 return 23; 11463 case ARM_CPU_MODE_FIQ: 11464 return 29; 11465 default: 11466 g_assert_not_reached(); 11467 } 11468 case 14: 11469 switch (mode) { 11470 case ARM_CPU_MODE_USR: 11471 case ARM_CPU_MODE_SYS: 11472 case ARM_CPU_MODE_HYP: 11473 return 14; 11474 case ARM_CPU_MODE_IRQ: 11475 return 16; 11476 case ARM_CPU_MODE_SVC: 11477 return 18; 11478 case ARM_CPU_MODE_ABT: 11479 return 20; 11480 case ARM_CPU_MODE_UND: 11481 return 22; 11482 case ARM_CPU_MODE_FIQ: 11483 return 30; 11484 default: 11485 g_assert_not_reached(); 11486 } 11487 case 15: 11488 return 31; 11489 default: 11490 g_assert_not_reached(); 11491 } 11492 } 11493 11494 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11495 { 11496 uint32_t ret = cpsr_read(env); 11497 11498 /* Move DIT to the correct location for SPSR_ELx */ 11499 if (ret & CPSR_DIT) { 11500 ret &= ~CPSR_DIT; 11501 ret |= PSTATE_DIT; 11502 } 11503 /* Merge PSTATE.SS into SPSR_ELx */ 11504 ret |= env->pstate & PSTATE_SS; 11505 11506 return ret; 11507 } 11508 11509 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11510 { 11511 /* Return true if this syndrome value is a synchronous external abort */ 11512 switch (syn_get_ec(syndrome)) { 11513 case EC_INSNABORT: 11514 case EC_INSNABORT_SAME_EL: 11515 case EC_DATAABORT: 11516 case EC_DATAABORT_SAME_EL: 11517 /* Look at fault status code for all the synchronous ext abort cases */ 11518 switch (syndrome & 0x3f) { 11519 case 0x10: 11520 case 0x13: 11521 case 0x14: 11522 case 0x15: 11523 case 0x16: 11524 case 0x17: 11525 return true; 11526 default: 11527 return false; 11528 } 11529 default: 11530 return false; 11531 } 11532 } 11533 11534 /* Handle exception entry to a target EL which is using AArch64 */ 11535 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11536 { 11537 ARMCPU *cpu = ARM_CPU(cs); 11538 CPUARMState *env = &cpu->env; 11539 unsigned int new_el = env->exception.target_el; 11540 target_ulong addr = env->cp15.vbar_el[new_el]; 11541 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11542 unsigned int old_mode; 11543 unsigned int cur_el = arm_current_el(env); 11544 int rt; 11545 11546 if (tcg_enabled()) { 11547 /* 11548 * Note that new_el can never be 0. If cur_el is 0, then 11549 * el0_a64 is is_a64(), else el0_a64 is ignored. 11550 */ 11551 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11552 } 11553 11554 if (cur_el < new_el) { 11555 /* 11556 * Entry vector offset depends on whether the implemented EL 11557 * immediately lower than the target level is using AArch32 or AArch64 11558 */ 11559 bool is_aa64; 11560 uint64_t hcr; 11561 11562 switch (new_el) { 11563 case 3: 11564 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11565 break; 11566 case 2: 11567 hcr = arm_hcr_el2_eff(env); 11568 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11569 is_aa64 = (hcr & HCR_RW) != 0; 11570 break; 11571 } 11572 /* fall through */ 11573 case 1: 11574 is_aa64 = is_a64(env); 11575 break; 11576 default: 11577 g_assert_not_reached(); 11578 } 11579 11580 if (is_aa64) { 11581 addr += 0x400; 11582 } else { 11583 addr += 0x600; 11584 } 11585 } else if (pstate_read(env) & PSTATE_SP) { 11586 addr += 0x200; 11587 } 11588 11589 switch (cs->exception_index) { 11590 case EXCP_GPC: 11591 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11592 env->cp15.mfar_el3); 11593 /* fall through */ 11594 case EXCP_PREFETCH_ABORT: 11595 case EXCP_DATA_ABORT: 11596 /* 11597 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11598 * to be taken to the SError vector entrypoint. 11599 */ 11600 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11601 syndrome_is_sync_extabt(env->exception.syndrome)) { 11602 addr += 0x180; 11603 } 11604 env->cp15.far_el[new_el] = env->exception.vaddress; 11605 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11606 env->cp15.far_el[new_el]); 11607 /* fall through */ 11608 case EXCP_BKPT: 11609 case EXCP_UDEF: 11610 case EXCP_SWI: 11611 case EXCP_HVC: 11612 case EXCP_HYP_TRAP: 11613 case EXCP_SMC: 11614 switch (syn_get_ec(env->exception.syndrome)) { 11615 case EC_ADVSIMDFPACCESSTRAP: 11616 /* 11617 * QEMU internal FP/SIMD syndromes from AArch32 include the 11618 * TA and coproc fields which are only exposed if the exception 11619 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11620 * AArch64 format syndrome. 11621 */ 11622 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11623 break; 11624 case EC_CP14RTTRAP: 11625 case EC_CP15RTTRAP: 11626 case EC_CP14DTTRAP: 11627 /* 11628 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11629 * the raw register field from the insn; when taking this to 11630 * AArch64 we must convert it to the AArch64 view of the register 11631 * number. Notice that we read a 4-bit AArch32 register number and 11632 * write back a 5-bit AArch64 one. 11633 */ 11634 rt = extract32(env->exception.syndrome, 5, 4); 11635 rt = aarch64_regnum(env, rt); 11636 env->exception.syndrome = deposit32(env->exception.syndrome, 11637 5, 5, rt); 11638 break; 11639 case EC_CP15RRTTRAP: 11640 case EC_CP14RRTTRAP: 11641 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11642 rt = extract32(env->exception.syndrome, 5, 4); 11643 rt = aarch64_regnum(env, rt); 11644 env->exception.syndrome = deposit32(env->exception.syndrome, 11645 5, 5, rt); 11646 rt = extract32(env->exception.syndrome, 10, 4); 11647 rt = aarch64_regnum(env, rt); 11648 env->exception.syndrome = deposit32(env->exception.syndrome, 11649 10, 5, rt); 11650 break; 11651 } 11652 env->cp15.esr_el[new_el] = env->exception.syndrome; 11653 break; 11654 case EXCP_IRQ: 11655 case EXCP_VIRQ: 11656 case EXCP_NMI: 11657 case EXCP_VINMI: 11658 addr += 0x80; 11659 break; 11660 case EXCP_FIQ: 11661 case EXCP_VFIQ: 11662 case EXCP_VFNMI: 11663 addr += 0x100; 11664 break; 11665 case EXCP_VSERR: 11666 addr += 0x180; 11667 /* Construct the SError syndrome from IDS and ISS fields. */ 11668 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11669 env->cp15.esr_el[new_el] = env->exception.syndrome; 11670 break; 11671 default: 11672 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11673 } 11674 11675 if (is_a64(env)) { 11676 old_mode = pstate_read(env); 11677 aarch64_save_sp(env, arm_current_el(env)); 11678 env->elr_el[new_el] = env->pc; 11679 11680 if (cur_el == 1 && new_el == 1) { 11681 uint64_t hcr = arm_hcr_el2_eff(env); 11682 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11683 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11684 /* 11685 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11686 * by setting M[3:2] to 0b10. 11687 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11688 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11689 */ 11690 old_mode = deposit32(old_mode, 2, 2, 2); 11691 } 11692 } 11693 } else { 11694 old_mode = cpsr_read_for_spsr_elx(env); 11695 env->elr_el[new_el] = env->regs[15]; 11696 11697 aarch64_sync_32_to_64(env); 11698 11699 env->condexec_bits = 0; 11700 } 11701 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11702 11703 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11704 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11705 env->elr_el[new_el]); 11706 11707 if (cpu_isar_feature(aa64_pan, cpu)) { 11708 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11709 new_mode |= old_mode & PSTATE_PAN; 11710 switch (new_el) { 11711 case 2: 11712 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11713 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11714 != (HCR_E2H | HCR_TGE)) { 11715 break; 11716 } 11717 /* fall through */ 11718 case 1: 11719 /* ... the target is EL1 ... */ 11720 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11721 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11722 new_mode |= PSTATE_PAN; 11723 } 11724 break; 11725 } 11726 } 11727 if (cpu_isar_feature(aa64_mte, cpu)) { 11728 new_mode |= PSTATE_TCO; 11729 } 11730 11731 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11732 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11733 new_mode |= PSTATE_SSBS; 11734 } else { 11735 new_mode &= ~PSTATE_SSBS; 11736 } 11737 } 11738 11739 if (cpu_isar_feature(aa64_nmi, cpu)) { 11740 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 11741 new_mode |= PSTATE_ALLINT; 11742 } else { 11743 new_mode &= ~PSTATE_ALLINT; 11744 } 11745 } 11746 11747 pstate_write(env, PSTATE_DAIF | new_mode); 11748 env->aarch64 = true; 11749 aarch64_restore_sp(env, new_el); 11750 11751 if (tcg_enabled()) { 11752 helper_rebuild_hflags_a64(env, new_el); 11753 } 11754 11755 env->pc = addr; 11756 11757 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11758 new_el, env->pc, pstate_read(env)); 11759 } 11760 11761 /* 11762 * Do semihosting call and set the appropriate return value. All the 11763 * permission and validity checks have been done at translate time. 11764 * 11765 * We only see semihosting exceptions in TCG only as they are not 11766 * trapped to the hypervisor in KVM. 11767 */ 11768 #ifdef CONFIG_TCG 11769 static void tcg_handle_semihosting(CPUState *cs) 11770 { 11771 ARMCPU *cpu = ARM_CPU(cs); 11772 CPUARMState *env = &cpu->env; 11773 11774 if (is_a64(env)) { 11775 qemu_log_mask(CPU_LOG_INT, 11776 "...handling as semihosting call 0x%" PRIx64 "\n", 11777 env->xregs[0]); 11778 do_common_semihosting(cs); 11779 env->pc += 4; 11780 } else { 11781 qemu_log_mask(CPU_LOG_INT, 11782 "...handling as semihosting call 0x%x\n", 11783 env->regs[0]); 11784 do_common_semihosting(cs); 11785 env->regs[15] += env->thumb ? 2 : 4; 11786 } 11787 } 11788 #endif 11789 11790 /* 11791 * Handle a CPU exception for A and R profile CPUs. 11792 * Do any appropriate logging, handle PSCI calls, and then hand off 11793 * to the AArch64-entry or AArch32-entry function depending on the 11794 * target exception level's register width. 11795 * 11796 * Note: this is used for both TCG (as the do_interrupt tcg op), 11797 * and KVM to re-inject guest debug exceptions, and to 11798 * inject a Synchronous-External-Abort. 11799 */ 11800 void arm_cpu_do_interrupt(CPUState *cs) 11801 { 11802 ARMCPU *cpu = ARM_CPU(cs); 11803 CPUARMState *env = &cpu->env; 11804 unsigned int new_el = env->exception.target_el; 11805 11806 assert(!arm_feature(env, ARM_FEATURE_M)); 11807 11808 arm_log_exception(cs); 11809 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11810 new_el); 11811 if (qemu_loglevel_mask(CPU_LOG_INT) 11812 && !excp_is_internal(cs->exception_index)) { 11813 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11814 syn_get_ec(env->exception.syndrome), 11815 env->exception.syndrome); 11816 } 11817 11818 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11819 arm_handle_psci_call(cpu); 11820 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11821 return; 11822 } 11823 11824 /* 11825 * Semihosting semantics depend on the register width of the code 11826 * that caused the exception, not the target exception level, so 11827 * must be handled here. 11828 */ 11829 #ifdef CONFIG_TCG 11830 if (cs->exception_index == EXCP_SEMIHOST) { 11831 tcg_handle_semihosting(cs); 11832 return; 11833 } 11834 #endif 11835 11836 /* 11837 * Hooks may change global state so BQL should be held, also the 11838 * BQL needs to be held for any modification of 11839 * cs->interrupt_request. 11840 */ 11841 g_assert(bql_locked()); 11842 11843 arm_call_pre_el_change_hook(cpu); 11844 11845 assert(!excp_is_internal(cs->exception_index)); 11846 if (arm_el_is_aa64(env, new_el)) { 11847 arm_cpu_do_interrupt_aarch64(cs); 11848 } else { 11849 arm_cpu_do_interrupt_aarch32(cs); 11850 } 11851 11852 arm_call_el_change_hook(cpu); 11853 11854 if (!kvm_enabled()) { 11855 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11856 } 11857 } 11858 #endif /* !CONFIG_USER_ONLY */ 11859 11860 uint64_t arm_sctlr(CPUARMState *env, int el) 11861 { 11862 if (arm_aa32_secure_pl1_0(env)) { 11863 /* In Secure PL1&0 SCTLR_S is always controlling */ 11864 el = 3; 11865 } else if (el == 0) { 11866 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11867 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11868 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11869 } 11870 return env->cp15.sctlr_el[el]; 11871 } 11872 11873 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11874 { 11875 if (regime_has_2_ranges(mmu_idx)) { 11876 return extract64(tcr, 37, 2); 11877 } else if (regime_is_stage2(mmu_idx)) { 11878 return 0; /* VTCR_EL2 */ 11879 } else { 11880 /* Replicate the single TBI bit so we always have 2 bits. */ 11881 return extract32(tcr, 20, 1) * 3; 11882 } 11883 } 11884 11885 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11886 { 11887 if (regime_has_2_ranges(mmu_idx)) { 11888 return extract64(tcr, 51, 2); 11889 } else if (regime_is_stage2(mmu_idx)) { 11890 return 0; /* VTCR_EL2 */ 11891 } else { 11892 /* Replicate the single TBID bit so we always have 2 bits. */ 11893 return extract32(tcr, 29, 1) * 3; 11894 } 11895 } 11896 11897 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11898 { 11899 if (regime_has_2_ranges(mmu_idx)) { 11900 return extract64(tcr, 57, 2); 11901 } else { 11902 /* Replicate the single TCMA bit so we always have 2 bits. */ 11903 return extract32(tcr, 30, 1) * 3; 11904 } 11905 } 11906 11907 static ARMGranuleSize tg0_to_gran_size(int tg) 11908 { 11909 switch (tg) { 11910 case 0: 11911 return Gran4K; 11912 case 1: 11913 return Gran64K; 11914 case 2: 11915 return Gran16K; 11916 default: 11917 return GranInvalid; 11918 } 11919 } 11920 11921 static ARMGranuleSize tg1_to_gran_size(int tg) 11922 { 11923 switch (tg) { 11924 case 1: 11925 return Gran16K; 11926 case 2: 11927 return Gran4K; 11928 case 3: 11929 return Gran64K; 11930 default: 11931 return GranInvalid; 11932 } 11933 } 11934 11935 static inline bool have4k(ARMCPU *cpu, bool stage2) 11936 { 11937 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11938 : cpu_isar_feature(aa64_tgran4, cpu); 11939 } 11940 11941 static inline bool have16k(ARMCPU *cpu, bool stage2) 11942 { 11943 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11944 : cpu_isar_feature(aa64_tgran16, cpu); 11945 } 11946 11947 static inline bool have64k(ARMCPU *cpu, bool stage2) 11948 { 11949 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11950 : cpu_isar_feature(aa64_tgran64, cpu); 11951 } 11952 11953 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11954 bool stage2) 11955 { 11956 switch (gran) { 11957 case Gran4K: 11958 if (have4k(cpu, stage2)) { 11959 return gran; 11960 } 11961 break; 11962 case Gran16K: 11963 if (have16k(cpu, stage2)) { 11964 return gran; 11965 } 11966 break; 11967 case Gran64K: 11968 if (have64k(cpu, stage2)) { 11969 return gran; 11970 } 11971 break; 11972 case GranInvalid: 11973 break; 11974 } 11975 /* 11976 * If the guest selects a granule size that isn't implemented, 11977 * the architecture requires that we behave as if it selected one 11978 * that is (with an IMPDEF choice of which one to pick). We choose 11979 * to implement the smallest supported granule size. 11980 */ 11981 if (have4k(cpu, stage2)) { 11982 return Gran4K; 11983 } 11984 if (have16k(cpu, stage2)) { 11985 return Gran16K; 11986 } 11987 assert(have64k(cpu, stage2)); 11988 return Gran64K; 11989 } 11990 11991 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11992 ARMMMUIdx mmu_idx, bool data, 11993 bool el1_is_aa32) 11994 { 11995 uint64_t tcr = regime_tcr(env, mmu_idx); 11996 bool epd, hpd, tsz_oob, ds, ha, hd; 11997 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11998 ARMGranuleSize gran; 11999 ARMCPU *cpu = env_archcpu(env); 12000 bool stage2 = regime_is_stage2(mmu_idx); 12001 12002 if (!regime_has_2_ranges(mmu_idx)) { 12003 select = 0; 12004 tsz = extract32(tcr, 0, 6); 12005 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12006 if (stage2) { 12007 /* VTCR_EL2 */ 12008 hpd = false; 12009 } else { 12010 hpd = extract32(tcr, 24, 1); 12011 } 12012 epd = false; 12013 sh = extract32(tcr, 12, 2); 12014 ps = extract32(tcr, 16, 3); 12015 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 12016 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12017 ds = extract64(tcr, 32, 1); 12018 } else { 12019 bool e0pd; 12020 12021 /* 12022 * Bit 55 is always between the two regions, and is canonical for 12023 * determining if address tagging is enabled. 12024 */ 12025 select = extract64(va, 55, 1); 12026 if (!select) { 12027 tsz = extract32(tcr, 0, 6); 12028 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12029 epd = extract32(tcr, 7, 1); 12030 sh = extract32(tcr, 12, 2); 12031 hpd = extract64(tcr, 41, 1); 12032 e0pd = extract64(tcr, 55, 1); 12033 } else { 12034 tsz = extract32(tcr, 16, 6); 12035 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 12036 epd = extract32(tcr, 23, 1); 12037 sh = extract32(tcr, 28, 2); 12038 hpd = extract64(tcr, 42, 1); 12039 e0pd = extract64(tcr, 56, 1); 12040 } 12041 ps = extract64(tcr, 32, 3); 12042 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 12043 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12044 ds = extract64(tcr, 59, 1); 12045 12046 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 12047 regime_is_user(env, mmu_idx)) { 12048 epd = true; 12049 } 12050 } 12051 12052 gran = sanitize_gran_size(cpu, gran, stage2); 12053 12054 if (cpu_isar_feature(aa64_st, cpu)) { 12055 max_tsz = 48 - (gran == Gran64K); 12056 } else { 12057 max_tsz = 39; 12058 } 12059 12060 /* 12061 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 12062 * adjust the effective value of DS, as documented. 12063 */ 12064 min_tsz = 16; 12065 if (gran == Gran64K) { 12066 if (cpu_isar_feature(aa64_lva, cpu)) { 12067 min_tsz = 12; 12068 } 12069 ds = false; 12070 } else if (ds) { 12071 if (regime_is_stage2(mmu_idx)) { 12072 if (gran == Gran16K) { 12073 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 12074 } else { 12075 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 12076 } 12077 } else { 12078 if (gran == Gran16K) { 12079 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 12080 } else { 12081 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 12082 } 12083 } 12084 if (ds) { 12085 min_tsz = 12; 12086 } 12087 } 12088 12089 if (stage2 && el1_is_aa32) { 12090 /* 12091 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 12092 * are loosened: a configured IPA of 40 bits is permitted even if 12093 * the implemented PA is less than that (and so a 40 bit IPA would 12094 * fault for an AArch64 EL1). See R_DTLMN. 12095 */ 12096 min_tsz = MIN(min_tsz, 24); 12097 } 12098 12099 if (tsz > max_tsz) { 12100 tsz = max_tsz; 12101 tsz_oob = true; 12102 } else if (tsz < min_tsz) { 12103 tsz = min_tsz; 12104 tsz_oob = true; 12105 } else { 12106 tsz_oob = false; 12107 } 12108 12109 /* Present TBI as a composite with TBID. */ 12110 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12111 if (!data) { 12112 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12113 } 12114 tbi = (tbi >> select) & 1; 12115 12116 return (ARMVAParameters) { 12117 .tsz = tsz, 12118 .ps = ps, 12119 .sh = sh, 12120 .select = select, 12121 .tbi = tbi, 12122 .epd = epd, 12123 .hpd = hpd, 12124 .tsz_oob = tsz_oob, 12125 .ds = ds, 12126 .ha = ha, 12127 .hd = ha && hd, 12128 .gran = gran, 12129 }; 12130 } 12131 12132 /* 12133 * Note that signed overflow is undefined in C. The following routines are 12134 * careful to use unsigned types where modulo arithmetic is required. 12135 * Failure to do so _will_ break on newer gcc. 12136 */ 12137 12138 /* Signed saturating arithmetic. */ 12139 12140 /* Perform 16-bit signed saturating addition. */ 12141 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12142 { 12143 uint16_t res; 12144 12145 res = a + b; 12146 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12147 if (a & 0x8000) { 12148 res = 0x8000; 12149 } else { 12150 res = 0x7fff; 12151 } 12152 } 12153 return res; 12154 } 12155 12156 /* Perform 8-bit signed saturating addition. */ 12157 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12158 { 12159 uint8_t res; 12160 12161 res = a + b; 12162 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12163 if (a & 0x80) { 12164 res = 0x80; 12165 } else { 12166 res = 0x7f; 12167 } 12168 } 12169 return res; 12170 } 12171 12172 /* Perform 16-bit signed saturating subtraction. */ 12173 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12174 { 12175 uint16_t res; 12176 12177 res = a - b; 12178 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12179 if (a & 0x8000) { 12180 res = 0x8000; 12181 } else { 12182 res = 0x7fff; 12183 } 12184 } 12185 return res; 12186 } 12187 12188 /* Perform 8-bit signed saturating subtraction. */ 12189 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12190 { 12191 uint8_t res; 12192 12193 res = a - b; 12194 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12195 if (a & 0x80) { 12196 res = 0x80; 12197 } else { 12198 res = 0x7f; 12199 } 12200 } 12201 return res; 12202 } 12203 12204 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12205 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12206 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12207 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12208 #define PFX q 12209 12210 #include "op_addsub.h" 12211 12212 /* Unsigned saturating arithmetic. */ 12213 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12214 { 12215 uint16_t res; 12216 res = a + b; 12217 if (res < a) { 12218 res = 0xffff; 12219 } 12220 return res; 12221 } 12222 12223 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12224 { 12225 if (a > b) { 12226 return a - b; 12227 } else { 12228 return 0; 12229 } 12230 } 12231 12232 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12233 { 12234 uint8_t res; 12235 res = a + b; 12236 if (res < a) { 12237 res = 0xff; 12238 } 12239 return res; 12240 } 12241 12242 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12243 { 12244 if (a > b) { 12245 return a - b; 12246 } else { 12247 return 0; 12248 } 12249 } 12250 12251 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12252 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12253 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12254 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12255 #define PFX uq 12256 12257 #include "op_addsub.h" 12258 12259 /* Signed modulo arithmetic. */ 12260 #define SARITH16(a, b, n, op) do { \ 12261 int32_t sum; \ 12262 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12263 RESULT(sum, n, 16); \ 12264 if (sum >= 0) \ 12265 ge |= 3 << (n * 2); \ 12266 } while (0) 12267 12268 #define SARITH8(a, b, n, op) do { \ 12269 int32_t sum; \ 12270 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12271 RESULT(sum, n, 8); \ 12272 if (sum >= 0) \ 12273 ge |= 1 << n; \ 12274 } while (0) 12275 12276 12277 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12278 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12279 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12280 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12281 #define PFX s 12282 #define ARITH_GE 12283 12284 #include "op_addsub.h" 12285 12286 /* Unsigned modulo arithmetic. */ 12287 #define ADD16(a, b, n) do { \ 12288 uint32_t sum; \ 12289 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12290 RESULT(sum, n, 16); \ 12291 if ((sum >> 16) == 1) \ 12292 ge |= 3 << (n * 2); \ 12293 } while (0) 12294 12295 #define ADD8(a, b, n) do { \ 12296 uint32_t sum; \ 12297 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12298 RESULT(sum, n, 8); \ 12299 if ((sum >> 8) == 1) \ 12300 ge |= 1 << n; \ 12301 } while (0) 12302 12303 #define SUB16(a, b, n) do { \ 12304 uint32_t sum; \ 12305 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12306 RESULT(sum, n, 16); \ 12307 if ((sum >> 16) == 0) \ 12308 ge |= 3 << (n * 2); \ 12309 } while (0) 12310 12311 #define SUB8(a, b, n) do { \ 12312 uint32_t sum; \ 12313 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12314 RESULT(sum, n, 8); \ 12315 if ((sum >> 8) == 0) \ 12316 ge |= 1 << n; \ 12317 } while (0) 12318 12319 #define PFX u 12320 #define ARITH_GE 12321 12322 #include "op_addsub.h" 12323 12324 /* Halved signed arithmetic. */ 12325 #define ADD16(a, b, n) \ 12326 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12327 #define SUB16(a, b, n) \ 12328 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12329 #define ADD8(a, b, n) \ 12330 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12331 #define SUB8(a, b, n) \ 12332 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12333 #define PFX sh 12334 12335 #include "op_addsub.h" 12336 12337 /* Halved unsigned arithmetic. */ 12338 #define ADD16(a, b, n) \ 12339 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12340 #define SUB16(a, b, n) \ 12341 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12342 #define ADD8(a, b, n) \ 12343 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12344 #define SUB8(a, b, n) \ 12345 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12346 #define PFX uh 12347 12348 #include "op_addsub.h" 12349 12350 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12351 { 12352 if (a > b) { 12353 return a - b; 12354 } else { 12355 return b - a; 12356 } 12357 } 12358 12359 /* Unsigned sum of absolute byte differences. */ 12360 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12361 { 12362 uint32_t sum; 12363 sum = do_usad(a, b); 12364 sum += do_usad(a >> 8, b >> 8); 12365 sum += do_usad(a >> 16, b >> 16); 12366 sum += do_usad(a >> 24, b >> 24); 12367 return sum; 12368 } 12369 12370 /* For ARMv6 SEL instruction. */ 12371 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12372 { 12373 uint32_t mask; 12374 12375 mask = 0; 12376 if (flags & 1) { 12377 mask |= 0xff; 12378 } 12379 if (flags & 2) { 12380 mask |= 0xff00; 12381 } 12382 if (flags & 4) { 12383 mask |= 0xff0000; 12384 } 12385 if (flags & 8) { 12386 mask |= 0xff000000; 12387 } 12388 return (a & mask) | (b & ~mask); 12389 } 12390 12391 /* 12392 * CRC helpers. 12393 * The upper bytes of val (above the number specified by 'bytes') must have 12394 * been zeroed out by the caller. 12395 */ 12396 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12397 { 12398 uint8_t buf[4]; 12399 12400 stl_le_p(buf, val); 12401 12402 /* zlib crc32 converts the accumulator and output to one's complement. */ 12403 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12404 } 12405 12406 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12407 { 12408 uint8_t buf[4]; 12409 12410 stl_le_p(buf, val); 12411 12412 /* Linux crc32c converts the output to one's complement. */ 12413 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12414 } 12415 12416 /* 12417 * Return the exception level to which FP-disabled exceptions should 12418 * be taken, or 0 if FP is enabled. 12419 */ 12420 int fp_exception_el(CPUARMState *env, int cur_el) 12421 { 12422 #ifndef CONFIG_USER_ONLY 12423 uint64_t hcr_el2; 12424 12425 /* 12426 * CPACR and the CPTR registers don't exist before v6, so FP is 12427 * always accessible 12428 */ 12429 if (!arm_feature(env, ARM_FEATURE_V6)) { 12430 return 0; 12431 } 12432 12433 if (arm_feature(env, ARM_FEATURE_M)) { 12434 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12435 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12436 return 1; 12437 } 12438 12439 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12440 if (!extract32(env->v7m.nsacr, 10, 1)) { 12441 /* FP insns cause a NOCP UsageFault taken to Secure */ 12442 return 3; 12443 } 12444 } 12445 12446 return 0; 12447 } 12448 12449 hcr_el2 = arm_hcr_el2_eff(env); 12450 12451 /* 12452 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12453 * 0, 2 : trap EL0 and EL1/PL1 accesses 12454 * 1 : trap only EL0 accesses 12455 * 3 : trap no accesses 12456 * This register is ignored if E2H+TGE are both set. 12457 */ 12458 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12459 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12460 12461 switch (fpen) { 12462 case 1: 12463 if (cur_el != 0) { 12464 break; 12465 } 12466 /* fall through */ 12467 case 0: 12468 case 2: 12469 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12470 if (!arm_el_is_aa64(env, 3) 12471 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12472 return 3; 12473 } 12474 if (cur_el <= 1) { 12475 return 1; 12476 } 12477 break; 12478 } 12479 } 12480 12481 /* 12482 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12483 * to control non-secure access to the FPU. It doesn't have any 12484 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12485 */ 12486 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12487 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12488 if (!extract32(env->cp15.nsacr, 10, 1)) { 12489 /* FP insns act as UNDEF */ 12490 return cur_el == 2 ? 2 : 1; 12491 } 12492 } 12493 12494 /* 12495 * CPTR_EL2 is present in v7VE or v8, and changes format 12496 * with HCR_EL2.E2H (regardless of TGE). 12497 */ 12498 if (cur_el <= 2) { 12499 if (hcr_el2 & HCR_E2H) { 12500 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12501 case 1: 12502 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12503 break; 12504 } 12505 /* fall through */ 12506 case 0: 12507 case 2: 12508 return 2; 12509 } 12510 } else if (arm_is_el2_enabled(env)) { 12511 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12512 return 2; 12513 } 12514 } 12515 } 12516 12517 /* CPTR_EL3 : present in v8 */ 12518 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12519 /* Trap all FP ops to EL3 */ 12520 return 3; 12521 } 12522 #endif 12523 return 0; 12524 } 12525 12526 /* 12527 * Return the exception level we're running at if this is our mmu_idx. 12528 * s_pl1_0 should be true if this is the AArch32 Secure PL1&0 translation 12529 * regime. 12530 */ 12531 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0) 12532 { 12533 if (mmu_idx & ARM_MMU_IDX_M) { 12534 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12535 } 12536 12537 switch (mmu_idx) { 12538 case ARMMMUIdx_E10_0: 12539 case ARMMMUIdx_E20_0: 12540 return 0; 12541 case ARMMMUIdx_E10_1: 12542 case ARMMMUIdx_E10_1_PAN: 12543 return s_pl1_0 ? 3 : 1; 12544 case ARMMMUIdx_E2: 12545 case ARMMMUIdx_E20_2: 12546 case ARMMMUIdx_E20_2_PAN: 12547 return 2; 12548 case ARMMMUIdx_E3: 12549 return 3; 12550 default: 12551 g_assert_not_reached(); 12552 } 12553 } 12554 12555 #ifndef CONFIG_TCG 12556 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12557 { 12558 g_assert_not_reached(); 12559 } 12560 #endif 12561 12562 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12563 { 12564 ARMMMUIdx idx; 12565 uint64_t hcr; 12566 12567 if (arm_feature(env, ARM_FEATURE_M)) { 12568 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12569 } 12570 12571 /* See ARM pseudo-function ELIsInHost. */ 12572 switch (el) { 12573 case 0: 12574 hcr = arm_hcr_el2_eff(env); 12575 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12576 idx = ARMMMUIdx_E20_0; 12577 } else { 12578 idx = ARMMMUIdx_E10_0; 12579 } 12580 break; 12581 case 3: 12582 /* 12583 * AArch64 EL3 has its own translation regime; AArch32 EL3 12584 * uses the Secure PL1&0 translation regime. 12585 */ 12586 if (arm_el_is_aa64(env, 3)) { 12587 return ARMMMUIdx_E3; 12588 } 12589 /* fall through */ 12590 case 1: 12591 if (arm_pan_enabled(env)) { 12592 idx = ARMMMUIdx_E10_1_PAN; 12593 } else { 12594 idx = ARMMMUIdx_E10_1; 12595 } 12596 break; 12597 case 2: 12598 /* Note that TGE does not apply at EL2. */ 12599 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12600 if (arm_pan_enabled(env)) { 12601 idx = ARMMMUIdx_E20_2_PAN; 12602 } else { 12603 idx = ARMMMUIdx_E20_2; 12604 } 12605 } else { 12606 idx = ARMMMUIdx_E2; 12607 } 12608 break; 12609 default: 12610 g_assert_not_reached(); 12611 } 12612 12613 return idx; 12614 } 12615 12616 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12617 { 12618 return arm_mmu_idx_el(env, arm_current_el(env)); 12619 } 12620 12621 static bool mve_no_pred(CPUARMState *env) 12622 { 12623 /* 12624 * Return true if there is definitely no predication of MVE 12625 * instructions by VPR or LTPSIZE. (Returning false even if there 12626 * isn't any predication is OK; generated code will just be 12627 * a little worse.) 12628 * If the CPU does not implement MVE then this TB flag is always 0. 12629 * 12630 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12631 * logic in gen_update_fp_context() needs to be updated to match. 12632 * 12633 * We do not include the effect of the ECI bits here -- they are 12634 * tracked in other TB flags. This simplifies the logic for 12635 * "when did we emit code that changes the MVE_NO_PRED TB flag 12636 * and thus need to end the TB?". 12637 */ 12638 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12639 return false; 12640 } 12641 if (env->v7m.vpr) { 12642 return false; 12643 } 12644 if (env->v7m.ltpsize < 4) { 12645 return false; 12646 } 12647 return true; 12648 } 12649 12650 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12651 uint64_t *cs_base, uint32_t *pflags) 12652 { 12653 CPUARMTBFlags flags; 12654 12655 assert_hflags_rebuild_correctly(env); 12656 flags = env->hflags; 12657 12658 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12659 *pc = env->pc; 12660 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12661 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12662 } 12663 } else { 12664 *pc = env->regs[15]; 12665 12666 if (arm_feature(env, ARM_FEATURE_M)) { 12667 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12668 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12669 != env->v7m.secure) { 12670 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12671 } 12672 12673 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12674 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12675 (env->v7m.secure && 12676 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12677 /* 12678 * ASPEN is set, but FPCA/SFPA indicate that there is no 12679 * active FP context; we must create a new FP context before 12680 * executing any FP insn. 12681 */ 12682 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12683 } 12684 12685 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12686 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12687 DP_TBFLAG_M32(flags, LSPACT, 1); 12688 } 12689 12690 if (mve_no_pred(env)) { 12691 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12692 } 12693 } else { 12694 /* 12695 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12696 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12697 */ 12698 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12699 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12700 } else { 12701 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12702 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12703 } 12704 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12705 DP_TBFLAG_A32(flags, VFPEN, 1); 12706 } 12707 } 12708 12709 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12710 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12711 } 12712 12713 /* 12714 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12715 * states defined in the ARM ARM for software singlestep: 12716 * SS_ACTIVE PSTATE.SS State 12717 * 0 x Inactive (the TB flag for SS is always 0) 12718 * 1 0 Active-pending 12719 * 1 1 Active-not-pending 12720 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12721 */ 12722 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12723 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12724 } 12725 12726 *pflags = flags.flags; 12727 *cs_base = flags.flags2; 12728 } 12729 12730 #ifdef TARGET_AARCH64 12731 /* 12732 * The manual says that when SVE is enabled and VQ is widened the 12733 * implementation is allowed to zero the previously inaccessible 12734 * portion of the registers. The corollary to that is that when 12735 * SVE is enabled and VQ is narrowed we are also allowed to zero 12736 * the now inaccessible portion of the registers. 12737 * 12738 * The intent of this is that no predicate bit beyond VQ is ever set. 12739 * Which means that some operations on predicate registers themselves 12740 * may operate on full uint64_t or even unrolled across the maximum 12741 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12742 * may well be cheaper than conditionals to restrict the operation 12743 * to the relevant portion of a uint16_t[16]. 12744 */ 12745 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12746 { 12747 int i, j; 12748 uint64_t pmask; 12749 12750 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12751 assert(vq <= env_archcpu(env)->sve_max_vq); 12752 12753 /* Zap the high bits of the zregs. */ 12754 for (i = 0; i < 32; i++) { 12755 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12756 } 12757 12758 /* Zap the high bits of the pregs and ffr. */ 12759 pmask = 0; 12760 if (vq & 3) { 12761 pmask = ~(-1ULL << (16 * (vq & 3))); 12762 } 12763 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12764 for (i = 0; i < 17; ++i) { 12765 env->vfp.pregs[i].p[j] &= pmask; 12766 } 12767 pmask = 0; 12768 } 12769 } 12770 12771 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12772 { 12773 int exc_el; 12774 12775 if (sm) { 12776 exc_el = sme_exception_el(env, el); 12777 } else { 12778 exc_el = sve_exception_el(env, el); 12779 } 12780 if (exc_el) { 12781 return 0; /* disabled */ 12782 } 12783 return sve_vqm1_for_el_sm(env, el, sm); 12784 } 12785 12786 /* 12787 * Notice a change in SVE vector size when changing EL. 12788 */ 12789 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12790 int new_el, bool el0_a64) 12791 { 12792 ARMCPU *cpu = env_archcpu(env); 12793 int old_len, new_len; 12794 bool old_a64, new_a64, sm; 12795 12796 /* Nothing to do if no SVE. */ 12797 if (!cpu_isar_feature(aa64_sve, cpu)) { 12798 return; 12799 } 12800 12801 /* Nothing to do if FP is disabled in either EL. */ 12802 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12803 return; 12804 } 12805 12806 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12807 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12808 12809 /* 12810 * Both AArch64.TakeException and AArch64.ExceptionReturn 12811 * invoke ResetSVEState when taking an exception from, or 12812 * returning to, AArch32 state when PSTATE.SM is enabled. 12813 */ 12814 sm = FIELD_EX64(env->svcr, SVCR, SM); 12815 if (old_a64 != new_a64 && sm) { 12816 arm_reset_sve_state(env); 12817 return; 12818 } 12819 12820 /* 12821 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12822 * at ELx, or not available because the EL is in AArch32 state, then 12823 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12824 * has an effective value of 0". 12825 * 12826 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12827 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12828 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12829 * we already have the correct register contents when encountering the 12830 * vq0->vq0 transition between EL0->EL1. 12831 */ 12832 old_len = new_len = 0; 12833 if (old_a64) { 12834 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12835 } 12836 if (new_a64) { 12837 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12838 } 12839 12840 /* When changing vector length, clear inaccessible state. */ 12841 if (new_len < old_len) { 12842 aarch64_sve_narrow_vq(env, new_len + 1); 12843 } 12844 } 12845 #endif 12846 12847 #ifndef CONFIG_USER_ONLY 12848 ARMSecuritySpace arm_security_space(CPUARMState *env) 12849 { 12850 if (arm_feature(env, ARM_FEATURE_M)) { 12851 return arm_secure_to_space(env->v7m.secure); 12852 } 12853 12854 /* 12855 * If EL3 is not supported then the secure state is implementation 12856 * defined, in which case QEMU defaults to non-secure. 12857 */ 12858 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12859 return ARMSS_NonSecure; 12860 } 12861 12862 /* Check for AArch64 EL3 or AArch32 Mon. */ 12863 if (is_a64(env)) { 12864 if (extract32(env->pstate, 2, 2) == 3) { 12865 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12866 return ARMSS_Root; 12867 } else { 12868 return ARMSS_Secure; 12869 } 12870 } 12871 } else { 12872 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12873 return ARMSS_Secure; 12874 } 12875 } 12876 12877 return arm_security_space_below_el3(env); 12878 } 12879 12880 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12881 { 12882 assert(!arm_feature(env, ARM_FEATURE_M)); 12883 12884 /* 12885 * If EL3 is not supported then the secure state is implementation 12886 * defined, in which case QEMU defaults to non-secure. 12887 */ 12888 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12889 return ARMSS_NonSecure; 12890 } 12891 12892 /* 12893 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12894 * Ignoring NSE when !NS retains consistency without having to 12895 * modify other predicates. 12896 */ 12897 if (!(env->cp15.scr_el3 & SCR_NS)) { 12898 return ARMSS_Secure; 12899 } else if (env->cp15.scr_el3 & SCR_NSE) { 12900 return ARMSS_Realm; 12901 } else { 12902 return ARMSS_NonSecure; 12903 } 12904 } 12905 #endif /* !CONFIG_USER_ONLY */ 12906