1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (hpmn != 0 && counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1860 value |= SCR_NS; 1861 } 1862 if (cpu_isar_feature(aa64_mte, cpu)) { 1863 valid_mask |= SCR_ATA; 1864 } 1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1866 valid_mask |= SCR_ENSCXT; 1867 } 1868 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1869 valid_mask |= SCR_EASE | SCR_NMEA; 1870 } 1871 if (cpu_isar_feature(aa64_sme, cpu)) { 1872 valid_mask |= SCR_ENTP2; 1873 } 1874 if (cpu_isar_feature(aa64_hcx, cpu)) { 1875 valid_mask |= SCR_HXEN; 1876 } 1877 if (cpu_isar_feature(aa64_fgt, cpu)) { 1878 valid_mask |= SCR_FGTEN; 1879 } 1880 if (cpu_isar_feature(aa64_rme, cpu)) { 1881 valid_mask |= SCR_NSE | SCR_GPF; 1882 } 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 if (cpu_isar_feature(aa32_ras, cpu)) { 1886 valid_mask |= SCR_TERR; 1887 } 1888 } 1889 1890 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1891 valid_mask &= ~SCR_HCE; 1892 1893 /* 1894 * On ARMv7, SMD (or SCD as it is called in v7) is only 1895 * supported if EL2 exists. The bit is UNK/SBZP when 1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1897 * when EL2 is unavailable. 1898 * On ARMv8, this bit is always available. 1899 */ 1900 if (arm_feature(env, ARM_FEATURE_V7) && 1901 !arm_feature(env, ARM_FEATURE_V8)) { 1902 valid_mask &= ~SCR_SMD; 1903 } 1904 } 1905 1906 /* Clear all-context RES0 bits. */ 1907 value &= valid_mask; 1908 changed = env->cp15.scr_el3 ^ value; 1909 env->cp15.scr_el3 = value; 1910 1911 /* 1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1913 * we must invalidate all TLBs below EL3. 1914 */ 1915 if (changed & (SCR_NS | SCR_NSE)) { 1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1917 ARMMMUIdxBit_E20_0 | 1918 ARMMMUIdxBit_E10_1 | 1919 ARMMMUIdxBit_E20_2 | 1920 ARMMMUIdxBit_E10_1_PAN | 1921 ARMMMUIdxBit_E20_2_PAN | 1922 ARMMMUIdxBit_E2)); 1923 } 1924 } 1925 1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1927 { 1928 /* 1929 * scr_write will set the RES1 bits on an AArch64-only CPU. 1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1931 */ 1932 scr_write(env, ri, 0); 1933 } 1934 1935 static CPAccessResult access_tid4(CPUARMState *env, 1936 const ARMCPRegInfo *ri, 1937 bool isread) 1938 { 1939 if (arm_current_el(env) == 1 && 1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1941 return CP_ACCESS_TRAP_EL2; 1942 } 1943 1944 return CP_ACCESS_OK; 1945 } 1946 1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1948 { 1949 ARMCPU *cpu = env_archcpu(env); 1950 1951 /* 1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1953 * bank 1954 */ 1955 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1956 ri->secure & ARM_CP_SECSTATE_S); 1957 1958 return cpu->ccsidr[index]; 1959 } 1960 1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1962 uint64_t value) 1963 { 1964 raw_write(env, ri, value & 0xf); 1965 } 1966 1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1968 { 1969 CPUState *cs = env_cpu(env); 1970 bool el1 = arm_current_el(env) == 1; 1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1972 uint64_t ret = 0; 1973 1974 if (hcr_el2 & HCR_IMO) { 1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1976 ret |= CPSR_I; 1977 } 1978 } else { 1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1980 ret |= CPSR_I; 1981 } 1982 } 1983 1984 if (hcr_el2 & HCR_FMO) { 1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1986 ret |= CPSR_F; 1987 } 1988 } else { 1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1990 ret |= CPSR_F; 1991 } 1992 } 1993 1994 if (hcr_el2 & HCR_AMO) { 1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1996 ret |= CPSR_A; 1997 } 1998 } 1999 2000 return ret; 2001 } 2002 2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2004 bool isread) 2005 { 2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2007 return CP_ACCESS_TRAP_EL2; 2008 } 2009 2010 return CP_ACCESS_OK; 2011 } 2012 2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2014 bool isread) 2015 { 2016 if (arm_feature(env, ARM_FEATURE_V8)) { 2017 return access_aa64_tid1(env, ri, isread); 2018 } 2019 2020 return CP_ACCESS_OK; 2021 } 2022 2023 static const ARMCPRegInfo v7_cp_reginfo[] = { 2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2026 .access = PL1_W, .type = ARM_CP_NOP }, 2027 /* 2028 * Performance monitors are implementation defined in v7, 2029 * but with an ARM recommended set of registers, which we 2030 * follow. 2031 * 2032 * Performance registers fall into three categories: 2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2038 */ 2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2042 .writefn = pmcntenset_write, 2043 .accessfn = pmreg_access, 2044 .fgt = FGT_PMCNTEN, 2045 .raw_writefn = raw_write }, 2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2048 .access = PL0_RW, .accessfn = pmreg_access, 2049 .fgt = FGT_PMCNTEN, 2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2051 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2053 .access = PL0_RW, 2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2055 .accessfn = pmreg_access, 2056 .fgt = FGT_PMCNTEN, 2057 .writefn = pmcntenclr_write, 2058 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2061 .access = PL0_RW, .accessfn = pmreg_access, 2062 .fgt = FGT_PMCNTEN, 2063 .type = ARM_CP_ALIAS | ARM_CP_IO, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2065 .writefn = pmcntenclr_write }, 2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2067 .access = PL0_RW, .type = ARM_CP_IO, 2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2069 .accessfn = pmreg_access, 2070 .fgt = FGT_PMOVS, 2071 .writefn = pmovsr_write, 2072 .raw_writefn = raw_write }, 2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2075 .access = PL0_RW, .accessfn = pmreg_access, 2076 .fgt = FGT_PMOVS, 2077 .type = ARM_CP_ALIAS | ARM_CP_IO, 2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2079 .writefn = pmovsr_write, 2080 .raw_writefn = raw_write }, 2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2082 .access = PL0_W, .accessfn = pmreg_access_swinc, 2083 .fgt = FGT_PMSWINC_EL0, 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .writefn = pmswinc_write }, 2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2088 .access = PL0_W, .accessfn = pmreg_access_swinc, 2089 .fgt = FGT_PMSWINC_EL0, 2090 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2091 .writefn = pmswinc_write }, 2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2093 .access = PL0_RW, .type = ARM_CP_ALIAS, 2094 .fgt = FGT_PMSELR_EL0, 2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2097 .raw_writefn = raw_write}, 2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2100 .access = PL0_RW, .accessfn = pmreg_access_selr, 2101 .fgt = FGT_PMSELR_EL0, 2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2103 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fgt = FGT_PMCCNTR_EL0, 2107 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2108 .accessfn = pmreg_access_ccntr }, 2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2112 .fgt = FGT_PMCCNTR_EL0, 2113 .type = ARM_CP_IO, 2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2115 .readfn = pmccntr_read, .writefn = pmccntr_write, 2116 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2119 .access = PL0_RW, .accessfn = pmreg_access, 2120 .fgt = FGT_PMCCFILTR_EL0, 2121 .type = ARM_CP_ALIAS | ARM_CP_IO, 2122 .resetvalue = 0, }, 2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2126 .access = PL0_RW, .accessfn = pmreg_access, 2127 .fgt = FGT_PMCCFILTR_EL0, 2128 .type = ARM_CP_IO, 2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2130 .resetvalue = 0, }, 2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2133 .accessfn = pmreg_access, 2134 .fgt = FGT_PMEVTYPERN_EL0, 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = pmreg_access, 2140 .fgt = FGT_PMEVTYPERN_EL0, 2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .fgt = FGT_PMEVCNTRN_EL0, 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .accessfn = pmreg_access_xevcntr, 2151 .fgt = FGT_PMEVCNTRN_EL0, 2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2156 .resetvalue = 0, 2157 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2162 .resetvalue = 0, 2163 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2165 .access = PL1_RW, .accessfn = access_tpm, 2166 .fgt = FGT_PMINTEN, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2169 .resetvalue = 0, 2170 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2173 .access = PL1_RW, .accessfn = access_tpm, 2174 .fgt = FGT_PMINTEN, 2175 .type = ARM_CP_IO, 2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2177 .writefn = pmintenset_write, .raw_writefn = raw_write, 2178 .resetvalue = 0x0 }, 2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2180 .access = PL1_RW, .accessfn = access_tpm, 2181 .fgt = FGT_PMINTEN, 2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2184 .writefn = pmintenclr_write, }, 2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2187 .access = PL1_RW, .accessfn = access_tpm, 2188 .fgt = FGT_PMINTEN, 2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2191 .writefn = pmintenclr_write }, 2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2194 .access = PL1_R, 2195 .accessfn = access_tid4, 2196 .fgt = FGT_CCSIDR_EL1, 2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2200 .access = PL1_RW, 2201 .accessfn = access_tid4, 2202 .fgt = FGT_CSSELR_EL1, 2203 .writefn = csselr_write, .resetvalue = 0, 2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2205 offsetof(CPUARMState, cp15.csselr_ns) } }, 2206 /* 2207 * Auxiliary ID register: this actually has an IMPDEF value but for now 2208 * just RAZ for all cores: 2209 */ 2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2212 .access = PL1_R, .type = ARM_CP_CONST, 2213 .accessfn = access_aa64_tid1, 2214 .fgt = FGT_AIDR_EL1, 2215 .resetvalue = 0 }, 2216 /* 2217 * Auxiliary fault status registers: these also are IMPDEF, and we 2218 * choose to RAZ/WI for all cores. 2219 */ 2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .fgt = FGT_AFSR0_EL1, 2224 .type = ARM_CP_CONST, .resetvalue = 0 }, 2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2227 .access = PL1_RW, .accessfn = access_tvm_trvm, 2228 .fgt = FGT_AFSR1_EL1, 2229 .type = ARM_CP_CONST, .resetvalue = 0 }, 2230 /* 2231 * MAIR can just read-as-written because we don't implement caches 2232 * and so don't need to care about memory attributes. 2233 */ 2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2236 .access = PL1_RW, .accessfn = access_tvm_trvm, 2237 .fgt = FGT_MAIR_EL1, 2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2239 .resetvalue = 0 }, 2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2243 .resetvalue = 0 }, 2244 /* 2245 * For non-long-descriptor page tables these are PRRR and NMRR; 2246 * regardless they still act as reads-as-written for QEMU. 2247 */ 2248 /* 2249 * MAIR0/1 are defined separately from their 64-bit counterpart which 2250 * allows them to assign the correct fieldoffset based on the endianness 2251 * handled in the field definitions. 2252 */ 2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2255 .access = PL1_RW, .accessfn = access_tvm_trvm, 2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2257 offsetof(CPUARMState, cp15.mair0_ns) }, 2258 .resetfn = arm_cp_reset_ignore }, 2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2261 .access = PL1_RW, .accessfn = access_tvm_trvm, 2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2263 offsetof(CPUARMState, cp15.mair1_ns) }, 2264 .resetfn = arm_cp_reset_ignore }, 2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2267 .fgt = FGT_ISR_EL1, 2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2269 /* 32 bit ITLB invalidates */ 2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2272 .writefn = tlbiall_write }, 2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2275 .writefn = tlbimva_write }, 2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2278 .writefn = tlbiasid_write }, 2279 /* 32 bit DTLB invalidates */ 2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2282 .writefn = tlbiall_write }, 2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2285 .writefn = tlbimva_write }, 2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2288 .writefn = tlbiasid_write }, 2289 /* 32 bit TLB invalidates */ 2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbiall_write }, 2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbimva_write }, 2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2298 .writefn = tlbiasid_write }, 2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2301 .writefn = tlbimvaa_write }, 2302 }; 2303 2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2305 /* 32 bit TLB invalidates, Inner Shareable */ 2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2308 .writefn = tlbiall_is_write }, 2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2311 .writefn = tlbimva_is_write }, 2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2314 .writefn = tlbiasid_is_write }, 2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2317 .writefn = tlbimvaa_is_write }, 2318 }; 2319 2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2321 /* PMOVSSET is not implemented in v7 before v7ve */ 2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2323 .access = PL0_RW, .accessfn = pmreg_access, 2324 .fgt = FGT_PMOVS, 2325 .type = ARM_CP_ALIAS | ARM_CP_IO, 2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2327 .writefn = pmovsset_write, 2328 .raw_writefn = raw_write }, 2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2331 .access = PL0_RW, .accessfn = pmreg_access, 2332 .fgt = FGT_PMOVS, 2333 .type = ARM_CP_ALIAS | ARM_CP_IO, 2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2335 .writefn = pmovsset_write, 2336 .raw_writefn = raw_write }, 2337 }; 2338 2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2340 uint64_t value) 2341 { 2342 value &= 1; 2343 env->teecr = value; 2344 } 2345 2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2347 bool isread) 2348 { 2349 /* 2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2351 * at all, so we don't need to check whether we're v8A. 2352 */ 2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2354 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2355 return CP_ACCESS_TRAP_EL2; 2356 } 2357 return CP_ACCESS_OK; 2358 } 2359 2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2361 bool isread) 2362 { 2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2364 return CP_ACCESS_TRAP; 2365 } 2366 return teecr_access(env, ri, isread); 2367 } 2368 2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2372 .resetvalue = 0, 2373 .writefn = teecr_write, .accessfn = teecr_access }, 2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2376 .accessfn = teehbr_access, .resetvalue = 0 }, 2377 }; 2378 2379 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2382 .access = PL0_RW, 2383 .fgt = FGT_TPIDR_EL0, 2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2386 .access = PL0_RW, 2387 .fgt = FGT_TPIDR_EL0, 2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2390 .resetfn = arm_cp_reset_ignore }, 2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2393 .access = PL0_R | PL1_W, 2394 .fgt = FGT_TPIDRRO_EL0, 2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2396 .resetvalue = 0}, 2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2398 .access = PL0_R | PL1_W, 2399 .fgt = FGT_TPIDRRO_EL0, 2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2402 .resetfn = arm_cp_reset_ignore }, 2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2405 .access = PL1_RW, 2406 .fgt = FGT_TPIDR_EL1, 2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2409 .access = PL1_RW, 2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2412 .resetvalue = 0 }, 2413 }; 2414 2415 #ifndef CONFIG_USER_ONLY 2416 2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2418 bool isread) 2419 { 2420 /* 2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2422 * Writable only at the highest implemented exception level. 2423 */ 2424 int el = arm_current_el(env); 2425 uint64_t hcr; 2426 uint32_t cntkctl; 2427 2428 switch (el) { 2429 case 0: 2430 hcr = arm_hcr_el2_eff(env); 2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2432 cntkctl = env->cp15.cnthctl_el2; 2433 } else { 2434 cntkctl = env->cp15.c14_cntkctl; 2435 } 2436 if (!extract32(cntkctl, 0, 2)) { 2437 return CP_ACCESS_TRAP; 2438 } 2439 break; 2440 case 1: 2441 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2442 arm_is_secure_below_el3(env)) { 2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2444 return CP_ACCESS_TRAP_UNCATEGORIZED; 2445 } 2446 break; 2447 case 2: 2448 case 3: 2449 break; 2450 } 2451 2452 if (!isread && el < arm_highest_el(env)) { 2453 return CP_ACCESS_TRAP_UNCATEGORIZED; 2454 } 2455 2456 return CP_ACCESS_OK; 2457 } 2458 2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2460 bool isread) 2461 { 2462 unsigned int cur_el = arm_current_el(env); 2463 bool has_el2 = arm_is_el2_enabled(env); 2464 uint64_t hcr = arm_hcr_el2_eff(env); 2465 2466 switch (cur_el) { 2467 case 0: 2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2472 } 2473 2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2476 return CP_ACCESS_TRAP; 2477 } 2478 2479 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2480 if (hcr & HCR_E2H) { 2481 if (timeridx == GTIMER_PHYS && 2482 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2483 return CP_ACCESS_TRAP_EL2; 2484 } 2485 } else { 2486 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2487 if (has_el2 && timeridx == GTIMER_PHYS && 2488 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2489 return CP_ACCESS_TRAP_EL2; 2490 } 2491 } 2492 break; 2493 2494 case 1: 2495 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2496 if (has_el2 && timeridx == GTIMER_PHYS && 2497 (hcr & HCR_E2H 2498 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2499 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2500 return CP_ACCESS_TRAP_EL2; 2501 } 2502 break; 2503 } 2504 return CP_ACCESS_OK; 2505 } 2506 2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2508 bool isread) 2509 { 2510 unsigned int cur_el = arm_current_el(env); 2511 bool has_el2 = arm_is_el2_enabled(env); 2512 uint64_t hcr = arm_hcr_el2_eff(env); 2513 2514 switch (cur_el) { 2515 case 0: 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2518 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2519 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2520 } 2521 2522 /* 2523 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2524 * EL0 if EL0[PV]TEN is zero. 2525 */ 2526 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2527 return CP_ACCESS_TRAP; 2528 } 2529 /* fall through */ 2530 2531 case 1: 2532 if (has_el2 && timeridx == GTIMER_PHYS) { 2533 if (hcr & HCR_E2H) { 2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2535 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2536 return CP_ACCESS_TRAP_EL2; 2537 } 2538 } else { 2539 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2540 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2541 return CP_ACCESS_TRAP_EL2; 2542 } 2543 } 2544 } 2545 break; 2546 } 2547 return CP_ACCESS_OK; 2548 } 2549 2550 static CPAccessResult gt_pct_access(CPUARMState *env, 2551 const ARMCPRegInfo *ri, 2552 bool isread) 2553 { 2554 return gt_counter_access(env, GTIMER_PHYS, isread); 2555 } 2556 2557 static CPAccessResult gt_vct_access(CPUARMState *env, 2558 const ARMCPRegInfo *ri, 2559 bool isread) 2560 { 2561 return gt_counter_access(env, GTIMER_VIRT, isread); 2562 } 2563 2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2565 bool isread) 2566 { 2567 return gt_timer_access(env, GTIMER_PHYS, isread); 2568 } 2569 2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2571 bool isread) 2572 { 2573 return gt_timer_access(env, GTIMER_VIRT, isread); 2574 } 2575 2576 static CPAccessResult gt_stimer_access(CPUARMState *env, 2577 const ARMCPRegInfo *ri, 2578 bool isread) 2579 { 2580 /* 2581 * The AArch64 register view of the secure physical timer is 2582 * always accessible from EL3, and configurably accessible from 2583 * Secure EL1. 2584 */ 2585 switch (arm_current_el(env)) { 2586 case 1: 2587 if (!arm_is_secure(env)) { 2588 return CP_ACCESS_TRAP; 2589 } 2590 if (!(env->cp15.scr_el3 & SCR_ST)) { 2591 return CP_ACCESS_TRAP_EL3; 2592 } 2593 return CP_ACCESS_OK; 2594 case 0: 2595 case 2: 2596 return CP_ACCESS_TRAP; 2597 case 3: 2598 return CP_ACCESS_OK; 2599 default: 2600 g_assert_not_reached(); 2601 } 2602 } 2603 2604 static uint64_t gt_get_countervalue(CPUARMState *env) 2605 { 2606 ARMCPU *cpu = env_archcpu(env); 2607 2608 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2609 } 2610 2611 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2612 { 2613 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2614 2615 if (gt->ctl & 1) { 2616 /* 2617 * Timer enabled: calculate and set current ISTATUS, irq, and 2618 * reset timer to when ISTATUS next has to change 2619 */ 2620 uint64_t offset = timeridx == GTIMER_VIRT ? 2621 cpu->env.cp15.cntvoff_el2 : 0; 2622 uint64_t count = gt_get_countervalue(&cpu->env); 2623 /* Note that this must be unsigned 64 bit arithmetic: */ 2624 int istatus = count - offset >= gt->cval; 2625 uint64_t nexttick; 2626 int irqstate; 2627 2628 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2629 2630 irqstate = (istatus && !(gt->ctl & 2)); 2631 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2632 2633 if (istatus) { 2634 /* Next transition is when count rolls back over to zero */ 2635 nexttick = UINT64_MAX; 2636 } else { 2637 /* Next transition is when we hit cval */ 2638 nexttick = gt->cval + offset; 2639 } 2640 /* 2641 * Note that the desired next expiry time might be beyond the 2642 * signed-64-bit range of a QEMUTimer -- in this case we just 2643 * set the timer for as far in the future as possible. When the 2644 * timer expires we will reset the timer for any remaining period. 2645 */ 2646 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2647 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2648 } else { 2649 timer_mod(cpu->gt_timer[timeridx], nexttick); 2650 } 2651 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2652 } else { 2653 /* Timer disabled: ISTATUS and timer output always clear */ 2654 gt->ctl &= ~4; 2655 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2656 timer_del(cpu->gt_timer[timeridx]); 2657 trace_arm_gt_recalc_disabled(timeridx); 2658 } 2659 } 2660 2661 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2662 int timeridx) 2663 { 2664 ARMCPU *cpu = env_archcpu(env); 2665 2666 timer_del(cpu->gt_timer[timeridx]); 2667 } 2668 2669 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2670 { 2671 return gt_get_countervalue(env); 2672 } 2673 2674 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2675 { 2676 uint64_t hcr; 2677 2678 switch (arm_current_el(env)) { 2679 case 2: 2680 hcr = arm_hcr_el2_eff(env); 2681 if (hcr & HCR_E2H) { 2682 return 0; 2683 } 2684 break; 2685 case 0: 2686 hcr = arm_hcr_el2_eff(env); 2687 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2688 return 0; 2689 } 2690 break; 2691 } 2692 2693 return env->cp15.cntvoff_el2; 2694 } 2695 2696 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2697 { 2698 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2699 } 2700 2701 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2702 int timeridx, 2703 uint64_t value) 2704 { 2705 trace_arm_gt_cval_write(timeridx, value); 2706 env->cp15.c14_timer[timeridx].cval = value; 2707 gt_recalc_timer(env_archcpu(env), timeridx); 2708 } 2709 2710 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2711 int timeridx) 2712 { 2713 uint64_t offset = 0; 2714 2715 switch (timeridx) { 2716 case GTIMER_VIRT: 2717 case GTIMER_HYPVIRT: 2718 offset = gt_virt_cnt_offset(env); 2719 break; 2720 } 2721 2722 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2723 (gt_get_countervalue(env) - offset)); 2724 } 2725 2726 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 int timeridx, 2728 uint64_t value) 2729 { 2730 uint64_t offset = 0; 2731 2732 switch (timeridx) { 2733 case GTIMER_VIRT: 2734 case GTIMER_HYPVIRT: 2735 offset = gt_virt_cnt_offset(env); 2736 break; 2737 } 2738 2739 trace_arm_gt_tval_write(timeridx, value); 2740 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2741 sextract64(value, 0, 32); 2742 gt_recalc_timer(env_archcpu(env), timeridx); 2743 } 2744 2745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2746 int timeridx, 2747 uint64_t value) 2748 { 2749 ARMCPU *cpu = env_archcpu(env); 2750 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2751 2752 trace_arm_gt_ctl_write(timeridx, value); 2753 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2754 if ((oldval ^ value) & 1) { 2755 /* Enable toggled */ 2756 gt_recalc_timer(cpu, timeridx); 2757 } else if ((oldval ^ value) & 2) { 2758 /* 2759 * IMASK toggled: don't need to recalculate, 2760 * just set the interrupt line based on ISTATUS 2761 */ 2762 int irqstate = (oldval & 4) && !(value & 2); 2763 2764 trace_arm_gt_imask_toggle(timeridx, irqstate); 2765 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2766 } 2767 } 2768 2769 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2770 { 2771 gt_timer_reset(env, ri, GTIMER_PHYS); 2772 } 2773 2774 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2775 uint64_t value) 2776 { 2777 gt_cval_write(env, ri, GTIMER_PHYS, value); 2778 } 2779 2780 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2781 { 2782 return gt_tval_read(env, ri, GTIMER_PHYS); 2783 } 2784 2785 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value) 2787 { 2788 gt_tval_write(env, ri, GTIMER_PHYS, value); 2789 } 2790 2791 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2792 uint64_t value) 2793 { 2794 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2795 } 2796 2797 static int gt_phys_redir_timeridx(CPUARMState *env) 2798 { 2799 switch (arm_mmu_idx(env)) { 2800 case ARMMMUIdx_E20_0: 2801 case ARMMMUIdx_E20_2: 2802 case ARMMMUIdx_E20_2_PAN: 2803 return GTIMER_HYP; 2804 default: 2805 return GTIMER_PHYS; 2806 } 2807 } 2808 2809 static int gt_virt_redir_timeridx(CPUARMState *env) 2810 { 2811 switch (arm_mmu_idx(env)) { 2812 case ARMMMUIdx_E20_0: 2813 case ARMMMUIdx_E20_2: 2814 case ARMMMUIdx_E20_2_PAN: 2815 return GTIMER_HYPVIRT; 2816 default: 2817 return GTIMER_VIRT; 2818 } 2819 } 2820 2821 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2822 const ARMCPRegInfo *ri) 2823 { 2824 int timeridx = gt_phys_redir_timeridx(env); 2825 return env->cp15.c14_timer[timeridx].cval; 2826 } 2827 2828 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 int timeridx = gt_phys_redir_timeridx(env); 2832 gt_cval_write(env, ri, timeridx, value); 2833 } 2834 2835 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2836 const ARMCPRegInfo *ri) 2837 { 2838 int timeridx = gt_phys_redir_timeridx(env); 2839 return gt_tval_read(env, ri, timeridx); 2840 } 2841 2842 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2843 uint64_t value) 2844 { 2845 int timeridx = gt_phys_redir_timeridx(env); 2846 gt_tval_write(env, ri, timeridx, value); 2847 } 2848 2849 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2850 const ARMCPRegInfo *ri) 2851 { 2852 int timeridx = gt_phys_redir_timeridx(env); 2853 return env->cp15.c14_timer[timeridx].ctl; 2854 } 2855 2856 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 int timeridx = gt_phys_redir_timeridx(env); 2860 gt_ctl_write(env, ri, timeridx, value); 2861 } 2862 2863 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2864 { 2865 gt_timer_reset(env, ri, GTIMER_VIRT); 2866 } 2867 2868 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2869 uint64_t value) 2870 { 2871 gt_cval_write(env, ri, GTIMER_VIRT, value); 2872 } 2873 2874 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2875 { 2876 return gt_tval_read(env, ri, GTIMER_VIRT); 2877 } 2878 2879 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2880 uint64_t value) 2881 { 2882 gt_tval_write(env, ri, GTIMER_VIRT, value); 2883 } 2884 2885 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2886 uint64_t value) 2887 { 2888 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2889 } 2890 2891 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2892 uint64_t value) 2893 { 2894 ARMCPU *cpu = env_archcpu(env); 2895 2896 trace_arm_gt_cntvoff_write(value); 2897 raw_write(env, ri, value); 2898 gt_recalc_timer(cpu, GTIMER_VIRT); 2899 } 2900 2901 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2902 const ARMCPRegInfo *ri) 2903 { 2904 int timeridx = gt_virt_redir_timeridx(env); 2905 return env->cp15.c14_timer[timeridx].cval; 2906 } 2907 2908 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2909 uint64_t value) 2910 { 2911 int timeridx = gt_virt_redir_timeridx(env); 2912 gt_cval_write(env, ri, timeridx, value); 2913 } 2914 2915 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2916 const ARMCPRegInfo *ri) 2917 { 2918 int timeridx = gt_virt_redir_timeridx(env); 2919 return gt_tval_read(env, ri, timeridx); 2920 } 2921 2922 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2923 uint64_t value) 2924 { 2925 int timeridx = gt_virt_redir_timeridx(env); 2926 gt_tval_write(env, ri, timeridx, value); 2927 } 2928 2929 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2930 const ARMCPRegInfo *ri) 2931 { 2932 int timeridx = gt_virt_redir_timeridx(env); 2933 return env->cp15.c14_timer[timeridx].ctl; 2934 } 2935 2936 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2937 uint64_t value) 2938 { 2939 int timeridx = gt_virt_redir_timeridx(env); 2940 gt_ctl_write(env, ri, timeridx, value); 2941 } 2942 2943 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2944 { 2945 gt_timer_reset(env, ri, GTIMER_HYP); 2946 } 2947 2948 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2949 uint64_t value) 2950 { 2951 gt_cval_write(env, ri, GTIMER_HYP, value); 2952 } 2953 2954 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2955 { 2956 return gt_tval_read(env, ri, GTIMER_HYP); 2957 } 2958 2959 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2960 uint64_t value) 2961 { 2962 gt_tval_write(env, ri, GTIMER_HYP, value); 2963 } 2964 2965 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2966 uint64_t value) 2967 { 2968 gt_ctl_write(env, ri, GTIMER_HYP, value); 2969 } 2970 2971 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2972 { 2973 gt_timer_reset(env, ri, GTIMER_SEC); 2974 } 2975 2976 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2977 uint64_t value) 2978 { 2979 gt_cval_write(env, ri, GTIMER_SEC, value); 2980 } 2981 2982 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2983 { 2984 return gt_tval_read(env, ri, GTIMER_SEC); 2985 } 2986 2987 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 gt_tval_write(env, ri, GTIMER_SEC, value); 2991 } 2992 2993 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2994 uint64_t value) 2995 { 2996 gt_ctl_write(env, ri, GTIMER_SEC, value); 2997 } 2998 2999 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3000 { 3001 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3002 } 3003 3004 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3008 } 3009 3010 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3011 { 3012 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3013 } 3014 3015 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3019 } 3020 3021 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3022 uint64_t value) 3023 { 3024 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3025 } 3026 3027 void arm_gt_ptimer_cb(void *opaque) 3028 { 3029 ARMCPU *cpu = opaque; 3030 3031 gt_recalc_timer(cpu, GTIMER_PHYS); 3032 } 3033 3034 void arm_gt_vtimer_cb(void *opaque) 3035 { 3036 ARMCPU *cpu = opaque; 3037 3038 gt_recalc_timer(cpu, GTIMER_VIRT); 3039 } 3040 3041 void arm_gt_htimer_cb(void *opaque) 3042 { 3043 ARMCPU *cpu = opaque; 3044 3045 gt_recalc_timer(cpu, GTIMER_HYP); 3046 } 3047 3048 void arm_gt_stimer_cb(void *opaque) 3049 { 3050 ARMCPU *cpu = opaque; 3051 3052 gt_recalc_timer(cpu, GTIMER_SEC); 3053 } 3054 3055 void arm_gt_hvtimer_cb(void *opaque) 3056 { 3057 ARMCPU *cpu = opaque; 3058 3059 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3060 } 3061 3062 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3063 { 3064 ARMCPU *cpu = env_archcpu(env); 3065 3066 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3067 } 3068 3069 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3070 /* 3071 * Note that CNTFRQ is purely reads-as-written for the benefit 3072 * of software; writing it doesn't actually change the timer frequency. 3073 * Our reset value matches the fixed frequency we implement the timer at. 3074 */ 3075 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3076 .type = ARM_CP_ALIAS, 3077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3078 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3079 }, 3080 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3082 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3084 .resetfn = arm_gt_cntfrq_reset, 3085 }, 3086 /* overall control: mostly access permissions */ 3087 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3088 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3089 .access = PL1_RW, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3091 .resetvalue = 0, 3092 }, 3093 /* per-timer control */ 3094 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3095 .secure = ARM_CP_SECSTATE_NS, 3096 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3097 .accessfn = gt_ptimer_access, 3098 .fieldoffset = offsetoflow32(CPUARMState, 3099 cp15.c14_timer[GTIMER_PHYS].ctl), 3100 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3101 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3102 }, 3103 { .name = "CNTP_CTL_S", 3104 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3105 .secure = ARM_CP_SECSTATE_S, 3106 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3107 .accessfn = gt_ptimer_access, 3108 .fieldoffset = offsetoflow32(CPUARMState, 3109 cp15.c14_timer[GTIMER_SEC].ctl), 3110 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3111 }, 3112 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3113 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3114 .type = ARM_CP_IO, .access = PL0_RW, 3115 .accessfn = gt_ptimer_access, 3116 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3117 .resetvalue = 0, 3118 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3119 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3120 }, 3121 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3122 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3123 .accessfn = gt_vtimer_access, 3124 .fieldoffset = offsetoflow32(CPUARMState, 3125 cp15.c14_timer[GTIMER_VIRT].ctl), 3126 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3127 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3128 }, 3129 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3131 .type = ARM_CP_IO, .access = PL0_RW, 3132 .accessfn = gt_vtimer_access, 3133 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3134 .resetvalue = 0, 3135 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3136 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3137 }, 3138 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3139 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3140 .secure = ARM_CP_SECSTATE_NS, 3141 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3142 .accessfn = gt_ptimer_access, 3143 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3144 }, 3145 { .name = "CNTP_TVAL_S", 3146 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3147 .secure = ARM_CP_SECSTATE_S, 3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3149 .accessfn = gt_ptimer_access, 3150 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3151 }, 3152 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3153 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3154 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3155 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3156 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3157 }, 3158 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3160 .accessfn = gt_vtimer_access, 3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3162 }, 3163 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3164 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3165 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3166 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3167 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3168 }, 3169 /* The counter itself */ 3170 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3171 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3172 .accessfn = gt_pct_access, 3173 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3174 }, 3175 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3176 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3177 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3178 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3179 }, 3180 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3181 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3182 .accessfn = gt_vct_access, 3183 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3184 }, 3185 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3187 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3188 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3189 }, 3190 /* Comparison value, indicating when the timer goes off */ 3191 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3192 .secure = ARM_CP_SECSTATE_NS, 3193 .access = PL0_RW, 3194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3196 .accessfn = gt_ptimer_access, 3197 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3198 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3199 }, 3200 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3201 .secure = ARM_CP_SECSTATE_S, 3202 .access = PL0_RW, 3203 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3204 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3205 .accessfn = gt_ptimer_access, 3206 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3207 }, 3208 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3210 .access = PL0_RW, 3211 .type = ARM_CP_IO, 3212 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3213 .resetvalue = 0, .accessfn = gt_ptimer_access, 3214 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3215 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3216 }, 3217 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3218 .access = PL0_RW, 3219 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3221 .accessfn = gt_vtimer_access, 3222 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3223 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3224 }, 3225 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3226 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3227 .access = PL0_RW, 3228 .type = ARM_CP_IO, 3229 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3230 .resetvalue = 0, .accessfn = gt_vtimer_access, 3231 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3232 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3233 }, 3234 /* 3235 * Secure timer -- this is actually restricted to only EL3 3236 * and configurably Secure-EL1 via the accessfn. 3237 */ 3238 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3239 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3241 .accessfn = gt_stimer_access, 3242 .readfn = gt_sec_tval_read, 3243 .writefn = gt_sec_tval_write, 3244 .resetfn = gt_sec_timer_reset, 3245 }, 3246 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3247 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3248 .type = ARM_CP_IO, .access = PL1_RW, 3249 .accessfn = gt_stimer_access, 3250 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3251 .resetvalue = 0, 3252 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3253 }, 3254 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3255 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3256 .type = ARM_CP_IO, .access = PL1_RW, 3257 .accessfn = gt_stimer_access, 3258 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3259 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3260 }, 3261 }; 3262 3263 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3264 bool isread) 3265 { 3266 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3267 return CP_ACCESS_TRAP; 3268 } 3269 return CP_ACCESS_OK; 3270 } 3271 3272 #else 3273 3274 /* 3275 * In user-mode most of the generic timer registers are inaccessible 3276 * however modern kernels (4.12+) allow access to cntvct_el0 3277 */ 3278 3279 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3280 { 3281 ARMCPU *cpu = env_archcpu(env); 3282 3283 /* 3284 * Currently we have no support for QEMUTimer in linux-user so we 3285 * can't call gt_get_countervalue(env), instead we directly 3286 * call the lower level functions. 3287 */ 3288 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3289 } 3290 3291 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3292 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3294 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3296 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3297 }, 3298 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3300 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3301 .readfn = gt_virt_cnt_read, 3302 }, 3303 }; 3304 3305 #endif 3306 3307 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3308 { 3309 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3310 raw_write(env, ri, value); 3311 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3312 raw_write(env, ri, value & 0xfffff6ff); 3313 } else { 3314 raw_write(env, ri, value & 0xfffff1ff); 3315 } 3316 } 3317 3318 #ifndef CONFIG_USER_ONLY 3319 /* get_phys_addr() isn't present for user-mode-only targets */ 3320 3321 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3322 bool isread) 3323 { 3324 if (ri->opc2 & 4) { 3325 /* 3326 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3327 * Secure EL1 (which can only happen if EL3 is AArch64). 3328 * They are simply UNDEF if executed from NS EL1. 3329 * They function normally from EL2 or EL3. 3330 */ 3331 if (arm_current_el(env) == 1) { 3332 if (arm_is_secure_below_el3(env)) { 3333 if (env->cp15.scr_el3 & SCR_EEL2) { 3334 return CP_ACCESS_TRAP_EL2; 3335 } 3336 return CP_ACCESS_TRAP_EL3; 3337 } 3338 return CP_ACCESS_TRAP_UNCATEGORIZED; 3339 } 3340 } 3341 return CP_ACCESS_OK; 3342 } 3343 3344 #ifdef CONFIG_TCG 3345 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3346 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3347 bool is_secure) 3348 { 3349 bool ret; 3350 uint64_t par64; 3351 bool format64 = false; 3352 ARMMMUFaultInfo fi = {}; 3353 GetPhysAddrResult res = {}; 3354 3355 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3356 is_secure, &res, &fi); 3357 3358 /* 3359 * ATS operations only do S1 or S1+S2 translations, so we never 3360 * have to deal with the ARMCacheAttrs format for S2 only. 3361 */ 3362 assert(!res.cacheattrs.is_s2_format); 3363 3364 if (ret) { 3365 /* 3366 * Some kinds of translation fault must cause exceptions rather 3367 * than being reported in the PAR. 3368 */ 3369 int current_el = arm_current_el(env); 3370 int target_el; 3371 uint32_t syn, fsr, fsc; 3372 bool take_exc = false; 3373 3374 if (fi.s1ptw && current_el == 1 3375 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3376 /* 3377 * Synchronous stage 2 fault on an access made as part of the 3378 * translation table walk for AT S1E0* or AT S1E1* insn 3379 * executed from NS EL1. If this is a synchronous external abort 3380 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3381 * to EL3. Otherwise the fault is taken as an exception to EL2, 3382 * and HPFAR_EL2 holds the faulting IPA. 3383 */ 3384 if (fi.type == ARMFault_SyncExternalOnWalk && 3385 (env->cp15.scr_el3 & SCR_EA)) { 3386 target_el = 3; 3387 } else { 3388 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3389 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3390 env->cp15.hpfar_el2 |= HPFAR_NS; 3391 } 3392 target_el = 2; 3393 } 3394 take_exc = true; 3395 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3396 /* 3397 * Synchronous external aborts during a translation table walk 3398 * are taken as Data Abort exceptions. 3399 */ 3400 if (fi.stage2) { 3401 if (current_el == 3) { 3402 target_el = 3; 3403 } else { 3404 target_el = 2; 3405 } 3406 } else { 3407 target_el = exception_target_el(env); 3408 } 3409 take_exc = true; 3410 } 3411 3412 if (take_exc) { 3413 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3414 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3415 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3416 fsr = arm_fi_to_lfsc(&fi); 3417 fsc = extract32(fsr, 0, 6); 3418 } else { 3419 fsr = arm_fi_to_sfsc(&fi); 3420 fsc = 0x3f; 3421 } 3422 /* 3423 * Report exception with ESR indicating a fault due to a 3424 * translation table walk for a cache maintenance instruction. 3425 */ 3426 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3427 fi.ea, 1, fi.s1ptw, 1, fsc); 3428 env->exception.vaddress = value; 3429 env->exception.fsr = fsr; 3430 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3431 } 3432 } 3433 3434 if (is_a64(env)) { 3435 format64 = true; 3436 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3437 /* 3438 * ATS1Cxx: 3439 * * TTBCR.EAE determines whether the result is returned using the 3440 * 32-bit or the 64-bit PAR format 3441 * * Instructions executed in Hyp mode always use the 64bit format 3442 * 3443 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3444 * * The Non-secure TTBCR.EAE bit is set to 1 3445 * * The implementation includes EL2, and the value of HCR.VM is 1 3446 * 3447 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3448 * 3449 * ATS1Hx always uses the 64bit format. 3450 */ 3451 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3452 3453 if (arm_feature(env, ARM_FEATURE_EL2)) { 3454 if (mmu_idx == ARMMMUIdx_E10_0 || 3455 mmu_idx == ARMMMUIdx_E10_1 || 3456 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3457 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3458 } else { 3459 format64 |= arm_current_el(env) == 2; 3460 } 3461 } 3462 } 3463 3464 if (format64) { 3465 /* Create a 64-bit PAR */ 3466 par64 = (1 << 11); /* LPAE bit always set */ 3467 if (!ret) { 3468 par64 |= res.f.phys_addr & ~0xfffULL; 3469 if (!res.f.attrs.secure) { 3470 par64 |= (1 << 9); /* NS */ 3471 } 3472 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3473 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3474 } else { 3475 uint32_t fsr = arm_fi_to_lfsc(&fi); 3476 3477 par64 |= 1; /* F */ 3478 par64 |= (fsr & 0x3f) << 1; /* FS */ 3479 if (fi.stage2) { 3480 par64 |= (1 << 9); /* S */ 3481 } 3482 if (fi.s1ptw) { 3483 par64 |= (1 << 8); /* PTW */ 3484 } 3485 } 3486 } else { 3487 /* 3488 * fsr is a DFSR/IFSR value for the short descriptor 3489 * translation table format (with WnR always clear). 3490 * Convert it to a 32-bit PAR. 3491 */ 3492 if (!ret) { 3493 /* We do not set any attribute bits in the PAR */ 3494 if (res.f.lg_page_size == 24 3495 && arm_feature(env, ARM_FEATURE_V7)) { 3496 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3497 } else { 3498 par64 = res.f.phys_addr & 0xfffff000; 3499 } 3500 if (!res.f.attrs.secure) { 3501 par64 |= (1 << 9); /* NS */ 3502 } 3503 } else { 3504 uint32_t fsr = arm_fi_to_sfsc(&fi); 3505 3506 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3507 ((fsr & 0xf) << 1) | 1; 3508 } 3509 } 3510 return par64; 3511 } 3512 #endif /* CONFIG_TCG */ 3513 3514 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3515 { 3516 #ifdef CONFIG_TCG 3517 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3518 uint64_t par64; 3519 ARMMMUIdx mmu_idx; 3520 int el = arm_current_el(env); 3521 bool secure = arm_is_secure_below_el3(env); 3522 3523 switch (ri->opc2 & 6) { 3524 case 0: 3525 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3526 switch (el) { 3527 case 3: 3528 mmu_idx = ARMMMUIdx_E3; 3529 secure = true; 3530 break; 3531 case 2: 3532 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3533 /* fall through */ 3534 case 1: 3535 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3536 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3537 } else { 3538 mmu_idx = ARMMMUIdx_Stage1_E1; 3539 } 3540 break; 3541 default: 3542 g_assert_not_reached(); 3543 } 3544 break; 3545 case 2: 3546 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3547 switch (el) { 3548 case 3: 3549 mmu_idx = ARMMMUIdx_E10_0; 3550 secure = true; 3551 break; 3552 case 2: 3553 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3554 mmu_idx = ARMMMUIdx_Stage1_E0; 3555 break; 3556 case 1: 3557 mmu_idx = ARMMMUIdx_Stage1_E0; 3558 break; 3559 default: 3560 g_assert_not_reached(); 3561 } 3562 break; 3563 case 4: 3564 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3565 mmu_idx = ARMMMUIdx_E10_1; 3566 secure = false; 3567 break; 3568 case 6: 3569 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3570 mmu_idx = ARMMMUIdx_E10_0; 3571 secure = false; 3572 break; 3573 default: 3574 g_assert_not_reached(); 3575 } 3576 3577 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3578 3579 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3580 #else 3581 /* Handled by hardware accelerator. */ 3582 g_assert_not_reached(); 3583 #endif /* CONFIG_TCG */ 3584 } 3585 3586 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3587 uint64_t value) 3588 { 3589 #ifdef CONFIG_TCG 3590 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3591 uint64_t par64; 3592 3593 /* There is no SecureEL2 for AArch32. */ 3594 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3595 3596 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3597 #else 3598 /* Handled by hardware accelerator. */ 3599 g_assert_not_reached(); 3600 #endif /* CONFIG_TCG */ 3601 } 3602 3603 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3604 bool isread) 3605 { 3606 if (arm_current_el(env) == 3 && 3607 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3608 return CP_ACCESS_TRAP; 3609 } 3610 return CP_ACCESS_OK; 3611 } 3612 3613 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3614 uint64_t value) 3615 { 3616 #ifdef CONFIG_TCG 3617 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3618 ARMMMUIdx mmu_idx; 3619 int secure = arm_is_secure_below_el3(env); 3620 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3621 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3622 3623 switch (ri->opc2 & 6) { 3624 case 0: 3625 switch (ri->opc1) { 3626 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3627 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3628 mmu_idx = regime_e20 ? 3629 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3630 } else { 3631 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3632 } 3633 break; 3634 case 4: /* AT S1E2R, AT S1E2W */ 3635 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3636 break; 3637 case 6: /* AT S1E3R, AT S1E3W */ 3638 mmu_idx = ARMMMUIdx_E3; 3639 secure = true; 3640 break; 3641 default: 3642 g_assert_not_reached(); 3643 } 3644 break; 3645 case 2: /* AT S1E0R, AT S1E0W */ 3646 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3647 break; 3648 case 4: /* AT S12E1R, AT S12E1W */ 3649 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3650 break; 3651 case 6: /* AT S12E0R, AT S12E0W */ 3652 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3653 break; 3654 default: 3655 g_assert_not_reached(); 3656 } 3657 3658 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3659 mmu_idx, secure); 3660 #else 3661 /* Handled by hardware accelerator. */ 3662 g_assert_not_reached(); 3663 #endif /* CONFIG_TCG */ 3664 } 3665 #endif 3666 3667 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3668 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3669 .access = PL1_RW, .resetvalue = 0, 3670 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3671 offsetoflow32(CPUARMState, cp15.par_ns) }, 3672 .writefn = par_write }, 3673 #ifndef CONFIG_USER_ONLY 3674 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3675 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3676 .access = PL1_W, .accessfn = ats_access, 3677 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3678 #endif 3679 }; 3680 3681 /* Return basic MPU access permission bits. */ 3682 static uint32_t simple_mpu_ap_bits(uint32_t val) 3683 { 3684 uint32_t ret; 3685 uint32_t mask; 3686 int i; 3687 ret = 0; 3688 mask = 3; 3689 for (i = 0; i < 16; i += 2) { 3690 ret |= (val >> i) & mask; 3691 mask <<= 2; 3692 } 3693 return ret; 3694 } 3695 3696 /* Pad basic MPU access permission bits to extended format. */ 3697 static uint32_t extended_mpu_ap_bits(uint32_t val) 3698 { 3699 uint32_t ret; 3700 uint32_t mask; 3701 int i; 3702 ret = 0; 3703 mask = 3; 3704 for (i = 0; i < 16; i += 2) { 3705 ret |= (val & mask) << i; 3706 mask <<= 2; 3707 } 3708 return ret; 3709 } 3710 3711 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3712 uint64_t value) 3713 { 3714 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3715 } 3716 3717 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3718 { 3719 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3720 } 3721 3722 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3723 uint64_t value) 3724 { 3725 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3726 } 3727 3728 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3731 } 3732 3733 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3734 { 3735 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3736 3737 if (!u32p) { 3738 return 0; 3739 } 3740 3741 u32p += env->pmsav7.rnr[M_REG_NS]; 3742 return *u32p; 3743 } 3744 3745 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3746 uint64_t value) 3747 { 3748 ARMCPU *cpu = env_archcpu(env); 3749 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3750 3751 if (!u32p) { 3752 return; 3753 } 3754 3755 u32p += env->pmsav7.rnr[M_REG_NS]; 3756 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3757 *u32p = value; 3758 } 3759 3760 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 ARMCPU *cpu = env_archcpu(env); 3764 uint32_t nrgs = cpu->pmsav7_dregion; 3765 3766 if (value >= nrgs) { 3767 qemu_log_mask(LOG_GUEST_ERROR, 3768 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3769 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3770 return; 3771 } 3772 3773 raw_write(env, ri, value); 3774 } 3775 3776 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3777 uint64_t value) 3778 { 3779 ARMCPU *cpu = env_archcpu(env); 3780 3781 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3782 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3783 } 3784 3785 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3786 { 3787 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3788 } 3789 3790 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3791 uint64_t value) 3792 { 3793 ARMCPU *cpu = env_archcpu(env); 3794 3795 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3796 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3797 } 3798 3799 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3800 { 3801 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3802 } 3803 3804 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3805 uint64_t value) 3806 { 3807 ARMCPU *cpu = env_archcpu(env); 3808 3809 /* 3810 * Ignore writes that would select not implemented region. 3811 * This is architecturally UNPREDICTABLE. 3812 */ 3813 if (value >= cpu->pmsav7_dregion) { 3814 return; 3815 } 3816 3817 env->pmsav7.rnr[M_REG_NS] = value; 3818 } 3819 3820 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3821 uint64_t value) 3822 { 3823 ARMCPU *cpu = env_archcpu(env); 3824 3825 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3826 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3827 } 3828 3829 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3830 { 3831 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3832 } 3833 3834 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3835 uint64_t value) 3836 { 3837 ARMCPU *cpu = env_archcpu(env); 3838 3839 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3840 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3841 } 3842 3843 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3844 { 3845 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3846 } 3847 3848 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 uint32_t n; 3852 uint32_t bit; 3853 ARMCPU *cpu = env_archcpu(env); 3854 3855 /* Ignore writes to unimplemented regions */ 3856 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3857 value &= MAKE_64BIT_MASK(0, rmax); 3858 3859 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3860 3861 /* Register alias is only valid for first 32 indexes */ 3862 for (n = 0; n < rmax; ++n) { 3863 bit = extract32(value, n, 1); 3864 env->pmsav8.hprlar[n] = deposit32( 3865 env->pmsav8.hprlar[n], 0, 1, bit); 3866 } 3867 } 3868 3869 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3870 { 3871 uint32_t n; 3872 uint32_t result = 0x0; 3873 ARMCPU *cpu = env_archcpu(env); 3874 3875 /* Register alias is only valid for first 32 indexes */ 3876 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3877 if (env->pmsav8.hprlar[n] & 0x1) { 3878 result |= (0x1 << n); 3879 } 3880 } 3881 return result; 3882 } 3883 3884 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 ARMCPU *cpu = env_archcpu(env); 3888 3889 /* 3890 * Ignore writes that would select not implemented region. 3891 * This is architecturally UNPREDICTABLE. 3892 */ 3893 if (value >= cpu->pmsav8r_hdregion) { 3894 return; 3895 } 3896 3897 env->pmsav8.hprselr = value; 3898 } 3899 3900 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3901 uint64_t value) 3902 { 3903 ARMCPU *cpu = env_archcpu(env); 3904 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3905 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3906 3907 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3908 3909 if (ri->opc1 & 4) { 3910 if (index >= cpu->pmsav8r_hdregion) { 3911 return; 3912 } 3913 if (ri->opc2 & 0x1) { 3914 env->pmsav8.hprlar[index] = value; 3915 } else { 3916 env->pmsav8.hprbar[index] = value; 3917 } 3918 } else { 3919 if (index >= cpu->pmsav7_dregion) { 3920 return; 3921 } 3922 if (ri->opc2 & 0x1) { 3923 env->pmsav8.rlar[M_REG_NS][index] = value; 3924 } else { 3925 env->pmsav8.rbar[M_REG_NS][index] = value; 3926 } 3927 } 3928 } 3929 3930 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3931 { 3932 ARMCPU *cpu = env_archcpu(env); 3933 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3934 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3935 3936 if (ri->opc1 & 4) { 3937 if (index >= cpu->pmsav8r_hdregion) { 3938 return 0x0; 3939 } 3940 if (ri->opc2 & 0x1) { 3941 return env->pmsav8.hprlar[index]; 3942 } else { 3943 return env->pmsav8.hprbar[index]; 3944 } 3945 } else { 3946 if (index >= cpu->pmsav7_dregion) { 3947 return 0x0; 3948 } 3949 if (ri->opc2 & 0x1) { 3950 return env->pmsav8.rlar[M_REG_NS][index]; 3951 } else { 3952 return env->pmsav8.rbar[M_REG_NS][index]; 3953 } 3954 } 3955 } 3956 3957 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3958 { .name = "PRBAR", 3959 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3960 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3961 .accessfn = access_tvm_trvm, 3962 .readfn = prbar_read, .writefn = prbar_write }, 3963 { .name = "PRLAR", 3964 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3965 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3966 .accessfn = access_tvm_trvm, 3967 .readfn = prlar_read, .writefn = prlar_write }, 3968 { .name = "PRSELR", .resetvalue = 0, 3969 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3970 .access = PL1_RW, .accessfn = access_tvm_trvm, 3971 .writefn = prselr_write, 3972 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3973 { .name = "HPRBAR", .resetvalue = 0, 3974 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3975 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3976 .readfn = hprbar_read, .writefn = hprbar_write }, 3977 { .name = "HPRLAR", 3978 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3979 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3980 .readfn = hprlar_read, .writefn = hprlar_write }, 3981 { .name = "HPRSELR", .resetvalue = 0, 3982 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3983 .access = PL2_RW, 3984 .writefn = hprselr_write, 3985 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3986 { .name = "HPRENR", 3987 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3988 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3989 .readfn = hprenr_read, .writefn = hprenr_write }, 3990 }; 3991 3992 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3993 /* 3994 * Reset for all these registers is handled in arm_cpu_reset(), 3995 * because the PMSAv7 is also used by M-profile CPUs, which do 3996 * not register cpregs but still need the state to be reset. 3997 */ 3998 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3999 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4000 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4001 .readfn = pmsav7_read, .writefn = pmsav7_write, 4002 .resetfn = arm_cp_reset_ignore }, 4003 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4004 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4005 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4006 .readfn = pmsav7_read, .writefn = pmsav7_write, 4007 .resetfn = arm_cp_reset_ignore }, 4008 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4009 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4010 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4011 .readfn = pmsav7_read, .writefn = pmsav7_write, 4012 .resetfn = arm_cp_reset_ignore }, 4013 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4014 .access = PL1_RW, 4015 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4016 .writefn = pmsav7_rgnr_write, 4017 .resetfn = arm_cp_reset_ignore }, 4018 }; 4019 4020 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4021 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4022 .access = PL1_RW, .type = ARM_CP_ALIAS, 4023 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4024 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4025 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4026 .access = PL1_RW, .type = ARM_CP_ALIAS, 4027 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4028 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4029 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4030 .access = PL1_RW, 4031 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4032 .resetvalue = 0, }, 4033 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4034 .access = PL1_RW, 4035 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4036 .resetvalue = 0, }, 4037 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4038 .access = PL1_RW, 4039 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4040 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4041 .access = PL1_RW, 4042 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4043 /* Protection region base and size registers */ 4044 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4045 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4046 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4047 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4048 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4049 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4050 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4051 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4052 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4053 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4054 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4055 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4056 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4057 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4058 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4059 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4060 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4061 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4062 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4063 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4064 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4065 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4066 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4067 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4068 }; 4069 4070 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4071 uint64_t value) 4072 { 4073 ARMCPU *cpu = env_archcpu(env); 4074 4075 if (!arm_feature(env, ARM_FEATURE_V8)) { 4076 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4077 /* 4078 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4079 * using Long-descriptor translation table format 4080 */ 4081 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4082 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4083 /* 4084 * In an implementation that includes the Security Extensions 4085 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4086 * Short-descriptor translation table format. 4087 */ 4088 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4089 } else { 4090 value &= TTBCR_N; 4091 } 4092 } 4093 4094 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4095 /* 4096 * With LPAE the TTBCR could result in a change of ASID 4097 * via the TTBCR.A1 bit, so do a TLB flush. 4098 */ 4099 tlb_flush(CPU(cpu)); 4100 } 4101 raw_write(env, ri, value); 4102 } 4103 4104 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4105 uint64_t value) 4106 { 4107 ARMCPU *cpu = env_archcpu(env); 4108 4109 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4110 tlb_flush(CPU(cpu)); 4111 raw_write(env, ri, value); 4112 } 4113 4114 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4115 uint64_t value) 4116 { 4117 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4118 if (cpreg_field_is_64bit(ri) && 4119 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4120 ARMCPU *cpu = env_archcpu(env); 4121 tlb_flush(CPU(cpu)); 4122 } 4123 raw_write(env, ri, value); 4124 } 4125 4126 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4127 uint64_t value) 4128 { 4129 /* 4130 * If we are running with E2&0 regime, then an ASID is active. 4131 * Flush if that might be changing. Note we're not checking 4132 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4133 * holds the active ASID, only checking the field that might. 4134 */ 4135 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4136 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4137 uint16_t mask = ARMMMUIdxBit_E20_2 | 4138 ARMMMUIdxBit_E20_2_PAN | 4139 ARMMMUIdxBit_E20_0; 4140 tlb_flush_by_mmuidx(env_cpu(env), mask); 4141 } 4142 raw_write(env, ri, value); 4143 } 4144 4145 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4146 uint64_t value) 4147 { 4148 ARMCPU *cpu = env_archcpu(env); 4149 CPUState *cs = CPU(cpu); 4150 4151 /* 4152 * A change in VMID to the stage2 page table (Stage2) invalidates 4153 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4154 */ 4155 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4156 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4157 } 4158 raw_write(env, ri, value); 4159 } 4160 4161 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4162 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4163 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4164 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4165 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4166 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4167 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4168 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4169 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4170 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4171 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4172 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4173 offsetof(CPUARMState, cp15.dfar_ns) } }, 4174 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4175 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4176 .access = PL1_RW, .accessfn = access_tvm_trvm, 4177 .fgt = FGT_FAR_EL1, 4178 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4179 .resetvalue = 0, }, 4180 }; 4181 4182 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4183 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4184 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4185 .access = PL1_RW, .accessfn = access_tvm_trvm, 4186 .fgt = FGT_ESR_EL1, 4187 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4188 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4189 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4190 .access = PL1_RW, .accessfn = access_tvm_trvm, 4191 .fgt = FGT_TTBR0_EL1, 4192 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4193 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4194 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4195 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4196 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4197 .access = PL1_RW, .accessfn = access_tvm_trvm, 4198 .fgt = FGT_TTBR1_EL1, 4199 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4200 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4201 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4202 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4203 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4204 .access = PL1_RW, .accessfn = access_tvm_trvm, 4205 .fgt = FGT_TCR_EL1, 4206 .writefn = vmsa_tcr_el12_write, 4207 .raw_writefn = raw_write, 4208 .resetvalue = 0, 4209 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4210 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4211 .access = PL1_RW, .accessfn = access_tvm_trvm, 4212 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4213 .raw_writefn = raw_write, 4214 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4215 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4216 }; 4217 4218 /* 4219 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4220 * qemu tlbs nor adjusting cached masks. 4221 */ 4222 static const ARMCPRegInfo ttbcr2_reginfo = { 4223 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4224 .access = PL1_RW, .accessfn = access_tvm_trvm, 4225 .type = ARM_CP_ALIAS, 4226 .bank_fieldoffsets = { 4227 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4228 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4229 }, 4230 }; 4231 4232 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4233 uint64_t value) 4234 { 4235 env->cp15.c15_ticonfig = value & 0xe7; 4236 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4237 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4238 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4239 } 4240 4241 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4242 uint64_t value) 4243 { 4244 env->cp15.c15_threadid = value & 0xffff; 4245 } 4246 4247 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4248 uint64_t value) 4249 { 4250 /* Wait-for-interrupt (deprecated) */ 4251 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4252 } 4253 4254 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4255 uint64_t value) 4256 { 4257 /* 4258 * On OMAP there are registers indicating the max/min index of dcache lines 4259 * containing a dirty line; cache flush operations have to reset these. 4260 */ 4261 env->cp15.c15_i_max = 0x000; 4262 env->cp15.c15_i_min = 0xff0; 4263 } 4264 4265 static const ARMCPRegInfo omap_cp_reginfo[] = { 4266 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4267 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4268 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4269 .resetvalue = 0, }, 4270 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4271 .access = PL1_RW, .type = ARM_CP_NOP }, 4272 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4273 .access = PL1_RW, 4274 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4275 .writefn = omap_ticonfig_write }, 4276 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4277 .access = PL1_RW, 4278 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4279 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4280 .access = PL1_RW, .resetvalue = 0xff0, 4281 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4282 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4283 .access = PL1_RW, 4284 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4285 .writefn = omap_threadid_write }, 4286 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4287 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4288 .type = ARM_CP_NO_RAW, 4289 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4290 /* 4291 * TODO: Peripheral port remap register: 4292 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4293 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4294 * when MMU is off. 4295 */ 4296 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4297 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4298 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4299 .writefn = omap_cachemaint_write }, 4300 { .name = "C9", .cp = 15, .crn = 9, 4301 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4302 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4303 }; 4304 4305 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4306 uint64_t value) 4307 { 4308 env->cp15.c15_cpar = value & 0x3fff; 4309 } 4310 4311 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4312 { .name = "XSCALE_CPAR", 4313 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4314 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4315 .writefn = xscale_cpar_write, }, 4316 { .name = "XSCALE_AUXCR", 4317 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4318 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4319 .resetvalue = 0, }, 4320 /* 4321 * XScale specific cache-lockdown: since we have no cache we NOP these 4322 * and hope the guest does not really rely on cache behaviour. 4323 */ 4324 { .name = "XSCALE_LOCK_ICACHE_LINE", 4325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4326 .access = PL1_W, .type = ARM_CP_NOP }, 4327 { .name = "XSCALE_UNLOCK_ICACHE", 4328 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4329 .access = PL1_W, .type = ARM_CP_NOP }, 4330 { .name = "XSCALE_DCACHE_LOCK", 4331 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4332 .access = PL1_RW, .type = ARM_CP_NOP }, 4333 { .name = "XSCALE_UNLOCK_DCACHE", 4334 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4335 .access = PL1_W, .type = ARM_CP_NOP }, 4336 }; 4337 4338 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4339 /* 4340 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4341 * implementation of this implementation-defined space. 4342 * Ideally this should eventually disappear in favour of actually 4343 * implementing the correct behaviour for all cores. 4344 */ 4345 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4346 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4347 .access = PL1_RW, 4348 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4349 .resetvalue = 0 }, 4350 }; 4351 4352 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4353 /* Cache status: RAZ because we have no cache so it's always clean */ 4354 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4355 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4356 .resetvalue = 0 }, 4357 }; 4358 4359 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4360 /* We never have a block transfer operation in progress */ 4361 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4362 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4363 .resetvalue = 0 }, 4364 /* The cache ops themselves: these all NOP for QEMU */ 4365 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4366 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4367 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4368 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4369 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4370 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4371 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4372 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4373 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4374 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4375 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4376 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4377 }; 4378 4379 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4380 /* 4381 * The cache test-and-clean instructions always return (1 << 30) 4382 * to indicate that there are no dirty cache lines. 4383 */ 4384 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4385 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4386 .resetvalue = (1 << 30) }, 4387 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4388 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4389 .resetvalue = (1 << 30) }, 4390 }; 4391 4392 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4393 /* Ignore ReadBuffer accesses */ 4394 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4395 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4396 .access = PL1_RW, .resetvalue = 0, 4397 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4398 }; 4399 4400 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4401 { 4402 unsigned int cur_el = arm_current_el(env); 4403 4404 if (arm_is_el2_enabled(env) && cur_el == 1) { 4405 return env->cp15.vpidr_el2; 4406 } 4407 return raw_read(env, ri); 4408 } 4409 4410 static uint64_t mpidr_read_val(CPUARMState *env) 4411 { 4412 ARMCPU *cpu = env_archcpu(env); 4413 uint64_t mpidr = cpu->mp_affinity; 4414 4415 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4416 mpidr |= (1U << 31); 4417 /* 4418 * Cores which are uniprocessor (non-coherent) 4419 * but still implement the MP extensions set 4420 * bit 30. (For instance, Cortex-R5). 4421 */ 4422 if (cpu->mp_is_up) { 4423 mpidr |= (1u << 30); 4424 } 4425 } 4426 return mpidr; 4427 } 4428 4429 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4430 { 4431 unsigned int cur_el = arm_current_el(env); 4432 4433 if (arm_is_el2_enabled(env) && cur_el == 1) { 4434 return env->cp15.vmpidr_el2; 4435 } 4436 return mpidr_read_val(env); 4437 } 4438 4439 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4440 /* NOP AMAIR0/1 */ 4441 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4442 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4443 .access = PL1_RW, .accessfn = access_tvm_trvm, 4444 .fgt = FGT_AMAIR_EL1, 4445 .type = ARM_CP_CONST, .resetvalue = 0 }, 4446 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4447 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4448 .access = PL1_RW, .accessfn = access_tvm_trvm, 4449 .type = ARM_CP_CONST, .resetvalue = 0 }, 4450 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4451 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4453 offsetof(CPUARMState, cp15.par_ns)} }, 4454 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4455 .access = PL1_RW, .accessfn = access_tvm_trvm, 4456 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4458 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4459 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4460 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4461 .access = PL1_RW, .accessfn = access_tvm_trvm, 4462 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4463 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4464 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4465 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4466 }; 4467 4468 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4469 { 4470 return vfp_get_fpcr(env); 4471 } 4472 4473 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4474 uint64_t value) 4475 { 4476 vfp_set_fpcr(env, value); 4477 } 4478 4479 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4480 { 4481 return vfp_get_fpsr(env); 4482 } 4483 4484 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4485 uint64_t value) 4486 { 4487 vfp_set_fpsr(env, value); 4488 } 4489 4490 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4491 bool isread) 4492 { 4493 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4494 return CP_ACCESS_TRAP; 4495 } 4496 return CP_ACCESS_OK; 4497 } 4498 4499 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4500 uint64_t value) 4501 { 4502 env->daif = value & PSTATE_DAIF; 4503 } 4504 4505 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4506 { 4507 return env->pstate & PSTATE_PAN; 4508 } 4509 4510 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4511 uint64_t value) 4512 { 4513 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4514 } 4515 4516 static const ARMCPRegInfo pan_reginfo = { 4517 .name = "PAN", .state = ARM_CP_STATE_AA64, 4518 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4519 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4520 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4521 }; 4522 4523 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4524 { 4525 return env->pstate & PSTATE_UAO; 4526 } 4527 4528 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4529 uint64_t value) 4530 { 4531 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4532 } 4533 4534 static const ARMCPRegInfo uao_reginfo = { 4535 .name = "UAO", .state = ARM_CP_STATE_AA64, 4536 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4537 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4538 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4539 }; 4540 4541 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4542 { 4543 return env->pstate & PSTATE_DIT; 4544 } 4545 4546 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4547 uint64_t value) 4548 { 4549 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4550 } 4551 4552 static const ARMCPRegInfo dit_reginfo = { 4553 .name = "DIT", .state = ARM_CP_STATE_AA64, 4554 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4555 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4556 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4557 }; 4558 4559 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4560 { 4561 return env->pstate & PSTATE_SSBS; 4562 } 4563 4564 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4565 uint64_t value) 4566 { 4567 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4568 } 4569 4570 static const ARMCPRegInfo ssbs_reginfo = { 4571 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4572 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4573 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4574 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4575 }; 4576 4577 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4578 const ARMCPRegInfo *ri, 4579 bool isread) 4580 { 4581 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4582 switch (arm_current_el(env)) { 4583 case 0: 4584 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4585 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4586 return CP_ACCESS_TRAP; 4587 } 4588 /* fall through */ 4589 case 1: 4590 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4591 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4592 return CP_ACCESS_TRAP_EL2; 4593 } 4594 break; 4595 } 4596 return CP_ACCESS_OK; 4597 } 4598 4599 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4600 { 4601 /* Cache invalidate/clean to Point of Unification... */ 4602 switch (arm_current_el(env)) { 4603 case 0: 4604 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4605 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4606 return CP_ACCESS_TRAP; 4607 } 4608 /* fall through */ 4609 case 1: 4610 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4611 if (arm_hcr_el2_eff(env) & hcrflags) { 4612 return CP_ACCESS_TRAP_EL2; 4613 } 4614 break; 4615 } 4616 return CP_ACCESS_OK; 4617 } 4618 4619 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4620 bool isread) 4621 { 4622 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4623 } 4624 4625 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4626 bool isread) 4627 { 4628 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4629 } 4630 4631 /* 4632 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4633 * Page D4-1736 (DDI0487A.b) 4634 */ 4635 4636 static int vae1_tlbmask(CPUARMState *env) 4637 { 4638 uint64_t hcr = arm_hcr_el2_eff(env); 4639 uint16_t mask; 4640 4641 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4642 mask = ARMMMUIdxBit_E20_2 | 4643 ARMMMUIdxBit_E20_2_PAN | 4644 ARMMMUIdxBit_E20_0; 4645 } else { 4646 mask = ARMMMUIdxBit_E10_1 | 4647 ARMMMUIdxBit_E10_1_PAN | 4648 ARMMMUIdxBit_E10_0; 4649 } 4650 return mask; 4651 } 4652 4653 /* Return 56 if TBI is enabled, 64 otherwise. */ 4654 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4655 uint64_t addr) 4656 { 4657 uint64_t tcr = regime_tcr(env, mmu_idx); 4658 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4659 int select = extract64(addr, 55, 1); 4660 4661 return (tbi >> select) & 1 ? 56 : 64; 4662 } 4663 4664 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4665 { 4666 uint64_t hcr = arm_hcr_el2_eff(env); 4667 ARMMMUIdx mmu_idx; 4668 4669 /* Only the regime of the mmu_idx below is significant. */ 4670 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4671 mmu_idx = ARMMMUIdx_E20_0; 4672 } else { 4673 mmu_idx = ARMMMUIdx_E10_0; 4674 } 4675 4676 return tlbbits_for_regime(env, mmu_idx, addr); 4677 } 4678 4679 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4680 uint64_t value) 4681 { 4682 CPUState *cs = env_cpu(env); 4683 int mask = vae1_tlbmask(env); 4684 4685 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4686 } 4687 4688 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4689 uint64_t value) 4690 { 4691 CPUState *cs = env_cpu(env); 4692 int mask = vae1_tlbmask(env); 4693 4694 if (tlb_force_broadcast(env)) { 4695 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4696 } else { 4697 tlb_flush_by_mmuidx(cs, mask); 4698 } 4699 } 4700 4701 static int e2_tlbmask(CPUARMState *env) 4702 { 4703 return (ARMMMUIdxBit_E20_0 | 4704 ARMMMUIdxBit_E20_2 | 4705 ARMMMUIdxBit_E20_2_PAN | 4706 ARMMMUIdxBit_E2); 4707 } 4708 4709 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4710 uint64_t value) 4711 { 4712 CPUState *cs = env_cpu(env); 4713 int mask = alle1_tlbmask(env); 4714 4715 tlb_flush_by_mmuidx(cs, mask); 4716 } 4717 4718 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4719 uint64_t value) 4720 { 4721 CPUState *cs = env_cpu(env); 4722 int mask = e2_tlbmask(env); 4723 4724 tlb_flush_by_mmuidx(cs, mask); 4725 } 4726 4727 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4728 uint64_t value) 4729 { 4730 ARMCPU *cpu = env_archcpu(env); 4731 CPUState *cs = CPU(cpu); 4732 4733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4734 } 4735 4736 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4737 uint64_t value) 4738 { 4739 CPUState *cs = env_cpu(env); 4740 int mask = alle1_tlbmask(env); 4741 4742 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4743 } 4744 4745 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4746 uint64_t value) 4747 { 4748 CPUState *cs = env_cpu(env); 4749 int mask = e2_tlbmask(env); 4750 4751 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4752 } 4753 4754 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4755 uint64_t value) 4756 { 4757 CPUState *cs = env_cpu(env); 4758 4759 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4760 } 4761 4762 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4763 uint64_t value) 4764 { 4765 /* 4766 * Invalidate by VA, EL2 4767 * Currently handles both VAE2 and VALE2, since we don't support 4768 * flush-last-level-only. 4769 */ 4770 CPUState *cs = env_cpu(env); 4771 int mask = e2_tlbmask(env); 4772 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4773 4774 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4775 } 4776 4777 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4778 uint64_t value) 4779 { 4780 /* 4781 * Invalidate by VA, EL3 4782 * Currently handles both VAE3 and VALE3, since we don't support 4783 * flush-last-level-only. 4784 */ 4785 ARMCPU *cpu = env_archcpu(env); 4786 CPUState *cs = CPU(cpu); 4787 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4788 4789 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4790 } 4791 4792 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4793 uint64_t value) 4794 { 4795 CPUState *cs = env_cpu(env); 4796 int mask = vae1_tlbmask(env); 4797 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4798 int bits = vae1_tlbbits(env, pageaddr); 4799 4800 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4801 } 4802 4803 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4804 uint64_t value) 4805 { 4806 /* 4807 * Invalidate by VA, EL1&0 (AArch64 version). 4808 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4809 * since we don't support flush-for-specific-ASID-only or 4810 * flush-last-level-only. 4811 */ 4812 CPUState *cs = env_cpu(env); 4813 int mask = vae1_tlbmask(env); 4814 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4815 int bits = vae1_tlbbits(env, pageaddr); 4816 4817 if (tlb_force_broadcast(env)) { 4818 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4819 } else { 4820 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4821 } 4822 } 4823 4824 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4825 uint64_t value) 4826 { 4827 CPUState *cs = env_cpu(env); 4828 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4829 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4830 4831 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4832 ARMMMUIdxBit_E2, bits); 4833 } 4834 4835 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4836 uint64_t value) 4837 { 4838 CPUState *cs = env_cpu(env); 4839 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4840 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4841 4842 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4843 ARMMMUIdxBit_E3, bits); 4844 } 4845 4846 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4847 { 4848 /* 4849 * The MSB of value is the NS field, which only applies if SEL2 4850 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4851 */ 4852 return (value >= 0 4853 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4854 && arm_is_secure_below_el3(env) 4855 ? ARMMMUIdxBit_Stage2_S 4856 : ARMMMUIdxBit_Stage2); 4857 } 4858 4859 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4860 uint64_t value) 4861 { 4862 CPUState *cs = env_cpu(env); 4863 int mask = ipas2e1_tlbmask(env, value); 4864 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4865 4866 if (tlb_force_broadcast(env)) { 4867 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4868 } else { 4869 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4870 } 4871 } 4872 4873 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4874 uint64_t value) 4875 { 4876 CPUState *cs = env_cpu(env); 4877 int mask = ipas2e1_tlbmask(env, value); 4878 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4879 4880 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4881 } 4882 4883 #ifdef TARGET_AARCH64 4884 typedef struct { 4885 uint64_t base; 4886 uint64_t length; 4887 } TLBIRange; 4888 4889 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4890 { 4891 /* 4892 * Note that the TLBI range TG field encoding differs from both 4893 * TG0 and TG1 encodings. 4894 */ 4895 switch (tg) { 4896 case 1: 4897 return Gran4K; 4898 case 2: 4899 return Gran16K; 4900 case 3: 4901 return Gran64K; 4902 default: 4903 return GranInvalid; 4904 } 4905 } 4906 4907 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4908 uint64_t value) 4909 { 4910 unsigned int page_size_granule, page_shift, num, scale, exponent; 4911 /* Extract one bit to represent the va selector in use. */ 4912 uint64_t select = sextract64(value, 36, 1); 4913 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 4914 TLBIRange ret = { }; 4915 ARMGranuleSize gran; 4916 4917 page_size_granule = extract64(value, 46, 2); 4918 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4919 4920 /* The granule encoded in value must match the granule in use. */ 4921 if (gran != param.gran) { 4922 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4923 page_size_granule); 4924 return ret; 4925 } 4926 4927 page_shift = arm_granule_bits(gran); 4928 num = extract64(value, 39, 5); 4929 scale = extract64(value, 44, 2); 4930 exponent = (5 * scale) + 1; 4931 4932 ret.length = (num + 1) << (exponent + page_shift); 4933 4934 if (param.select) { 4935 ret.base = sextract64(value, 0, 37); 4936 } else { 4937 ret.base = extract64(value, 0, 37); 4938 } 4939 if (param.ds) { 4940 /* 4941 * With DS=1, BaseADDR is always shifted 16 so that it is able 4942 * to address all 52 va bits. The input address is perforce 4943 * aligned on a 64k boundary regardless of translation granule. 4944 */ 4945 page_shift = 16; 4946 } 4947 ret.base <<= page_shift; 4948 4949 return ret; 4950 } 4951 4952 static void do_rvae_write(CPUARMState *env, uint64_t value, 4953 int idxmap, bool synced) 4954 { 4955 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4956 TLBIRange range; 4957 int bits; 4958 4959 range = tlbi_aa64_get_range(env, one_idx, value); 4960 bits = tlbbits_for_regime(env, one_idx, range.base); 4961 4962 if (synced) { 4963 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4964 range.base, 4965 range.length, 4966 idxmap, 4967 bits); 4968 } else { 4969 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4970 range.length, idxmap, bits); 4971 } 4972 } 4973 4974 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4975 const ARMCPRegInfo *ri, 4976 uint64_t value) 4977 { 4978 /* 4979 * Invalidate by VA range, EL1&0. 4980 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4981 * since we don't support flush-for-specific-ASID-only or 4982 * flush-last-level-only. 4983 */ 4984 4985 do_rvae_write(env, value, vae1_tlbmask(env), 4986 tlb_force_broadcast(env)); 4987 } 4988 4989 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4990 const ARMCPRegInfo *ri, 4991 uint64_t value) 4992 { 4993 /* 4994 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4995 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4996 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4997 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4998 * shareable specific flushes. 4999 */ 5000 5001 do_rvae_write(env, value, vae1_tlbmask(env), true); 5002 } 5003 5004 static int vae2_tlbmask(CPUARMState *env) 5005 { 5006 return ARMMMUIdxBit_E2; 5007 } 5008 5009 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5010 const ARMCPRegInfo *ri, 5011 uint64_t value) 5012 { 5013 /* 5014 * Invalidate by VA range, EL2. 5015 * Currently handles all of RVAE2 and RVALE2, 5016 * since we don't support flush-for-specific-ASID-only or 5017 * flush-last-level-only. 5018 */ 5019 5020 do_rvae_write(env, value, vae2_tlbmask(env), 5021 tlb_force_broadcast(env)); 5022 5023 5024 } 5025 5026 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5027 const ARMCPRegInfo *ri, 5028 uint64_t value) 5029 { 5030 /* 5031 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5032 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5033 * since we don't support flush-for-specific-ASID-only, 5034 * flush-last-level-only or inner/outer shareable specific flushes. 5035 */ 5036 5037 do_rvae_write(env, value, vae2_tlbmask(env), true); 5038 5039 } 5040 5041 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5042 const ARMCPRegInfo *ri, 5043 uint64_t value) 5044 { 5045 /* 5046 * Invalidate by VA range, EL3. 5047 * Currently handles all of RVAE3 and RVALE3, 5048 * since we don't support flush-for-specific-ASID-only or 5049 * flush-last-level-only. 5050 */ 5051 5052 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5053 } 5054 5055 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5056 const ARMCPRegInfo *ri, 5057 uint64_t value) 5058 { 5059 /* 5060 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5061 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5062 * since we don't support flush-for-specific-ASID-only, 5063 * flush-last-level-only or inner/outer specific flushes. 5064 */ 5065 5066 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5067 } 5068 5069 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5070 uint64_t value) 5071 { 5072 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5073 tlb_force_broadcast(env)); 5074 } 5075 5076 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5077 const ARMCPRegInfo *ri, 5078 uint64_t value) 5079 { 5080 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5081 } 5082 #endif 5083 5084 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5085 bool isread) 5086 { 5087 int cur_el = arm_current_el(env); 5088 5089 if (cur_el < 2) { 5090 uint64_t hcr = arm_hcr_el2_eff(env); 5091 5092 if (cur_el == 0) { 5093 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5094 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5095 return CP_ACCESS_TRAP_EL2; 5096 } 5097 } else { 5098 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5099 return CP_ACCESS_TRAP; 5100 } 5101 if (hcr & HCR_TDZ) { 5102 return CP_ACCESS_TRAP_EL2; 5103 } 5104 } 5105 } else if (hcr & HCR_TDZ) { 5106 return CP_ACCESS_TRAP_EL2; 5107 } 5108 } 5109 return CP_ACCESS_OK; 5110 } 5111 5112 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5113 { 5114 ARMCPU *cpu = env_archcpu(env); 5115 int dzp_bit = 1 << 4; 5116 5117 /* DZP indicates whether DC ZVA access is allowed */ 5118 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5119 dzp_bit = 0; 5120 } 5121 return cpu->dcz_blocksize | dzp_bit; 5122 } 5123 5124 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5125 bool isread) 5126 { 5127 if (!(env->pstate & PSTATE_SP)) { 5128 /* 5129 * Access to SP_EL0 is undefined if it's being used as 5130 * the stack pointer. 5131 */ 5132 return CP_ACCESS_TRAP_UNCATEGORIZED; 5133 } 5134 return CP_ACCESS_OK; 5135 } 5136 5137 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5138 { 5139 return env->pstate & PSTATE_SP; 5140 } 5141 5142 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5143 { 5144 update_spsel(env, val); 5145 } 5146 5147 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5148 uint64_t value) 5149 { 5150 ARMCPU *cpu = env_archcpu(env); 5151 5152 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5153 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5154 value &= ~SCTLR_M; 5155 } 5156 5157 /* ??? Lots of these bits are not implemented. */ 5158 5159 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5160 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5161 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5162 } else { 5163 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5164 SCTLR_ATA0 | SCTLR_ATA); 5165 } 5166 } 5167 5168 if (raw_read(env, ri) == value) { 5169 /* 5170 * Skip the TLB flush if nothing actually changed; Linux likes 5171 * to do a lot of pointless SCTLR writes. 5172 */ 5173 return; 5174 } 5175 5176 raw_write(env, ri, value); 5177 5178 /* This may enable/disable the MMU, so do a TLB flush. */ 5179 tlb_flush(CPU(cpu)); 5180 5181 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5182 /* 5183 * Normally we would always end the TB on an SCTLR write; see the 5184 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5185 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5186 * of hflags from the translator, so do it here. 5187 */ 5188 arm_rebuild_hflags(env); 5189 } 5190 } 5191 5192 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5193 uint64_t value) 5194 { 5195 /* 5196 * Some MDCR_EL3 bits affect whether PMU counters are running: 5197 * if we are trying to change any of those then we must 5198 * bracket this update with PMU start/finish calls. 5199 */ 5200 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5201 5202 if (pmu_op) { 5203 pmu_op_start(env); 5204 } 5205 env->cp15.mdcr_el3 = value; 5206 if (pmu_op) { 5207 pmu_op_finish(env); 5208 } 5209 } 5210 5211 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5212 uint64_t value) 5213 { 5214 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5215 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5216 } 5217 5218 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5219 uint64_t value) 5220 { 5221 /* 5222 * Some MDCR_EL2 bits affect whether PMU counters are running: 5223 * if we are trying to change any of those then we must 5224 * bracket this update with PMU start/finish calls. 5225 */ 5226 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5227 5228 if (pmu_op) { 5229 pmu_op_start(env); 5230 } 5231 env->cp15.mdcr_el2 = value; 5232 if (pmu_op) { 5233 pmu_op_finish(env); 5234 } 5235 } 5236 5237 #ifdef CONFIG_USER_ONLY 5238 /* 5239 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5240 * code to get around W^X restrictions, where one region is writable and the 5241 * other is executable. 5242 * 5243 * Since the executable region is never written to we cannot detect code 5244 * changes when running in user mode, and rely on the emulated JIT telling us 5245 * that the code has changed by executing this instruction. 5246 */ 5247 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5248 uint64_t value) 5249 { 5250 uint64_t icache_line_mask, start_address, end_address; 5251 const ARMCPU *cpu; 5252 5253 cpu = env_archcpu(env); 5254 5255 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5256 start_address = value & ~icache_line_mask; 5257 end_address = value | icache_line_mask; 5258 5259 mmap_lock(); 5260 5261 tb_invalidate_phys_range(start_address, end_address); 5262 5263 mmap_unlock(); 5264 } 5265 #endif 5266 5267 static const ARMCPRegInfo v8_cp_reginfo[] = { 5268 /* 5269 * Minimal set of EL0-visible registers. This will need to be expanded 5270 * significantly for system emulation of AArch64 CPUs. 5271 */ 5272 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5273 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5274 .access = PL0_RW, .type = ARM_CP_NZCV }, 5275 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5276 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5277 .type = ARM_CP_NO_RAW, 5278 .access = PL0_RW, .accessfn = aa64_daif_access, 5279 .fieldoffset = offsetof(CPUARMState, daif), 5280 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5281 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5282 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5283 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5284 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5285 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5286 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5287 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5288 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5289 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5290 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5291 .access = PL0_R, .type = ARM_CP_NO_RAW, 5292 .fgt = FGT_DCZID_EL0, 5293 .readfn = aa64_dczid_read }, 5294 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5295 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5296 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5297 #ifndef CONFIG_USER_ONLY 5298 /* Avoid overhead of an access check that always passes in user-mode */ 5299 .accessfn = aa64_zva_access, 5300 .fgt = FGT_DCZVA, 5301 #endif 5302 }, 5303 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5304 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5305 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5306 /* 5307 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5308 * don't emulate caches. 5309 */ 5310 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5311 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5312 .access = PL1_W, .type = ARM_CP_NOP, 5313 .fgt = FGT_ICIALLUIS, 5314 .accessfn = access_ticab }, 5315 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5316 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5317 .access = PL1_W, .type = ARM_CP_NOP, 5318 .fgt = FGT_ICIALLU, 5319 .accessfn = access_tocu }, 5320 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5321 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5322 .access = PL0_W, 5323 .fgt = FGT_ICIVAU, 5324 .accessfn = access_tocu, 5325 #ifdef CONFIG_USER_ONLY 5326 .type = ARM_CP_NO_RAW, 5327 .writefn = ic_ivau_write 5328 #else 5329 .type = ARM_CP_NOP 5330 #endif 5331 }, 5332 /* Cache ops: all NOPs since we don't emulate caches */ 5333 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5335 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5336 .fgt = FGT_DCIVAC, 5337 .type = ARM_CP_NOP }, 5338 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5339 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5340 .fgt = FGT_DCISW, 5341 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5342 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5343 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5344 .access = PL0_W, .type = ARM_CP_NOP, 5345 .fgt = FGT_DCCVAC, 5346 .accessfn = aa64_cacheop_poc_access }, 5347 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5348 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5349 .fgt = FGT_DCCSW, 5350 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5351 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5352 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5353 .access = PL0_W, .type = ARM_CP_NOP, 5354 .fgt = FGT_DCCVAU, 5355 .accessfn = access_tocu }, 5356 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5357 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5358 .access = PL0_W, .type = ARM_CP_NOP, 5359 .fgt = FGT_DCCIVAC, 5360 .accessfn = aa64_cacheop_poc_access }, 5361 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5362 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5363 .fgt = FGT_DCCISW, 5364 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5365 /* TLBI operations */ 5366 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5367 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5368 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5369 .fgt = FGT_TLBIVMALLE1IS, 5370 .writefn = tlbi_aa64_vmalle1is_write }, 5371 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5373 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5374 .fgt = FGT_TLBIVAE1IS, 5375 .writefn = tlbi_aa64_vae1is_write }, 5376 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5378 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5379 .fgt = FGT_TLBIASIDE1IS, 5380 .writefn = tlbi_aa64_vmalle1is_write }, 5381 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5382 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5383 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5384 .fgt = FGT_TLBIVAAE1IS, 5385 .writefn = tlbi_aa64_vae1is_write }, 5386 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5387 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5388 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5389 .fgt = FGT_TLBIVALE1IS, 5390 .writefn = tlbi_aa64_vae1is_write }, 5391 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5392 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5393 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5394 .fgt = FGT_TLBIVAALE1IS, 5395 .writefn = tlbi_aa64_vae1is_write }, 5396 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5397 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5398 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5399 .fgt = FGT_TLBIVMALLE1, 5400 .writefn = tlbi_aa64_vmalle1_write }, 5401 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5402 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5403 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5404 .fgt = FGT_TLBIVAE1, 5405 .writefn = tlbi_aa64_vae1_write }, 5406 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5408 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5409 .fgt = FGT_TLBIASIDE1, 5410 .writefn = tlbi_aa64_vmalle1_write }, 5411 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5412 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5413 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5414 .fgt = FGT_TLBIVAAE1, 5415 .writefn = tlbi_aa64_vae1_write }, 5416 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5417 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5418 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5419 .fgt = FGT_TLBIVALE1, 5420 .writefn = tlbi_aa64_vae1_write }, 5421 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5422 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5423 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5424 .fgt = FGT_TLBIVAALE1, 5425 .writefn = tlbi_aa64_vae1_write }, 5426 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5428 .access = PL2_W, .type = ARM_CP_NO_RAW, 5429 .writefn = tlbi_aa64_ipas2e1is_write }, 5430 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5432 .access = PL2_W, .type = ARM_CP_NO_RAW, 5433 .writefn = tlbi_aa64_ipas2e1is_write }, 5434 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5436 .access = PL2_W, .type = ARM_CP_NO_RAW, 5437 .writefn = tlbi_aa64_alle1is_write }, 5438 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5440 .access = PL2_W, .type = ARM_CP_NO_RAW, 5441 .writefn = tlbi_aa64_alle1is_write }, 5442 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5444 .access = PL2_W, .type = ARM_CP_NO_RAW, 5445 .writefn = tlbi_aa64_ipas2e1_write }, 5446 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5447 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5448 .access = PL2_W, .type = ARM_CP_NO_RAW, 5449 .writefn = tlbi_aa64_ipas2e1_write }, 5450 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5451 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5452 .access = PL2_W, .type = ARM_CP_NO_RAW, 5453 .writefn = tlbi_aa64_alle1_write }, 5454 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5456 .access = PL2_W, .type = ARM_CP_NO_RAW, 5457 .writefn = tlbi_aa64_alle1is_write }, 5458 #ifndef CONFIG_USER_ONLY 5459 /* 64 bit address translation operations */ 5460 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5462 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5463 .fgt = FGT_ATS1E1R, 5464 .writefn = ats_write64 }, 5465 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5466 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5467 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5468 .fgt = FGT_ATS1E1W, 5469 .writefn = ats_write64 }, 5470 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5472 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5473 .fgt = FGT_ATS1E0R, 5474 .writefn = ats_write64 }, 5475 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5476 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5477 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5478 .fgt = FGT_ATS1E0W, 5479 .writefn = ats_write64 }, 5480 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5481 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5482 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5483 .writefn = ats_write64 }, 5484 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5485 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5486 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5487 .writefn = ats_write64 }, 5488 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5490 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5491 .writefn = ats_write64 }, 5492 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5494 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5495 .writefn = ats_write64 }, 5496 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5497 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5498 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5499 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5500 .writefn = ats_write64 }, 5501 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5502 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5503 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5504 .writefn = ats_write64 }, 5505 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5506 .type = ARM_CP_ALIAS, 5507 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5508 .access = PL1_RW, .resetvalue = 0, 5509 .fgt = FGT_PAR_EL1, 5510 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5511 .writefn = par_write }, 5512 #endif 5513 /* TLB invalidate last level of translation table walk */ 5514 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5515 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5516 .writefn = tlbimva_is_write }, 5517 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5518 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5519 .writefn = tlbimvaa_is_write }, 5520 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5521 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5522 .writefn = tlbimva_write }, 5523 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5524 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5525 .writefn = tlbimvaa_write }, 5526 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5527 .type = ARM_CP_NO_RAW, .access = PL2_W, 5528 .writefn = tlbimva_hyp_write }, 5529 { .name = "TLBIMVALHIS", 5530 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5531 .type = ARM_CP_NO_RAW, .access = PL2_W, 5532 .writefn = tlbimva_hyp_is_write }, 5533 { .name = "TLBIIPAS2", 5534 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5535 .type = ARM_CP_NO_RAW, .access = PL2_W, 5536 .writefn = tlbiipas2_hyp_write }, 5537 { .name = "TLBIIPAS2IS", 5538 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5539 .type = ARM_CP_NO_RAW, .access = PL2_W, 5540 .writefn = tlbiipas2is_hyp_write }, 5541 { .name = "TLBIIPAS2L", 5542 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5543 .type = ARM_CP_NO_RAW, .access = PL2_W, 5544 .writefn = tlbiipas2_hyp_write }, 5545 { .name = "TLBIIPAS2LIS", 5546 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5547 .type = ARM_CP_NO_RAW, .access = PL2_W, 5548 .writefn = tlbiipas2is_hyp_write }, 5549 /* 32 bit cache operations */ 5550 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5551 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5552 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5553 .type = ARM_CP_NOP, .access = PL1_W }, 5554 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5555 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5556 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5557 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5558 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5559 .type = ARM_CP_NOP, .access = PL1_W }, 5560 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5561 .type = ARM_CP_NOP, .access = PL1_W }, 5562 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5563 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5564 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5565 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5566 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5567 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5568 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5569 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5570 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5571 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5572 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5573 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5574 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5575 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5576 /* MMU Domain access control / MPU write buffer control */ 5577 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5578 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5579 .writefn = dacr_write, .raw_writefn = raw_write, 5580 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5581 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5582 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5583 .type = ARM_CP_ALIAS, 5584 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5585 .access = PL1_RW, 5586 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5587 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5588 .type = ARM_CP_ALIAS, 5589 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5590 .access = PL1_RW, 5591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5592 /* 5593 * We rely on the access checks not allowing the guest to write to the 5594 * state field when SPSel indicates that it's being used as the stack 5595 * pointer. 5596 */ 5597 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5599 .access = PL1_RW, .accessfn = sp_el0_access, 5600 .type = ARM_CP_ALIAS, 5601 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5602 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5603 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5604 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5605 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5606 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5607 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5608 .type = ARM_CP_NO_RAW, 5609 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5610 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5611 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5612 .access = PL2_RW, 5613 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5614 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5615 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5616 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5617 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5618 .writefn = dacr_write, .raw_writefn = raw_write, 5619 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5620 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5621 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5622 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5623 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5624 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5625 .type = ARM_CP_ALIAS, 5626 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5627 .access = PL2_RW, 5628 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5629 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5630 .type = ARM_CP_ALIAS, 5631 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5632 .access = PL2_RW, 5633 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5634 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5635 .type = ARM_CP_ALIAS, 5636 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5637 .access = PL2_RW, 5638 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5639 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5640 .type = ARM_CP_ALIAS, 5641 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5642 .access = PL2_RW, 5643 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5644 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5645 .type = ARM_CP_IO, 5646 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5647 .resetvalue = 0, 5648 .access = PL3_RW, 5649 .writefn = mdcr_el3_write, 5650 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5651 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5652 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5653 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5654 .writefn = sdcr_write, 5655 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5656 }; 5657 5658 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5659 { 5660 ARMCPU *cpu = env_archcpu(env); 5661 5662 if (arm_feature(env, ARM_FEATURE_V8)) { 5663 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5664 } else { 5665 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5666 } 5667 5668 if (arm_feature(env, ARM_FEATURE_EL3)) { 5669 valid_mask &= ~HCR_HCD; 5670 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5671 /* 5672 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5673 * However, if we're using the SMC PSCI conduit then QEMU is 5674 * effectively acting like EL3 firmware and so the guest at 5675 * EL2 should retain the ability to prevent EL1 from being 5676 * able to make SMC calls into the ersatz firmware, so in 5677 * that case HCR.TSC should be read/write. 5678 */ 5679 valid_mask &= ~HCR_TSC; 5680 } 5681 5682 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5683 if (cpu_isar_feature(aa64_vh, cpu)) { 5684 valid_mask |= HCR_E2H; 5685 } 5686 if (cpu_isar_feature(aa64_ras, cpu)) { 5687 valid_mask |= HCR_TERR | HCR_TEA; 5688 } 5689 if (cpu_isar_feature(aa64_lor, cpu)) { 5690 valid_mask |= HCR_TLOR; 5691 } 5692 if (cpu_isar_feature(aa64_pauth, cpu)) { 5693 valid_mask |= HCR_API | HCR_APK; 5694 } 5695 if (cpu_isar_feature(aa64_mte, cpu)) { 5696 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5697 } 5698 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5699 valid_mask |= HCR_ENSCXT; 5700 } 5701 if (cpu_isar_feature(aa64_fwb, cpu)) { 5702 valid_mask |= HCR_FWB; 5703 } 5704 if (cpu_isar_feature(aa64_rme, cpu)) { 5705 valid_mask |= HCR_GPF; 5706 } 5707 } 5708 5709 if (cpu_isar_feature(any_evt, cpu)) { 5710 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5711 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5712 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5713 } 5714 5715 /* Clear RES0 bits. */ 5716 value &= valid_mask; 5717 5718 /* 5719 * These bits change the MMU setup: 5720 * HCR_VM enables stage 2 translation 5721 * HCR_PTW forbids certain page-table setups 5722 * HCR_DC disables stage1 and enables stage2 translation 5723 * HCR_DCT enables tagging on (disabled) stage1 translation 5724 * HCR_FWB changes the interpretation of stage2 descriptor bits 5725 */ 5726 if ((env->cp15.hcr_el2 ^ value) & 5727 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5728 tlb_flush(CPU(cpu)); 5729 } 5730 env->cp15.hcr_el2 = value; 5731 5732 /* 5733 * Updates to VI and VF require us to update the status of 5734 * virtual interrupts, which are the logical OR of these bits 5735 * and the state of the input lines from the GIC. (This requires 5736 * that we have the iothread lock, which is done by marking the 5737 * reginfo structs as ARM_CP_IO.) 5738 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5739 * possible for it to be taken immediately, because VIRQ and 5740 * VFIQ are masked unless running at EL0 or EL1, and HCR 5741 * can only be written at EL2. 5742 */ 5743 g_assert(qemu_mutex_iothread_locked()); 5744 arm_cpu_update_virq(cpu); 5745 arm_cpu_update_vfiq(cpu); 5746 arm_cpu_update_vserr(cpu); 5747 } 5748 5749 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5750 { 5751 do_hcr_write(env, value, 0); 5752 } 5753 5754 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5755 uint64_t value) 5756 { 5757 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5758 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5759 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5760 } 5761 5762 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5763 uint64_t value) 5764 { 5765 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5766 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5767 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5768 } 5769 5770 /* 5771 * Return the effective value of HCR_EL2, at the given security state. 5772 * Bits that are not included here: 5773 * RW (read from SCR_EL3.RW as needed) 5774 */ 5775 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5776 { 5777 uint64_t ret = env->cp15.hcr_el2; 5778 5779 if (!arm_is_el2_enabled_secstate(env, secure)) { 5780 /* 5781 * "This register has no effect if EL2 is not enabled in the 5782 * current Security state". This is ARMv8.4-SecEL2 speak for 5783 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5784 * 5785 * Prior to that, the language was "In an implementation that 5786 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5787 * as if this field is 0 for all purposes other than a direct 5788 * read or write access of HCR_EL2". With lots of enumeration 5789 * on a per-field basis. In current QEMU, this is condition 5790 * is arm_is_secure_below_el3. 5791 * 5792 * Since the v8.4 language applies to the entire register, and 5793 * appears to be backward compatible, use that. 5794 */ 5795 return 0; 5796 } 5797 5798 /* 5799 * For a cpu that supports both aarch64 and aarch32, we can set bits 5800 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5801 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5802 */ 5803 if (!arm_el_is_aa64(env, 2)) { 5804 uint64_t aa32_valid; 5805 5806 /* 5807 * These bits are up-to-date as of ARMv8.6. 5808 * For HCR, it's easiest to list just the 2 bits that are invalid. 5809 * For HCR2, list those that are valid. 5810 */ 5811 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5812 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5813 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5814 ret &= aa32_valid; 5815 } 5816 5817 if (ret & HCR_TGE) { 5818 /* These bits are up-to-date as of ARMv8.6. */ 5819 if (ret & HCR_E2H) { 5820 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5821 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5822 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5823 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5824 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5825 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5826 } else { 5827 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5828 } 5829 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5830 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5831 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5832 HCR_TLOR); 5833 } 5834 5835 return ret; 5836 } 5837 5838 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5839 { 5840 if (arm_feature(env, ARM_FEATURE_M)) { 5841 return 0; 5842 } 5843 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5844 } 5845 5846 /* 5847 * Corresponds to ARM pseudocode function ELIsInHost(). 5848 */ 5849 bool el_is_in_host(CPUARMState *env, int el) 5850 { 5851 uint64_t mask; 5852 5853 /* 5854 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5855 * Perform the simplest bit tests first, and validate EL2 afterward. 5856 */ 5857 if (el & 1) { 5858 return false; /* EL1 or EL3 */ 5859 } 5860 5861 /* 5862 * Note that hcr_write() checks isar_feature_aa64_vh(), 5863 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5864 */ 5865 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5866 if ((env->cp15.hcr_el2 & mask) != mask) { 5867 return false; 5868 } 5869 5870 /* TGE and/or E2H set: double check those bits are currently legal. */ 5871 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5872 } 5873 5874 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5875 uint64_t value) 5876 { 5877 uint64_t valid_mask = 0; 5878 5879 /* No features adding bits to HCRX are implemented. */ 5880 5881 /* Clear RES0 bits. */ 5882 env->cp15.hcrx_el2 = value & valid_mask; 5883 } 5884 5885 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5886 bool isread) 5887 { 5888 if (arm_current_el(env) < 3 5889 && arm_feature(env, ARM_FEATURE_EL3) 5890 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5891 return CP_ACCESS_TRAP_EL3; 5892 } 5893 return CP_ACCESS_OK; 5894 } 5895 5896 static const ARMCPRegInfo hcrx_el2_reginfo = { 5897 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5898 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5899 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5900 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5901 }; 5902 5903 /* Return the effective value of HCRX_EL2. */ 5904 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5905 { 5906 /* 5907 * The bits in this register behave as 0 for all purposes other than 5908 * direct reads of the register if: 5909 * - EL2 is not enabled in the current security state, 5910 * - SCR_EL3.HXEn is 0. 5911 */ 5912 if (!arm_is_el2_enabled(env) 5913 || (arm_feature(env, ARM_FEATURE_EL3) 5914 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5915 return 0; 5916 } 5917 return env->cp15.hcrx_el2; 5918 } 5919 5920 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5921 uint64_t value) 5922 { 5923 /* 5924 * For A-profile AArch32 EL3, if NSACR.CP10 5925 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5926 */ 5927 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5928 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5929 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5930 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5931 } 5932 env->cp15.cptr_el[2] = value; 5933 } 5934 5935 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5936 { 5937 /* 5938 * For A-profile AArch32 EL3, if NSACR.CP10 5939 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5940 */ 5941 uint64_t value = env->cp15.cptr_el[2]; 5942 5943 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5944 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5945 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5946 } 5947 return value; 5948 } 5949 5950 static const ARMCPRegInfo el2_cp_reginfo[] = { 5951 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5952 .type = ARM_CP_IO, 5953 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5954 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5955 .writefn = hcr_write, .raw_writefn = raw_write }, 5956 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5957 .type = ARM_CP_ALIAS | ARM_CP_IO, 5958 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5959 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5960 .writefn = hcr_writelow }, 5961 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5962 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5963 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5964 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5965 .type = ARM_CP_ALIAS, 5966 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5967 .access = PL2_RW, 5968 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5969 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5970 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5971 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5972 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5973 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5974 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5975 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5976 .type = ARM_CP_ALIAS, 5977 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5978 .access = PL2_RW, 5979 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5980 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5981 .type = ARM_CP_ALIAS, 5982 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5983 .access = PL2_RW, 5984 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5985 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5986 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5987 .access = PL2_RW, .writefn = vbar_write, 5988 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5989 .resetvalue = 0 }, 5990 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5991 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5992 .access = PL3_RW, .type = ARM_CP_ALIAS, 5993 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5994 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5995 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5996 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5997 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5998 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5999 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6000 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6001 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6002 .resetvalue = 0 }, 6003 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6004 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6005 .access = PL2_RW, .type = ARM_CP_ALIAS, 6006 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6007 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6008 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6009 .access = PL2_RW, .type = ARM_CP_CONST, 6010 .resetvalue = 0 }, 6011 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6012 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6013 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6014 .access = PL2_RW, .type = ARM_CP_CONST, 6015 .resetvalue = 0 }, 6016 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6017 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6018 .access = PL2_RW, .type = ARM_CP_CONST, 6019 .resetvalue = 0 }, 6020 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6021 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6022 .access = PL2_RW, .type = ARM_CP_CONST, 6023 .resetvalue = 0 }, 6024 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6025 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6026 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6027 .raw_writefn = raw_write, 6028 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6029 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6030 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6031 .type = ARM_CP_ALIAS, 6032 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6033 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6034 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6035 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6036 .access = PL2_RW, 6037 /* no .writefn needed as this can't cause an ASID change */ 6038 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6039 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6040 .cp = 15, .opc1 = 6, .crm = 2, 6041 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6042 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6043 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6044 .writefn = vttbr_write, .raw_writefn = raw_write }, 6045 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6046 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6047 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6048 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6049 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6050 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6051 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6052 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6053 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6054 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6055 .access = PL2_RW, .resetvalue = 0, 6056 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6057 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6058 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6059 .access = PL2_RW, .resetvalue = 0, 6060 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6061 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6062 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6063 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6064 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6065 { .name = "TLBIALLNSNH", 6066 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6067 .type = ARM_CP_NO_RAW, .access = PL2_W, 6068 .writefn = tlbiall_nsnh_write }, 6069 { .name = "TLBIALLNSNHIS", 6070 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6071 .type = ARM_CP_NO_RAW, .access = PL2_W, 6072 .writefn = tlbiall_nsnh_is_write }, 6073 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6074 .type = ARM_CP_NO_RAW, .access = PL2_W, 6075 .writefn = tlbiall_hyp_write }, 6076 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6077 .type = ARM_CP_NO_RAW, .access = PL2_W, 6078 .writefn = tlbiall_hyp_is_write }, 6079 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6080 .type = ARM_CP_NO_RAW, .access = PL2_W, 6081 .writefn = tlbimva_hyp_write }, 6082 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6083 .type = ARM_CP_NO_RAW, .access = PL2_W, 6084 .writefn = tlbimva_hyp_is_write }, 6085 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6086 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6087 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6088 .writefn = tlbi_aa64_alle2_write }, 6089 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6090 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6091 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6092 .writefn = tlbi_aa64_vae2_write }, 6093 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6094 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6095 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6096 .writefn = tlbi_aa64_vae2_write }, 6097 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6098 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6099 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6100 .writefn = tlbi_aa64_alle2is_write }, 6101 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6102 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6103 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6104 .writefn = tlbi_aa64_vae2is_write }, 6105 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6106 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6107 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6108 .writefn = tlbi_aa64_vae2is_write }, 6109 #ifndef CONFIG_USER_ONLY 6110 /* 6111 * Unlike the other EL2-related AT operations, these must 6112 * UNDEF from EL3 if EL2 is not implemented, which is why we 6113 * define them here rather than with the rest of the AT ops. 6114 */ 6115 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6116 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6117 .access = PL2_W, .accessfn = at_s1e2_access, 6118 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6119 .writefn = ats_write64 }, 6120 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6121 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6122 .access = PL2_W, .accessfn = at_s1e2_access, 6123 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6124 .writefn = ats_write64 }, 6125 /* 6126 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6127 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6128 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6129 * to behave as if SCR.NS was 1. 6130 */ 6131 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6132 .access = PL2_W, 6133 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6134 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6135 .access = PL2_W, 6136 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6137 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6138 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6139 /* 6140 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6141 * reset values as IMPDEF. We choose to reset to 3 to comply with 6142 * both ARMv7 and ARMv8. 6143 */ 6144 .access = PL2_RW, .resetvalue = 3, 6145 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6146 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6147 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6148 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6149 .writefn = gt_cntvoff_write, 6150 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6151 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6152 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6153 .writefn = gt_cntvoff_write, 6154 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6155 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6156 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6157 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6158 .type = ARM_CP_IO, .access = PL2_RW, 6159 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6160 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6162 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6163 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6164 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6165 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6166 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6167 .resetfn = gt_hyp_timer_reset, 6168 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6169 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6170 .type = ARM_CP_IO, 6171 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6172 .access = PL2_RW, 6173 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6174 .resetvalue = 0, 6175 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6176 #endif 6177 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6178 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6179 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6180 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6181 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6182 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6183 .access = PL2_RW, 6184 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6185 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6186 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6187 .access = PL2_RW, 6188 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6189 }; 6190 6191 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6192 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6193 .type = ARM_CP_ALIAS | ARM_CP_IO, 6194 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6195 .access = PL2_RW, 6196 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6197 .writefn = hcr_writehigh }, 6198 }; 6199 6200 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6201 bool isread) 6202 { 6203 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6204 return CP_ACCESS_OK; 6205 } 6206 return CP_ACCESS_TRAP_UNCATEGORIZED; 6207 } 6208 6209 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6210 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6211 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6212 .access = PL2_RW, .accessfn = sel2_access, 6213 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6214 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6215 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6216 .access = PL2_RW, .accessfn = sel2_access, 6217 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6218 }; 6219 6220 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6221 bool isread) 6222 { 6223 /* 6224 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6225 * At Secure EL1 it traps to EL3 or EL2. 6226 */ 6227 if (arm_current_el(env) == 3) { 6228 return CP_ACCESS_OK; 6229 } 6230 if (arm_is_secure_below_el3(env)) { 6231 if (env->cp15.scr_el3 & SCR_EEL2) { 6232 return CP_ACCESS_TRAP_EL2; 6233 } 6234 return CP_ACCESS_TRAP_EL3; 6235 } 6236 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6237 if (isread) { 6238 return CP_ACCESS_OK; 6239 } 6240 return CP_ACCESS_TRAP_UNCATEGORIZED; 6241 } 6242 6243 static const ARMCPRegInfo el3_cp_reginfo[] = { 6244 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6245 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6246 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6247 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6248 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6249 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6250 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6251 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6252 .writefn = scr_write, .raw_writefn = raw_write }, 6253 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6254 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6255 .access = PL3_RW, .resetvalue = 0, 6256 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6257 { .name = "SDER", 6258 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6259 .access = PL3_RW, .resetvalue = 0, 6260 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6261 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6262 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6263 .writefn = vbar_write, .resetvalue = 0, 6264 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6265 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6266 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6267 .access = PL3_RW, .resetvalue = 0, 6268 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6269 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6270 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6271 .access = PL3_RW, 6272 /* no .writefn needed as this can't cause an ASID change */ 6273 .resetvalue = 0, 6274 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6275 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6276 .type = ARM_CP_ALIAS, 6277 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6278 .access = PL3_RW, 6279 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6280 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6281 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6282 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6283 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6284 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6285 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6286 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6287 .type = ARM_CP_ALIAS, 6288 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6289 .access = PL3_RW, 6290 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6291 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6292 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6293 .access = PL3_RW, .writefn = vbar_write, 6294 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6295 .resetvalue = 0 }, 6296 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6297 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6298 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6299 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6300 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6301 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6302 .access = PL3_RW, .resetvalue = 0, 6303 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6304 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6305 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6306 .access = PL3_RW, .type = ARM_CP_CONST, 6307 .resetvalue = 0 }, 6308 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6309 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6310 .access = PL3_RW, .type = ARM_CP_CONST, 6311 .resetvalue = 0 }, 6312 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6313 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6314 .access = PL3_RW, .type = ARM_CP_CONST, 6315 .resetvalue = 0 }, 6316 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6317 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6318 .access = PL3_W, .type = ARM_CP_NO_RAW, 6319 .writefn = tlbi_aa64_alle3is_write }, 6320 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6321 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6322 .access = PL3_W, .type = ARM_CP_NO_RAW, 6323 .writefn = tlbi_aa64_vae3is_write }, 6324 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6325 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6326 .access = PL3_W, .type = ARM_CP_NO_RAW, 6327 .writefn = tlbi_aa64_vae3is_write }, 6328 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6329 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6330 .access = PL3_W, .type = ARM_CP_NO_RAW, 6331 .writefn = tlbi_aa64_alle3_write }, 6332 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6333 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6334 .access = PL3_W, .type = ARM_CP_NO_RAW, 6335 .writefn = tlbi_aa64_vae3_write }, 6336 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6337 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6338 .access = PL3_W, .type = ARM_CP_NO_RAW, 6339 .writefn = tlbi_aa64_vae3_write }, 6340 }; 6341 6342 #ifndef CONFIG_USER_ONLY 6343 /* Test if system register redirection is to occur in the current state. */ 6344 static bool redirect_for_e2h(CPUARMState *env) 6345 { 6346 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6347 } 6348 6349 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6350 { 6351 CPReadFn *readfn; 6352 6353 if (redirect_for_e2h(env)) { 6354 /* Switch to the saved EL2 version of the register. */ 6355 ri = ri->opaque; 6356 readfn = ri->readfn; 6357 } else { 6358 readfn = ri->orig_readfn; 6359 } 6360 if (readfn == NULL) { 6361 readfn = raw_read; 6362 } 6363 return readfn(env, ri); 6364 } 6365 6366 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6367 uint64_t value) 6368 { 6369 CPWriteFn *writefn; 6370 6371 if (redirect_for_e2h(env)) { 6372 /* Switch to the saved EL2 version of the register. */ 6373 ri = ri->opaque; 6374 writefn = ri->writefn; 6375 } else { 6376 writefn = ri->orig_writefn; 6377 } 6378 if (writefn == NULL) { 6379 writefn = raw_write; 6380 } 6381 writefn(env, ri, value); 6382 } 6383 6384 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6385 { 6386 struct E2HAlias { 6387 uint32_t src_key, dst_key, new_key; 6388 const char *src_name, *dst_name, *new_name; 6389 bool (*feature)(const ARMISARegisters *id); 6390 }; 6391 6392 #define K(op0, op1, crn, crm, op2) \ 6393 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6394 6395 static const struct E2HAlias aliases[] = { 6396 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6397 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6398 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6399 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6400 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6401 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6402 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6403 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6404 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6405 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6406 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6407 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6408 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6409 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6410 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6411 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6412 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6413 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6414 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6415 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6416 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6417 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6418 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6419 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6420 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6421 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6422 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6423 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6424 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6425 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6426 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6427 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6428 6429 /* 6430 * Note that redirection of ZCR is mentioned in the description 6431 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6432 * not in the summary table. 6433 */ 6434 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6435 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6436 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6437 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6438 6439 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6440 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6441 6442 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6443 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6444 isar_feature_aa64_scxtnum }, 6445 6446 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6447 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6448 }; 6449 #undef K 6450 6451 size_t i; 6452 6453 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6454 const struct E2HAlias *a = &aliases[i]; 6455 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6456 bool ok; 6457 6458 if (a->feature && !a->feature(&cpu->isar)) { 6459 continue; 6460 } 6461 6462 src_reg = g_hash_table_lookup(cpu->cp_regs, 6463 (gpointer)(uintptr_t)a->src_key); 6464 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6465 (gpointer)(uintptr_t)a->dst_key); 6466 g_assert(src_reg != NULL); 6467 g_assert(dst_reg != NULL); 6468 6469 /* Cross-compare names to detect typos in the keys. */ 6470 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6471 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6472 6473 /* None of the core system registers use opaque; we will. */ 6474 g_assert(src_reg->opaque == NULL); 6475 6476 /* Create alias before redirection so we dup the right data. */ 6477 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6478 6479 new_reg->name = a->new_name; 6480 new_reg->type |= ARM_CP_ALIAS; 6481 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6482 new_reg->access &= PL2_RW | PL3_RW; 6483 6484 ok = g_hash_table_insert(cpu->cp_regs, 6485 (gpointer)(uintptr_t)a->new_key, new_reg); 6486 g_assert(ok); 6487 6488 src_reg->opaque = dst_reg; 6489 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6490 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6491 if (!src_reg->raw_readfn) { 6492 src_reg->raw_readfn = raw_read; 6493 } 6494 if (!src_reg->raw_writefn) { 6495 src_reg->raw_writefn = raw_write; 6496 } 6497 src_reg->readfn = el2_e2h_read; 6498 src_reg->writefn = el2_e2h_write; 6499 } 6500 } 6501 #endif 6502 6503 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6504 bool isread) 6505 { 6506 int cur_el = arm_current_el(env); 6507 6508 if (cur_el < 2) { 6509 uint64_t hcr = arm_hcr_el2_eff(env); 6510 6511 if (cur_el == 0) { 6512 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6513 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6514 return CP_ACCESS_TRAP_EL2; 6515 } 6516 } else { 6517 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6518 return CP_ACCESS_TRAP; 6519 } 6520 if (hcr & HCR_TID2) { 6521 return CP_ACCESS_TRAP_EL2; 6522 } 6523 } 6524 } else if (hcr & HCR_TID2) { 6525 return CP_ACCESS_TRAP_EL2; 6526 } 6527 } 6528 6529 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6530 return CP_ACCESS_TRAP_EL2; 6531 } 6532 6533 return CP_ACCESS_OK; 6534 } 6535 6536 /* 6537 * Check for traps to RAS registers, which are controlled 6538 * by HCR_EL2.TERR and SCR_EL3.TERR. 6539 */ 6540 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6541 bool isread) 6542 { 6543 int el = arm_current_el(env); 6544 6545 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6546 return CP_ACCESS_TRAP_EL2; 6547 } 6548 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6549 return CP_ACCESS_TRAP_EL3; 6550 } 6551 return CP_ACCESS_OK; 6552 } 6553 6554 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6555 { 6556 int el = arm_current_el(env); 6557 6558 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6559 return env->cp15.vdisr_el2; 6560 } 6561 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6562 return 0; /* RAZ/WI */ 6563 } 6564 return env->cp15.disr_el1; 6565 } 6566 6567 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6568 { 6569 int el = arm_current_el(env); 6570 6571 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6572 env->cp15.vdisr_el2 = val; 6573 return; 6574 } 6575 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6576 return; /* RAZ/WI */ 6577 } 6578 env->cp15.disr_el1 = val; 6579 } 6580 6581 /* 6582 * Minimal RAS implementation with no Error Records. 6583 * Which means that all of the Error Record registers: 6584 * ERXADDR_EL1 6585 * ERXCTLR_EL1 6586 * ERXFR_EL1 6587 * ERXMISC0_EL1 6588 * ERXMISC1_EL1 6589 * ERXMISC2_EL1 6590 * ERXMISC3_EL1 6591 * ERXPFGCDN_EL1 (RASv1p1) 6592 * ERXPFGCTL_EL1 (RASv1p1) 6593 * ERXPFGF_EL1 (RASv1p1) 6594 * ERXSTATUS_EL1 6595 * and 6596 * ERRSELR_EL1 6597 * may generate UNDEFINED, which is the effect we get by not 6598 * listing them at all. 6599 * 6600 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6601 * is higher priority than FGT-to-EL2 so we do not need to list them 6602 * in order to check for an FGT. 6603 */ 6604 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6605 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6606 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6607 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6608 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6609 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6610 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6611 .access = PL1_R, .accessfn = access_terr, 6612 .fgt = FGT_ERRIDR_EL1, 6613 .type = ARM_CP_CONST, .resetvalue = 0 }, 6614 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6615 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6616 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6617 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6618 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6619 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6620 }; 6621 6622 /* 6623 * Return the exception level to which exceptions should be taken 6624 * via SVEAccessTrap. This excludes the check for whether the exception 6625 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6626 * be found by testing 0 < fp_exception_el < sve_exception_el. 6627 * 6628 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6629 * pseudocode does *not* separate out the FP trap checks, but has them 6630 * all in one function. 6631 */ 6632 int sve_exception_el(CPUARMState *env, int el) 6633 { 6634 #ifndef CONFIG_USER_ONLY 6635 if (el <= 1 && !el_is_in_host(env, el)) { 6636 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6637 case 1: 6638 if (el != 0) { 6639 break; 6640 } 6641 /* fall through */ 6642 case 0: 6643 case 2: 6644 return 1; 6645 } 6646 } 6647 6648 if (el <= 2 && arm_is_el2_enabled(env)) { 6649 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6650 if (env->cp15.hcr_el2 & HCR_E2H) { 6651 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6652 case 1: 6653 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6654 break; 6655 } 6656 /* fall through */ 6657 case 0: 6658 case 2: 6659 return 2; 6660 } 6661 } else { 6662 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6663 return 2; 6664 } 6665 } 6666 } 6667 6668 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6669 if (arm_feature(env, ARM_FEATURE_EL3) 6670 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6671 return 3; 6672 } 6673 #endif 6674 return 0; 6675 } 6676 6677 /* 6678 * Return the exception level to which exceptions should be taken for SME. 6679 * C.f. the ARM pseudocode function CheckSMEAccess. 6680 */ 6681 int sme_exception_el(CPUARMState *env, int el) 6682 { 6683 #ifndef CONFIG_USER_ONLY 6684 if (el <= 1 && !el_is_in_host(env, el)) { 6685 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6686 case 1: 6687 if (el != 0) { 6688 break; 6689 } 6690 /* fall through */ 6691 case 0: 6692 case 2: 6693 return 1; 6694 } 6695 } 6696 6697 if (el <= 2 && arm_is_el2_enabled(env)) { 6698 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6699 if (env->cp15.hcr_el2 & HCR_E2H) { 6700 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6701 case 1: 6702 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6703 break; 6704 } 6705 /* fall through */ 6706 case 0: 6707 case 2: 6708 return 2; 6709 } 6710 } else { 6711 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6712 return 2; 6713 } 6714 } 6715 } 6716 6717 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6718 if (arm_feature(env, ARM_FEATURE_EL3) 6719 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6720 return 3; 6721 } 6722 #endif 6723 return 0; 6724 } 6725 6726 /* 6727 * Given that SVE is enabled, return the vector length for EL. 6728 */ 6729 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6730 { 6731 ARMCPU *cpu = env_archcpu(env); 6732 uint64_t *cr = env->vfp.zcr_el; 6733 uint32_t map = cpu->sve_vq.map; 6734 uint32_t len = ARM_MAX_VQ - 1; 6735 6736 if (sm) { 6737 cr = env->vfp.smcr_el; 6738 map = cpu->sme_vq.map; 6739 } 6740 6741 if (el <= 1 && !el_is_in_host(env, el)) { 6742 len = MIN(len, 0xf & (uint32_t)cr[1]); 6743 } 6744 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6745 len = MIN(len, 0xf & (uint32_t)cr[2]); 6746 } 6747 if (arm_feature(env, ARM_FEATURE_EL3)) { 6748 len = MIN(len, 0xf & (uint32_t)cr[3]); 6749 } 6750 6751 map &= MAKE_64BIT_MASK(0, len + 1); 6752 if (map != 0) { 6753 return 31 - clz32(map); 6754 } 6755 6756 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6757 assert(sm); 6758 return ctz32(cpu->sme_vq.map); 6759 } 6760 6761 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6762 { 6763 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6764 } 6765 6766 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6767 uint64_t value) 6768 { 6769 int cur_el = arm_current_el(env); 6770 int old_len = sve_vqm1_for_el(env, cur_el); 6771 int new_len; 6772 6773 /* Bits other than [3:0] are RAZ/WI. */ 6774 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6775 raw_write(env, ri, value & 0xf); 6776 6777 /* 6778 * Because we arrived here, we know both FP and SVE are enabled; 6779 * otherwise we would have trapped access to the ZCR_ELn register. 6780 */ 6781 new_len = sve_vqm1_for_el(env, cur_el); 6782 if (new_len < old_len) { 6783 aarch64_sve_narrow_vq(env, new_len + 1); 6784 } 6785 } 6786 6787 static const ARMCPRegInfo zcr_reginfo[] = { 6788 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6789 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6790 .access = PL1_RW, .type = ARM_CP_SVE, 6791 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6792 .writefn = zcr_write, .raw_writefn = raw_write }, 6793 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6795 .access = PL2_RW, .type = ARM_CP_SVE, 6796 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6797 .writefn = zcr_write, .raw_writefn = raw_write }, 6798 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6799 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6800 .access = PL3_RW, .type = ARM_CP_SVE, 6801 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6802 .writefn = zcr_write, .raw_writefn = raw_write }, 6803 }; 6804 6805 #ifdef TARGET_AARCH64 6806 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6807 bool isread) 6808 { 6809 int el = arm_current_el(env); 6810 6811 if (el == 0) { 6812 uint64_t sctlr = arm_sctlr(env, el); 6813 if (!(sctlr & SCTLR_EnTP2)) { 6814 return CP_ACCESS_TRAP; 6815 } 6816 } 6817 /* TODO: FEAT_FGT */ 6818 if (el < 3 6819 && arm_feature(env, ARM_FEATURE_EL3) 6820 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6821 return CP_ACCESS_TRAP_EL3; 6822 } 6823 return CP_ACCESS_OK; 6824 } 6825 6826 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6827 bool isread) 6828 { 6829 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6830 if (arm_current_el(env) < 3 6831 && arm_feature(env, ARM_FEATURE_EL3) 6832 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6833 return CP_ACCESS_TRAP_EL3; 6834 } 6835 return CP_ACCESS_OK; 6836 } 6837 6838 /* ResetSVEState */ 6839 static void arm_reset_sve_state(CPUARMState *env) 6840 { 6841 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6842 /* Recall that FFR is stored as pregs[16]. */ 6843 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6844 vfp_set_fpcr(env, 0x0800009f); 6845 } 6846 6847 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6848 { 6849 uint64_t change = (env->svcr ^ new) & mask; 6850 6851 if (change == 0) { 6852 return; 6853 } 6854 env->svcr ^= change; 6855 6856 if (change & R_SVCR_SM_MASK) { 6857 arm_reset_sve_state(env); 6858 } 6859 6860 /* 6861 * ResetSMEState. 6862 * 6863 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6864 * on enable: while disabled, the storage is inaccessible and the 6865 * value does not matter. We're not saving the storage in vmstate 6866 * when disabled either. 6867 */ 6868 if (change & new & R_SVCR_ZA_MASK) { 6869 memset(env->zarray, 0, sizeof(env->zarray)); 6870 } 6871 6872 if (tcg_enabled()) { 6873 arm_rebuild_hflags(env); 6874 } 6875 } 6876 6877 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6878 uint64_t value) 6879 { 6880 aarch64_set_svcr(env, value, -1); 6881 } 6882 6883 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6884 uint64_t value) 6885 { 6886 int cur_el = arm_current_el(env); 6887 int old_len = sve_vqm1_for_el(env, cur_el); 6888 int new_len; 6889 6890 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6891 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6892 raw_write(env, ri, value); 6893 6894 /* 6895 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6896 * when SVL is widened (old values kept, or zeros). Choose to keep the 6897 * current values for simplicity. But for QEMU internals, we must still 6898 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6899 * above aarch64_sve_narrow_vq. 6900 */ 6901 new_len = sve_vqm1_for_el(env, cur_el); 6902 if (new_len < old_len) { 6903 aarch64_sve_narrow_vq(env, new_len + 1); 6904 } 6905 } 6906 6907 static const ARMCPRegInfo sme_reginfo[] = { 6908 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6910 .access = PL0_RW, .accessfn = access_tpidr2, 6911 .fgt = FGT_NTPIDR2_EL0, 6912 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6913 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6915 .access = PL0_RW, .type = ARM_CP_SME, 6916 .fieldoffset = offsetof(CPUARMState, svcr), 6917 .writefn = svcr_write, .raw_writefn = raw_write }, 6918 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6919 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6920 .access = PL1_RW, .type = ARM_CP_SME, 6921 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6922 .writefn = smcr_write, .raw_writefn = raw_write }, 6923 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6924 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6925 .access = PL2_RW, .type = ARM_CP_SME, 6926 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6927 .writefn = smcr_write, .raw_writefn = raw_write }, 6928 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6930 .access = PL3_RW, .type = ARM_CP_SME, 6931 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6932 .writefn = smcr_write, .raw_writefn = raw_write }, 6933 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6934 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6935 .access = PL1_R, .accessfn = access_aa64_tid1, 6936 /* 6937 * IMPLEMENTOR = 0 (software) 6938 * REVISION = 0 (implementation defined) 6939 * SMPS = 0 (no streaming execution priority in QEMU) 6940 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6941 */ 6942 .type = ARM_CP_CONST, .resetvalue = 0, }, 6943 /* 6944 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6945 */ 6946 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6948 .access = PL1_RW, .accessfn = access_esm, 6949 .fgt = FGT_NSMPRI_EL1, 6950 .type = ARM_CP_CONST, .resetvalue = 0 }, 6951 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6953 .access = PL2_RW, .accessfn = access_esm, 6954 .type = ARM_CP_CONST, .resetvalue = 0 }, 6955 }; 6956 6957 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 6958 uint64_t value) 6959 { 6960 CPUState *cs = env_cpu(env); 6961 6962 tlb_flush(cs); 6963 } 6964 6965 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6966 uint64_t value) 6967 { 6968 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6969 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6970 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6971 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6972 6973 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6974 } 6975 6976 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6977 { 6978 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6979 env_archcpu(env)->reset_l0gptsz); 6980 } 6981 6982 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 6983 uint64_t value) 6984 { 6985 CPUState *cs = env_cpu(env); 6986 6987 tlb_flush_all_cpus_synced(cs); 6988 } 6989 6990 static const ARMCPRegInfo rme_reginfo[] = { 6991 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6993 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6994 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6995 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6996 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6997 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6998 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7000 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7001 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7003 .access = PL3_W, .type = ARM_CP_NO_RAW, 7004 .writefn = tlbi_aa64_paall_write }, 7005 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7006 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7007 .access = PL3_W, .type = ARM_CP_NO_RAW, 7008 .writefn = tlbi_aa64_paallos_write }, 7009 /* 7010 * QEMU does not have a way to invalidate by physical address, thus 7011 * invalidating a range of physical addresses is accomplished by 7012 * flushing all tlb entries in the outer shareable domain, 7013 * just like PAALLOS. 7014 */ 7015 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7017 .access = PL3_W, .type = ARM_CP_NO_RAW, 7018 .writefn = tlbi_aa64_paallos_write }, 7019 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7020 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7021 .access = PL3_W, .type = ARM_CP_NO_RAW, 7022 .writefn = tlbi_aa64_paallos_write }, 7023 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7024 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7025 .access = PL3_W, .type = ARM_CP_NOP }, 7026 }; 7027 7028 static const ARMCPRegInfo rme_mte_reginfo[] = { 7029 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7031 .access = PL3_W, .type = ARM_CP_NOP }, 7032 }; 7033 #endif /* TARGET_AARCH64 */ 7034 7035 static void define_pmu_regs(ARMCPU *cpu) 7036 { 7037 /* 7038 * v7 performance monitor control register: same implementor 7039 * field as main ID register, and we implement four counters in 7040 * addition to the cycle count register. 7041 */ 7042 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7043 ARMCPRegInfo pmcr = { 7044 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7045 .access = PL0_RW, 7046 .fgt = FGT_PMCR_EL0, 7047 .type = ARM_CP_IO | ARM_CP_ALIAS, 7048 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7049 .accessfn = pmreg_access, .writefn = pmcr_write, 7050 .raw_writefn = raw_write, 7051 }; 7052 ARMCPRegInfo pmcr64 = { 7053 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7055 .access = PL0_RW, .accessfn = pmreg_access, 7056 .fgt = FGT_PMCR_EL0, 7057 .type = ARM_CP_IO, 7058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7059 .resetvalue = cpu->isar.reset_pmcr_el0, 7060 .writefn = pmcr_write, .raw_writefn = raw_write, 7061 }; 7062 7063 define_one_arm_cp_reg(cpu, &pmcr); 7064 define_one_arm_cp_reg(cpu, &pmcr64); 7065 for (i = 0; i < pmcrn; i++) { 7066 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7067 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7068 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7069 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7070 ARMCPRegInfo pmev_regs[] = { 7071 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7072 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7073 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7074 .fgt = FGT_PMEVCNTRN_EL0, 7075 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7076 .accessfn = pmreg_access_xevcntr }, 7077 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7078 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7079 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7080 .type = ARM_CP_IO, 7081 .fgt = FGT_PMEVCNTRN_EL0, 7082 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7083 .raw_readfn = pmevcntr_rawread, 7084 .raw_writefn = pmevcntr_rawwrite }, 7085 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7086 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7087 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7088 .fgt = FGT_PMEVTYPERN_EL0, 7089 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7090 .accessfn = pmreg_access }, 7091 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7092 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7093 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7094 .fgt = FGT_PMEVTYPERN_EL0, 7095 .type = ARM_CP_IO, 7096 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7097 .raw_writefn = pmevtyper_rawwrite }, 7098 }; 7099 define_arm_cp_regs(cpu, pmev_regs); 7100 g_free(pmevcntr_name); 7101 g_free(pmevcntr_el0_name); 7102 g_free(pmevtyper_name); 7103 g_free(pmevtyper_el0_name); 7104 } 7105 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7106 ARMCPRegInfo v81_pmu_regs[] = { 7107 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7108 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7109 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7110 .fgt = FGT_PMCEIDN_EL0, 7111 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7112 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7113 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7114 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7115 .fgt = FGT_PMCEIDN_EL0, 7116 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7117 }; 7118 define_arm_cp_regs(cpu, v81_pmu_regs); 7119 } 7120 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7121 static const ARMCPRegInfo v84_pmmir = { 7122 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7123 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7124 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7125 .fgt = FGT_PMMIR_EL1, 7126 .resetvalue = 0 7127 }; 7128 define_one_arm_cp_reg(cpu, &v84_pmmir); 7129 } 7130 } 7131 7132 #ifndef CONFIG_USER_ONLY 7133 /* 7134 * We don't know until after realize whether there's a GICv3 7135 * attached, and that is what registers the gicv3 sysregs. 7136 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7137 * at runtime. 7138 */ 7139 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7140 { 7141 ARMCPU *cpu = env_archcpu(env); 7142 uint64_t pfr1 = cpu->isar.id_pfr1; 7143 7144 if (env->gicv3state) { 7145 pfr1 |= 1 << 28; 7146 } 7147 return pfr1; 7148 } 7149 7150 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7151 { 7152 ARMCPU *cpu = env_archcpu(env); 7153 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7154 7155 if (env->gicv3state) { 7156 pfr0 |= 1 << 24; 7157 } 7158 return pfr0; 7159 } 7160 #endif 7161 7162 /* 7163 * Shared logic between LORID and the rest of the LOR* registers. 7164 * Secure state exclusion has already been dealt with. 7165 */ 7166 static CPAccessResult access_lor_ns(CPUARMState *env, 7167 const ARMCPRegInfo *ri, bool isread) 7168 { 7169 int el = arm_current_el(env); 7170 7171 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7172 return CP_ACCESS_TRAP_EL2; 7173 } 7174 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7175 return CP_ACCESS_TRAP_EL3; 7176 } 7177 return CP_ACCESS_OK; 7178 } 7179 7180 static CPAccessResult access_lor_other(CPUARMState *env, 7181 const ARMCPRegInfo *ri, bool isread) 7182 { 7183 if (arm_is_secure_below_el3(env)) { 7184 /* Access denied in secure mode. */ 7185 return CP_ACCESS_TRAP; 7186 } 7187 return access_lor_ns(env, ri, isread); 7188 } 7189 7190 /* 7191 * A trivial implementation of ARMv8.1-LOR leaves all of these 7192 * registers fixed at 0, which indicates that there are zero 7193 * supported Limited Ordering regions. 7194 */ 7195 static const ARMCPRegInfo lor_reginfo[] = { 7196 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7198 .access = PL1_RW, .accessfn = access_lor_other, 7199 .fgt = FGT_LORSA_EL1, 7200 .type = ARM_CP_CONST, .resetvalue = 0 }, 7201 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7203 .access = PL1_RW, .accessfn = access_lor_other, 7204 .fgt = FGT_LOREA_EL1, 7205 .type = ARM_CP_CONST, .resetvalue = 0 }, 7206 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7208 .access = PL1_RW, .accessfn = access_lor_other, 7209 .fgt = FGT_LORN_EL1, 7210 .type = ARM_CP_CONST, .resetvalue = 0 }, 7211 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7213 .access = PL1_RW, .accessfn = access_lor_other, 7214 .fgt = FGT_LORC_EL1, 7215 .type = ARM_CP_CONST, .resetvalue = 0 }, 7216 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7218 .access = PL1_R, .accessfn = access_lor_ns, 7219 .fgt = FGT_LORID_EL1, 7220 .type = ARM_CP_CONST, .resetvalue = 0 }, 7221 }; 7222 7223 #ifdef TARGET_AARCH64 7224 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7225 bool isread) 7226 { 7227 int el = arm_current_el(env); 7228 7229 if (el < 2 && 7230 arm_is_el2_enabled(env) && 7231 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7232 return CP_ACCESS_TRAP_EL2; 7233 } 7234 if (el < 3 && 7235 arm_feature(env, ARM_FEATURE_EL3) && 7236 !(env->cp15.scr_el3 & SCR_APK)) { 7237 return CP_ACCESS_TRAP_EL3; 7238 } 7239 return CP_ACCESS_OK; 7240 } 7241 7242 static const ARMCPRegInfo pauth_reginfo[] = { 7243 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7245 .access = PL1_RW, .accessfn = access_pauth, 7246 .fgt = FGT_APDAKEY, 7247 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7248 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7249 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7250 .access = PL1_RW, .accessfn = access_pauth, 7251 .fgt = FGT_APDAKEY, 7252 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7253 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7255 .access = PL1_RW, .accessfn = access_pauth, 7256 .fgt = FGT_APDBKEY, 7257 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7258 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7260 .access = PL1_RW, .accessfn = access_pauth, 7261 .fgt = FGT_APDBKEY, 7262 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7263 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7265 .access = PL1_RW, .accessfn = access_pauth, 7266 .fgt = FGT_APGAKEY, 7267 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7268 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7269 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7270 .access = PL1_RW, .accessfn = access_pauth, 7271 .fgt = FGT_APGAKEY, 7272 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7273 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7274 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7275 .access = PL1_RW, .accessfn = access_pauth, 7276 .fgt = FGT_APIAKEY, 7277 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7278 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7279 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7280 .access = PL1_RW, .accessfn = access_pauth, 7281 .fgt = FGT_APIAKEY, 7282 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7283 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7285 .access = PL1_RW, .accessfn = access_pauth, 7286 .fgt = FGT_APIBKEY, 7287 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7288 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7290 .access = PL1_RW, .accessfn = access_pauth, 7291 .fgt = FGT_APIBKEY, 7292 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7293 }; 7294 7295 static const ARMCPRegInfo tlbirange_reginfo[] = { 7296 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7298 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7299 .fgt = FGT_TLBIRVAE1IS, 7300 .writefn = tlbi_aa64_rvae1is_write }, 7301 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7303 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7304 .fgt = FGT_TLBIRVAAE1IS, 7305 .writefn = tlbi_aa64_rvae1is_write }, 7306 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7307 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7308 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7309 .fgt = FGT_TLBIRVALE1IS, 7310 .writefn = tlbi_aa64_rvae1is_write }, 7311 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7312 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7313 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7314 .fgt = FGT_TLBIRVAALE1IS, 7315 .writefn = tlbi_aa64_rvae1is_write }, 7316 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7317 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7318 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7319 .fgt = FGT_TLBIRVAE1OS, 7320 .writefn = tlbi_aa64_rvae1is_write }, 7321 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7323 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7324 .fgt = FGT_TLBIRVAAE1OS, 7325 .writefn = tlbi_aa64_rvae1is_write }, 7326 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7328 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7329 .fgt = FGT_TLBIRVALE1OS, 7330 .writefn = tlbi_aa64_rvae1is_write }, 7331 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7333 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7334 .fgt = FGT_TLBIRVAALE1OS, 7335 .writefn = tlbi_aa64_rvae1is_write }, 7336 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7337 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7338 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7339 .fgt = FGT_TLBIRVAE1, 7340 .writefn = tlbi_aa64_rvae1_write }, 7341 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7342 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7343 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7344 .fgt = FGT_TLBIRVAAE1, 7345 .writefn = tlbi_aa64_rvae1_write }, 7346 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7348 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7349 .fgt = FGT_TLBIRVALE1, 7350 .writefn = tlbi_aa64_rvae1_write }, 7351 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7352 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7353 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7354 .fgt = FGT_TLBIRVAALE1, 7355 .writefn = tlbi_aa64_rvae1_write }, 7356 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7357 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7358 .access = PL2_W, .type = ARM_CP_NO_RAW, 7359 .writefn = tlbi_aa64_ripas2e1is_write }, 7360 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7362 .access = PL2_W, .type = ARM_CP_NO_RAW, 7363 .writefn = tlbi_aa64_ripas2e1is_write }, 7364 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7365 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7366 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7367 .writefn = tlbi_aa64_rvae2is_write }, 7368 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7370 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7371 .writefn = tlbi_aa64_rvae2is_write }, 7372 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7373 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7374 .access = PL2_W, .type = ARM_CP_NO_RAW, 7375 .writefn = tlbi_aa64_ripas2e1_write }, 7376 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7377 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7378 .access = PL2_W, .type = ARM_CP_NO_RAW, 7379 .writefn = tlbi_aa64_ripas2e1_write }, 7380 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7381 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7382 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7383 .writefn = tlbi_aa64_rvae2is_write }, 7384 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7385 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7386 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7387 .writefn = tlbi_aa64_rvae2is_write }, 7388 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7389 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7390 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7391 .writefn = tlbi_aa64_rvae2_write }, 7392 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7394 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7395 .writefn = tlbi_aa64_rvae2_write }, 7396 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7397 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7398 .access = PL3_W, .type = ARM_CP_NO_RAW, 7399 .writefn = tlbi_aa64_rvae3is_write }, 7400 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7401 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7402 .access = PL3_W, .type = ARM_CP_NO_RAW, 7403 .writefn = tlbi_aa64_rvae3is_write }, 7404 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7405 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7406 .access = PL3_W, .type = ARM_CP_NO_RAW, 7407 .writefn = tlbi_aa64_rvae3is_write }, 7408 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7409 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7410 .access = PL3_W, .type = ARM_CP_NO_RAW, 7411 .writefn = tlbi_aa64_rvae3is_write }, 7412 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7414 .access = PL3_W, .type = ARM_CP_NO_RAW, 7415 .writefn = tlbi_aa64_rvae3_write }, 7416 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7417 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7418 .access = PL3_W, .type = ARM_CP_NO_RAW, 7419 .writefn = tlbi_aa64_rvae3_write }, 7420 }; 7421 7422 static const ARMCPRegInfo tlbios_reginfo[] = { 7423 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7424 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7425 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7426 .fgt = FGT_TLBIVMALLE1OS, 7427 .writefn = tlbi_aa64_vmalle1is_write }, 7428 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7429 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7430 .fgt = FGT_TLBIVAE1OS, 7431 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7432 .writefn = tlbi_aa64_vae1is_write }, 7433 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7434 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7435 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7436 .fgt = FGT_TLBIASIDE1OS, 7437 .writefn = tlbi_aa64_vmalle1is_write }, 7438 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7440 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7441 .fgt = FGT_TLBIVAAE1OS, 7442 .writefn = tlbi_aa64_vae1is_write }, 7443 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7444 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7445 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7446 .fgt = FGT_TLBIVALE1OS, 7447 .writefn = tlbi_aa64_vae1is_write }, 7448 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7450 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7451 .fgt = FGT_TLBIVAALE1OS, 7452 .writefn = tlbi_aa64_vae1is_write }, 7453 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7455 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7456 .writefn = tlbi_aa64_alle2is_write }, 7457 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7458 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7459 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7460 .writefn = tlbi_aa64_vae2is_write }, 7461 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7463 .access = PL2_W, .type = ARM_CP_NO_RAW, 7464 .writefn = tlbi_aa64_alle1is_write }, 7465 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7467 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7468 .writefn = tlbi_aa64_vae2is_write }, 7469 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7471 .access = PL2_W, .type = ARM_CP_NO_RAW, 7472 .writefn = tlbi_aa64_alle1is_write }, 7473 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7475 .access = PL2_W, .type = ARM_CP_NOP }, 7476 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7478 .access = PL2_W, .type = ARM_CP_NOP }, 7479 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7481 .access = PL2_W, .type = ARM_CP_NOP }, 7482 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7483 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7484 .access = PL2_W, .type = ARM_CP_NOP }, 7485 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7487 .access = PL3_W, .type = ARM_CP_NO_RAW, 7488 .writefn = tlbi_aa64_alle3is_write }, 7489 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7491 .access = PL3_W, .type = ARM_CP_NO_RAW, 7492 .writefn = tlbi_aa64_vae3is_write }, 7493 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7495 .access = PL3_W, .type = ARM_CP_NO_RAW, 7496 .writefn = tlbi_aa64_vae3is_write }, 7497 }; 7498 7499 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7500 { 7501 Error *err = NULL; 7502 uint64_t ret; 7503 7504 /* Success sets NZCV = 0000. */ 7505 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7506 7507 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7508 /* 7509 * ??? Failed, for unknown reasons in the crypto subsystem. 7510 * The best we can do is log the reason and return the 7511 * timed-out indication to the guest. There is no reason 7512 * we know to expect this failure to be transitory, so the 7513 * guest may well hang retrying the operation. 7514 */ 7515 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7516 ri->name, error_get_pretty(err)); 7517 error_free(err); 7518 7519 env->ZF = 0; /* NZCF = 0100 */ 7520 return 0; 7521 } 7522 return ret; 7523 } 7524 7525 /* We do not support re-seeding, so the two registers operate the same. */ 7526 static const ARMCPRegInfo rndr_reginfo[] = { 7527 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7528 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7529 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7530 .access = PL0_R, .readfn = rndr_readfn }, 7531 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7532 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7533 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7534 .access = PL0_R, .readfn = rndr_readfn }, 7535 }; 7536 7537 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7538 uint64_t value) 7539 { 7540 ARMCPU *cpu = env_archcpu(env); 7541 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7542 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7543 uint64_t vaddr_in = (uint64_t) value; 7544 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7545 void *haddr; 7546 int mem_idx = cpu_mmu_index(env, false); 7547 7548 /* This won't be crossing page boundaries */ 7549 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7550 if (haddr) { 7551 #ifndef CONFIG_USER_ONLY 7552 7553 ram_addr_t offset; 7554 MemoryRegion *mr; 7555 7556 /* RCU lock is already being held */ 7557 mr = memory_region_from_host(haddr, &offset); 7558 7559 if (mr) { 7560 memory_region_writeback(mr, offset, dline_size); 7561 } 7562 #endif /*CONFIG_USER_ONLY*/ 7563 } 7564 } 7565 7566 static const ARMCPRegInfo dcpop_reg[] = { 7567 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7568 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7569 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7570 .fgt = FGT_DCCVAP, 7571 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7572 }; 7573 7574 static const ARMCPRegInfo dcpodp_reg[] = { 7575 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7577 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7578 .fgt = FGT_DCCVADP, 7579 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7580 }; 7581 7582 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7583 bool isread) 7584 { 7585 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7586 return CP_ACCESS_TRAP_EL2; 7587 } 7588 7589 return CP_ACCESS_OK; 7590 } 7591 7592 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7593 bool isread) 7594 { 7595 int el = arm_current_el(env); 7596 7597 if (el < 2 && arm_is_el2_enabled(env)) { 7598 uint64_t hcr = arm_hcr_el2_eff(env); 7599 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7600 return CP_ACCESS_TRAP_EL2; 7601 } 7602 } 7603 if (el < 3 && 7604 arm_feature(env, ARM_FEATURE_EL3) && 7605 !(env->cp15.scr_el3 & SCR_ATA)) { 7606 return CP_ACCESS_TRAP_EL3; 7607 } 7608 return CP_ACCESS_OK; 7609 } 7610 7611 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7612 { 7613 return env->pstate & PSTATE_TCO; 7614 } 7615 7616 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7617 { 7618 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7619 } 7620 7621 static const ARMCPRegInfo mte_reginfo[] = { 7622 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7623 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7624 .access = PL1_RW, .accessfn = access_mte, 7625 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7626 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7627 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7628 .access = PL1_RW, .accessfn = access_mte, 7629 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7630 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7631 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7632 .access = PL2_RW, .accessfn = access_mte, 7633 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7634 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7635 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7636 .access = PL3_RW, 7637 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7638 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7639 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7640 .access = PL1_RW, .accessfn = access_mte, 7641 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7642 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7643 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7644 .access = PL1_RW, .accessfn = access_mte, 7645 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7646 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7648 .access = PL1_R, .accessfn = access_aa64_tid5, 7649 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7650 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7652 .type = ARM_CP_NO_RAW, 7653 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7654 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7655 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7656 .type = ARM_CP_NOP, .access = PL1_W, 7657 .fgt = FGT_DCIVAC, 7658 .accessfn = aa64_cacheop_poc_access }, 7659 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7660 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7661 .fgt = FGT_DCISW, 7662 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7663 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7664 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7665 .type = ARM_CP_NOP, .access = PL1_W, 7666 .fgt = FGT_DCIVAC, 7667 .accessfn = aa64_cacheop_poc_access }, 7668 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7669 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7670 .fgt = FGT_DCISW, 7671 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7672 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7673 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7674 .fgt = FGT_DCCSW, 7675 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7676 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7678 .fgt = FGT_DCCSW, 7679 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7680 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7682 .fgt = FGT_DCCISW, 7683 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7684 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7685 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7686 .fgt = FGT_DCCISW, 7687 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7688 }; 7689 7690 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7691 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7693 .type = ARM_CP_CONST, .access = PL0_RW, }, 7694 }; 7695 7696 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7697 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7698 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7699 .type = ARM_CP_NOP, .access = PL0_W, 7700 .fgt = FGT_DCCVAC, 7701 .accessfn = aa64_cacheop_poc_access }, 7702 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7703 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7704 .type = ARM_CP_NOP, .access = PL0_W, 7705 .fgt = FGT_DCCVAC, 7706 .accessfn = aa64_cacheop_poc_access }, 7707 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7708 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7709 .type = ARM_CP_NOP, .access = PL0_W, 7710 .fgt = FGT_DCCVAP, 7711 .accessfn = aa64_cacheop_poc_access }, 7712 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7713 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7714 .type = ARM_CP_NOP, .access = PL0_W, 7715 .fgt = FGT_DCCVAP, 7716 .accessfn = aa64_cacheop_poc_access }, 7717 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7718 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7719 .type = ARM_CP_NOP, .access = PL0_W, 7720 .fgt = FGT_DCCVADP, 7721 .accessfn = aa64_cacheop_poc_access }, 7722 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7723 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7724 .type = ARM_CP_NOP, .access = PL0_W, 7725 .fgt = FGT_DCCVADP, 7726 .accessfn = aa64_cacheop_poc_access }, 7727 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7729 .type = ARM_CP_NOP, .access = PL0_W, 7730 .fgt = FGT_DCCIVAC, 7731 .accessfn = aa64_cacheop_poc_access }, 7732 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7733 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7734 .type = ARM_CP_NOP, .access = PL0_W, 7735 .fgt = FGT_DCCIVAC, 7736 .accessfn = aa64_cacheop_poc_access }, 7737 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7738 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7739 .access = PL0_W, .type = ARM_CP_DC_GVA, 7740 #ifndef CONFIG_USER_ONLY 7741 /* Avoid overhead of an access check that always passes in user-mode */ 7742 .accessfn = aa64_zva_access, 7743 .fgt = FGT_DCZVA, 7744 #endif 7745 }, 7746 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7748 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7749 #ifndef CONFIG_USER_ONLY 7750 /* Avoid overhead of an access check that always passes in user-mode */ 7751 .accessfn = aa64_zva_access, 7752 .fgt = FGT_DCZVA, 7753 #endif 7754 }, 7755 }; 7756 7757 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7758 bool isread) 7759 { 7760 uint64_t hcr = arm_hcr_el2_eff(env); 7761 int el = arm_current_el(env); 7762 7763 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7764 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7765 if (hcr & HCR_TGE) { 7766 return CP_ACCESS_TRAP_EL2; 7767 } 7768 return CP_ACCESS_TRAP; 7769 } 7770 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7771 return CP_ACCESS_TRAP_EL2; 7772 } 7773 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7774 return CP_ACCESS_TRAP_EL2; 7775 } 7776 if (el < 3 7777 && arm_feature(env, ARM_FEATURE_EL3) 7778 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7779 return CP_ACCESS_TRAP_EL3; 7780 } 7781 return CP_ACCESS_OK; 7782 } 7783 7784 static const ARMCPRegInfo scxtnum_reginfo[] = { 7785 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7787 .access = PL0_RW, .accessfn = access_scxtnum, 7788 .fgt = FGT_SCXTNUM_EL0, 7789 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7790 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7792 .access = PL1_RW, .accessfn = access_scxtnum, 7793 .fgt = FGT_SCXTNUM_EL1, 7794 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7795 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7797 .access = PL2_RW, .accessfn = access_scxtnum, 7798 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7799 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7801 .access = PL3_RW, 7802 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7803 }; 7804 7805 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7806 bool isread) 7807 { 7808 if (arm_current_el(env) == 2 && 7809 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7810 return CP_ACCESS_TRAP_EL3; 7811 } 7812 return CP_ACCESS_OK; 7813 } 7814 7815 static const ARMCPRegInfo fgt_reginfo[] = { 7816 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7818 .access = PL2_RW, .accessfn = access_fgt, 7819 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7820 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7822 .access = PL2_RW, .accessfn = access_fgt, 7823 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7824 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7826 .access = PL2_RW, .accessfn = access_fgt, 7827 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7828 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7829 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7830 .access = PL2_RW, .accessfn = access_fgt, 7831 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7832 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7834 .access = PL2_RW, .accessfn = access_fgt, 7835 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7836 }; 7837 #endif /* TARGET_AARCH64 */ 7838 7839 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7840 bool isread) 7841 { 7842 int el = arm_current_el(env); 7843 7844 if (el == 0) { 7845 uint64_t sctlr = arm_sctlr(env, el); 7846 if (!(sctlr & SCTLR_EnRCTX)) { 7847 return CP_ACCESS_TRAP; 7848 } 7849 } else if (el == 1) { 7850 uint64_t hcr = arm_hcr_el2_eff(env); 7851 if (hcr & HCR_NV) { 7852 return CP_ACCESS_TRAP_EL2; 7853 } 7854 } 7855 return CP_ACCESS_OK; 7856 } 7857 7858 static const ARMCPRegInfo predinv_reginfo[] = { 7859 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7861 .fgt = FGT_CFPRCTX, 7862 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7863 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7865 .fgt = FGT_DVPRCTX, 7866 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7867 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7868 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7869 .fgt = FGT_CPPRCTX, 7870 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7871 /* 7872 * Note the AArch32 opcodes have a different OPC1. 7873 */ 7874 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7875 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7876 .fgt = FGT_CFPRCTX, 7877 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7878 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7879 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7880 .fgt = FGT_DVPRCTX, 7881 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7882 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7883 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7884 .fgt = FGT_CPPRCTX, 7885 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7886 }; 7887 7888 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7889 { 7890 /* Read the high 32 bits of the current CCSIDR */ 7891 return extract64(ccsidr_read(env, ri), 32, 32); 7892 } 7893 7894 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7895 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7896 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7897 .access = PL1_R, 7898 .accessfn = access_tid4, 7899 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7900 }; 7901 7902 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7903 bool isread) 7904 { 7905 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7906 return CP_ACCESS_TRAP_EL2; 7907 } 7908 7909 return CP_ACCESS_OK; 7910 } 7911 7912 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7913 bool isread) 7914 { 7915 if (arm_feature(env, ARM_FEATURE_V8)) { 7916 return access_aa64_tid3(env, ri, isread); 7917 } 7918 7919 return CP_ACCESS_OK; 7920 } 7921 7922 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7923 bool isread) 7924 { 7925 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7926 return CP_ACCESS_TRAP_EL2; 7927 } 7928 7929 return CP_ACCESS_OK; 7930 } 7931 7932 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7933 const ARMCPRegInfo *ri, bool isread) 7934 { 7935 /* 7936 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7937 * in v7A, not in v8A. 7938 */ 7939 if (!arm_feature(env, ARM_FEATURE_V8) && 7940 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7941 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7942 return CP_ACCESS_TRAP_EL2; 7943 } 7944 return CP_ACCESS_OK; 7945 } 7946 7947 static const ARMCPRegInfo jazelle_regs[] = { 7948 { .name = "JIDR", 7949 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7950 .access = PL1_R, .accessfn = access_jazelle, 7951 .type = ARM_CP_CONST, .resetvalue = 0 }, 7952 { .name = "JOSCR", 7953 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7954 .accessfn = access_joscr_jmcr, 7955 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7956 { .name = "JMCR", 7957 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7958 .accessfn = access_joscr_jmcr, 7959 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7960 }; 7961 7962 static const ARMCPRegInfo contextidr_el2 = { 7963 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7965 .access = PL2_RW, 7966 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7967 }; 7968 7969 static const ARMCPRegInfo vhe_reginfo[] = { 7970 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7971 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7972 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7973 .raw_writefn = raw_write, 7974 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7975 #ifndef CONFIG_USER_ONLY 7976 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7977 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7978 .fieldoffset = 7979 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7980 .type = ARM_CP_IO, .access = PL2_RW, 7981 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7982 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7983 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7984 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7985 .resetfn = gt_hv_timer_reset, 7986 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7987 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7988 .type = ARM_CP_IO, 7989 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7990 .access = PL2_RW, 7991 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7992 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7993 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7995 .type = ARM_CP_IO | ARM_CP_ALIAS, 7996 .access = PL2_RW, .accessfn = e2h_access, 7997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7998 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7999 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8000 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8001 .type = ARM_CP_IO | ARM_CP_ALIAS, 8002 .access = PL2_RW, .accessfn = e2h_access, 8003 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8004 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8005 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8006 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8007 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8008 .access = PL2_RW, .accessfn = e2h_access, 8009 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8010 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8011 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8012 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8013 .access = PL2_RW, .accessfn = e2h_access, 8014 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8015 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8016 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8017 .type = ARM_CP_IO | ARM_CP_ALIAS, 8018 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8019 .access = PL2_RW, .accessfn = e2h_access, 8020 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8021 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8022 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8023 .type = ARM_CP_IO | ARM_CP_ALIAS, 8024 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8025 .access = PL2_RW, .accessfn = e2h_access, 8026 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8027 #endif 8028 }; 8029 8030 #ifndef CONFIG_USER_ONLY 8031 static const ARMCPRegInfo ats1e1_reginfo[] = { 8032 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8033 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8034 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8035 .fgt = FGT_ATS1E1RP, 8036 .writefn = ats_write64 }, 8037 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8038 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8039 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8040 .fgt = FGT_ATS1E1WP, 8041 .writefn = ats_write64 }, 8042 }; 8043 8044 static const ARMCPRegInfo ats1cp_reginfo[] = { 8045 { .name = "ATS1CPRP", 8046 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8047 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8048 .writefn = ats_write }, 8049 { .name = "ATS1CPWP", 8050 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8051 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8052 .writefn = ats_write }, 8053 }; 8054 #endif 8055 8056 /* 8057 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8058 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8059 * is non-zero, which is never for ARMv7, optionally in ARMv8 8060 * and mandatorily for ARMv8.2 and up. 8061 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8062 * implementation is RAZ/WI we can ignore this detail, as we 8063 * do for ACTLR. 8064 */ 8065 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8066 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8067 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8068 .access = PL1_RW, .accessfn = access_tacr, 8069 .type = ARM_CP_CONST, .resetvalue = 0 }, 8070 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8071 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8072 .access = PL2_RW, .type = ARM_CP_CONST, 8073 .resetvalue = 0 }, 8074 }; 8075 8076 void register_cp_regs_for_features(ARMCPU *cpu) 8077 { 8078 /* Register all the coprocessor registers based on feature bits */ 8079 CPUARMState *env = &cpu->env; 8080 if (arm_feature(env, ARM_FEATURE_M)) { 8081 /* M profile has no coprocessor registers */ 8082 return; 8083 } 8084 8085 define_arm_cp_regs(cpu, cp_reginfo); 8086 if (!arm_feature(env, ARM_FEATURE_V8)) { 8087 /* 8088 * Must go early as it is full of wildcards that may be 8089 * overridden by later definitions. 8090 */ 8091 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8092 } 8093 8094 if (arm_feature(env, ARM_FEATURE_V6)) { 8095 /* The ID registers all have impdef reset values */ 8096 ARMCPRegInfo v6_idregs[] = { 8097 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8099 .access = PL1_R, .type = ARM_CP_CONST, 8100 .accessfn = access_aa32_tid3, 8101 .resetvalue = cpu->isar.id_pfr0 }, 8102 /* 8103 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8104 * the value of the GIC field until after we define these regs. 8105 */ 8106 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8108 .access = PL1_R, .type = ARM_CP_NO_RAW, 8109 .accessfn = access_aa32_tid3, 8110 #ifdef CONFIG_USER_ONLY 8111 .type = ARM_CP_CONST, 8112 .resetvalue = cpu->isar.id_pfr1, 8113 #else 8114 .type = ARM_CP_NO_RAW, 8115 .accessfn = access_aa32_tid3, 8116 .readfn = id_pfr1_read, 8117 .writefn = arm_cp_write_ignore 8118 #endif 8119 }, 8120 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8122 .access = PL1_R, .type = ARM_CP_CONST, 8123 .accessfn = access_aa32_tid3, 8124 .resetvalue = cpu->isar.id_dfr0 }, 8125 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8127 .access = PL1_R, .type = ARM_CP_CONST, 8128 .accessfn = access_aa32_tid3, 8129 .resetvalue = cpu->id_afr0 }, 8130 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8132 .access = PL1_R, .type = ARM_CP_CONST, 8133 .accessfn = access_aa32_tid3, 8134 .resetvalue = cpu->isar.id_mmfr0 }, 8135 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8137 .access = PL1_R, .type = ARM_CP_CONST, 8138 .accessfn = access_aa32_tid3, 8139 .resetvalue = cpu->isar.id_mmfr1 }, 8140 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8142 .access = PL1_R, .type = ARM_CP_CONST, 8143 .accessfn = access_aa32_tid3, 8144 .resetvalue = cpu->isar.id_mmfr2 }, 8145 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8147 .access = PL1_R, .type = ARM_CP_CONST, 8148 .accessfn = access_aa32_tid3, 8149 .resetvalue = cpu->isar.id_mmfr3 }, 8150 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8152 .access = PL1_R, .type = ARM_CP_CONST, 8153 .accessfn = access_aa32_tid3, 8154 .resetvalue = cpu->isar.id_isar0 }, 8155 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8156 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8157 .access = PL1_R, .type = ARM_CP_CONST, 8158 .accessfn = access_aa32_tid3, 8159 .resetvalue = cpu->isar.id_isar1 }, 8160 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8162 .access = PL1_R, .type = ARM_CP_CONST, 8163 .accessfn = access_aa32_tid3, 8164 .resetvalue = cpu->isar.id_isar2 }, 8165 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8167 .access = PL1_R, .type = ARM_CP_CONST, 8168 .accessfn = access_aa32_tid3, 8169 .resetvalue = cpu->isar.id_isar3 }, 8170 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8172 .access = PL1_R, .type = ARM_CP_CONST, 8173 .accessfn = access_aa32_tid3, 8174 .resetvalue = cpu->isar.id_isar4 }, 8175 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8176 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8177 .access = PL1_R, .type = ARM_CP_CONST, 8178 .accessfn = access_aa32_tid3, 8179 .resetvalue = cpu->isar.id_isar5 }, 8180 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8182 .access = PL1_R, .type = ARM_CP_CONST, 8183 .accessfn = access_aa32_tid3, 8184 .resetvalue = cpu->isar.id_mmfr4 }, 8185 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8187 .access = PL1_R, .type = ARM_CP_CONST, 8188 .accessfn = access_aa32_tid3, 8189 .resetvalue = cpu->isar.id_isar6 }, 8190 }; 8191 define_arm_cp_regs(cpu, v6_idregs); 8192 define_arm_cp_regs(cpu, v6_cp_reginfo); 8193 } else { 8194 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8195 } 8196 if (arm_feature(env, ARM_FEATURE_V6K)) { 8197 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8198 } 8199 if (arm_feature(env, ARM_FEATURE_V7MP) && 8200 !arm_feature(env, ARM_FEATURE_PMSA)) { 8201 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8202 } 8203 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8204 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8205 } 8206 if (arm_feature(env, ARM_FEATURE_V7)) { 8207 ARMCPRegInfo clidr = { 8208 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8209 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8210 .access = PL1_R, .type = ARM_CP_CONST, 8211 .accessfn = access_tid4, 8212 .fgt = FGT_CLIDR_EL1, 8213 .resetvalue = cpu->clidr 8214 }; 8215 define_one_arm_cp_reg(cpu, &clidr); 8216 define_arm_cp_regs(cpu, v7_cp_reginfo); 8217 define_debug_regs(cpu); 8218 define_pmu_regs(cpu); 8219 } else { 8220 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8221 } 8222 if (arm_feature(env, ARM_FEATURE_V8)) { 8223 /* 8224 * v8 ID registers, which all have impdef reset values. 8225 * Note that within the ID register ranges the unused slots 8226 * must all RAZ, not UNDEF; future architecture versions may 8227 * define new registers here. 8228 * ID registers which are AArch64 views of the AArch32 ID registers 8229 * which already existed in v6 and v7 are handled elsewhere, 8230 * in v6_idregs[]. 8231 */ 8232 int i; 8233 ARMCPRegInfo v8_idregs[] = { 8234 /* 8235 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8236 * emulation because we don't know the right value for the 8237 * GIC field until after we define these regs. 8238 */ 8239 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8241 .access = PL1_R, 8242 #ifdef CONFIG_USER_ONLY 8243 .type = ARM_CP_CONST, 8244 .resetvalue = cpu->isar.id_aa64pfr0 8245 #else 8246 .type = ARM_CP_NO_RAW, 8247 .accessfn = access_aa64_tid3, 8248 .readfn = id_aa64pfr0_read, 8249 .writefn = arm_cp_write_ignore 8250 #endif 8251 }, 8252 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8254 .access = PL1_R, .type = ARM_CP_CONST, 8255 .accessfn = access_aa64_tid3, 8256 .resetvalue = cpu->isar.id_aa64pfr1}, 8257 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8259 .access = PL1_R, .type = ARM_CP_CONST, 8260 .accessfn = access_aa64_tid3, 8261 .resetvalue = 0 }, 8262 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8264 .access = PL1_R, .type = ARM_CP_CONST, 8265 .accessfn = access_aa64_tid3, 8266 .resetvalue = 0 }, 8267 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8269 .access = PL1_R, .type = ARM_CP_CONST, 8270 .accessfn = access_aa64_tid3, 8271 .resetvalue = cpu->isar.id_aa64zfr0 }, 8272 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8274 .access = PL1_R, .type = ARM_CP_CONST, 8275 .accessfn = access_aa64_tid3, 8276 .resetvalue = cpu->isar.id_aa64smfr0 }, 8277 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8279 .access = PL1_R, .type = ARM_CP_CONST, 8280 .accessfn = access_aa64_tid3, 8281 .resetvalue = 0 }, 8282 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8284 .access = PL1_R, .type = ARM_CP_CONST, 8285 .accessfn = access_aa64_tid3, 8286 .resetvalue = 0 }, 8287 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8289 .access = PL1_R, .type = ARM_CP_CONST, 8290 .accessfn = access_aa64_tid3, 8291 .resetvalue = cpu->isar.id_aa64dfr0 }, 8292 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8294 .access = PL1_R, .type = ARM_CP_CONST, 8295 .accessfn = access_aa64_tid3, 8296 .resetvalue = cpu->isar.id_aa64dfr1 }, 8297 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8299 .access = PL1_R, .type = ARM_CP_CONST, 8300 .accessfn = access_aa64_tid3, 8301 .resetvalue = 0 }, 8302 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8304 .access = PL1_R, .type = ARM_CP_CONST, 8305 .accessfn = access_aa64_tid3, 8306 .resetvalue = 0 }, 8307 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8309 .access = PL1_R, .type = ARM_CP_CONST, 8310 .accessfn = access_aa64_tid3, 8311 .resetvalue = cpu->id_aa64afr0 }, 8312 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8314 .access = PL1_R, .type = ARM_CP_CONST, 8315 .accessfn = access_aa64_tid3, 8316 .resetvalue = cpu->id_aa64afr1 }, 8317 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8319 .access = PL1_R, .type = ARM_CP_CONST, 8320 .accessfn = access_aa64_tid3, 8321 .resetvalue = 0 }, 8322 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8324 .access = PL1_R, .type = ARM_CP_CONST, 8325 .accessfn = access_aa64_tid3, 8326 .resetvalue = 0 }, 8327 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8329 .access = PL1_R, .type = ARM_CP_CONST, 8330 .accessfn = access_aa64_tid3, 8331 .resetvalue = cpu->isar.id_aa64isar0 }, 8332 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8334 .access = PL1_R, .type = ARM_CP_CONST, 8335 .accessfn = access_aa64_tid3, 8336 .resetvalue = cpu->isar.id_aa64isar1 }, 8337 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8339 .access = PL1_R, .type = ARM_CP_CONST, 8340 .accessfn = access_aa64_tid3, 8341 .resetvalue = 0 }, 8342 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8344 .access = PL1_R, .type = ARM_CP_CONST, 8345 .accessfn = access_aa64_tid3, 8346 .resetvalue = 0 }, 8347 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8349 .access = PL1_R, .type = ARM_CP_CONST, 8350 .accessfn = access_aa64_tid3, 8351 .resetvalue = 0 }, 8352 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8354 .access = PL1_R, .type = ARM_CP_CONST, 8355 .accessfn = access_aa64_tid3, 8356 .resetvalue = 0 }, 8357 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8359 .access = PL1_R, .type = ARM_CP_CONST, 8360 .accessfn = access_aa64_tid3, 8361 .resetvalue = 0 }, 8362 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8364 .access = PL1_R, .type = ARM_CP_CONST, 8365 .accessfn = access_aa64_tid3, 8366 .resetvalue = 0 }, 8367 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8369 .access = PL1_R, .type = ARM_CP_CONST, 8370 .accessfn = access_aa64_tid3, 8371 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8372 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8374 .access = PL1_R, .type = ARM_CP_CONST, 8375 .accessfn = access_aa64_tid3, 8376 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8377 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8379 .access = PL1_R, .type = ARM_CP_CONST, 8380 .accessfn = access_aa64_tid3, 8381 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8382 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8384 .access = PL1_R, .type = ARM_CP_CONST, 8385 .accessfn = access_aa64_tid3, 8386 .resetvalue = 0 }, 8387 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8389 .access = PL1_R, .type = ARM_CP_CONST, 8390 .accessfn = access_aa64_tid3, 8391 .resetvalue = 0 }, 8392 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8394 .access = PL1_R, .type = ARM_CP_CONST, 8395 .accessfn = access_aa64_tid3, 8396 .resetvalue = 0 }, 8397 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8399 .access = PL1_R, .type = ARM_CP_CONST, 8400 .accessfn = access_aa64_tid3, 8401 .resetvalue = 0 }, 8402 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8404 .access = PL1_R, .type = ARM_CP_CONST, 8405 .accessfn = access_aa64_tid3, 8406 .resetvalue = 0 }, 8407 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8409 .access = PL1_R, .type = ARM_CP_CONST, 8410 .accessfn = access_aa64_tid3, 8411 .resetvalue = cpu->isar.mvfr0 }, 8412 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8414 .access = PL1_R, .type = ARM_CP_CONST, 8415 .accessfn = access_aa64_tid3, 8416 .resetvalue = cpu->isar.mvfr1 }, 8417 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8419 .access = PL1_R, .type = ARM_CP_CONST, 8420 .accessfn = access_aa64_tid3, 8421 .resetvalue = cpu->isar.mvfr2 }, 8422 /* 8423 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8424 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8425 * as RAZ, since it is in the "reserved for future ID 8426 * registers, RAZ" part of the AArch32 encoding space. 8427 */ 8428 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8429 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8430 .access = PL1_R, .type = ARM_CP_CONST, 8431 .accessfn = access_aa64_tid3, 8432 .resetvalue = 0 }, 8433 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8434 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8435 .access = PL1_R, .type = ARM_CP_CONST, 8436 .accessfn = access_aa64_tid3, 8437 .resetvalue = 0 }, 8438 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8439 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8440 .access = PL1_R, .type = ARM_CP_CONST, 8441 .accessfn = access_aa64_tid3, 8442 .resetvalue = 0 }, 8443 /* 8444 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8445 * they're also RAZ for AArch64, and in v8 are gradually 8446 * being filled with AArch64-view-of-AArch32-ID-register 8447 * for new ID registers. 8448 */ 8449 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8451 .access = PL1_R, .type = ARM_CP_CONST, 8452 .accessfn = access_aa64_tid3, 8453 .resetvalue = 0 }, 8454 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8456 .access = PL1_R, .type = ARM_CP_CONST, 8457 .accessfn = access_aa64_tid3, 8458 .resetvalue = cpu->isar.id_pfr2 }, 8459 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8461 .access = PL1_R, .type = ARM_CP_CONST, 8462 .accessfn = access_aa64_tid3, 8463 .resetvalue = cpu->isar.id_dfr1 }, 8464 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8466 .access = PL1_R, .type = ARM_CP_CONST, 8467 .accessfn = access_aa64_tid3, 8468 .resetvalue = cpu->isar.id_mmfr5 }, 8469 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8471 .access = PL1_R, .type = ARM_CP_CONST, 8472 .accessfn = access_aa64_tid3, 8473 .resetvalue = 0 }, 8474 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8475 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8476 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8477 .fgt = FGT_PMCEIDN_EL0, 8478 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8479 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8480 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8481 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8482 .fgt = FGT_PMCEIDN_EL0, 8483 .resetvalue = cpu->pmceid0 }, 8484 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8485 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8486 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8487 .fgt = FGT_PMCEIDN_EL0, 8488 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8489 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8490 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8491 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8492 .fgt = FGT_PMCEIDN_EL0, 8493 .resetvalue = cpu->pmceid1 }, 8494 }; 8495 #ifdef CONFIG_USER_ONLY 8496 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8497 { .name = "ID_AA64PFR0_EL1", 8498 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8499 R_ID_AA64PFR0_ADVSIMD_MASK | 8500 R_ID_AA64PFR0_SVE_MASK | 8501 R_ID_AA64PFR0_DIT_MASK, 8502 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8503 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8504 { .name = "ID_AA64PFR1_EL1", 8505 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8506 R_ID_AA64PFR1_SSBS_MASK | 8507 R_ID_AA64PFR1_MTE_MASK | 8508 R_ID_AA64PFR1_SME_MASK }, 8509 { .name = "ID_AA64PFR*_EL1_RESERVED", 8510 .is_glob = true }, 8511 { .name = "ID_AA64ZFR0_EL1", 8512 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8513 R_ID_AA64ZFR0_AES_MASK | 8514 R_ID_AA64ZFR0_BITPERM_MASK | 8515 R_ID_AA64ZFR0_BFLOAT16_MASK | 8516 R_ID_AA64ZFR0_SHA3_MASK | 8517 R_ID_AA64ZFR0_SM4_MASK | 8518 R_ID_AA64ZFR0_I8MM_MASK | 8519 R_ID_AA64ZFR0_F32MM_MASK | 8520 R_ID_AA64ZFR0_F64MM_MASK }, 8521 { .name = "ID_AA64SMFR0_EL1", 8522 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8523 R_ID_AA64SMFR0_B16F32_MASK | 8524 R_ID_AA64SMFR0_F16F32_MASK | 8525 R_ID_AA64SMFR0_I8I32_MASK | 8526 R_ID_AA64SMFR0_F64F64_MASK | 8527 R_ID_AA64SMFR0_I16I64_MASK | 8528 R_ID_AA64SMFR0_FA64_MASK }, 8529 { .name = "ID_AA64MMFR0_EL1", 8530 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8531 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8532 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8533 { .name = "ID_AA64MMFR1_EL1", 8534 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8535 { .name = "ID_AA64MMFR2_EL1", 8536 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8537 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8538 .is_glob = true }, 8539 { .name = "ID_AA64DFR0_EL1", 8540 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8541 { .name = "ID_AA64DFR1_EL1" }, 8542 { .name = "ID_AA64DFR*_EL1_RESERVED", 8543 .is_glob = true }, 8544 { .name = "ID_AA64AFR*", 8545 .is_glob = true }, 8546 { .name = "ID_AA64ISAR0_EL1", 8547 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8548 R_ID_AA64ISAR0_SHA1_MASK | 8549 R_ID_AA64ISAR0_SHA2_MASK | 8550 R_ID_AA64ISAR0_CRC32_MASK | 8551 R_ID_AA64ISAR0_ATOMIC_MASK | 8552 R_ID_AA64ISAR0_RDM_MASK | 8553 R_ID_AA64ISAR0_SHA3_MASK | 8554 R_ID_AA64ISAR0_SM3_MASK | 8555 R_ID_AA64ISAR0_SM4_MASK | 8556 R_ID_AA64ISAR0_DP_MASK | 8557 R_ID_AA64ISAR0_FHM_MASK | 8558 R_ID_AA64ISAR0_TS_MASK | 8559 R_ID_AA64ISAR0_RNDR_MASK }, 8560 { .name = "ID_AA64ISAR1_EL1", 8561 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8562 R_ID_AA64ISAR1_APA_MASK | 8563 R_ID_AA64ISAR1_API_MASK | 8564 R_ID_AA64ISAR1_JSCVT_MASK | 8565 R_ID_AA64ISAR1_FCMA_MASK | 8566 R_ID_AA64ISAR1_LRCPC_MASK | 8567 R_ID_AA64ISAR1_GPA_MASK | 8568 R_ID_AA64ISAR1_GPI_MASK | 8569 R_ID_AA64ISAR1_FRINTTS_MASK | 8570 R_ID_AA64ISAR1_SB_MASK | 8571 R_ID_AA64ISAR1_BF16_MASK | 8572 R_ID_AA64ISAR1_DGH_MASK | 8573 R_ID_AA64ISAR1_I8MM_MASK }, 8574 { .name = "ID_AA64ISAR2_EL1", 8575 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8576 R_ID_AA64ISAR2_RPRES_MASK | 8577 R_ID_AA64ISAR2_GPA3_MASK | 8578 R_ID_AA64ISAR2_APA3_MASK }, 8579 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8580 .is_glob = true }, 8581 }; 8582 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8583 #endif 8584 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8585 if (!arm_feature(env, ARM_FEATURE_EL3) && 8586 !arm_feature(env, ARM_FEATURE_EL2)) { 8587 ARMCPRegInfo rvbar = { 8588 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8589 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8590 .access = PL1_R, 8591 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8592 }; 8593 define_one_arm_cp_reg(cpu, &rvbar); 8594 } 8595 define_arm_cp_regs(cpu, v8_idregs); 8596 define_arm_cp_regs(cpu, v8_cp_reginfo); 8597 8598 for (i = 4; i < 16; i++) { 8599 /* 8600 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8601 * For pre-v8 cores there are RAZ patterns for these in 8602 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8603 * v8 extends the "must RAZ" part of the ID register space 8604 * to also cover c0, 0, c{8-15}, {0-7}. 8605 * These are STATE_AA32 because in the AArch64 sysreg space 8606 * c4-c7 is where the AArch64 ID registers live (and we've 8607 * already defined those in v8_idregs[]), and c8-c15 are not 8608 * "must RAZ" for AArch64. 8609 */ 8610 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8611 ARMCPRegInfo v8_aa32_raz_idregs = { 8612 .name = name, 8613 .state = ARM_CP_STATE_AA32, 8614 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8615 .access = PL1_R, .type = ARM_CP_CONST, 8616 .accessfn = access_aa64_tid3, 8617 .resetvalue = 0 }; 8618 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8619 } 8620 } 8621 8622 /* 8623 * Register the base EL2 cpregs. 8624 * Pre v8, these registers are implemented only as part of the 8625 * Virtualization Extensions (EL2 present). Beginning with v8, 8626 * if EL2 is missing but EL3 is enabled, mostly these become 8627 * RES0 from EL3, with some specific exceptions. 8628 */ 8629 if (arm_feature(env, ARM_FEATURE_EL2) 8630 || (arm_feature(env, ARM_FEATURE_EL3) 8631 && arm_feature(env, ARM_FEATURE_V8))) { 8632 uint64_t vmpidr_def = mpidr_read_val(env); 8633 ARMCPRegInfo vpidr_regs[] = { 8634 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8635 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8636 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8637 .resetvalue = cpu->midr, 8638 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8639 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8640 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8641 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8642 .access = PL2_RW, .resetvalue = cpu->midr, 8643 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8644 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8645 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8646 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8647 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8648 .resetvalue = vmpidr_def, 8649 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8650 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8651 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8652 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8653 .access = PL2_RW, .resetvalue = vmpidr_def, 8654 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8655 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8656 }; 8657 /* 8658 * The only field of MDCR_EL2 that has a defined architectural reset 8659 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8660 */ 8661 ARMCPRegInfo mdcr_el2 = { 8662 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8663 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8664 .writefn = mdcr_el2_write, 8665 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8666 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8667 }; 8668 define_one_arm_cp_reg(cpu, &mdcr_el2); 8669 define_arm_cp_regs(cpu, vpidr_regs); 8670 define_arm_cp_regs(cpu, el2_cp_reginfo); 8671 if (arm_feature(env, ARM_FEATURE_V8)) { 8672 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8673 } 8674 if (cpu_isar_feature(aa64_sel2, cpu)) { 8675 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8676 } 8677 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8678 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8679 ARMCPRegInfo rvbar[] = { 8680 { 8681 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8682 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8683 .access = PL2_R, 8684 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8685 }, 8686 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8687 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8688 .access = PL2_R, 8689 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8690 }, 8691 }; 8692 define_arm_cp_regs(cpu, rvbar); 8693 } 8694 } 8695 8696 /* Register the base EL3 cpregs. */ 8697 if (arm_feature(env, ARM_FEATURE_EL3)) { 8698 define_arm_cp_regs(cpu, el3_cp_reginfo); 8699 ARMCPRegInfo el3_regs[] = { 8700 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8701 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8702 .access = PL3_R, 8703 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8704 }, 8705 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8706 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8707 .access = PL3_RW, 8708 .raw_writefn = raw_write, .writefn = sctlr_write, 8709 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8710 .resetvalue = cpu->reset_sctlr }, 8711 }; 8712 8713 define_arm_cp_regs(cpu, el3_regs); 8714 } 8715 /* 8716 * The behaviour of NSACR is sufficiently various that we don't 8717 * try to describe it in a single reginfo: 8718 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8719 * reads as constant 0xc00 from NS EL1 and NS EL2 8720 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8721 * if v7 without EL3, register doesn't exist 8722 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8723 */ 8724 if (arm_feature(env, ARM_FEATURE_EL3)) { 8725 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8726 static const ARMCPRegInfo nsacr = { 8727 .name = "NSACR", .type = ARM_CP_CONST, 8728 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8729 .access = PL1_RW, .accessfn = nsacr_access, 8730 .resetvalue = 0xc00 8731 }; 8732 define_one_arm_cp_reg(cpu, &nsacr); 8733 } else { 8734 static const ARMCPRegInfo nsacr = { 8735 .name = "NSACR", 8736 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8737 .access = PL3_RW | PL1_R, 8738 .resetvalue = 0, 8739 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8740 }; 8741 define_one_arm_cp_reg(cpu, &nsacr); 8742 } 8743 } else { 8744 if (arm_feature(env, ARM_FEATURE_V8)) { 8745 static const ARMCPRegInfo nsacr = { 8746 .name = "NSACR", .type = ARM_CP_CONST, 8747 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8748 .access = PL1_R, 8749 .resetvalue = 0xc00 8750 }; 8751 define_one_arm_cp_reg(cpu, &nsacr); 8752 } 8753 } 8754 8755 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8756 if (arm_feature(env, ARM_FEATURE_V6)) { 8757 /* PMSAv6 not implemented */ 8758 assert(arm_feature(env, ARM_FEATURE_V7)); 8759 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8760 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8761 } else { 8762 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8763 } 8764 } else { 8765 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8766 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8767 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8768 if (cpu_isar_feature(aa32_hpd, cpu)) { 8769 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8770 } 8771 } 8772 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8773 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8774 } 8775 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8776 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8777 } 8778 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8779 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8780 } 8781 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8782 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8783 } 8784 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8785 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8786 } 8787 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8788 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8789 } 8790 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8791 define_arm_cp_regs(cpu, omap_cp_reginfo); 8792 } 8793 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8794 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8795 } 8796 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8797 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8798 } 8799 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8800 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8801 } 8802 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8803 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8804 } 8805 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8806 define_arm_cp_regs(cpu, jazelle_regs); 8807 } 8808 /* 8809 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8810 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8811 * be read-only (ie write causes UNDEF exception). 8812 */ 8813 { 8814 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8815 /* 8816 * Pre-v8 MIDR space. 8817 * Note that the MIDR isn't a simple constant register because 8818 * of the TI925 behaviour where writes to another register can 8819 * cause the MIDR value to change. 8820 * 8821 * Unimplemented registers in the c15 0 0 0 space default to 8822 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8823 * and friends override accordingly. 8824 */ 8825 { .name = "MIDR", 8826 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8827 .access = PL1_R, .resetvalue = cpu->midr, 8828 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8829 .readfn = midr_read, 8830 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8831 .type = ARM_CP_OVERRIDE }, 8832 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8833 { .name = "DUMMY", 8834 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8835 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8836 { .name = "DUMMY", 8837 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8838 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8839 { .name = "DUMMY", 8840 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8841 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8842 { .name = "DUMMY", 8843 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8844 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8845 { .name = "DUMMY", 8846 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8847 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8848 }; 8849 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8850 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8852 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8853 .fgt = FGT_MIDR_EL1, 8854 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8855 .readfn = midr_read }, 8856 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8857 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8858 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8859 .access = PL1_R, .resetvalue = cpu->midr }, 8860 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8862 .access = PL1_R, 8863 .accessfn = access_aa64_tid1, 8864 .fgt = FGT_REVIDR_EL1, 8865 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8866 }; 8867 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8868 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8869 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8870 .access = PL1_R, .resetvalue = cpu->midr 8871 }; 8872 ARMCPRegInfo id_cp_reginfo[] = { 8873 /* These are common to v8 and pre-v8 */ 8874 { .name = "CTR", 8875 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8876 .access = PL1_R, .accessfn = ctr_el0_access, 8877 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8878 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8879 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8880 .access = PL0_R, .accessfn = ctr_el0_access, 8881 .fgt = FGT_CTR_EL0, 8882 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8883 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8884 { .name = "TCMTR", 8885 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8886 .access = PL1_R, 8887 .accessfn = access_aa32_tid1, 8888 .type = ARM_CP_CONST, .resetvalue = 0 }, 8889 }; 8890 /* TLBTR is specific to VMSA */ 8891 ARMCPRegInfo id_tlbtr_reginfo = { 8892 .name = "TLBTR", 8893 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8894 .access = PL1_R, 8895 .accessfn = access_aa32_tid1, 8896 .type = ARM_CP_CONST, .resetvalue = 0, 8897 }; 8898 /* MPUIR is specific to PMSA V6+ */ 8899 ARMCPRegInfo id_mpuir_reginfo = { 8900 .name = "MPUIR", 8901 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8902 .access = PL1_R, .type = ARM_CP_CONST, 8903 .resetvalue = cpu->pmsav7_dregion << 8 8904 }; 8905 /* HMPUIR is specific to PMSA V8 */ 8906 ARMCPRegInfo id_hmpuir_reginfo = { 8907 .name = "HMPUIR", 8908 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8909 .access = PL2_R, .type = ARM_CP_CONST, 8910 .resetvalue = cpu->pmsav8r_hdregion 8911 }; 8912 static const ARMCPRegInfo crn0_wi_reginfo = { 8913 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8914 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8915 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8916 }; 8917 #ifdef CONFIG_USER_ONLY 8918 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8919 { .name = "MIDR_EL1", 8920 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8921 R_MIDR_EL1_PARTNUM_MASK | 8922 R_MIDR_EL1_ARCHITECTURE_MASK | 8923 R_MIDR_EL1_VARIANT_MASK | 8924 R_MIDR_EL1_IMPLEMENTER_MASK }, 8925 { .name = "REVIDR_EL1" }, 8926 }; 8927 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8928 #endif 8929 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8930 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8931 size_t i; 8932 /* 8933 * Register the blanket "writes ignored" value first to cover the 8934 * whole space. Then update the specific ID registers to allow write 8935 * access, so that they ignore writes rather than causing them to 8936 * UNDEF. 8937 */ 8938 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8939 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8940 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8941 } 8942 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8943 id_cp_reginfo[i].access = PL1_RW; 8944 } 8945 id_mpuir_reginfo.access = PL1_RW; 8946 id_tlbtr_reginfo.access = PL1_RW; 8947 } 8948 if (arm_feature(env, ARM_FEATURE_V8)) { 8949 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8950 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8951 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8952 } 8953 } else { 8954 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8955 } 8956 define_arm_cp_regs(cpu, id_cp_reginfo); 8957 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8958 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8959 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8960 arm_feature(env, ARM_FEATURE_V8)) { 8961 uint32_t i = 0; 8962 char *tmp_string; 8963 8964 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8965 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8966 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8967 8968 /* Register alias is only valid for first 32 indexes */ 8969 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8970 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8971 uint8_t opc1 = extract32(i, 4, 1); 8972 uint8_t opc2 = extract32(i, 0, 1) << 2; 8973 8974 tmp_string = g_strdup_printf("PRBAR%u", i); 8975 ARMCPRegInfo tmp_prbarn_reginfo = { 8976 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8977 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8978 .access = PL1_RW, .resetvalue = 0, 8979 .accessfn = access_tvm_trvm, 8980 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8981 }; 8982 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8983 g_free(tmp_string); 8984 8985 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8986 tmp_string = g_strdup_printf("PRLAR%u", i); 8987 ARMCPRegInfo tmp_prlarn_reginfo = { 8988 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8989 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8990 .access = PL1_RW, .resetvalue = 0, 8991 .accessfn = access_tvm_trvm, 8992 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8993 }; 8994 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8995 g_free(tmp_string); 8996 } 8997 8998 /* Register alias is only valid for first 32 indexes */ 8999 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9000 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9001 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9002 uint8_t opc2 = extract32(i, 0, 1) << 2; 9003 9004 tmp_string = g_strdup_printf("HPRBAR%u", i); 9005 ARMCPRegInfo tmp_hprbarn_reginfo = { 9006 .name = tmp_string, 9007 .type = ARM_CP_NO_RAW, 9008 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9009 .access = PL2_RW, .resetvalue = 0, 9010 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9011 }; 9012 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9013 g_free(tmp_string); 9014 9015 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9016 tmp_string = g_strdup_printf("HPRLAR%u", i); 9017 ARMCPRegInfo tmp_hprlarn_reginfo = { 9018 .name = tmp_string, 9019 .type = ARM_CP_NO_RAW, 9020 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9021 .access = PL2_RW, .resetvalue = 0, 9022 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9023 }; 9024 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9025 g_free(tmp_string); 9026 } 9027 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9028 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9029 } 9030 } 9031 9032 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9033 ARMCPRegInfo mpidr_cp_reginfo[] = { 9034 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9035 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9036 .fgt = FGT_MPIDR_EL1, 9037 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9038 }; 9039 #ifdef CONFIG_USER_ONLY 9040 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9041 { .name = "MPIDR_EL1", 9042 .fixed_bits = 0x0000000080000000 }, 9043 }; 9044 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9045 #endif 9046 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9047 } 9048 9049 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9050 ARMCPRegInfo auxcr_reginfo[] = { 9051 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9052 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9053 .access = PL1_RW, .accessfn = access_tacr, 9054 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9055 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9056 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9057 .access = PL2_RW, .type = ARM_CP_CONST, 9058 .resetvalue = 0 }, 9059 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9060 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9061 .access = PL3_RW, .type = ARM_CP_CONST, 9062 .resetvalue = 0 }, 9063 }; 9064 define_arm_cp_regs(cpu, auxcr_reginfo); 9065 if (cpu_isar_feature(aa32_ac2, cpu)) { 9066 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9067 } 9068 } 9069 9070 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9071 /* 9072 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9073 * There are two flavours: 9074 * (1) older 32-bit only cores have a simple 32-bit CBAR 9075 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9076 * 32-bit register visible to AArch32 at a different encoding 9077 * to the "flavour 1" register and with the bits rearranged to 9078 * be able to squash a 64-bit address into the 32-bit view. 9079 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9080 * in future if we support AArch32-only configs of some of the 9081 * AArch64 cores we might need to add a specific feature flag 9082 * to indicate cores with "flavour 2" CBAR. 9083 */ 9084 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9085 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9086 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9087 | extract64(cpu->reset_cbar, 32, 12); 9088 ARMCPRegInfo cbar_reginfo[] = { 9089 { .name = "CBAR", 9090 .type = ARM_CP_CONST, 9091 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9092 .access = PL1_R, .resetvalue = cbar32 }, 9093 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9094 .type = ARM_CP_CONST, 9095 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9096 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9097 }; 9098 /* We don't implement a r/w 64 bit CBAR currently */ 9099 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9100 define_arm_cp_regs(cpu, cbar_reginfo); 9101 } else { 9102 ARMCPRegInfo cbar = { 9103 .name = "CBAR", 9104 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9105 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9106 .fieldoffset = offsetof(CPUARMState, 9107 cp15.c15_config_base_address) 9108 }; 9109 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9110 cbar.access = PL1_R; 9111 cbar.fieldoffset = 0; 9112 cbar.type = ARM_CP_CONST; 9113 } 9114 define_one_arm_cp_reg(cpu, &cbar); 9115 } 9116 } 9117 9118 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9119 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9120 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9121 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9122 .access = PL1_RW, .writefn = vbar_write, 9123 .fgt = FGT_VBAR_EL1, 9124 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9125 offsetof(CPUARMState, cp15.vbar_ns) }, 9126 .resetvalue = 0 }, 9127 }; 9128 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9129 } 9130 9131 /* Generic registers whose values depend on the implementation */ 9132 { 9133 ARMCPRegInfo sctlr = { 9134 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9135 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9136 .access = PL1_RW, .accessfn = access_tvm_trvm, 9137 .fgt = FGT_SCTLR_EL1, 9138 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9139 offsetof(CPUARMState, cp15.sctlr_ns) }, 9140 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9141 .raw_writefn = raw_write, 9142 }; 9143 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9144 /* 9145 * Normally we would always end the TB on an SCTLR write, but Linux 9146 * arch/arm/mach-pxa/sleep.S expects two instructions following 9147 * an MMU enable to execute from cache. Imitate this behaviour. 9148 */ 9149 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9150 } 9151 define_one_arm_cp_reg(cpu, &sctlr); 9152 9153 if (arm_feature(env, ARM_FEATURE_PMSA) && 9154 arm_feature(env, ARM_FEATURE_V8)) { 9155 ARMCPRegInfo vsctlr = { 9156 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9157 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9158 .access = PL2_RW, .resetvalue = 0x0, 9159 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9160 }; 9161 define_one_arm_cp_reg(cpu, &vsctlr); 9162 } 9163 } 9164 9165 if (cpu_isar_feature(aa64_lor, cpu)) { 9166 define_arm_cp_regs(cpu, lor_reginfo); 9167 } 9168 if (cpu_isar_feature(aa64_pan, cpu)) { 9169 define_one_arm_cp_reg(cpu, &pan_reginfo); 9170 } 9171 #ifndef CONFIG_USER_ONLY 9172 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9173 define_arm_cp_regs(cpu, ats1e1_reginfo); 9174 } 9175 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9176 define_arm_cp_regs(cpu, ats1cp_reginfo); 9177 } 9178 #endif 9179 if (cpu_isar_feature(aa64_uao, cpu)) { 9180 define_one_arm_cp_reg(cpu, &uao_reginfo); 9181 } 9182 9183 if (cpu_isar_feature(aa64_dit, cpu)) { 9184 define_one_arm_cp_reg(cpu, &dit_reginfo); 9185 } 9186 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9187 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9188 } 9189 if (cpu_isar_feature(any_ras, cpu)) { 9190 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9191 } 9192 9193 if (cpu_isar_feature(aa64_vh, cpu) || 9194 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9195 define_one_arm_cp_reg(cpu, &contextidr_el2); 9196 } 9197 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9198 define_arm_cp_regs(cpu, vhe_reginfo); 9199 } 9200 9201 if (cpu_isar_feature(aa64_sve, cpu)) { 9202 define_arm_cp_regs(cpu, zcr_reginfo); 9203 } 9204 9205 if (cpu_isar_feature(aa64_hcx, cpu)) { 9206 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9207 } 9208 9209 #ifdef TARGET_AARCH64 9210 if (cpu_isar_feature(aa64_sme, cpu)) { 9211 define_arm_cp_regs(cpu, sme_reginfo); 9212 } 9213 if (cpu_isar_feature(aa64_pauth, cpu)) { 9214 define_arm_cp_regs(cpu, pauth_reginfo); 9215 } 9216 if (cpu_isar_feature(aa64_rndr, cpu)) { 9217 define_arm_cp_regs(cpu, rndr_reginfo); 9218 } 9219 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9220 define_arm_cp_regs(cpu, tlbirange_reginfo); 9221 } 9222 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9223 define_arm_cp_regs(cpu, tlbios_reginfo); 9224 } 9225 /* Data Cache clean instructions up to PoP */ 9226 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9227 define_one_arm_cp_reg(cpu, dcpop_reg); 9228 9229 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9230 define_one_arm_cp_reg(cpu, dcpodp_reg); 9231 } 9232 } 9233 9234 /* 9235 * If full MTE is enabled, add all of the system registers. 9236 * If only "instructions available at EL0" are enabled, 9237 * then define only a RAZ/WI version of PSTATE.TCO. 9238 */ 9239 if (cpu_isar_feature(aa64_mte, cpu)) { 9240 define_arm_cp_regs(cpu, mte_reginfo); 9241 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9242 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9243 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9244 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9245 } 9246 9247 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9248 define_arm_cp_regs(cpu, scxtnum_reginfo); 9249 } 9250 9251 if (cpu_isar_feature(aa64_fgt, cpu)) { 9252 define_arm_cp_regs(cpu, fgt_reginfo); 9253 } 9254 9255 if (cpu_isar_feature(aa64_rme, cpu)) { 9256 define_arm_cp_regs(cpu, rme_reginfo); 9257 if (cpu_isar_feature(aa64_mte, cpu)) { 9258 define_arm_cp_regs(cpu, rme_mte_reginfo); 9259 } 9260 } 9261 #endif 9262 9263 if (cpu_isar_feature(any_predinv, cpu)) { 9264 define_arm_cp_regs(cpu, predinv_reginfo); 9265 } 9266 9267 if (cpu_isar_feature(any_ccidx, cpu)) { 9268 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9269 } 9270 9271 #ifndef CONFIG_USER_ONLY 9272 /* 9273 * Register redirections and aliases must be done last, 9274 * after the registers from the other extensions have been defined. 9275 */ 9276 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9277 define_arm_vh_e2h_redirects_aliases(cpu); 9278 } 9279 #endif 9280 } 9281 9282 /* Sort alphabetically by type name, except for "any". */ 9283 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9284 { 9285 ObjectClass *class_a = (ObjectClass *)a; 9286 ObjectClass *class_b = (ObjectClass *)b; 9287 const char *name_a, *name_b; 9288 9289 name_a = object_class_get_name(class_a); 9290 name_b = object_class_get_name(class_b); 9291 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9292 return 1; 9293 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9294 return -1; 9295 } else { 9296 return strcmp(name_a, name_b); 9297 } 9298 } 9299 9300 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9301 { 9302 ObjectClass *oc = data; 9303 CPUClass *cc = CPU_CLASS(oc); 9304 const char *typename; 9305 char *name; 9306 9307 typename = object_class_get_name(oc); 9308 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9309 if (cc->deprecation_note) { 9310 qemu_printf(" %s (deprecated)\n", name); 9311 } else { 9312 qemu_printf(" %s\n", name); 9313 } 9314 g_free(name); 9315 } 9316 9317 void arm_cpu_list(void) 9318 { 9319 GSList *list; 9320 9321 list = object_class_get_list(TYPE_ARM_CPU, false); 9322 list = g_slist_sort(list, arm_cpu_list_compare); 9323 qemu_printf("Available CPUs:\n"); 9324 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9325 g_slist_free(list); 9326 } 9327 9328 /* 9329 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9330 * add a single reginfo struct to the hash table. 9331 */ 9332 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9333 void *opaque, CPState state, 9334 CPSecureState secstate, 9335 int crm, int opc1, int opc2, 9336 const char *name) 9337 { 9338 CPUARMState *env = &cpu->env; 9339 uint32_t key; 9340 ARMCPRegInfo *r2; 9341 bool is64 = r->type & ARM_CP_64BIT; 9342 bool ns = secstate & ARM_CP_SECSTATE_NS; 9343 int cp = r->cp; 9344 size_t name_len; 9345 bool make_const; 9346 9347 switch (state) { 9348 case ARM_CP_STATE_AA32: 9349 /* We assume it is a cp15 register if the .cp field is left unset. */ 9350 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9351 cp = 15; 9352 } 9353 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9354 break; 9355 case ARM_CP_STATE_AA64: 9356 /* 9357 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9358 * cp == 0 as equivalent to the value for "standard guest-visible 9359 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9360 * in their AArch64 view (the .cp value may be non-zero for the 9361 * benefit of the AArch32 view). 9362 */ 9363 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9364 cp = CP_REG_ARM64_SYSREG_CP; 9365 } 9366 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9367 break; 9368 default: 9369 g_assert_not_reached(); 9370 } 9371 9372 /* Overriding of an existing definition must be explicitly requested. */ 9373 if (!(r->type & ARM_CP_OVERRIDE)) { 9374 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9375 if (oldreg) { 9376 assert(oldreg->type & ARM_CP_OVERRIDE); 9377 } 9378 } 9379 9380 /* 9381 * Eliminate registers that are not present because the EL is missing. 9382 * Doing this here makes it easier to put all registers for a given 9383 * feature into the same ARMCPRegInfo array and define them all at once. 9384 */ 9385 make_const = false; 9386 if (arm_feature(env, ARM_FEATURE_EL3)) { 9387 /* 9388 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9389 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9390 */ 9391 int min_el = ctz32(r->access) / 2; 9392 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9393 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9394 return; 9395 } 9396 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9397 } 9398 } else { 9399 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9400 ? PL2_RW : PL1_RW); 9401 if ((r->access & max_el) == 0) { 9402 return; 9403 } 9404 } 9405 9406 /* Combine cpreg and name into one allocation. */ 9407 name_len = strlen(name) + 1; 9408 r2 = g_malloc(sizeof(*r2) + name_len); 9409 *r2 = *r; 9410 r2->name = memcpy(r2 + 1, name, name_len); 9411 9412 /* 9413 * Update fields to match the instantiation, overwiting wildcards 9414 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9415 */ 9416 r2->cp = cp; 9417 r2->crm = crm; 9418 r2->opc1 = opc1; 9419 r2->opc2 = opc2; 9420 r2->state = state; 9421 r2->secure = secstate; 9422 if (opaque) { 9423 r2->opaque = opaque; 9424 } 9425 9426 if (make_const) { 9427 /* This should not have been a very special register to begin. */ 9428 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9429 assert(old_special == 0 || old_special == ARM_CP_NOP); 9430 /* 9431 * Set the special function to CONST, retaining the other flags. 9432 * This is important for e.g. ARM_CP_SVE so that we still 9433 * take the SVE trap if CPTR_EL3.EZ == 0. 9434 */ 9435 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9436 /* 9437 * Usually, these registers become RES0, but there are a few 9438 * special cases like VPIDR_EL2 which have a constant non-zero 9439 * value with writes ignored. 9440 */ 9441 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9442 r2->resetvalue = 0; 9443 } 9444 /* 9445 * ARM_CP_CONST has precedence, so removing the callbacks and 9446 * offsets are not strictly necessary, but it is potentially 9447 * less confusing to debug later. 9448 */ 9449 r2->readfn = NULL; 9450 r2->writefn = NULL; 9451 r2->raw_readfn = NULL; 9452 r2->raw_writefn = NULL; 9453 r2->resetfn = NULL; 9454 r2->fieldoffset = 0; 9455 r2->bank_fieldoffsets[0] = 0; 9456 r2->bank_fieldoffsets[1] = 0; 9457 } else { 9458 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9459 9460 if (isbanked) { 9461 /* 9462 * Register is banked (using both entries in array). 9463 * Overwriting fieldoffset as the array is only used to define 9464 * banked registers but later only fieldoffset is used. 9465 */ 9466 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9467 } 9468 if (state == ARM_CP_STATE_AA32) { 9469 if (isbanked) { 9470 /* 9471 * If the register is banked then we don't need to migrate or 9472 * reset the 32-bit instance in certain cases: 9473 * 9474 * 1) If the register has both 32-bit and 64-bit instances 9475 * then we can count on the 64-bit instance taking care 9476 * of the non-secure bank. 9477 * 2) If ARMv8 is enabled then we can count on a 64-bit 9478 * version taking care of the secure bank. This requires 9479 * that separate 32 and 64-bit definitions are provided. 9480 */ 9481 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9482 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9483 r2->type |= ARM_CP_ALIAS; 9484 } 9485 } else if ((secstate != r->secure) && !ns) { 9486 /* 9487 * The register is not banked so we only want to allow 9488 * migration of the non-secure instance. 9489 */ 9490 r2->type |= ARM_CP_ALIAS; 9491 } 9492 9493 if (HOST_BIG_ENDIAN && 9494 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9495 r2->fieldoffset += sizeof(uint32_t); 9496 } 9497 } 9498 } 9499 9500 /* 9501 * By convention, for wildcarded registers only the first 9502 * entry is used for migration; the others are marked as 9503 * ALIAS so we don't try to transfer the register 9504 * multiple times. Special registers (ie NOP/WFI) are 9505 * never migratable and not even raw-accessible. 9506 */ 9507 if (r2->type & ARM_CP_SPECIAL_MASK) { 9508 r2->type |= ARM_CP_NO_RAW; 9509 } 9510 if (((r->crm == CP_ANY) && crm != 0) || 9511 ((r->opc1 == CP_ANY) && opc1 != 0) || 9512 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9513 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9514 } 9515 9516 /* 9517 * Check that raw accesses are either forbidden or handled. Note that 9518 * we can't assert this earlier because the setup of fieldoffset for 9519 * banked registers has to be done first. 9520 */ 9521 if (!(r2->type & ARM_CP_NO_RAW)) { 9522 assert(!raw_accessors_invalid(r2)); 9523 } 9524 9525 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9526 } 9527 9528 9529 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9530 const ARMCPRegInfo *r, void *opaque) 9531 { 9532 /* 9533 * Define implementations of coprocessor registers. 9534 * We store these in a hashtable because typically 9535 * there are less than 150 registers in a space which 9536 * is 16*16*16*8*8 = 262144 in size. 9537 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9538 * If a register is defined twice then the second definition is 9539 * used, so this can be used to define some generic registers and 9540 * then override them with implementation specific variations. 9541 * At least one of the original and the second definition should 9542 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9543 * against accidental use. 9544 * 9545 * The state field defines whether the register is to be 9546 * visible in the AArch32 or AArch64 execution state. If the 9547 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9548 * reginfo structure for the AArch32 view, which sees the lower 9549 * 32 bits of the 64 bit register. 9550 * 9551 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9552 * be wildcarded. AArch64 registers are always considered to be 64 9553 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9554 * the register, if any. 9555 */ 9556 int crm, opc1, opc2; 9557 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9558 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9559 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9560 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9561 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9562 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9563 CPState state; 9564 9565 /* 64 bit registers have only CRm and Opc1 fields */ 9566 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9567 /* op0 only exists in the AArch64 encodings */ 9568 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9569 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9570 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9571 /* 9572 * This API is only for Arm's system coprocessors (14 and 15) or 9573 * (M-profile or v7A-and-earlier only) for implementation defined 9574 * coprocessors in the range 0..7. Our decode assumes this, since 9575 * 8..13 can be used for other insns including VFP and Neon. See 9576 * valid_cp() in translate.c. Assert here that we haven't tried 9577 * to use an invalid coprocessor number. 9578 */ 9579 switch (r->state) { 9580 case ARM_CP_STATE_BOTH: 9581 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9582 if (r->cp == 0) { 9583 break; 9584 } 9585 /* fall through */ 9586 case ARM_CP_STATE_AA32: 9587 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9588 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9589 assert(r->cp >= 14 && r->cp <= 15); 9590 } else { 9591 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9592 } 9593 break; 9594 case ARM_CP_STATE_AA64: 9595 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9596 break; 9597 default: 9598 g_assert_not_reached(); 9599 } 9600 /* 9601 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9602 * encodes a minimum access level for the register. We roll this 9603 * runtime check into our general permission check code, so check 9604 * here that the reginfo's specified permissions are strict enough 9605 * to encompass the generic architectural permission check. 9606 */ 9607 if (r->state != ARM_CP_STATE_AA32) { 9608 CPAccessRights mask; 9609 switch (r->opc1) { 9610 case 0: 9611 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9612 mask = PL0U_R | PL1_RW; 9613 break; 9614 case 1: case 2: 9615 /* min_EL EL1 */ 9616 mask = PL1_RW; 9617 break; 9618 case 3: 9619 /* min_EL EL0 */ 9620 mask = PL0_RW; 9621 break; 9622 case 4: 9623 case 5: 9624 /* min_EL EL2 */ 9625 mask = PL2_RW; 9626 break; 9627 case 6: 9628 /* min_EL EL3 */ 9629 mask = PL3_RW; 9630 break; 9631 case 7: 9632 /* min_EL EL1, secure mode only (we don't check the latter) */ 9633 mask = PL1_RW; 9634 break; 9635 default: 9636 /* broken reginfo with out-of-range opc1 */ 9637 g_assert_not_reached(); 9638 } 9639 /* assert our permissions are not too lax (stricter is fine) */ 9640 assert((r->access & ~mask) == 0); 9641 } 9642 9643 /* 9644 * Check that the register definition has enough info to handle 9645 * reads and writes if they are permitted. 9646 */ 9647 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9648 if (r->access & PL3_R) { 9649 assert((r->fieldoffset || 9650 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9651 r->readfn); 9652 } 9653 if (r->access & PL3_W) { 9654 assert((r->fieldoffset || 9655 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9656 r->writefn); 9657 } 9658 } 9659 9660 for (crm = crmmin; crm <= crmmax; crm++) { 9661 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9662 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9663 for (state = ARM_CP_STATE_AA32; 9664 state <= ARM_CP_STATE_AA64; state++) { 9665 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9666 continue; 9667 } 9668 if (state == ARM_CP_STATE_AA32) { 9669 /* 9670 * Under AArch32 CP registers can be common 9671 * (same for secure and non-secure world) or banked. 9672 */ 9673 char *name; 9674 9675 switch (r->secure) { 9676 case ARM_CP_SECSTATE_S: 9677 case ARM_CP_SECSTATE_NS: 9678 add_cpreg_to_hashtable(cpu, r, opaque, state, 9679 r->secure, crm, opc1, opc2, 9680 r->name); 9681 break; 9682 case ARM_CP_SECSTATE_BOTH: 9683 name = g_strdup_printf("%s_S", r->name); 9684 add_cpreg_to_hashtable(cpu, r, opaque, state, 9685 ARM_CP_SECSTATE_S, 9686 crm, opc1, opc2, name); 9687 g_free(name); 9688 add_cpreg_to_hashtable(cpu, r, opaque, state, 9689 ARM_CP_SECSTATE_NS, 9690 crm, opc1, opc2, r->name); 9691 break; 9692 default: 9693 g_assert_not_reached(); 9694 } 9695 } else { 9696 /* 9697 * AArch64 registers get mapped to non-secure instance 9698 * of AArch32 9699 */ 9700 add_cpreg_to_hashtable(cpu, r, opaque, state, 9701 ARM_CP_SECSTATE_NS, 9702 crm, opc1, opc2, r->name); 9703 } 9704 } 9705 } 9706 } 9707 } 9708 } 9709 9710 /* Define a whole list of registers */ 9711 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9712 void *opaque, size_t len) 9713 { 9714 size_t i; 9715 for (i = 0; i < len; ++i) { 9716 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9717 } 9718 } 9719 9720 /* 9721 * Modify ARMCPRegInfo for access from userspace. 9722 * 9723 * This is a data driven modification directed by 9724 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9725 * user-space cannot alter any values and dynamic values pertaining to 9726 * execution state are hidden from user space view anyway. 9727 */ 9728 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9729 const ARMCPRegUserSpaceInfo *mods, 9730 size_t mods_len) 9731 { 9732 for (size_t mi = 0; mi < mods_len; ++mi) { 9733 const ARMCPRegUserSpaceInfo *m = mods + mi; 9734 GPatternSpec *pat = NULL; 9735 9736 if (m->is_glob) { 9737 pat = g_pattern_spec_new(m->name); 9738 } 9739 for (size_t ri = 0; ri < regs_len; ++ri) { 9740 ARMCPRegInfo *r = regs + ri; 9741 9742 if (pat && g_pattern_match_string(pat, r->name)) { 9743 r->type = ARM_CP_CONST; 9744 r->access = PL0U_R; 9745 r->resetvalue = 0; 9746 /* continue */ 9747 } else if (strcmp(r->name, m->name) == 0) { 9748 r->type = ARM_CP_CONST; 9749 r->access = PL0U_R; 9750 r->resetvalue &= m->exported_bits; 9751 r->resetvalue |= m->fixed_bits; 9752 break; 9753 } 9754 } 9755 if (pat) { 9756 g_pattern_spec_free(pat); 9757 } 9758 } 9759 } 9760 9761 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9762 { 9763 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9764 } 9765 9766 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9767 uint64_t value) 9768 { 9769 /* Helper coprocessor write function for write-ignore registers */ 9770 } 9771 9772 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9773 { 9774 /* Helper coprocessor write function for read-as-zero registers */ 9775 return 0; 9776 } 9777 9778 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9779 { 9780 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9781 } 9782 9783 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9784 { 9785 /* 9786 * Return true if it is not valid for us to switch to 9787 * this CPU mode (ie all the UNPREDICTABLE cases in 9788 * the ARM ARM CPSRWriteByInstr pseudocode). 9789 */ 9790 9791 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9792 if (write_type == CPSRWriteByInstr && 9793 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9794 mode == ARM_CPU_MODE_HYP)) { 9795 return 1; 9796 } 9797 9798 switch (mode) { 9799 case ARM_CPU_MODE_USR: 9800 return 0; 9801 case ARM_CPU_MODE_SYS: 9802 case ARM_CPU_MODE_SVC: 9803 case ARM_CPU_MODE_ABT: 9804 case ARM_CPU_MODE_UND: 9805 case ARM_CPU_MODE_IRQ: 9806 case ARM_CPU_MODE_FIQ: 9807 /* 9808 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9809 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9810 */ 9811 /* 9812 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9813 * and CPS are treated as illegal mode changes. 9814 */ 9815 if (write_type == CPSRWriteByInstr && 9816 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9817 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9818 return 1; 9819 } 9820 return 0; 9821 case ARM_CPU_MODE_HYP: 9822 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9823 case ARM_CPU_MODE_MON: 9824 return arm_current_el(env) < 3; 9825 default: 9826 return 1; 9827 } 9828 } 9829 9830 uint32_t cpsr_read(CPUARMState *env) 9831 { 9832 int ZF; 9833 ZF = (env->ZF == 0); 9834 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9835 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9836 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9837 | ((env->condexec_bits & 0xfc) << 8) 9838 | (env->GE << 16) | (env->daif & CPSR_AIF); 9839 } 9840 9841 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9842 CPSRWriteType write_type) 9843 { 9844 uint32_t changed_daif; 9845 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9846 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9847 9848 if (mask & CPSR_NZCV) { 9849 env->ZF = (~val) & CPSR_Z; 9850 env->NF = val; 9851 env->CF = (val >> 29) & 1; 9852 env->VF = (val << 3) & 0x80000000; 9853 } 9854 if (mask & CPSR_Q) { 9855 env->QF = ((val & CPSR_Q) != 0); 9856 } 9857 if (mask & CPSR_T) { 9858 env->thumb = ((val & CPSR_T) != 0); 9859 } 9860 if (mask & CPSR_IT_0_1) { 9861 env->condexec_bits &= ~3; 9862 env->condexec_bits |= (val >> 25) & 3; 9863 } 9864 if (mask & CPSR_IT_2_7) { 9865 env->condexec_bits &= 3; 9866 env->condexec_bits |= (val >> 8) & 0xfc; 9867 } 9868 if (mask & CPSR_GE) { 9869 env->GE = (val >> 16) & 0xf; 9870 } 9871 9872 /* 9873 * In a V7 implementation that includes the security extensions but does 9874 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9875 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9876 * bits respectively. 9877 * 9878 * In a V8 implementation, it is permitted for privileged software to 9879 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9880 */ 9881 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9882 arm_feature(env, ARM_FEATURE_EL3) && 9883 !arm_feature(env, ARM_FEATURE_EL2) && 9884 !arm_is_secure(env)) { 9885 9886 changed_daif = (env->daif ^ val) & mask; 9887 9888 if (changed_daif & CPSR_A) { 9889 /* 9890 * Check to see if we are allowed to change the masking of async 9891 * abort exceptions from a non-secure state. 9892 */ 9893 if (!(env->cp15.scr_el3 & SCR_AW)) { 9894 qemu_log_mask(LOG_GUEST_ERROR, 9895 "Ignoring attempt to switch CPSR_A flag from " 9896 "non-secure world with SCR.AW bit clear\n"); 9897 mask &= ~CPSR_A; 9898 } 9899 } 9900 9901 if (changed_daif & CPSR_F) { 9902 /* 9903 * Check to see if we are allowed to change the masking of FIQ 9904 * exceptions from a non-secure state. 9905 */ 9906 if (!(env->cp15.scr_el3 & SCR_FW)) { 9907 qemu_log_mask(LOG_GUEST_ERROR, 9908 "Ignoring attempt to switch CPSR_F flag from " 9909 "non-secure world with SCR.FW bit clear\n"); 9910 mask &= ~CPSR_F; 9911 } 9912 9913 /* 9914 * Check whether non-maskable FIQ (NMFI) support is enabled. 9915 * If this bit is set software is not allowed to mask 9916 * FIQs, but is allowed to set CPSR_F to 0. 9917 */ 9918 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9919 (val & CPSR_F)) { 9920 qemu_log_mask(LOG_GUEST_ERROR, 9921 "Ignoring attempt to enable CPSR_F flag " 9922 "(non-maskable FIQ [NMFI] support enabled)\n"); 9923 mask &= ~CPSR_F; 9924 } 9925 } 9926 } 9927 9928 env->daif &= ~(CPSR_AIF & mask); 9929 env->daif |= val & CPSR_AIF & mask; 9930 9931 if (write_type != CPSRWriteRaw && 9932 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9933 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9934 /* 9935 * Note that we can only get here in USR mode if this is a 9936 * gdb stub write; for this case we follow the architectural 9937 * behaviour for guest writes in USR mode of ignoring an attempt 9938 * to switch mode. (Those are caught by translate.c for writes 9939 * triggered by guest instructions.) 9940 */ 9941 mask &= ~CPSR_M; 9942 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9943 /* 9944 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9945 * v7, and has defined behaviour in v8: 9946 * + leave CPSR.M untouched 9947 * + allow changes to the other CPSR fields 9948 * + set PSTATE.IL 9949 * For user changes via the GDB stub, we don't set PSTATE.IL, 9950 * as this would be unnecessarily harsh for a user error. 9951 */ 9952 mask &= ~CPSR_M; 9953 if (write_type != CPSRWriteByGDBStub && 9954 arm_feature(env, ARM_FEATURE_V8)) { 9955 mask |= CPSR_IL; 9956 val |= CPSR_IL; 9957 } 9958 qemu_log_mask(LOG_GUEST_ERROR, 9959 "Illegal AArch32 mode switch attempt from %s to %s\n", 9960 aarch32_mode_name(env->uncached_cpsr), 9961 aarch32_mode_name(val)); 9962 } else { 9963 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9964 write_type == CPSRWriteExceptionReturn ? 9965 "Exception return from AArch32" : 9966 "AArch32 mode switch from", 9967 aarch32_mode_name(env->uncached_cpsr), 9968 aarch32_mode_name(val), env->regs[15]); 9969 switch_mode(env, val & CPSR_M); 9970 } 9971 } 9972 mask &= ~CACHED_CPSR_BITS; 9973 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9974 if (tcg_enabled() && rebuild_hflags) { 9975 arm_rebuild_hflags(env); 9976 } 9977 } 9978 9979 /* Sign/zero extend */ 9980 uint32_t HELPER(sxtb16)(uint32_t x) 9981 { 9982 uint32_t res; 9983 res = (uint16_t)(int8_t)x; 9984 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9985 return res; 9986 } 9987 9988 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9989 { 9990 /* 9991 * Take a division-by-zero exception if necessary; otherwise return 9992 * to get the usual non-trapping division behaviour (result of 0) 9993 */ 9994 if (arm_feature(env, ARM_FEATURE_M) 9995 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9996 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9997 } 9998 } 9999 10000 uint32_t HELPER(uxtb16)(uint32_t x) 10001 { 10002 uint32_t res; 10003 res = (uint16_t)(uint8_t)x; 10004 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 10005 return res; 10006 } 10007 10008 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 10009 { 10010 if (den == 0) { 10011 handle_possible_div0_trap(env, GETPC()); 10012 return 0; 10013 } 10014 if (num == INT_MIN && den == -1) { 10015 return INT_MIN; 10016 } 10017 return num / den; 10018 } 10019 10020 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 10021 { 10022 if (den == 0) { 10023 handle_possible_div0_trap(env, GETPC()); 10024 return 0; 10025 } 10026 return num / den; 10027 } 10028 10029 uint32_t HELPER(rbit)(uint32_t x) 10030 { 10031 return revbit32(x); 10032 } 10033 10034 #ifdef CONFIG_USER_ONLY 10035 10036 static void switch_mode(CPUARMState *env, int mode) 10037 { 10038 ARMCPU *cpu = env_archcpu(env); 10039 10040 if (mode != ARM_CPU_MODE_USR) { 10041 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10042 } 10043 } 10044 10045 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10046 uint32_t cur_el, bool secure) 10047 { 10048 return 1; 10049 } 10050 10051 void aarch64_sync_64_to_32(CPUARMState *env) 10052 { 10053 g_assert_not_reached(); 10054 } 10055 10056 #else 10057 10058 static void switch_mode(CPUARMState *env, int mode) 10059 { 10060 int old_mode; 10061 int i; 10062 10063 old_mode = env->uncached_cpsr & CPSR_M; 10064 if (mode == old_mode) { 10065 return; 10066 } 10067 10068 if (old_mode == ARM_CPU_MODE_FIQ) { 10069 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10070 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10071 } else if (mode == ARM_CPU_MODE_FIQ) { 10072 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10073 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10074 } 10075 10076 i = bank_number(old_mode); 10077 env->banked_r13[i] = env->regs[13]; 10078 env->banked_spsr[i] = env->spsr; 10079 10080 i = bank_number(mode); 10081 env->regs[13] = env->banked_r13[i]; 10082 env->spsr = env->banked_spsr[i]; 10083 10084 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10085 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10086 } 10087 10088 /* 10089 * Physical Interrupt Target EL Lookup Table 10090 * 10091 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10092 * 10093 * The below multi-dimensional table is used for looking up the target 10094 * exception level given numerous condition criteria. Specifically, the 10095 * target EL is based on SCR and HCR routing controls as well as the 10096 * currently executing EL and secure state. 10097 * 10098 * Dimensions: 10099 * target_el_table[2][2][2][2][2][4] 10100 * | | | | | +--- Current EL 10101 * | | | | +------ Non-secure(0)/Secure(1) 10102 * | | | +--------- HCR mask override 10103 * | | +------------ SCR exec state control 10104 * | +--------------- SCR mask override 10105 * +------------------ 32-bit(0)/64-bit(1) EL3 10106 * 10107 * The table values are as such: 10108 * 0-3 = EL0-EL3 10109 * -1 = Cannot occur 10110 * 10111 * The ARM ARM target EL table includes entries indicating that an "exception 10112 * is not taken". The two cases where this is applicable are: 10113 * 1) An exception is taken from EL3 but the SCR does not have the exception 10114 * routed to EL3. 10115 * 2) An exception is taken from EL2 but the HCR does not have the exception 10116 * routed to EL2. 10117 * In these two cases, the below table contain a target of EL1. This value is 10118 * returned as it is expected that the consumer of the table data will check 10119 * for "target EL >= current EL" to ensure the exception is not taken. 10120 * 10121 * SCR HCR 10122 * 64 EA AMO From 10123 * BIT IRQ IMO Non-secure Secure 10124 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10125 */ 10126 static const int8_t target_el_table[2][2][2][2][2][4] = { 10127 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10128 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10129 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10130 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10131 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10132 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10133 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10134 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10135 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10136 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10137 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10138 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10139 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10140 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10141 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10142 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10143 }; 10144 10145 /* 10146 * Determine the target EL for physical exceptions 10147 */ 10148 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10149 uint32_t cur_el, bool secure) 10150 { 10151 CPUARMState *env = cs->env_ptr; 10152 bool rw; 10153 bool scr; 10154 bool hcr; 10155 int target_el; 10156 /* Is the highest EL AArch64? */ 10157 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10158 uint64_t hcr_el2; 10159 10160 if (arm_feature(env, ARM_FEATURE_EL3)) { 10161 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10162 } else { 10163 /* 10164 * Either EL2 is the highest EL (and so the EL2 register width 10165 * is given by is64); or there is no EL2 or EL3, in which case 10166 * the value of 'rw' does not affect the table lookup anyway. 10167 */ 10168 rw = is64; 10169 } 10170 10171 hcr_el2 = arm_hcr_el2_eff(env); 10172 switch (excp_idx) { 10173 case EXCP_IRQ: 10174 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10175 hcr = hcr_el2 & HCR_IMO; 10176 break; 10177 case EXCP_FIQ: 10178 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10179 hcr = hcr_el2 & HCR_FMO; 10180 break; 10181 default: 10182 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10183 hcr = hcr_el2 & HCR_AMO; 10184 break; 10185 }; 10186 10187 /* 10188 * For these purposes, TGE and AMO/IMO/FMO both force the 10189 * interrupt to EL2. Fold TGE into the bit extracted above. 10190 */ 10191 hcr |= (hcr_el2 & HCR_TGE) != 0; 10192 10193 /* Perform a table-lookup for the target EL given the current state */ 10194 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10195 10196 assert(target_el > 0); 10197 10198 return target_el; 10199 } 10200 10201 void arm_log_exception(CPUState *cs) 10202 { 10203 int idx = cs->exception_index; 10204 10205 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10206 const char *exc = NULL; 10207 static const char * const excnames[] = { 10208 [EXCP_UDEF] = "Undefined Instruction", 10209 [EXCP_SWI] = "SVC", 10210 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10211 [EXCP_DATA_ABORT] = "Data Abort", 10212 [EXCP_IRQ] = "IRQ", 10213 [EXCP_FIQ] = "FIQ", 10214 [EXCP_BKPT] = "Breakpoint", 10215 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10216 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10217 [EXCP_HVC] = "Hypervisor Call", 10218 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10219 [EXCP_SMC] = "Secure Monitor Call", 10220 [EXCP_VIRQ] = "Virtual IRQ", 10221 [EXCP_VFIQ] = "Virtual FIQ", 10222 [EXCP_SEMIHOST] = "Semihosting call", 10223 [EXCP_NOCP] = "v7M NOCP UsageFault", 10224 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10225 [EXCP_STKOF] = "v8M STKOF UsageFault", 10226 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10227 [EXCP_LSERR] = "v8M LSERR UsageFault", 10228 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10229 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10230 [EXCP_VSERR] = "Virtual SERR", 10231 [EXCP_GPC] = "Granule Protection Check", 10232 }; 10233 10234 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10235 exc = excnames[idx]; 10236 } 10237 if (!exc) { 10238 exc = "unknown"; 10239 } 10240 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10241 idx, exc, cs->cpu_index); 10242 } 10243 } 10244 10245 /* 10246 * Function used to synchronize QEMU's AArch64 register set with AArch32 10247 * register set. This is necessary when switching between AArch32 and AArch64 10248 * execution state. 10249 */ 10250 void aarch64_sync_32_to_64(CPUARMState *env) 10251 { 10252 int i; 10253 uint32_t mode = env->uncached_cpsr & CPSR_M; 10254 10255 /* We can blanket copy R[0:7] to X[0:7] */ 10256 for (i = 0; i < 8; i++) { 10257 env->xregs[i] = env->regs[i]; 10258 } 10259 10260 /* 10261 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10262 * Otherwise, they come from the banked user regs. 10263 */ 10264 if (mode == ARM_CPU_MODE_FIQ) { 10265 for (i = 8; i < 13; i++) { 10266 env->xregs[i] = env->usr_regs[i - 8]; 10267 } 10268 } else { 10269 for (i = 8; i < 13; i++) { 10270 env->xregs[i] = env->regs[i]; 10271 } 10272 } 10273 10274 /* 10275 * Registers x13-x23 are the various mode SP and FP registers. Registers 10276 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10277 * from the mode banked register. 10278 */ 10279 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10280 env->xregs[13] = env->regs[13]; 10281 env->xregs[14] = env->regs[14]; 10282 } else { 10283 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10284 /* HYP is an exception in that it is copied from r14 */ 10285 if (mode == ARM_CPU_MODE_HYP) { 10286 env->xregs[14] = env->regs[14]; 10287 } else { 10288 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10289 } 10290 } 10291 10292 if (mode == ARM_CPU_MODE_HYP) { 10293 env->xregs[15] = env->regs[13]; 10294 } else { 10295 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10296 } 10297 10298 if (mode == ARM_CPU_MODE_IRQ) { 10299 env->xregs[16] = env->regs[14]; 10300 env->xregs[17] = env->regs[13]; 10301 } else { 10302 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10303 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10304 } 10305 10306 if (mode == ARM_CPU_MODE_SVC) { 10307 env->xregs[18] = env->regs[14]; 10308 env->xregs[19] = env->regs[13]; 10309 } else { 10310 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10311 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10312 } 10313 10314 if (mode == ARM_CPU_MODE_ABT) { 10315 env->xregs[20] = env->regs[14]; 10316 env->xregs[21] = env->regs[13]; 10317 } else { 10318 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10319 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10320 } 10321 10322 if (mode == ARM_CPU_MODE_UND) { 10323 env->xregs[22] = env->regs[14]; 10324 env->xregs[23] = env->regs[13]; 10325 } else { 10326 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10327 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10328 } 10329 10330 /* 10331 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10332 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10333 * FIQ bank for r8-r14. 10334 */ 10335 if (mode == ARM_CPU_MODE_FIQ) { 10336 for (i = 24; i < 31; i++) { 10337 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10338 } 10339 } else { 10340 for (i = 24; i < 29; i++) { 10341 env->xregs[i] = env->fiq_regs[i - 24]; 10342 } 10343 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10344 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10345 } 10346 10347 env->pc = env->regs[15]; 10348 } 10349 10350 /* 10351 * Function used to synchronize QEMU's AArch32 register set with AArch64 10352 * register set. This is necessary when switching between AArch32 and AArch64 10353 * execution state. 10354 */ 10355 void aarch64_sync_64_to_32(CPUARMState *env) 10356 { 10357 int i; 10358 uint32_t mode = env->uncached_cpsr & CPSR_M; 10359 10360 /* We can blanket copy X[0:7] to R[0:7] */ 10361 for (i = 0; i < 8; i++) { 10362 env->regs[i] = env->xregs[i]; 10363 } 10364 10365 /* 10366 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10367 * Otherwise, we copy x8-x12 into the banked user regs. 10368 */ 10369 if (mode == ARM_CPU_MODE_FIQ) { 10370 for (i = 8; i < 13; i++) { 10371 env->usr_regs[i - 8] = env->xregs[i]; 10372 } 10373 } else { 10374 for (i = 8; i < 13; i++) { 10375 env->regs[i] = env->xregs[i]; 10376 } 10377 } 10378 10379 /* 10380 * Registers r13 & r14 depend on the current mode. 10381 * If we are in a given mode, we copy the corresponding x registers to r13 10382 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10383 * for the mode. 10384 */ 10385 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10386 env->regs[13] = env->xregs[13]; 10387 env->regs[14] = env->xregs[14]; 10388 } else { 10389 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10390 10391 /* 10392 * HYP is an exception in that it does not have its own banked r14 but 10393 * shares the USR r14 10394 */ 10395 if (mode == ARM_CPU_MODE_HYP) { 10396 env->regs[14] = env->xregs[14]; 10397 } else { 10398 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10399 } 10400 } 10401 10402 if (mode == ARM_CPU_MODE_HYP) { 10403 env->regs[13] = env->xregs[15]; 10404 } else { 10405 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10406 } 10407 10408 if (mode == ARM_CPU_MODE_IRQ) { 10409 env->regs[14] = env->xregs[16]; 10410 env->regs[13] = env->xregs[17]; 10411 } else { 10412 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10413 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10414 } 10415 10416 if (mode == ARM_CPU_MODE_SVC) { 10417 env->regs[14] = env->xregs[18]; 10418 env->regs[13] = env->xregs[19]; 10419 } else { 10420 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10421 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10422 } 10423 10424 if (mode == ARM_CPU_MODE_ABT) { 10425 env->regs[14] = env->xregs[20]; 10426 env->regs[13] = env->xregs[21]; 10427 } else { 10428 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10429 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10430 } 10431 10432 if (mode == ARM_CPU_MODE_UND) { 10433 env->regs[14] = env->xregs[22]; 10434 env->regs[13] = env->xregs[23]; 10435 } else { 10436 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10437 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10438 } 10439 10440 /* 10441 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10442 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10443 * FIQ bank for r8-r14. 10444 */ 10445 if (mode == ARM_CPU_MODE_FIQ) { 10446 for (i = 24; i < 31; i++) { 10447 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10448 } 10449 } else { 10450 for (i = 24; i < 29; i++) { 10451 env->fiq_regs[i - 24] = env->xregs[i]; 10452 } 10453 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10454 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10455 } 10456 10457 env->regs[15] = env->pc; 10458 } 10459 10460 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10461 uint32_t mask, uint32_t offset, 10462 uint32_t newpc) 10463 { 10464 int new_el; 10465 10466 /* Change the CPU state so as to actually take the exception. */ 10467 switch_mode(env, new_mode); 10468 10469 /* 10470 * For exceptions taken to AArch32 we must clear the SS bit in both 10471 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10472 */ 10473 env->pstate &= ~PSTATE_SS; 10474 env->spsr = cpsr_read(env); 10475 /* Clear IT bits. */ 10476 env->condexec_bits = 0; 10477 /* Switch to the new mode, and to the correct instruction set. */ 10478 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10479 10480 /* This must be after mode switching. */ 10481 new_el = arm_current_el(env); 10482 10483 /* Set new mode endianness */ 10484 env->uncached_cpsr &= ~CPSR_E; 10485 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10486 env->uncached_cpsr |= CPSR_E; 10487 } 10488 /* J and IL must always be cleared for exception entry */ 10489 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10490 env->daif |= mask; 10491 10492 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10493 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10494 env->uncached_cpsr |= CPSR_SSBS; 10495 } else { 10496 env->uncached_cpsr &= ~CPSR_SSBS; 10497 } 10498 } 10499 10500 if (new_mode == ARM_CPU_MODE_HYP) { 10501 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10502 env->elr_el[2] = env->regs[15]; 10503 } else { 10504 /* CPSR.PAN is normally preserved preserved unless... */ 10505 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10506 switch (new_el) { 10507 case 3: 10508 if (!arm_is_secure_below_el3(env)) { 10509 /* ... the target is EL3, from non-secure state. */ 10510 env->uncached_cpsr &= ~CPSR_PAN; 10511 break; 10512 } 10513 /* ... the target is EL3, from secure state ... */ 10514 /* fall through */ 10515 case 1: 10516 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10517 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10518 env->uncached_cpsr |= CPSR_PAN; 10519 } 10520 break; 10521 } 10522 } 10523 /* 10524 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10525 * and we should just guard the thumb mode on V4 10526 */ 10527 if (arm_feature(env, ARM_FEATURE_V4T)) { 10528 env->thumb = 10529 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10530 } 10531 env->regs[14] = env->regs[15] + offset; 10532 } 10533 env->regs[15] = newpc; 10534 10535 if (tcg_enabled()) { 10536 arm_rebuild_hflags(env); 10537 } 10538 } 10539 10540 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10541 { 10542 /* 10543 * Handle exception entry to Hyp mode; this is sufficiently 10544 * different to entry to other AArch32 modes that we handle it 10545 * separately here. 10546 * 10547 * The vector table entry used is always the 0x14 Hyp mode entry point, 10548 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10549 * The offset applied to the preferred return address is always zero 10550 * (see DDI0487C.a section G1.12.3). 10551 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10552 */ 10553 uint32_t addr, mask; 10554 ARMCPU *cpu = ARM_CPU(cs); 10555 CPUARMState *env = &cpu->env; 10556 10557 switch (cs->exception_index) { 10558 case EXCP_UDEF: 10559 addr = 0x04; 10560 break; 10561 case EXCP_SWI: 10562 addr = 0x08; 10563 break; 10564 case EXCP_BKPT: 10565 /* Fall through to prefetch abort. */ 10566 case EXCP_PREFETCH_ABORT: 10567 env->cp15.ifar_s = env->exception.vaddress; 10568 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10569 (uint32_t)env->exception.vaddress); 10570 addr = 0x0c; 10571 break; 10572 case EXCP_DATA_ABORT: 10573 env->cp15.dfar_s = env->exception.vaddress; 10574 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10575 (uint32_t)env->exception.vaddress); 10576 addr = 0x10; 10577 break; 10578 case EXCP_IRQ: 10579 addr = 0x18; 10580 break; 10581 case EXCP_FIQ: 10582 addr = 0x1c; 10583 break; 10584 case EXCP_HVC: 10585 addr = 0x08; 10586 break; 10587 case EXCP_HYP_TRAP: 10588 addr = 0x14; 10589 break; 10590 default: 10591 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10592 } 10593 10594 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10595 if (!arm_feature(env, ARM_FEATURE_V8)) { 10596 /* 10597 * QEMU syndrome values are v8-style. v7 has the IL bit 10598 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10599 * If this is a v7 CPU, squash the IL bit in those cases. 10600 */ 10601 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10602 (cs->exception_index == EXCP_DATA_ABORT && 10603 !(env->exception.syndrome & ARM_EL_ISV)) || 10604 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10605 env->exception.syndrome &= ~ARM_EL_IL; 10606 } 10607 } 10608 env->cp15.esr_el[2] = env->exception.syndrome; 10609 } 10610 10611 if (arm_current_el(env) != 2 && addr < 0x14) { 10612 addr = 0x14; 10613 } 10614 10615 mask = 0; 10616 if (!(env->cp15.scr_el3 & SCR_EA)) { 10617 mask |= CPSR_A; 10618 } 10619 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10620 mask |= CPSR_I; 10621 } 10622 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10623 mask |= CPSR_F; 10624 } 10625 10626 addr += env->cp15.hvbar; 10627 10628 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10629 } 10630 10631 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10632 { 10633 ARMCPU *cpu = ARM_CPU(cs); 10634 CPUARMState *env = &cpu->env; 10635 uint32_t addr; 10636 uint32_t mask; 10637 int new_mode; 10638 uint32_t offset; 10639 uint32_t moe; 10640 10641 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10642 switch (syn_get_ec(env->exception.syndrome)) { 10643 case EC_BREAKPOINT: 10644 case EC_BREAKPOINT_SAME_EL: 10645 moe = 1; 10646 break; 10647 case EC_WATCHPOINT: 10648 case EC_WATCHPOINT_SAME_EL: 10649 moe = 10; 10650 break; 10651 case EC_AA32_BKPT: 10652 moe = 3; 10653 break; 10654 case EC_VECTORCATCH: 10655 moe = 5; 10656 break; 10657 default: 10658 moe = 0; 10659 break; 10660 } 10661 10662 if (moe) { 10663 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10664 } 10665 10666 if (env->exception.target_el == 2) { 10667 arm_cpu_do_interrupt_aarch32_hyp(cs); 10668 return; 10669 } 10670 10671 switch (cs->exception_index) { 10672 case EXCP_UDEF: 10673 new_mode = ARM_CPU_MODE_UND; 10674 addr = 0x04; 10675 mask = CPSR_I; 10676 if (env->thumb) { 10677 offset = 2; 10678 } else { 10679 offset = 4; 10680 } 10681 break; 10682 case EXCP_SWI: 10683 new_mode = ARM_CPU_MODE_SVC; 10684 addr = 0x08; 10685 mask = CPSR_I; 10686 /* The PC already points to the next instruction. */ 10687 offset = 0; 10688 break; 10689 case EXCP_BKPT: 10690 /* Fall through to prefetch abort. */ 10691 case EXCP_PREFETCH_ABORT: 10692 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10693 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10694 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10695 env->exception.fsr, (uint32_t)env->exception.vaddress); 10696 new_mode = ARM_CPU_MODE_ABT; 10697 addr = 0x0c; 10698 mask = CPSR_A | CPSR_I; 10699 offset = 4; 10700 break; 10701 case EXCP_DATA_ABORT: 10702 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10703 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10704 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10705 env->exception.fsr, 10706 (uint32_t)env->exception.vaddress); 10707 new_mode = ARM_CPU_MODE_ABT; 10708 addr = 0x10; 10709 mask = CPSR_A | CPSR_I; 10710 offset = 8; 10711 break; 10712 case EXCP_IRQ: 10713 new_mode = ARM_CPU_MODE_IRQ; 10714 addr = 0x18; 10715 /* Disable IRQ and imprecise data aborts. */ 10716 mask = CPSR_A | CPSR_I; 10717 offset = 4; 10718 if (env->cp15.scr_el3 & SCR_IRQ) { 10719 /* IRQ routed to monitor mode */ 10720 new_mode = ARM_CPU_MODE_MON; 10721 mask |= CPSR_F; 10722 } 10723 break; 10724 case EXCP_FIQ: 10725 new_mode = ARM_CPU_MODE_FIQ; 10726 addr = 0x1c; 10727 /* Disable FIQ, IRQ and imprecise data aborts. */ 10728 mask = CPSR_A | CPSR_I | CPSR_F; 10729 if (env->cp15.scr_el3 & SCR_FIQ) { 10730 /* FIQ routed to monitor mode */ 10731 new_mode = ARM_CPU_MODE_MON; 10732 } 10733 offset = 4; 10734 break; 10735 case EXCP_VIRQ: 10736 new_mode = ARM_CPU_MODE_IRQ; 10737 addr = 0x18; 10738 /* Disable IRQ and imprecise data aborts. */ 10739 mask = CPSR_A | CPSR_I; 10740 offset = 4; 10741 break; 10742 case EXCP_VFIQ: 10743 new_mode = ARM_CPU_MODE_FIQ; 10744 addr = 0x1c; 10745 /* Disable FIQ, IRQ and imprecise data aborts. */ 10746 mask = CPSR_A | CPSR_I | CPSR_F; 10747 offset = 4; 10748 break; 10749 case EXCP_VSERR: 10750 { 10751 /* 10752 * Note that this is reported as a data abort, but the DFAR 10753 * has an UNKNOWN value. Construct the SError syndrome from 10754 * AET and ExT fields. 10755 */ 10756 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10757 10758 if (extended_addresses_enabled(env)) { 10759 env->exception.fsr = arm_fi_to_lfsc(&fi); 10760 } else { 10761 env->exception.fsr = arm_fi_to_sfsc(&fi); 10762 } 10763 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10764 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10765 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10766 env->exception.fsr); 10767 10768 new_mode = ARM_CPU_MODE_ABT; 10769 addr = 0x10; 10770 mask = CPSR_A | CPSR_I; 10771 offset = 8; 10772 } 10773 break; 10774 case EXCP_SMC: 10775 new_mode = ARM_CPU_MODE_MON; 10776 addr = 0x08; 10777 mask = CPSR_A | CPSR_I | CPSR_F; 10778 offset = 0; 10779 break; 10780 default: 10781 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10782 return; /* Never happens. Keep compiler happy. */ 10783 } 10784 10785 if (new_mode == ARM_CPU_MODE_MON) { 10786 addr += env->cp15.mvbar; 10787 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10788 /* High vectors. When enabled, base address cannot be remapped. */ 10789 addr += 0xffff0000; 10790 } else { 10791 /* 10792 * ARM v7 architectures provide a vector base address register to remap 10793 * the interrupt vector table. 10794 * This register is only followed in non-monitor mode, and is banked. 10795 * Note: only bits 31:5 are valid. 10796 */ 10797 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10798 } 10799 10800 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10801 env->cp15.scr_el3 &= ~SCR_NS; 10802 } 10803 10804 take_aarch32_exception(env, new_mode, mask, offset, addr); 10805 } 10806 10807 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10808 { 10809 /* 10810 * Return the register number of the AArch64 view of the AArch32 10811 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10812 * be that of the AArch32 mode the exception came from. 10813 */ 10814 int mode = env->uncached_cpsr & CPSR_M; 10815 10816 switch (aarch32_reg) { 10817 case 0 ... 7: 10818 return aarch32_reg; 10819 case 8 ... 12: 10820 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10821 case 13: 10822 switch (mode) { 10823 case ARM_CPU_MODE_USR: 10824 case ARM_CPU_MODE_SYS: 10825 return 13; 10826 case ARM_CPU_MODE_HYP: 10827 return 15; 10828 case ARM_CPU_MODE_IRQ: 10829 return 17; 10830 case ARM_CPU_MODE_SVC: 10831 return 19; 10832 case ARM_CPU_MODE_ABT: 10833 return 21; 10834 case ARM_CPU_MODE_UND: 10835 return 23; 10836 case ARM_CPU_MODE_FIQ: 10837 return 29; 10838 default: 10839 g_assert_not_reached(); 10840 } 10841 case 14: 10842 switch (mode) { 10843 case ARM_CPU_MODE_USR: 10844 case ARM_CPU_MODE_SYS: 10845 case ARM_CPU_MODE_HYP: 10846 return 14; 10847 case ARM_CPU_MODE_IRQ: 10848 return 16; 10849 case ARM_CPU_MODE_SVC: 10850 return 18; 10851 case ARM_CPU_MODE_ABT: 10852 return 20; 10853 case ARM_CPU_MODE_UND: 10854 return 22; 10855 case ARM_CPU_MODE_FIQ: 10856 return 30; 10857 default: 10858 g_assert_not_reached(); 10859 } 10860 case 15: 10861 return 31; 10862 default: 10863 g_assert_not_reached(); 10864 } 10865 } 10866 10867 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10868 { 10869 uint32_t ret = cpsr_read(env); 10870 10871 /* Move DIT to the correct location for SPSR_ELx */ 10872 if (ret & CPSR_DIT) { 10873 ret &= ~CPSR_DIT; 10874 ret |= PSTATE_DIT; 10875 } 10876 /* Merge PSTATE.SS into SPSR_ELx */ 10877 ret |= env->pstate & PSTATE_SS; 10878 10879 return ret; 10880 } 10881 10882 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10883 { 10884 /* Return true if this syndrome value is a synchronous external abort */ 10885 switch (syn_get_ec(syndrome)) { 10886 case EC_INSNABORT: 10887 case EC_INSNABORT_SAME_EL: 10888 case EC_DATAABORT: 10889 case EC_DATAABORT_SAME_EL: 10890 /* Look at fault status code for all the synchronous ext abort cases */ 10891 switch (syndrome & 0x3f) { 10892 case 0x10: 10893 case 0x13: 10894 case 0x14: 10895 case 0x15: 10896 case 0x16: 10897 case 0x17: 10898 return true; 10899 default: 10900 return false; 10901 } 10902 default: 10903 return false; 10904 } 10905 } 10906 10907 /* Handle exception entry to a target EL which is using AArch64 */ 10908 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10909 { 10910 ARMCPU *cpu = ARM_CPU(cs); 10911 CPUARMState *env = &cpu->env; 10912 unsigned int new_el = env->exception.target_el; 10913 target_ulong addr = env->cp15.vbar_el[new_el]; 10914 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10915 unsigned int old_mode; 10916 unsigned int cur_el = arm_current_el(env); 10917 int rt; 10918 10919 if (tcg_enabled()) { 10920 /* 10921 * Note that new_el can never be 0. If cur_el is 0, then 10922 * el0_a64 is is_a64(), else el0_a64 is ignored. 10923 */ 10924 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10925 } 10926 10927 if (cur_el < new_el) { 10928 /* 10929 * Entry vector offset depends on whether the implemented EL 10930 * immediately lower than the target level is using AArch32 or AArch64 10931 */ 10932 bool is_aa64; 10933 uint64_t hcr; 10934 10935 switch (new_el) { 10936 case 3: 10937 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10938 break; 10939 case 2: 10940 hcr = arm_hcr_el2_eff(env); 10941 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10942 is_aa64 = (hcr & HCR_RW) != 0; 10943 break; 10944 } 10945 /* fall through */ 10946 case 1: 10947 is_aa64 = is_a64(env); 10948 break; 10949 default: 10950 g_assert_not_reached(); 10951 } 10952 10953 if (is_aa64) { 10954 addr += 0x400; 10955 } else { 10956 addr += 0x600; 10957 } 10958 } else if (pstate_read(env) & PSTATE_SP) { 10959 addr += 0x200; 10960 } 10961 10962 switch (cs->exception_index) { 10963 case EXCP_GPC: 10964 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10965 env->cp15.mfar_el3); 10966 /* fall through */ 10967 case EXCP_PREFETCH_ABORT: 10968 case EXCP_DATA_ABORT: 10969 /* 10970 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10971 * to be taken to the SError vector entrypoint. 10972 */ 10973 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10974 syndrome_is_sync_extabt(env->exception.syndrome)) { 10975 addr += 0x180; 10976 } 10977 env->cp15.far_el[new_el] = env->exception.vaddress; 10978 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10979 env->cp15.far_el[new_el]); 10980 /* fall through */ 10981 case EXCP_BKPT: 10982 case EXCP_UDEF: 10983 case EXCP_SWI: 10984 case EXCP_HVC: 10985 case EXCP_HYP_TRAP: 10986 case EXCP_SMC: 10987 switch (syn_get_ec(env->exception.syndrome)) { 10988 case EC_ADVSIMDFPACCESSTRAP: 10989 /* 10990 * QEMU internal FP/SIMD syndromes from AArch32 include the 10991 * TA and coproc fields which are only exposed if the exception 10992 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10993 * AArch64 format syndrome. 10994 */ 10995 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10996 break; 10997 case EC_CP14RTTRAP: 10998 case EC_CP15RTTRAP: 10999 case EC_CP14DTTRAP: 11000 /* 11001 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11002 * the raw register field from the insn; when taking this to 11003 * AArch64 we must convert it to the AArch64 view of the register 11004 * number. Notice that we read a 4-bit AArch32 register number and 11005 * write back a 5-bit AArch64 one. 11006 */ 11007 rt = extract32(env->exception.syndrome, 5, 4); 11008 rt = aarch64_regnum(env, rt); 11009 env->exception.syndrome = deposit32(env->exception.syndrome, 11010 5, 5, rt); 11011 break; 11012 case EC_CP15RRTTRAP: 11013 case EC_CP14RRTTRAP: 11014 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11015 rt = extract32(env->exception.syndrome, 5, 4); 11016 rt = aarch64_regnum(env, rt); 11017 env->exception.syndrome = deposit32(env->exception.syndrome, 11018 5, 5, rt); 11019 rt = extract32(env->exception.syndrome, 10, 4); 11020 rt = aarch64_regnum(env, rt); 11021 env->exception.syndrome = deposit32(env->exception.syndrome, 11022 10, 5, rt); 11023 break; 11024 } 11025 env->cp15.esr_el[new_el] = env->exception.syndrome; 11026 break; 11027 case EXCP_IRQ: 11028 case EXCP_VIRQ: 11029 addr += 0x80; 11030 break; 11031 case EXCP_FIQ: 11032 case EXCP_VFIQ: 11033 addr += 0x100; 11034 break; 11035 case EXCP_VSERR: 11036 addr += 0x180; 11037 /* Construct the SError syndrome from IDS and ISS fields. */ 11038 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11039 env->cp15.esr_el[new_el] = env->exception.syndrome; 11040 break; 11041 default: 11042 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11043 } 11044 11045 if (is_a64(env)) { 11046 old_mode = pstate_read(env); 11047 aarch64_save_sp(env, arm_current_el(env)); 11048 env->elr_el[new_el] = env->pc; 11049 } else { 11050 old_mode = cpsr_read_for_spsr_elx(env); 11051 env->elr_el[new_el] = env->regs[15]; 11052 11053 aarch64_sync_32_to_64(env); 11054 11055 env->condexec_bits = 0; 11056 } 11057 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11058 11059 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11060 env->elr_el[new_el]); 11061 11062 if (cpu_isar_feature(aa64_pan, cpu)) { 11063 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11064 new_mode |= old_mode & PSTATE_PAN; 11065 switch (new_el) { 11066 case 2: 11067 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11068 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11069 != (HCR_E2H | HCR_TGE)) { 11070 break; 11071 } 11072 /* fall through */ 11073 case 1: 11074 /* ... the target is EL1 ... */ 11075 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11076 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11077 new_mode |= PSTATE_PAN; 11078 } 11079 break; 11080 } 11081 } 11082 if (cpu_isar_feature(aa64_mte, cpu)) { 11083 new_mode |= PSTATE_TCO; 11084 } 11085 11086 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11087 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11088 new_mode |= PSTATE_SSBS; 11089 } else { 11090 new_mode &= ~PSTATE_SSBS; 11091 } 11092 } 11093 11094 pstate_write(env, PSTATE_DAIF | new_mode); 11095 env->aarch64 = true; 11096 aarch64_restore_sp(env, new_el); 11097 11098 if (tcg_enabled()) { 11099 helper_rebuild_hflags_a64(env, new_el); 11100 } 11101 11102 env->pc = addr; 11103 11104 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11105 new_el, env->pc, pstate_read(env)); 11106 } 11107 11108 /* 11109 * Do semihosting call and set the appropriate return value. All the 11110 * permission and validity checks have been done at translate time. 11111 * 11112 * We only see semihosting exceptions in TCG only as they are not 11113 * trapped to the hypervisor in KVM. 11114 */ 11115 #ifdef CONFIG_TCG 11116 static void tcg_handle_semihosting(CPUState *cs) 11117 { 11118 ARMCPU *cpu = ARM_CPU(cs); 11119 CPUARMState *env = &cpu->env; 11120 11121 if (is_a64(env)) { 11122 qemu_log_mask(CPU_LOG_INT, 11123 "...handling as semihosting call 0x%" PRIx64 "\n", 11124 env->xregs[0]); 11125 do_common_semihosting(cs); 11126 env->pc += 4; 11127 } else { 11128 qemu_log_mask(CPU_LOG_INT, 11129 "...handling as semihosting call 0x%x\n", 11130 env->regs[0]); 11131 do_common_semihosting(cs); 11132 env->regs[15] += env->thumb ? 2 : 4; 11133 } 11134 } 11135 #endif 11136 11137 /* 11138 * Handle a CPU exception for A and R profile CPUs. 11139 * Do any appropriate logging, handle PSCI calls, and then hand off 11140 * to the AArch64-entry or AArch32-entry function depending on the 11141 * target exception level's register width. 11142 * 11143 * Note: this is used for both TCG (as the do_interrupt tcg op), 11144 * and KVM to re-inject guest debug exceptions, and to 11145 * inject a Synchronous-External-Abort. 11146 */ 11147 void arm_cpu_do_interrupt(CPUState *cs) 11148 { 11149 ARMCPU *cpu = ARM_CPU(cs); 11150 CPUARMState *env = &cpu->env; 11151 unsigned int new_el = env->exception.target_el; 11152 11153 assert(!arm_feature(env, ARM_FEATURE_M)); 11154 11155 arm_log_exception(cs); 11156 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11157 new_el); 11158 if (qemu_loglevel_mask(CPU_LOG_INT) 11159 && !excp_is_internal(cs->exception_index)) { 11160 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11161 syn_get_ec(env->exception.syndrome), 11162 env->exception.syndrome); 11163 } 11164 11165 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11166 arm_handle_psci_call(cpu); 11167 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11168 return; 11169 } 11170 11171 /* 11172 * Semihosting semantics depend on the register width of the code 11173 * that caused the exception, not the target exception level, so 11174 * must be handled here. 11175 */ 11176 #ifdef CONFIG_TCG 11177 if (cs->exception_index == EXCP_SEMIHOST) { 11178 tcg_handle_semihosting(cs); 11179 return; 11180 } 11181 #endif 11182 11183 /* 11184 * Hooks may change global state so BQL should be held, also the 11185 * BQL needs to be held for any modification of 11186 * cs->interrupt_request. 11187 */ 11188 g_assert(qemu_mutex_iothread_locked()); 11189 11190 arm_call_pre_el_change_hook(cpu); 11191 11192 assert(!excp_is_internal(cs->exception_index)); 11193 if (arm_el_is_aa64(env, new_el)) { 11194 arm_cpu_do_interrupt_aarch64(cs); 11195 } else { 11196 arm_cpu_do_interrupt_aarch32(cs); 11197 } 11198 11199 arm_call_el_change_hook(cpu); 11200 11201 if (!kvm_enabled()) { 11202 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11203 } 11204 } 11205 #endif /* !CONFIG_USER_ONLY */ 11206 11207 uint64_t arm_sctlr(CPUARMState *env, int el) 11208 { 11209 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11210 if (el == 0) { 11211 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11212 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11213 } 11214 return env->cp15.sctlr_el[el]; 11215 } 11216 11217 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11218 { 11219 if (regime_has_2_ranges(mmu_idx)) { 11220 return extract64(tcr, 37, 2); 11221 } else if (regime_is_stage2(mmu_idx)) { 11222 return 0; /* VTCR_EL2 */ 11223 } else { 11224 /* Replicate the single TBI bit so we always have 2 bits. */ 11225 return extract32(tcr, 20, 1) * 3; 11226 } 11227 } 11228 11229 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11230 { 11231 if (regime_has_2_ranges(mmu_idx)) { 11232 return extract64(tcr, 51, 2); 11233 } else if (regime_is_stage2(mmu_idx)) { 11234 return 0; /* VTCR_EL2 */ 11235 } else { 11236 /* Replicate the single TBID bit so we always have 2 bits. */ 11237 return extract32(tcr, 29, 1) * 3; 11238 } 11239 } 11240 11241 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11242 { 11243 if (regime_has_2_ranges(mmu_idx)) { 11244 return extract64(tcr, 57, 2); 11245 } else { 11246 /* Replicate the single TCMA bit so we always have 2 bits. */ 11247 return extract32(tcr, 30, 1) * 3; 11248 } 11249 } 11250 11251 static ARMGranuleSize tg0_to_gran_size(int tg) 11252 { 11253 switch (tg) { 11254 case 0: 11255 return Gran4K; 11256 case 1: 11257 return Gran64K; 11258 case 2: 11259 return Gran16K; 11260 default: 11261 return GranInvalid; 11262 } 11263 } 11264 11265 static ARMGranuleSize tg1_to_gran_size(int tg) 11266 { 11267 switch (tg) { 11268 case 1: 11269 return Gran16K; 11270 case 2: 11271 return Gran4K; 11272 case 3: 11273 return Gran64K; 11274 default: 11275 return GranInvalid; 11276 } 11277 } 11278 11279 static inline bool have4k(ARMCPU *cpu, bool stage2) 11280 { 11281 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11282 : cpu_isar_feature(aa64_tgran4, cpu); 11283 } 11284 11285 static inline bool have16k(ARMCPU *cpu, bool stage2) 11286 { 11287 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11288 : cpu_isar_feature(aa64_tgran16, cpu); 11289 } 11290 11291 static inline bool have64k(ARMCPU *cpu, bool stage2) 11292 { 11293 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11294 : cpu_isar_feature(aa64_tgran64, cpu); 11295 } 11296 11297 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11298 bool stage2) 11299 { 11300 switch (gran) { 11301 case Gran4K: 11302 if (have4k(cpu, stage2)) { 11303 return gran; 11304 } 11305 break; 11306 case Gran16K: 11307 if (have16k(cpu, stage2)) { 11308 return gran; 11309 } 11310 break; 11311 case Gran64K: 11312 if (have64k(cpu, stage2)) { 11313 return gran; 11314 } 11315 break; 11316 case GranInvalid: 11317 break; 11318 } 11319 /* 11320 * If the guest selects a granule size that isn't implemented, 11321 * the architecture requires that we behave as if it selected one 11322 * that is (with an IMPDEF choice of which one to pick). We choose 11323 * to implement the smallest supported granule size. 11324 */ 11325 if (have4k(cpu, stage2)) { 11326 return Gran4K; 11327 } 11328 if (have16k(cpu, stage2)) { 11329 return Gran16K; 11330 } 11331 assert(have64k(cpu, stage2)); 11332 return Gran64K; 11333 } 11334 11335 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11336 ARMMMUIdx mmu_idx, bool data, 11337 bool el1_is_aa32) 11338 { 11339 uint64_t tcr = regime_tcr(env, mmu_idx); 11340 bool epd, hpd, tsz_oob, ds, ha, hd; 11341 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11342 ARMGranuleSize gran; 11343 ARMCPU *cpu = env_archcpu(env); 11344 bool stage2 = regime_is_stage2(mmu_idx); 11345 11346 if (!regime_has_2_ranges(mmu_idx)) { 11347 select = 0; 11348 tsz = extract32(tcr, 0, 6); 11349 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11350 if (stage2) { 11351 /* VTCR_EL2 */ 11352 hpd = false; 11353 } else { 11354 hpd = extract32(tcr, 24, 1); 11355 } 11356 epd = false; 11357 sh = extract32(tcr, 12, 2); 11358 ps = extract32(tcr, 16, 3); 11359 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11360 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11361 ds = extract64(tcr, 32, 1); 11362 } else { 11363 bool e0pd; 11364 11365 /* 11366 * Bit 55 is always between the two regions, and is canonical for 11367 * determining if address tagging is enabled. 11368 */ 11369 select = extract64(va, 55, 1); 11370 if (!select) { 11371 tsz = extract32(tcr, 0, 6); 11372 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11373 epd = extract32(tcr, 7, 1); 11374 sh = extract32(tcr, 12, 2); 11375 hpd = extract64(tcr, 41, 1); 11376 e0pd = extract64(tcr, 55, 1); 11377 } else { 11378 tsz = extract32(tcr, 16, 6); 11379 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11380 epd = extract32(tcr, 23, 1); 11381 sh = extract32(tcr, 28, 2); 11382 hpd = extract64(tcr, 42, 1); 11383 e0pd = extract64(tcr, 56, 1); 11384 } 11385 ps = extract64(tcr, 32, 3); 11386 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11387 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11388 ds = extract64(tcr, 59, 1); 11389 11390 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11391 regime_is_user(env, mmu_idx)) { 11392 epd = true; 11393 } 11394 } 11395 11396 gran = sanitize_gran_size(cpu, gran, stage2); 11397 11398 if (cpu_isar_feature(aa64_st, cpu)) { 11399 max_tsz = 48 - (gran == Gran64K); 11400 } else { 11401 max_tsz = 39; 11402 } 11403 11404 /* 11405 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11406 * adjust the effective value of DS, as documented. 11407 */ 11408 min_tsz = 16; 11409 if (gran == Gran64K) { 11410 if (cpu_isar_feature(aa64_lva, cpu)) { 11411 min_tsz = 12; 11412 } 11413 ds = false; 11414 } else if (ds) { 11415 if (regime_is_stage2(mmu_idx)) { 11416 if (gran == Gran16K) { 11417 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11418 } else { 11419 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11420 } 11421 } else { 11422 if (gran == Gran16K) { 11423 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11424 } else { 11425 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11426 } 11427 } 11428 if (ds) { 11429 min_tsz = 12; 11430 } 11431 } 11432 11433 if (stage2 && el1_is_aa32) { 11434 /* 11435 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11436 * are loosened: a configured IPA of 40 bits is permitted even if 11437 * the implemented PA is less than that (and so a 40 bit IPA would 11438 * fault for an AArch64 EL1). See R_DTLMN. 11439 */ 11440 min_tsz = MIN(min_tsz, 24); 11441 } 11442 11443 if (tsz > max_tsz) { 11444 tsz = max_tsz; 11445 tsz_oob = true; 11446 } else if (tsz < min_tsz) { 11447 tsz = min_tsz; 11448 tsz_oob = true; 11449 } else { 11450 tsz_oob = false; 11451 } 11452 11453 /* Present TBI as a composite with TBID. */ 11454 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11455 if (!data) { 11456 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11457 } 11458 tbi = (tbi >> select) & 1; 11459 11460 return (ARMVAParameters) { 11461 .tsz = tsz, 11462 .ps = ps, 11463 .sh = sh, 11464 .select = select, 11465 .tbi = tbi, 11466 .epd = epd, 11467 .hpd = hpd, 11468 .tsz_oob = tsz_oob, 11469 .ds = ds, 11470 .ha = ha, 11471 .hd = ha && hd, 11472 .gran = gran, 11473 }; 11474 } 11475 11476 /* 11477 * Note that signed overflow is undefined in C. The following routines are 11478 * careful to use unsigned types where modulo arithmetic is required. 11479 * Failure to do so _will_ break on newer gcc. 11480 */ 11481 11482 /* Signed saturating arithmetic. */ 11483 11484 /* Perform 16-bit signed saturating addition. */ 11485 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11486 { 11487 uint16_t res; 11488 11489 res = a + b; 11490 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11491 if (a & 0x8000) { 11492 res = 0x8000; 11493 } else { 11494 res = 0x7fff; 11495 } 11496 } 11497 return res; 11498 } 11499 11500 /* Perform 8-bit signed saturating addition. */ 11501 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11502 { 11503 uint8_t res; 11504 11505 res = a + b; 11506 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11507 if (a & 0x80) { 11508 res = 0x80; 11509 } else { 11510 res = 0x7f; 11511 } 11512 } 11513 return res; 11514 } 11515 11516 /* Perform 16-bit signed saturating subtraction. */ 11517 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11518 { 11519 uint16_t res; 11520 11521 res = a - b; 11522 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11523 if (a & 0x8000) { 11524 res = 0x8000; 11525 } else { 11526 res = 0x7fff; 11527 } 11528 } 11529 return res; 11530 } 11531 11532 /* Perform 8-bit signed saturating subtraction. */ 11533 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11534 { 11535 uint8_t res; 11536 11537 res = a - b; 11538 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11539 if (a & 0x80) { 11540 res = 0x80; 11541 } else { 11542 res = 0x7f; 11543 } 11544 } 11545 return res; 11546 } 11547 11548 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11549 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11550 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11551 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11552 #define PFX q 11553 11554 #include "op_addsub.h" 11555 11556 /* Unsigned saturating arithmetic. */ 11557 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11558 { 11559 uint16_t res; 11560 res = a + b; 11561 if (res < a) { 11562 res = 0xffff; 11563 } 11564 return res; 11565 } 11566 11567 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11568 { 11569 if (a > b) { 11570 return a - b; 11571 } else { 11572 return 0; 11573 } 11574 } 11575 11576 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11577 { 11578 uint8_t res; 11579 res = a + b; 11580 if (res < a) { 11581 res = 0xff; 11582 } 11583 return res; 11584 } 11585 11586 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11587 { 11588 if (a > b) { 11589 return a - b; 11590 } else { 11591 return 0; 11592 } 11593 } 11594 11595 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11596 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11597 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11598 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11599 #define PFX uq 11600 11601 #include "op_addsub.h" 11602 11603 /* Signed modulo arithmetic. */ 11604 #define SARITH16(a, b, n, op) do { \ 11605 int32_t sum; \ 11606 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11607 RESULT(sum, n, 16); \ 11608 if (sum >= 0) \ 11609 ge |= 3 << (n * 2); \ 11610 } while (0) 11611 11612 #define SARITH8(a, b, n, op) do { \ 11613 int32_t sum; \ 11614 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11615 RESULT(sum, n, 8); \ 11616 if (sum >= 0) \ 11617 ge |= 1 << n; \ 11618 } while (0) 11619 11620 11621 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11622 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11623 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11624 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11625 #define PFX s 11626 #define ARITH_GE 11627 11628 #include "op_addsub.h" 11629 11630 /* Unsigned modulo arithmetic. */ 11631 #define ADD16(a, b, n) do { \ 11632 uint32_t sum; \ 11633 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11634 RESULT(sum, n, 16); \ 11635 if ((sum >> 16) == 1) \ 11636 ge |= 3 << (n * 2); \ 11637 } while (0) 11638 11639 #define ADD8(a, b, n) do { \ 11640 uint32_t sum; \ 11641 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11642 RESULT(sum, n, 8); \ 11643 if ((sum >> 8) == 1) \ 11644 ge |= 1 << n; \ 11645 } while (0) 11646 11647 #define SUB16(a, b, n) do { \ 11648 uint32_t sum; \ 11649 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11650 RESULT(sum, n, 16); \ 11651 if ((sum >> 16) == 0) \ 11652 ge |= 3 << (n * 2); \ 11653 } while (0) 11654 11655 #define SUB8(a, b, n) do { \ 11656 uint32_t sum; \ 11657 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11658 RESULT(sum, n, 8); \ 11659 if ((sum >> 8) == 0) \ 11660 ge |= 1 << n; \ 11661 } while (0) 11662 11663 #define PFX u 11664 #define ARITH_GE 11665 11666 #include "op_addsub.h" 11667 11668 /* Halved signed arithmetic. */ 11669 #define ADD16(a, b, n) \ 11670 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11671 #define SUB16(a, b, n) \ 11672 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11673 #define ADD8(a, b, n) \ 11674 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11675 #define SUB8(a, b, n) \ 11676 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11677 #define PFX sh 11678 11679 #include "op_addsub.h" 11680 11681 /* Halved unsigned arithmetic. */ 11682 #define ADD16(a, b, n) \ 11683 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11684 #define SUB16(a, b, n) \ 11685 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11686 #define ADD8(a, b, n) \ 11687 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11688 #define SUB8(a, b, n) \ 11689 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11690 #define PFX uh 11691 11692 #include "op_addsub.h" 11693 11694 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11695 { 11696 if (a > b) { 11697 return a - b; 11698 } else { 11699 return b - a; 11700 } 11701 } 11702 11703 /* Unsigned sum of absolute byte differences. */ 11704 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11705 { 11706 uint32_t sum; 11707 sum = do_usad(a, b); 11708 sum += do_usad(a >> 8, b >> 8); 11709 sum += do_usad(a >> 16, b >> 16); 11710 sum += do_usad(a >> 24, b >> 24); 11711 return sum; 11712 } 11713 11714 /* For ARMv6 SEL instruction. */ 11715 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11716 { 11717 uint32_t mask; 11718 11719 mask = 0; 11720 if (flags & 1) { 11721 mask |= 0xff; 11722 } 11723 if (flags & 2) { 11724 mask |= 0xff00; 11725 } 11726 if (flags & 4) { 11727 mask |= 0xff0000; 11728 } 11729 if (flags & 8) { 11730 mask |= 0xff000000; 11731 } 11732 return (a & mask) | (b & ~mask); 11733 } 11734 11735 /* 11736 * CRC helpers. 11737 * The upper bytes of val (above the number specified by 'bytes') must have 11738 * been zeroed out by the caller. 11739 */ 11740 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11741 { 11742 uint8_t buf[4]; 11743 11744 stl_le_p(buf, val); 11745 11746 /* zlib crc32 converts the accumulator and output to one's complement. */ 11747 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11748 } 11749 11750 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11751 { 11752 uint8_t buf[4]; 11753 11754 stl_le_p(buf, val); 11755 11756 /* Linux crc32c converts the output to one's complement. */ 11757 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11758 } 11759 11760 /* 11761 * Return the exception level to which FP-disabled exceptions should 11762 * be taken, or 0 if FP is enabled. 11763 */ 11764 int fp_exception_el(CPUARMState *env, int cur_el) 11765 { 11766 #ifndef CONFIG_USER_ONLY 11767 uint64_t hcr_el2; 11768 11769 /* 11770 * CPACR and the CPTR registers don't exist before v6, so FP is 11771 * always accessible 11772 */ 11773 if (!arm_feature(env, ARM_FEATURE_V6)) { 11774 return 0; 11775 } 11776 11777 if (arm_feature(env, ARM_FEATURE_M)) { 11778 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11779 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11780 return 1; 11781 } 11782 11783 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11784 if (!extract32(env->v7m.nsacr, 10, 1)) { 11785 /* FP insns cause a NOCP UsageFault taken to Secure */ 11786 return 3; 11787 } 11788 } 11789 11790 return 0; 11791 } 11792 11793 hcr_el2 = arm_hcr_el2_eff(env); 11794 11795 /* 11796 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11797 * 0, 2 : trap EL0 and EL1/PL1 accesses 11798 * 1 : trap only EL0 accesses 11799 * 3 : trap no accesses 11800 * This register is ignored if E2H+TGE are both set. 11801 */ 11802 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11803 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11804 11805 switch (fpen) { 11806 case 1: 11807 if (cur_el != 0) { 11808 break; 11809 } 11810 /* fall through */ 11811 case 0: 11812 case 2: 11813 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11814 if (!arm_el_is_aa64(env, 3) 11815 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11816 return 3; 11817 } 11818 if (cur_el <= 1) { 11819 return 1; 11820 } 11821 break; 11822 } 11823 } 11824 11825 /* 11826 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11827 * to control non-secure access to the FPU. It doesn't have any 11828 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11829 */ 11830 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11831 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11832 if (!extract32(env->cp15.nsacr, 10, 1)) { 11833 /* FP insns act as UNDEF */ 11834 return cur_el == 2 ? 2 : 1; 11835 } 11836 } 11837 11838 /* 11839 * CPTR_EL2 is present in v7VE or v8, and changes format 11840 * with HCR_EL2.E2H (regardless of TGE). 11841 */ 11842 if (cur_el <= 2) { 11843 if (hcr_el2 & HCR_E2H) { 11844 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11845 case 1: 11846 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11847 break; 11848 } 11849 /* fall through */ 11850 case 0: 11851 case 2: 11852 return 2; 11853 } 11854 } else if (arm_is_el2_enabled(env)) { 11855 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11856 return 2; 11857 } 11858 } 11859 } 11860 11861 /* CPTR_EL3 : present in v8 */ 11862 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11863 /* Trap all FP ops to EL3 */ 11864 return 3; 11865 } 11866 #endif 11867 return 0; 11868 } 11869 11870 /* Return the exception level we're running at if this is our mmu_idx */ 11871 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11872 { 11873 if (mmu_idx & ARM_MMU_IDX_M) { 11874 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11875 } 11876 11877 switch (mmu_idx) { 11878 case ARMMMUIdx_E10_0: 11879 case ARMMMUIdx_E20_0: 11880 return 0; 11881 case ARMMMUIdx_E10_1: 11882 case ARMMMUIdx_E10_1_PAN: 11883 return 1; 11884 case ARMMMUIdx_E2: 11885 case ARMMMUIdx_E20_2: 11886 case ARMMMUIdx_E20_2_PAN: 11887 return 2; 11888 case ARMMMUIdx_E3: 11889 return 3; 11890 default: 11891 g_assert_not_reached(); 11892 } 11893 } 11894 11895 #ifndef CONFIG_TCG 11896 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11897 { 11898 g_assert_not_reached(); 11899 } 11900 #endif 11901 11902 static bool arm_pan_enabled(CPUARMState *env) 11903 { 11904 if (is_a64(env)) { 11905 return env->pstate & PSTATE_PAN; 11906 } else { 11907 return env->uncached_cpsr & CPSR_PAN; 11908 } 11909 } 11910 11911 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11912 { 11913 ARMMMUIdx idx; 11914 uint64_t hcr; 11915 11916 if (arm_feature(env, ARM_FEATURE_M)) { 11917 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11918 } 11919 11920 /* See ARM pseudo-function ELIsInHost. */ 11921 switch (el) { 11922 case 0: 11923 hcr = arm_hcr_el2_eff(env); 11924 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11925 idx = ARMMMUIdx_E20_0; 11926 } else { 11927 idx = ARMMMUIdx_E10_0; 11928 } 11929 break; 11930 case 1: 11931 if (arm_pan_enabled(env)) { 11932 idx = ARMMMUIdx_E10_1_PAN; 11933 } else { 11934 idx = ARMMMUIdx_E10_1; 11935 } 11936 break; 11937 case 2: 11938 /* Note that TGE does not apply at EL2. */ 11939 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11940 if (arm_pan_enabled(env)) { 11941 idx = ARMMMUIdx_E20_2_PAN; 11942 } else { 11943 idx = ARMMMUIdx_E20_2; 11944 } 11945 } else { 11946 idx = ARMMMUIdx_E2; 11947 } 11948 break; 11949 case 3: 11950 return ARMMMUIdx_E3; 11951 default: 11952 g_assert_not_reached(); 11953 } 11954 11955 return idx; 11956 } 11957 11958 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11959 { 11960 return arm_mmu_idx_el(env, arm_current_el(env)); 11961 } 11962 11963 static bool mve_no_pred(CPUARMState *env) 11964 { 11965 /* 11966 * Return true if there is definitely no predication of MVE 11967 * instructions by VPR or LTPSIZE. (Returning false even if there 11968 * isn't any predication is OK; generated code will just be 11969 * a little worse.) 11970 * If the CPU does not implement MVE then this TB flag is always 0. 11971 * 11972 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11973 * logic in gen_update_fp_context() needs to be updated to match. 11974 * 11975 * We do not include the effect of the ECI bits here -- they are 11976 * tracked in other TB flags. This simplifies the logic for 11977 * "when did we emit code that changes the MVE_NO_PRED TB flag 11978 * and thus need to end the TB?". 11979 */ 11980 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11981 return false; 11982 } 11983 if (env->v7m.vpr) { 11984 return false; 11985 } 11986 if (env->v7m.ltpsize < 4) { 11987 return false; 11988 } 11989 return true; 11990 } 11991 11992 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 11993 uint64_t *cs_base, uint32_t *pflags) 11994 { 11995 CPUARMTBFlags flags; 11996 11997 assert_hflags_rebuild_correctly(env); 11998 flags = env->hflags; 11999 12000 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12001 *pc = env->pc; 12002 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12003 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12004 } 12005 } else { 12006 *pc = env->regs[15]; 12007 12008 if (arm_feature(env, ARM_FEATURE_M)) { 12009 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12010 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12011 != env->v7m.secure) { 12012 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12013 } 12014 12015 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12016 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12017 (env->v7m.secure && 12018 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12019 /* 12020 * ASPEN is set, but FPCA/SFPA indicate that there is no 12021 * active FP context; we must create a new FP context before 12022 * executing any FP insn. 12023 */ 12024 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12025 } 12026 12027 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12028 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12029 DP_TBFLAG_M32(flags, LSPACT, 1); 12030 } 12031 12032 if (mve_no_pred(env)) { 12033 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12034 } 12035 } else { 12036 /* 12037 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12038 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12039 */ 12040 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12041 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12042 } else { 12043 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12044 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12045 } 12046 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12047 DP_TBFLAG_A32(flags, VFPEN, 1); 12048 } 12049 } 12050 12051 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12052 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12053 } 12054 12055 /* 12056 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12057 * states defined in the ARM ARM for software singlestep: 12058 * SS_ACTIVE PSTATE.SS State 12059 * 0 x Inactive (the TB flag for SS is always 0) 12060 * 1 0 Active-pending 12061 * 1 1 Active-not-pending 12062 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12063 */ 12064 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12065 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12066 } 12067 12068 *pflags = flags.flags; 12069 *cs_base = flags.flags2; 12070 } 12071 12072 #ifdef TARGET_AARCH64 12073 /* 12074 * The manual says that when SVE is enabled and VQ is widened the 12075 * implementation is allowed to zero the previously inaccessible 12076 * portion of the registers. The corollary to that is that when 12077 * SVE is enabled and VQ is narrowed we are also allowed to zero 12078 * the now inaccessible portion of the registers. 12079 * 12080 * The intent of this is that no predicate bit beyond VQ is ever set. 12081 * Which means that some operations on predicate registers themselves 12082 * may operate on full uint64_t or even unrolled across the maximum 12083 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12084 * may well be cheaper than conditionals to restrict the operation 12085 * to the relevant portion of a uint16_t[16]. 12086 */ 12087 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12088 { 12089 int i, j; 12090 uint64_t pmask; 12091 12092 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12093 assert(vq <= env_archcpu(env)->sve_max_vq); 12094 12095 /* Zap the high bits of the zregs. */ 12096 for (i = 0; i < 32; i++) { 12097 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12098 } 12099 12100 /* Zap the high bits of the pregs and ffr. */ 12101 pmask = 0; 12102 if (vq & 3) { 12103 pmask = ~(-1ULL << (16 * (vq & 3))); 12104 } 12105 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12106 for (i = 0; i < 17; ++i) { 12107 env->vfp.pregs[i].p[j] &= pmask; 12108 } 12109 pmask = 0; 12110 } 12111 } 12112 12113 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12114 { 12115 int exc_el; 12116 12117 if (sm) { 12118 exc_el = sme_exception_el(env, el); 12119 } else { 12120 exc_el = sve_exception_el(env, el); 12121 } 12122 if (exc_el) { 12123 return 0; /* disabled */ 12124 } 12125 return sve_vqm1_for_el_sm(env, el, sm); 12126 } 12127 12128 /* 12129 * Notice a change in SVE vector size when changing EL. 12130 */ 12131 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12132 int new_el, bool el0_a64) 12133 { 12134 ARMCPU *cpu = env_archcpu(env); 12135 int old_len, new_len; 12136 bool old_a64, new_a64, sm; 12137 12138 /* Nothing to do if no SVE. */ 12139 if (!cpu_isar_feature(aa64_sve, cpu)) { 12140 return; 12141 } 12142 12143 /* Nothing to do if FP is disabled in either EL. */ 12144 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12145 return; 12146 } 12147 12148 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12149 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12150 12151 /* 12152 * Both AArch64.TakeException and AArch64.ExceptionReturn 12153 * invoke ResetSVEState when taking an exception from, or 12154 * returning to, AArch32 state when PSTATE.SM is enabled. 12155 */ 12156 sm = FIELD_EX64(env->svcr, SVCR, SM); 12157 if (old_a64 != new_a64 && sm) { 12158 arm_reset_sve_state(env); 12159 return; 12160 } 12161 12162 /* 12163 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12164 * at ELx, or not available because the EL is in AArch32 state, then 12165 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12166 * has an effective value of 0". 12167 * 12168 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12169 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12170 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12171 * we already have the correct register contents when encountering the 12172 * vq0->vq0 transition between EL0->EL1. 12173 */ 12174 old_len = new_len = 0; 12175 if (old_a64) { 12176 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12177 } 12178 if (new_a64) { 12179 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12180 } 12181 12182 /* When changing vector length, clear inaccessible state. */ 12183 if (new_len < old_len) { 12184 aarch64_sve_narrow_vq(env, new_len + 1); 12185 } 12186 } 12187 #endif 12188 12189 #ifndef CONFIG_USER_ONLY 12190 ARMSecuritySpace arm_security_space(CPUARMState *env) 12191 { 12192 if (arm_feature(env, ARM_FEATURE_M)) { 12193 return arm_secure_to_space(env->v7m.secure); 12194 } 12195 12196 /* 12197 * If EL3 is not supported then the secure state is implementation 12198 * defined, in which case QEMU defaults to non-secure. 12199 */ 12200 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12201 return ARMSS_NonSecure; 12202 } 12203 12204 /* Check for AArch64 EL3 or AArch32 Mon. */ 12205 if (is_a64(env)) { 12206 if (extract32(env->pstate, 2, 2) == 3) { 12207 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12208 return ARMSS_Root; 12209 } else { 12210 return ARMSS_Secure; 12211 } 12212 } 12213 } else { 12214 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12215 return ARMSS_Secure; 12216 } 12217 } 12218 12219 return arm_security_space_below_el3(env); 12220 } 12221 12222 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12223 { 12224 assert(!arm_feature(env, ARM_FEATURE_M)); 12225 12226 /* 12227 * If EL3 is not supported then the secure state is implementation 12228 * defined, in which case QEMU defaults to non-secure. 12229 */ 12230 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12231 return ARMSS_NonSecure; 12232 } 12233 12234 /* 12235 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12236 * Ignoring NSE when !NS retains consistency without having to 12237 * modify other predicates. 12238 */ 12239 if (!(env->cp15.scr_el3 & SCR_NS)) { 12240 return ARMSS_Secure; 12241 } else if (env->cp15.scr_el3 & SCR_NSE) { 12242 return ARMSS_Realm; 12243 } else { 12244 return ARMSS_NonSecure; 12245 } 12246 } 12247 #endif /* !CONFIG_USER_ONLY */ 12248