1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 #include "qemu/range.h" 21 22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 23 24 #ifndef CONFIG_USER_ONLY 25 /* Cacheability and shareability attributes for a memory access */ 26 typedef struct ARMCacheAttrs { 27 unsigned int attrs:8; /* as in the MAIR register encoding */ 28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 29 } ARMCacheAttrs; 30 31 static bool get_phys_addr(CPUARMState *env, target_ulong address, 32 MMUAccessType access_type, ARMMMUIdx mmu_idx, 33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 34 target_ulong *page_size, 35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 36 37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 38 MMUAccessType access_type, ARMMMUIdx mmu_idx, 39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 40 target_ulong *page_size_ptr, 41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 42 43 /* Security attributes for an address, as returned by v8m_security_lookup. */ 44 typedef struct V8M_SAttributes { 45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 46 bool ns; 47 bool nsc; 48 uint8_t sregion; 49 bool srvalid; 50 uint8_t iregion; 51 bool irvalid; 52 } V8M_SAttributes; 53 54 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 55 MMUAccessType access_type, ARMMMUIdx mmu_idx, 56 V8M_SAttributes *sattrs); 57 #endif 58 59 static void switch_mode(CPUARMState *env, int mode); 60 61 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 62 { 63 int nregs; 64 65 /* VFP data registers are always little-endian. */ 66 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 67 if (reg < nregs) { 68 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 69 return 8; 70 } 71 if (arm_feature(env, ARM_FEATURE_NEON)) { 72 /* Aliases for Q regs. */ 73 nregs += 16; 74 if (reg < nregs) { 75 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 76 stq_le_p(buf, q[0]); 77 stq_le_p(buf + 8, q[1]); 78 return 16; 79 } 80 } 81 switch (reg - nregs) { 82 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 83 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 84 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 85 } 86 return 0; 87 } 88 89 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 90 { 91 int nregs; 92 93 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 94 if (reg < nregs) { 95 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 96 return 8; 97 } 98 if (arm_feature(env, ARM_FEATURE_NEON)) { 99 nregs += 16; 100 if (reg < nregs) { 101 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 102 q[0] = ldq_le_p(buf); 103 q[1] = ldq_le_p(buf + 8); 104 return 16; 105 } 106 } 107 switch (reg - nregs) { 108 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 109 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 110 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 111 } 112 return 0; 113 } 114 115 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 116 { 117 switch (reg) { 118 case 0 ... 31: 119 /* 128 bit FP register */ 120 { 121 uint64_t *q = aa64_vfp_qreg(env, reg); 122 stq_le_p(buf, q[0]); 123 stq_le_p(buf + 8, q[1]); 124 return 16; 125 } 126 case 32: 127 /* FPSR */ 128 stl_p(buf, vfp_get_fpsr(env)); 129 return 4; 130 case 33: 131 /* FPCR */ 132 stl_p(buf, vfp_get_fpcr(env)); 133 return 4; 134 default: 135 return 0; 136 } 137 } 138 139 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 140 { 141 switch (reg) { 142 case 0 ... 31: 143 /* 128 bit FP register */ 144 { 145 uint64_t *q = aa64_vfp_qreg(env, reg); 146 q[0] = ldq_le_p(buf); 147 q[1] = ldq_le_p(buf + 8); 148 return 16; 149 } 150 case 32: 151 /* FPSR */ 152 vfp_set_fpsr(env, ldl_p(buf)); 153 return 4; 154 case 33: 155 /* FPCR */ 156 vfp_set_fpcr(env, ldl_p(buf)); 157 return 4; 158 default: 159 return 0; 160 } 161 } 162 163 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 return CPREG_FIELD64(env, ri); 168 } else { 169 return CPREG_FIELD32(env, ri); 170 } 171 } 172 173 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 174 uint64_t value) 175 { 176 assert(ri->fieldoffset); 177 if (cpreg_field_is_64bit(ri)) { 178 CPREG_FIELD64(env, ri) = value; 179 } else { 180 CPREG_FIELD32(env, ri) = value; 181 } 182 } 183 184 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 185 { 186 return (char *)env + ri->fieldoffset; 187 } 188 189 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 190 { 191 /* Raw read of a coprocessor register (as needed for migration, etc). */ 192 if (ri->type & ARM_CP_CONST) { 193 return ri->resetvalue; 194 } else if (ri->raw_readfn) { 195 return ri->raw_readfn(env, ri); 196 } else if (ri->readfn) { 197 return ri->readfn(env, ri); 198 } else { 199 return raw_read(env, ri); 200 } 201 } 202 203 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 204 uint64_t v) 205 { 206 /* Raw write of a coprocessor register (as needed for migration, etc). 207 * Note that constant registers are treated as write-ignored; the 208 * caller should check for success by whether a readback gives the 209 * value written. 210 */ 211 if (ri->type & ARM_CP_CONST) { 212 return; 213 } else if (ri->raw_writefn) { 214 ri->raw_writefn(env, ri, v); 215 } else if (ri->writefn) { 216 ri->writefn(env, ri, v); 217 } else { 218 raw_write(env, ri, v); 219 } 220 } 221 222 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 223 { 224 ARMCPU *cpu = arm_env_get_cpu(env); 225 const ARMCPRegInfo *ri; 226 uint32_t key; 227 228 key = cpu->dyn_xml.cpregs_keys[reg]; 229 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 230 if (ri) { 231 if (cpreg_field_is_64bit(ri)) { 232 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 233 } else { 234 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 235 } 236 } 237 return 0; 238 } 239 240 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 241 { 242 return 0; 243 } 244 245 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 246 { 247 /* Return true if the regdef would cause an assertion if you called 248 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 249 * program bug for it not to have the NO_RAW flag). 250 * NB that returning false here doesn't necessarily mean that calling 251 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 252 * read/write access functions which are safe for raw use" from "has 253 * read/write access functions which have side effects but has forgotten 254 * to provide raw access functions". 255 * The tests here line up with the conditions in read/write_raw_cp_reg() 256 * and assertions in raw_read()/raw_write(). 257 */ 258 if ((ri->type & ARM_CP_CONST) || 259 ri->fieldoffset || 260 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 261 return false; 262 } 263 return true; 264 } 265 266 bool write_cpustate_to_list(ARMCPU *cpu) 267 { 268 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 269 int i; 270 bool ok = true; 271 272 for (i = 0; i < cpu->cpreg_array_len; i++) { 273 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 274 const ARMCPRegInfo *ri; 275 276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 277 if (!ri) { 278 ok = false; 279 continue; 280 } 281 if (ri->type & ARM_CP_NO_RAW) { 282 continue; 283 } 284 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 285 } 286 return ok; 287 } 288 289 bool write_list_to_cpustate(ARMCPU *cpu) 290 { 291 int i; 292 bool ok = true; 293 294 for (i = 0; i < cpu->cpreg_array_len; i++) { 295 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 296 uint64_t v = cpu->cpreg_values[i]; 297 const ARMCPRegInfo *ri; 298 299 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 300 if (!ri) { 301 ok = false; 302 continue; 303 } 304 if (ri->type & ARM_CP_NO_RAW) { 305 continue; 306 } 307 /* Write value and confirm it reads back as written 308 * (to catch read-only registers and partially read-only 309 * registers where the incoming migration value doesn't match) 310 */ 311 write_raw_cp_reg(&cpu->env, ri, v); 312 if (read_raw_cp_reg(&cpu->env, ri) != v) { 313 ok = false; 314 } 315 } 316 return ok; 317 } 318 319 static void add_cpreg_to_list(gpointer key, gpointer opaque) 320 { 321 ARMCPU *cpu = opaque; 322 uint64_t regidx; 323 const ARMCPRegInfo *ri; 324 325 regidx = *(uint32_t *)key; 326 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 327 328 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 329 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 330 /* The value array need not be initialized at this point */ 331 cpu->cpreg_array_len++; 332 } 333 } 334 335 static void count_cpreg(gpointer key, gpointer opaque) 336 { 337 ARMCPU *cpu = opaque; 338 uint64_t regidx; 339 const ARMCPRegInfo *ri; 340 341 regidx = *(uint32_t *)key; 342 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 343 344 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 345 cpu->cpreg_array_len++; 346 } 347 } 348 349 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 350 { 351 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 352 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 353 354 if (aidx > bidx) { 355 return 1; 356 } 357 if (aidx < bidx) { 358 return -1; 359 } 360 return 0; 361 } 362 363 void init_cpreg_list(ARMCPU *cpu) 364 { 365 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 366 * Note that we require cpreg_tuples[] to be sorted by key ID. 367 */ 368 GList *keys; 369 int arraylen; 370 371 keys = g_hash_table_get_keys(cpu->cp_regs); 372 keys = g_list_sort(keys, cpreg_key_compare); 373 374 cpu->cpreg_array_len = 0; 375 376 g_list_foreach(keys, count_cpreg, cpu); 377 378 arraylen = cpu->cpreg_array_len; 379 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 380 cpu->cpreg_values = g_new(uint64_t, arraylen); 381 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 382 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 383 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 384 cpu->cpreg_array_len = 0; 385 386 g_list_foreach(keys, add_cpreg_to_list, cpu); 387 388 assert(cpu->cpreg_array_len == arraylen); 389 390 g_list_free(keys); 391 } 392 393 /* 394 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 395 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 396 * 397 * access_el3_aa32ns: Used to check AArch32 register views. 398 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 399 */ 400 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 401 const ARMCPRegInfo *ri, 402 bool isread) 403 { 404 bool secure = arm_is_secure_below_el3(env); 405 406 assert(!arm_el_is_aa64(env, 3)); 407 if (secure) { 408 return CP_ACCESS_TRAP_UNCATEGORIZED; 409 } 410 return CP_ACCESS_OK; 411 } 412 413 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 414 const ARMCPRegInfo *ri, 415 bool isread) 416 { 417 if (!arm_el_is_aa64(env, 3)) { 418 return access_el3_aa32ns(env, ri, isread); 419 } 420 return CP_ACCESS_OK; 421 } 422 423 /* Some secure-only AArch32 registers trap to EL3 if used from 424 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 425 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 426 * We assume that the .access field is set to PL1_RW. 427 */ 428 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 429 const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 if (arm_current_el(env) == 3) { 433 return CP_ACCESS_OK; 434 } 435 if (arm_is_secure_below_el3(env)) { 436 return CP_ACCESS_TRAP_EL3; 437 } 438 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 439 return CP_ACCESS_TRAP_UNCATEGORIZED; 440 } 441 442 /* Check for traps to "powerdown debug" registers, which are controlled 443 * by MDCR.TDOSA 444 */ 445 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 446 bool isread) 447 { 448 int el = arm_current_el(env); 449 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 450 (env->cp15.mdcr_el2 & MDCR_TDE) || 451 (env->cp15.hcr_el2 & HCR_TGE); 452 453 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 454 return CP_ACCESS_TRAP_EL2; 455 } 456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 457 return CP_ACCESS_TRAP_EL3; 458 } 459 return CP_ACCESS_OK; 460 } 461 462 /* Check for traps to "debug ROM" registers, which are controlled 463 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 464 */ 465 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 466 bool isread) 467 { 468 int el = arm_current_el(env); 469 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 470 (env->cp15.mdcr_el2 & MDCR_TDE) || 471 (env->cp15.hcr_el2 & HCR_TGE); 472 473 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 474 return CP_ACCESS_TRAP_EL2; 475 } 476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 477 return CP_ACCESS_TRAP_EL3; 478 } 479 return CP_ACCESS_OK; 480 } 481 482 /* Check for traps to general debug registers, which are controlled 483 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 484 */ 485 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 486 bool isread) 487 { 488 int el = arm_current_el(env); 489 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 490 (env->cp15.mdcr_el2 & MDCR_TDE) || 491 (env->cp15.hcr_el2 & HCR_TGE); 492 493 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 494 return CP_ACCESS_TRAP_EL2; 495 } 496 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 497 return CP_ACCESS_TRAP_EL3; 498 } 499 return CP_ACCESS_OK; 500 } 501 502 /* Check for traps to performance monitor registers, which are controlled 503 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 504 */ 505 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 506 bool isread) 507 { 508 int el = arm_current_el(env); 509 510 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 511 && !arm_is_secure_below_el3(env)) { 512 return CP_ACCESS_TRAP_EL2; 513 } 514 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 515 return CP_ACCESS_TRAP_EL3; 516 } 517 return CP_ACCESS_OK; 518 } 519 520 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 521 { 522 ARMCPU *cpu = arm_env_get_cpu(env); 523 524 raw_write(env, ri, value); 525 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 526 } 527 528 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 529 { 530 ARMCPU *cpu = arm_env_get_cpu(env); 531 532 if (raw_read(env, ri) != value) { 533 /* Unlike real hardware the qemu TLB uses virtual addresses, 534 * not modified virtual addresses, so this causes a TLB flush. 535 */ 536 tlb_flush(CPU(cpu)); 537 raw_write(env, ri, value); 538 } 539 } 540 541 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 542 uint64_t value) 543 { 544 ARMCPU *cpu = arm_env_get_cpu(env); 545 546 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 547 && !extended_addresses_enabled(env)) { 548 /* For VMSA (when not using the LPAE long descriptor page table 549 * format) this register includes the ASID, so do a TLB flush. 550 * For PMSA it is purely a process ID and no action is needed. 551 */ 552 tlb_flush(CPU(cpu)); 553 } 554 raw_write(env, ri, value); 555 } 556 557 /* IS variants of TLB operations must affect all cores */ 558 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 559 uint64_t value) 560 { 561 CPUState *cs = ENV_GET_CPU(env); 562 563 tlb_flush_all_cpus_synced(cs); 564 } 565 566 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *cs = ENV_GET_CPU(env); 570 571 tlb_flush_all_cpus_synced(cs); 572 } 573 574 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 575 uint64_t value) 576 { 577 CPUState *cs = ENV_GET_CPU(env); 578 579 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 580 } 581 582 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = ENV_GET_CPU(env); 586 587 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 588 } 589 590 /* 591 * Non-IS variants of TLB operations are upgraded to 592 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 593 * force broadcast of these operations. 594 */ 595 static bool tlb_force_broadcast(CPUARMState *env) 596 { 597 return (env->cp15.hcr_el2 & HCR_FB) && 598 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 599 } 600 601 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 /* Invalidate all (TLBIALL) */ 605 ARMCPU *cpu = arm_env_get_cpu(env); 606 607 if (tlb_force_broadcast(env)) { 608 tlbiall_is_write(env, NULL, value); 609 return; 610 } 611 612 tlb_flush(CPU(cpu)); 613 } 614 615 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 619 ARMCPU *cpu = arm_env_get_cpu(env); 620 621 if (tlb_force_broadcast(env)) { 622 tlbimva_is_write(env, NULL, value); 623 return; 624 } 625 626 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 627 } 628 629 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 630 uint64_t value) 631 { 632 /* Invalidate by ASID (TLBIASID) */ 633 ARMCPU *cpu = arm_env_get_cpu(env); 634 635 if (tlb_force_broadcast(env)) { 636 tlbiasid_is_write(env, NULL, value); 637 return; 638 } 639 640 tlb_flush(CPU(cpu)); 641 } 642 643 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 644 uint64_t value) 645 { 646 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 647 ARMCPU *cpu = arm_env_get_cpu(env); 648 649 if (tlb_force_broadcast(env)) { 650 tlbimvaa_is_write(env, NULL, value); 651 return; 652 } 653 654 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 655 } 656 657 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 658 uint64_t value) 659 { 660 CPUState *cs = ENV_GET_CPU(env); 661 662 tlb_flush_by_mmuidx(cs, 663 ARMMMUIdxBit_S12NSE1 | 664 ARMMMUIdxBit_S12NSE0 | 665 ARMMMUIdxBit_S2NS); 666 } 667 668 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 669 uint64_t value) 670 { 671 CPUState *cs = ENV_GET_CPU(env); 672 673 tlb_flush_by_mmuidx_all_cpus_synced(cs, 674 ARMMMUIdxBit_S12NSE1 | 675 ARMMMUIdxBit_S12NSE0 | 676 ARMMMUIdxBit_S2NS); 677 } 678 679 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 680 uint64_t value) 681 { 682 /* Invalidate by IPA. This has to invalidate any structures that 683 * contain only stage 2 translation information, but does not need 684 * to apply to structures that contain combined stage 1 and stage 2 685 * translation information. 686 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 687 */ 688 CPUState *cs = ENV_GET_CPU(env); 689 uint64_t pageaddr; 690 691 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 692 return; 693 } 694 695 pageaddr = sextract64(value << 12, 0, 40); 696 697 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 698 } 699 700 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 701 uint64_t value) 702 { 703 CPUState *cs = ENV_GET_CPU(env); 704 uint64_t pageaddr; 705 706 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 707 return; 708 } 709 710 pageaddr = sextract64(value << 12, 0, 40); 711 712 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 713 ARMMMUIdxBit_S2NS); 714 } 715 716 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 717 uint64_t value) 718 { 719 CPUState *cs = ENV_GET_CPU(env); 720 721 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 722 } 723 724 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 725 uint64_t value) 726 { 727 CPUState *cs = ENV_GET_CPU(env); 728 729 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 730 } 731 732 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 733 uint64_t value) 734 { 735 CPUState *cs = ENV_GET_CPU(env); 736 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 737 738 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 739 } 740 741 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 742 uint64_t value) 743 { 744 CPUState *cs = ENV_GET_CPU(env); 745 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 746 747 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 748 ARMMMUIdxBit_S1E2); 749 } 750 751 static const ARMCPRegInfo cp_reginfo[] = { 752 /* Define the secure and non-secure FCSE identifier CP registers 753 * separately because there is no secure bank in V8 (no _EL3). This allows 754 * the secure register to be properly reset and migrated. There is also no 755 * v8 EL1 version of the register so the non-secure instance stands alone. 756 */ 757 { .name = "FCSEIDR", 758 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 759 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 760 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 761 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 762 { .name = "FCSEIDR_S", 763 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 764 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 765 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 766 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 767 /* Define the secure and non-secure context identifier CP registers 768 * separately because there is no secure bank in V8 (no _EL3). This allows 769 * the secure register to be properly reset and migrated. In the 770 * non-secure case, the 32-bit register will have reset and migration 771 * disabled during registration as it is handled by the 64-bit instance. 772 */ 773 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 774 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 775 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 776 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 777 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 778 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 779 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 780 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 781 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 782 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 783 REGINFO_SENTINEL 784 }; 785 786 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 787 /* NB: Some of these registers exist in v8 but with more precise 788 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 789 */ 790 /* MMU Domain access control / MPU write buffer control */ 791 { .name = "DACR", 792 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 793 .access = PL1_RW, .resetvalue = 0, 794 .writefn = dacr_write, .raw_writefn = raw_write, 795 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 796 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 797 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 798 * For v6 and v5, these mappings are overly broad. 799 */ 800 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 801 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 802 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 803 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 804 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 806 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 807 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 808 /* Cache maintenance ops; some of this space may be overridden later. */ 809 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 810 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 811 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 812 REGINFO_SENTINEL 813 }; 814 815 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 816 /* Not all pre-v6 cores implemented this WFI, so this is slightly 817 * over-broad. 818 */ 819 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 820 .access = PL1_W, .type = ARM_CP_WFI }, 821 REGINFO_SENTINEL 822 }; 823 824 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 825 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 826 * is UNPREDICTABLE; we choose to NOP as most implementations do). 827 */ 828 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 829 .access = PL1_W, .type = ARM_CP_WFI }, 830 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 831 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 832 * OMAPCP will override this space. 833 */ 834 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 835 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 836 .resetvalue = 0 }, 837 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 838 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 839 .resetvalue = 0 }, 840 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 841 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 842 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 843 .resetvalue = 0 }, 844 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 845 * implementing it as RAZ means the "debug architecture version" bits 846 * will read as a reserved value, which should cause Linux to not try 847 * to use the debug hardware. 848 */ 849 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 850 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 851 /* MMU TLB control. Note that the wildcarding means we cover not just 852 * the unified TLB ops but also the dside/iside/inner-shareable variants. 853 */ 854 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 855 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 856 .type = ARM_CP_NO_RAW }, 857 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 858 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 859 .type = ARM_CP_NO_RAW }, 860 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 861 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 862 .type = ARM_CP_NO_RAW }, 863 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 864 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 865 .type = ARM_CP_NO_RAW }, 866 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 867 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 868 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 869 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 870 REGINFO_SENTINEL 871 }; 872 873 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 874 uint64_t value) 875 { 876 uint32_t mask = 0; 877 878 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 879 if (!arm_feature(env, ARM_FEATURE_V8)) { 880 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 881 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 882 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 883 */ 884 if (arm_feature(env, ARM_FEATURE_VFP)) { 885 /* VFP coprocessor: cp10 & cp11 [23:20] */ 886 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 887 888 if (!arm_feature(env, ARM_FEATURE_NEON)) { 889 /* ASEDIS [31] bit is RAO/WI */ 890 value |= (1 << 31); 891 } 892 893 /* VFPv3 and upwards with NEON implement 32 double precision 894 * registers (D0-D31). 895 */ 896 if (!arm_feature(env, ARM_FEATURE_NEON) || 897 !arm_feature(env, ARM_FEATURE_VFP3)) { 898 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 899 value |= (1 << 30); 900 } 901 } 902 value &= mask; 903 } 904 env->cp15.cpacr_el1 = value; 905 } 906 907 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 908 { 909 /* Call cpacr_write() so that we reset with the correct RAO bits set 910 * for our CPU features. 911 */ 912 cpacr_write(env, ri, 0); 913 } 914 915 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 916 bool isread) 917 { 918 if (arm_feature(env, ARM_FEATURE_V8)) { 919 /* Check if CPACR accesses are to be trapped to EL2 */ 920 if (arm_current_el(env) == 1 && 921 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 922 return CP_ACCESS_TRAP_EL2; 923 /* Check if CPACR accesses are to be trapped to EL3 */ 924 } else if (arm_current_el(env) < 3 && 925 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 926 return CP_ACCESS_TRAP_EL3; 927 } 928 } 929 930 return CP_ACCESS_OK; 931 } 932 933 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 934 bool isread) 935 { 936 /* Check if CPTR accesses are set to trap to EL3 */ 937 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 938 return CP_ACCESS_TRAP_EL3; 939 } 940 941 return CP_ACCESS_OK; 942 } 943 944 static const ARMCPRegInfo v6_cp_reginfo[] = { 945 /* prefetch by MVA in v6, NOP in v7 */ 946 { .name = "MVA_prefetch", 947 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 948 .access = PL1_W, .type = ARM_CP_NOP }, 949 /* We need to break the TB after ISB to execute self-modifying code 950 * correctly and also to take any pending interrupts immediately. 951 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 952 */ 953 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 954 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 955 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 956 .access = PL0_W, .type = ARM_CP_NOP }, 957 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 958 .access = PL0_W, .type = ARM_CP_NOP }, 959 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 960 .access = PL1_RW, 961 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 962 offsetof(CPUARMState, cp15.ifar_ns) }, 963 .resetvalue = 0, }, 964 /* Watchpoint Fault Address Register : should actually only be present 965 * for 1136, 1176, 11MPCore. 966 */ 967 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 968 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 969 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 970 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 971 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 972 .resetfn = cpacr_reset, .writefn = cpacr_write }, 973 REGINFO_SENTINEL 974 }; 975 976 /* Definitions for the PMU registers */ 977 #define PMCRN_MASK 0xf800 978 #define PMCRN_SHIFT 11 979 #define PMCRD 0x8 980 #define PMCRC 0x4 981 #define PMCRE 0x1 982 983 static inline uint32_t pmu_num_counters(CPUARMState *env) 984 { 985 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 986 } 987 988 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 989 static inline uint64_t pmu_counter_mask(CPUARMState *env) 990 { 991 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 992 } 993 994 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 995 bool isread) 996 { 997 /* Performance monitor registers user accessibility is controlled 998 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 999 * trapping to EL2 or EL3 for other accesses. 1000 */ 1001 int el = arm_current_el(env); 1002 1003 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1004 return CP_ACCESS_TRAP; 1005 } 1006 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1007 && !arm_is_secure_below_el3(env)) { 1008 return CP_ACCESS_TRAP_EL2; 1009 } 1010 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1011 return CP_ACCESS_TRAP_EL3; 1012 } 1013 1014 return CP_ACCESS_OK; 1015 } 1016 1017 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1018 const ARMCPRegInfo *ri, 1019 bool isread) 1020 { 1021 /* ER: event counter read trap control */ 1022 if (arm_feature(env, ARM_FEATURE_V8) 1023 && arm_current_el(env) == 0 1024 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1025 && isread) { 1026 return CP_ACCESS_OK; 1027 } 1028 1029 return pmreg_access(env, ri, isread); 1030 } 1031 1032 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1033 const ARMCPRegInfo *ri, 1034 bool isread) 1035 { 1036 /* SW: software increment write trap control */ 1037 if (arm_feature(env, ARM_FEATURE_V8) 1038 && arm_current_el(env) == 0 1039 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1040 && !isread) { 1041 return CP_ACCESS_OK; 1042 } 1043 1044 return pmreg_access(env, ri, isread); 1045 } 1046 1047 #ifndef CONFIG_USER_ONLY 1048 1049 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1050 const ARMCPRegInfo *ri, 1051 bool isread) 1052 { 1053 /* ER: event counter read trap control */ 1054 if (arm_feature(env, ARM_FEATURE_V8) 1055 && arm_current_el(env) == 0 1056 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1057 return CP_ACCESS_OK; 1058 } 1059 1060 return pmreg_access(env, ri, isread); 1061 } 1062 1063 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1064 const ARMCPRegInfo *ri, 1065 bool isread) 1066 { 1067 /* CR: cycle counter read trap control */ 1068 if (arm_feature(env, ARM_FEATURE_V8) 1069 && arm_current_el(env) == 0 1070 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1071 && isread) { 1072 return CP_ACCESS_OK; 1073 } 1074 1075 return pmreg_access(env, ri, isread); 1076 } 1077 1078 static inline bool arm_ccnt_enabled(CPUARMState *env) 1079 { 1080 /* This does not support checking PMCCFILTR_EL0 register */ 1081 1082 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1083 return false; 1084 } 1085 1086 return true; 1087 } 1088 1089 void pmccntr_sync(CPUARMState *env) 1090 { 1091 uint64_t temp_ticks; 1092 1093 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1094 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1095 1096 if (env->cp15.c9_pmcr & PMCRD) { 1097 /* Increment once every 64 processor clock cycles */ 1098 temp_ticks /= 64; 1099 } 1100 1101 if (arm_ccnt_enabled(env)) { 1102 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1103 } 1104 } 1105 1106 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1107 uint64_t value) 1108 { 1109 pmccntr_sync(env); 1110 1111 if (value & PMCRC) { 1112 /* The counter has been reset */ 1113 env->cp15.c15_ccnt = 0; 1114 } 1115 1116 /* only the DP, X, D and E bits are writable */ 1117 env->cp15.c9_pmcr &= ~0x39; 1118 env->cp15.c9_pmcr |= (value & 0x39); 1119 1120 pmccntr_sync(env); 1121 } 1122 1123 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1124 { 1125 uint64_t total_ticks; 1126 1127 if (!arm_ccnt_enabled(env)) { 1128 /* Counter is disabled, do not change value */ 1129 return env->cp15.c15_ccnt; 1130 } 1131 1132 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1133 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1134 1135 if (env->cp15.c9_pmcr & PMCRD) { 1136 /* Increment once every 64 processor clock cycles */ 1137 total_ticks /= 64; 1138 } 1139 return total_ticks - env->cp15.c15_ccnt; 1140 } 1141 1142 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1143 uint64_t value) 1144 { 1145 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1146 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1147 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1148 * accessed. 1149 */ 1150 env->cp15.c9_pmselr = value & 0x1f; 1151 } 1152 1153 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1154 uint64_t value) 1155 { 1156 uint64_t total_ticks; 1157 1158 if (!arm_ccnt_enabled(env)) { 1159 /* Counter is disabled, set the absolute value */ 1160 env->cp15.c15_ccnt = value; 1161 return; 1162 } 1163 1164 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1165 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1166 1167 if (env->cp15.c9_pmcr & PMCRD) { 1168 /* Increment once every 64 processor clock cycles */ 1169 total_ticks /= 64; 1170 } 1171 env->cp15.c15_ccnt = total_ticks - value; 1172 } 1173 1174 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1175 uint64_t value) 1176 { 1177 uint64_t cur_val = pmccntr_read(env, NULL); 1178 1179 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1180 } 1181 1182 #else /* CONFIG_USER_ONLY */ 1183 1184 void pmccntr_sync(CPUARMState *env) 1185 { 1186 } 1187 1188 #endif 1189 1190 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1191 uint64_t value) 1192 { 1193 pmccntr_sync(env); 1194 env->cp15.pmccfiltr_el0 = value & 0xfc000000; 1195 pmccntr_sync(env); 1196 } 1197 1198 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1199 uint64_t value) 1200 { 1201 value &= pmu_counter_mask(env); 1202 env->cp15.c9_pmcnten |= value; 1203 } 1204 1205 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1206 uint64_t value) 1207 { 1208 value &= pmu_counter_mask(env); 1209 env->cp15.c9_pmcnten &= ~value; 1210 } 1211 1212 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1213 uint64_t value) 1214 { 1215 value &= pmu_counter_mask(env); 1216 env->cp15.c9_pmovsr &= ~value; 1217 } 1218 1219 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1220 uint64_t value) 1221 { 1222 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1223 * PMSELR value is equal to or greater than the number of implemented 1224 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1225 */ 1226 if (env->cp15.c9_pmselr == 0x1f) { 1227 pmccfiltr_write(env, ri, value); 1228 } 1229 } 1230 1231 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1232 { 1233 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1234 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1235 */ 1236 if (env->cp15.c9_pmselr == 0x1f) { 1237 return env->cp15.pmccfiltr_el0; 1238 } else { 1239 return 0; 1240 } 1241 } 1242 1243 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1244 uint64_t value) 1245 { 1246 if (arm_feature(env, ARM_FEATURE_V8)) { 1247 env->cp15.c9_pmuserenr = value & 0xf; 1248 } else { 1249 env->cp15.c9_pmuserenr = value & 1; 1250 } 1251 } 1252 1253 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1254 uint64_t value) 1255 { 1256 /* We have no event counters so only the C bit can be changed */ 1257 value &= pmu_counter_mask(env); 1258 env->cp15.c9_pminten |= value; 1259 } 1260 1261 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1262 uint64_t value) 1263 { 1264 value &= pmu_counter_mask(env); 1265 env->cp15.c9_pminten &= ~value; 1266 } 1267 1268 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1269 uint64_t value) 1270 { 1271 /* Note that even though the AArch64 view of this register has bits 1272 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1273 * architectural requirements for bits which are RES0 only in some 1274 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1275 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1276 */ 1277 raw_write(env, ri, value & ~0x1FULL); 1278 } 1279 1280 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1281 { 1282 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1283 * For bits that vary between AArch32/64, code needs to check the 1284 * current execution mode before directly using the feature bit. 1285 */ 1286 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1287 1288 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1289 valid_mask &= ~SCR_HCE; 1290 1291 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1292 * supported if EL2 exists. The bit is UNK/SBZP when 1293 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1294 * when EL2 is unavailable. 1295 * On ARMv8, this bit is always available. 1296 */ 1297 if (arm_feature(env, ARM_FEATURE_V7) && 1298 !arm_feature(env, ARM_FEATURE_V8)) { 1299 valid_mask &= ~SCR_SMD; 1300 } 1301 } 1302 1303 /* Clear all-context RES0 bits. */ 1304 value &= valid_mask; 1305 raw_write(env, ri, value); 1306 } 1307 1308 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1309 { 1310 ARMCPU *cpu = arm_env_get_cpu(env); 1311 1312 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1313 * bank 1314 */ 1315 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1316 ri->secure & ARM_CP_SECSTATE_S); 1317 1318 return cpu->ccsidr[index]; 1319 } 1320 1321 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1322 uint64_t value) 1323 { 1324 raw_write(env, ri, value & 0xf); 1325 } 1326 1327 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1328 { 1329 CPUState *cs = ENV_GET_CPU(env); 1330 uint64_t ret = 0; 1331 1332 if (arm_hcr_el2_imo(env)) { 1333 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1334 ret |= CPSR_I; 1335 } 1336 } else { 1337 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1338 ret |= CPSR_I; 1339 } 1340 } 1341 1342 if (arm_hcr_el2_fmo(env)) { 1343 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1344 ret |= CPSR_F; 1345 } 1346 } else { 1347 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1348 ret |= CPSR_F; 1349 } 1350 } 1351 1352 /* External aborts are not possible in QEMU so A bit is always clear */ 1353 return ret; 1354 } 1355 1356 static const ARMCPRegInfo v7_cp_reginfo[] = { 1357 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1358 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1359 .access = PL1_W, .type = ARM_CP_NOP }, 1360 /* Performance monitors are implementation defined in v7, 1361 * but with an ARM recommended set of registers, which we 1362 * follow (although we don't actually implement any counters) 1363 * 1364 * Performance registers fall into three categories: 1365 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1366 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1367 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1368 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1369 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1370 */ 1371 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1372 .access = PL0_RW, .type = ARM_CP_ALIAS, 1373 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1374 .writefn = pmcntenset_write, 1375 .accessfn = pmreg_access, 1376 .raw_writefn = raw_write }, 1377 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1379 .access = PL0_RW, .accessfn = pmreg_access, 1380 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1381 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1382 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1383 .access = PL0_RW, 1384 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1385 .accessfn = pmreg_access, 1386 .writefn = pmcntenclr_write, 1387 .type = ARM_CP_ALIAS }, 1388 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1389 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1390 .access = PL0_RW, .accessfn = pmreg_access, 1391 .type = ARM_CP_ALIAS, 1392 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1393 .writefn = pmcntenclr_write }, 1394 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1395 .access = PL0_RW, 1396 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1397 .accessfn = pmreg_access, 1398 .writefn = pmovsr_write, 1399 .raw_writefn = raw_write }, 1400 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1401 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1402 .access = PL0_RW, .accessfn = pmreg_access, 1403 .type = ARM_CP_ALIAS, 1404 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1405 .writefn = pmovsr_write, 1406 .raw_writefn = raw_write }, 1407 /* Unimplemented so WI. */ 1408 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1409 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1410 #ifndef CONFIG_USER_ONLY 1411 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1412 .access = PL0_RW, .type = ARM_CP_ALIAS, 1413 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1414 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1415 .raw_writefn = raw_write}, 1416 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1417 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1418 .access = PL0_RW, .accessfn = pmreg_access_selr, 1419 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1420 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1421 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1422 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1423 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1424 .accessfn = pmreg_access_ccntr }, 1425 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1426 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1427 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1428 .type = ARM_CP_IO, 1429 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1430 #endif 1431 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1432 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1433 .writefn = pmccfiltr_write, 1434 .access = PL0_RW, .accessfn = pmreg_access, 1435 .type = ARM_CP_IO, 1436 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1437 .resetvalue = 0, }, 1438 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1439 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1440 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1441 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1442 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1443 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1444 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1445 /* Unimplemented, RAZ/WI. */ 1446 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1447 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1448 .accessfn = pmreg_access_xevcntr }, 1449 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1450 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1451 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1452 .resetvalue = 0, 1453 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1454 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1455 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1456 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1457 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1458 .resetvalue = 0, 1459 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1460 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1461 .access = PL1_RW, .accessfn = access_tpm, 1462 .type = ARM_CP_ALIAS | ARM_CP_IO, 1463 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1464 .resetvalue = 0, 1465 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1466 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1467 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1468 .access = PL1_RW, .accessfn = access_tpm, 1469 .type = ARM_CP_IO, 1470 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1471 .writefn = pmintenset_write, .raw_writefn = raw_write, 1472 .resetvalue = 0x0 }, 1473 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1474 .access = PL1_RW, .accessfn = access_tpm, 1475 .type = ARM_CP_ALIAS | ARM_CP_IO, 1476 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1477 .writefn = pmintenclr_write, }, 1478 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1479 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1480 .access = PL1_RW, .accessfn = access_tpm, 1481 .type = ARM_CP_ALIAS | ARM_CP_IO, 1482 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1483 .writefn = pmintenclr_write }, 1484 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1485 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1486 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1487 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1488 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1489 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1490 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1491 offsetof(CPUARMState, cp15.csselr_ns) } }, 1492 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1493 * just RAZ for all cores: 1494 */ 1495 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1496 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1497 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1498 /* Auxiliary fault status registers: these also are IMPDEF, and we 1499 * choose to RAZ/WI for all cores. 1500 */ 1501 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1502 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1503 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1504 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1505 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1506 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1507 /* MAIR can just read-as-written because we don't implement caches 1508 * and so don't need to care about memory attributes. 1509 */ 1510 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1511 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1512 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1513 .resetvalue = 0 }, 1514 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1515 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1516 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1517 .resetvalue = 0 }, 1518 /* For non-long-descriptor page tables these are PRRR and NMRR; 1519 * regardless they still act as reads-as-written for QEMU. 1520 */ 1521 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1522 * allows them to assign the correct fieldoffset based on the endianness 1523 * handled in the field definitions. 1524 */ 1525 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1526 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1527 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1528 offsetof(CPUARMState, cp15.mair0_ns) }, 1529 .resetfn = arm_cp_reset_ignore }, 1530 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1531 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1532 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1533 offsetof(CPUARMState, cp15.mair1_ns) }, 1534 .resetfn = arm_cp_reset_ignore }, 1535 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1536 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1537 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1538 /* 32 bit ITLB invalidates */ 1539 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1540 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1541 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1542 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1543 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1544 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1545 /* 32 bit DTLB invalidates */ 1546 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1547 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1548 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1549 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1550 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1551 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1552 /* 32 bit TLB invalidates */ 1553 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1554 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1555 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1556 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1557 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1558 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1559 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1560 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1561 REGINFO_SENTINEL 1562 }; 1563 1564 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1565 /* 32 bit TLB invalidates, Inner Shareable */ 1566 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1567 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1568 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1569 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1570 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1571 .type = ARM_CP_NO_RAW, .access = PL1_W, 1572 .writefn = tlbiasid_is_write }, 1573 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1574 .type = ARM_CP_NO_RAW, .access = PL1_W, 1575 .writefn = tlbimvaa_is_write }, 1576 REGINFO_SENTINEL 1577 }; 1578 1579 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1580 uint64_t value) 1581 { 1582 value &= 1; 1583 env->teecr = value; 1584 } 1585 1586 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1587 bool isread) 1588 { 1589 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1590 return CP_ACCESS_TRAP; 1591 } 1592 return CP_ACCESS_OK; 1593 } 1594 1595 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1596 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1597 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1598 .resetvalue = 0, 1599 .writefn = teecr_write }, 1600 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1601 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1602 .accessfn = teehbr_access, .resetvalue = 0 }, 1603 REGINFO_SENTINEL 1604 }; 1605 1606 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1607 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1608 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1609 .access = PL0_RW, 1610 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1611 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1612 .access = PL0_RW, 1613 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1614 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1615 .resetfn = arm_cp_reset_ignore }, 1616 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1617 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1618 .access = PL0_R|PL1_W, 1619 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1620 .resetvalue = 0}, 1621 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1622 .access = PL0_R|PL1_W, 1623 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1624 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1625 .resetfn = arm_cp_reset_ignore }, 1626 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1627 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1628 .access = PL1_RW, 1629 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1630 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1631 .access = PL1_RW, 1632 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1633 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1634 .resetvalue = 0 }, 1635 REGINFO_SENTINEL 1636 }; 1637 1638 #ifndef CONFIG_USER_ONLY 1639 1640 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1641 bool isread) 1642 { 1643 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1644 * Writable only at the highest implemented exception level. 1645 */ 1646 int el = arm_current_el(env); 1647 1648 switch (el) { 1649 case 0: 1650 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1651 return CP_ACCESS_TRAP; 1652 } 1653 break; 1654 case 1: 1655 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1656 arm_is_secure_below_el3(env)) { 1657 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1658 return CP_ACCESS_TRAP_UNCATEGORIZED; 1659 } 1660 break; 1661 case 2: 1662 case 3: 1663 break; 1664 } 1665 1666 if (!isread && el < arm_highest_el(env)) { 1667 return CP_ACCESS_TRAP_UNCATEGORIZED; 1668 } 1669 1670 return CP_ACCESS_OK; 1671 } 1672 1673 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1674 bool isread) 1675 { 1676 unsigned int cur_el = arm_current_el(env); 1677 bool secure = arm_is_secure(env); 1678 1679 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1680 if (cur_el == 0 && 1681 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1682 return CP_ACCESS_TRAP; 1683 } 1684 1685 if (arm_feature(env, ARM_FEATURE_EL2) && 1686 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1687 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1688 return CP_ACCESS_TRAP_EL2; 1689 } 1690 return CP_ACCESS_OK; 1691 } 1692 1693 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1694 bool isread) 1695 { 1696 unsigned int cur_el = arm_current_el(env); 1697 bool secure = arm_is_secure(env); 1698 1699 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1700 * EL0[PV]TEN is zero. 1701 */ 1702 if (cur_el == 0 && 1703 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1704 return CP_ACCESS_TRAP; 1705 } 1706 1707 if (arm_feature(env, ARM_FEATURE_EL2) && 1708 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1709 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1710 return CP_ACCESS_TRAP_EL2; 1711 } 1712 return CP_ACCESS_OK; 1713 } 1714 1715 static CPAccessResult gt_pct_access(CPUARMState *env, 1716 const ARMCPRegInfo *ri, 1717 bool isread) 1718 { 1719 return gt_counter_access(env, GTIMER_PHYS, isread); 1720 } 1721 1722 static CPAccessResult gt_vct_access(CPUARMState *env, 1723 const ARMCPRegInfo *ri, 1724 bool isread) 1725 { 1726 return gt_counter_access(env, GTIMER_VIRT, isread); 1727 } 1728 1729 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1730 bool isread) 1731 { 1732 return gt_timer_access(env, GTIMER_PHYS, isread); 1733 } 1734 1735 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1736 bool isread) 1737 { 1738 return gt_timer_access(env, GTIMER_VIRT, isread); 1739 } 1740 1741 static CPAccessResult gt_stimer_access(CPUARMState *env, 1742 const ARMCPRegInfo *ri, 1743 bool isread) 1744 { 1745 /* The AArch64 register view of the secure physical timer is 1746 * always accessible from EL3, and configurably accessible from 1747 * Secure EL1. 1748 */ 1749 switch (arm_current_el(env)) { 1750 case 1: 1751 if (!arm_is_secure(env)) { 1752 return CP_ACCESS_TRAP; 1753 } 1754 if (!(env->cp15.scr_el3 & SCR_ST)) { 1755 return CP_ACCESS_TRAP_EL3; 1756 } 1757 return CP_ACCESS_OK; 1758 case 0: 1759 case 2: 1760 return CP_ACCESS_TRAP; 1761 case 3: 1762 return CP_ACCESS_OK; 1763 default: 1764 g_assert_not_reached(); 1765 } 1766 } 1767 1768 static uint64_t gt_get_countervalue(CPUARMState *env) 1769 { 1770 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1771 } 1772 1773 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1774 { 1775 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1776 1777 if (gt->ctl & 1) { 1778 /* Timer enabled: calculate and set current ISTATUS, irq, and 1779 * reset timer to when ISTATUS next has to change 1780 */ 1781 uint64_t offset = timeridx == GTIMER_VIRT ? 1782 cpu->env.cp15.cntvoff_el2 : 0; 1783 uint64_t count = gt_get_countervalue(&cpu->env); 1784 /* Note that this must be unsigned 64 bit arithmetic: */ 1785 int istatus = count - offset >= gt->cval; 1786 uint64_t nexttick; 1787 int irqstate; 1788 1789 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1790 1791 irqstate = (istatus && !(gt->ctl & 2)); 1792 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1793 1794 if (istatus) { 1795 /* Next transition is when count rolls back over to zero */ 1796 nexttick = UINT64_MAX; 1797 } else { 1798 /* Next transition is when we hit cval */ 1799 nexttick = gt->cval + offset; 1800 } 1801 /* Note that the desired next expiry time might be beyond the 1802 * signed-64-bit range of a QEMUTimer -- in this case we just 1803 * set the timer for as far in the future as possible. When the 1804 * timer expires we will reset the timer for any remaining period. 1805 */ 1806 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1807 nexttick = INT64_MAX / GTIMER_SCALE; 1808 } 1809 timer_mod(cpu->gt_timer[timeridx], nexttick); 1810 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1811 } else { 1812 /* Timer disabled: ISTATUS and timer output always clear */ 1813 gt->ctl &= ~4; 1814 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1815 timer_del(cpu->gt_timer[timeridx]); 1816 trace_arm_gt_recalc_disabled(timeridx); 1817 } 1818 } 1819 1820 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1821 int timeridx) 1822 { 1823 ARMCPU *cpu = arm_env_get_cpu(env); 1824 1825 timer_del(cpu->gt_timer[timeridx]); 1826 } 1827 1828 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1829 { 1830 return gt_get_countervalue(env); 1831 } 1832 1833 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1834 { 1835 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1836 } 1837 1838 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1839 int timeridx, 1840 uint64_t value) 1841 { 1842 trace_arm_gt_cval_write(timeridx, value); 1843 env->cp15.c14_timer[timeridx].cval = value; 1844 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1845 } 1846 1847 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1848 int timeridx) 1849 { 1850 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1851 1852 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1853 (gt_get_countervalue(env) - offset)); 1854 } 1855 1856 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1857 int timeridx, 1858 uint64_t value) 1859 { 1860 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1861 1862 trace_arm_gt_tval_write(timeridx, value); 1863 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1864 sextract64(value, 0, 32); 1865 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1866 } 1867 1868 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1869 int timeridx, 1870 uint64_t value) 1871 { 1872 ARMCPU *cpu = arm_env_get_cpu(env); 1873 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1874 1875 trace_arm_gt_ctl_write(timeridx, value); 1876 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1877 if ((oldval ^ value) & 1) { 1878 /* Enable toggled */ 1879 gt_recalc_timer(cpu, timeridx); 1880 } else if ((oldval ^ value) & 2) { 1881 /* IMASK toggled: don't need to recalculate, 1882 * just set the interrupt line based on ISTATUS 1883 */ 1884 int irqstate = (oldval & 4) && !(value & 2); 1885 1886 trace_arm_gt_imask_toggle(timeridx, irqstate); 1887 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1888 } 1889 } 1890 1891 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1892 { 1893 gt_timer_reset(env, ri, GTIMER_PHYS); 1894 } 1895 1896 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1897 uint64_t value) 1898 { 1899 gt_cval_write(env, ri, GTIMER_PHYS, value); 1900 } 1901 1902 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1903 { 1904 return gt_tval_read(env, ri, GTIMER_PHYS); 1905 } 1906 1907 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1908 uint64_t value) 1909 { 1910 gt_tval_write(env, ri, GTIMER_PHYS, value); 1911 } 1912 1913 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1914 uint64_t value) 1915 { 1916 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1917 } 1918 1919 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1920 { 1921 gt_timer_reset(env, ri, GTIMER_VIRT); 1922 } 1923 1924 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1925 uint64_t value) 1926 { 1927 gt_cval_write(env, ri, GTIMER_VIRT, value); 1928 } 1929 1930 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1931 { 1932 return gt_tval_read(env, ri, GTIMER_VIRT); 1933 } 1934 1935 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1936 uint64_t value) 1937 { 1938 gt_tval_write(env, ri, GTIMER_VIRT, value); 1939 } 1940 1941 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1942 uint64_t value) 1943 { 1944 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1945 } 1946 1947 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1948 uint64_t value) 1949 { 1950 ARMCPU *cpu = arm_env_get_cpu(env); 1951 1952 trace_arm_gt_cntvoff_write(value); 1953 raw_write(env, ri, value); 1954 gt_recalc_timer(cpu, GTIMER_VIRT); 1955 } 1956 1957 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1958 { 1959 gt_timer_reset(env, ri, GTIMER_HYP); 1960 } 1961 1962 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1963 uint64_t value) 1964 { 1965 gt_cval_write(env, ri, GTIMER_HYP, value); 1966 } 1967 1968 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1969 { 1970 return gt_tval_read(env, ri, GTIMER_HYP); 1971 } 1972 1973 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1974 uint64_t value) 1975 { 1976 gt_tval_write(env, ri, GTIMER_HYP, value); 1977 } 1978 1979 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1980 uint64_t value) 1981 { 1982 gt_ctl_write(env, ri, GTIMER_HYP, value); 1983 } 1984 1985 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1986 { 1987 gt_timer_reset(env, ri, GTIMER_SEC); 1988 } 1989 1990 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1991 uint64_t value) 1992 { 1993 gt_cval_write(env, ri, GTIMER_SEC, value); 1994 } 1995 1996 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1997 { 1998 return gt_tval_read(env, ri, GTIMER_SEC); 1999 } 2000 2001 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2002 uint64_t value) 2003 { 2004 gt_tval_write(env, ri, GTIMER_SEC, value); 2005 } 2006 2007 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2008 uint64_t value) 2009 { 2010 gt_ctl_write(env, ri, GTIMER_SEC, value); 2011 } 2012 2013 void arm_gt_ptimer_cb(void *opaque) 2014 { 2015 ARMCPU *cpu = opaque; 2016 2017 gt_recalc_timer(cpu, GTIMER_PHYS); 2018 } 2019 2020 void arm_gt_vtimer_cb(void *opaque) 2021 { 2022 ARMCPU *cpu = opaque; 2023 2024 gt_recalc_timer(cpu, GTIMER_VIRT); 2025 } 2026 2027 void arm_gt_htimer_cb(void *opaque) 2028 { 2029 ARMCPU *cpu = opaque; 2030 2031 gt_recalc_timer(cpu, GTIMER_HYP); 2032 } 2033 2034 void arm_gt_stimer_cb(void *opaque) 2035 { 2036 ARMCPU *cpu = opaque; 2037 2038 gt_recalc_timer(cpu, GTIMER_SEC); 2039 } 2040 2041 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2042 /* Note that CNTFRQ is purely reads-as-written for the benefit 2043 * of software; writing it doesn't actually change the timer frequency. 2044 * Our reset value matches the fixed frequency we implement the timer at. 2045 */ 2046 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2047 .type = ARM_CP_ALIAS, 2048 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2049 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2050 }, 2051 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2052 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2053 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2054 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2055 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2056 }, 2057 /* overall control: mostly access permissions */ 2058 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2059 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2060 .access = PL1_RW, 2061 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2062 .resetvalue = 0, 2063 }, 2064 /* per-timer control */ 2065 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2066 .secure = ARM_CP_SECSTATE_NS, 2067 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2068 .accessfn = gt_ptimer_access, 2069 .fieldoffset = offsetoflow32(CPUARMState, 2070 cp15.c14_timer[GTIMER_PHYS].ctl), 2071 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2072 }, 2073 { .name = "CNTP_CTL_S", 2074 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2075 .secure = ARM_CP_SECSTATE_S, 2076 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2077 .accessfn = gt_ptimer_access, 2078 .fieldoffset = offsetoflow32(CPUARMState, 2079 cp15.c14_timer[GTIMER_SEC].ctl), 2080 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2081 }, 2082 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2084 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2085 .accessfn = gt_ptimer_access, 2086 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2087 .resetvalue = 0, 2088 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2089 }, 2090 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2091 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2092 .accessfn = gt_vtimer_access, 2093 .fieldoffset = offsetoflow32(CPUARMState, 2094 cp15.c14_timer[GTIMER_VIRT].ctl), 2095 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2096 }, 2097 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2098 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2099 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2100 .accessfn = gt_vtimer_access, 2101 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2102 .resetvalue = 0, 2103 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2104 }, 2105 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2106 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2107 .secure = ARM_CP_SECSTATE_NS, 2108 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2109 .accessfn = gt_ptimer_access, 2110 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2111 }, 2112 { .name = "CNTP_TVAL_S", 2113 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2114 .secure = ARM_CP_SECSTATE_S, 2115 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2116 .accessfn = gt_ptimer_access, 2117 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2118 }, 2119 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2120 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2121 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2122 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2123 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2124 }, 2125 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2126 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2127 .accessfn = gt_vtimer_access, 2128 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2129 }, 2130 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2132 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2133 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2134 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2135 }, 2136 /* The counter itself */ 2137 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2138 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = gt_pct_access, 2140 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2141 }, 2142 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2143 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2144 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2145 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2146 }, 2147 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2148 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2149 .accessfn = gt_vct_access, 2150 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2151 }, 2152 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2153 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2154 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2155 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2156 }, 2157 /* Comparison value, indicating when the timer goes off */ 2158 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2159 .secure = ARM_CP_SECSTATE_NS, 2160 .access = PL1_RW | PL0_R, 2161 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2163 .accessfn = gt_ptimer_access, 2164 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2165 }, 2166 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2167 .secure = ARM_CP_SECSTATE_S, 2168 .access = PL1_RW | PL0_R, 2169 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2171 .accessfn = gt_ptimer_access, 2172 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2173 }, 2174 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2175 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2176 .access = PL1_RW | PL0_R, 2177 .type = ARM_CP_IO, 2178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2179 .resetvalue = 0, .accessfn = gt_ptimer_access, 2180 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2181 }, 2182 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2183 .access = PL1_RW | PL0_R, 2184 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2185 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2186 .accessfn = gt_vtimer_access, 2187 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2188 }, 2189 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2190 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2191 .access = PL1_RW | PL0_R, 2192 .type = ARM_CP_IO, 2193 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2194 .resetvalue = 0, .accessfn = gt_vtimer_access, 2195 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2196 }, 2197 /* Secure timer -- this is actually restricted to only EL3 2198 * and configurably Secure-EL1 via the accessfn. 2199 */ 2200 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2201 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2202 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2203 .accessfn = gt_stimer_access, 2204 .readfn = gt_sec_tval_read, 2205 .writefn = gt_sec_tval_write, 2206 .resetfn = gt_sec_timer_reset, 2207 }, 2208 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2209 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2210 .type = ARM_CP_IO, .access = PL1_RW, 2211 .accessfn = gt_stimer_access, 2212 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2213 .resetvalue = 0, 2214 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2215 }, 2216 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2217 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2218 .type = ARM_CP_IO, .access = PL1_RW, 2219 .accessfn = gt_stimer_access, 2220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2221 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2222 }, 2223 REGINFO_SENTINEL 2224 }; 2225 2226 #else 2227 2228 /* In user-mode most of the generic timer registers are inaccessible 2229 * however modern kernels (4.12+) allow access to cntvct_el0 2230 */ 2231 2232 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2233 { 2234 /* Currently we have no support for QEMUTimer in linux-user so we 2235 * can't call gt_get_countervalue(env), instead we directly 2236 * call the lower level functions. 2237 */ 2238 return cpu_get_clock() / GTIMER_SCALE; 2239 } 2240 2241 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2242 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2243 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2244 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2245 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2246 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2247 }, 2248 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2249 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2250 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2251 .readfn = gt_virt_cnt_read, 2252 }, 2253 REGINFO_SENTINEL 2254 }; 2255 2256 #endif 2257 2258 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2259 { 2260 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2261 raw_write(env, ri, value); 2262 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2263 raw_write(env, ri, value & 0xfffff6ff); 2264 } else { 2265 raw_write(env, ri, value & 0xfffff1ff); 2266 } 2267 } 2268 2269 #ifndef CONFIG_USER_ONLY 2270 /* get_phys_addr() isn't present for user-mode-only targets */ 2271 2272 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2273 bool isread) 2274 { 2275 if (ri->opc2 & 4) { 2276 /* The ATS12NSO* operations must trap to EL3 if executed in 2277 * Secure EL1 (which can only happen if EL3 is AArch64). 2278 * They are simply UNDEF if executed from NS EL1. 2279 * They function normally from EL2 or EL3. 2280 */ 2281 if (arm_current_el(env) == 1) { 2282 if (arm_is_secure_below_el3(env)) { 2283 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2284 } 2285 return CP_ACCESS_TRAP_UNCATEGORIZED; 2286 } 2287 } 2288 return CP_ACCESS_OK; 2289 } 2290 2291 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2292 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2293 { 2294 hwaddr phys_addr; 2295 target_ulong page_size; 2296 int prot; 2297 bool ret; 2298 uint64_t par64; 2299 bool format64 = false; 2300 MemTxAttrs attrs = {}; 2301 ARMMMUFaultInfo fi = {}; 2302 ARMCacheAttrs cacheattrs = {}; 2303 2304 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2305 &prot, &page_size, &fi, &cacheattrs); 2306 2307 if (is_a64(env)) { 2308 format64 = true; 2309 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2310 /* 2311 * ATS1Cxx: 2312 * * TTBCR.EAE determines whether the result is returned using the 2313 * 32-bit or the 64-bit PAR format 2314 * * Instructions executed in Hyp mode always use the 64bit format 2315 * 2316 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2317 * * The Non-secure TTBCR.EAE bit is set to 1 2318 * * The implementation includes EL2, and the value of HCR.VM is 1 2319 * 2320 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 2321 * 2322 * ATS1Hx always uses the 64bit format. 2323 */ 2324 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2325 2326 if (arm_feature(env, ARM_FEATURE_EL2)) { 2327 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2328 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 2329 } else { 2330 format64 |= arm_current_el(env) == 2; 2331 } 2332 } 2333 } 2334 2335 if (format64) { 2336 /* Create a 64-bit PAR */ 2337 par64 = (1 << 11); /* LPAE bit always set */ 2338 if (!ret) { 2339 par64 |= phys_addr & ~0xfffULL; 2340 if (!attrs.secure) { 2341 par64 |= (1 << 9); /* NS */ 2342 } 2343 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2344 par64 |= cacheattrs.shareability << 7; /* SH */ 2345 } else { 2346 uint32_t fsr = arm_fi_to_lfsc(&fi); 2347 2348 par64 |= 1; /* F */ 2349 par64 |= (fsr & 0x3f) << 1; /* FS */ 2350 if (fi.stage2) { 2351 par64 |= (1 << 9); /* S */ 2352 } 2353 if (fi.s1ptw) { 2354 par64 |= (1 << 8); /* PTW */ 2355 } 2356 } 2357 } else { 2358 /* fsr is a DFSR/IFSR value for the short descriptor 2359 * translation table format (with WnR always clear). 2360 * Convert it to a 32-bit PAR. 2361 */ 2362 if (!ret) { 2363 /* We do not set any attribute bits in the PAR */ 2364 if (page_size == (1 << 24) 2365 && arm_feature(env, ARM_FEATURE_V7)) { 2366 par64 = (phys_addr & 0xff000000) | (1 << 1); 2367 } else { 2368 par64 = phys_addr & 0xfffff000; 2369 } 2370 if (!attrs.secure) { 2371 par64 |= (1 << 9); /* NS */ 2372 } 2373 } else { 2374 uint32_t fsr = arm_fi_to_sfsc(&fi); 2375 2376 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2377 ((fsr & 0xf) << 1) | 1; 2378 } 2379 } 2380 return par64; 2381 } 2382 2383 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2384 { 2385 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2386 uint64_t par64; 2387 ARMMMUIdx mmu_idx; 2388 int el = arm_current_el(env); 2389 bool secure = arm_is_secure_below_el3(env); 2390 2391 switch (ri->opc2 & 6) { 2392 case 0: 2393 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2394 switch (el) { 2395 case 3: 2396 mmu_idx = ARMMMUIdx_S1E3; 2397 break; 2398 case 2: 2399 mmu_idx = ARMMMUIdx_S1NSE1; 2400 break; 2401 case 1: 2402 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2403 break; 2404 default: 2405 g_assert_not_reached(); 2406 } 2407 break; 2408 case 2: 2409 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2410 switch (el) { 2411 case 3: 2412 mmu_idx = ARMMMUIdx_S1SE0; 2413 break; 2414 case 2: 2415 mmu_idx = ARMMMUIdx_S1NSE0; 2416 break; 2417 case 1: 2418 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2419 break; 2420 default: 2421 g_assert_not_reached(); 2422 } 2423 break; 2424 case 4: 2425 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2426 mmu_idx = ARMMMUIdx_S12NSE1; 2427 break; 2428 case 6: 2429 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2430 mmu_idx = ARMMMUIdx_S12NSE0; 2431 break; 2432 default: 2433 g_assert_not_reached(); 2434 } 2435 2436 par64 = do_ats_write(env, value, access_type, mmu_idx); 2437 2438 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2439 } 2440 2441 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2442 uint64_t value) 2443 { 2444 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2445 uint64_t par64; 2446 2447 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 2448 2449 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2450 } 2451 2452 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2453 bool isread) 2454 { 2455 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2456 return CP_ACCESS_TRAP; 2457 } 2458 return CP_ACCESS_OK; 2459 } 2460 2461 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2462 uint64_t value) 2463 { 2464 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2465 ARMMMUIdx mmu_idx; 2466 int secure = arm_is_secure_below_el3(env); 2467 2468 switch (ri->opc2 & 6) { 2469 case 0: 2470 switch (ri->opc1) { 2471 case 0: /* AT S1E1R, AT S1E1W */ 2472 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2473 break; 2474 case 4: /* AT S1E2R, AT S1E2W */ 2475 mmu_idx = ARMMMUIdx_S1E2; 2476 break; 2477 case 6: /* AT S1E3R, AT S1E3W */ 2478 mmu_idx = ARMMMUIdx_S1E3; 2479 break; 2480 default: 2481 g_assert_not_reached(); 2482 } 2483 break; 2484 case 2: /* AT S1E0R, AT S1E0W */ 2485 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2486 break; 2487 case 4: /* AT S12E1R, AT S12E1W */ 2488 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2489 break; 2490 case 6: /* AT S12E0R, AT S12E0W */ 2491 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2492 break; 2493 default: 2494 g_assert_not_reached(); 2495 } 2496 2497 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2498 } 2499 #endif 2500 2501 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2502 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2503 .access = PL1_RW, .resetvalue = 0, 2504 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2505 offsetoflow32(CPUARMState, cp15.par_ns) }, 2506 .writefn = par_write }, 2507 #ifndef CONFIG_USER_ONLY 2508 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2509 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2510 .access = PL1_W, .accessfn = ats_access, 2511 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2512 #endif 2513 REGINFO_SENTINEL 2514 }; 2515 2516 /* Return basic MPU access permission bits. */ 2517 static uint32_t simple_mpu_ap_bits(uint32_t val) 2518 { 2519 uint32_t ret; 2520 uint32_t mask; 2521 int i; 2522 ret = 0; 2523 mask = 3; 2524 for (i = 0; i < 16; i += 2) { 2525 ret |= (val >> i) & mask; 2526 mask <<= 2; 2527 } 2528 return ret; 2529 } 2530 2531 /* Pad basic MPU access permission bits to extended format. */ 2532 static uint32_t extended_mpu_ap_bits(uint32_t val) 2533 { 2534 uint32_t ret; 2535 uint32_t mask; 2536 int i; 2537 ret = 0; 2538 mask = 3; 2539 for (i = 0; i < 16; i += 2) { 2540 ret |= (val & mask) << i; 2541 mask <<= 2; 2542 } 2543 return ret; 2544 } 2545 2546 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2547 uint64_t value) 2548 { 2549 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2550 } 2551 2552 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2553 { 2554 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2555 } 2556 2557 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2558 uint64_t value) 2559 { 2560 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2561 } 2562 2563 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2564 { 2565 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2566 } 2567 2568 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2569 { 2570 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2571 2572 if (!u32p) { 2573 return 0; 2574 } 2575 2576 u32p += env->pmsav7.rnr[M_REG_NS]; 2577 return *u32p; 2578 } 2579 2580 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2581 uint64_t value) 2582 { 2583 ARMCPU *cpu = arm_env_get_cpu(env); 2584 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2585 2586 if (!u32p) { 2587 return; 2588 } 2589 2590 u32p += env->pmsav7.rnr[M_REG_NS]; 2591 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2592 *u32p = value; 2593 } 2594 2595 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2596 uint64_t value) 2597 { 2598 ARMCPU *cpu = arm_env_get_cpu(env); 2599 uint32_t nrgs = cpu->pmsav7_dregion; 2600 2601 if (value >= nrgs) { 2602 qemu_log_mask(LOG_GUEST_ERROR, 2603 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2604 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2605 return; 2606 } 2607 2608 raw_write(env, ri, value); 2609 } 2610 2611 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2612 /* Reset for all these registers is handled in arm_cpu_reset(), 2613 * because the PMSAv7 is also used by M-profile CPUs, which do 2614 * not register cpregs but still need the state to be reset. 2615 */ 2616 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2617 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2618 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2619 .readfn = pmsav7_read, .writefn = pmsav7_write, 2620 .resetfn = arm_cp_reset_ignore }, 2621 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2622 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2623 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2624 .readfn = pmsav7_read, .writefn = pmsav7_write, 2625 .resetfn = arm_cp_reset_ignore }, 2626 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2627 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2628 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2629 .readfn = pmsav7_read, .writefn = pmsav7_write, 2630 .resetfn = arm_cp_reset_ignore }, 2631 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2632 .access = PL1_RW, 2633 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2634 .writefn = pmsav7_rgnr_write, 2635 .resetfn = arm_cp_reset_ignore }, 2636 REGINFO_SENTINEL 2637 }; 2638 2639 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2640 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2641 .access = PL1_RW, .type = ARM_CP_ALIAS, 2642 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2643 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2644 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2645 .access = PL1_RW, .type = ARM_CP_ALIAS, 2646 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2647 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2648 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2649 .access = PL1_RW, 2650 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2651 .resetvalue = 0, }, 2652 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2653 .access = PL1_RW, 2654 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2655 .resetvalue = 0, }, 2656 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2657 .access = PL1_RW, 2658 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2659 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2660 .access = PL1_RW, 2661 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2662 /* Protection region base and size registers */ 2663 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2664 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2665 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2666 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2669 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2670 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2671 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2672 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2673 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2674 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2675 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2676 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2677 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2678 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2679 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2680 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2681 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2682 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2683 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2684 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2685 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2686 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2687 REGINFO_SENTINEL 2688 }; 2689 2690 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2691 uint64_t value) 2692 { 2693 TCR *tcr = raw_ptr(env, ri); 2694 int maskshift = extract32(value, 0, 3); 2695 2696 if (!arm_feature(env, ARM_FEATURE_V8)) { 2697 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2698 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2699 * using Long-desciptor translation table format */ 2700 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2701 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2702 /* In an implementation that includes the Security Extensions 2703 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2704 * Short-descriptor translation table format. 2705 */ 2706 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2707 } else { 2708 value &= TTBCR_N; 2709 } 2710 } 2711 2712 /* Update the masks corresponding to the TCR bank being written 2713 * Note that we always calculate mask and base_mask, but 2714 * they are only used for short-descriptor tables (ie if EAE is 0); 2715 * for long-descriptor tables the TCR fields are used differently 2716 * and the mask and base_mask values are meaningless. 2717 */ 2718 tcr->raw_tcr = value; 2719 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2720 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2721 } 2722 2723 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2724 uint64_t value) 2725 { 2726 ARMCPU *cpu = arm_env_get_cpu(env); 2727 2728 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2729 /* With LPAE the TTBCR could result in a change of ASID 2730 * via the TTBCR.A1 bit, so do a TLB flush. 2731 */ 2732 tlb_flush(CPU(cpu)); 2733 } 2734 vmsa_ttbcr_raw_write(env, ri, value); 2735 } 2736 2737 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2738 { 2739 TCR *tcr = raw_ptr(env, ri); 2740 2741 /* Reset both the TCR as well as the masks corresponding to the bank of 2742 * the TCR being reset. 2743 */ 2744 tcr->raw_tcr = 0; 2745 tcr->mask = 0; 2746 tcr->base_mask = 0xffffc000u; 2747 } 2748 2749 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2750 uint64_t value) 2751 { 2752 ARMCPU *cpu = arm_env_get_cpu(env); 2753 TCR *tcr = raw_ptr(env, ri); 2754 2755 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2756 tlb_flush(CPU(cpu)); 2757 tcr->raw_tcr = value; 2758 } 2759 2760 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2761 uint64_t value) 2762 { 2763 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 2764 if (cpreg_field_is_64bit(ri) && 2765 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 2766 ARMCPU *cpu = arm_env_get_cpu(env); 2767 tlb_flush(CPU(cpu)); 2768 } 2769 raw_write(env, ri, value); 2770 } 2771 2772 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2773 uint64_t value) 2774 { 2775 ARMCPU *cpu = arm_env_get_cpu(env); 2776 CPUState *cs = CPU(cpu); 2777 2778 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2779 if (raw_read(env, ri) != value) { 2780 tlb_flush_by_mmuidx(cs, 2781 ARMMMUIdxBit_S12NSE1 | 2782 ARMMMUIdxBit_S12NSE0 | 2783 ARMMMUIdxBit_S2NS); 2784 raw_write(env, ri, value); 2785 } 2786 } 2787 2788 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2789 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2790 .access = PL1_RW, .type = ARM_CP_ALIAS, 2791 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2792 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2793 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2794 .access = PL1_RW, .resetvalue = 0, 2795 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2796 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2797 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2798 .access = PL1_RW, .resetvalue = 0, 2799 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2800 offsetof(CPUARMState, cp15.dfar_ns) } }, 2801 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2802 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2803 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2804 .resetvalue = 0, }, 2805 REGINFO_SENTINEL 2806 }; 2807 2808 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2809 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2810 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2811 .access = PL1_RW, 2812 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2813 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2814 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2815 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2816 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2817 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2818 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2819 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2820 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2821 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2822 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2823 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2824 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2825 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2826 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2827 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2828 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2829 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2830 .raw_writefn = vmsa_ttbcr_raw_write, 2831 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2832 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2833 REGINFO_SENTINEL 2834 }; 2835 2836 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2837 uint64_t value) 2838 { 2839 env->cp15.c15_ticonfig = value & 0xe7; 2840 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2841 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2842 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2843 } 2844 2845 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2846 uint64_t value) 2847 { 2848 env->cp15.c15_threadid = value & 0xffff; 2849 } 2850 2851 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 uint64_t value) 2853 { 2854 /* Wait-for-interrupt (deprecated) */ 2855 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2856 } 2857 2858 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2859 uint64_t value) 2860 { 2861 /* On OMAP there are registers indicating the max/min index of dcache lines 2862 * containing a dirty line; cache flush operations have to reset these. 2863 */ 2864 env->cp15.c15_i_max = 0x000; 2865 env->cp15.c15_i_min = 0xff0; 2866 } 2867 2868 static const ARMCPRegInfo omap_cp_reginfo[] = { 2869 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2870 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2871 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2872 .resetvalue = 0, }, 2873 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2874 .access = PL1_RW, .type = ARM_CP_NOP }, 2875 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2876 .access = PL1_RW, 2877 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2878 .writefn = omap_ticonfig_write }, 2879 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2880 .access = PL1_RW, 2881 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2882 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2883 .access = PL1_RW, .resetvalue = 0xff0, 2884 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2885 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2886 .access = PL1_RW, 2887 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2888 .writefn = omap_threadid_write }, 2889 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2890 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2891 .type = ARM_CP_NO_RAW, 2892 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2893 /* TODO: Peripheral port remap register: 2894 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2895 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2896 * when MMU is off. 2897 */ 2898 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2899 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2900 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2901 .writefn = omap_cachemaint_write }, 2902 { .name = "C9", .cp = 15, .crn = 9, 2903 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2904 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2905 REGINFO_SENTINEL 2906 }; 2907 2908 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2909 uint64_t value) 2910 { 2911 env->cp15.c15_cpar = value & 0x3fff; 2912 } 2913 2914 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2915 { .name = "XSCALE_CPAR", 2916 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2917 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2918 .writefn = xscale_cpar_write, }, 2919 { .name = "XSCALE_AUXCR", 2920 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2921 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2922 .resetvalue = 0, }, 2923 /* XScale specific cache-lockdown: since we have no cache we NOP these 2924 * and hope the guest does not really rely on cache behaviour. 2925 */ 2926 { .name = "XSCALE_LOCK_ICACHE_LINE", 2927 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2928 .access = PL1_W, .type = ARM_CP_NOP }, 2929 { .name = "XSCALE_UNLOCK_ICACHE", 2930 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2931 .access = PL1_W, .type = ARM_CP_NOP }, 2932 { .name = "XSCALE_DCACHE_LOCK", 2933 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2934 .access = PL1_RW, .type = ARM_CP_NOP }, 2935 { .name = "XSCALE_UNLOCK_DCACHE", 2936 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2937 .access = PL1_W, .type = ARM_CP_NOP }, 2938 REGINFO_SENTINEL 2939 }; 2940 2941 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2942 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2943 * implementation of this implementation-defined space. 2944 * Ideally this should eventually disappear in favour of actually 2945 * implementing the correct behaviour for all cores. 2946 */ 2947 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2948 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2949 .access = PL1_RW, 2950 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2951 .resetvalue = 0 }, 2952 REGINFO_SENTINEL 2953 }; 2954 2955 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2956 /* Cache status: RAZ because we have no cache so it's always clean */ 2957 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2958 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2959 .resetvalue = 0 }, 2960 REGINFO_SENTINEL 2961 }; 2962 2963 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2964 /* We never have a a block transfer operation in progress */ 2965 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2966 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2967 .resetvalue = 0 }, 2968 /* The cache ops themselves: these all NOP for QEMU */ 2969 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2970 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2971 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2972 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2973 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2974 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2975 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2976 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2977 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2978 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2979 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2980 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2981 REGINFO_SENTINEL 2982 }; 2983 2984 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2985 /* The cache test-and-clean instructions always return (1 << 30) 2986 * to indicate that there are no dirty cache lines. 2987 */ 2988 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2989 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2990 .resetvalue = (1 << 30) }, 2991 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2992 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2993 .resetvalue = (1 << 30) }, 2994 REGINFO_SENTINEL 2995 }; 2996 2997 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2998 /* Ignore ReadBuffer accesses */ 2999 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3000 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3001 .access = PL1_RW, .resetvalue = 0, 3002 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3003 REGINFO_SENTINEL 3004 }; 3005 3006 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3007 { 3008 ARMCPU *cpu = arm_env_get_cpu(env); 3009 unsigned int cur_el = arm_current_el(env); 3010 bool secure = arm_is_secure(env); 3011 3012 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3013 return env->cp15.vpidr_el2; 3014 } 3015 return raw_read(env, ri); 3016 } 3017 3018 static uint64_t mpidr_read_val(CPUARMState *env) 3019 { 3020 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 3021 uint64_t mpidr = cpu->mp_affinity; 3022 3023 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3024 mpidr |= (1U << 31); 3025 /* Cores which are uniprocessor (non-coherent) 3026 * but still implement the MP extensions set 3027 * bit 30. (For instance, Cortex-R5). 3028 */ 3029 if (cpu->mp_is_up) { 3030 mpidr |= (1u << 30); 3031 } 3032 } 3033 return mpidr; 3034 } 3035 3036 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3037 { 3038 unsigned int cur_el = arm_current_el(env); 3039 bool secure = arm_is_secure(env); 3040 3041 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3042 return env->cp15.vmpidr_el2; 3043 } 3044 return mpidr_read_val(env); 3045 } 3046 3047 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 3048 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 3049 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 3050 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 3051 REGINFO_SENTINEL 3052 }; 3053 3054 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3055 /* NOP AMAIR0/1 */ 3056 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3057 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3058 .access = PL1_RW, .type = ARM_CP_CONST, 3059 .resetvalue = 0 }, 3060 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3061 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3062 .access = PL1_RW, .type = ARM_CP_CONST, 3063 .resetvalue = 0 }, 3064 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3065 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3067 offsetof(CPUARMState, cp15.par_ns)} }, 3068 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3069 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3070 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3071 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3072 .writefn = vmsa_ttbr_write, }, 3073 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3074 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3075 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3076 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3077 .writefn = vmsa_ttbr_write, }, 3078 REGINFO_SENTINEL 3079 }; 3080 3081 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3082 { 3083 return vfp_get_fpcr(env); 3084 } 3085 3086 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3087 uint64_t value) 3088 { 3089 vfp_set_fpcr(env, value); 3090 } 3091 3092 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3093 { 3094 return vfp_get_fpsr(env); 3095 } 3096 3097 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3098 uint64_t value) 3099 { 3100 vfp_set_fpsr(env, value); 3101 } 3102 3103 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3104 bool isread) 3105 { 3106 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3107 return CP_ACCESS_TRAP; 3108 } 3109 return CP_ACCESS_OK; 3110 } 3111 3112 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3113 uint64_t value) 3114 { 3115 env->daif = value & PSTATE_DAIF; 3116 } 3117 3118 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3119 const ARMCPRegInfo *ri, 3120 bool isread) 3121 { 3122 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3123 * SCTLR_EL1.UCI is set. 3124 */ 3125 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3126 return CP_ACCESS_TRAP; 3127 } 3128 return CP_ACCESS_OK; 3129 } 3130 3131 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3132 * Page D4-1736 (DDI0487A.b) 3133 */ 3134 3135 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3136 uint64_t value) 3137 { 3138 CPUState *cs = ENV_GET_CPU(env); 3139 bool sec = arm_is_secure_below_el3(env); 3140 3141 if (sec) { 3142 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3143 ARMMMUIdxBit_S1SE1 | 3144 ARMMMUIdxBit_S1SE0); 3145 } else { 3146 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3147 ARMMMUIdxBit_S12NSE1 | 3148 ARMMMUIdxBit_S12NSE0); 3149 } 3150 } 3151 3152 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3153 uint64_t value) 3154 { 3155 CPUState *cs = ENV_GET_CPU(env); 3156 3157 if (tlb_force_broadcast(env)) { 3158 tlbi_aa64_vmalle1_write(env, NULL, value); 3159 return; 3160 } 3161 3162 if (arm_is_secure_below_el3(env)) { 3163 tlb_flush_by_mmuidx(cs, 3164 ARMMMUIdxBit_S1SE1 | 3165 ARMMMUIdxBit_S1SE0); 3166 } else { 3167 tlb_flush_by_mmuidx(cs, 3168 ARMMMUIdxBit_S12NSE1 | 3169 ARMMMUIdxBit_S12NSE0); 3170 } 3171 } 3172 3173 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3174 uint64_t value) 3175 { 3176 /* Note that the 'ALL' scope must invalidate both stage 1 and 3177 * stage 2 translations, whereas most other scopes only invalidate 3178 * stage 1 translations. 3179 */ 3180 ARMCPU *cpu = arm_env_get_cpu(env); 3181 CPUState *cs = CPU(cpu); 3182 3183 if (arm_is_secure_below_el3(env)) { 3184 tlb_flush_by_mmuidx(cs, 3185 ARMMMUIdxBit_S1SE1 | 3186 ARMMMUIdxBit_S1SE0); 3187 } else { 3188 if (arm_feature(env, ARM_FEATURE_EL2)) { 3189 tlb_flush_by_mmuidx(cs, 3190 ARMMMUIdxBit_S12NSE1 | 3191 ARMMMUIdxBit_S12NSE0 | 3192 ARMMMUIdxBit_S2NS); 3193 } else { 3194 tlb_flush_by_mmuidx(cs, 3195 ARMMMUIdxBit_S12NSE1 | 3196 ARMMMUIdxBit_S12NSE0); 3197 } 3198 } 3199 } 3200 3201 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3202 uint64_t value) 3203 { 3204 ARMCPU *cpu = arm_env_get_cpu(env); 3205 CPUState *cs = CPU(cpu); 3206 3207 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3208 } 3209 3210 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3211 uint64_t value) 3212 { 3213 ARMCPU *cpu = arm_env_get_cpu(env); 3214 CPUState *cs = CPU(cpu); 3215 3216 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3217 } 3218 3219 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3220 uint64_t value) 3221 { 3222 /* Note that the 'ALL' scope must invalidate both stage 1 and 3223 * stage 2 translations, whereas most other scopes only invalidate 3224 * stage 1 translations. 3225 */ 3226 CPUState *cs = ENV_GET_CPU(env); 3227 bool sec = arm_is_secure_below_el3(env); 3228 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3229 3230 if (sec) { 3231 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3232 ARMMMUIdxBit_S1SE1 | 3233 ARMMMUIdxBit_S1SE0); 3234 } else if (has_el2) { 3235 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3236 ARMMMUIdxBit_S12NSE1 | 3237 ARMMMUIdxBit_S12NSE0 | 3238 ARMMMUIdxBit_S2NS); 3239 } else { 3240 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3241 ARMMMUIdxBit_S12NSE1 | 3242 ARMMMUIdxBit_S12NSE0); 3243 } 3244 } 3245 3246 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3247 uint64_t value) 3248 { 3249 CPUState *cs = ENV_GET_CPU(env); 3250 3251 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3252 } 3253 3254 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3255 uint64_t value) 3256 { 3257 CPUState *cs = ENV_GET_CPU(env); 3258 3259 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3260 } 3261 3262 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3263 uint64_t value) 3264 { 3265 /* Invalidate by VA, EL2 3266 * Currently handles both VAE2 and VALE2, since we don't support 3267 * flush-last-level-only. 3268 */ 3269 ARMCPU *cpu = arm_env_get_cpu(env); 3270 CPUState *cs = CPU(cpu); 3271 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3272 3273 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3274 } 3275 3276 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3277 uint64_t value) 3278 { 3279 /* Invalidate by VA, EL3 3280 * Currently handles both VAE3 and VALE3, since we don't support 3281 * flush-last-level-only. 3282 */ 3283 ARMCPU *cpu = arm_env_get_cpu(env); 3284 CPUState *cs = CPU(cpu); 3285 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3286 3287 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3288 } 3289 3290 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3291 uint64_t value) 3292 { 3293 ARMCPU *cpu = arm_env_get_cpu(env); 3294 CPUState *cs = CPU(cpu); 3295 bool sec = arm_is_secure_below_el3(env); 3296 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3297 3298 if (sec) { 3299 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3300 ARMMMUIdxBit_S1SE1 | 3301 ARMMMUIdxBit_S1SE0); 3302 } else { 3303 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3304 ARMMMUIdxBit_S12NSE1 | 3305 ARMMMUIdxBit_S12NSE0); 3306 } 3307 } 3308 3309 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3310 uint64_t value) 3311 { 3312 /* Invalidate by VA, EL1&0 (AArch64 version). 3313 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3314 * since we don't support flush-for-specific-ASID-only or 3315 * flush-last-level-only. 3316 */ 3317 ARMCPU *cpu = arm_env_get_cpu(env); 3318 CPUState *cs = CPU(cpu); 3319 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3320 3321 if (tlb_force_broadcast(env)) { 3322 tlbi_aa64_vae1is_write(env, NULL, value); 3323 return; 3324 } 3325 3326 if (arm_is_secure_below_el3(env)) { 3327 tlb_flush_page_by_mmuidx(cs, pageaddr, 3328 ARMMMUIdxBit_S1SE1 | 3329 ARMMMUIdxBit_S1SE0); 3330 } else { 3331 tlb_flush_page_by_mmuidx(cs, pageaddr, 3332 ARMMMUIdxBit_S12NSE1 | 3333 ARMMMUIdxBit_S12NSE0); 3334 } 3335 } 3336 3337 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3338 uint64_t value) 3339 { 3340 CPUState *cs = ENV_GET_CPU(env); 3341 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3342 3343 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3344 ARMMMUIdxBit_S1E2); 3345 } 3346 3347 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3348 uint64_t value) 3349 { 3350 CPUState *cs = ENV_GET_CPU(env); 3351 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3352 3353 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3354 ARMMMUIdxBit_S1E3); 3355 } 3356 3357 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3358 uint64_t value) 3359 { 3360 /* Invalidate by IPA. This has to invalidate any structures that 3361 * contain only stage 2 translation information, but does not need 3362 * to apply to structures that contain combined stage 1 and stage 2 3363 * translation information. 3364 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3365 */ 3366 ARMCPU *cpu = arm_env_get_cpu(env); 3367 CPUState *cs = CPU(cpu); 3368 uint64_t pageaddr; 3369 3370 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3371 return; 3372 } 3373 3374 pageaddr = sextract64(value << 12, 0, 48); 3375 3376 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3377 } 3378 3379 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3380 uint64_t value) 3381 { 3382 CPUState *cs = ENV_GET_CPU(env); 3383 uint64_t pageaddr; 3384 3385 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3386 return; 3387 } 3388 3389 pageaddr = sextract64(value << 12, 0, 48); 3390 3391 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3392 ARMMMUIdxBit_S2NS); 3393 } 3394 3395 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3396 bool isread) 3397 { 3398 /* We don't implement EL2, so the only control on DC ZVA is the 3399 * bit in the SCTLR which can prohibit access for EL0. 3400 */ 3401 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3402 return CP_ACCESS_TRAP; 3403 } 3404 return CP_ACCESS_OK; 3405 } 3406 3407 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3408 { 3409 ARMCPU *cpu = arm_env_get_cpu(env); 3410 int dzp_bit = 1 << 4; 3411 3412 /* DZP indicates whether DC ZVA access is allowed */ 3413 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3414 dzp_bit = 0; 3415 } 3416 return cpu->dcz_blocksize | dzp_bit; 3417 } 3418 3419 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3420 bool isread) 3421 { 3422 if (!(env->pstate & PSTATE_SP)) { 3423 /* Access to SP_EL0 is undefined if it's being used as 3424 * the stack pointer. 3425 */ 3426 return CP_ACCESS_TRAP_UNCATEGORIZED; 3427 } 3428 return CP_ACCESS_OK; 3429 } 3430 3431 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3432 { 3433 return env->pstate & PSTATE_SP; 3434 } 3435 3436 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3437 { 3438 update_spsel(env, val); 3439 } 3440 3441 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3442 uint64_t value) 3443 { 3444 ARMCPU *cpu = arm_env_get_cpu(env); 3445 3446 if (raw_read(env, ri) == value) { 3447 /* Skip the TLB flush if nothing actually changed; Linux likes 3448 * to do a lot of pointless SCTLR writes. 3449 */ 3450 return; 3451 } 3452 3453 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3454 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3455 value &= ~SCTLR_M; 3456 } 3457 3458 raw_write(env, ri, value); 3459 /* ??? Lots of these bits are not implemented. */ 3460 /* This may enable/disable the MMU, so do a TLB flush. */ 3461 tlb_flush(CPU(cpu)); 3462 } 3463 3464 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3465 bool isread) 3466 { 3467 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3468 return CP_ACCESS_TRAP_FP_EL2; 3469 } 3470 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3471 return CP_ACCESS_TRAP_FP_EL3; 3472 } 3473 return CP_ACCESS_OK; 3474 } 3475 3476 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3477 uint64_t value) 3478 { 3479 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3480 } 3481 3482 static const ARMCPRegInfo v8_cp_reginfo[] = { 3483 /* Minimal set of EL0-visible registers. This will need to be expanded 3484 * significantly for system emulation of AArch64 CPUs. 3485 */ 3486 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3487 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3488 .access = PL0_RW, .type = ARM_CP_NZCV }, 3489 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3490 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3491 .type = ARM_CP_NO_RAW, 3492 .access = PL0_RW, .accessfn = aa64_daif_access, 3493 .fieldoffset = offsetof(CPUARMState, daif), 3494 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3495 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3496 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3497 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3498 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3499 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3500 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3501 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3502 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3503 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3504 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3505 .access = PL0_R, .type = ARM_CP_NO_RAW, 3506 .readfn = aa64_dczid_read }, 3507 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3508 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3509 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3510 #ifndef CONFIG_USER_ONLY 3511 /* Avoid overhead of an access check that always passes in user-mode */ 3512 .accessfn = aa64_zva_access, 3513 #endif 3514 }, 3515 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3516 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3517 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3518 /* Cache ops: all NOPs since we don't emulate caches */ 3519 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3520 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3521 .access = PL1_W, .type = ARM_CP_NOP }, 3522 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3524 .access = PL1_W, .type = ARM_CP_NOP }, 3525 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3526 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3527 .access = PL0_W, .type = ARM_CP_NOP, 3528 .accessfn = aa64_cacheop_access }, 3529 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3530 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3531 .access = PL1_W, .type = ARM_CP_NOP }, 3532 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3533 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3534 .access = PL1_W, .type = ARM_CP_NOP }, 3535 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3536 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3537 .access = PL0_W, .type = ARM_CP_NOP, 3538 .accessfn = aa64_cacheop_access }, 3539 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3540 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3541 .access = PL1_W, .type = ARM_CP_NOP }, 3542 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3543 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3544 .access = PL0_W, .type = ARM_CP_NOP, 3545 .accessfn = aa64_cacheop_access }, 3546 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3547 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3548 .access = PL0_W, .type = ARM_CP_NOP, 3549 .accessfn = aa64_cacheop_access }, 3550 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3551 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3552 .access = PL1_W, .type = ARM_CP_NOP }, 3553 /* TLBI operations */ 3554 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3555 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3556 .access = PL1_W, .type = ARM_CP_NO_RAW, 3557 .writefn = tlbi_aa64_vmalle1is_write }, 3558 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3559 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3560 .access = PL1_W, .type = ARM_CP_NO_RAW, 3561 .writefn = tlbi_aa64_vae1is_write }, 3562 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3563 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3564 .access = PL1_W, .type = ARM_CP_NO_RAW, 3565 .writefn = tlbi_aa64_vmalle1is_write }, 3566 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3567 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3568 .access = PL1_W, .type = ARM_CP_NO_RAW, 3569 .writefn = tlbi_aa64_vae1is_write }, 3570 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3571 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3572 .access = PL1_W, .type = ARM_CP_NO_RAW, 3573 .writefn = tlbi_aa64_vae1is_write }, 3574 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3575 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3576 .access = PL1_W, .type = ARM_CP_NO_RAW, 3577 .writefn = tlbi_aa64_vae1is_write }, 3578 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3579 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3580 .access = PL1_W, .type = ARM_CP_NO_RAW, 3581 .writefn = tlbi_aa64_vmalle1_write }, 3582 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3583 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3584 .access = PL1_W, .type = ARM_CP_NO_RAW, 3585 .writefn = tlbi_aa64_vae1_write }, 3586 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3587 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3588 .access = PL1_W, .type = ARM_CP_NO_RAW, 3589 .writefn = tlbi_aa64_vmalle1_write }, 3590 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3591 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3592 .access = PL1_W, .type = ARM_CP_NO_RAW, 3593 .writefn = tlbi_aa64_vae1_write }, 3594 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3595 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3596 .access = PL1_W, .type = ARM_CP_NO_RAW, 3597 .writefn = tlbi_aa64_vae1_write }, 3598 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3599 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3600 .access = PL1_W, .type = ARM_CP_NO_RAW, 3601 .writefn = tlbi_aa64_vae1_write }, 3602 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3603 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3604 .access = PL2_W, .type = ARM_CP_NO_RAW, 3605 .writefn = tlbi_aa64_ipas2e1is_write }, 3606 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3608 .access = PL2_W, .type = ARM_CP_NO_RAW, 3609 .writefn = tlbi_aa64_ipas2e1is_write }, 3610 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3611 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3612 .access = PL2_W, .type = ARM_CP_NO_RAW, 3613 .writefn = tlbi_aa64_alle1is_write }, 3614 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3615 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3616 .access = PL2_W, .type = ARM_CP_NO_RAW, 3617 .writefn = tlbi_aa64_alle1is_write }, 3618 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3619 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3620 .access = PL2_W, .type = ARM_CP_NO_RAW, 3621 .writefn = tlbi_aa64_ipas2e1_write }, 3622 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3623 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3624 .access = PL2_W, .type = ARM_CP_NO_RAW, 3625 .writefn = tlbi_aa64_ipas2e1_write }, 3626 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3627 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3628 .access = PL2_W, .type = ARM_CP_NO_RAW, 3629 .writefn = tlbi_aa64_alle1_write }, 3630 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3631 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3632 .access = PL2_W, .type = ARM_CP_NO_RAW, 3633 .writefn = tlbi_aa64_alle1is_write }, 3634 #ifndef CONFIG_USER_ONLY 3635 /* 64 bit address translation operations */ 3636 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3637 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3638 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3639 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3640 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3641 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3642 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3643 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3644 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3645 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3646 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3647 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3648 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3649 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3650 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3651 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3652 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3653 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3654 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3655 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3656 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3657 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3658 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3659 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3660 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3661 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3662 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3663 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3664 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3665 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3666 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3667 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3668 .type = ARM_CP_ALIAS, 3669 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3670 .access = PL1_RW, .resetvalue = 0, 3671 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3672 .writefn = par_write }, 3673 #endif 3674 /* TLB invalidate last level of translation table walk */ 3675 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3676 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3677 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3678 .type = ARM_CP_NO_RAW, .access = PL1_W, 3679 .writefn = tlbimvaa_is_write }, 3680 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3681 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3682 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3683 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3684 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3685 .type = ARM_CP_NO_RAW, .access = PL2_W, 3686 .writefn = tlbimva_hyp_write }, 3687 { .name = "TLBIMVALHIS", 3688 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3689 .type = ARM_CP_NO_RAW, .access = PL2_W, 3690 .writefn = tlbimva_hyp_is_write }, 3691 { .name = "TLBIIPAS2", 3692 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3693 .type = ARM_CP_NO_RAW, .access = PL2_W, 3694 .writefn = tlbiipas2_write }, 3695 { .name = "TLBIIPAS2IS", 3696 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3697 .type = ARM_CP_NO_RAW, .access = PL2_W, 3698 .writefn = tlbiipas2_is_write }, 3699 { .name = "TLBIIPAS2L", 3700 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3701 .type = ARM_CP_NO_RAW, .access = PL2_W, 3702 .writefn = tlbiipas2_write }, 3703 { .name = "TLBIIPAS2LIS", 3704 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3705 .type = ARM_CP_NO_RAW, .access = PL2_W, 3706 .writefn = tlbiipas2_is_write }, 3707 /* 32 bit cache operations */ 3708 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3709 .type = ARM_CP_NOP, .access = PL1_W }, 3710 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3711 .type = ARM_CP_NOP, .access = PL1_W }, 3712 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3713 .type = ARM_CP_NOP, .access = PL1_W }, 3714 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3715 .type = ARM_CP_NOP, .access = PL1_W }, 3716 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3717 .type = ARM_CP_NOP, .access = PL1_W }, 3718 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3719 .type = ARM_CP_NOP, .access = PL1_W }, 3720 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3721 .type = ARM_CP_NOP, .access = PL1_W }, 3722 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3723 .type = ARM_CP_NOP, .access = PL1_W }, 3724 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3725 .type = ARM_CP_NOP, .access = PL1_W }, 3726 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3727 .type = ARM_CP_NOP, .access = PL1_W }, 3728 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3729 .type = ARM_CP_NOP, .access = PL1_W }, 3730 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3731 .type = ARM_CP_NOP, .access = PL1_W }, 3732 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3733 .type = ARM_CP_NOP, .access = PL1_W }, 3734 /* MMU Domain access control / MPU write buffer control */ 3735 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3736 .access = PL1_RW, .resetvalue = 0, 3737 .writefn = dacr_write, .raw_writefn = raw_write, 3738 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3739 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3740 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3741 .type = ARM_CP_ALIAS, 3742 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3743 .access = PL1_RW, 3744 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3745 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3746 .type = ARM_CP_ALIAS, 3747 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3748 .access = PL1_RW, 3749 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3750 /* We rely on the access checks not allowing the guest to write to the 3751 * state field when SPSel indicates that it's being used as the stack 3752 * pointer. 3753 */ 3754 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3755 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3756 .access = PL1_RW, .accessfn = sp_el0_access, 3757 .type = ARM_CP_ALIAS, 3758 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3759 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3760 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3761 .access = PL2_RW, .type = ARM_CP_ALIAS, 3762 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3763 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3764 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3765 .type = ARM_CP_NO_RAW, 3766 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3767 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3768 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3769 .type = ARM_CP_ALIAS, 3770 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3771 .access = PL2_RW, .accessfn = fpexc32_access }, 3772 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3773 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3774 .access = PL2_RW, .resetvalue = 0, 3775 .writefn = dacr_write, .raw_writefn = raw_write, 3776 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3777 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3778 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3779 .access = PL2_RW, .resetvalue = 0, 3780 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3781 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3782 .type = ARM_CP_ALIAS, 3783 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3784 .access = PL2_RW, 3785 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3786 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3787 .type = ARM_CP_ALIAS, 3788 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3789 .access = PL2_RW, 3790 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3791 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3792 .type = ARM_CP_ALIAS, 3793 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3794 .access = PL2_RW, 3795 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3796 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3797 .type = ARM_CP_ALIAS, 3798 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3799 .access = PL2_RW, 3800 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3801 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3802 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3803 .resetvalue = 0, 3804 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3805 { .name = "SDCR", .type = ARM_CP_ALIAS, 3806 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3807 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3808 .writefn = sdcr_write, 3809 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3810 REGINFO_SENTINEL 3811 }; 3812 3813 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3814 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3815 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 3816 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3817 .access = PL2_RW, 3818 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3819 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 3820 .type = ARM_CP_NO_RAW, 3821 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3822 .access = PL2_RW, 3823 .type = ARM_CP_CONST, .resetvalue = 0 }, 3824 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 3825 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3826 .access = PL2_RW, 3827 .type = ARM_CP_CONST, .resetvalue = 0 }, 3828 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3829 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3830 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3831 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3832 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3833 .access = PL2_RW, .type = ARM_CP_CONST, 3834 .resetvalue = 0 }, 3835 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3836 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3837 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3838 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3839 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3840 .access = PL2_RW, .type = ARM_CP_CONST, 3841 .resetvalue = 0 }, 3842 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 3843 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3844 .access = PL2_RW, .type = ARM_CP_CONST, 3845 .resetvalue = 0 }, 3846 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3847 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3848 .access = PL2_RW, .type = ARM_CP_CONST, 3849 .resetvalue = 0 }, 3850 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3851 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3852 .access = PL2_RW, .type = ARM_CP_CONST, 3853 .resetvalue = 0 }, 3854 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3855 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3856 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3857 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3858 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3859 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3860 .type = ARM_CP_CONST, .resetvalue = 0 }, 3861 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3862 .cp = 15, .opc1 = 6, .crm = 2, 3863 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3864 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3865 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3866 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3867 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3868 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3869 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3870 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3871 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3872 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3873 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3874 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3875 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3876 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3877 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3878 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3879 .resetvalue = 0 }, 3880 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3881 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3882 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3883 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3884 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3885 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3886 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3887 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3888 .resetvalue = 0 }, 3889 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3890 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3891 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3892 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3893 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3894 .resetvalue = 0 }, 3895 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3896 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3897 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3898 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3899 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3900 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3901 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3902 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3903 .access = PL2_RW, .accessfn = access_tda, 3904 .type = ARM_CP_CONST, .resetvalue = 0 }, 3905 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3906 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3907 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3908 .type = ARM_CP_CONST, .resetvalue = 0 }, 3909 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3910 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3911 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3912 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 3913 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3914 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3915 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 3916 .type = ARM_CP_CONST, 3917 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 3918 .access = PL2_RW, .resetvalue = 0 }, 3919 REGINFO_SENTINEL 3920 }; 3921 3922 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 3923 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 3924 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 3925 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 3926 .access = PL2_RW, 3927 .type = ARM_CP_CONST, .resetvalue = 0 }, 3928 REGINFO_SENTINEL 3929 }; 3930 3931 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3932 { 3933 ARMCPU *cpu = arm_env_get_cpu(env); 3934 CPUState *cs = ENV_GET_CPU(env); 3935 uint64_t valid_mask = HCR_MASK; 3936 3937 if (arm_feature(env, ARM_FEATURE_EL3)) { 3938 valid_mask &= ~HCR_HCD; 3939 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3940 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3941 * However, if we're using the SMC PSCI conduit then QEMU is 3942 * effectively acting like EL3 firmware and so the guest at 3943 * EL2 should retain the ability to prevent EL1 from being 3944 * able to make SMC calls into the ersatz firmware, so in 3945 * that case HCR.TSC should be read/write. 3946 */ 3947 valid_mask &= ~HCR_TSC; 3948 } 3949 3950 /* Clear RES0 bits. */ 3951 value &= valid_mask; 3952 3953 /* 3954 * VI and VF are kept in cs->interrupt_request. Modifying that 3955 * requires that we have the iothread lock, which is done by 3956 * marking the reginfo structs as ARM_CP_IO. 3957 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 3958 * possible for it to be taken immediately, because VIRQ and 3959 * VFIQ are masked unless running at EL0 or EL1, and HCR 3960 * can only be written at EL2. 3961 */ 3962 g_assert(qemu_mutex_iothread_locked()); 3963 if (value & HCR_VI) { 3964 cs->interrupt_request |= CPU_INTERRUPT_VIRQ; 3965 } else { 3966 cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ; 3967 } 3968 if (value & HCR_VF) { 3969 cs->interrupt_request |= CPU_INTERRUPT_VFIQ; 3970 } else { 3971 cs->interrupt_request &= ~CPU_INTERRUPT_VFIQ; 3972 } 3973 value &= ~(HCR_VI | HCR_VF); 3974 3975 /* These bits change the MMU setup: 3976 * HCR_VM enables stage 2 translation 3977 * HCR_PTW forbids certain page-table setups 3978 * HCR_DC Disables stage1 and enables stage2 translation 3979 */ 3980 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3981 tlb_flush(CPU(cpu)); 3982 } 3983 env->cp15.hcr_el2 = value; 3984 } 3985 3986 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 3987 uint64_t value) 3988 { 3989 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 3990 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 3991 hcr_write(env, NULL, value); 3992 } 3993 3994 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 3995 uint64_t value) 3996 { 3997 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 3998 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 3999 hcr_write(env, NULL, value); 4000 } 4001 4002 static uint64_t hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4003 { 4004 /* The VI and VF bits live in cs->interrupt_request */ 4005 uint64_t ret = env->cp15.hcr_el2 & ~(HCR_VI | HCR_VF); 4006 CPUState *cs = ENV_GET_CPU(env); 4007 4008 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 4009 ret |= HCR_VI; 4010 } 4011 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 4012 ret |= HCR_VF; 4013 } 4014 return ret; 4015 } 4016 4017 static const ARMCPRegInfo el2_cp_reginfo[] = { 4018 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4019 .type = ARM_CP_IO, 4020 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4021 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4022 .writefn = hcr_write, .readfn = hcr_read }, 4023 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4024 .type = ARM_CP_ALIAS | ARM_CP_IO, 4025 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4026 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4027 .writefn = hcr_writelow, .readfn = hcr_read }, 4028 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4029 .type = ARM_CP_ALIAS, 4030 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4031 .access = PL2_RW, 4032 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4033 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4034 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4035 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4036 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4037 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4038 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4039 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4040 .type = ARM_CP_ALIAS, 4041 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4042 .access = PL2_RW, 4043 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4044 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4045 .type = ARM_CP_ALIAS, 4046 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4047 .access = PL2_RW, 4048 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4049 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4050 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4051 .access = PL2_RW, .writefn = vbar_write, 4052 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4053 .resetvalue = 0 }, 4054 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4055 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4056 .access = PL3_RW, .type = ARM_CP_ALIAS, 4057 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4058 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4059 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4060 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4061 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 4062 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4063 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4064 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4065 .resetvalue = 0 }, 4066 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4067 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4068 .access = PL2_RW, .type = ARM_CP_ALIAS, 4069 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4070 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4071 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4072 .access = PL2_RW, .type = ARM_CP_CONST, 4073 .resetvalue = 0 }, 4074 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4075 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4076 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4077 .access = PL2_RW, .type = ARM_CP_CONST, 4078 .resetvalue = 0 }, 4079 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4080 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4081 .access = PL2_RW, .type = ARM_CP_CONST, 4082 .resetvalue = 0 }, 4083 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4084 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4085 .access = PL2_RW, .type = ARM_CP_CONST, 4086 .resetvalue = 0 }, 4087 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4088 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4089 .access = PL2_RW, 4090 /* no .writefn needed as this can't cause an ASID change; 4091 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4092 */ 4093 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4094 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4095 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4096 .type = ARM_CP_ALIAS, 4097 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4098 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4099 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4101 .access = PL2_RW, 4102 /* no .writefn needed as this can't cause an ASID change; 4103 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4104 */ 4105 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4106 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4107 .cp = 15, .opc1 = 6, .crm = 2, 4108 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4109 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4110 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4111 .writefn = vttbr_write }, 4112 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4113 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4114 .access = PL2_RW, .writefn = vttbr_write, 4115 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4116 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4117 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4118 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4119 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4120 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4121 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4122 .access = PL2_RW, .resetvalue = 0, 4123 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4124 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4125 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4126 .access = PL2_RW, .resetvalue = 0, 4127 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4128 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4129 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4130 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4131 { .name = "TLBIALLNSNH", 4132 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4133 .type = ARM_CP_NO_RAW, .access = PL2_W, 4134 .writefn = tlbiall_nsnh_write }, 4135 { .name = "TLBIALLNSNHIS", 4136 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4137 .type = ARM_CP_NO_RAW, .access = PL2_W, 4138 .writefn = tlbiall_nsnh_is_write }, 4139 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4140 .type = ARM_CP_NO_RAW, .access = PL2_W, 4141 .writefn = tlbiall_hyp_write }, 4142 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4143 .type = ARM_CP_NO_RAW, .access = PL2_W, 4144 .writefn = tlbiall_hyp_is_write }, 4145 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4146 .type = ARM_CP_NO_RAW, .access = PL2_W, 4147 .writefn = tlbimva_hyp_write }, 4148 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4149 .type = ARM_CP_NO_RAW, .access = PL2_W, 4150 .writefn = tlbimva_hyp_is_write }, 4151 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4152 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4153 .type = ARM_CP_NO_RAW, .access = PL2_W, 4154 .writefn = tlbi_aa64_alle2_write }, 4155 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4156 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4157 .type = ARM_CP_NO_RAW, .access = PL2_W, 4158 .writefn = tlbi_aa64_vae2_write }, 4159 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4160 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4161 .access = PL2_W, .type = ARM_CP_NO_RAW, 4162 .writefn = tlbi_aa64_vae2_write }, 4163 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4164 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4165 .access = PL2_W, .type = ARM_CP_NO_RAW, 4166 .writefn = tlbi_aa64_alle2is_write }, 4167 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4168 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4169 .type = ARM_CP_NO_RAW, .access = PL2_W, 4170 .writefn = tlbi_aa64_vae2is_write }, 4171 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4172 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4173 .access = PL2_W, .type = ARM_CP_NO_RAW, 4174 .writefn = tlbi_aa64_vae2is_write }, 4175 #ifndef CONFIG_USER_ONLY 4176 /* Unlike the other EL2-related AT operations, these must 4177 * UNDEF from EL3 if EL2 is not implemented, which is why we 4178 * define them here rather than with the rest of the AT ops. 4179 */ 4180 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4182 .access = PL2_W, .accessfn = at_s1e2_access, 4183 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4184 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4185 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4186 .access = PL2_W, .accessfn = at_s1e2_access, 4187 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4188 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4189 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4190 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4191 * to behave as if SCR.NS was 1. 4192 */ 4193 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4194 .access = PL2_W, 4195 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4196 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4197 .access = PL2_W, 4198 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4199 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4200 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4201 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4202 * reset values as IMPDEF. We choose to reset to 3 to comply with 4203 * both ARMv7 and ARMv8. 4204 */ 4205 .access = PL2_RW, .resetvalue = 3, 4206 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4207 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4208 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4209 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4210 .writefn = gt_cntvoff_write, 4211 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4212 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4213 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4214 .writefn = gt_cntvoff_write, 4215 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4216 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4218 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4219 .type = ARM_CP_IO, .access = PL2_RW, 4220 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4221 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4223 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4224 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4225 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4226 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4228 .resetfn = gt_hyp_timer_reset, 4229 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4230 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4231 .type = ARM_CP_IO, 4232 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4233 .access = PL2_RW, 4234 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4235 .resetvalue = 0, 4236 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4237 #endif 4238 /* The only field of MDCR_EL2 that has a defined architectural reset value 4239 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4240 * don't impelment any PMU event counters, so using zero as a reset 4241 * value for MDCR_EL2 is okay 4242 */ 4243 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4244 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4245 .access = PL2_RW, .resetvalue = 0, 4246 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4247 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4248 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4249 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4250 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4251 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4252 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4253 .access = PL2_RW, 4254 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4255 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4256 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4257 .access = PL2_RW, 4258 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4259 REGINFO_SENTINEL 4260 }; 4261 4262 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4263 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4264 .type = ARM_CP_ALIAS | ARM_CP_IO, 4265 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4266 .access = PL2_RW, 4267 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4268 .writefn = hcr_writehigh }, 4269 REGINFO_SENTINEL 4270 }; 4271 4272 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4273 bool isread) 4274 { 4275 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4276 * At Secure EL1 it traps to EL3. 4277 */ 4278 if (arm_current_el(env) == 3) { 4279 return CP_ACCESS_OK; 4280 } 4281 if (arm_is_secure_below_el3(env)) { 4282 return CP_ACCESS_TRAP_EL3; 4283 } 4284 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4285 if (isread) { 4286 return CP_ACCESS_OK; 4287 } 4288 return CP_ACCESS_TRAP_UNCATEGORIZED; 4289 } 4290 4291 static const ARMCPRegInfo el3_cp_reginfo[] = { 4292 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4293 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4294 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4295 .resetvalue = 0, .writefn = scr_write }, 4296 { .name = "SCR", .type = ARM_CP_ALIAS, 4297 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4298 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4299 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4300 .writefn = scr_write }, 4301 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4302 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4303 .access = PL3_RW, .resetvalue = 0, 4304 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4305 { .name = "SDER", 4306 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4307 .access = PL3_RW, .resetvalue = 0, 4308 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4309 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4310 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4311 .writefn = vbar_write, .resetvalue = 0, 4312 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4313 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4314 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4315 .access = PL3_RW, .resetvalue = 0, 4316 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4317 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4318 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4319 .access = PL3_RW, 4320 /* no .writefn needed as this can't cause an ASID change; 4321 * we must provide a .raw_writefn and .resetfn because we handle 4322 * reset and migration for the AArch32 TTBCR(S), which might be 4323 * using mask and base_mask. 4324 */ 4325 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4326 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4327 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4328 .type = ARM_CP_ALIAS, 4329 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4330 .access = PL3_RW, 4331 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4332 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4333 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4334 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4335 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4336 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4337 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4338 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4339 .type = ARM_CP_ALIAS, 4340 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4341 .access = PL3_RW, 4342 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4343 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4344 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4345 .access = PL3_RW, .writefn = vbar_write, 4346 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4347 .resetvalue = 0 }, 4348 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4349 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4350 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4351 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4352 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4353 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4354 .access = PL3_RW, .resetvalue = 0, 4355 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4356 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4357 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4358 .access = PL3_RW, .type = ARM_CP_CONST, 4359 .resetvalue = 0 }, 4360 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4361 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4362 .access = PL3_RW, .type = ARM_CP_CONST, 4363 .resetvalue = 0 }, 4364 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4365 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4366 .access = PL3_RW, .type = ARM_CP_CONST, 4367 .resetvalue = 0 }, 4368 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4369 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4370 .access = PL3_W, .type = ARM_CP_NO_RAW, 4371 .writefn = tlbi_aa64_alle3is_write }, 4372 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4373 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4374 .access = PL3_W, .type = ARM_CP_NO_RAW, 4375 .writefn = tlbi_aa64_vae3is_write }, 4376 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4377 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4378 .access = PL3_W, .type = ARM_CP_NO_RAW, 4379 .writefn = tlbi_aa64_vae3is_write }, 4380 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4381 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4382 .access = PL3_W, .type = ARM_CP_NO_RAW, 4383 .writefn = tlbi_aa64_alle3_write }, 4384 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4385 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4386 .access = PL3_W, .type = ARM_CP_NO_RAW, 4387 .writefn = tlbi_aa64_vae3_write }, 4388 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4389 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4390 .access = PL3_W, .type = ARM_CP_NO_RAW, 4391 .writefn = tlbi_aa64_vae3_write }, 4392 REGINFO_SENTINEL 4393 }; 4394 4395 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4396 bool isread) 4397 { 4398 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4399 * but the AArch32 CTR has its own reginfo struct) 4400 */ 4401 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4402 return CP_ACCESS_TRAP; 4403 } 4404 return CP_ACCESS_OK; 4405 } 4406 4407 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4408 uint64_t value) 4409 { 4410 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4411 * read via a bit in OSLSR_EL1. 4412 */ 4413 int oslock; 4414 4415 if (ri->state == ARM_CP_STATE_AA32) { 4416 oslock = (value == 0xC5ACCE55); 4417 } else { 4418 oslock = value & 1; 4419 } 4420 4421 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4422 } 4423 4424 static const ARMCPRegInfo debug_cp_reginfo[] = { 4425 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4426 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4427 * unlike DBGDRAR it is never accessible from EL0. 4428 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4429 * accessor. 4430 */ 4431 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4432 .access = PL0_R, .accessfn = access_tdra, 4433 .type = ARM_CP_CONST, .resetvalue = 0 }, 4434 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4435 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4436 .access = PL1_R, .accessfn = access_tdra, 4437 .type = ARM_CP_CONST, .resetvalue = 0 }, 4438 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4439 .access = PL0_R, .accessfn = access_tdra, 4440 .type = ARM_CP_CONST, .resetvalue = 0 }, 4441 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4442 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4443 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4444 .access = PL1_RW, .accessfn = access_tda, 4445 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4446 .resetvalue = 0 }, 4447 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4448 * We don't implement the configurable EL0 access. 4449 */ 4450 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4451 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4452 .type = ARM_CP_ALIAS, 4453 .access = PL1_R, .accessfn = access_tda, 4454 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4455 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4456 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4457 .access = PL1_W, .type = ARM_CP_NO_RAW, 4458 .accessfn = access_tdosa, 4459 .writefn = oslar_write }, 4460 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4461 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4462 .access = PL1_R, .resetvalue = 10, 4463 .accessfn = access_tdosa, 4464 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4465 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4466 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4467 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4468 .access = PL1_RW, .accessfn = access_tdosa, 4469 .type = ARM_CP_NOP }, 4470 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4471 * implement vector catch debug events yet. 4472 */ 4473 { .name = "DBGVCR", 4474 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4475 .access = PL1_RW, .accessfn = access_tda, 4476 .type = ARM_CP_NOP }, 4477 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4478 * to save and restore a 32-bit guest's DBGVCR) 4479 */ 4480 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4481 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4482 .access = PL2_RW, .accessfn = access_tda, 4483 .type = ARM_CP_NOP }, 4484 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4485 * Channel but Linux may try to access this register. The 32-bit 4486 * alias is DBGDCCINT. 4487 */ 4488 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4489 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4490 .access = PL1_RW, .accessfn = access_tda, 4491 .type = ARM_CP_NOP }, 4492 REGINFO_SENTINEL 4493 }; 4494 4495 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4496 /* 64 bit access versions of the (dummy) debug registers */ 4497 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4498 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4499 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4500 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4501 REGINFO_SENTINEL 4502 }; 4503 4504 /* Return the exception level to which exceptions should be taken 4505 * via SVEAccessTrap. If an exception should be routed through 4506 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 4507 * take care of raising that exception. 4508 * C.f. the ARM pseudocode function CheckSVEEnabled. 4509 */ 4510 int sve_exception_el(CPUARMState *env, int el) 4511 { 4512 #ifndef CONFIG_USER_ONLY 4513 if (el <= 1) { 4514 bool disabled = false; 4515 4516 /* The CPACR.ZEN controls traps to EL1: 4517 * 0, 2 : trap EL0 and EL1 accesses 4518 * 1 : trap only EL0 accesses 4519 * 3 : trap no accesses 4520 */ 4521 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 4522 disabled = true; 4523 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 4524 disabled = el == 0; 4525 } 4526 if (disabled) { 4527 /* route_to_el2 */ 4528 return (arm_feature(env, ARM_FEATURE_EL2) 4529 && !arm_is_secure(env) 4530 && (env->cp15.hcr_el2 & HCR_TGE) ? 2 : 1); 4531 } 4532 4533 /* Check CPACR.FPEN. */ 4534 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 4535 disabled = true; 4536 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 4537 disabled = el == 0; 4538 } 4539 if (disabled) { 4540 return 0; 4541 } 4542 } 4543 4544 /* CPTR_EL2. Since TZ and TFP are positive, 4545 * they will be zero when EL2 is not present. 4546 */ 4547 if (el <= 2 && !arm_is_secure_below_el3(env)) { 4548 if (env->cp15.cptr_el[2] & CPTR_TZ) { 4549 return 2; 4550 } 4551 if (env->cp15.cptr_el[2] & CPTR_TFP) { 4552 return 0; 4553 } 4554 } 4555 4556 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 4557 if (arm_feature(env, ARM_FEATURE_EL3) 4558 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 4559 return 3; 4560 } 4561 #endif 4562 return 0; 4563 } 4564 4565 /* 4566 * Given that SVE is enabled, return the vector length for EL. 4567 */ 4568 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 4569 { 4570 ARMCPU *cpu = arm_env_get_cpu(env); 4571 uint32_t zcr_len = cpu->sve_max_vq - 1; 4572 4573 if (el <= 1) { 4574 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 4575 } 4576 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 4577 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 4578 } 4579 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 4580 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 4581 } 4582 return zcr_len; 4583 } 4584 4585 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4586 uint64_t value) 4587 { 4588 int cur_el = arm_current_el(env); 4589 int old_len = sve_zcr_len_for_el(env, cur_el); 4590 int new_len; 4591 4592 /* Bits other than [3:0] are RAZ/WI. */ 4593 raw_write(env, ri, value & 0xf); 4594 4595 /* 4596 * Because we arrived here, we know both FP and SVE are enabled; 4597 * otherwise we would have trapped access to the ZCR_ELn register. 4598 */ 4599 new_len = sve_zcr_len_for_el(env, cur_el); 4600 if (new_len < old_len) { 4601 aarch64_sve_narrow_vq(env, new_len + 1); 4602 } 4603 } 4604 4605 static const ARMCPRegInfo zcr_el1_reginfo = { 4606 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4607 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4608 .access = PL1_RW, .type = ARM_CP_SVE, 4609 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4610 .writefn = zcr_write, .raw_writefn = raw_write 4611 }; 4612 4613 static const ARMCPRegInfo zcr_el2_reginfo = { 4614 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4615 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4616 .access = PL2_RW, .type = ARM_CP_SVE, 4617 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4618 .writefn = zcr_write, .raw_writefn = raw_write 4619 }; 4620 4621 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4622 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4623 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4624 .access = PL2_RW, .type = ARM_CP_SVE, 4625 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4626 }; 4627 4628 static const ARMCPRegInfo zcr_el3_reginfo = { 4629 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4630 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4631 .access = PL3_RW, .type = ARM_CP_SVE, 4632 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4633 .writefn = zcr_write, .raw_writefn = raw_write 4634 }; 4635 4636 void hw_watchpoint_update(ARMCPU *cpu, int n) 4637 { 4638 CPUARMState *env = &cpu->env; 4639 vaddr len = 0; 4640 vaddr wvr = env->cp15.dbgwvr[n]; 4641 uint64_t wcr = env->cp15.dbgwcr[n]; 4642 int mask; 4643 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4644 4645 if (env->cpu_watchpoint[n]) { 4646 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4647 env->cpu_watchpoint[n] = NULL; 4648 } 4649 4650 if (!extract64(wcr, 0, 1)) { 4651 /* E bit clear : watchpoint disabled */ 4652 return; 4653 } 4654 4655 switch (extract64(wcr, 3, 2)) { 4656 case 0: 4657 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4658 return; 4659 case 1: 4660 flags |= BP_MEM_READ; 4661 break; 4662 case 2: 4663 flags |= BP_MEM_WRITE; 4664 break; 4665 case 3: 4666 flags |= BP_MEM_ACCESS; 4667 break; 4668 } 4669 4670 /* Attempts to use both MASK and BAS fields simultaneously are 4671 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4672 * thus generating a watchpoint for every byte in the masked region. 4673 */ 4674 mask = extract64(wcr, 24, 4); 4675 if (mask == 1 || mask == 2) { 4676 /* Reserved values of MASK; we must act as if the mask value was 4677 * some non-reserved value, or as if the watchpoint were disabled. 4678 * We choose the latter. 4679 */ 4680 return; 4681 } else if (mask) { 4682 /* Watchpoint covers an aligned area up to 2GB in size */ 4683 len = 1ULL << mask; 4684 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4685 * whether the watchpoint fires when the unmasked bits match; we opt 4686 * to generate the exceptions. 4687 */ 4688 wvr &= ~(len - 1); 4689 } else { 4690 /* Watchpoint covers bytes defined by the byte address select bits */ 4691 int bas = extract64(wcr, 5, 8); 4692 int basstart; 4693 4694 if (bas == 0) { 4695 /* This must act as if the watchpoint is disabled */ 4696 return; 4697 } 4698 4699 if (extract64(wvr, 2, 1)) { 4700 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4701 * ignored, and BAS[3:0] define which bytes to watch. 4702 */ 4703 bas &= 0xf; 4704 } 4705 /* The BAS bits are supposed to be programmed to indicate a contiguous 4706 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4707 * we fire for each byte in the word/doubleword addressed by the WVR. 4708 * We choose to ignore any non-zero bits after the first range of 1s. 4709 */ 4710 basstart = ctz32(bas); 4711 len = cto32(bas >> basstart); 4712 wvr += basstart; 4713 } 4714 4715 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4716 &env->cpu_watchpoint[n]); 4717 } 4718 4719 void hw_watchpoint_update_all(ARMCPU *cpu) 4720 { 4721 int i; 4722 CPUARMState *env = &cpu->env; 4723 4724 /* Completely clear out existing QEMU watchpoints and our array, to 4725 * avoid possible stale entries following migration load. 4726 */ 4727 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4728 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4729 4730 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4731 hw_watchpoint_update(cpu, i); 4732 } 4733 } 4734 4735 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4736 uint64_t value) 4737 { 4738 ARMCPU *cpu = arm_env_get_cpu(env); 4739 int i = ri->crm; 4740 4741 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4742 * register reads and behaves as if values written are sign extended. 4743 * Bits [1:0] are RES0. 4744 */ 4745 value = sextract64(value, 0, 49) & ~3ULL; 4746 4747 raw_write(env, ri, value); 4748 hw_watchpoint_update(cpu, i); 4749 } 4750 4751 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4752 uint64_t value) 4753 { 4754 ARMCPU *cpu = arm_env_get_cpu(env); 4755 int i = ri->crm; 4756 4757 raw_write(env, ri, value); 4758 hw_watchpoint_update(cpu, i); 4759 } 4760 4761 void hw_breakpoint_update(ARMCPU *cpu, int n) 4762 { 4763 CPUARMState *env = &cpu->env; 4764 uint64_t bvr = env->cp15.dbgbvr[n]; 4765 uint64_t bcr = env->cp15.dbgbcr[n]; 4766 vaddr addr; 4767 int bt; 4768 int flags = BP_CPU; 4769 4770 if (env->cpu_breakpoint[n]) { 4771 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4772 env->cpu_breakpoint[n] = NULL; 4773 } 4774 4775 if (!extract64(bcr, 0, 1)) { 4776 /* E bit clear : watchpoint disabled */ 4777 return; 4778 } 4779 4780 bt = extract64(bcr, 20, 4); 4781 4782 switch (bt) { 4783 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4784 case 5: /* linked address mismatch (reserved if AArch64) */ 4785 qemu_log_mask(LOG_UNIMP, 4786 "arm: address mismatch breakpoint types not implemented\n"); 4787 return; 4788 case 0: /* unlinked address match */ 4789 case 1: /* linked address match */ 4790 { 4791 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4792 * we behave as if the register was sign extended. Bits [1:0] are 4793 * RES0. The BAS field is used to allow setting breakpoints on 16 4794 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4795 * a bp will fire if the addresses covered by the bp and the addresses 4796 * covered by the insn overlap but the insn doesn't start at the 4797 * start of the bp address range. We choose to require the insn and 4798 * the bp to have the same address. The constraints on writing to 4799 * BAS enforced in dbgbcr_write mean we have only four cases: 4800 * 0b0000 => no breakpoint 4801 * 0b0011 => breakpoint on addr 4802 * 0b1100 => breakpoint on addr + 2 4803 * 0b1111 => breakpoint on addr 4804 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4805 */ 4806 int bas = extract64(bcr, 5, 4); 4807 addr = sextract64(bvr, 0, 49) & ~3ULL; 4808 if (bas == 0) { 4809 return; 4810 } 4811 if (bas == 0xc) { 4812 addr += 2; 4813 } 4814 break; 4815 } 4816 case 2: /* unlinked context ID match */ 4817 case 8: /* unlinked VMID match (reserved if no EL2) */ 4818 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4819 qemu_log_mask(LOG_UNIMP, 4820 "arm: unlinked context breakpoint types not implemented\n"); 4821 return; 4822 case 9: /* linked VMID match (reserved if no EL2) */ 4823 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4824 case 3: /* linked context ID match */ 4825 default: 4826 /* We must generate no events for Linked context matches (unless 4827 * they are linked to by some other bp/wp, which is handled in 4828 * updates for the linking bp/wp). We choose to also generate no events 4829 * for reserved values. 4830 */ 4831 return; 4832 } 4833 4834 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4835 } 4836 4837 void hw_breakpoint_update_all(ARMCPU *cpu) 4838 { 4839 int i; 4840 CPUARMState *env = &cpu->env; 4841 4842 /* Completely clear out existing QEMU breakpoints and our array, to 4843 * avoid possible stale entries following migration load. 4844 */ 4845 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4846 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4847 4848 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4849 hw_breakpoint_update(cpu, i); 4850 } 4851 } 4852 4853 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4854 uint64_t value) 4855 { 4856 ARMCPU *cpu = arm_env_get_cpu(env); 4857 int i = ri->crm; 4858 4859 raw_write(env, ri, value); 4860 hw_breakpoint_update(cpu, i); 4861 } 4862 4863 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4864 uint64_t value) 4865 { 4866 ARMCPU *cpu = arm_env_get_cpu(env); 4867 int i = ri->crm; 4868 4869 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4870 * copy of BAS[0]. 4871 */ 4872 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4873 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4874 4875 raw_write(env, ri, value); 4876 hw_breakpoint_update(cpu, i); 4877 } 4878 4879 static void define_debug_regs(ARMCPU *cpu) 4880 { 4881 /* Define v7 and v8 architectural debug registers. 4882 * These are just dummy implementations for now. 4883 */ 4884 int i; 4885 int wrps, brps, ctx_cmps; 4886 ARMCPRegInfo dbgdidr = { 4887 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4888 .access = PL0_R, .accessfn = access_tda, 4889 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4890 }; 4891 4892 /* Note that all these register fields hold "number of Xs minus 1". */ 4893 brps = extract32(cpu->dbgdidr, 24, 4); 4894 wrps = extract32(cpu->dbgdidr, 28, 4); 4895 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4896 4897 assert(ctx_cmps <= brps); 4898 4899 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4900 * of the debug registers such as number of breakpoints; 4901 * check that if they both exist then they agree. 4902 */ 4903 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4904 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4905 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4906 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4907 } 4908 4909 define_one_arm_cp_reg(cpu, &dbgdidr); 4910 define_arm_cp_regs(cpu, debug_cp_reginfo); 4911 4912 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4913 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4914 } 4915 4916 for (i = 0; i < brps + 1; i++) { 4917 ARMCPRegInfo dbgregs[] = { 4918 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4919 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4920 .access = PL1_RW, .accessfn = access_tda, 4921 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4922 .writefn = dbgbvr_write, .raw_writefn = raw_write 4923 }, 4924 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4925 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4926 .access = PL1_RW, .accessfn = access_tda, 4927 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4928 .writefn = dbgbcr_write, .raw_writefn = raw_write 4929 }, 4930 REGINFO_SENTINEL 4931 }; 4932 define_arm_cp_regs(cpu, dbgregs); 4933 } 4934 4935 for (i = 0; i < wrps + 1; i++) { 4936 ARMCPRegInfo dbgregs[] = { 4937 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4938 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4939 .access = PL1_RW, .accessfn = access_tda, 4940 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4941 .writefn = dbgwvr_write, .raw_writefn = raw_write 4942 }, 4943 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4944 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4945 .access = PL1_RW, .accessfn = access_tda, 4946 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4947 .writefn = dbgwcr_write, .raw_writefn = raw_write 4948 }, 4949 REGINFO_SENTINEL 4950 }; 4951 define_arm_cp_regs(cpu, dbgregs); 4952 } 4953 } 4954 4955 /* We don't know until after realize whether there's a GICv3 4956 * attached, and that is what registers the gicv3 sysregs. 4957 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4958 * at runtime. 4959 */ 4960 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4961 { 4962 ARMCPU *cpu = arm_env_get_cpu(env); 4963 uint64_t pfr1 = cpu->id_pfr1; 4964 4965 if (env->gicv3state) { 4966 pfr1 |= 1 << 28; 4967 } 4968 return pfr1; 4969 } 4970 4971 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4972 { 4973 ARMCPU *cpu = arm_env_get_cpu(env); 4974 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 4975 4976 if (env->gicv3state) { 4977 pfr0 |= 1 << 24; 4978 } 4979 return pfr0; 4980 } 4981 4982 void register_cp_regs_for_features(ARMCPU *cpu) 4983 { 4984 /* Register all the coprocessor registers based on feature bits */ 4985 CPUARMState *env = &cpu->env; 4986 if (arm_feature(env, ARM_FEATURE_M)) { 4987 /* M profile has no coprocessor registers */ 4988 return; 4989 } 4990 4991 define_arm_cp_regs(cpu, cp_reginfo); 4992 if (!arm_feature(env, ARM_FEATURE_V8)) { 4993 /* Must go early as it is full of wildcards that may be 4994 * overridden by later definitions. 4995 */ 4996 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4997 } 4998 4999 if (arm_feature(env, ARM_FEATURE_V6)) { 5000 /* The ID registers all have impdef reset values */ 5001 ARMCPRegInfo v6_idregs[] = { 5002 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5004 .access = PL1_R, .type = ARM_CP_CONST, 5005 .resetvalue = cpu->id_pfr0 }, 5006 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5007 * the value of the GIC field until after we define these regs. 5008 */ 5009 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5011 .access = PL1_R, .type = ARM_CP_NO_RAW, 5012 .readfn = id_pfr1_read, 5013 .writefn = arm_cp_write_ignore }, 5014 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5016 .access = PL1_R, .type = ARM_CP_CONST, 5017 .resetvalue = cpu->id_dfr0 }, 5018 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5020 .access = PL1_R, .type = ARM_CP_CONST, 5021 .resetvalue = cpu->id_afr0 }, 5022 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5024 .access = PL1_R, .type = ARM_CP_CONST, 5025 .resetvalue = cpu->id_mmfr0 }, 5026 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 5027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 5028 .access = PL1_R, .type = ARM_CP_CONST, 5029 .resetvalue = cpu->id_mmfr1 }, 5030 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 5031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 5032 .access = PL1_R, .type = ARM_CP_CONST, 5033 .resetvalue = cpu->id_mmfr2 }, 5034 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 5035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 5036 .access = PL1_R, .type = ARM_CP_CONST, 5037 .resetvalue = cpu->id_mmfr3 }, 5038 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 5039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5040 .access = PL1_R, .type = ARM_CP_CONST, 5041 .resetvalue = cpu->isar.id_isar0 }, 5042 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 5043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 5044 .access = PL1_R, .type = ARM_CP_CONST, 5045 .resetvalue = cpu->isar.id_isar1 }, 5046 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 5047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5048 .access = PL1_R, .type = ARM_CP_CONST, 5049 .resetvalue = cpu->isar.id_isar2 }, 5050 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 5051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 5052 .access = PL1_R, .type = ARM_CP_CONST, 5053 .resetvalue = cpu->isar.id_isar3 }, 5054 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 5055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 5056 .access = PL1_R, .type = ARM_CP_CONST, 5057 .resetvalue = cpu->isar.id_isar4 }, 5058 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 5059 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 5060 .access = PL1_R, .type = ARM_CP_CONST, 5061 .resetvalue = cpu->isar.id_isar5 }, 5062 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 5063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 5064 .access = PL1_R, .type = ARM_CP_CONST, 5065 .resetvalue = cpu->id_mmfr4 }, 5066 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 5067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 5068 .access = PL1_R, .type = ARM_CP_CONST, 5069 .resetvalue = cpu->isar.id_isar6 }, 5070 REGINFO_SENTINEL 5071 }; 5072 define_arm_cp_regs(cpu, v6_idregs); 5073 define_arm_cp_regs(cpu, v6_cp_reginfo); 5074 } else { 5075 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 5076 } 5077 if (arm_feature(env, ARM_FEATURE_V6K)) { 5078 define_arm_cp_regs(cpu, v6k_cp_reginfo); 5079 } 5080 if (arm_feature(env, ARM_FEATURE_V7MP) && 5081 !arm_feature(env, ARM_FEATURE_PMSA)) { 5082 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 5083 } 5084 if (arm_feature(env, ARM_FEATURE_V7)) { 5085 /* v7 performance monitor control register: same implementor 5086 * field as main ID register, and we implement only the cycle 5087 * count register. 5088 */ 5089 #ifndef CONFIG_USER_ONLY 5090 ARMCPRegInfo pmcr = { 5091 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 5092 .access = PL0_RW, 5093 .type = ARM_CP_IO | ARM_CP_ALIAS, 5094 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 5095 .accessfn = pmreg_access, .writefn = pmcr_write, 5096 .raw_writefn = raw_write, 5097 }; 5098 ARMCPRegInfo pmcr64 = { 5099 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 5101 .access = PL0_RW, .accessfn = pmreg_access, 5102 .type = ARM_CP_IO, 5103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 5104 .resetvalue = cpu->midr & 0xff000000, 5105 .writefn = pmcr_write, .raw_writefn = raw_write, 5106 }; 5107 define_one_arm_cp_reg(cpu, &pmcr); 5108 define_one_arm_cp_reg(cpu, &pmcr64); 5109 #endif 5110 ARMCPRegInfo clidr = { 5111 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 5112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 5113 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 5114 }; 5115 define_one_arm_cp_reg(cpu, &clidr); 5116 define_arm_cp_regs(cpu, v7_cp_reginfo); 5117 define_debug_regs(cpu); 5118 } else { 5119 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 5120 } 5121 if (arm_feature(env, ARM_FEATURE_V8)) { 5122 /* AArch64 ID registers, which all have impdef reset values. 5123 * Note that within the ID register ranges the unused slots 5124 * must all RAZ, not UNDEF; future architecture versions may 5125 * define new registers here. 5126 */ 5127 ARMCPRegInfo v8_idregs[] = { 5128 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 5129 * know the right value for the GIC field until after we 5130 * define these regs. 5131 */ 5132 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 5134 .access = PL1_R, .type = ARM_CP_NO_RAW, 5135 .readfn = id_aa64pfr0_read, 5136 .writefn = arm_cp_write_ignore }, 5137 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 5138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 5139 .access = PL1_R, .type = ARM_CP_CONST, 5140 .resetvalue = cpu->isar.id_aa64pfr1}, 5141 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 5143 .access = PL1_R, .type = ARM_CP_CONST, 5144 .resetvalue = 0 }, 5145 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 5147 .access = PL1_R, .type = ARM_CP_CONST, 5148 .resetvalue = 0 }, 5149 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 5150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 5151 .access = PL1_R, .type = ARM_CP_CONST, 5152 /* At present, only SVEver == 0 is defined anyway. */ 5153 .resetvalue = 0 }, 5154 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 5156 .access = PL1_R, .type = ARM_CP_CONST, 5157 .resetvalue = 0 }, 5158 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 5160 .access = PL1_R, .type = ARM_CP_CONST, 5161 .resetvalue = 0 }, 5162 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 5164 .access = PL1_R, .type = ARM_CP_CONST, 5165 .resetvalue = 0 }, 5166 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 5167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 5168 .access = PL1_R, .type = ARM_CP_CONST, 5169 .resetvalue = cpu->id_aa64dfr0 }, 5170 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 5171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 5172 .access = PL1_R, .type = ARM_CP_CONST, 5173 .resetvalue = cpu->id_aa64dfr1 }, 5174 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 5176 .access = PL1_R, .type = ARM_CP_CONST, 5177 .resetvalue = 0 }, 5178 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 5180 .access = PL1_R, .type = ARM_CP_CONST, 5181 .resetvalue = 0 }, 5182 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 5183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 5184 .access = PL1_R, .type = ARM_CP_CONST, 5185 .resetvalue = cpu->id_aa64afr0 }, 5186 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 5187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 5188 .access = PL1_R, .type = ARM_CP_CONST, 5189 .resetvalue = cpu->id_aa64afr1 }, 5190 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 5192 .access = PL1_R, .type = ARM_CP_CONST, 5193 .resetvalue = 0 }, 5194 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 5196 .access = PL1_R, .type = ARM_CP_CONST, 5197 .resetvalue = 0 }, 5198 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 5199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 5200 .access = PL1_R, .type = ARM_CP_CONST, 5201 .resetvalue = cpu->isar.id_aa64isar0 }, 5202 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 5204 .access = PL1_R, .type = ARM_CP_CONST, 5205 .resetvalue = cpu->isar.id_aa64isar1 }, 5206 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 5208 .access = PL1_R, .type = ARM_CP_CONST, 5209 .resetvalue = 0 }, 5210 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 5212 .access = PL1_R, .type = ARM_CP_CONST, 5213 .resetvalue = 0 }, 5214 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 5216 .access = PL1_R, .type = ARM_CP_CONST, 5217 .resetvalue = 0 }, 5218 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5219 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 5220 .access = PL1_R, .type = ARM_CP_CONST, 5221 .resetvalue = 0 }, 5222 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 5224 .access = PL1_R, .type = ARM_CP_CONST, 5225 .resetvalue = 0 }, 5226 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 5228 .access = PL1_R, .type = ARM_CP_CONST, 5229 .resetvalue = 0 }, 5230 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 5231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5232 .access = PL1_R, .type = ARM_CP_CONST, 5233 .resetvalue = cpu->id_aa64mmfr0 }, 5234 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 5235 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 5236 .access = PL1_R, .type = ARM_CP_CONST, 5237 .resetvalue = cpu->id_aa64mmfr1 }, 5238 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 5240 .access = PL1_R, .type = ARM_CP_CONST, 5241 .resetvalue = 0 }, 5242 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5244 .access = PL1_R, .type = ARM_CP_CONST, 5245 .resetvalue = 0 }, 5246 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5248 .access = PL1_R, .type = ARM_CP_CONST, 5249 .resetvalue = 0 }, 5250 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5252 .access = PL1_R, .type = ARM_CP_CONST, 5253 .resetvalue = 0 }, 5254 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5255 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5256 .access = PL1_R, .type = ARM_CP_CONST, 5257 .resetvalue = 0 }, 5258 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5260 .access = PL1_R, .type = ARM_CP_CONST, 5261 .resetvalue = 0 }, 5262 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5264 .access = PL1_R, .type = ARM_CP_CONST, 5265 .resetvalue = cpu->isar.mvfr0 }, 5266 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5268 .access = PL1_R, .type = ARM_CP_CONST, 5269 .resetvalue = cpu->isar.mvfr1 }, 5270 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5272 .access = PL1_R, .type = ARM_CP_CONST, 5273 .resetvalue = cpu->isar.mvfr2 }, 5274 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5275 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5276 .access = PL1_R, .type = ARM_CP_CONST, 5277 .resetvalue = 0 }, 5278 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5280 .access = PL1_R, .type = ARM_CP_CONST, 5281 .resetvalue = 0 }, 5282 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5284 .access = PL1_R, .type = ARM_CP_CONST, 5285 .resetvalue = 0 }, 5286 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5288 .access = PL1_R, .type = ARM_CP_CONST, 5289 .resetvalue = 0 }, 5290 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5291 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5292 .access = PL1_R, .type = ARM_CP_CONST, 5293 .resetvalue = 0 }, 5294 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5295 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5296 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5297 .resetvalue = cpu->pmceid0 }, 5298 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5299 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5300 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5301 .resetvalue = cpu->pmceid0 }, 5302 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5303 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5304 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5305 .resetvalue = cpu->pmceid1 }, 5306 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5307 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5308 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5309 .resetvalue = cpu->pmceid1 }, 5310 REGINFO_SENTINEL 5311 }; 5312 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5313 if (!arm_feature(env, ARM_FEATURE_EL3) && 5314 !arm_feature(env, ARM_FEATURE_EL2)) { 5315 ARMCPRegInfo rvbar = { 5316 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5317 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5318 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5319 }; 5320 define_one_arm_cp_reg(cpu, &rvbar); 5321 } 5322 define_arm_cp_regs(cpu, v8_idregs); 5323 define_arm_cp_regs(cpu, v8_cp_reginfo); 5324 } 5325 if (arm_feature(env, ARM_FEATURE_EL2)) { 5326 uint64_t vmpidr_def = mpidr_read_val(env); 5327 ARMCPRegInfo vpidr_regs[] = { 5328 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5329 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5330 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5331 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5332 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5333 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5334 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5335 .access = PL2_RW, .resetvalue = cpu->midr, 5336 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5337 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5338 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5339 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5340 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5341 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5342 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5343 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5344 .access = PL2_RW, 5345 .resetvalue = vmpidr_def, 5346 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5347 REGINFO_SENTINEL 5348 }; 5349 define_arm_cp_regs(cpu, vpidr_regs); 5350 define_arm_cp_regs(cpu, el2_cp_reginfo); 5351 if (arm_feature(env, ARM_FEATURE_V8)) { 5352 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 5353 } 5354 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5355 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5356 ARMCPRegInfo rvbar = { 5357 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5358 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5359 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5360 }; 5361 define_one_arm_cp_reg(cpu, &rvbar); 5362 } 5363 } else { 5364 /* If EL2 is missing but higher ELs are enabled, we need to 5365 * register the no_el2 reginfos. 5366 */ 5367 if (arm_feature(env, ARM_FEATURE_EL3)) { 5368 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5369 * of MIDR_EL1 and MPIDR_EL1. 5370 */ 5371 ARMCPRegInfo vpidr_regs[] = { 5372 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5373 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5374 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5375 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5376 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5377 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5378 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5379 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5380 .type = ARM_CP_NO_RAW, 5381 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5382 REGINFO_SENTINEL 5383 }; 5384 define_arm_cp_regs(cpu, vpidr_regs); 5385 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5386 if (arm_feature(env, ARM_FEATURE_V8)) { 5387 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 5388 } 5389 } 5390 } 5391 if (arm_feature(env, ARM_FEATURE_EL3)) { 5392 define_arm_cp_regs(cpu, el3_cp_reginfo); 5393 ARMCPRegInfo el3_regs[] = { 5394 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5395 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5396 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5397 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5398 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5399 .access = PL3_RW, 5400 .raw_writefn = raw_write, .writefn = sctlr_write, 5401 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5402 .resetvalue = cpu->reset_sctlr }, 5403 REGINFO_SENTINEL 5404 }; 5405 5406 define_arm_cp_regs(cpu, el3_regs); 5407 } 5408 /* The behaviour of NSACR is sufficiently various that we don't 5409 * try to describe it in a single reginfo: 5410 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5411 * reads as constant 0xc00 from NS EL1 and NS EL2 5412 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5413 * if v7 without EL3, register doesn't exist 5414 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5415 */ 5416 if (arm_feature(env, ARM_FEATURE_EL3)) { 5417 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5418 ARMCPRegInfo nsacr = { 5419 .name = "NSACR", .type = ARM_CP_CONST, 5420 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5421 .access = PL1_RW, .accessfn = nsacr_access, 5422 .resetvalue = 0xc00 5423 }; 5424 define_one_arm_cp_reg(cpu, &nsacr); 5425 } else { 5426 ARMCPRegInfo nsacr = { 5427 .name = "NSACR", 5428 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5429 .access = PL3_RW | PL1_R, 5430 .resetvalue = 0, 5431 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5432 }; 5433 define_one_arm_cp_reg(cpu, &nsacr); 5434 } 5435 } else { 5436 if (arm_feature(env, ARM_FEATURE_V8)) { 5437 ARMCPRegInfo nsacr = { 5438 .name = "NSACR", .type = ARM_CP_CONST, 5439 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5440 .access = PL1_R, 5441 .resetvalue = 0xc00 5442 }; 5443 define_one_arm_cp_reg(cpu, &nsacr); 5444 } 5445 } 5446 5447 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5448 if (arm_feature(env, ARM_FEATURE_V6)) { 5449 /* PMSAv6 not implemented */ 5450 assert(arm_feature(env, ARM_FEATURE_V7)); 5451 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5452 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5453 } else { 5454 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5455 } 5456 } else { 5457 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5458 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5459 } 5460 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5461 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5462 } 5463 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5464 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5465 } 5466 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5467 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5468 } 5469 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5470 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5471 } 5472 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5473 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5474 } 5475 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5476 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5477 } 5478 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5479 define_arm_cp_regs(cpu, omap_cp_reginfo); 5480 } 5481 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5482 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5483 } 5484 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5485 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5486 } 5487 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5488 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5489 } 5490 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5491 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5492 } 5493 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5494 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5495 * be read-only (ie write causes UNDEF exception). 5496 */ 5497 { 5498 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5499 /* Pre-v8 MIDR space. 5500 * Note that the MIDR isn't a simple constant register because 5501 * of the TI925 behaviour where writes to another register can 5502 * cause the MIDR value to change. 5503 * 5504 * Unimplemented registers in the c15 0 0 0 space default to 5505 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5506 * and friends override accordingly. 5507 */ 5508 { .name = "MIDR", 5509 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5510 .access = PL1_R, .resetvalue = cpu->midr, 5511 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5512 .readfn = midr_read, 5513 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5514 .type = ARM_CP_OVERRIDE }, 5515 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5516 { .name = "DUMMY", 5517 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5518 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5519 { .name = "DUMMY", 5520 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5521 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5522 { .name = "DUMMY", 5523 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5524 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5525 { .name = "DUMMY", 5526 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5527 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5528 { .name = "DUMMY", 5529 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5530 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5531 REGINFO_SENTINEL 5532 }; 5533 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5534 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5536 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5537 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5538 .readfn = midr_read }, 5539 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5540 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5541 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5542 .access = PL1_R, .resetvalue = cpu->midr }, 5543 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5544 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5545 .access = PL1_R, .resetvalue = cpu->midr }, 5546 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5548 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5549 REGINFO_SENTINEL 5550 }; 5551 ARMCPRegInfo id_cp_reginfo[] = { 5552 /* These are common to v8 and pre-v8 */ 5553 { .name = "CTR", 5554 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5555 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5556 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5558 .access = PL0_R, .accessfn = ctr_el0_access, 5559 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5560 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5561 { .name = "TCMTR", 5562 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5563 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5564 REGINFO_SENTINEL 5565 }; 5566 /* TLBTR is specific to VMSA */ 5567 ARMCPRegInfo id_tlbtr_reginfo = { 5568 .name = "TLBTR", 5569 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5570 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5571 }; 5572 /* MPUIR is specific to PMSA V6+ */ 5573 ARMCPRegInfo id_mpuir_reginfo = { 5574 .name = "MPUIR", 5575 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5576 .access = PL1_R, .type = ARM_CP_CONST, 5577 .resetvalue = cpu->pmsav7_dregion << 8 5578 }; 5579 ARMCPRegInfo crn0_wi_reginfo = { 5580 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5581 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5582 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5583 }; 5584 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5585 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5586 ARMCPRegInfo *r; 5587 /* Register the blanket "writes ignored" value first to cover the 5588 * whole space. Then update the specific ID registers to allow write 5589 * access, so that they ignore writes rather than causing them to 5590 * UNDEF. 5591 */ 5592 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5593 for (r = id_pre_v8_midr_cp_reginfo; 5594 r->type != ARM_CP_SENTINEL; r++) { 5595 r->access = PL1_RW; 5596 } 5597 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5598 r->access = PL1_RW; 5599 } 5600 id_mpuir_reginfo.access = PL1_RW; 5601 id_tlbtr_reginfo.access = PL1_RW; 5602 } 5603 if (arm_feature(env, ARM_FEATURE_V8)) { 5604 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5605 } else { 5606 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5607 } 5608 define_arm_cp_regs(cpu, id_cp_reginfo); 5609 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5610 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5611 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5612 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5613 } 5614 } 5615 5616 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5617 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5618 } 5619 5620 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5621 ARMCPRegInfo auxcr_reginfo[] = { 5622 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5623 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5624 .access = PL1_RW, .type = ARM_CP_CONST, 5625 .resetvalue = cpu->reset_auxcr }, 5626 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5628 .access = PL2_RW, .type = ARM_CP_CONST, 5629 .resetvalue = 0 }, 5630 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5631 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5632 .access = PL3_RW, .type = ARM_CP_CONST, 5633 .resetvalue = 0 }, 5634 REGINFO_SENTINEL 5635 }; 5636 define_arm_cp_regs(cpu, auxcr_reginfo); 5637 if (arm_feature(env, ARM_FEATURE_V8)) { 5638 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 5639 ARMCPRegInfo hactlr2_reginfo = { 5640 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 5641 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 5642 .access = PL2_RW, .type = ARM_CP_CONST, 5643 .resetvalue = 0 5644 }; 5645 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 5646 } 5647 } 5648 5649 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5650 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5651 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5652 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5653 | extract64(cpu->reset_cbar, 32, 12); 5654 ARMCPRegInfo cbar_reginfo[] = { 5655 { .name = "CBAR", 5656 .type = ARM_CP_CONST, 5657 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5658 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5659 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5660 .type = ARM_CP_CONST, 5661 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5662 .access = PL1_R, .resetvalue = cbar32 }, 5663 REGINFO_SENTINEL 5664 }; 5665 /* We don't implement a r/w 64 bit CBAR currently */ 5666 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5667 define_arm_cp_regs(cpu, cbar_reginfo); 5668 } else { 5669 ARMCPRegInfo cbar = { 5670 .name = "CBAR", 5671 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5672 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5673 .fieldoffset = offsetof(CPUARMState, 5674 cp15.c15_config_base_address) 5675 }; 5676 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5677 cbar.access = PL1_R; 5678 cbar.fieldoffset = 0; 5679 cbar.type = ARM_CP_CONST; 5680 } 5681 define_one_arm_cp_reg(cpu, &cbar); 5682 } 5683 } 5684 5685 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5686 ARMCPRegInfo vbar_cp_reginfo[] = { 5687 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5688 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5689 .access = PL1_RW, .writefn = vbar_write, 5690 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5691 offsetof(CPUARMState, cp15.vbar_ns) }, 5692 .resetvalue = 0 }, 5693 REGINFO_SENTINEL 5694 }; 5695 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5696 } 5697 5698 /* Generic registers whose values depend on the implementation */ 5699 { 5700 ARMCPRegInfo sctlr = { 5701 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5702 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5703 .access = PL1_RW, 5704 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5705 offsetof(CPUARMState, cp15.sctlr_ns) }, 5706 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5707 .raw_writefn = raw_write, 5708 }; 5709 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5710 /* Normally we would always end the TB on an SCTLR write, but Linux 5711 * arch/arm/mach-pxa/sleep.S expects two instructions following 5712 * an MMU enable to execute from cache. Imitate this behaviour. 5713 */ 5714 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5715 } 5716 define_one_arm_cp_reg(cpu, &sctlr); 5717 } 5718 5719 if (cpu_isar_feature(aa64_sve, cpu)) { 5720 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5721 if (arm_feature(env, ARM_FEATURE_EL2)) { 5722 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5723 } else { 5724 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5725 } 5726 if (arm_feature(env, ARM_FEATURE_EL3)) { 5727 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5728 } 5729 } 5730 } 5731 5732 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5733 { 5734 CPUState *cs = CPU(cpu); 5735 CPUARMState *env = &cpu->env; 5736 5737 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5738 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5739 aarch64_fpu_gdb_set_reg, 5740 34, "aarch64-fpu.xml", 0); 5741 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5742 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5743 51, "arm-neon.xml", 0); 5744 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5745 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5746 35, "arm-vfp3.xml", 0); 5747 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5748 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5749 19, "arm-vfp.xml", 0); 5750 } 5751 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 5752 arm_gen_dynamic_xml(cs), 5753 "system-registers.xml", 0); 5754 } 5755 5756 /* Sort alphabetically by type name, except for "any". */ 5757 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5758 { 5759 ObjectClass *class_a = (ObjectClass *)a; 5760 ObjectClass *class_b = (ObjectClass *)b; 5761 const char *name_a, *name_b; 5762 5763 name_a = object_class_get_name(class_a); 5764 name_b = object_class_get_name(class_b); 5765 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5766 return 1; 5767 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5768 return -1; 5769 } else { 5770 return strcmp(name_a, name_b); 5771 } 5772 } 5773 5774 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5775 { 5776 ObjectClass *oc = data; 5777 CPUListState *s = user_data; 5778 const char *typename; 5779 char *name; 5780 5781 typename = object_class_get_name(oc); 5782 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5783 (*s->cpu_fprintf)(s->file, " %s\n", 5784 name); 5785 g_free(name); 5786 } 5787 5788 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5789 { 5790 CPUListState s = { 5791 .file = f, 5792 .cpu_fprintf = cpu_fprintf, 5793 }; 5794 GSList *list; 5795 5796 list = object_class_get_list(TYPE_ARM_CPU, false); 5797 list = g_slist_sort(list, arm_cpu_list_compare); 5798 (*cpu_fprintf)(f, "Available CPUs:\n"); 5799 g_slist_foreach(list, arm_cpu_list_entry, &s); 5800 g_slist_free(list); 5801 } 5802 5803 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5804 { 5805 ObjectClass *oc = data; 5806 CpuDefinitionInfoList **cpu_list = user_data; 5807 CpuDefinitionInfoList *entry; 5808 CpuDefinitionInfo *info; 5809 const char *typename; 5810 5811 typename = object_class_get_name(oc); 5812 info = g_malloc0(sizeof(*info)); 5813 info->name = g_strndup(typename, 5814 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5815 info->q_typename = g_strdup(typename); 5816 5817 entry = g_malloc0(sizeof(*entry)); 5818 entry->value = info; 5819 entry->next = *cpu_list; 5820 *cpu_list = entry; 5821 } 5822 5823 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5824 { 5825 CpuDefinitionInfoList *cpu_list = NULL; 5826 GSList *list; 5827 5828 list = object_class_get_list(TYPE_ARM_CPU, false); 5829 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5830 g_slist_free(list); 5831 5832 return cpu_list; 5833 } 5834 5835 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5836 void *opaque, int state, int secstate, 5837 int crm, int opc1, int opc2, 5838 const char *name) 5839 { 5840 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5841 * add a single reginfo struct to the hash table. 5842 */ 5843 uint32_t *key = g_new(uint32_t, 1); 5844 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5845 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5846 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5847 5848 r2->name = g_strdup(name); 5849 /* Reset the secure state to the specific incoming state. This is 5850 * necessary as the register may have been defined with both states. 5851 */ 5852 r2->secure = secstate; 5853 5854 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5855 /* Register is banked (using both entries in array). 5856 * Overwriting fieldoffset as the array is only used to define 5857 * banked registers but later only fieldoffset is used. 5858 */ 5859 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5860 } 5861 5862 if (state == ARM_CP_STATE_AA32) { 5863 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5864 /* If the register is banked then we don't need to migrate or 5865 * reset the 32-bit instance in certain cases: 5866 * 5867 * 1) If the register has both 32-bit and 64-bit instances then we 5868 * can count on the 64-bit instance taking care of the 5869 * non-secure bank. 5870 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5871 * taking care of the secure bank. This requires that separate 5872 * 32 and 64-bit definitions are provided. 5873 */ 5874 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5875 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5876 r2->type |= ARM_CP_ALIAS; 5877 } 5878 } else if ((secstate != r->secure) && !ns) { 5879 /* The register is not banked so we only want to allow migration of 5880 * the non-secure instance. 5881 */ 5882 r2->type |= ARM_CP_ALIAS; 5883 } 5884 5885 if (r->state == ARM_CP_STATE_BOTH) { 5886 /* We assume it is a cp15 register if the .cp field is left unset. 5887 */ 5888 if (r2->cp == 0) { 5889 r2->cp = 15; 5890 } 5891 5892 #ifdef HOST_WORDS_BIGENDIAN 5893 if (r2->fieldoffset) { 5894 r2->fieldoffset += sizeof(uint32_t); 5895 } 5896 #endif 5897 } 5898 } 5899 if (state == ARM_CP_STATE_AA64) { 5900 /* To allow abbreviation of ARMCPRegInfo 5901 * definitions, we treat cp == 0 as equivalent to 5902 * the value for "standard guest-visible sysreg". 5903 * STATE_BOTH definitions are also always "standard 5904 * sysreg" in their AArch64 view (the .cp value may 5905 * be non-zero for the benefit of the AArch32 view). 5906 */ 5907 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5908 r2->cp = CP_REG_ARM64_SYSREG_CP; 5909 } 5910 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5911 r2->opc0, opc1, opc2); 5912 } else { 5913 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5914 } 5915 if (opaque) { 5916 r2->opaque = opaque; 5917 } 5918 /* reginfo passed to helpers is correct for the actual access, 5919 * and is never ARM_CP_STATE_BOTH: 5920 */ 5921 r2->state = state; 5922 /* Make sure reginfo passed to helpers for wildcarded regs 5923 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5924 */ 5925 r2->crm = crm; 5926 r2->opc1 = opc1; 5927 r2->opc2 = opc2; 5928 /* By convention, for wildcarded registers only the first 5929 * entry is used for migration; the others are marked as 5930 * ALIAS so we don't try to transfer the register 5931 * multiple times. Special registers (ie NOP/WFI) are 5932 * never migratable and not even raw-accessible. 5933 */ 5934 if ((r->type & ARM_CP_SPECIAL)) { 5935 r2->type |= ARM_CP_NO_RAW; 5936 } 5937 if (((r->crm == CP_ANY) && crm != 0) || 5938 ((r->opc1 == CP_ANY) && opc1 != 0) || 5939 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5940 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 5941 } 5942 5943 /* Check that raw accesses are either forbidden or handled. Note that 5944 * we can't assert this earlier because the setup of fieldoffset for 5945 * banked registers has to be done first. 5946 */ 5947 if (!(r2->type & ARM_CP_NO_RAW)) { 5948 assert(!raw_accessors_invalid(r2)); 5949 } 5950 5951 /* Overriding of an existing definition must be explicitly 5952 * requested. 5953 */ 5954 if (!(r->type & ARM_CP_OVERRIDE)) { 5955 ARMCPRegInfo *oldreg; 5956 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5957 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5958 fprintf(stderr, "Register redefined: cp=%d %d bit " 5959 "crn=%d crm=%d opc1=%d opc2=%d, " 5960 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5961 r2->crn, r2->crm, r2->opc1, r2->opc2, 5962 oldreg->name, r2->name); 5963 g_assert_not_reached(); 5964 } 5965 } 5966 g_hash_table_insert(cpu->cp_regs, key, r2); 5967 } 5968 5969 5970 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5971 const ARMCPRegInfo *r, void *opaque) 5972 { 5973 /* Define implementations of coprocessor registers. 5974 * We store these in a hashtable because typically 5975 * there are less than 150 registers in a space which 5976 * is 16*16*16*8*8 = 262144 in size. 5977 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5978 * If a register is defined twice then the second definition is 5979 * used, so this can be used to define some generic registers and 5980 * then override them with implementation specific variations. 5981 * At least one of the original and the second definition should 5982 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5983 * against accidental use. 5984 * 5985 * The state field defines whether the register is to be 5986 * visible in the AArch32 or AArch64 execution state. If the 5987 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5988 * reginfo structure for the AArch32 view, which sees the lower 5989 * 32 bits of the 64 bit register. 5990 * 5991 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5992 * be wildcarded. AArch64 registers are always considered to be 64 5993 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5994 * the register, if any. 5995 */ 5996 int crm, opc1, opc2, state; 5997 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5998 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5999 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 6000 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 6001 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 6002 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 6003 /* 64 bit registers have only CRm and Opc1 fields */ 6004 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 6005 /* op0 only exists in the AArch64 encodings */ 6006 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 6007 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 6008 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 6009 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 6010 * encodes a minimum access level for the register. We roll this 6011 * runtime check into our general permission check code, so check 6012 * here that the reginfo's specified permissions are strict enough 6013 * to encompass the generic architectural permission check. 6014 */ 6015 if (r->state != ARM_CP_STATE_AA32) { 6016 int mask = 0; 6017 switch (r->opc1) { 6018 case 0: case 1: case 2: 6019 /* min_EL EL1 */ 6020 mask = PL1_RW; 6021 break; 6022 case 3: 6023 /* min_EL EL0 */ 6024 mask = PL0_RW; 6025 break; 6026 case 4: 6027 /* min_EL EL2 */ 6028 mask = PL2_RW; 6029 break; 6030 case 5: 6031 /* unallocated encoding, so not possible */ 6032 assert(false); 6033 break; 6034 case 6: 6035 /* min_EL EL3 */ 6036 mask = PL3_RW; 6037 break; 6038 case 7: 6039 /* min_EL EL1, secure mode only (we don't check the latter) */ 6040 mask = PL1_RW; 6041 break; 6042 default: 6043 /* broken reginfo with out-of-range opc1 */ 6044 assert(false); 6045 break; 6046 } 6047 /* assert our permissions are not too lax (stricter is fine) */ 6048 assert((r->access & ~mask) == 0); 6049 } 6050 6051 /* Check that the register definition has enough info to handle 6052 * reads and writes if they are permitted. 6053 */ 6054 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 6055 if (r->access & PL3_R) { 6056 assert((r->fieldoffset || 6057 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 6058 r->readfn); 6059 } 6060 if (r->access & PL3_W) { 6061 assert((r->fieldoffset || 6062 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 6063 r->writefn); 6064 } 6065 } 6066 /* Bad type field probably means missing sentinel at end of reg list */ 6067 assert(cptype_valid(r->type)); 6068 for (crm = crmmin; crm <= crmmax; crm++) { 6069 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 6070 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 6071 for (state = ARM_CP_STATE_AA32; 6072 state <= ARM_CP_STATE_AA64; state++) { 6073 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 6074 continue; 6075 } 6076 if (state == ARM_CP_STATE_AA32) { 6077 /* Under AArch32 CP registers can be common 6078 * (same for secure and non-secure world) or banked. 6079 */ 6080 char *name; 6081 6082 switch (r->secure) { 6083 case ARM_CP_SECSTATE_S: 6084 case ARM_CP_SECSTATE_NS: 6085 add_cpreg_to_hashtable(cpu, r, opaque, state, 6086 r->secure, crm, opc1, opc2, 6087 r->name); 6088 break; 6089 default: 6090 name = g_strdup_printf("%s_S", r->name); 6091 add_cpreg_to_hashtable(cpu, r, opaque, state, 6092 ARM_CP_SECSTATE_S, 6093 crm, opc1, opc2, name); 6094 g_free(name); 6095 add_cpreg_to_hashtable(cpu, r, opaque, state, 6096 ARM_CP_SECSTATE_NS, 6097 crm, opc1, opc2, r->name); 6098 break; 6099 } 6100 } else { 6101 /* AArch64 registers get mapped to non-secure instance 6102 * of AArch32 */ 6103 add_cpreg_to_hashtable(cpu, r, opaque, state, 6104 ARM_CP_SECSTATE_NS, 6105 crm, opc1, opc2, r->name); 6106 } 6107 } 6108 } 6109 } 6110 } 6111 } 6112 6113 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 6114 const ARMCPRegInfo *regs, void *opaque) 6115 { 6116 /* Define a whole list of registers */ 6117 const ARMCPRegInfo *r; 6118 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 6119 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 6120 } 6121 } 6122 6123 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 6124 { 6125 return g_hash_table_lookup(cpregs, &encoded_cp); 6126 } 6127 6128 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 6129 uint64_t value) 6130 { 6131 /* Helper coprocessor write function for write-ignore registers */ 6132 } 6133 6134 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 6135 { 6136 /* Helper coprocessor write function for read-as-zero registers */ 6137 return 0; 6138 } 6139 6140 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 6141 { 6142 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 6143 } 6144 6145 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 6146 { 6147 /* Return true if it is not valid for us to switch to 6148 * this CPU mode (ie all the UNPREDICTABLE cases in 6149 * the ARM ARM CPSRWriteByInstr pseudocode). 6150 */ 6151 6152 /* Changes to or from Hyp via MSR and CPS are illegal. */ 6153 if (write_type == CPSRWriteByInstr && 6154 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 6155 mode == ARM_CPU_MODE_HYP)) { 6156 return 1; 6157 } 6158 6159 switch (mode) { 6160 case ARM_CPU_MODE_USR: 6161 return 0; 6162 case ARM_CPU_MODE_SYS: 6163 case ARM_CPU_MODE_SVC: 6164 case ARM_CPU_MODE_ABT: 6165 case ARM_CPU_MODE_UND: 6166 case ARM_CPU_MODE_IRQ: 6167 case ARM_CPU_MODE_FIQ: 6168 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 6169 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 6170 */ 6171 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 6172 * and CPS are treated as illegal mode changes. 6173 */ 6174 if (write_type == CPSRWriteByInstr && 6175 (env->cp15.hcr_el2 & HCR_TGE) && 6176 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 6177 !arm_is_secure_below_el3(env)) { 6178 return 1; 6179 } 6180 return 0; 6181 case ARM_CPU_MODE_HYP: 6182 return !arm_feature(env, ARM_FEATURE_EL2) 6183 || arm_current_el(env) < 2 || arm_is_secure(env); 6184 case ARM_CPU_MODE_MON: 6185 return arm_current_el(env) < 3; 6186 default: 6187 return 1; 6188 } 6189 } 6190 6191 uint32_t cpsr_read(CPUARMState *env) 6192 { 6193 int ZF; 6194 ZF = (env->ZF == 0); 6195 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 6196 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 6197 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 6198 | ((env->condexec_bits & 0xfc) << 8) 6199 | (env->GE << 16) | (env->daif & CPSR_AIF); 6200 } 6201 6202 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 6203 CPSRWriteType write_type) 6204 { 6205 uint32_t changed_daif; 6206 6207 if (mask & CPSR_NZCV) { 6208 env->ZF = (~val) & CPSR_Z; 6209 env->NF = val; 6210 env->CF = (val >> 29) & 1; 6211 env->VF = (val << 3) & 0x80000000; 6212 } 6213 if (mask & CPSR_Q) 6214 env->QF = ((val & CPSR_Q) != 0); 6215 if (mask & CPSR_T) 6216 env->thumb = ((val & CPSR_T) != 0); 6217 if (mask & CPSR_IT_0_1) { 6218 env->condexec_bits &= ~3; 6219 env->condexec_bits |= (val >> 25) & 3; 6220 } 6221 if (mask & CPSR_IT_2_7) { 6222 env->condexec_bits &= 3; 6223 env->condexec_bits |= (val >> 8) & 0xfc; 6224 } 6225 if (mask & CPSR_GE) { 6226 env->GE = (val >> 16) & 0xf; 6227 } 6228 6229 /* In a V7 implementation that includes the security extensions but does 6230 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 6231 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 6232 * bits respectively. 6233 * 6234 * In a V8 implementation, it is permitted for privileged software to 6235 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 6236 */ 6237 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 6238 arm_feature(env, ARM_FEATURE_EL3) && 6239 !arm_feature(env, ARM_FEATURE_EL2) && 6240 !arm_is_secure(env)) { 6241 6242 changed_daif = (env->daif ^ val) & mask; 6243 6244 if (changed_daif & CPSR_A) { 6245 /* Check to see if we are allowed to change the masking of async 6246 * abort exceptions from a non-secure state. 6247 */ 6248 if (!(env->cp15.scr_el3 & SCR_AW)) { 6249 qemu_log_mask(LOG_GUEST_ERROR, 6250 "Ignoring attempt to switch CPSR_A flag from " 6251 "non-secure world with SCR.AW bit clear\n"); 6252 mask &= ~CPSR_A; 6253 } 6254 } 6255 6256 if (changed_daif & CPSR_F) { 6257 /* Check to see if we are allowed to change the masking of FIQ 6258 * exceptions from a non-secure state. 6259 */ 6260 if (!(env->cp15.scr_el3 & SCR_FW)) { 6261 qemu_log_mask(LOG_GUEST_ERROR, 6262 "Ignoring attempt to switch CPSR_F flag from " 6263 "non-secure world with SCR.FW bit clear\n"); 6264 mask &= ~CPSR_F; 6265 } 6266 6267 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6268 * If this bit is set software is not allowed to mask 6269 * FIQs, but is allowed to set CPSR_F to 0. 6270 */ 6271 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6272 (val & CPSR_F)) { 6273 qemu_log_mask(LOG_GUEST_ERROR, 6274 "Ignoring attempt to enable CPSR_F flag " 6275 "(non-maskable FIQ [NMFI] support enabled)\n"); 6276 mask &= ~CPSR_F; 6277 } 6278 } 6279 } 6280 6281 env->daif &= ~(CPSR_AIF & mask); 6282 env->daif |= val & CPSR_AIF & mask; 6283 6284 if (write_type != CPSRWriteRaw && 6285 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6286 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6287 /* Note that we can only get here in USR mode if this is a 6288 * gdb stub write; for this case we follow the architectural 6289 * behaviour for guest writes in USR mode of ignoring an attempt 6290 * to switch mode. (Those are caught by translate.c for writes 6291 * triggered by guest instructions.) 6292 */ 6293 mask &= ~CPSR_M; 6294 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6295 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6296 * v7, and has defined behaviour in v8: 6297 * + leave CPSR.M untouched 6298 * + allow changes to the other CPSR fields 6299 * + set PSTATE.IL 6300 * For user changes via the GDB stub, we don't set PSTATE.IL, 6301 * as this would be unnecessarily harsh for a user error. 6302 */ 6303 mask &= ~CPSR_M; 6304 if (write_type != CPSRWriteByGDBStub && 6305 arm_feature(env, ARM_FEATURE_V8)) { 6306 mask |= CPSR_IL; 6307 val |= CPSR_IL; 6308 } 6309 qemu_log_mask(LOG_GUEST_ERROR, 6310 "Illegal AArch32 mode switch attempt from %s to %s\n", 6311 aarch32_mode_name(env->uncached_cpsr), 6312 aarch32_mode_name(val)); 6313 } else { 6314 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 6315 write_type == CPSRWriteExceptionReturn ? 6316 "Exception return from AArch32" : 6317 "AArch32 mode switch from", 6318 aarch32_mode_name(env->uncached_cpsr), 6319 aarch32_mode_name(val), env->regs[15]); 6320 switch_mode(env, val & CPSR_M); 6321 } 6322 } 6323 mask &= ~CACHED_CPSR_BITS; 6324 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6325 } 6326 6327 /* Sign/zero extend */ 6328 uint32_t HELPER(sxtb16)(uint32_t x) 6329 { 6330 uint32_t res; 6331 res = (uint16_t)(int8_t)x; 6332 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6333 return res; 6334 } 6335 6336 uint32_t HELPER(uxtb16)(uint32_t x) 6337 { 6338 uint32_t res; 6339 res = (uint16_t)(uint8_t)x; 6340 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6341 return res; 6342 } 6343 6344 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6345 { 6346 if (den == 0) 6347 return 0; 6348 if (num == INT_MIN && den == -1) 6349 return INT_MIN; 6350 return num / den; 6351 } 6352 6353 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6354 { 6355 if (den == 0) 6356 return 0; 6357 return num / den; 6358 } 6359 6360 uint32_t HELPER(rbit)(uint32_t x) 6361 { 6362 return revbit32(x); 6363 } 6364 6365 #if defined(CONFIG_USER_ONLY) 6366 6367 /* These should probably raise undefined insn exceptions. */ 6368 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6369 { 6370 ARMCPU *cpu = arm_env_get_cpu(env); 6371 6372 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6373 } 6374 6375 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6376 { 6377 ARMCPU *cpu = arm_env_get_cpu(env); 6378 6379 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6380 return 0; 6381 } 6382 6383 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6384 { 6385 /* translate.c should never generate calls here in user-only mode */ 6386 g_assert_not_reached(); 6387 } 6388 6389 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6390 { 6391 /* translate.c should never generate calls here in user-only mode */ 6392 g_assert_not_reached(); 6393 } 6394 6395 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6396 { 6397 /* The TT instructions can be used by unprivileged code, but in 6398 * user-only emulation we don't have the MPU. 6399 * Luckily since we know we are NonSecure unprivileged (and that in 6400 * turn means that the A flag wasn't specified), all the bits in the 6401 * register must be zero: 6402 * IREGION: 0 because IRVALID is 0 6403 * IRVALID: 0 because NS 6404 * S: 0 because NS 6405 * NSRW: 0 because NS 6406 * NSR: 0 because NS 6407 * RW: 0 because unpriv and A flag not set 6408 * R: 0 because unpriv and A flag not set 6409 * SRVALID: 0 because NS 6410 * MRVALID: 0 because unpriv and A flag not set 6411 * SREGION: 0 becaus SRVALID is 0 6412 * MREGION: 0 because MRVALID is 0 6413 */ 6414 return 0; 6415 } 6416 6417 static void switch_mode(CPUARMState *env, int mode) 6418 { 6419 ARMCPU *cpu = arm_env_get_cpu(env); 6420 6421 if (mode != ARM_CPU_MODE_USR) { 6422 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6423 } 6424 } 6425 6426 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6427 uint32_t cur_el, bool secure) 6428 { 6429 return 1; 6430 } 6431 6432 void aarch64_sync_64_to_32(CPUARMState *env) 6433 { 6434 g_assert_not_reached(); 6435 } 6436 6437 #else 6438 6439 static void switch_mode(CPUARMState *env, int mode) 6440 { 6441 int old_mode; 6442 int i; 6443 6444 old_mode = env->uncached_cpsr & CPSR_M; 6445 if (mode == old_mode) 6446 return; 6447 6448 if (old_mode == ARM_CPU_MODE_FIQ) { 6449 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6450 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6451 } else if (mode == ARM_CPU_MODE_FIQ) { 6452 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6453 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6454 } 6455 6456 i = bank_number(old_mode); 6457 env->banked_r13[i] = env->regs[13]; 6458 env->banked_r14[i] = env->regs[14]; 6459 env->banked_spsr[i] = env->spsr; 6460 6461 i = bank_number(mode); 6462 env->regs[13] = env->banked_r13[i]; 6463 env->regs[14] = env->banked_r14[i]; 6464 env->spsr = env->banked_spsr[i]; 6465 } 6466 6467 /* Physical Interrupt Target EL Lookup Table 6468 * 6469 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6470 * 6471 * The below multi-dimensional table is used for looking up the target 6472 * exception level given numerous condition criteria. Specifically, the 6473 * target EL is based on SCR and HCR routing controls as well as the 6474 * currently executing EL and secure state. 6475 * 6476 * Dimensions: 6477 * target_el_table[2][2][2][2][2][4] 6478 * | | | | | +--- Current EL 6479 * | | | | +------ Non-secure(0)/Secure(1) 6480 * | | | +--------- HCR mask override 6481 * | | +------------ SCR exec state control 6482 * | +--------------- SCR mask override 6483 * +------------------ 32-bit(0)/64-bit(1) EL3 6484 * 6485 * The table values are as such: 6486 * 0-3 = EL0-EL3 6487 * -1 = Cannot occur 6488 * 6489 * The ARM ARM target EL table includes entries indicating that an "exception 6490 * is not taken". The two cases where this is applicable are: 6491 * 1) An exception is taken from EL3 but the SCR does not have the exception 6492 * routed to EL3. 6493 * 2) An exception is taken from EL2 but the HCR does not have the exception 6494 * routed to EL2. 6495 * In these two cases, the below table contain a target of EL1. This value is 6496 * returned as it is expected that the consumer of the table data will check 6497 * for "target EL >= current EL" to ensure the exception is not taken. 6498 * 6499 * SCR HCR 6500 * 64 EA AMO From 6501 * BIT IRQ IMO Non-secure Secure 6502 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6503 */ 6504 static const int8_t target_el_table[2][2][2][2][2][4] = { 6505 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6506 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6507 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6508 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6509 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6510 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6511 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6512 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6513 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6514 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6515 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6516 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6517 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6518 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6519 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6520 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6521 }; 6522 6523 /* 6524 * Determine the target EL for physical exceptions 6525 */ 6526 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6527 uint32_t cur_el, bool secure) 6528 { 6529 CPUARMState *env = cs->env_ptr; 6530 int rw; 6531 int scr; 6532 int hcr; 6533 int target_el; 6534 /* Is the highest EL AArch64? */ 6535 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6536 6537 if (arm_feature(env, ARM_FEATURE_EL3)) { 6538 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6539 } else { 6540 /* Either EL2 is the highest EL (and so the EL2 register width 6541 * is given by is64); or there is no EL2 or EL3, in which case 6542 * the value of 'rw' does not affect the table lookup anyway. 6543 */ 6544 rw = is64; 6545 } 6546 6547 switch (excp_idx) { 6548 case EXCP_IRQ: 6549 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6550 hcr = arm_hcr_el2_imo(env); 6551 break; 6552 case EXCP_FIQ: 6553 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6554 hcr = arm_hcr_el2_fmo(env); 6555 break; 6556 default: 6557 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6558 hcr = arm_hcr_el2_amo(env); 6559 break; 6560 }; 6561 6562 /* If HCR.TGE is set then HCR is treated as being 1 */ 6563 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6564 6565 /* Perform a table-lookup for the target EL given the current state */ 6566 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6567 6568 assert(target_el > 0); 6569 6570 return target_el; 6571 } 6572 6573 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6574 ARMMMUIdx mmu_idx, bool ignfault) 6575 { 6576 CPUState *cs = CPU(cpu); 6577 CPUARMState *env = &cpu->env; 6578 MemTxAttrs attrs = {}; 6579 MemTxResult txres; 6580 target_ulong page_size; 6581 hwaddr physaddr; 6582 int prot; 6583 ARMMMUFaultInfo fi = {}; 6584 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6585 int exc; 6586 bool exc_secure; 6587 6588 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6589 &attrs, &prot, &page_size, &fi, NULL)) { 6590 /* MPU/SAU lookup failed */ 6591 if (fi.type == ARMFault_QEMU_SFault) { 6592 qemu_log_mask(CPU_LOG_INT, 6593 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6594 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6595 env->v7m.sfar = addr; 6596 exc = ARMV7M_EXCP_SECURE; 6597 exc_secure = false; 6598 } else { 6599 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6600 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6601 exc = ARMV7M_EXCP_MEM; 6602 exc_secure = secure; 6603 } 6604 goto pend_fault; 6605 } 6606 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6607 attrs, &txres); 6608 if (txres != MEMTX_OK) { 6609 /* BusFault trying to write the data */ 6610 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6611 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6612 exc = ARMV7M_EXCP_BUS; 6613 exc_secure = false; 6614 goto pend_fault; 6615 } 6616 return true; 6617 6618 pend_fault: 6619 /* By pending the exception at this point we are making 6620 * the IMPDEF choice "overridden exceptions pended" (see the 6621 * MergeExcInfo() pseudocode). The other choice would be to not 6622 * pend them now and then make a choice about which to throw away 6623 * later if we have two derived exceptions. 6624 * The only case when we must not pend the exception but instead 6625 * throw it away is if we are doing the push of the callee registers 6626 * and we've already generated a derived exception. Even in this 6627 * case we will still update the fault status registers. 6628 */ 6629 if (!ignfault) { 6630 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6631 } 6632 return false; 6633 } 6634 6635 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6636 ARMMMUIdx mmu_idx) 6637 { 6638 CPUState *cs = CPU(cpu); 6639 CPUARMState *env = &cpu->env; 6640 MemTxAttrs attrs = {}; 6641 MemTxResult txres; 6642 target_ulong page_size; 6643 hwaddr physaddr; 6644 int prot; 6645 ARMMMUFaultInfo fi = {}; 6646 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6647 int exc; 6648 bool exc_secure; 6649 uint32_t value; 6650 6651 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6652 &attrs, &prot, &page_size, &fi, NULL)) { 6653 /* MPU/SAU lookup failed */ 6654 if (fi.type == ARMFault_QEMU_SFault) { 6655 qemu_log_mask(CPU_LOG_INT, 6656 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6657 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6658 env->v7m.sfar = addr; 6659 exc = ARMV7M_EXCP_SECURE; 6660 exc_secure = false; 6661 } else { 6662 qemu_log_mask(CPU_LOG_INT, 6663 "...MemManageFault with CFSR.MUNSTKERR\n"); 6664 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6665 exc = ARMV7M_EXCP_MEM; 6666 exc_secure = secure; 6667 } 6668 goto pend_fault; 6669 } 6670 6671 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6672 attrs, &txres); 6673 if (txres != MEMTX_OK) { 6674 /* BusFault trying to read the data */ 6675 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6676 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6677 exc = ARMV7M_EXCP_BUS; 6678 exc_secure = false; 6679 goto pend_fault; 6680 } 6681 6682 *dest = value; 6683 return true; 6684 6685 pend_fault: 6686 /* By pending the exception at this point we are making 6687 * the IMPDEF choice "overridden exceptions pended" (see the 6688 * MergeExcInfo() pseudocode). The other choice would be to not 6689 * pend them now and then make a choice about which to throw away 6690 * later if we have two derived exceptions. 6691 */ 6692 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6693 return false; 6694 } 6695 6696 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6697 * This may change the current stack pointer between Main and Process 6698 * stack pointers if it is done for the CONTROL register for the current 6699 * security state. 6700 */ 6701 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6702 bool new_spsel, 6703 bool secstate) 6704 { 6705 bool old_is_psp = v7m_using_psp(env); 6706 6707 env->v7m.control[secstate] = 6708 deposit32(env->v7m.control[secstate], 6709 R_V7M_CONTROL_SPSEL_SHIFT, 6710 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6711 6712 if (secstate == env->v7m.secure) { 6713 bool new_is_psp = v7m_using_psp(env); 6714 uint32_t tmp; 6715 6716 if (old_is_psp != new_is_psp) { 6717 tmp = env->v7m.other_sp; 6718 env->v7m.other_sp = env->regs[13]; 6719 env->regs[13] = tmp; 6720 } 6721 } 6722 } 6723 6724 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6725 * stack pointer between Main and Process stack pointers. 6726 */ 6727 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6728 { 6729 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6730 } 6731 6732 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6733 { 6734 /* Write a new value to v7m.exception, thus transitioning into or out 6735 * of Handler mode; this may result in a change of active stack pointer. 6736 */ 6737 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6738 uint32_t tmp; 6739 6740 env->v7m.exception = new_exc; 6741 6742 new_is_psp = v7m_using_psp(env); 6743 6744 if (old_is_psp != new_is_psp) { 6745 tmp = env->v7m.other_sp; 6746 env->v7m.other_sp = env->regs[13]; 6747 env->regs[13] = tmp; 6748 } 6749 } 6750 6751 /* Switch M profile security state between NS and S */ 6752 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6753 { 6754 uint32_t new_ss_msp, new_ss_psp; 6755 6756 if (env->v7m.secure == new_secstate) { 6757 return; 6758 } 6759 6760 /* All the banked state is accessed by looking at env->v7m.secure 6761 * except for the stack pointer; rearrange the SP appropriately. 6762 */ 6763 new_ss_msp = env->v7m.other_ss_msp; 6764 new_ss_psp = env->v7m.other_ss_psp; 6765 6766 if (v7m_using_psp(env)) { 6767 env->v7m.other_ss_psp = env->regs[13]; 6768 env->v7m.other_ss_msp = env->v7m.other_sp; 6769 } else { 6770 env->v7m.other_ss_msp = env->regs[13]; 6771 env->v7m.other_ss_psp = env->v7m.other_sp; 6772 } 6773 6774 env->v7m.secure = new_secstate; 6775 6776 if (v7m_using_psp(env)) { 6777 env->regs[13] = new_ss_psp; 6778 env->v7m.other_sp = new_ss_msp; 6779 } else { 6780 env->regs[13] = new_ss_msp; 6781 env->v7m.other_sp = new_ss_psp; 6782 } 6783 } 6784 6785 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6786 { 6787 /* Handle v7M BXNS: 6788 * - if the return value is a magic value, do exception return (like BX) 6789 * - otherwise bit 0 of the return value is the target security state 6790 */ 6791 uint32_t min_magic; 6792 6793 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6794 /* Covers FNC_RETURN and EXC_RETURN magic */ 6795 min_magic = FNC_RETURN_MIN_MAGIC; 6796 } else { 6797 /* EXC_RETURN magic only */ 6798 min_magic = EXC_RETURN_MIN_MAGIC; 6799 } 6800 6801 if (dest >= min_magic) { 6802 /* This is an exception return magic value; put it where 6803 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6804 * Note that if we ever add gen_ss_advance() singlestep support to 6805 * M profile this should count as an "instruction execution complete" 6806 * event (compare gen_bx_excret_final_code()). 6807 */ 6808 env->regs[15] = dest & ~1; 6809 env->thumb = dest & 1; 6810 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6811 /* notreached */ 6812 } 6813 6814 /* translate.c should have made BXNS UNDEF unless we're secure */ 6815 assert(env->v7m.secure); 6816 6817 switch_v7m_security_state(env, dest & 1); 6818 env->thumb = 1; 6819 env->regs[15] = dest & ~1; 6820 } 6821 6822 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6823 { 6824 /* Handle v7M BLXNS: 6825 * - bit 0 of the destination address is the target security state 6826 */ 6827 6828 /* At this point regs[15] is the address just after the BLXNS */ 6829 uint32_t nextinst = env->regs[15] | 1; 6830 uint32_t sp = env->regs[13] - 8; 6831 uint32_t saved_psr; 6832 6833 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6834 assert(env->v7m.secure); 6835 6836 if (dest & 1) { 6837 /* target is Secure, so this is just a normal BLX, 6838 * except that the low bit doesn't indicate Thumb/not. 6839 */ 6840 env->regs[14] = nextinst; 6841 env->thumb = 1; 6842 env->regs[15] = dest & ~1; 6843 return; 6844 } 6845 6846 /* Target is non-secure: first push a stack frame */ 6847 if (!QEMU_IS_ALIGNED(sp, 8)) { 6848 qemu_log_mask(LOG_GUEST_ERROR, 6849 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6850 } 6851 6852 if (sp < v7m_sp_limit(env)) { 6853 raise_exception(env, EXCP_STKOF, 0, 1); 6854 } 6855 6856 saved_psr = env->v7m.exception; 6857 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6858 saved_psr |= XPSR_SFPA; 6859 } 6860 6861 /* Note that these stores can throw exceptions on MPU faults */ 6862 cpu_stl_data(env, sp, nextinst); 6863 cpu_stl_data(env, sp + 4, saved_psr); 6864 6865 env->regs[13] = sp; 6866 env->regs[14] = 0xfeffffff; 6867 if (arm_v7m_is_handler_mode(env)) { 6868 /* Write a dummy value to IPSR, to avoid leaking the current secure 6869 * exception number to non-secure code. This is guaranteed not 6870 * to cause write_v7m_exception() to actually change stacks. 6871 */ 6872 write_v7m_exception(env, 1); 6873 } 6874 switch_v7m_security_state(env, 0); 6875 env->thumb = 1; 6876 env->regs[15] = dest; 6877 } 6878 6879 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6880 bool spsel) 6881 { 6882 /* Return a pointer to the location where we currently store the 6883 * stack pointer for the requested security state and thread mode. 6884 * This pointer will become invalid if the CPU state is updated 6885 * such that the stack pointers are switched around (eg changing 6886 * the SPSEL control bit). 6887 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6888 * Unlike that pseudocode, we require the caller to pass us in the 6889 * SPSEL control bit value; this is because we also use this 6890 * function in handling of pushing of the callee-saves registers 6891 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6892 * and in the tailchain codepath the SPSEL bit comes from the exception 6893 * return magic LR value from the previous exception. The pseudocode 6894 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6895 * to make this utility function generic enough to do the job. 6896 */ 6897 bool want_psp = threadmode && spsel; 6898 6899 if (secure == env->v7m.secure) { 6900 if (want_psp == v7m_using_psp(env)) { 6901 return &env->regs[13]; 6902 } else { 6903 return &env->v7m.other_sp; 6904 } 6905 } else { 6906 if (want_psp) { 6907 return &env->v7m.other_ss_psp; 6908 } else { 6909 return &env->v7m.other_ss_msp; 6910 } 6911 } 6912 } 6913 6914 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6915 uint32_t *pvec) 6916 { 6917 CPUState *cs = CPU(cpu); 6918 CPUARMState *env = &cpu->env; 6919 MemTxResult result; 6920 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6921 uint32_t vector_entry; 6922 MemTxAttrs attrs = {}; 6923 ARMMMUIdx mmu_idx; 6924 bool exc_secure; 6925 6926 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6927 6928 /* We don't do a get_phys_addr() here because the rules for vector 6929 * loads are special: they always use the default memory map, and 6930 * the default memory map permits reads from all addresses. 6931 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6932 * that we want this special case which would always say "yes", 6933 * we just do the SAU lookup here followed by a direct physical load. 6934 */ 6935 attrs.secure = targets_secure; 6936 attrs.user = false; 6937 6938 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6939 V8M_SAttributes sattrs = {}; 6940 6941 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6942 if (sattrs.ns) { 6943 attrs.secure = false; 6944 } else if (!targets_secure) { 6945 /* NS access to S memory */ 6946 goto load_fail; 6947 } 6948 } 6949 6950 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6951 attrs, &result); 6952 if (result != MEMTX_OK) { 6953 goto load_fail; 6954 } 6955 *pvec = vector_entry; 6956 return true; 6957 6958 load_fail: 6959 /* All vector table fetch fails are reported as HardFault, with 6960 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6961 * technically the underlying exception is a MemManage or BusFault 6962 * that is escalated to HardFault.) This is a terminal exception, 6963 * so we will either take the HardFault immediately or else enter 6964 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6965 */ 6966 exc_secure = targets_secure || 6967 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6968 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6969 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6970 return false; 6971 } 6972 6973 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6974 bool ignore_faults) 6975 { 6976 /* For v8M, push the callee-saves register part of the stack frame. 6977 * Compare the v8M pseudocode PushCalleeStack(). 6978 * In the tailchaining case this may not be the current stack. 6979 */ 6980 CPUARMState *env = &cpu->env; 6981 uint32_t *frame_sp_p; 6982 uint32_t frameptr; 6983 ARMMMUIdx mmu_idx; 6984 bool stacked_ok; 6985 uint32_t limit; 6986 bool want_psp; 6987 6988 if (dotailchain) { 6989 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6990 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6991 !mode; 6992 6993 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6994 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6995 lr & R_V7M_EXCRET_SPSEL_MASK); 6996 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); 6997 if (want_psp) { 6998 limit = env->v7m.psplim[M_REG_S]; 6999 } else { 7000 limit = env->v7m.msplim[M_REG_S]; 7001 } 7002 } else { 7003 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 7004 frame_sp_p = &env->regs[13]; 7005 limit = v7m_sp_limit(env); 7006 } 7007 7008 frameptr = *frame_sp_p - 0x28; 7009 if (frameptr < limit) { 7010 /* 7011 * Stack limit failure: set SP to the limit value, and generate 7012 * STKOF UsageFault. Stack pushes below the limit must not be 7013 * performed. It is IMPDEF whether pushes above the limit are 7014 * performed; we choose not to. 7015 */ 7016 qemu_log_mask(CPU_LOG_INT, 7017 "...STKOF during callee-saves register stacking\n"); 7018 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7019 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7020 env->v7m.secure); 7021 *frame_sp_p = limit; 7022 return true; 7023 } 7024 7025 /* Write as much of the stack frame as we can. A write failure may 7026 * cause us to pend a derived exception. 7027 */ 7028 stacked_ok = 7029 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 7030 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 7031 ignore_faults) && 7032 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 7033 ignore_faults) && 7034 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 7035 ignore_faults) && 7036 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 7037 ignore_faults) && 7038 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 7039 ignore_faults) && 7040 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 7041 ignore_faults) && 7042 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 7043 ignore_faults) && 7044 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 7045 ignore_faults); 7046 7047 /* Update SP regardless of whether any of the stack accesses failed. */ 7048 *frame_sp_p = frameptr; 7049 7050 return !stacked_ok; 7051 } 7052 7053 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 7054 bool ignore_stackfaults) 7055 { 7056 /* Do the "take the exception" parts of exception entry, 7057 * but not the pushing of state to the stack. This is 7058 * similar to the pseudocode ExceptionTaken() function. 7059 */ 7060 CPUARMState *env = &cpu->env; 7061 uint32_t addr; 7062 bool targets_secure; 7063 int exc; 7064 bool push_failed = false; 7065 7066 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 7067 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 7068 targets_secure ? "secure" : "nonsecure", exc); 7069 7070 if (arm_feature(env, ARM_FEATURE_V8)) { 7071 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 7072 (lr & R_V7M_EXCRET_S_MASK)) { 7073 /* The background code (the owner of the registers in the 7074 * exception frame) is Secure. This means it may either already 7075 * have or now needs to push callee-saves registers. 7076 */ 7077 if (targets_secure) { 7078 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 7079 /* We took an exception from Secure to NonSecure 7080 * (which means the callee-saved registers got stacked) 7081 * and are now tailchaining to a Secure exception. 7082 * Clear DCRS so eventual return from this Secure 7083 * exception unstacks the callee-saved registers. 7084 */ 7085 lr &= ~R_V7M_EXCRET_DCRS_MASK; 7086 } 7087 } else { 7088 /* We're going to a non-secure exception; push the 7089 * callee-saves registers to the stack now, if they're 7090 * not already saved. 7091 */ 7092 if (lr & R_V7M_EXCRET_DCRS_MASK && 7093 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { 7094 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 7095 ignore_stackfaults); 7096 } 7097 lr |= R_V7M_EXCRET_DCRS_MASK; 7098 } 7099 } 7100 7101 lr &= ~R_V7M_EXCRET_ES_MASK; 7102 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7103 lr |= R_V7M_EXCRET_ES_MASK; 7104 } 7105 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 7106 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 7107 lr |= R_V7M_EXCRET_SPSEL_MASK; 7108 } 7109 7110 /* Clear registers if necessary to prevent non-secure exception 7111 * code being able to see register values from secure code. 7112 * Where register values become architecturally UNKNOWN we leave 7113 * them with their previous values. 7114 */ 7115 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7116 if (!targets_secure) { 7117 /* Always clear the caller-saved registers (they have been 7118 * pushed to the stack earlier in v7m_push_stack()). 7119 * Clear callee-saved registers if the background code is 7120 * Secure (in which case these regs were saved in 7121 * v7m_push_callee_stack()). 7122 */ 7123 int i; 7124 7125 for (i = 0; i < 13; i++) { 7126 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 7127 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 7128 env->regs[i] = 0; 7129 } 7130 } 7131 /* Clear EAPSR */ 7132 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 7133 } 7134 } 7135 } 7136 7137 if (push_failed && !ignore_stackfaults) { 7138 /* Derived exception on callee-saves register stacking: 7139 * we might now want to take a different exception which 7140 * targets a different security state, so try again from the top. 7141 */ 7142 qemu_log_mask(CPU_LOG_INT, 7143 "...derived exception on callee-saves register stacking"); 7144 v7m_exception_taken(cpu, lr, true, true); 7145 return; 7146 } 7147 7148 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 7149 /* Vector load failed: derived exception */ 7150 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 7151 v7m_exception_taken(cpu, lr, true, true); 7152 return; 7153 } 7154 7155 /* Now we've done everything that might cause a derived exception 7156 * we can go ahead and activate whichever exception we're going to 7157 * take (which might now be the derived exception). 7158 */ 7159 armv7m_nvic_acknowledge_irq(env->nvic); 7160 7161 /* Switch to target security state -- must do this before writing SPSEL */ 7162 switch_v7m_security_state(env, targets_secure); 7163 write_v7m_control_spsel(env, 0); 7164 arm_clear_exclusive(env); 7165 /* Clear IT bits */ 7166 env->condexec_bits = 0; 7167 env->regs[14] = lr; 7168 env->regs[15] = addr & 0xfffffffe; 7169 env->thumb = addr & 1; 7170 } 7171 7172 static bool v7m_push_stack(ARMCPU *cpu) 7173 { 7174 /* Do the "set up stack frame" part of exception entry, 7175 * similar to pseudocode PushStack(). 7176 * Return true if we generate a derived exception (and so 7177 * should ignore further stack faults trying to process 7178 * that derived exception.) 7179 */ 7180 bool stacked_ok; 7181 CPUARMState *env = &cpu->env; 7182 uint32_t xpsr = xpsr_read(env); 7183 uint32_t frameptr = env->regs[13]; 7184 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 7185 7186 /* Align stack pointer if the guest wants that */ 7187 if ((frameptr & 4) && 7188 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 7189 frameptr -= 4; 7190 xpsr |= XPSR_SPREALIGN; 7191 } 7192 7193 frameptr -= 0x20; 7194 7195 if (arm_feature(env, ARM_FEATURE_V8)) { 7196 uint32_t limit = v7m_sp_limit(env); 7197 7198 if (frameptr < limit) { 7199 /* 7200 * Stack limit failure: set SP to the limit value, and generate 7201 * STKOF UsageFault. Stack pushes below the limit must not be 7202 * performed. It is IMPDEF whether pushes above the limit are 7203 * performed; we choose not to. 7204 */ 7205 qemu_log_mask(CPU_LOG_INT, 7206 "...STKOF during stacking\n"); 7207 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7208 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7209 env->v7m.secure); 7210 env->regs[13] = limit; 7211 return true; 7212 } 7213 } 7214 7215 /* Write as much of the stack frame as we can. If we fail a stack 7216 * write this will result in a derived exception being pended 7217 * (which may be taken in preference to the one we started with 7218 * if it has higher priority). 7219 */ 7220 stacked_ok = 7221 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 7222 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 7223 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 7224 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 7225 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 7226 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 7227 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 7228 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 7229 7230 /* Update SP regardless of whether any of the stack accesses failed. */ 7231 env->regs[13] = frameptr; 7232 7233 return !stacked_ok; 7234 } 7235 7236 static void do_v7m_exception_exit(ARMCPU *cpu) 7237 { 7238 CPUARMState *env = &cpu->env; 7239 uint32_t excret; 7240 uint32_t xpsr; 7241 bool ufault = false; 7242 bool sfault = false; 7243 bool return_to_sp_process; 7244 bool return_to_handler; 7245 bool rettobase = false; 7246 bool exc_secure = false; 7247 bool return_to_secure; 7248 7249 /* If we're not in Handler mode then jumps to magic exception-exit 7250 * addresses don't have magic behaviour. However for the v8M 7251 * security extensions the magic secure-function-return has to 7252 * work in thread mode too, so to avoid doing an extra check in 7253 * the generated code we allow exception-exit magic to also cause the 7254 * internal exception and bring us here in thread mode. Correct code 7255 * will never try to do this (the following insn fetch will always 7256 * fault) so we the overhead of having taken an unnecessary exception 7257 * doesn't matter. 7258 */ 7259 if (!arm_v7m_is_handler_mode(env)) { 7260 return; 7261 } 7262 7263 /* In the spec pseudocode ExceptionReturn() is called directly 7264 * from BXWritePC() and gets the full target PC value including 7265 * bit zero. In QEMU's implementation we treat it as a normal 7266 * jump-to-register (which is then caught later on), and so split 7267 * the target value up between env->regs[15] and env->thumb in 7268 * gen_bx(). Reconstitute it. 7269 */ 7270 excret = env->regs[15]; 7271 if (env->thumb) { 7272 excret |= 1; 7273 } 7274 7275 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 7276 " previous exception %d\n", 7277 excret, env->v7m.exception); 7278 7279 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 7280 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 7281 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 7282 excret); 7283 } 7284 7285 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7286 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 7287 * we pick which FAULTMASK to clear. 7288 */ 7289 if (!env->v7m.secure && 7290 ((excret & R_V7M_EXCRET_ES_MASK) || 7291 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 7292 sfault = 1; 7293 /* For all other purposes, treat ES as 0 (R_HXSR) */ 7294 excret &= ~R_V7M_EXCRET_ES_MASK; 7295 } 7296 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 7297 } 7298 7299 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 7300 /* Auto-clear FAULTMASK on return from other than NMI. 7301 * If the security extension is implemented then this only 7302 * happens if the raw execution priority is >= 0; the 7303 * value of the ES bit in the exception return value indicates 7304 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 7305 */ 7306 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7307 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 7308 env->v7m.faultmask[exc_secure] = 0; 7309 } 7310 } else { 7311 env->v7m.faultmask[M_REG_NS] = 0; 7312 } 7313 } 7314 7315 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7316 exc_secure)) { 7317 case -1: 7318 /* attempt to exit an exception that isn't active */ 7319 ufault = true; 7320 break; 7321 case 0: 7322 /* still an irq active now */ 7323 break; 7324 case 1: 7325 /* we returned to base exception level, no nesting. 7326 * (In the pseudocode this is written using "NestedActivation != 1" 7327 * where we have 'rettobase == false'.) 7328 */ 7329 rettobase = true; 7330 break; 7331 default: 7332 g_assert_not_reached(); 7333 } 7334 7335 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7336 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7337 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7338 (excret & R_V7M_EXCRET_S_MASK); 7339 7340 if (arm_feature(env, ARM_FEATURE_V8)) { 7341 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7342 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7343 * we choose to take the UsageFault. 7344 */ 7345 if ((excret & R_V7M_EXCRET_S_MASK) || 7346 (excret & R_V7M_EXCRET_ES_MASK) || 7347 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7348 ufault = true; 7349 } 7350 } 7351 if (excret & R_V7M_EXCRET_RES0_MASK) { 7352 ufault = true; 7353 } 7354 } else { 7355 /* For v7M we only recognize certain combinations of the low bits */ 7356 switch (excret & 0xf) { 7357 case 1: /* Return to Handler */ 7358 break; 7359 case 13: /* Return to Thread using Process stack */ 7360 case 9: /* Return to Thread using Main stack */ 7361 /* We only need to check NONBASETHRDENA for v7M, because in 7362 * v8M this bit does not exist (it is RES1). 7363 */ 7364 if (!rettobase && 7365 !(env->v7m.ccr[env->v7m.secure] & 7366 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7367 ufault = true; 7368 } 7369 break; 7370 default: 7371 ufault = true; 7372 } 7373 } 7374 7375 /* 7376 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7377 * Handler mode (and will be until we write the new XPSR.Interrupt 7378 * field) this does not switch around the current stack pointer. 7379 * We must do this before we do any kind of tailchaining, including 7380 * for the derived exceptions on integrity check failures, or we will 7381 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 7382 */ 7383 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7384 7385 if (sfault) { 7386 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7387 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7388 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7389 "stackframe: failed EXC_RETURN.ES validity check\n"); 7390 v7m_exception_taken(cpu, excret, true, false); 7391 return; 7392 } 7393 7394 if (ufault) { 7395 /* Bad exception return: instead of popping the exception 7396 * stack, directly take a usage fault on the current stack. 7397 */ 7398 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7399 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7400 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7401 "stackframe: failed exception return integrity check\n"); 7402 v7m_exception_taken(cpu, excret, true, false); 7403 return; 7404 } 7405 7406 /* 7407 * Tailchaining: if there is currently a pending exception that 7408 * is high enough priority to preempt execution at the level we're 7409 * about to return to, then just directly take that exception now, 7410 * avoiding an unstack-and-then-stack. Note that now we have 7411 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 7412 * our current execution priority is already the execution priority we are 7413 * returning to -- none of the state we would unstack or set based on 7414 * the EXCRET value affects it. 7415 */ 7416 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 7417 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 7418 v7m_exception_taken(cpu, excret, true, false); 7419 return; 7420 } 7421 7422 switch_v7m_security_state(env, return_to_secure); 7423 7424 { 7425 /* The stack pointer we should be reading the exception frame from 7426 * depends on bits in the magic exception return type value (and 7427 * for v8M isn't necessarily the stack pointer we will eventually 7428 * end up resuming execution with). Get a pointer to the location 7429 * in the CPU state struct where the SP we need is currently being 7430 * stored; we will use and modify it in place. 7431 * We use this limited C variable scope so we don't accidentally 7432 * use 'frame_sp_p' after we do something that makes it invalid. 7433 */ 7434 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7435 return_to_secure, 7436 !return_to_handler, 7437 return_to_sp_process); 7438 uint32_t frameptr = *frame_sp_p; 7439 bool pop_ok = true; 7440 ARMMMUIdx mmu_idx; 7441 bool return_to_priv = return_to_handler || 7442 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 7443 7444 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7445 return_to_priv); 7446 7447 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7448 arm_feature(env, ARM_FEATURE_V8)) { 7449 qemu_log_mask(LOG_GUEST_ERROR, 7450 "M profile exception return with non-8-aligned SP " 7451 "for destination state is UNPREDICTABLE\n"); 7452 } 7453 7454 /* Do we need to pop callee-saved registers? */ 7455 if (return_to_secure && 7456 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7457 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7458 uint32_t expected_sig = 0xfefa125b; 7459 uint32_t actual_sig; 7460 7461 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7462 7463 if (pop_ok && expected_sig != actual_sig) { 7464 /* Take a SecureFault on the current stack */ 7465 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7466 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7467 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7468 "stackframe: failed exception return integrity " 7469 "signature check\n"); 7470 v7m_exception_taken(cpu, excret, true, false); 7471 return; 7472 } 7473 7474 pop_ok = pop_ok && 7475 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7476 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7477 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7478 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7479 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7480 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7481 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7482 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7483 7484 frameptr += 0x28; 7485 } 7486 7487 /* Pop registers */ 7488 pop_ok = pop_ok && 7489 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7490 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7491 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7492 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7493 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7494 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7495 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7496 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7497 7498 if (!pop_ok) { 7499 /* v7m_stack_read() pended a fault, so take it (as a tail 7500 * chained exception on the same stack frame) 7501 */ 7502 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 7503 v7m_exception_taken(cpu, excret, true, false); 7504 return; 7505 } 7506 7507 /* Returning from an exception with a PC with bit 0 set is defined 7508 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7509 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7510 * the lsbit, and there are several RTOSes out there which incorrectly 7511 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7512 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7513 * complain about the badly behaved guest. 7514 */ 7515 if (env->regs[15] & 1) { 7516 env->regs[15] &= ~1U; 7517 if (!arm_feature(env, ARM_FEATURE_V8)) { 7518 qemu_log_mask(LOG_GUEST_ERROR, 7519 "M profile return from interrupt with misaligned " 7520 "PC is UNPREDICTABLE on v7M\n"); 7521 } 7522 } 7523 7524 if (arm_feature(env, ARM_FEATURE_V8)) { 7525 /* For v8M we have to check whether the xPSR exception field 7526 * matches the EXCRET value for return to handler/thread 7527 * before we commit to changing the SP and xPSR. 7528 */ 7529 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7530 if (return_to_handler != will_be_handler) { 7531 /* Take an INVPC UsageFault on the current stack. 7532 * By this point we will have switched to the security state 7533 * for the background state, so this UsageFault will target 7534 * that state. 7535 */ 7536 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7537 env->v7m.secure); 7538 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7539 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7540 "stackframe: failed exception return integrity " 7541 "check\n"); 7542 v7m_exception_taken(cpu, excret, true, false); 7543 return; 7544 } 7545 } 7546 7547 /* Commit to consuming the stack frame */ 7548 frameptr += 0x20; 7549 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7550 * pre-exception SP was not 8-aligned and we added a padding word to 7551 * align it, so we undo this by ORing in the bit that increases it 7552 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7553 * would work too but a logical OR is how the pseudocode specifies it.) 7554 */ 7555 if (xpsr & XPSR_SPREALIGN) { 7556 frameptr |= 4; 7557 } 7558 *frame_sp_p = frameptr; 7559 } 7560 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7561 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7562 7563 /* The restored xPSR exception field will be zero if we're 7564 * resuming in Thread mode. If that doesn't match what the 7565 * exception return excret specified then this is a UsageFault. 7566 * v7M requires we make this check here; v8M did it earlier. 7567 */ 7568 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7569 /* Take an INVPC UsageFault by pushing the stack again; 7570 * we know we're v7M so this is never a Secure UsageFault. 7571 */ 7572 bool ignore_stackfaults; 7573 7574 assert(!arm_feature(env, ARM_FEATURE_V8)); 7575 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7576 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7577 ignore_stackfaults = v7m_push_stack(cpu); 7578 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7579 "failed exception return integrity check\n"); 7580 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7581 return; 7582 } 7583 7584 /* Otherwise, we have a successful exception exit. */ 7585 arm_clear_exclusive(env); 7586 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7587 } 7588 7589 static bool do_v7m_function_return(ARMCPU *cpu) 7590 { 7591 /* v8M security extensions magic function return. 7592 * We may either: 7593 * (1) throw an exception (longjump) 7594 * (2) return true if we successfully handled the function return 7595 * (3) return false if we failed a consistency check and have 7596 * pended a UsageFault that needs to be taken now 7597 * 7598 * At this point the magic return value is split between env->regs[15] 7599 * and env->thumb. We don't bother to reconstitute it because we don't 7600 * need it (all values are handled the same way). 7601 */ 7602 CPUARMState *env = &cpu->env; 7603 uint32_t newpc, newpsr, newpsr_exc; 7604 7605 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7606 7607 { 7608 bool threadmode, spsel; 7609 TCGMemOpIdx oi; 7610 ARMMMUIdx mmu_idx; 7611 uint32_t *frame_sp_p; 7612 uint32_t frameptr; 7613 7614 /* Pull the return address and IPSR from the Secure stack */ 7615 threadmode = !arm_v7m_is_handler_mode(env); 7616 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7617 7618 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7619 frameptr = *frame_sp_p; 7620 7621 /* These loads may throw an exception (for MPU faults). We want to 7622 * do them as secure, so work out what MMU index that is. 7623 */ 7624 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7625 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7626 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7627 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7628 7629 /* Consistency checks on new IPSR */ 7630 newpsr_exc = newpsr & XPSR_EXCP; 7631 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7632 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7633 /* Pend the fault and tell our caller to take it */ 7634 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7635 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7636 env->v7m.secure); 7637 qemu_log_mask(CPU_LOG_INT, 7638 "...taking INVPC UsageFault: " 7639 "IPSR consistency check failed\n"); 7640 return false; 7641 } 7642 7643 *frame_sp_p = frameptr + 8; 7644 } 7645 7646 /* This invalidates frame_sp_p */ 7647 switch_v7m_security_state(env, true); 7648 env->v7m.exception = newpsr_exc; 7649 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7650 if (newpsr & XPSR_SFPA) { 7651 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7652 } 7653 xpsr_write(env, 0, XPSR_IT); 7654 env->thumb = newpc & 1; 7655 env->regs[15] = newpc & ~1; 7656 7657 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7658 return true; 7659 } 7660 7661 static void arm_log_exception(int idx) 7662 { 7663 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7664 const char *exc = NULL; 7665 static const char * const excnames[] = { 7666 [EXCP_UDEF] = "Undefined Instruction", 7667 [EXCP_SWI] = "SVC", 7668 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7669 [EXCP_DATA_ABORT] = "Data Abort", 7670 [EXCP_IRQ] = "IRQ", 7671 [EXCP_FIQ] = "FIQ", 7672 [EXCP_BKPT] = "Breakpoint", 7673 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7674 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7675 [EXCP_HVC] = "Hypervisor Call", 7676 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7677 [EXCP_SMC] = "Secure Monitor Call", 7678 [EXCP_VIRQ] = "Virtual IRQ", 7679 [EXCP_VFIQ] = "Virtual FIQ", 7680 [EXCP_SEMIHOST] = "Semihosting call", 7681 [EXCP_NOCP] = "v7M NOCP UsageFault", 7682 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7683 [EXCP_STKOF] = "v8M STKOF UsageFault", 7684 }; 7685 7686 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7687 exc = excnames[idx]; 7688 } 7689 if (!exc) { 7690 exc = "unknown"; 7691 } 7692 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7693 } 7694 } 7695 7696 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7697 uint32_t addr, uint16_t *insn) 7698 { 7699 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7700 * or false on failure (in which case we will have pended the appropriate 7701 * exception). 7702 * We need to do the instruction fetch's MPU and SAU checks 7703 * like this because there is no MMU index that would allow 7704 * doing the load with a single function call. Instead we must 7705 * first check that the security attributes permit the load 7706 * and that they don't mismatch on the two halves of the instruction, 7707 * and then we do the load as a secure load (ie using the security 7708 * attributes of the address, not the CPU, as architecturally required). 7709 */ 7710 CPUState *cs = CPU(cpu); 7711 CPUARMState *env = &cpu->env; 7712 V8M_SAttributes sattrs = {}; 7713 MemTxAttrs attrs = {}; 7714 ARMMMUFaultInfo fi = {}; 7715 MemTxResult txres; 7716 target_ulong page_size; 7717 hwaddr physaddr; 7718 int prot; 7719 7720 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7721 if (!sattrs.nsc || sattrs.ns) { 7722 /* This must be the second half of the insn, and it straddles a 7723 * region boundary with the second half not being S&NSC. 7724 */ 7725 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7726 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7727 qemu_log_mask(CPU_LOG_INT, 7728 "...really SecureFault with SFSR.INVEP\n"); 7729 return false; 7730 } 7731 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7732 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7733 /* the MPU lookup failed */ 7734 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7735 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7736 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7737 return false; 7738 } 7739 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7740 attrs, &txres); 7741 if (txres != MEMTX_OK) { 7742 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7743 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7744 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7745 return false; 7746 } 7747 return true; 7748 } 7749 7750 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7751 { 7752 /* Check whether this attempt to execute code in a Secure & NS-Callable 7753 * memory region is for an SG instruction; if so, then emulate the 7754 * effect of the SG instruction and return true. Otherwise pend 7755 * the correct kind of exception and return false. 7756 */ 7757 CPUARMState *env = &cpu->env; 7758 ARMMMUIdx mmu_idx; 7759 uint16_t insn; 7760 7761 /* We should never get here unless get_phys_addr_pmsav8() caused 7762 * an exception for NS executing in S&NSC memory. 7763 */ 7764 assert(!env->v7m.secure); 7765 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7766 7767 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7768 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7769 7770 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7771 return false; 7772 } 7773 7774 if (!env->thumb) { 7775 goto gen_invep; 7776 } 7777 7778 if (insn != 0xe97f) { 7779 /* Not an SG instruction first half (we choose the IMPDEF 7780 * early-SG-check option). 7781 */ 7782 goto gen_invep; 7783 } 7784 7785 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7786 return false; 7787 } 7788 7789 if (insn != 0xe97f) { 7790 /* Not an SG instruction second half (yes, both halves of the SG 7791 * insn have the same hex value) 7792 */ 7793 goto gen_invep; 7794 } 7795 7796 /* OK, we have confirmed that we really have an SG instruction. 7797 * We know we're NS in S memory so don't need to repeat those checks. 7798 */ 7799 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7800 ", executing it\n", env->regs[15]); 7801 env->regs[14] &= ~1; 7802 switch_v7m_security_state(env, true); 7803 xpsr_write(env, 0, XPSR_IT); 7804 env->regs[15] += 4; 7805 return true; 7806 7807 gen_invep: 7808 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7809 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7810 qemu_log_mask(CPU_LOG_INT, 7811 "...really SecureFault with SFSR.INVEP\n"); 7812 return false; 7813 } 7814 7815 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7816 { 7817 ARMCPU *cpu = ARM_CPU(cs); 7818 CPUARMState *env = &cpu->env; 7819 uint32_t lr; 7820 bool ignore_stackfaults; 7821 7822 arm_log_exception(cs->exception_index); 7823 7824 /* For exceptions we just mark as pending on the NVIC, and let that 7825 handle it. */ 7826 switch (cs->exception_index) { 7827 case EXCP_UDEF: 7828 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7829 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7830 break; 7831 case EXCP_NOCP: 7832 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7833 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7834 break; 7835 case EXCP_INVSTATE: 7836 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7837 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7838 break; 7839 case EXCP_STKOF: 7840 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7841 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7842 break; 7843 case EXCP_SWI: 7844 /* The PC already points to the next instruction. */ 7845 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7846 break; 7847 case EXCP_PREFETCH_ABORT: 7848 case EXCP_DATA_ABORT: 7849 /* Note that for M profile we don't have a guest facing FSR, but 7850 * the env->exception.fsr will be populated by the code that 7851 * raises the fault, in the A profile short-descriptor format. 7852 */ 7853 switch (env->exception.fsr & 0xf) { 7854 case M_FAKE_FSR_NSC_EXEC: 7855 /* Exception generated when we try to execute code at an address 7856 * which is marked as Secure & Non-Secure Callable and the CPU 7857 * is in the Non-Secure state. The only instruction which can 7858 * be executed like this is SG (and that only if both halves of 7859 * the SG instruction have the same security attributes.) 7860 * Everything else must generate an INVEP SecureFault, so we 7861 * emulate the SG instruction here. 7862 */ 7863 if (v7m_handle_execute_nsc(cpu)) { 7864 return; 7865 } 7866 break; 7867 case M_FAKE_FSR_SFAULT: 7868 /* Various flavours of SecureFault for attempts to execute or 7869 * access data in the wrong security state. 7870 */ 7871 switch (cs->exception_index) { 7872 case EXCP_PREFETCH_ABORT: 7873 if (env->v7m.secure) { 7874 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7875 qemu_log_mask(CPU_LOG_INT, 7876 "...really SecureFault with SFSR.INVTRAN\n"); 7877 } else { 7878 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7879 qemu_log_mask(CPU_LOG_INT, 7880 "...really SecureFault with SFSR.INVEP\n"); 7881 } 7882 break; 7883 case EXCP_DATA_ABORT: 7884 /* This must be an NS access to S memory */ 7885 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7886 qemu_log_mask(CPU_LOG_INT, 7887 "...really SecureFault with SFSR.AUVIOL\n"); 7888 break; 7889 } 7890 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7891 break; 7892 case 0x8: /* External Abort */ 7893 switch (cs->exception_index) { 7894 case EXCP_PREFETCH_ABORT: 7895 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7896 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7897 break; 7898 case EXCP_DATA_ABORT: 7899 env->v7m.cfsr[M_REG_NS] |= 7900 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7901 env->v7m.bfar = env->exception.vaddress; 7902 qemu_log_mask(CPU_LOG_INT, 7903 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7904 env->v7m.bfar); 7905 break; 7906 } 7907 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7908 break; 7909 default: 7910 /* All other FSR values are either MPU faults or "can't happen 7911 * for M profile" cases. 7912 */ 7913 switch (cs->exception_index) { 7914 case EXCP_PREFETCH_ABORT: 7915 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7916 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7917 break; 7918 case EXCP_DATA_ABORT: 7919 env->v7m.cfsr[env->v7m.secure] |= 7920 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7921 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7922 qemu_log_mask(CPU_LOG_INT, 7923 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7924 env->v7m.mmfar[env->v7m.secure]); 7925 break; 7926 } 7927 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7928 env->v7m.secure); 7929 break; 7930 } 7931 break; 7932 case EXCP_BKPT: 7933 if (semihosting_enabled()) { 7934 int nr; 7935 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7936 if (nr == 0xab) { 7937 env->regs[15] += 2; 7938 qemu_log_mask(CPU_LOG_INT, 7939 "...handling as semihosting call 0x%x\n", 7940 env->regs[0]); 7941 env->regs[0] = do_arm_semihosting(env); 7942 return; 7943 } 7944 } 7945 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7946 break; 7947 case EXCP_IRQ: 7948 break; 7949 case EXCP_EXCEPTION_EXIT: 7950 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7951 /* Must be v8M security extension function return */ 7952 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7953 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7954 if (do_v7m_function_return(cpu)) { 7955 return; 7956 } 7957 } else { 7958 do_v7m_exception_exit(cpu); 7959 return; 7960 } 7961 break; 7962 default: 7963 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7964 return; /* Never happens. Keep compiler happy. */ 7965 } 7966 7967 if (arm_feature(env, ARM_FEATURE_V8)) { 7968 lr = R_V7M_EXCRET_RES1_MASK | 7969 R_V7M_EXCRET_DCRS_MASK | 7970 R_V7M_EXCRET_FTYPE_MASK; 7971 /* The S bit indicates whether we should return to Secure 7972 * or NonSecure (ie our current state). 7973 * The ES bit indicates whether we're taking this exception 7974 * to Secure or NonSecure (ie our target state). We set it 7975 * later, in v7m_exception_taken(). 7976 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7977 * This corresponds to the ARM ARM pseudocode for v8M setting 7978 * some LR bits in PushStack() and some in ExceptionTaken(); 7979 * the distinction matters for the tailchain cases where we 7980 * can take an exception without pushing the stack. 7981 */ 7982 if (env->v7m.secure) { 7983 lr |= R_V7M_EXCRET_S_MASK; 7984 } 7985 } else { 7986 lr = R_V7M_EXCRET_RES1_MASK | 7987 R_V7M_EXCRET_S_MASK | 7988 R_V7M_EXCRET_DCRS_MASK | 7989 R_V7M_EXCRET_FTYPE_MASK | 7990 R_V7M_EXCRET_ES_MASK; 7991 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7992 lr |= R_V7M_EXCRET_SPSEL_MASK; 7993 } 7994 } 7995 if (!arm_v7m_is_handler_mode(env)) { 7996 lr |= R_V7M_EXCRET_MODE_MASK; 7997 } 7998 7999 ignore_stackfaults = v7m_push_stack(cpu); 8000 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 8001 } 8002 8003 /* Function used to synchronize QEMU's AArch64 register set with AArch32 8004 * register set. This is necessary when switching between AArch32 and AArch64 8005 * execution state. 8006 */ 8007 void aarch64_sync_32_to_64(CPUARMState *env) 8008 { 8009 int i; 8010 uint32_t mode = env->uncached_cpsr & CPSR_M; 8011 8012 /* We can blanket copy R[0:7] to X[0:7] */ 8013 for (i = 0; i < 8; i++) { 8014 env->xregs[i] = env->regs[i]; 8015 } 8016 8017 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8018 * Otherwise, they come from the banked user regs. 8019 */ 8020 if (mode == ARM_CPU_MODE_FIQ) { 8021 for (i = 8; i < 13; i++) { 8022 env->xregs[i] = env->usr_regs[i - 8]; 8023 } 8024 } else { 8025 for (i = 8; i < 13; i++) { 8026 env->xregs[i] = env->regs[i]; 8027 } 8028 } 8029 8030 /* Registers x13-x23 are the various mode SP and FP registers. Registers 8031 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8032 * from the mode banked register. 8033 */ 8034 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8035 env->xregs[13] = env->regs[13]; 8036 env->xregs[14] = env->regs[14]; 8037 } else { 8038 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8039 /* HYP is an exception in that it is copied from r14 */ 8040 if (mode == ARM_CPU_MODE_HYP) { 8041 env->xregs[14] = env->regs[14]; 8042 } else { 8043 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 8044 } 8045 } 8046 8047 if (mode == ARM_CPU_MODE_HYP) { 8048 env->xregs[15] = env->regs[13]; 8049 } else { 8050 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8051 } 8052 8053 if (mode == ARM_CPU_MODE_IRQ) { 8054 env->xregs[16] = env->regs[14]; 8055 env->xregs[17] = env->regs[13]; 8056 } else { 8057 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 8058 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8059 } 8060 8061 if (mode == ARM_CPU_MODE_SVC) { 8062 env->xregs[18] = env->regs[14]; 8063 env->xregs[19] = env->regs[13]; 8064 } else { 8065 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 8066 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8067 } 8068 8069 if (mode == ARM_CPU_MODE_ABT) { 8070 env->xregs[20] = env->regs[14]; 8071 env->xregs[21] = env->regs[13]; 8072 } else { 8073 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 8074 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8075 } 8076 8077 if (mode == ARM_CPU_MODE_UND) { 8078 env->xregs[22] = env->regs[14]; 8079 env->xregs[23] = env->regs[13]; 8080 } else { 8081 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 8082 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8083 } 8084 8085 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8086 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8087 * FIQ bank for r8-r14. 8088 */ 8089 if (mode == ARM_CPU_MODE_FIQ) { 8090 for (i = 24; i < 31; i++) { 8091 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8092 } 8093 } else { 8094 for (i = 24; i < 29; i++) { 8095 env->xregs[i] = env->fiq_regs[i - 24]; 8096 } 8097 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8098 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 8099 } 8100 8101 env->pc = env->regs[15]; 8102 } 8103 8104 /* Function used to synchronize QEMU's AArch32 register set with AArch64 8105 * register set. This is necessary when switching between AArch32 and AArch64 8106 * execution state. 8107 */ 8108 void aarch64_sync_64_to_32(CPUARMState *env) 8109 { 8110 int i; 8111 uint32_t mode = env->uncached_cpsr & CPSR_M; 8112 8113 /* We can blanket copy X[0:7] to R[0:7] */ 8114 for (i = 0; i < 8; i++) { 8115 env->regs[i] = env->xregs[i]; 8116 } 8117 8118 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8119 * Otherwise, we copy x8-x12 into the banked user regs. 8120 */ 8121 if (mode == ARM_CPU_MODE_FIQ) { 8122 for (i = 8; i < 13; i++) { 8123 env->usr_regs[i - 8] = env->xregs[i]; 8124 } 8125 } else { 8126 for (i = 8; i < 13; i++) { 8127 env->regs[i] = env->xregs[i]; 8128 } 8129 } 8130 8131 /* Registers r13 & r14 depend on the current mode. 8132 * If we are in a given mode, we copy the corresponding x registers to r13 8133 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8134 * for the mode. 8135 */ 8136 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8137 env->regs[13] = env->xregs[13]; 8138 env->regs[14] = env->xregs[14]; 8139 } else { 8140 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8141 8142 /* HYP is an exception in that it does not have its own banked r14 but 8143 * shares the USR r14 8144 */ 8145 if (mode == ARM_CPU_MODE_HYP) { 8146 env->regs[14] = env->xregs[14]; 8147 } else { 8148 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8149 } 8150 } 8151 8152 if (mode == ARM_CPU_MODE_HYP) { 8153 env->regs[13] = env->xregs[15]; 8154 } else { 8155 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8156 } 8157 8158 if (mode == ARM_CPU_MODE_IRQ) { 8159 env->regs[14] = env->xregs[16]; 8160 env->regs[13] = env->xregs[17]; 8161 } else { 8162 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8163 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8164 } 8165 8166 if (mode == ARM_CPU_MODE_SVC) { 8167 env->regs[14] = env->xregs[18]; 8168 env->regs[13] = env->xregs[19]; 8169 } else { 8170 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8171 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8172 } 8173 8174 if (mode == ARM_CPU_MODE_ABT) { 8175 env->regs[14] = env->xregs[20]; 8176 env->regs[13] = env->xregs[21]; 8177 } else { 8178 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8179 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8180 } 8181 8182 if (mode == ARM_CPU_MODE_UND) { 8183 env->regs[14] = env->xregs[22]; 8184 env->regs[13] = env->xregs[23]; 8185 } else { 8186 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8187 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8188 } 8189 8190 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8191 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8192 * FIQ bank for r8-r14. 8193 */ 8194 if (mode == ARM_CPU_MODE_FIQ) { 8195 for (i = 24; i < 31; i++) { 8196 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8197 } 8198 } else { 8199 for (i = 24; i < 29; i++) { 8200 env->fiq_regs[i - 24] = env->xregs[i]; 8201 } 8202 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8203 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8204 } 8205 8206 env->regs[15] = env->pc; 8207 } 8208 8209 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8210 uint32_t mask, uint32_t offset, 8211 uint32_t newpc) 8212 { 8213 /* Change the CPU state so as to actually take the exception. */ 8214 switch_mode(env, new_mode); 8215 /* 8216 * For exceptions taken to AArch32 we must clear the SS bit in both 8217 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8218 */ 8219 env->uncached_cpsr &= ~PSTATE_SS; 8220 env->spsr = cpsr_read(env); 8221 /* Clear IT bits. */ 8222 env->condexec_bits = 0; 8223 /* Switch to the new mode, and to the correct instruction set. */ 8224 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8225 /* Set new mode endianness */ 8226 env->uncached_cpsr &= ~CPSR_E; 8227 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8228 env->uncached_cpsr |= CPSR_E; 8229 } 8230 /* J and IL must always be cleared for exception entry */ 8231 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8232 env->daif |= mask; 8233 8234 if (new_mode == ARM_CPU_MODE_HYP) { 8235 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8236 env->elr_el[2] = env->regs[15]; 8237 } else { 8238 /* 8239 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8240 * and we should just guard the thumb mode on V4 8241 */ 8242 if (arm_feature(env, ARM_FEATURE_V4T)) { 8243 env->thumb = 8244 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8245 } 8246 env->regs[14] = env->regs[15] + offset; 8247 } 8248 env->regs[15] = newpc; 8249 } 8250 8251 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8252 { 8253 /* 8254 * Handle exception entry to Hyp mode; this is sufficiently 8255 * different to entry to other AArch32 modes that we handle it 8256 * separately here. 8257 * 8258 * The vector table entry used is always the 0x14 Hyp mode entry point, 8259 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8260 * The offset applied to the preferred return address is always zero 8261 * (see DDI0487C.a section G1.12.3). 8262 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8263 */ 8264 uint32_t addr, mask; 8265 ARMCPU *cpu = ARM_CPU(cs); 8266 CPUARMState *env = &cpu->env; 8267 8268 switch (cs->exception_index) { 8269 case EXCP_UDEF: 8270 addr = 0x04; 8271 break; 8272 case EXCP_SWI: 8273 addr = 0x14; 8274 break; 8275 case EXCP_BKPT: 8276 /* Fall through to prefetch abort. */ 8277 case EXCP_PREFETCH_ABORT: 8278 env->cp15.ifar_s = env->exception.vaddress; 8279 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8280 (uint32_t)env->exception.vaddress); 8281 addr = 0x0c; 8282 break; 8283 case EXCP_DATA_ABORT: 8284 env->cp15.dfar_s = env->exception.vaddress; 8285 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8286 (uint32_t)env->exception.vaddress); 8287 addr = 0x10; 8288 break; 8289 case EXCP_IRQ: 8290 addr = 0x18; 8291 break; 8292 case EXCP_FIQ: 8293 addr = 0x1c; 8294 break; 8295 case EXCP_HVC: 8296 addr = 0x08; 8297 break; 8298 case EXCP_HYP_TRAP: 8299 addr = 0x14; 8300 default: 8301 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8302 } 8303 8304 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8305 if (!arm_feature(env, ARM_FEATURE_V8)) { 8306 /* 8307 * QEMU syndrome values are v8-style. v7 has the IL bit 8308 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8309 * If this is a v7 CPU, squash the IL bit in those cases. 8310 */ 8311 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8312 (cs->exception_index == EXCP_DATA_ABORT && 8313 !(env->exception.syndrome & ARM_EL_ISV)) || 8314 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8315 env->exception.syndrome &= ~ARM_EL_IL; 8316 } 8317 } 8318 env->cp15.esr_el[2] = env->exception.syndrome; 8319 } 8320 8321 if (arm_current_el(env) != 2 && addr < 0x14) { 8322 addr = 0x14; 8323 } 8324 8325 mask = 0; 8326 if (!(env->cp15.scr_el3 & SCR_EA)) { 8327 mask |= CPSR_A; 8328 } 8329 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8330 mask |= CPSR_I; 8331 } 8332 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8333 mask |= CPSR_F; 8334 } 8335 8336 addr += env->cp15.hvbar; 8337 8338 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8339 } 8340 8341 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8342 { 8343 ARMCPU *cpu = ARM_CPU(cs); 8344 CPUARMState *env = &cpu->env; 8345 uint32_t addr; 8346 uint32_t mask; 8347 int new_mode; 8348 uint32_t offset; 8349 uint32_t moe; 8350 8351 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8352 switch (syn_get_ec(env->exception.syndrome)) { 8353 case EC_BREAKPOINT: 8354 case EC_BREAKPOINT_SAME_EL: 8355 moe = 1; 8356 break; 8357 case EC_WATCHPOINT: 8358 case EC_WATCHPOINT_SAME_EL: 8359 moe = 10; 8360 break; 8361 case EC_AA32_BKPT: 8362 moe = 3; 8363 break; 8364 case EC_VECTORCATCH: 8365 moe = 5; 8366 break; 8367 default: 8368 moe = 0; 8369 break; 8370 } 8371 8372 if (moe) { 8373 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8374 } 8375 8376 if (env->exception.target_el == 2) { 8377 arm_cpu_do_interrupt_aarch32_hyp(cs); 8378 return; 8379 } 8380 8381 /* TODO: Vectored interrupt controller. */ 8382 switch (cs->exception_index) { 8383 case EXCP_UDEF: 8384 new_mode = ARM_CPU_MODE_UND; 8385 addr = 0x04; 8386 mask = CPSR_I; 8387 if (env->thumb) 8388 offset = 2; 8389 else 8390 offset = 4; 8391 break; 8392 case EXCP_SWI: 8393 new_mode = ARM_CPU_MODE_SVC; 8394 addr = 0x08; 8395 mask = CPSR_I; 8396 /* The PC already points to the next instruction. */ 8397 offset = 0; 8398 break; 8399 case EXCP_BKPT: 8400 /* Fall through to prefetch abort. */ 8401 case EXCP_PREFETCH_ABORT: 8402 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8403 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8404 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8405 env->exception.fsr, (uint32_t)env->exception.vaddress); 8406 new_mode = ARM_CPU_MODE_ABT; 8407 addr = 0x0c; 8408 mask = CPSR_A | CPSR_I; 8409 offset = 4; 8410 break; 8411 case EXCP_DATA_ABORT: 8412 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8413 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8414 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8415 env->exception.fsr, 8416 (uint32_t)env->exception.vaddress); 8417 new_mode = ARM_CPU_MODE_ABT; 8418 addr = 0x10; 8419 mask = CPSR_A | CPSR_I; 8420 offset = 8; 8421 break; 8422 case EXCP_IRQ: 8423 new_mode = ARM_CPU_MODE_IRQ; 8424 addr = 0x18; 8425 /* Disable IRQ and imprecise data aborts. */ 8426 mask = CPSR_A | CPSR_I; 8427 offset = 4; 8428 if (env->cp15.scr_el3 & SCR_IRQ) { 8429 /* IRQ routed to monitor mode */ 8430 new_mode = ARM_CPU_MODE_MON; 8431 mask |= CPSR_F; 8432 } 8433 break; 8434 case EXCP_FIQ: 8435 new_mode = ARM_CPU_MODE_FIQ; 8436 addr = 0x1c; 8437 /* Disable FIQ, IRQ and imprecise data aborts. */ 8438 mask = CPSR_A | CPSR_I | CPSR_F; 8439 if (env->cp15.scr_el3 & SCR_FIQ) { 8440 /* FIQ routed to monitor mode */ 8441 new_mode = ARM_CPU_MODE_MON; 8442 } 8443 offset = 4; 8444 break; 8445 case EXCP_VIRQ: 8446 new_mode = ARM_CPU_MODE_IRQ; 8447 addr = 0x18; 8448 /* Disable IRQ and imprecise data aborts. */ 8449 mask = CPSR_A | CPSR_I; 8450 offset = 4; 8451 break; 8452 case EXCP_VFIQ: 8453 new_mode = ARM_CPU_MODE_FIQ; 8454 addr = 0x1c; 8455 /* Disable FIQ, IRQ and imprecise data aborts. */ 8456 mask = CPSR_A | CPSR_I | CPSR_F; 8457 offset = 4; 8458 break; 8459 case EXCP_SMC: 8460 new_mode = ARM_CPU_MODE_MON; 8461 addr = 0x08; 8462 mask = CPSR_A | CPSR_I | CPSR_F; 8463 offset = 0; 8464 break; 8465 default: 8466 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8467 return; /* Never happens. Keep compiler happy. */ 8468 } 8469 8470 if (new_mode == ARM_CPU_MODE_MON) { 8471 addr += env->cp15.mvbar; 8472 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8473 /* High vectors. When enabled, base address cannot be remapped. */ 8474 addr += 0xffff0000; 8475 } else { 8476 /* ARM v7 architectures provide a vector base address register to remap 8477 * the interrupt vector table. 8478 * This register is only followed in non-monitor mode, and is banked. 8479 * Note: only bits 31:5 are valid. 8480 */ 8481 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8482 } 8483 8484 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8485 env->cp15.scr_el3 &= ~SCR_NS; 8486 } 8487 8488 take_aarch32_exception(env, new_mode, mask, offset, addr); 8489 } 8490 8491 /* Handle exception entry to a target EL which is using AArch64 */ 8492 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8493 { 8494 ARMCPU *cpu = ARM_CPU(cs); 8495 CPUARMState *env = &cpu->env; 8496 unsigned int new_el = env->exception.target_el; 8497 target_ulong addr = env->cp15.vbar_el[new_el]; 8498 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8499 unsigned int cur_el = arm_current_el(env); 8500 8501 /* 8502 * Note that new_el can never be 0. If cur_el is 0, then 8503 * el0_a64 is is_a64(), else el0_a64 is ignored. 8504 */ 8505 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8506 8507 if (cur_el < new_el) { 8508 /* Entry vector offset depends on whether the implemented EL 8509 * immediately lower than the target level is using AArch32 or AArch64 8510 */ 8511 bool is_aa64; 8512 8513 switch (new_el) { 8514 case 3: 8515 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8516 break; 8517 case 2: 8518 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8519 break; 8520 case 1: 8521 is_aa64 = is_a64(env); 8522 break; 8523 default: 8524 g_assert_not_reached(); 8525 } 8526 8527 if (is_aa64) { 8528 addr += 0x400; 8529 } else { 8530 addr += 0x600; 8531 } 8532 } else if (pstate_read(env) & PSTATE_SP) { 8533 addr += 0x200; 8534 } 8535 8536 switch (cs->exception_index) { 8537 case EXCP_PREFETCH_ABORT: 8538 case EXCP_DATA_ABORT: 8539 env->cp15.far_el[new_el] = env->exception.vaddress; 8540 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8541 env->cp15.far_el[new_el]); 8542 /* fall through */ 8543 case EXCP_BKPT: 8544 case EXCP_UDEF: 8545 case EXCP_SWI: 8546 case EXCP_HVC: 8547 case EXCP_HYP_TRAP: 8548 case EXCP_SMC: 8549 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8550 /* 8551 * QEMU internal FP/SIMD syndromes from AArch32 include the 8552 * TA and coproc fields which are only exposed if the exception 8553 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8554 * AArch64 format syndrome. 8555 */ 8556 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8557 } 8558 env->cp15.esr_el[new_el] = env->exception.syndrome; 8559 break; 8560 case EXCP_IRQ: 8561 case EXCP_VIRQ: 8562 addr += 0x80; 8563 break; 8564 case EXCP_FIQ: 8565 case EXCP_VFIQ: 8566 addr += 0x100; 8567 break; 8568 case EXCP_SEMIHOST: 8569 qemu_log_mask(CPU_LOG_INT, 8570 "...handling as semihosting call 0x%" PRIx64 "\n", 8571 env->xregs[0]); 8572 env->xregs[0] = do_arm_semihosting(env); 8573 return; 8574 default: 8575 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8576 } 8577 8578 if (is_a64(env)) { 8579 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8580 aarch64_save_sp(env, arm_current_el(env)); 8581 env->elr_el[new_el] = env->pc; 8582 } else { 8583 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8584 env->elr_el[new_el] = env->regs[15]; 8585 8586 aarch64_sync_32_to_64(env); 8587 8588 env->condexec_bits = 0; 8589 } 8590 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8591 env->elr_el[new_el]); 8592 8593 pstate_write(env, PSTATE_DAIF | new_mode); 8594 env->aarch64 = 1; 8595 aarch64_restore_sp(env, new_el); 8596 8597 env->pc = addr; 8598 8599 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8600 new_el, env->pc, pstate_read(env)); 8601 } 8602 8603 static inline bool check_for_semihosting(CPUState *cs) 8604 { 8605 /* Check whether this exception is a semihosting call; if so 8606 * then handle it and return true; otherwise return false. 8607 */ 8608 ARMCPU *cpu = ARM_CPU(cs); 8609 CPUARMState *env = &cpu->env; 8610 8611 if (is_a64(env)) { 8612 if (cs->exception_index == EXCP_SEMIHOST) { 8613 /* This is always the 64-bit semihosting exception. 8614 * The "is this usermode" and "is semihosting enabled" 8615 * checks have been done at translate time. 8616 */ 8617 qemu_log_mask(CPU_LOG_INT, 8618 "...handling as semihosting call 0x%" PRIx64 "\n", 8619 env->xregs[0]); 8620 env->xregs[0] = do_arm_semihosting(env); 8621 return true; 8622 } 8623 return false; 8624 } else { 8625 uint32_t imm; 8626 8627 /* Only intercept calls from privileged modes, to provide some 8628 * semblance of security. 8629 */ 8630 if (cs->exception_index != EXCP_SEMIHOST && 8631 (!semihosting_enabled() || 8632 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8633 return false; 8634 } 8635 8636 switch (cs->exception_index) { 8637 case EXCP_SEMIHOST: 8638 /* This is always a semihosting call; the "is this usermode" 8639 * and "is semihosting enabled" checks have been done at 8640 * translate time. 8641 */ 8642 break; 8643 case EXCP_SWI: 8644 /* Check for semihosting interrupt. */ 8645 if (env->thumb) { 8646 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8647 & 0xff; 8648 if (imm == 0xab) { 8649 break; 8650 } 8651 } else { 8652 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8653 & 0xffffff; 8654 if (imm == 0x123456) { 8655 break; 8656 } 8657 } 8658 return false; 8659 case EXCP_BKPT: 8660 /* See if this is a semihosting syscall. */ 8661 if (env->thumb) { 8662 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8663 & 0xff; 8664 if (imm == 0xab) { 8665 env->regs[15] += 2; 8666 break; 8667 } 8668 } 8669 return false; 8670 default: 8671 return false; 8672 } 8673 8674 qemu_log_mask(CPU_LOG_INT, 8675 "...handling as semihosting call 0x%x\n", 8676 env->regs[0]); 8677 env->regs[0] = do_arm_semihosting(env); 8678 return true; 8679 } 8680 } 8681 8682 /* Handle a CPU exception for A and R profile CPUs. 8683 * Do any appropriate logging, handle PSCI calls, and then hand off 8684 * to the AArch64-entry or AArch32-entry function depending on the 8685 * target exception level's register width. 8686 */ 8687 void arm_cpu_do_interrupt(CPUState *cs) 8688 { 8689 ARMCPU *cpu = ARM_CPU(cs); 8690 CPUARMState *env = &cpu->env; 8691 unsigned int new_el = env->exception.target_el; 8692 8693 assert(!arm_feature(env, ARM_FEATURE_M)); 8694 8695 arm_log_exception(cs->exception_index); 8696 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8697 new_el); 8698 if (qemu_loglevel_mask(CPU_LOG_INT) 8699 && !excp_is_internal(cs->exception_index)) { 8700 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8701 syn_get_ec(env->exception.syndrome), 8702 env->exception.syndrome); 8703 } 8704 8705 if (arm_is_psci_call(cpu, cs->exception_index)) { 8706 arm_handle_psci_call(cpu); 8707 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8708 return; 8709 } 8710 8711 /* Semihosting semantics depend on the register width of the 8712 * code that caused the exception, not the target exception level, 8713 * so must be handled here. 8714 */ 8715 if (check_for_semihosting(cs)) { 8716 return; 8717 } 8718 8719 /* Hooks may change global state so BQL should be held, also the 8720 * BQL needs to be held for any modification of 8721 * cs->interrupt_request. 8722 */ 8723 g_assert(qemu_mutex_iothread_locked()); 8724 8725 arm_call_pre_el_change_hook(cpu); 8726 8727 assert(!excp_is_internal(cs->exception_index)); 8728 if (arm_el_is_aa64(env, new_el)) { 8729 arm_cpu_do_interrupt_aarch64(cs); 8730 } else { 8731 arm_cpu_do_interrupt_aarch32(cs); 8732 } 8733 8734 arm_call_el_change_hook(cpu); 8735 8736 if (!kvm_enabled()) { 8737 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8738 } 8739 } 8740 8741 /* Return the exception level which controls this address translation regime */ 8742 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8743 { 8744 switch (mmu_idx) { 8745 case ARMMMUIdx_S2NS: 8746 case ARMMMUIdx_S1E2: 8747 return 2; 8748 case ARMMMUIdx_S1E3: 8749 return 3; 8750 case ARMMMUIdx_S1SE0: 8751 return arm_el_is_aa64(env, 3) ? 1 : 3; 8752 case ARMMMUIdx_S1SE1: 8753 case ARMMMUIdx_S1NSE0: 8754 case ARMMMUIdx_S1NSE1: 8755 case ARMMMUIdx_MPrivNegPri: 8756 case ARMMMUIdx_MUserNegPri: 8757 case ARMMMUIdx_MPriv: 8758 case ARMMMUIdx_MUser: 8759 case ARMMMUIdx_MSPrivNegPri: 8760 case ARMMMUIdx_MSUserNegPri: 8761 case ARMMMUIdx_MSPriv: 8762 case ARMMMUIdx_MSUser: 8763 return 1; 8764 default: 8765 g_assert_not_reached(); 8766 } 8767 } 8768 8769 /* Return the SCTLR value which controls this address translation regime */ 8770 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8771 { 8772 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8773 } 8774 8775 /* Return true if the specified stage of address translation is disabled */ 8776 static inline bool regime_translation_disabled(CPUARMState *env, 8777 ARMMMUIdx mmu_idx) 8778 { 8779 if (arm_feature(env, ARM_FEATURE_M)) { 8780 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8781 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8782 case R_V7M_MPU_CTRL_ENABLE_MASK: 8783 /* Enabled, but not for HardFault and NMI */ 8784 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8785 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8786 /* Enabled for all cases */ 8787 return false; 8788 case 0: 8789 default: 8790 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8791 * we warned about that in armv7m_nvic.c when the guest set it. 8792 */ 8793 return true; 8794 } 8795 } 8796 8797 if (mmu_idx == ARMMMUIdx_S2NS) { 8798 /* HCR.DC means HCR.VM behaves as 1 */ 8799 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8800 } 8801 8802 if (env->cp15.hcr_el2 & HCR_TGE) { 8803 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8804 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8805 return true; 8806 } 8807 } 8808 8809 if ((env->cp15.hcr_el2 & HCR_DC) && 8810 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8811 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8812 return true; 8813 } 8814 8815 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8816 } 8817 8818 static inline bool regime_translation_big_endian(CPUARMState *env, 8819 ARMMMUIdx mmu_idx) 8820 { 8821 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8822 } 8823 8824 /* Return the TCR controlling this translation regime */ 8825 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8826 { 8827 if (mmu_idx == ARMMMUIdx_S2NS) { 8828 return &env->cp15.vtcr_el2; 8829 } 8830 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8831 } 8832 8833 /* Convert a possible stage1+2 MMU index into the appropriate 8834 * stage 1 MMU index 8835 */ 8836 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8837 { 8838 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8839 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8840 } 8841 return mmu_idx; 8842 } 8843 8844 /* Returns TBI0 value for current regime el */ 8845 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8846 { 8847 TCR *tcr; 8848 uint32_t el; 8849 8850 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8851 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8852 */ 8853 mmu_idx = stage_1_mmu_idx(mmu_idx); 8854 8855 tcr = regime_tcr(env, mmu_idx); 8856 el = regime_el(env, mmu_idx); 8857 8858 if (el > 1) { 8859 return extract64(tcr->raw_tcr, 20, 1); 8860 } else { 8861 return extract64(tcr->raw_tcr, 37, 1); 8862 } 8863 } 8864 8865 /* Returns TBI1 value for current regime el */ 8866 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8867 { 8868 TCR *tcr; 8869 uint32_t el; 8870 8871 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8872 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8873 */ 8874 mmu_idx = stage_1_mmu_idx(mmu_idx); 8875 8876 tcr = regime_tcr(env, mmu_idx); 8877 el = regime_el(env, mmu_idx); 8878 8879 if (el > 1) { 8880 return 0; 8881 } else { 8882 return extract64(tcr->raw_tcr, 38, 1); 8883 } 8884 } 8885 8886 /* Return the TTBR associated with this translation regime */ 8887 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8888 int ttbrn) 8889 { 8890 if (mmu_idx == ARMMMUIdx_S2NS) { 8891 return env->cp15.vttbr_el2; 8892 } 8893 if (ttbrn == 0) { 8894 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8895 } else { 8896 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8897 } 8898 } 8899 8900 /* Return true if the translation regime is using LPAE format page tables */ 8901 static inline bool regime_using_lpae_format(CPUARMState *env, 8902 ARMMMUIdx mmu_idx) 8903 { 8904 int el = regime_el(env, mmu_idx); 8905 if (el == 2 || arm_el_is_aa64(env, el)) { 8906 return true; 8907 } 8908 if (arm_feature(env, ARM_FEATURE_LPAE) 8909 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8910 return true; 8911 } 8912 return false; 8913 } 8914 8915 /* Returns true if the stage 1 translation regime is using LPAE format page 8916 * tables. Used when raising alignment exceptions, whose FSR changes depending 8917 * on whether the long or short descriptor format is in use. */ 8918 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8919 { 8920 mmu_idx = stage_1_mmu_idx(mmu_idx); 8921 8922 return regime_using_lpae_format(env, mmu_idx); 8923 } 8924 8925 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8926 { 8927 switch (mmu_idx) { 8928 case ARMMMUIdx_S1SE0: 8929 case ARMMMUIdx_S1NSE0: 8930 case ARMMMUIdx_MUser: 8931 case ARMMMUIdx_MSUser: 8932 case ARMMMUIdx_MUserNegPri: 8933 case ARMMMUIdx_MSUserNegPri: 8934 return true; 8935 default: 8936 return false; 8937 case ARMMMUIdx_S12NSE0: 8938 case ARMMMUIdx_S12NSE1: 8939 g_assert_not_reached(); 8940 } 8941 } 8942 8943 /* Translate section/page access permissions to page 8944 * R/W protection flags 8945 * 8946 * @env: CPUARMState 8947 * @mmu_idx: MMU index indicating required translation regime 8948 * @ap: The 3-bit access permissions (AP[2:0]) 8949 * @domain_prot: The 2-bit domain access permissions 8950 */ 8951 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8952 int ap, int domain_prot) 8953 { 8954 bool is_user = regime_is_user(env, mmu_idx); 8955 8956 if (domain_prot == 3) { 8957 return PAGE_READ | PAGE_WRITE; 8958 } 8959 8960 switch (ap) { 8961 case 0: 8962 if (arm_feature(env, ARM_FEATURE_V7)) { 8963 return 0; 8964 } 8965 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8966 case SCTLR_S: 8967 return is_user ? 0 : PAGE_READ; 8968 case SCTLR_R: 8969 return PAGE_READ; 8970 default: 8971 return 0; 8972 } 8973 case 1: 8974 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8975 case 2: 8976 if (is_user) { 8977 return PAGE_READ; 8978 } else { 8979 return PAGE_READ | PAGE_WRITE; 8980 } 8981 case 3: 8982 return PAGE_READ | PAGE_WRITE; 8983 case 4: /* Reserved. */ 8984 return 0; 8985 case 5: 8986 return is_user ? 0 : PAGE_READ; 8987 case 6: 8988 return PAGE_READ; 8989 case 7: 8990 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8991 return 0; 8992 } 8993 return PAGE_READ; 8994 default: 8995 g_assert_not_reached(); 8996 } 8997 } 8998 8999 /* Translate section/page access permissions to page 9000 * R/W protection flags. 9001 * 9002 * @ap: The 2-bit simple AP (AP[2:1]) 9003 * @is_user: TRUE if accessing from PL0 9004 */ 9005 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9006 { 9007 switch (ap) { 9008 case 0: 9009 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9010 case 1: 9011 return PAGE_READ | PAGE_WRITE; 9012 case 2: 9013 return is_user ? 0 : PAGE_READ; 9014 case 3: 9015 return PAGE_READ; 9016 default: 9017 g_assert_not_reached(); 9018 } 9019 } 9020 9021 static inline int 9022 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9023 { 9024 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9025 } 9026 9027 /* Translate S2 section/page access permissions to protection flags 9028 * 9029 * @env: CPUARMState 9030 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9031 * @xn: XN (execute-never) bit 9032 */ 9033 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 9034 { 9035 int prot = 0; 9036 9037 if (s2ap & 1) { 9038 prot |= PAGE_READ; 9039 } 9040 if (s2ap & 2) { 9041 prot |= PAGE_WRITE; 9042 } 9043 if (!xn) { 9044 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9045 prot |= PAGE_EXEC; 9046 } 9047 } 9048 return prot; 9049 } 9050 9051 /* Translate section/page access permissions to protection flags 9052 * 9053 * @env: CPUARMState 9054 * @mmu_idx: MMU index indicating required translation regime 9055 * @is_aa64: TRUE if AArch64 9056 * @ap: The 2-bit simple AP (AP[2:1]) 9057 * @ns: NS (non-secure) bit 9058 * @xn: XN (execute-never) bit 9059 * @pxn: PXN (privileged execute-never) bit 9060 */ 9061 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 9062 int ap, int ns, int xn, int pxn) 9063 { 9064 bool is_user = regime_is_user(env, mmu_idx); 9065 int prot_rw, user_rw; 9066 bool have_wxn; 9067 int wxn = 0; 9068 9069 assert(mmu_idx != ARMMMUIdx_S2NS); 9070 9071 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 9072 if (is_user) { 9073 prot_rw = user_rw; 9074 } else { 9075 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 9076 } 9077 9078 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 9079 return prot_rw; 9080 } 9081 9082 /* TODO have_wxn should be replaced with 9083 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 9084 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 9085 * compatible processors have EL2, which is required for [U]WXN. 9086 */ 9087 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 9088 9089 if (have_wxn) { 9090 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 9091 } 9092 9093 if (is_aa64) { 9094 switch (regime_el(env, mmu_idx)) { 9095 case 1: 9096 if (!is_user) { 9097 xn = pxn || (user_rw & PAGE_WRITE); 9098 } 9099 break; 9100 case 2: 9101 case 3: 9102 break; 9103 } 9104 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9105 switch (regime_el(env, mmu_idx)) { 9106 case 1: 9107 case 3: 9108 if (is_user) { 9109 xn = xn || !(user_rw & PAGE_READ); 9110 } else { 9111 int uwxn = 0; 9112 if (have_wxn) { 9113 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 9114 } 9115 xn = xn || !(prot_rw & PAGE_READ) || pxn || 9116 (uwxn && (user_rw & PAGE_WRITE)); 9117 } 9118 break; 9119 case 2: 9120 break; 9121 } 9122 } else { 9123 xn = wxn = 0; 9124 } 9125 9126 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 9127 return prot_rw; 9128 } 9129 return prot_rw | PAGE_EXEC; 9130 } 9131 9132 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 9133 uint32_t *table, uint32_t address) 9134 { 9135 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 9136 TCR *tcr = regime_tcr(env, mmu_idx); 9137 9138 if (address & tcr->mask) { 9139 if (tcr->raw_tcr & TTBCR_PD1) { 9140 /* Translation table walk disabled for TTBR1 */ 9141 return false; 9142 } 9143 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9144 } else { 9145 if (tcr->raw_tcr & TTBCR_PD0) { 9146 /* Translation table walk disabled for TTBR0 */ 9147 return false; 9148 } 9149 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9150 } 9151 *table |= (address >> 18) & 0x3ffc; 9152 return true; 9153 } 9154 9155 /* Translate a S1 pagetable walk through S2 if needed. */ 9156 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9157 hwaddr addr, MemTxAttrs txattrs, 9158 ARMMMUFaultInfo *fi) 9159 { 9160 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 9161 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9162 target_ulong s2size; 9163 hwaddr s2pa; 9164 int s2prot; 9165 int ret; 9166 ARMCacheAttrs cacheattrs = {}; 9167 ARMCacheAttrs *pcacheattrs = NULL; 9168 9169 if (env->cp15.hcr_el2 & HCR_PTW) { 9170 /* 9171 * PTW means we must fault if this S1 walk touches S2 Device 9172 * memory; otherwise we don't care about the attributes and can 9173 * save the S2 translation the effort of computing them. 9174 */ 9175 pcacheattrs = &cacheattrs; 9176 } 9177 9178 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 9179 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 9180 if (ret) { 9181 assert(fi->type != ARMFault_None); 9182 fi->s2addr = addr; 9183 fi->stage2 = true; 9184 fi->s1ptw = true; 9185 return ~0; 9186 } 9187 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 9188 /* Access was to Device memory: generate Permission fault */ 9189 fi->type = ARMFault_Permission; 9190 fi->s2addr = addr; 9191 fi->stage2 = true; 9192 fi->s1ptw = true; 9193 return ~0; 9194 } 9195 addr = s2pa; 9196 } 9197 return addr; 9198 } 9199 9200 /* All loads done in the course of a page table walk go through here. */ 9201 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9202 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9203 { 9204 ARMCPU *cpu = ARM_CPU(cs); 9205 CPUARMState *env = &cpu->env; 9206 MemTxAttrs attrs = {}; 9207 MemTxResult result = MEMTX_OK; 9208 AddressSpace *as; 9209 uint32_t data; 9210 9211 attrs.secure = is_secure; 9212 as = arm_addressspace(cs, attrs); 9213 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9214 if (fi->s1ptw) { 9215 return 0; 9216 } 9217 if (regime_translation_big_endian(env, mmu_idx)) { 9218 data = address_space_ldl_be(as, addr, attrs, &result); 9219 } else { 9220 data = address_space_ldl_le(as, addr, attrs, &result); 9221 } 9222 if (result == MEMTX_OK) { 9223 return data; 9224 } 9225 fi->type = ARMFault_SyncExternalOnWalk; 9226 fi->ea = arm_extabort_type(result); 9227 return 0; 9228 } 9229 9230 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9231 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9232 { 9233 ARMCPU *cpu = ARM_CPU(cs); 9234 CPUARMState *env = &cpu->env; 9235 MemTxAttrs attrs = {}; 9236 MemTxResult result = MEMTX_OK; 9237 AddressSpace *as; 9238 uint64_t data; 9239 9240 attrs.secure = is_secure; 9241 as = arm_addressspace(cs, attrs); 9242 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9243 if (fi->s1ptw) { 9244 return 0; 9245 } 9246 if (regime_translation_big_endian(env, mmu_idx)) { 9247 data = address_space_ldq_be(as, addr, attrs, &result); 9248 } else { 9249 data = address_space_ldq_le(as, addr, attrs, &result); 9250 } 9251 if (result == MEMTX_OK) { 9252 return data; 9253 } 9254 fi->type = ARMFault_SyncExternalOnWalk; 9255 fi->ea = arm_extabort_type(result); 9256 return 0; 9257 } 9258 9259 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9260 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9261 hwaddr *phys_ptr, int *prot, 9262 target_ulong *page_size, 9263 ARMMMUFaultInfo *fi) 9264 { 9265 CPUState *cs = CPU(arm_env_get_cpu(env)); 9266 int level = 1; 9267 uint32_t table; 9268 uint32_t desc; 9269 int type; 9270 int ap; 9271 int domain = 0; 9272 int domain_prot; 9273 hwaddr phys_addr; 9274 uint32_t dacr; 9275 9276 /* Pagetable walk. */ 9277 /* Lookup l1 descriptor. */ 9278 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9279 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9280 fi->type = ARMFault_Translation; 9281 goto do_fault; 9282 } 9283 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9284 mmu_idx, fi); 9285 if (fi->type != ARMFault_None) { 9286 goto do_fault; 9287 } 9288 type = (desc & 3); 9289 domain = (desc >> 5) & 0x0f; 9290 if (regime_el(env, mmu_idx) == 1) { 9291 dacr = env->cp15.dacr_ns; 9292 } else { 9293 dacr = env->cp15.dacr_s; 9294 } 9295 domain_prot = (dacr >> (domain * 2)) & 3; 9296 if (type == 0) { 9297 /* Section translation fault. */ 9298 fi->type = ARMFault_Translation; 9299 goto do_fault; 9300 } 9301 if (type != 2) { 9302 level = 2; 9303 } 9304 if (domain_prot == 0 || domain_prot == 2) { 9305 fi->type = ARMFault_Domain; 9306 goto do_fault; 9307 } 9308 if (type == 2) { 9309 /* 1Mb section. */ 9310 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9311 ap = (desc >> 10) & 3; 9312 *page_size = 1024 * 1024; 9313 } else { 9314 /* Lookup l2 entry. */ 9315 if (type == 1) { 9316 /* Coarse pagetable. */ 9317 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9318 } else { 9319 /* Fine pagetable. */ 9320 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9321 } 9322 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9323 mmu_idx, fi); 9324 if (fi->type != ARMFault_None) { 9325 goto do_fault; 9326 } 9327 switch (desc & 3) { 9328 case 0: /* Page translation fault. */ 9329 fi->type = ARMFault_Translation; 9330 goto do_fault; 9331 case 1: /* 64k page. */ 9332 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9333 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9334 *page_size = 0x10000; 9335 break; 9336 case 2: /* 4k page. */ 9337 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9338 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9339 *page_size = 0x1000; 9340 break; 9341 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9342 if (type == 1) { 9343 /* ARMv6/XScale extended small page format */ 9344 if (arm_feature(env, ARM_FEATURE_XSCALE) 9345 || arm_feature(env, ARM_FEATURE_V6)) { 9346 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9347 *page_size = 0x1000; 9348 } else { 9349 /* UNPREDICTABLE in ARMv5; we choose to take a 9350 * page translation fault. 9351 */ 9352 fi->type = ARMFault_Translation; 9353 goto do_fault; 9354 } 9355 } else { 9356 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9357 *page_size = 0x400; 9358 } 9359 ap = (desc >> 4) & 3; 9360 break; 9361 default: 9362 /* Never happens, but compiler isn't smart enough to tell. */ 9363 abort(); 9364 } 9365 } 9366 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9367 *prot |= *prot ? PAGE_EXEC : 0; 9368 if (!(*prot & (1 << access_type))) { 9369 /* Access permission fault. */ 9370 fi->type = ARMFault_Permission; 9371 goto do_fault; 9372 } 9373 *phys_ptr = phys_addr; 9374 return false; 9375 do_fault: 9376 fi->domain = domain; 9377 fi->level = level; 9378 return true; 9379 } 9380 9381 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9382 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9383 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9384 target_ulong *page_size, ARMMMUFaultInfo *fi) 9385 { 9386 CPUState *cs = CPU(arm_env_get_cpu(env)); 9387 int level = 1; 9388 uint32_t table; 9389 uint32_t desc; 9390 uint32_t xn; 9391 uint32_t pxn = 0; 9392 int type; 9393 int ap; 9394 int domain = 0; 9395 int domain_prot; 9396 hwaddr phys_addr; 9397 uint32_t dacr; 9398 bool ns; 9399 9400 /* Pagetable walk. */ 9401 /* Lookup l1 descriptor. */ 9402 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9403 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9404 fi->type = ARMFault_Translation; 9405 goto do_fault; 9406 } 9407 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9408 mmu_idx, fi); 9409 if (fi->type != ARMFault_None) { 9410 goto do_fault; 9411 } 9412 type = (desc & 3); 9413 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9414 /* Section translation fault, or attempt to use the encoding 9415 * which is Reserved on implementations without PXN. 9416 */ 9417 fi->type = ARMFault_Translation; 9418 goto do_fault; 9419 } 9420 if ((type == 1) || !(desc & (1 << 18))) { 9421 /* Page or Section. */ 9422 domain = (desc >> 5) & 0x0f; 9423 } 9424 if (regime_el(env, mmu_idx) == 1) { 9425 dacr = env->cp15.dacr_ns; 9426 } else { 9427 dacr = env->cp15.dacr_s; 9428 } 9429 if (type == 1) { 9430 level = 2; 9431 } 9432 domain_prot = (dacr >> (domain * 2)) & 3; 9433 if (domain_prot == 0 || domain_prot == 2) { 9434 /* Section or Page domain fault */ 9435 fi->type = ARMFault_Domain; 9436 goto do_fault; 9437 } 9438 if (type != 1) { 9439 if (desc & (1 << 18)) { 9440 /* Supersection. */ 9441 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9442 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9443 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9444 *page_size = 0x1000000; 9445 } else { 9446 /* Section. */ 9447 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9448 *page_size = 0x100000; 9449 } 9450 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9451 xn = desc & (1 << 4); 9452 pxn = desc & 1; 9453 ns = extract32(desc, 19, 1); 9454 } else { 9455 if (arm_feature(env, ARM_FEATURE_PXN)) { 9456 pxn = (desc >> 2) & 1; 9457 } 9458 ns = extract32(desc, 3, 1); 9459 /* Lookup l2 entry. */ 9460 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9461 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9462 mmu_idx, fi); 9463 if (fi->type != ARMFault_None) { 9464 goto do_fault; 9465 } 9466 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9467 switch (desc & 3) { 9468 case 0: /* Page translation fault. */ 9469 fi->type = ARMFault_Translation; 9470 goto do_fault; 9471 case 1: /* 64k page. */ 9472 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9473 xn = desc & (1 << 15); 9474 *page_size = 0x10000; 9475 break; 9476 case 2: case 3: /* 4k page. */ 9477 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9478 xn = desc & 1; 9479 *page_size = 0x1000; 9480 break; 9481 default: 9482 /* Never happens, but compiler isn't smart enough to tell. */ 9483 abort(); 9484 } 9485 } 9486 if (domain_prot == 3) { 9487 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9488 } else { 9489 if (pxn && !regime_is_user(env, mmu_idx)) { 9490 xn = 1; 9491 } 9492 if (xn && access_type == MMU_INST_FETCH) { 9493 fi->type = ARMFault_Permission; 9494 goto do_fault; 9495 } 9496 9497 if (arm_feature(env, ARM_FEATURE_V6K) && 9498 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9499 /* The simplified model uses AP[0] as an access control bit. */ 9500 if ((ap & 1) == 0) { 9501 /* Access flag fault. */ 9502 fi->type = ARMFault_AccessFlag; 9503 goto do_fault; 9504 } 9505 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9506 } else { 9507 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9508 } 9509 if (*prot && !xn) { 9510 *prot |= PAGE_EXEC; 9511 } 9512 if (!(*prot & (1 << access_type))) { 9513 /* Access permission fault. */ 9514 fi->type = ARMFault_Permission; 9515 goto do_fault; 9516 } 9517 } 9518 if (ns) { 9519 /* The NS bit will (as required by the architecture) have no effect if 9520 * the CPU doesn't support TZ or this is a non-secure translation 9521 * regime, because the attribute will already be non-secure. 9522 */ 9523 attrs->secure = false; 9524 } 9525 *phys_ptr = phys_addr; 9526 return false; 9527 do_fault: 9528 fi->domain = domain; 9529 fi->level = level; 9530 return true; 9531 } 9532 9533 /* 9534 * check_s2_mmu_setup 9535 * @cpu: ARMCPU 9536 * @is_aa64: True if the translation regime is in AArch64 state 9537 * @startlevel: Suggested starting level 9538 * @inputsize: Bitsize of IPAs 9539 * @stride: Page-table stride (See the ARM ARM) 9540 * 9541 * Returns true if the suggested S2 translation parameters are OK and 9542 * false otherwise. 9543 */ 9544 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9545 int inputsize, int stride) 9546 { 9547 const int grainsize = stride + 3; 9548 int startsizecheck; 9549 9550 /* Negative levels are never allowed. */ 9551 if (level < 0) { 9552 return false; 9553 } 9554 9555 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9556 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9557 return false; 9558 } 9559 9560 if (is_aa64) { 9561 CPUARMState *env = &cpu->env; 9562 unsigned int pamax = arm_pamax(cpu); 9563 9564 switch (stride) { 9565 case 13: /* 64KB Pages. */ 9566 if (level == 0 || (level == 1 && pamax <= 42)) { 9567 return false; 9568 } 9569 break; 9570 case 11: /* 16KB Pages. */ 9571 if (level == 0 || (level == 1 && pamax <= 40)) { 9572 return false; 9573 } 9574 break; 9575 case 9: /* 4KB Pages. */ 9576 if (level == 0 && pamax <= 42) { 9577 return false; 9578 } 9579 break; 9580 default: 9581 g_assert_not_reached(); 9582 } 9583 9584 /* Inputsize checks. */ 9585 if (inputsize > pamax && 9586 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9587 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9588 return false; 9589 } 9590 } else { 9591 /* AArch32 only supports 4KB pages. Assert on that. */ 9592 assert(stride == 9); 9593 9594 if (level == 0) { 9595 return false; 9596 } 9597 } 9598 return true; 9599 } 9600 9601 /* Translate from the 4-bit stage 2 representation of 9602 * memory attributes (without cache-allocation hints) to 9603 * the 8-bit representation of the stage 1 MAIR registers 9604 * (which includes allocation hints). 9605 * 9606 * ref: shared/translation/attrs/S2AttrDecode() 9607 * .../S2ConvertAttrsHints() 9608 */ 9609 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9610 { 9611 uint8_t hiattr = extract32(s2attrs, 2, 2); 9612 uint8_t loattr = extract32(s2attrs, 0, 2); 9613 uint8_t hihint = 0, lohint = 0; 9614 9615 if (hiattr != 0) { /* normal memory */ 9616 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9617 hiattr = loattr = 1; /* non-cacheable */ 9618 } else { 9619 if (hiattr != 1) { /* Write-through or write-back */ 9620 hihint = 3; /* RW allocate */ 9621 } 9622 if (loattr != 1) { /* Write-through or write-back */ 9623 lohint = 3; /* RW allocate */ 9624 } 9625 } 9626 } 9627 9628 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9629 } 9630 9631 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9632 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9633 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9634 target_ulong *page_size_ptr, 9635 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9636 { 9637 ARMCPU *cpu = arm_env_get_cpu(env); 9638 CPUState *cs = CPU(cpu); 9639 /* Read an LPAE long-descriptor translation table. */ 9640 ARMFaultType fault_type = ARMFault_Translation; 9641 uint32_t level; 9642 uint32_t epd = 0; 9643 int32_t t0sz, t1sz; 9644 uint32_t tg; 9645 uint64_t ttbr; 9646 int ttbr_select; 9647 hwaddr descaddr, indexmask, indexmask_grainsize; 9648 uint32_t tableattrs; 9649 target_ulong page_size; 9650 uint32_t attrs; 9651 int32_t stride = 9; 9652 int32_t addrsize; 9653 int inputsize; 9654 int32_t tbi = 0; 9655 TCR *tcr = regime_tcr(env, mmu_idx); 9656 int ap, ns, xn, pxn; 9657 uint32_t el = regime_el(env, mmu_idx); 9658 bool ttbr1_valid = true; 9659 uint64_t descaddrmask; 9660 bool aarch64 = arm_el_is_aa64(env, el); 9661 9662 /* TODO: 9663 * This code does not handle the different format TCR for VTCR_EL2. 9664 * This code also does not support shareability levels. 9665 * Attribute and permission bit handling should also be checked when adding 9666 * support for those page table walks. 9667 */ 9668 if (aarch64) { 9669 level = 0; 9670 addrsize = 64; 9671 if (el > 1) { 9672 if (mmu_idx != ARMMMUIdx_S2NS) { 9673 tbi = extract64(tcr->raw_tcr, 20, 1); 9674 } 9675 } else { 9676 if (extract64(address, 55, 1)) { 9677 tbi = extract64(tcr->raw_tcr, 38, 1); 9678 } else { 9679 tbi = extract64(tcr->raw_tcr, 37, 1); 9680 } 9681 } 9682 tbi *= 8; 9683 9684 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9685 * invalid. 9686 */ 9687 if (el > 1) { 9688 ttbr1_valid = false; 9689 } 9690 } else { 9691 level = 1; 9692 addrsize = 32; 9693 /* There is no TTBR1 for EL2 */ 9694 if (el == 2) { 9695 ttbr1_valid = false; 9696 } 9697 } 9698 9699 /* Determine whether this address is in the region controlled by 9700 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9701 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9702 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9703 */ 9704 if (aarch64) { 9705 /* AArch64 translation. */ 9706 t0sz = extract32(tcr->raw_tcr, 0, 6); 9707 t0sz = MIN(t0sz, 39); 9708 t0sz = MAX(t0sz, 16); 9709 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9710 /* AArch32 stage 1 translation. */ 9711 t0sz = extract32(tcr->raw_tcr, 0, 3); 9712 } else { 9713 /* AArch32 stage 2 translation. */ 9714 bool sext = extract32(tcr->raw_tcr, 4, 1); 9715 bool sign = extract32(tcr->raw_tcr, 3, 1); 9716 /* Address size is 40-bit for a stage 2 translation, 9717 * and t0sz can be negative (from -8 to 7), 9718 * so we need to adjust it to use the TTBR selecting logic below. 9719 */ 9720 addrsize = 40; 9721 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9722 9723 /* If the sign-extend bit is not the same as t0sz[3], the result 9724 * is unpredictable. Flag this as a guest error. */ 9725 if (sign != sext) { 9726 qemu_log_mask(LOG_GUEST_ERROR, 9727 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9728 } 9729 } 9730 t1sz = extract32(tcr->raw_tcr, 16, 6); 9731 if (aarch64) { 9732 t1sz = MIN(t1sz, 39); 9733 t1sz = MAX(t1sz, 16); 9734 } 9735 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9736 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9737 ttbr_select = 0; 9738 } else if (ttbr1_valid && t1sz && 9739 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9740 /* there is a ttbr1 region and we are in it (high bits all one) */ 9741 ttbr_select = 1; 9742 } else if (!t0sz) { 9743 /* ttbr0 region is "everything not in the ttbr1 region" */ 9744 ttbr_select = 0; 9745 } else if (!t1sz && ttbr1_valid) { 9746 /* ttbr1 region is "everything not in the ttbr0 region" */ 9747 ttbr_select = 1; 9748 } else { 9749 /* in the gap between the two regions, this is a Translation fault */ 9750 fault_type = ARMFault_Translation; 9751 goto do_fault; 9752 } 9753 9754 /* Note that QEMU ignores shareability and cacheability attributes, 9755 * so we don't need to do anything with the SH, ORGN, IRGN fields 9756 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9757 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9758 * implement any ASID-like capability so we can ignore it (instead 9759 * we will always flush the TLB any time the ASID is changed). 9760 */ 9761 if (ttbr_select == 0) { 9762 ttbr = regime_ttbr(env, mmu_idx, 0); 9763 if (el < 2) { 9764 epd = extract32(tcr->raw_tcr, 7, 1); 9765 } 9766 inputsize = addrsize - t0sz; 9767 9768 tg = extract32(tcr->raw_tcr, 14, 2); 9769 if (tg == 1) { /* 64KB pages */ 9770 stride = 13; 9771 } 9772 if (tg == 2) { /* 16KB pages */ 9773 stride = 11; 9774 } 9775 } else { 9776 /* We should only be here if TTBR1 is valid */ 9777 assert(ttbr1_valid); 9778 9779 ttbr = regime_ttbr(env, mmu_idx, 1); 9780 epd = extract32(tcr->raw_tcr, 23, 1); 9781 inputsize = addrsize - t1sz; 9782 9783 tg = extract32(tcr->raw_tcr, 30, 2); 9784 if (tg == 3) { /* 64KB pages */ 9785 stride = 13; 9786 } 9787 if (tg == 1) { /* 16KB pages */ 9788 stride = 11; 9789 } 9790 } 9791 9792 /* Here we should have set up all the parameters for the translation: 9793 * inputsize, ttbr, epd, stride, tbi 9794 */ 9795 9796 if (epd) { 9797 /* Translation table walk disabled => Translation fault on TLB miss 9798 * Note: This is always 0 on 64-bit EL2 and EL3. 9799 */ 9800 goto do_fault; 9801 } 9802 9803 if (mmu_idx != ARMMMUIdx_S2NS) { 9804 /* The starting level depends on the virtual address size (which can 9805 * be up to 48 bits) and the translation granule size. It indicates 9806 * the number of strides (stride bits at a time) needed to 9807 * consume the bits of the input address. In the pseudocode this is: 9808 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9809 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9810 * our 'stride + 3' and 'stride' is our 'stride'. 9811 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9812 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9813 * = 4 - (inputsize - 4) / stride; 9814 */ 9815 level = 4 - (inputsize - 4) / stride; 9816 } else { 9817 /* For stage 2 translations the starting level is specified by the 9818 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9819 */ 9820 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9821 uint32_t startlevel; 9822 bool ok; 9823 9824 if (!aarch64 || stride == 9) { 9825 /* AArch32 or 4KB pages */ 9826 startlevel = 2 - sl0; 9827 } else { 9828 /* 16KB or 64KB pages */ 9829 startlevel = 3 - sl0; 9830 } 9831 9832 /* Check that the starting level is valid. */ 9833 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9834 inputsize, stride); 9835 if (!ok) { 9836 fault_type = ARMFault_Translation; 9837 goto do_fault; 9838 } 9839 level = startlevel; 9840 } 9841 9842 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9843 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9844 9845 /* Now we can extract the actual base address from the TTBR */ 9846 descaddr = extract64(ttbr, 0, 48); 9847 descaddr &= ~indexmask; 9848 9849 /* The address field in the descriptor goes up to bit 39 for ARMv7 9850 * but up to bit 47 for ARMv8, but we use the descaddrmask 9851 * up to bit 39 for AArch32, because we don't need other bits in that case 9852 * to construct next descriptor address (anyway they should be all zeroes). 9853 */ 9854 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9855 ~indexmask_grainsize; 9856 9857 /* Secure accesses start with the page table in secure memory and 9858 * can be downgraded to non-secure at any step. Non-secure accesses 9859 * remain non-secure. We implement this by just ORing in the NSTable/NS 9860 * bits at each step. 9861 */ 9862 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9863 for (;;) { 9864 uint64_t descriptor; 9865 bool nstable; 9866 9867 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9868 descaddr &= ~7ULL; 9869 nstable = extract32(tableattrs, 4, 1); 9870 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9871 if (fi->type != ARMFault_None) { 9872 goto do_fault; 9873 } 9874 9875 if (!(descriptor & 1) || 9876 (!(descriptor & 2) && (level == 3))) { 9877 /* Invalid, or the Reserved level 3 encoding */ 9878 goto do_fault; 9879 } 9880 descaddr = descriptor & descaddrmask; 9881 9882 if ((descriptor & 2) && (level < 3)) { 9883 /* Table entry. The top five bits are attributes which may 9884 * propagate down through lower levels of the table (and 9885 * which are all arranged so that 0 means "no effect", so 9886 * we can gather them up by ORing in the bits at each level). 9887 */ 9888 tableattrs |= extract64(descriptor, 59, 5); 9889 level++; 9890 indexmask = indexmask_grainsize; 9891 continue; 9892 } 9893 /* Block entry at level 1 or 2, or page entry at level 3. 9894 * These are basically the same thing, although the number 9895 * of bits we pull in from the vaddr varies. 9896 */ 9897 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9898 descaddr |= (address & (page_size - 1)); 9899 /* Extract attributes from the descriptor */ 9900 attrs = extract64(descriptor, 2, 10) 9901 | (extract64(descriptor, 52, 12) << 10); 9902 9903 if (mmu_idx == ARMMMUIdx_S2NS) { 9904 /* Stage 2 table descriptors do not include any attribute fields */ 9905 break; 9906 } 9907 /* Merge in attributes from table descriptors */ 9908 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9909 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9910 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9911 * means "force PL1 access only", which means forcing AP[1] to 0. 9912 */ 9913 if (extract32(tableattrs, 2, 1)) { 9914 attrs &= ~(1 << 4); 9915 } 9916 attrs |= nstable << 3; /* NS */ 9917 break; 9918 } 9919 /* Here descaddr is the final physical address, and attributes 9920 * are all in attrs. 9921 */ 9922 fault_type = ARMFault_AccessFlag; 9923 if ((attrs & (1 << 8)) == 0) { 9924 /* Access flag */ 9925 goto do_fault; 9926 } 9927 9928 ap = extract32(attrs, 4, 2); 9929 xn = extract32(attrs, 12, 1); 9930 9931 if (mmu_idx == ARMMMUIdx_S2NS) { 9932 ns = true; 9933 *prot = get_S2prot(env, ap, xn); 9934 } else { 9935 ns = extract32(attrs, 3, 1); 9936 pxn = extract32(attrs, 11, 1); 9937 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9938 } 9939 9940 fault_type = ARMFault_Permission; 9941 if (!(*prot & (1 << access_type))) { 9942 goto do_fault; 9943 } 9944 9945 if (ns) { 9946 /* The NS bit will (as required by the architecture) have no effect if 9947 * the CPU doesn't support TZ or this is a non-secure translation 9948 * regime, because the attribute will already be non-secure. 9949 */ 9950 txattrs->secure = false; 9951 } 9952 9953 if (cacheattrs != NULL) { 9954 if (mmu_idx == ARMMMUIdx_S2NS) { 9955 cacheattrs->attrs = convert_stage2_attrs(env, 9956 extract32(attrs, 0, 4)); 9957 } else { 9958 /* Index into MAIR registers for cache attributes */ 9959 uint8_t attrindx = extract32(attrs, 0, 3); 9960 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9961 assert(attrindx <= 7); 9962 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9963 } 9964 cacheattrs->shareability = extract32(attrs, 6, 2); 9965 } 9966 9967 *phys_ptr = descaddr; 9968 *page_size_ptr = page_size; 9969 return false; 9970 9971 do_fault: 9972 fi->type = fault_type; 9973 fi->level = level; 9974 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9975 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9976 return true; 9977 } 9978 9979 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9980 ARMMMUIdx mmu_idx, 9981 int32_t address, int *prot) 9982 { 9983 if (!arm_feature(env, ARM_FEATURE_M)) { 9984 *prot = PAGE_READ | PAGE_WRITE; 9985 switch (address) { 9986 case 0xF0000000 ... 0xFFFFFFFF: 9987 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9988 /* hivecs execing is ok */ 9989 *prot |= PAGE_EXEC; 9990 } 9991 break; 9992 case 0x00000000 ... 0x7FFFFFFF: 9993 *prot |= PAGE_EXEC; 9994 break; 9995 } 9996 } else { 9997 /* Default system address map for M profile cores. 9998 * The architecture specifies which regions are execute-never; 9999 * at the MPU level no other checks are defined. 10000 */ 10001 switch (address) { 10002 case 0x00000000 ... 0x1fffffff: /* ROM */ 10003 case 0x20000000 ... 0x3fffffff: /* SRAM */ 10004 case 0x60000000 ... 0x7fffffff: /* RAM */ 10005 case 0x80000000 ... 0x9fffffff: /* RAM */ 10006 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10007 break; 10008 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 10009 case 0xa0000000 ... 0xbfffffff: /* Device */ 10010 case 0xc0000000 ... 0xdfffffff: /* Device */ 10011 case 0xe0000000 ... 0xffffffff: /* System */ 10012 *prot = PAGE_READ | PAGE_WRITE; 10013 break; 10014 default: 10015 g_assert_not_reached(); 10016 } 10017 } 10018 } 10019 10020 static bool pmsav7_use_background_region(ARMCPU *cpu, 10021 ARMMMUIdx mmu_idx, bool is_user) 10022 { 10023 /* Return true if we should use the default memory map as a 10024 * "background" region if there are no hits against any MPU regions. 10025 */ 10026 CPUARMState *env = &cpu->env; 10027 10028 if (is_user) { 10029 return false; 10030 } 10031 10032 if (arm_feature(env, ARM_FEATURE_M)) { 10033 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 10034 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 10035 } else { 10036 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 10037 } 10038 } 10039 10040 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 10041 { 10042 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 10043 return arm_feature(env, ARM_FEATURE_M) && 10044 extract32(address, 20, 12) == 0xe00; 10045 } 10046 10047 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 10048 { 10049 /* True if address is in the M profile system region 10050 * 0xe0000000 - 0xffffffff 10051 */ 10052 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 10053 } 10054 10055 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 10056 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10057 hwaddr *phys_ptr, int *prot, 10058 target_ulong *page_size, 10059 ARMMMUFaultInfo *fi) 10060 { 10061 ARMCPU *cpu = arm_env_get_cpu(env); 10062 int n; 10063 bool is_user = regime_is_user(env, mmu_idx); 10064 10065 *phys_ptr = address; 10066 *page_size = TARGET_PAGE_SIZE; 10067 *prot = 0; 10068 10069 if (regime_translation_disabled(env, mmu_idx) || 10070 m_is_ppb_region(env, address)) { 10071 /* MPU disabled or M profile PPB access: use default memory map. 10072 * The other case which uses the default memory map in the 10073 * v7M ARM ARM pseudocode is exception vector reads from the vector 10074 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 10075 * which always does a direct read using address_space_ldl(), rather 10076 * than going via this function, so we don't need to check that here. 10077 */ 10078 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10079 } else { /* MPU enabled */ 10080 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10081 /* region search */ 10082 uint32_t base = env->pmsav7.drbar[n]; 10083 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 10084 uint32_t rmask; 10085 bool srdis = false; 10086 10087 if (!(env->pmsav7.drsr[n] & 0x1)) { 10088 continue; 10089 } 10090 10091 if (!rsize) { 10092 qemu_log_mask(LOG_GUEST_ERROR, 10093 "DRSR[%d]: Rsize field cannot be 0\n", n); 10094 continue; 10095 } 10096 rsize++; 10097 rmask = (1ull << rsize) - 1; 10098 10099 if (base & rmask) { 10100 qemu_log_mask(LOG_GUEST_ERROR, 10101 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 10102 "to DRSR region size, mask = 0x%" PRIx32 "\n", 10103 n, base, rmask); 10104 continue; 10105 } 10106 10107 if (address < base || address > base + rmask) { 10108 /* 10109 * Address not in this region. We must check whether the 10110 * region covers addresses in the same page as our address. 10111 * In that case we must not report a size that covers the 10112 * whole page for a subsequent hit against a different MPU 10113 * region or the background region, because it would result in 10114 * incorrect TLB hits for subsequent accesses to addresses that 10115 * are in this MPU region. 10116 */ 10117 if (ranges_overlap(base, rmask, 10118 address & TARGET_PAGE_MASK, 10119 TARGET_PAGE_SIZE)) { 10120 *page_size = 1; 10121 } 10122 continue; 10123 } 10124 10125 /* Region matched */ 10126 10127 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 10128 int i, snd; 10129 uint32_t srdis_mask; 10130 10131 rsize -= 3; /* sub region size (power of 2) */ 10132 snd = ((address - base) >> rsize) & 0x7; 10133 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 10134 10135 srdis_mask = srdis ? 0x3 : 0x0; 10136 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 10137 /* This will check in groups of 2, 4 and then 8, whether 10138 * the subregion bits are consistent. rsize is incremented 10139 * back up to give the region size, considering consistent 10140 * adjacent subregions as one region. Stop testing if rsize 10141 * is already big enough for an entire QEMU page. 10142 */ 10143 int snd_rounded = snd & ~(i - 1); 10144 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 10145 snd_rounded + 8, i); 10146 if (srdis_mask ^ srdis_multi) { 10147 break; 10148 } 10149 srdis_mask = (srdis_mask << i) | srdis_mask; 10150 rsize++; 10151 } 10152 } 10153 if (srdis) { 10154 continue; 10155 } 10156 if (rsize < TARGET_PAGE_BITS) { 10157 *page_size = 1 << rsize; 10158 } 10159 break; 10160 } 10161 10162 if (n == -1) { /* no hits */ 10163 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10164 /* background fault */ 10165 fi->type = ARMFault_Background; 10166 return true; 10167 } 10168 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10169 } else { /* a MPU hit! */ 10170 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10171 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10172 10173 if (m_is_system_region(env, address)) { 10174 /* System space is always execute never */ 10175 xn = 1; 10176 } 10177 10178 if (is_user) { /* User mode AP bit decoding */ 10179 switch (ap) { 10180 case 0: 10181 case 1: 10182 case 5: 10183 break; /* no access */ 10184 case 3: 10185 *prot |= PAGE_WRITE; 10186 /* fall through */ 10187 case 2: 10188 case 6: 10189 *prot |= PAGE_READ | PAGE_EXEC; 10190 break; 10191 case 7: 10192 /* for v7M, same as 6; for R profile a reserved value */ 10193 if (arm_feature(env, ARM_FEATURE_M)) { 10194 *prot |= PAGE_READ | PAGE_EXEC; 10195 break; 10196 } 10197 /* fall through */ 10198 default: 10199 qemu_log_mask(LOG_GUEST_ERROR, 10200 "DRACR[%d]: Bad value for AP bits: 0x%" 10201 PRIx32 "\n", n, ap); 10202 } 10203 } else { /* Priv. mode AP bits decoding */ 10204 switch (ap) { 10205 case 0: 10206 break; /* no access */ 10207 case 1: 10208 case 2: 10209 case 3: 10210 *prot |= PAGE_WRITE; 10211 /* fall through */ 10212 case 5: 10213 case 6: 10214 *prot |= PAGE_READ | PAGE_EXEC; 10215 break; 10216 case 7: 10217 /* for v7M, same as 6; for R profile a reserved value */ 10218 if (arm_feature(env, ARM_FEATURE_M)) { 10219 *prot |= PAGE_READ | PAGE_EXEC; 10220 break; 10221 } 10222 /* fall through */ 10223 default: 10224 qemu_log_mask(LOG_GUEST_ERROR, 10225 "DRACR[%d]: Bad value for AP bits: 0x%" 10226 PRIx32 "\n", n, ap); 10227 } 10228 } 10229 10230 /* execute never */ 10231 if (xn) { 10232 *prot &= ~PAGE_EXEC; 10233 } 10234 } 10235 } 10236 10237 fi->type = ARMFault_Permission; 10238 fi->level = 1; 10239 return !(*prot & (1 << access_type)); 10240 } 10241 10242 static bool v8m_is_sau_exempt(CPUARMState *env, 10243 uint32_t address, MMUAccessType access_type) 10244 { 10245 /* The architecture specifies that certain address ranges are 10246 * exempt from v8M SAU/IDAU checks. 10247 */ 10248 return 10249 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10250 (address >= 0xe0000000 && address <= 0xe0002fff) || 10251 (address >= 0xe000e000 && address <= 0xe000efff) || 10252 (address >= 0xe002e000 && address <= 0xe002efff) || 10253 (address >= 0xe0040000 && address <= 0xe0041fff) || 10254 (address >= 0xe00ff000 && address <= 0xe00fffff); 10255 } 10256 10257 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 10258 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10259 V8M_SAttributes *sattrs) 10260 { 10261 /* Look up the security attributes for this address. Compare the 10262 * pseudocode SecurityCheck() function. 10263 * We assume the caller has zero-initialized *sattrs. 10264 */ 10265 ARMCPU *cpu = arm_env_get_cpu(env); 10266 int r; 10267 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10268 int idau_region = IREGION_NOTVALID; 10269 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10270 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10271 10272 if (cpu->idau) { 10273 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10274 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10275 10276 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10277 &idau_nsc); 10278 } 10279 10280 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10281 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10282 return; 10283 } 10284 10285 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10286 sattrs->ns = !regime_is_secure(env, mmu_idx); 10287 return; 10288 } 10289 10290 if (idau_region != IREGION_NOTVALID) { 10291 sattrs->irvalid = true; 10292 sattrs->iregion = idau_region; 10293 } 10294 10295 switch (env->sau.ctrl & 3) { 10296 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10297 break; 10298 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10299 sattrs->ns = true; 10300 break; 10301 default: /* SAU.ENABLE == 1 */ 10302 for (r = 0; r < cpu->sau_sregion; r++) { 10303 if (env->sau.rlar[r] & 1) { 10304 uint32_t base = env->sau.rbar[r] & ~0x1f; 10305 uint32_t limit = env->sau.rlar[r] | 0x1f; 10306 10307 if (base <= address && limit >= address) { 10308 if (base > addr_page_base || limit < addr_page_limit) { 10309 sattrs->subpage = true; 10310 } 10311 if (sattrs->srvalid) { 10312 /* If we hit in more than one region then we must report 10313 * as Secure, not NS-Callable, with no valid region 10314 * number info. 10315 */ 10316 sattrs->ns = false; 10317 sattrs->nsc = false; 10318 sattrs->sregion = 0; 10319 sattrs->srvalid = false; 10320 break; 10321 } else { 10322 if (env->sau.rlar[r] & 2) { 10323 sattrs->nsc = true; 10324 } else { 10325 sattrs->ns = true; 10326 } 10327 sattrs->srvalid = true; 10328 sattrs->sregion = r; 10329 } 10330 } else { 10331 /* 10332 * Address not in this region. We must check whether the 10333 * region covers addresses in the same page as our address. 10334 * In that case we must not report a size that covers the 10335 * whole page for a subsequent hit against a different MPU 10336 * region or the background region, because it would result 10337 * in incorrect TLB hits for subsequent accesses to 10338 * addresses that are in this MPU region. 10339 */ 10340 if (limit >= base && 10341 ranges_overlap(base, limit - base + 1, 10342 addr_page_base, 10343 TARGET_PAGE_SIZE)) { 10344 sattrs->subpage = true; 10345 } 10346 } 10347 } 10348 } 10349 10350 /* The IDAU will override the SAU lookup results if it specifies 10351 * higher security than the SAU does. 10352 */ 10353 if (!idau_ns) { 10354 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10355 sattrs->ns = false; 10356 sattrs->nsc = idau_nsc; 10357 } 10358 } 10359 break; 10360 } 10361 } 10362 10363 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10364 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10365 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10366 int *prot, bool *is_subpage, 10367 ARMMMUFaultInfo *fi, uint32_t *mregion) 10368 { 10369 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10370 * that a full phys-to-virt translation does). 10371 * mregion is (if not NULL) set to the region number which matched, 10372 * or -1 if no region number is returned (MPU off, address did not 10373 * hit a region, address hit in multiple regions). 10374 * We set is_subpage to true if the region hit doesn't cover the 10375 * entire TARGET_PAGE the address is within. 10376 */ 10377 ARMCPU *cpu = arm_env_get_cpu(env); 10378 bool is_user = regime_is_user(env, mmu_idx); 10379 uint32_t secure = regime_is_secure(env, mmu_idx); 10380 int n; 10381 int matchregion = -1; 10382 bool hit = false; 10383 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10384 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10385 10386 *is_subpage = false; 10387 *phys_ptr = address; 10388 *prot = 0; 10389 if (mregion) { 10390 *mregion = -1; 10391 } 10392 10393 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10394 * was an exception vector read from the vector table (which is always 10395 * done using the default system address map), because those accesses 10396 * are done in arm_v7m_load_vector(), which always does a direct 10397 * read using address_space_ldl(), rather than going via this function. 10398 */ 10399 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10400 hit = true; 10401 } else if (m_is_ppb_region(env, address)) { 10402 hit = true; 10403 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10404 hit = true; 10405 } else { 10406 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10407 /* region search */ 10408 /* Note that the base address is bits [31:5] from the register 10409 * with bits [4:0] all zeroes, but the limit address is bits 10410 * [31:5] from the register with bits [4:0] all ones. 10411 */ 10412 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10413 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10414 10415 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10416 /* Region disabled */ 10417 continue; 10418 } 10419 10420 if (address < base || address > limit) { 10421 /* 10422 * Address not in this region. We must check whether the 10423 * region covers addresses in the same page as our address. 10424 * In that case we must not report a size that covers the 10425 * whole page for a subsequent hit against a different MPU 10426 * region or the background region, because it would result in 10427 * incorrect TLB hits for subsequent accesses to addresses that 10428 * are in this MPU region. 10429 */ 10430 if (limit >= base && 10431 ranges_overlap(base, limit - base + 1, 10432 addr_page_base, 10433 TARGET_PAGE_SIZE)) { 10434 *is_subpage = true; 10435 } 10436 continue; 10437 } 10438 10439 if (base > addr_page_base || limit < addr_page_limit) { 10440 *is_subpage = true; 10441 } 10442 10443 if (hit) { 10444 /* Multiple regions match -- always a failure (unlike 10445 * PMSAv7 where highest-numbered-region wins) 10446 */ 10447 fi->type = ARMFault_Permission; 10448 fi->level = 1; 10449 return true; 10450 } 10451 10452 matchregion = n; 10453 hit = true; 10454 } 10455 } 10456 10457 if (!hit) { 10458 /* background fault */ 10459 fi->type = ARMFault_Background; 10460 return true; 10461 } 10462 10463 if (matchregion == -1) { 10464 /* hit using the background region */ 10465 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10466 } else { 10467 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10468 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10469 10470 if (m_is_system_region(env, address)) { 10471 /* System space is always execute never */ 10472 xn = 1; 10473 } 10474 10475 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10476 if (*prot && !xn) { 10477 *prot |= PAGE_EXEC; 10478 } 10479 /* We don't need to look the attribute up in the MAIR0/MAIR1 10480 * registers because that only tells us about cacheability. 10481 */ 10482 if (mregion) { 10483 *mregion = matchregion; 10484 } 10485 } 10486 10487 fi->type = ARMFault_Permission; 10488 fi->level = 1; 10489 return !(*prot & (1 << access_type)); 10490 } 10491 10492 10493 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10494 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10495 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10496 int *prot, target_ulong *page_size, 10497 ARMMMUFaultInfo *fi) 10498 { 10499 uint32_t secure = regime_is_secure(env, mmu_idx); 10500 V8M_SAttributes sattrs = {}; 10501 bool ret; 10502 bool mpu_is_subpage; 10503 10504 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10505 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10506 if (access_type == MMU_INST_FETCH) { 10507 /* Instruction fetches always use the MMU bank and the 10508 * transaction attribute determined by the fetch address, 10509 * regardless of CPU state. This is painful for QEMU 10510 * to handle, because it would mean we need to encode 10511 * into the mmu_idx not just the (user, negpri) information 10512 * for the current security state but also that for the 10513 * other security state, which would balloon the number 10514 * of mmu_idx values needed alarmingly. 10515 * Fortunately we can avoid this because it's not actually 10516 * possible to arbitrarily execute code from memory with 10517 * the wrong security attribute: it will always generate 10518 * an exception of some kind or another, apart from the 10519 * special case of an NS CPU executing an SG instruction 10520 * in S&NSC memory. So we always just fail the translation 10521 * here and sort things out in the exception handler 10522 * (including possibly emulating an SG instruction). 10523 */ 10524 if (sattrs.ns != !secure) { 10525 if (sattrs.nsc) { 10526 fi->type = ARMFault_QEMU_NSCExec; 10527 } else { 10528 fi->type = ARMFault_QEMU_SFault; 10529 } 10530 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10531 *phys_ptr = address; 10532 *prot = 0; 10533 return true; 10534 } 10535 } else { 10536 /* For data accesses we always use the MMU bank indicated 10537 * by the current CPU state, but the security attributes 10538 * might downgrade a secure access to nonsecure. 10539 */ 10540 if (sattrs.ns) { 10541 txattrs->secure = false; 10542 } else if (!secure) { 10543 /* NS access to S memory must fault. 10544 * Architecturally we should first check whether the 10545 * MPU information for this address indicates that we 10546 * are doing an unaligned access to Device memory, which 10547 * should generate a UsageFault instead. QEMU does not 10548 * currently check for that kind of unaligned access though. 10549 * If we added it we would need to do so as a special case 10550 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10551 */ 10552 fi->type = ARMFault_QEMU_SFault; 10553 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10554 *phys_ptr = address; 10555 *prot = 0; 10556 return true; 10557 } 10558 } 10559 } 10560 10561 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10562 txattrs, prot, &mpu_is_subpage, fi, NULL); 10563 /* 10564 * TODO: this is a temporary hack to ignore the fact that the SAU region 10565 * is smaller than a page if this is an executable region. We never 10566 * supported small MPU regions, but we did (accidentally) allow small 10567 * SAU regions, and if we now made small SAU regions not be executable 10568 * then this would break previously working guest code. We can't 10569 * remove this until/unless we implement support for execution from 10570 * small regions. 10571 */ 10572 if (*prot & PAGE_EXEC) { 10573 sattrs.subpage = false; 10574 } 10575 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10576 return ret; 10577 } 10578 10579 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10580 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10581 hwaddr *phys_ptr, int *prot, 10582 ARMMMUFaultInfo *fi) 10583 { 10584 int n; 10585 uint32_t mask; 10586 uint32_t base; 10587 bool is_user = regime_is_user(env, mmu_idx); 10588 10589 if (regime_translation_disabled(env, mmu_idx)) { 10590 /* MPU disabled. */ 10591 *phys_ptr = address; 10592 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10593 return false; 10594 } 10595 10596 *phys_ptr = address; 10597 for (n = 7; n >= 0; n--) { 10598 base = env->cp15.c6_region[n]; 10599 if ((base & 1) == 0) { 10600 continue; 10601 } 10602 mask = 1 << ((base >> 1) & 0x1f); 10603 /* Keep this shift separate from the above to avoid an 10604 (undefined) << 32. */ 10605 mask = (mask << 1) - 1; 10606 if (((base ^ address) & ~mask) == 0) { 10607 break; 10608 } 10609 } 10610 if (n < 0) { 10611 fi->type = ARMFault_Background; 10612 return true; 10613 } 10614 10615 if (access_type == MMU_INST_FETCH) { 10616 mask = env->cp15.pmsav5_insn_ap; 10617 } else { 10618 mask = env->cp15.pmsav5_data_ap; 10619 } 10620 mask = (mask >> (n * 4)) & 0xf; 10621 switch (mask) { 10622 case 0: 10623 fi->type = ARMFault_Permission; 10624 fi->level = 1; 10625 return true; 10626 case 1: 10627 if (is_user) { 10628 fi->type = ARMFault_Permission; 10629 fi->level = 1; 10630 return true; 10631 } 10632 *prot = PAGE_READ | PAGE_WRITE; 10633 break; 10634 case 2: 10635 *prot = PAGE_READ; 10636 if (!is_user) { 10637 *prot |= PAGE_WRITE; 10638 } 10639 break; 10640 case 3: 10641 *prot = PAGE_READ | PAGE_WRITE; 10642 break; 10643 case 5: 10644 if (is_user) { 10645 fi->type = ARMFault_Permission; 10646 fi->level = 1; 10647 return true; 10648 } 10649 *prot = PAGE_READ; 10650 break; 10651 case 6: 10652 *prot = PAGE_READ; 10653 break; 10654 default: 10655 /* Bad permission. */ 10656 fi->type = ARMFault_Permission; 10657 fi->level = 1; 10658 return true; 10659 } 10660 *prot |= PAGE_EXEC; 10661 return false; 10662 } 10663 10664 /* Combine either inner or outer cacheability attributes for normal 10665 * memory, according to table D4-42 and pseudocode procedure 10666 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10667 * 10668 * NB: only stage 1 includes allocation hints (RW bits), leading to 10669 * some asymmetry. 10670 */ 10671 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10672 { 10673 if (s1 == 4 || s2 == 4) { 10674 /* non-cacheable has precedence */ 10675 return 4; 10676 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10677 /* stage 1 write-through takes precedence */ 10678 return s1; 10679 } else if (extract32(s2, 2, 2) == 2) { 10680 /* stage 2 write-through takes precedence, but the allocation hint 10681 * is still taken from stage 1 10682 */ 10683 return (2 << 2) | extract32(s1, 0, 2); 10684 } else { /* write-back */ 10685 return s1; 10686 } 10687 } 10688 10689 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10690 * and CombineS1S2Desc() 10691 * 10692 * @s1: Attributes from stage 1 walk 10693 * @s2: Attributes from stage 2 walk 10694 */ 10695 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10696 { 10697 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10698 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10699 ARMCacheAttrs ret; 10700 10701 /* Combine shareability attributes (table D4-43) */ 10702 if (s1.shareability == 2 || s2.shareability == 2) { 10703 /* if either are outer-shareable, the result is outer-shareable */ 10704 ret.shareability = 2; 10705 } else if (s1.shareability == 3 || s2.shareability == 3) { 10706 /* if either are inner-shareable, the result is inner-shareable */ 10707 ret.shareability = 3; 10708 } else { 10709 /* both non-shareable */ 10710 ret.shareability = 0; 10711 } 10712 10713 /* Combine memory type and cacheability attributes */ 10714 if (s1hi == 0 || s2hi == 0) { 10715 /* Device has precedence over normal */ 10716 if (s1lo == 0 || s2lo == 0) { 10717 /* nGnRnE has precedence over anything */ 10718 ret.attrs = 0; 10719 } else if (s1lo == 4 || s2lo == 4) { 10720 /* non-Reordering has precedence over Reordering */ 10721 ret.attrs = 4; /* nGnRE */ 10722 } else if (s1lo == 8 || s2lo == 8) { 10723 /* non-Gathering has precedence over Gathering */ 10724 ret.attrs = 8; /* nGRE */ 10725 } else { 10726 ret.attrs = 0xc; /* GRE */ 10727 } 10728 10729 /* Any location for which the resultant memory type is any 10730 * type of Device memory is always treated as Outer Shareable. 10731 */ 10732 ret.shareability = 2; 10733 } else { /* Normal memory */ 10734 /* Outer/inner cacheability combine independently */ 10735 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10736 | combine_cacheattr_nibble(s1lo, s2lo); 10737 10738 if (ret.attrs == 0x44) { 10739 /* Any location for which the resultant memory type is Normal 10740 * Inner Non-cacheable, Outer Non-cacheable is always treated 10741 * as Outer Shareable. 10742 */ 10743 ret.shareability = 2; 10744 } 10745 } 10746 10747 return ret; 10748 } 10749 10750 10751 /* get_phys_addr - get the physical address for this virtual address 10752 * 10753 * Find the physical address corresponding to the given virtual address, 10754 * by doing a translation table walk on MMU based systems or using the 10755 * MPU state on MPU based systems. 10756 * 10757 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10758 * prot and page_size may not be filled in, and the populated fsr value provides 10759 * information on why the translation aborted, in the format of a 10760 * DFSR/IFSR fault register, with the following caveats: 10761 * * we honour the short vs long DFSR format differences. 10762 * * the WnR bit is never set (the caller must do this). 10763 * * for PSMAv5 based systems we don't bother to return a full FSR format 10764 * value. 10765 * 10766 * @env: CPUARMState 10767 * @address: virtual address to get physical address for 10768 * @access_type: 0 for read, 1 for write, 2 for execute 10769 * @mmu_idx: MMU index indicating required translation regime 10770 * @phys_ptr: set to the physical address corresponding to the virtual address 10771 * @attrs: set to the memory transaction attributes to use 10772 * @prot: set to the permissions for the page containing phys_ptr 10773 * @page_size: set to the size of the page containing phys_ptr 10774 * @fi: set to fault info if the translation fails 10775 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10776 */ 10777 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10778 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10779 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10780 target_ulong *page_size, 10781 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10782 { 10783 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10784 /* Call ourselves recursively to do the stage 1 and then stage 2 10785 * translations. 10786 */ 10787 if (arm_feature(env, ARM_FEATURE_EL2)) { 10788 hwaddr ipa; 10789 int s2_prot; 10790 int ret; 10791 ARMCacheAttrs cacheattrs2 = {}; 10792 10793 ret = get_phys_addr(env, address, access_type, 10794 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10795 prot, page_size, fi, cacheattrs); 10796 10797 /* If S1 fails or S2 is disabled, return early. */ 10798 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10799 *phys_ptr = ipa; 10800 return ret; 10801 } 10802 10803 /* S1 is done. Now do S2 translation. */ 10804 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10805 phys_ptr, attrs, &s2_prot, 10806 page_size, fi, 10807 cacheattrs != NULL ? &cacheattrs2 : NULL); 10808 fi->s2addr = ipa; 10809 /* Combine the S1 and S2 perms. */ 10810 *prot &= s2_prot; 10811 10812 /* Combine the S1 and S2 cache attributes, if needed */ 10813 if (!ret && cacheattrs != NULL) { 10814 if (env->cp15.hcr_el2 & HCR_DC) { 10815 /* 10816 * HCR.DC forces the first stage attributes to 10817 * Normal Non-Shareable, 10818 * Inner Write-Back Read-Allocate Write-Allocate, 10819 * Outer Write-Back Read-Allocate Write-Allocate. 10820 */ 10821 cacheattrs->attrs = 0xff; 10822 cacheattrs->shareability = 0; 10823 } 10824 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10825 } 10826 10827 return ret; 10828 } else { 10829 /* 10830 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10831 */ 10832 mmu_idx = stage_1_mmu_idx(mmu_idx); 10833 } 10834 } 10835 10836 /* The page table entries may downgrade secure to non-secure, but 10837 * cannot upgrade an non-secure translation regime's attributes 10838 * to secure. 10839 */ 10840 attrs->secure = regime_is_secure(env, mmu_idx); 10841 attrs->user = regime_is_user(env, mmu_idx); 10842 10843 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10844 * In v7 and earlier it affects all stage 1 translations. 10845 */ 10846 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10847 && !arm_feature(env, ARM_FEATURE_V8)) { 10848 if (regime_el(env, mmu_idx) == 3) { 10849 address += env->cp15.fcseidr_s; 10850 } else { 10851 address += env->cp15.fcseidr_ns; 10852 } 10853 } 10854 10855 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10856 bool ret; 10857 *page_size = TARGET_PAGE_SIZE; 10858 10859 if (arm_feature(env, ARM_FEATURE_V8)) { 10860 /* PMSAv8 */ 10861 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10862 phys_ptr, attrs, prot, page_size, fi); 10863 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10864 /* PMSAv7 */ 10865 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10866 phys_ptr, prot, page_size, fi); 10867 } else { 10868 /* Pre-v7 MPU */ 10869 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10870 phys_ptr, prot, fi); 10871 } 10872 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10873 " mmu_idx %u -> %s (prot %c%c%c)\n", 10874 access_type == MMU_DATA_LOAD ? "reading" : 10875 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10876 (uint32_t)address, mmu_idx, 10877 ret ? "Miss" : "Hit", 10878 *prot & PAGE_READ ? 'r' : '-', 10879 *prot & PAGE_WRITE ? 'w' : '-', 10880 *prot & PAGE_EXEC ? 'x' : '-'); 10881 10882 return ret; 10883 } 10884 10885 /* Definitely a real MMU, not an MPU */ 10886 10887 if (regime_translation_disabled(env, mmu_idx)) { 10888 /* MMU disabled. */ 10889 *phys_ptr = address; 10890 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10891 *page_size = TARGET_PAGE_SIZE; 10892 return 0; 10893 } 10894 10895 if (regime_using_lpae_format(env, mmu_idx)) { 10896 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10897 phys_ptr, attrs, prot, page_size, 10898 fi, cacheattrs); 10899 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10900 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10901 phys_ptr, attrs, prot, page_size, fi); 10902 } else { 10903 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10904 phys_ptr, prot, page_size, fi); 10905 } 10906 } 10907 10908 /* Walk the page table and (if the mapping exists) add the page 10909 * to the TLB. Return false on success, or true on failure. Populate 10910 * fsr with ARM DFSR/IFSR fault register format value on failure. 10911 */ 10912 bool arm_tlb_fill(CPUState *cs, vaddr address, 10913 MMUAccessType access_type, int mmu_idx, 10914 ARMMMUFaultInfo *fi) 10915 { 10916 ARMCPU *cpu = ARM_CPU(cs); 10917 CPUARMState *env = &cpu->env; 10918 hwaddr phys_addr; 10919 target_ulong page_size; 10920 int prot; 10921 int ret; 10922 MemTxAttrs attrs = {}; 10923 10924 ret = get_phys_addr(env, address, access_type, 10925 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10926 &attrs, &prot, &page_size, fi, NULL); 10927 if (!ret) { 10928 /* 10929 * Map a single [sub]page. Regions smaller than our declared 10930 * target page size are handled specially, so for those we 10931 * pass in the exact addresses. 10932 */ 10933 if (page_size >= TARGET_PAGE_SIZE) { 10934 phys_addr &= TARGET_PAGE_MASK; 10935 address &= TARGET_PAGE_MASK; 10936 } 10937 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10938 prot, mmu_idx, page_size); 10939 return 0; 10940 } 10941 10942 return ret; 10943 } 10944 10945 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10946 MemTxAttrs *attrs) 10947 { 10948 ARMCPU *cpu = ARM_CPU(cs); 10949 CPUARMState *env = &cpu->env; 10950 hwaddr phys_addr; 10951 target_ulong page_size; 10952 int prot; 10953 bool ret; 10954 ARMMMUFaultInfo fi = {}; 10955 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10956 10957 *attrs = (MemTxAttrs) {}; 10958 10959 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10960 attrs, &prot, &page_size, &fi, NULL); 10961 10962 if (ret) { 10963 return -1; 10964 } 10965 return phys_addr; 10966 } 10967 10968 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10969 { 10970 uint32_t mask; 10971 unsigned el = arm_current_el(env); 10972 10973 /* First handle registers which unprivileged can read */ 10974 10975 switch (reg) { 10976 case 0 ... 7: /* xPSR sub-fields */ 10977 mask = 0; 10978 if ((reg & 1) && el) { 10979 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10980 } 10981 if (!(reg & 4)) { 10982 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10983 } 10984 /* EPSR reads as zero */ 10985 return xpsr_read(env) & mask; 10986 break; 10987 case 20: /* CONTROL */ 10988 return env->v7m.control[env->v7m.secure]; 10989 case 0x94: /* CONTROL_NS */ 10990 /* We have to handle this here because unprivileged Secure code 10991 * can read the NS CONTROL register. 10992 */ 10993 if (!env->v7m.secure) { 10994 return 0; 10995 } 10996 return env->v7m.control[M_REG_NS]; 10997 } 10998 10999 if (el == 0) { 11000 return 0; /* unprivileged reads others as zero */ 11001 } 11002 11003 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11004 switch (reg) { 11005 case 0x88: /* MSP_NS */ 11006 if (!env->v7m.secure) { 11007 return 0; 11008 } 11009 return env->v7m.other_ss_msp; 11010 case 0x89: /* PSP_NS */ 11011 if (!env->v7m.secure) { 11012 return 0; 11013 } 11014 return env->v7m.other_ss_psp; 11015 case 0x8a: /* MSPLIM_NS */ 11016 if (!env->v7m.secure) { 11017 return 0; 11018 } 11019 return env->v7m.msplim[M_REG_NS]; 11020 case 0x8b: /* PSPLIM_NS */ 11021 if (!env->v7m.secure) { 11022 return 0; 11023 } 11024 return env->v7m.psplim[M_REG_NS]; 11025 case 0x90: /* PRIMASK_NS */ 11026 if (!env->v7m.secure) { 11027 return 0; 11028 } 11029 return env->v7m.primask[M_REG_NS]; 11030 case 0x91: /* BASEPRI_NS */ 11031 if (!env->v7m.secure) { 11032 return 0; 11033 } 11034 return env->v7m.basepri[M_REG_NS]; 11035 case 0x93: /* FAULTMASK_NS */ 11036 if (!env->v7m.secure) { 11037 return 0; 11038 } 11039 return env->v7m.faultmask[M_REG_NS]; 11040 case 0x98: /* SP_NS */ 11041 { 11042 /* This gives the non-secure SP selected based on whether we're 11043 * currently in handler mode or not, using the NS CONTROL.SPSEL. 11044 */ 11045 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 11046 11047 if (!env->v7m.secure) { 11048 return 0; 11049 } 11050 if (!arm_v7m_is_handler_mode(env) && spsel) { 11051 return env->v7m.other_ss_psp; 11052 } else { 11053 return env->v7m.other_ss_msp; 11054 } 11055 } 11056 default: 11057 break; 11058 } 11059 } 11060 11061 switch (reg) { 11062 case 8: /* MSP */ 11063 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 11064 case 9: /* PSP */ 11065 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 11066 case 10: /* MSPLIM */ 11067 if (!arm_feature(env, ARM_FEATURE_V8)) { 11068 goto bad_reg; 11069 } 11070 return env->v7m.msplim[env->v7m.secure]; 11071 case 11: /* PSPLIM */ 11072 if (!arm_feature(env, ARM_FEATURE_V8)) { 11073 goto bad_reg; 11074 } 11075 return env->v7m.psplim[env->v7m.secure]; 11076 case 16: /* PRIMASK */ 11077 return env->v7m.primask[env->v7m.secure]; 11078 case 17: /* BASEPRI */ 11079 case 18: /* BASEPRI_MAX */ 11080 return env->v7m.basepri[env->v7m.secure]; 11081 case 19: /* FAULTMASK */ 11082 return env->v7m.faultmask[env->v7m.secure]; 11083 default: 11084 bad_reg: 11085 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 11086 " register %d\n", reg); 11087 return 0; 11088 } 11089 } 11090 11091 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 11092 { 11093 /* We're passed bits [11..0] of the instruction; extract 11094 * SYSm and the mask bits. 11095 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 11096 * we choose to treat them as if the mask bits were valid. 11097 * NB that the pseudocode 'mask' variable is bits [11..10], 11098 * whereas ours is [11..8]. 11099 */ 11100 uint32_t mask = extract32(maskreg, 8, 4); 11101 uint32_t reg = extract32(maskreg, 0, 8); 11102 11103 if (arm_current_el(env) == 0 && reg > 7) { 11104 /* only xPSR sub-fields may be written by unprivileged */ 11105 return; 11106 } 11107 11108 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11109 switch (reg) { 11110 case 0x88: /* MSP_NS */ 11111 if (!env->v7m.secure) { 11112 return; 11113 } 11114 env->v7m.other_ss_msp = val; 11115 return; 11116 case 0x89: /* PSP_NS */ 11117 if (!env->v7m.secure) { 11118 return; 11119 } 11120 env->v7m.other_ss_psp = val; 11121 return; 11122 case 0x8a: /* MSPLIM_NS */ 11123 if (!env->v7m.secure) { 11124 return; 11125 } 11126 env->v7m.msplim[M_REG_NS] = val & ~7; 11127 return; 11128 case 0x8b: /* PSPLIM_NS */ 11129 if (!env->v7m.secure) { 11130 return; 11131 } 11132 env->v7m.psplim[M_REG_NS] = val & ~7; 11133 return; 11134 case 0x90: /* PRIMASK_NS */ 11135 if (!env->v7m.secure) { 11136 return; 11137 } 11138 env->v7m.primask[M_REG_NS] = val & 1; 11139 return; 11140 case 0x91: /* BASEPRI_NS */ 11141 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 11142 return; 11143 } 11144 env->v7m.basepri[M_REG_NS] = val & 0xff; 11145 return; 11146 case 0x93: /* FAULTMASK_NS */ 11147 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 11148 return; 11149 } 11150 env->v7m.faultmask[M_REG_NS] = val & 1; 11151 return; 11152 case 0x94: /* CONTROL_NS */ 11153 if (!env->v7m.secure) { 11154 return; 11155 } 11156 write_v7m_control_spsel_for_secstate(env, 11157 val & R_V7M_CONTROL_SPSEL_MASK, 11158 M_REG_NS); 11159 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 11160 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 11161 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 11162 } 11163 return; 11164 case 0x98: /* SP_NS */ 11165 { 11166 /* This gives the non-secure SP selected based on whether we're 11167 * currently in handler mode or not, using the NS CONTROL.SPSEL. 11168 */ 11169 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 11170 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; 11171 uint32_t limit; 11172 11173 if (!env->v7m.secure) { 11174 return; 11175 } 11176 11177 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; 11178 11179 if (val < limit) { 11180 CPUState *cs = CPU(arm_env_get_cpu(env)); 11181 11182 cpu_restore_state(cs, GETPC(), true); 11183 raise_exception(env, EXCP_STKOF, 0, 1); 11184 } 11185 11186 if (is_psp) { 11187 env->v7m.other_ss_psp = val; 11188 } else { 11189 env->v7m.other_ss_msp = val; 11190 } 11191 return; 11192 } 11193 default: 11194 break; 11195 } 11196 } 11197 11198 switch (reg) { 11199 case 0 ... 7: /* xPSR sub-fields */ 11200 /* only APSR is actually writable */ 11201 if (!(reg & 4)) { 11202 uint32_t apsrmask = 0; 11203 11204 if (mask & 8) { 11205 apsrmask |= XPSR_NZCV | XPSR_Q; 11206 } 11207 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 11208 apsrmask |= XPSR_GE; 11209 } 11210 xpsr_write(env, val, apsrmask); 11211 } 11212 break; 11213 case 8: /* MSP */ 11214 if (v7m_using_psp(env)) { 11215 env->v7m.other_sp = val; 11216 } else { 11217 env->regs[13] = val; 11218 } 11219 break; 11220 case 9: /* PSP */ 11221 if (v7m_using_psp(env)) { 11222 env->regs[13] = val; 11223 } else { 11224 env->v7m.other_sp = val; 11225 } 11226 break; 11227 case 10: /* MSPLIM */ 11228 if (!arm_feature(env, ARM_FEATURE_V8)) { 11229 goto bad_reg; 11230 } 11231 env->v7m.msplim[env->v7m.secure] = val & ~7; 11232 break; 11233 case 11: /* PSPLIM */ 11234 if (!arm_feature(env, ARM_FEATURE_V8)) { 11235 goto bad_reg; 11236 } 11237 env->v7m.psplim[env->v7m.secure] = val & ~7; 11238 break; 11239 case 16: /* PRIMASK */ 11240 env->v7m.primask[env->v7m.secure] = val & 1; 11241 break; 11242 case 17: /* BASEPRI */ 11243 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11244 goto bad_reg; 11245 } 11246 env->v7m.basepri[env->v7m.secure] = val & 0xff; 11247 break; 11248 case 18: /* BASEPRI_MAX */ 11249 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11250 goto bad_reg; 11251 } 11252 val &= 0xff; 11253 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 11254 || env->v7m.basepri[env->v7m.secure] == 0)) { 11255 env->v7m.basepri[env->v7m.secure] = val; 11256 } 11257 break; 11258 case 19: /* FAULTMASK */ 11259 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11260 goto bad_reg; 11261 } 11262 env->v7m.faultmask[env->v7m.secure] = val & 1; 11263 break; 11264 case 20: /* CONTROL */ 11265 /* Writing to the SPSEL bit only has an effect if we are in 11266 * thread mode; other bits can be updated by any privileged code. 11267 * write_v7m_control_spsel() deals with updating the SPSEL bit in 11268 * env->v7m.control, so we only need update the others. 11269 * For v7M, we must just ignore explicit writes to SPSEL in handler 11270 * mode; for v8M the write is permitted but will have no effect. 11271 */ 11272 if (arm_feature(env, ARM_FEATURE_V8) || 11273 !arm_v7m_is_handler_mode(env)) { 11274 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 11275 } 11276 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 11277 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 11278 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 11279 } 11280 break; 11281 default: 11282 bad_reg: 11283 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 11284 " register %d\n", reg); 11285 return; 11286 } 11287 } 11288 11289 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 11290 { 11291 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 11292 bool forceunpriv = op & 1; 11293 bool alt = op & 2; 11294 V8M_SAttributes sattrs = {}; 11295 uint32_t tt_resp; 11296 bool r, rw, nsr, nsrw, mrvalid; 11297 int prot; 11298 ARMMMUFaultInfo fi = {}; 11299 MemTxAttrs attrs = {}; 11300 hwaddr phys_addr; 11301 ARMMMUIdx mmu_idx; 11302 uint32_t mregion; 11303 bool targetpriv; 11304 bool targetsec = env->v7m.secure; 11305 bool is_subpage; 11306 11307 /* Work out what the security state and privilege level we're 11308 * interested in is... 11309 */ 11310 if (alt) { 11311 targetsec = !targetsec; 11312 } 11313 11314 if (forceunpriv) { 11315 targetpriv = false; 11316 } else { 11317 targetpriv = arm_v7m_is_handler_mode(env) || 11318 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 11319 } 11320 11321 /* ...and then figure out which MMU index this is */ 11322 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 11323 11324 /* We know that the MPU and SAU don't care about the access type 11325 * for our purposes beyond that we don't want to claim to be 11326 * an insn fetch, so we arbitrarily call this a read. 11327 */ 11328 11329 /* MPU region info only available for privileged or if 11330 * inspecting the other MPU state. 11331 */ 11332 if (arm_current_el(env) != 0 || alt) { 11333 /* We can ignore the return value as prot is always set */ 11334 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 11335 &phys_addr, &attrs, &prot, &is_subpage, 11336 &fi, &mregion); 11337 if (mregion == -1) { 11338 mrvalid = false; 11339 mregion = 0; 11340 } else { 11341 mrvalid = true; 11342 } 11343 r = prot & PAGE_READ; 11344 rw = prot & PAGE_WRITE; 11345 } else { 11346 r = false; 11347 rw = false; 11348 mrvalid = false; 11349 mregion = 0; 11350 } 11351 11352 if (env->v7m.secure) { 11353 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 11354 nsr = sattrs.ns && r; 11355 nsrw = sattrs.ns && rw; 11356 } else { 11357 sattrs.ns = true; 11358 nsr = false; 11359 nsrw = false; 11360 } 11361 11362 tt_resp = (sattrs.iregion << 24) | 11363 (sattrs.irvalid << 23) | 11364 ((!sattrs.ns) << 22) | 11365 (nsrw << 21) | 11366 (nsr << 20) | 11367 (rw << 19) | 11368 (r << 18) | 11369 (sattrs.srvalid << 17) | 11370 (mrvalid << 16) | 11371 (sattrs.sregion << 8) | 11372 mregion; 11373 11374 return tt_resp; 11375 } 11376 11377 #endif 11378 11379 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 11380 { 11381 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 11382 * Note that we do not implement the (architecturally mandated) 11383 * alignment fault for attempts to use this on Device memory 11384 * (which matches the usual QEMU behaviour of not implementing either 11385 * alignment faults or any memory attribute handling). 11386 */ 11387 11388 ARMCPU *cpu = arm_env_get_cpu(env); 11389 uint64_t blocklen = 4 << cpu->dcz_blocksize; 11390 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 11391 11392 #ifndef CONFIG_USER_ONLY 11393 { 11394 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 11395 * the block size so we might have to do more than one TLB lookup. 11396 * We know that in fact for any v8 CPU the page size is at least 4K 11397 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 11398 * 1K as an artefact of legacy v5 subpage support being present in the 11399 * same QEMU executable. 11400 */ 11401 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 11402 void *hostaddr[maxidx]; 11403 int try, i; 11404 unsigned mmu_idx = cpu_mmu_index(env, false); 11405 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 11406 11407 for (try = 0; try < 2; try++) { 11408 11409 for (i = 0; i < maxidx; i++) { 11410 hostaddr[i] = tlb_vaddr_to_host(env, 11411 vaddr + TARGET_PAGE_SIZE * i, 11412 1, mmu_idx); 11413 if (!hostaddr[i]) { 11414 break; 11415 } 11416 } 11417 if (i == maxidx) { 11418 /* If it's all in the TLB it's fair game for just writing to; 11419 * we know we don't need to update dirty status, etc. 11420 */ 11421 for (i = 0; i < maxidx - 1; i++) { 11422 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 11423 } 11424 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 11425 return; 11426 } 11427 /* OK, try a store and see if we can populate the tlb. This 11428 * might cause an exception if the memory isn't writable, 11429 * in which case we will longjmp out of here. We must for 11430 * this purpose use the actual register value passed to us 11431 * so that we get the fault address right. 11432 */ 11433 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 11434 /* Now we can populate the other TLB entries, if any */ 11435 for (i = 0; i < maxidx; i++) { 11436 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 11437 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 11438 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 11439 } 11440 } 11441 } 11442 11443 /* Slow path (probably attempt to do this to an I/O device or 11444 * similar, or clearing of a block of code we have translations 11445 * cached for). Just do a series of byte writes as the architecture 11446 * demands. It's not worth trying to use a cpu_physical_memory_map(), 11447 * memset(), unmap() sequence here because: 11448 * + we'd need to account for the blocksize being larger than a page 11449 * + the direct-RAM access case is almost always going to be dealt 11450 * with in the fastpath code above, so there's no speed benefit 11451 * + we would have to deal with the map returning NULL because the 11452 * bounce buffer was in use 11453 */ 11454 for (i = 0; i < blocklen; i++) { 11455 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 11456 } 11457 } 11458 #else 11459 memset(g2h(vaddr), 0, blocklen); 11460 #endif 11461 } 11462 11463 /* Note that signed overflow is undefined in C. The following routines are 11464 careful to use unsigned types where modulo arithmetic is required. 11465 Failure to do so _will_ break on newer gcc. */ 11466 11467 /* Signed saturating arithmetic. */ 11468 11469 /* Perform 16-bit signed saturating addition. */ 11470 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11471 { 11472 uint16_t res; 11473 11474 res = a + b; 11475 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11476 if (a & 0x8000) 11477 res = 0x8000; 11478 else 11479 res = 0x7fff; 11480 } 11481 return res; 11482 } 11483 11484 /* Perform 8-bit signed saturating addition. */ 11485 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11486 { 11487 uint8_t res; 11488 11489 res = a + b; 11490 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11491 if (a & 0x80) 11492 res = 0x80; 11493 else 11494 res = 0x7f; 11495 } 11496 return res; 11497 } 11498 11499 /* Perform 16-bit signed saturating subtraction. */ 11500 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11501 { 11502 uint16_t res; 11503 11504 res = a - b; 11505 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11506 if (a & 0x8000) 11507 res = 0x8000; 11508 else 11509 res = 0x7fff; 11510 } 11511 return res; 11512 } 11513 11514 /* Perform 8-bit signed saturating subtraction. */ 11515 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11516 { 11517 uint8_t res; 11518 11519 res = a - b; 11520 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11521 if (a & 0x80) 11522 res = 0x80; 11523 else 11524 res = 0x7f; 11525 } 11526 return res; 11527 } 11528 11529 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11530 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11531 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11532 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11533 #define PFX q 11534 11535 #include "op_addsub.h" 11536 11537 /* Unsigned saturating arithmetic. */ 11538 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11539 { 11540 uint16_t res; 11541 res = a + b; 11542 if (res < a) 11543 res = 0xffff; 11544 return res; 11545 } 11546 11547 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11548 { 11549 if (a > b) 11550 return a - b; 11551 else 11552 return 0; 11553 } 11554 11555 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11556 { 11557 uint8_t res; 11558 res = a + b; 11559 if (res < a) 11560 res = 0xff; 11561 return res; 11562 } 11563 11564 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11565 { 11566 if (a > b) 11567 return a - b; 11568 else 11569 return 0; 11570 } 11571 11572 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11573 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11574 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11575 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11576 #define PFX uq 11577 11578 #include "op_addsub.h" 11579 11580 /* Signed modulo arithmetic. */ 11581 #define SARITH16(a, b, n, op) do { \ 11582 int32_t sum; \ 11583 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11584 RESULT(sum, n, 16); \ 11585 if (sum >= 0) \ 11586 ge |= 3 << (n * 2); \ 11587 } while(0) 11588 11589 #define SARITH8(a, b, n, op) do { \ 11590 int32_t sum; \ 11591 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11592 RESULT(sum, n, 8); \ 11593 if (sum >= 0) \ 11594 ge |= 1 << n; \ 11595 } while(0) 11596 11597 11598 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11599 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11600 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11601 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11602 #define PFX s 11603 #define ARITH_GE 11604 11605 #include "op_addsub.h" 11606 11607 /* Unsigned modulo arithmetic. */ 11608 #define ADD16(a, b, n) do { \ 11609 uint32_t sum; \ 11610 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11611 RESULT(sum, n, 16); \ 11612 if ((sum >> 16) == 1) \ 11613 ge |= 3 << (n * 2); \ 11614 } while(0) 11615 11616 #define ADD8(a, b, n) do { \ 11617 uint32_t sum; \ 11618 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11619 RESULT(sum, n, 8); \ 11620 if ((sum >> 8) == 1) \ 11621 ge |= 1 << n; \ 11622 } while(0) 11623 11624 #define SUB16(a, b, n) do { \ 11625 uint32_t sum; \ 11626 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11627 RESULT(sum, n, 16); \ 11628 if ((sum >> 16) == 0) \ 11629 ge |= 3 << (n * 2); \ 11630 } while(0) 11631 11632 #define SUB8(a, b, n) do { \ 11633 uint32_t sum; \ 11634 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11635 RESULT(sum, n, 8); \ 11636 if ((sum >> 8) == 0) \ 11637 ge |= 1 << n; \ 11638 } while(0) 11639 11640 #define PFX u 11641 #define ARITH_GE 11642 11643 #include "op_addsub.h" 11644 11645 /* Halved signed arithmetic. */ 11646 #define ADD16(a, b, n) \ 11647 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11648 #define SUB16(a, b, n) \ 11649 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11650 #define ADD8(a, b, n) \ 11651 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11652 #define SUB8(a, b, n) \ 11653 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11654 #define PFX sh 11655 11656 #include "op_addsub.h" 11657 11658 /* Halved unsigned arithmetic. */ 11659 #define ADD16(a, b, n) \ 11660 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11661 #define SUB16(a, b, n) \ 11662 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11663 #define ADD8(a, b, n) \ 11664 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11665 #define SUB8(a, b, n) \ 11666 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11667 #define PFX uh 11668 11669 #include "op_addsub.h" 11670 11671 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11672 { 11673 if (a > b) 11674 return a - b; 11675 else 11676 return b - a; 11677 } 11678 11679 /* Unsigned sum of absolute byte differences. */ 11680 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11681 { 11682 uint32_t sum; 11683 sum = do_usad(a, b); 11684 sum += do_usad(a >> 8, b >> 8); 11685 sum += do_usad(a >> 16, b >>16); 11686 sum += do_usad(a >> 24, b >> 24); 11687 return sum; 11688 } 11689 11690 /* For ARMv6 SEL instruction. */ 11691 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11692 { 11693 uint32_t mask; 11694 11695 mask = 0; 11696 if (flags & 1) 11697 mask |= 0xff; 11698 if (flags & 2) 11699 mask |= 0xff00; 11700 if (flags & 4) 11701 mask |= 0xff0000; 11702 if (flags & 8) 11703 mask |= 0xff000000; 11704 return (a & mask) | (b & ~mask); 11705 } 11706 11707 /* VFP support. We follow the convention used for VFP instructions: 11708 Single precision routines have a "s" suffix, double precision a 11709 "d" suffix. */ 11710 11711 /* Convert host exception flags to vfp form. */ 11712 static inline int vfp_exceptbits_from_host(int host_bits) 11713 { 11714 int target_bits = 0; 11715 11716 if (host_bits & float_flag_invalid) 11717 target_bits |= 1; 11718 if (host_bits & float_flag_divbyzero) 11719 target_bits |= 2; 11720 if (host_bits & float_flag_overflow) 11721 target_bits |= 4; 11722 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11723 target_bits |= 8; 11724 if (host_bits & float_flag_inexact) 11725 target_bits |= 0x10; 11726 if (host_bits & float_flag_input_denormal) 11727 target_bits |= 0x80; 11728 return target_bits; 11729 } 11730 11731 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11732 { 11733 int i; 11734 uint32_t fpscr; 11735 11736 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11737 | (env->vfp.vec_len << 16) 11738 | (env->vfp.vec_stride << 20); 11739 11740 i = get_float_exception_flags(&env->vfp.fp_status); 11741 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11742 /* FZ16 does not generate an input denormal exception. */ 11743 i |= (get_float_exception_flags(&env->vfp.fp_status_f16) 11744 & ~float_flag_input_denormal); 11745 11746 fpscr |= vfp_exceptbits_from_host(i); 11747 return fpscr; 11748 } 11749 11750 uint32_t vfp_get_fpscr(CPUARMState *env) 11751 { 11752 return HELPER(vfp_get_fpscr)(env); 11753 } 11754 11755 /* Convert vfp exception flags to target form. */ 11756 static inline int vfp_exceptbits_to_host(int target_bits) 11757 { 11758 int host_bits = 0; 11759 11760 if (target_bits & 1) 11761 host_bits |= float_flag_invalid; 11762 if (target_bits & 2) 11763 host_bits |= float_flag_divbyzero; 11764 if (target_bits & 4) 11765 host_bits |= float_flag_overflow; 11766 if (target_bits & 8) 11767 host_bits |= float_flag_underflow; 11768 if (target_bits & 0x10) 11769 host_bits |= float_flag_inexact; 11770 if (target_bits & 0x80) 11771 host_bits |= float_flag_input_denormal; 11772 return host_bits; 11773 } 11774 11775 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11776 { 11777 int i; 11778 uint32_t changed; 11779 11780 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ 11781 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) { 11782 val &= ~FPCR_FZ16; 11783 } 11784 11785 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11786 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11787 env->vfp.vec_len = (val >> 16) & 7; 11788 env->vfp.vec_stride = (val >> 20) & 3; 11789 11790 changed ^= val; 11791 if (changed & (3 << 22)) { 11792 i = (val >> 22) & 3; 11793 switch (i) { 11794 case FPROUNDING_TIEEVEN: 11795 i = float_round_nearest_even; 11796 break; 11797 case FPROUNDING_POSINF: 11798 i = float_round_up; 11799 break; 11800 case FPROUNDING_NEGINF: 11801 i = float_round_down; 11802 break; 11803 case FPROUNDING_ZERO: 11804 i = float_round_to_zero; 11805 break; 11806 } 11807 set_float_rounding_mode(i, &env->vfp.fp_status); 11808 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11809 } 11810 if (changed & FPCR_FZ16) { 11811 bool ftz_enabled = val & FPCR_FZ16; 11812 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11813 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11814 } 11815 if (changed & FPCR_FZ) { 11816 bool ftz_enabled = val & FPCR_FZ; 11817 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11818 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11819 } 11820 if (changed & FPCR_DN) { 11821 bool dnan_enabled = val & FPCR_DN; 11822 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11823 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11824 } 11825 11826 /* The exception flags are ORed together when we read fpscr so we 11827 * only need to preserve the current state in one of our 11828 * float_status values. 11829 */ 11830 i = vfp_exceptbits_to_host(val); 11831 set_float_exception_flags(i, &env->vfp.fp_status); 11832 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11833 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11834 } 11835 11836 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11837 { 11838 HELPER(vfp_set_fpscr)(env, val); 11839 } 11840 11841 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11842 11843 #define VFP_BINOP(name) \ 11844 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11845 { \ 11846 float_status *fpst = fpstp; \ 11847 return float32_ ## name(a, b, fpst); \ 11848 } \ 11849 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11850 { \ 11851 float_status *fpst = fpstp; \ 11852 return float64_ ## name(a, b, fpst); \ 11853 } 11854 VFP_BINOP(add) 11855 VFP_BINOP(sub) 11856 VFP_BINOP(mul) 11857 VFP_BINOP(div) 11858 VFP_BINOP(min) 11859 VFP_BINOP(max) 11860 VFP_BINOP(minnum) 11861 VFP_BINOP(maxnum) 11862 #undef VFP_BINOP 11863 11864 float32 VFP_HELPER(neg, s)(float32 a) 11865 { 11866 return float32_chs(a); 11867 } 11868 11869 float64 VFP_HELPER(neg, d)(float64 a) 11870 { 11871 return float64_chs(a); 11872 } 11873 11874 float32 VFP_HELPER(abs, s)(float32 a) 11875 { 11876 return float32_abs(a); 11877 } 11878 11879 float64 VFP_HELPER(abs, d)(float64 a) 11880 { 11881 return float64_abs(a); 11882 } 11883 11884 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11885 { 11886 return float32_sqrt(a, &env->vfp.fp_status); 11887 } 11888 11889 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11890 { 11891 return float64_sqrt(a, &env->vfp.fp_status); 11892 } 11893 11894 /* XXX: check quiet/signaling case */ 11895 #define DO_VFP_cmp(p, type) \ 11896 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11897 { \ 11898 uint32_t flags; \ 11899 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11900 case 0: flags = 0x6; break; \ 11901 case -1: flags = 0x8; break; \ 11902 case 1: flags = 0x2; break; \ 11903 default: case 2: flags = 0x3; break; \ 11904 } \ 11905 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11906 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11907 } \ 11908 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11909 { \ 11910 uint32_t flags; \ 11911 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11912 case 0: flags = 0x6; break; \ 11913 case -1: flags = 0x8; break; \ 11914 case 1: flags = 0x2; break; \ 11915 default: case 2: flags = 0x3; break; \ 11916 } \ 11917 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11918 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11919 } 11920 DO_VFP_cmp(s, float32) 11921 DO_VFP_cmp(d, float64) 11922 #undef DO_VFP_cmp 11923 11924 /* Integer to float and float to integer conversions */ 11925 11926 #define CONV_ITOF(name, ftype, fsz, sign) \ 11927 ftype HELPER(name)(uint32_t x, void *fpstp) \ 11928 { \ 11929 float_status *fpst = fpstp; \ 11930 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11931 } 11932 11933 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 11934 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 11935 { \ 11936 float_status *fpst = fpstp; \ 11937 if (float##fsz##_is_any_nan(x)) { \ 11938 float_raise(float_flag_invalid, fpst); \ 11939 return 0; \ 11940 } \ 11941 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11942 } 11943 11944 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 11945 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 11946 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 11947 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 11948 11949 FLOAT_CONVS(si, h, uint32_t, 16, ) 11950 FLOAT_CONVS(si, s, float32, 32, ) 11951 FLOAT_CONVS(si, d, float64, 64, ) 11952 FLOAT_CONVS(ui, h, uint32_t, 16, u) 11953 FLOAT_CONVS(ui, s, float32, 32, u) 11954 FLOAT_CONVS(ui, d, float64, 64, u) 11955 11956 #undef CONV_ITOF 11957 #undef CONV_FTOI 11958 #undef FLOAT_CONVS 11959 11960 /* floating point conversion */ 11961 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11962 { 11963 return float32_to_float64(x, &env->vfp.fp_status); 11964 } 11965 11966 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11967 { 11968 return float64_to_float32(x, &env->vfp.fp_status); 11969 } 11970 11971 /* VFP3 fixed point conversion. */ 11972 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11973 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11974 void *fpstp) \ 11975 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } 11976 11977 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \ 11978 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \ 11979 void *fpst) \ 11980 { \ 11981 if (unlikely(float##fsz##_is_any_nan(x))) { \ 11982 float_raise(float_flag_invalid, fpst); \ 11983 return 0; \ 11984 } \ 11985 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ 11986 } 11987 11988 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11989 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11990 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 11991 float_round_to_zero, _round_to_zero) \ 11992 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 11993 get_float_rounding_mode(fpst), ) 11994 11995 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11996 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11997 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 11998 get_float_rounding_mode(fpst), ) 11999 12000 VFP_CONV_FIX(sh, d, 64, 64, int16) 12001 VFP_CONV_FIX(sl, d, 64, 64, int32) 12002 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 12003 VFP_CONV_FIX(uh, d, 64, 64, uint16) 12004 VFP_CONV_FIX(ul, d, 64, 64, uint32) 12005 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 12006 VFP_CONV_FIX(sh, s, 32, 32, int16) 12007 VFP_CONV_FIX(sl, s, 32, 32, int32) 12008 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 12009 VFP_CONV_FIX(uh, s, 32, 32, uint16) 12010 VFP_CONV_FIX(ul, s, 32, 32, uint32) 12011 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 12012 12013 #undef VFP_CONV_FIX 12014 #undef VFP_CONV_FIX_FLOAT 12015 #undef VFP_CONV_FLOAT_FIX_ROUND 12016 #undef VFP_CONV_FIX_A64 12017 12018 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) 12019 { 12020 return int32_to_float16_scalbn(x, -shift, fpst); 12021 } 12022 12023 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) 12024 { 12025 return uint32_to_float16_scalbn(x, -shift, fpst); 12026 } 12027 12028 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) 12029 { 12030 return int64_to_float16_scalbn(x, -shift, fpst); 12031 } 12032 12033 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) 12034 { 12035 return uint64_to_float16_scalbn(x, -shift, fpst); 12036 } 12037 12038 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst) 12039 { 12040 if (unlikely(float16_is_any_nan(x))) { 12041 float_raise(float_flag_invalid, fpst); 12042 return 0; 12043 } 12044 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst), 12045 shift, fpst); 12046 } 12047 12048 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst) 12049 { 12050 if (unlikely(float16_is_any_nan(x))) { 12051 float_raise(float_flag_invalid, fpst); 12052 return 0; 12053 } 12054 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst), 12055 shift, fpst); 12056 } 12057 12058 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst) 12059 { 12060 if (unlikely(float16_is_any_nan(x))) { 12061 float_raise(float_flag_invalid, fpst); 12062 return 0; 12063 } 12064 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst), 12065 shift, fpst); 12066 } 12067 12068 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst) 12069 { 12070 if (unlikely(float16_is_any_nan(x))) { 12071 float_raise(float_flag_invalid, fpst); 12072 return 0; 12073 } 12074 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst), 12075 shift, fpst); 12076 } 12077 12078 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst) 12079 { 12080 if (unlikely(float16_is_any_nan(x))) { 12081 float_raise(float_flag_invalid, fpst); 12082 return 0; 12083 } 12084 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst), 12085 shift, fpst); 12086 } 12087 12088 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst) 12089 { 12090 if (unlikely(float16_is_any_nan(x))) { 12091 float_raise(float_flag_invalid, fpst); 12092 return 0; 12093 } 12094 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst), 12095 shift, fpst); 12096 } 12097 12098 /* Set the current fp rounding mode and return the old one. 12099 * The argument is a softfloat float_round_ value. 12100 */ 12101 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 12102 { 12103 float_status *fp_status = fpstp; 12104 12105 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 12106 set_float_rounding_mode(rmode, fp_status); 12107 12108 return prev_rmode; 12109 } 12110 12111 /* Set the current fp rounding mode in the standard fp status and return 12112 * the old one. This is for NEON instructions that need to change the 12113 * rounding mode but wish to use the standard FPSCR values for everything 12114 * else. Always set the rounding mode back to the correct value after 12115 * modifying it. 12116 * The argument is a softfloat float_round_ value. 12117 */ 12118 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 12119 { 12120 float_status *fp_status = &env->vfp.standard_fp_status; 12121 12122 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 12123 set_float_rounding_mode(rmode, fp_status); 12124 12125 return prev_rmode; 12126 } 12127 12128 /* Half precision conversions. */ 12129 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 12130 { 12131 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12132 * it would affect flushing input denormals. 12133 */ 12134 float_status *fpst = fpstp; 12135 flag save = get_flush_inputs_to_zero(fpst); 12136 set_flush_inputs_to_zero(false, fpst); 12137 float32 r = float16_to_float32(a, !ahp_mode, fpst); 12138 set_flush_inputs_to_zero(save, fpst); 12139 return r; 12140 } 12141 12142 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 12143 { 12144 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12145 * it would affect flushing output denormals. 12146 */ 12147 float_status *fpst = fpstp; 12148 flag save = get_flush_to_zero(fpst); 12149 set_flush_to_zero(false, fpst); 12150 float16 r = float32_to_float16(a, !ahp_mode, fpst); 12151 set_flush_to_zero(save, fpst); 12152 return r; 12153 } 12154 12155 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 12156 { 12157 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12158 * it would affect flushing input denormals. 12159 */ 12160 float_status *fpst = fpstp; 12161 flag save = get_flush_inputs_to_zero(fpst); 12162 set_flush_inputs_to_zero(false, fpst); 12163 float64 r = float16_to_float64(a, !ahp_mode, fpst); 12164 set_flush_inputs_to_zero(save, fpst); 12165 return r; 12166 } 12167 12168 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 12169 { 12170 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12171 * it would affect flushing output denormals. 12172 */ 12173 float_status *fpst = fpstp; 12174 flag save = get_flush_to_zero(fpst); 12175 set_flush_to_zero(false, fpst); 12176 float16 r = float64_to_float16(a, !ahp_mode, fpst); 12177 set_flush_to_zero(save, fpst); 12178 return r; 12179 } 12180 12181 #define float32_two make_float32(0x40000000) 12182 #define float32_three make_float32(0x40400000) 12183 #define float32_one_point_five make_float32(0x3fc00000) 12184 12185 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 12186 { 12187 float_status *s = &env->vfp.standard_fp_status; 12188 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12189 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12190 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12191 float_raise(float_flag_input_denormal, s); 12192 } 12193 return float32_two; 12194 } 12195 return float32_sub(float32_two, float32_mul(a, b, s), s); 12196 } 12197 12198 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 12199 { 12200 float_status *s = &env->vfp.standard_fp_status; 12201 float32 product; 12202 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12203 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12204 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12205 float_raise(float_flag_input_denormal, s); 12206 } 12207 return float32_one_point_five; 12208 } 12209 product = float32_mul(a, b, s); 12210 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 12211 } 12212 12213 /* NEON helpers. */ 12214 12215 /* Constants 256 and 512 are used in some helpers; we avoid relying on 12216 * int->float conversions at run-time. */ 12217 #define float64_256 make_float64(0x4070000000000000LL) 12218 #define float64_512 make_float64(0x4080000000000000LL) 12219 #define float16_maxnorm make_float16(0x7bff) 12220 #define float32_maxnorm make_float32(0x7f7fffff) 12221 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 12222 12223 /* Reciprocal functions 12224 * 12225 * The algorithm that must be used to calculate the estimate 12226 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 12227 */ 12228 12229 /* See RecipEstimate() 12230 * 12231 * input is a 9 bit fixed point number 12232 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 12233 * result range 256 .. 511 for a number from 1.0 to 511/256. 12234 */ 12235 12236 static int recip_estimate(int input) 12237 { 12238 int a, b, r; 12239 assert(256 <= input && input < 512); 12240 a = (input * 2) + 1; 12241 b = (1 << 19) / a; 12242 r = (b + 1) >> 1; 12243 assert(256 <= r && r < 512); 12244 return r; 12245 } 12246 12247 /* 12248 * Common wrapper to call recip_estimate 12249 * 12250 * The parameters are exponent and 64 bit fraction (without implicit 12251 * bit) where the binary point is nominally at bit 52. Returns a 12252 * float64 which can then be rounded to the appropriate size by the 12253 * callee. 12254 */ 12255 12256 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 12257 { 12258 uint32_t scaled, estimate; 12259 uint64_t result_frac; 12260 int result_exp; 12261 12262 /* Handle sub-normals */ 12263 if (*exp == 0) { 12264 if (extract64(frac, 51, 1) == 0) { 12265 *exp = -1; 12266 frac <<= 2; 12267 } else { 12268 frac <<= 1; 12269 } 12270 } 12271 12272 /* scaled = UInt('1':fraction<51:44>) */ 12273 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12274 estimate = recip_estimate(scaled); 12275 12276 result_exp = exp_off - *exp; 12277 result_frac = deposit64(0, 44, 8, estimate); 12278 if (result_exp == 0) { 12279 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 12280 } else if (result_exp == -1) { 12281 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 12282 result_exp = 0; 12283 } 12284 12285 *exp = result_exp; 12286 12287 return result_frac; 12288 } 12289 12290 static bool round_to_inf(float_status *fpst, bool sign_bit) 12291 { 12292 switch (fpst->float_rounding_mode) { 12293 case float_round_nearest_even: /* Round to Nearest */ 12294 return true; 12295 case float_round_up: /* Round to +Inf */ 12296 return !sign_bit; 12297 case float_round_down: /* Round to -Inf */ 12298 return sign_bit; 12299 case float_round_to_zero: /* Round to Zero */ 12300 return false; 12301 } 12302 12303 g_assert_not_reached(); 12304 } 12305 12306 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 12307 { 12308 float_status *fpst = fpstp; 12309 float16 f16 = float16_squash_input_denormal(input, fpst); 12310 uint32_t f16_val = float16_val(f16); 12311 uint32_t f16_sign = float16_is_neg(f16); 12312 int f16_exp = extract32(f16_val, 10, 5); 12313 uint32_t f16_frac = extract32(f16_val, 0, 10); 12314 uint64_t f64_frac; 12315 12316 if (float16_is_any_nan(f16)) { 12317 float16 nan = f16; 12318 if (float16_is_signaling_nan(f16, fpst)) { 12319 float_raise(float_flag_invalid, fpst); 12320 nan = float16_silence_nan(f16, fpst); 12321 } 12322 if (fpst->default_nan_mode) { 12323 nan = float16_default_nan(fpst); 12324 } 12325 return nan; 12326 } else if (float16_is_infinity(f16)) { 12327 return float16_set_sign(float16_zero, float16_is_neg(f16)); 12328 } else if (float16_is_zero(f16)) { 12329 float_raise(float_flag_divbyzero, fpst); 12330 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 12331 } else if (float16_abs(f16) < (1 << 8)) { 12332 /* Abs(value) < 2.0^-16 */ 12333 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12334 if (round_to_inf(fpst, f16_sign)) { 12335 return float16_set_sign(float16_infinity, f16_sign); 12336 } else { 12337 return float16_set_sign(float16_maxnorm, f16_sign); 12338 } 12339 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 12340 float_raise(float_flag_underflow, fpst); 12341 return float16_set_sign(float16_zero, float16_is_neg(f16)); 12342 } 12343 12344 f64_frac = call_recip_estimate(&f16_exp, 29, 12345 ((uint64_t) f16_frac) << (52 - 10)); 12346 12347 /* result = sign : result_exp<4:0> : fraction<51:42> */ 12348 f16_val = deposit32(0, 15, 1, f16_sign); 12349 f16_val = deposit32(f16_val, 10, 5, f16_exp); 12350 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 12351 return make_float16(f16_val); 12352 } 12353 12354 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 12355 { 12356 float_status *fpst = fpstp; 12357 float32 f32 = float32_squash_input_denormal(input, fpst); 12358 uint32_t f32_val = float32_val(f32); 12359 bool f32_sign = float32_is_neg(f32); 12360 int f32_exp = extract32(f32_val, 23, 8); 12361 uint32_t f32_frac = extract32(f32_val, 0, 23); 12362 uint64_t f64_frac; 12363 12364 if (float32_is_any_nan(f32)) { 12365 float32 nan = f32; 12366 if (float32_is_signaling_nan(f32, fpst)) { 12367 float_raise(float_flag_invalid, fpst); 12368 nan = float32_silence_nan(f32, fpst); 12369 } 12370 if (fpst->default_nan_mode) { 12371 nan = float32_default_nan(fpst); 12372 } 12373 return nan; 12374 } else if (float32_is_infinity(f32)) { 12375 return float32_set_sign(float32_zero, float32_is_neg(f32)); 12376 } else if (float32_is_zero(f32)) { 12377 float_raise(float_flag_divbyzero, fpst); 12378 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12379 } else if (float32_abs(f32) < (1ULL << 21)) { 12380 /* Abs(value) < 2.0^-128 */ 12381 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12382 if (round_to_inf(fpst, f32_sign)) { 12383 return float32_set_sign(float32_infinity, f32_sign); 12384 } else { 12385 return float32_set_sign(float32_maxnorm, f32_sign); 12386 } 12387 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 12388 float_raise(float_flag_underflow, fpst); 12389 return float32_set_sign(float32_zero, float32_is_neg(f32)); 12390 } 12391 12392 f64_frac = call_recip_estimate(&f32_exp, 253, 12393 ((uint64_t) f32_frac) << (52 - 23)); 12394 12395 /* result = sign : result_exp<7:0> : fraction<51:29> */ 12396 f32_val = deposit32(0, 31, 1, f32_sign); 12397 f32_val = deposit32(f32_val, 23, 8, f32_exp); 12398 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 12399 return make_float32(f32_val); 12400 } 12401 12402 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 12403 { 12404 float_status *fpst = fpstp; 12405 float64 f64 = float64_squash_input_denormal(input, fpst); 12406 uint64_t f64_val = float64_val(f64); 12407 bool f64_sign = float64_is_neg(f64); 12408 int f64_exp = extract64(f64_val, 52, 11); 12409 uint64_t f64_frac = extract64(f64_val, 0, 52); 12410 12411 /* Deal with any special cases */ 12412 if (float64_is_any_nan(f64)) { 12413 float64 nan = f64; 12414 if (float64_is_signaling_nan(f64, fpst)) { 12415 float_raise(float_flag_invalid, fpst); 12416 nan = float64_silence_nan(f64, fpst); 12417 } 12418 if (fpst->default_nan_mode) { 12419 nan = float64_default_nan(fpst); 12420 } 12421 return nan; 12422 } else if (float64_is_infinity(f64)) { 12423 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12424 } else if (float64_is_zero(f64)) { 12425 float_raise(float_flag_divbyzero, fpst); 12426 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12427 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 12428 /* Abs(value) < 2.0^-1024 */ 12429 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12430 if (round_to_inf(fpst, f64_sign)) { 12431 return float64_set_sign(float64_infinity, f64_sign); 12432 } else { 12433 return float64_set_sign(float64_maxnorm, f64_sign); 12434 } 12435 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 12436 float_raise(float_flag_underflow, fpst); 12437 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12438 } 12439 12440 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 12441 12442 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 12443 f64_val = deposit64(0, 63, 1, f64_sign); 12444 f64_val = deposit64(f64_val, 52, 11, f64_exp); 12445 f64_val = deposit64(f64_val, 0, 52, f64_frac); 12446 return make_float64(f64_val); 12447 } 12448 12449 /* The algorithm that must be used to calculate the estimate 12450 * is specified by the ARM ARM. 12451 */ 12452 12453 static int do_recip_sqrt_estimate(int a) 12454 { 12455 int b, estimate; 12456 12457 assert(128 <= a && a < 512); 12458 if (a < 256) { 12459 a = a * 2 + 1; 12460 } else { 12461 a = (a >> 1) << 1; 12462 a = (a + 1) * 2; 12463 } 12464 b = 512; 12465 while (a * (b + 1) * (b + 1) < (1 << 28)) { 12466 b += 1; 12467 } 12468 estimate = (b + 1) / 2; 12469 assert(256 <= estimate && estimate < 512); 12470 12471 return estimate; 12472 } 12473 12474 12475 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 12476 { 12477 int estimate; 12478 uint32_t scaled; 12479 12480 if (*exp == 0) { 12481 while (extract64(frac, 51, 1) == 0) { 12482 frac = frac << 1; 12483 *exp -= 1; 12484 } 12485 frac = extract64(frac, 0, 51) << 1; 12486 } 12487 12488 if (*exp & 1) { 12489 /* scaled = UInt('01':fraction<51:45>) */ 12490 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 12491 } else { 12492 /* scaled = UInt('1':fraction<51:44>) */ 12493 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12494 } 12495 estimate = do_recip_sqrt_estimate(scaled); 12496 12497 *exp = (exp_off - *exp) / 2; 12498 return extract64(estimate, 0, 8) << 44; 12499 } 12500 12501 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 12502 { 12503 float_status *s = fpstp; 12504 float16 f16 = float16_squash_input_denormal(input, s); 12505 uint16_t val = float16_val(f16); 12506 bool f16_sign = float16_is_neg(f16); 12507 int f16_exp = extract32(val, 10, 5); 12508 uint16_t f16_frac = extract32(val, 0, 10); 12509 uint64_t f64_frac; 12510 12511 if (float16_is_any_nan(f16)) { 12512 float16 nan = f16; 12513 if (float16_is_signaling_nan(f16, s)) { 12514 float_raise(float_flag_invalid, s); 12515 nan = float16_silence_nan(f16, s); 12516 } 12517 if (s->default_nan_mode) { 12518 nan = float16_default_nan(s); 12519 } 12520 return nan; 12521 } else if (float16_is_zero(f16)) { 12522 float_raise(float_flag_divbyzero, s); 12523 return float16_set_sign(float16_infinity, f16_sign); 12524 } else if (f16_sign) { 12525 float_raise(float_flag_invalid, s); 12526 return float16_default_nan(s); 12527 } else if (float16_is_infinity(f16)) { 12528 return float16_zero; 12529 } 12530 12531 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12532 * preserving the parity of the exponent. */ 12533 12534 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 12535 12536 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 12537 12538 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 12539 val = deposit32(0, 15, 1, f16_sign); 12540 val = deposit32(val, 10, 5, f16_exp); 12541 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 12542 return make_float16(val); 12543 } 12544 12545 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 12546 { 12547 float_status *s = fpstp; 12548 float32 f32 = float32_squash_input_denormal(input, s); 12549 uint32_t val = float32_val(f32); 12550 uint32_t f32_sign = float32_is_neg(f32); 12551 int f32_exp = extract32(val, 23, 8); 12552 uint32_t f32_frac = extract32(val, 0, 23); 12553 uint64_t f64_frac; 12554 12555 if (float32_is_any_nan(f32)) { 12556 float32 nan = f32; 12557 if (float32_is_signaling_nan(f32, s)) { 12558 float_raise(float_flag_invalid, s); 12559 nan = float32_silence_nan(f32, s); 12560 } 12561 if (s->default_nan_mode) { 12562 nan = float32_default_nan(s); 12563 } 12564 return nan; 12565 } else if (float32_is_zero(f32)) { 12566 float_raise(float_flag_divbyzero, s); 12567 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12568 } else if (float32_is_neg(f32)) { 12569 float_raise(float_flag_invalid, s); 12570 return float32_default_nan(s); 12571 } else if (float32_is_infinity(f32)) { 12572 return float32_zero; 12573 } 12574 12575 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12576 * preserving the parity of the exponent. */ 12577 12578 f64_frac = ((uint64_t) f32_frac) << 29; 12579 12580 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 12581 12582 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 12583 val = deposit32(0, 31, 1, f32_sign); 12584 val = deposit32(val, 23, 8, f32_exp); 12585 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 12586 return make_float32(val); 12587 } 12588 12589 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 12590 { 12591 float_status *s = fpstp; 12592 float64 f64 = float64_squash_input_denormal(input, s); 12593 uint64_t val = float64_val(f64); 12594 bool f64_sign = float64_is_neg(f64); 12595 int f64_exp = extract64(val, 52, 11); 12596 uint64_t f64_frac = extract64(val, 0, 52); 12597 12598 if (float64_is_any_nan(f64)) { 12599 float64 nan = f64; 12600 if (float64_is_signaling_nan(f64, s)) { 12601 float_raise(float_flag_invalid, s); 12602 nan = float64_silence_nan(f64, s); 12603 } 12604 if (s->default_nan_mode) { 12605 nan = float64_default_nan(s); 12606 } 12607 return nan; 12608 } else if (float64_is_zero(f64)) { 12609 float_raise(float_flag_divbyzero, s); 12610 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12611 } else if (float64_is_neg(f64)) { 12612 float_raise(float_flag_invalid, s); 12613 return float64_default_nan(s); 12614 } else if (float64_is_infinity(f64)) { 12615 return float64_zero; 12616 } 12617 12618 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 12619 12620 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 12621 val = deposit64(0, 61, 1, f64_sign); 12622 val = deposit64(val, 52, 11, f64_exp); 12623 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 12624 return make_float64(val); 12625 } 12626 12627 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 12628 { 12629 /* float_status *s = fpstp; */ 12630 int input, estimate; 12631 12632 if ((a & 0x80000000) == 0) { 12633 return 0xffffffff; 12634 } 12635 12636 input = extract32(a, 23, 9); 12637 estimate = recip_estimate(input); 12638 12639 return deposit32(0, (32 - 9), 9, estimate); 12640 } 12641 12642 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 12643 { 12644 int estimate; 12645 12646 if ((a & 0xc0000000) == 0) { 12647 return 0xffffffff; 12648 } 12649 12650 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 12651 12652 return deposit32(0, 23, 9, estimate); 12653 } 12654 12655 /* VFPv4 fused multiply-accumulate */ 12656 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 12657 { 12658 float_status *fpst = fpstp; 12659 return float32_muladd(a, b, c, 0, fpst); 12660 } 12661 12662 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 12663 { 12664 float_status *fpst = fpstp; 12665 return float64_muladd(a, b, c, 0, fpst); 12666 } 12667 12668 /* ARMv8 round to integral */ 12669 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12670 { 12671 return float32_round_to_int(x, fp_status); 12672 } 12673 12674 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12675 { 12676 return float64_round_to_int(x, fp_status); 12677 } 12678 12679 float32 HELPER(rints)(float32 x, void *fp_status) 12680 { 12681 int old_flags = get_float_exception_flags(fp_status), new_flags; 12682 float32 ret; 12683 12684 ret = float32_round_to_int(x, fp_status); 12685 12686 /* Suppress any inexact exceptions the conversion produced */ 12687 if (!(old_flags & float_flag_inexact)) { 12688 new_flags = get_float_exception_flags(fp_status); 12689 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12690 } 12691 12692 return ret; 12693 } 12694 12695 float64 HELPER(rintd)(float64 x, void *fp_status) 12696 { 12697 int old_flags = get_float_exception_flags(fp_status), new_flags; 12698 float64 ret; 12699 12700 ret = float64_round_to_int(x, fp_status); 12701 12702 new_flags = get_float_exception_flags(fp_status); 12703 12704 /* Suppress any inexact exceptions the conversion produced */ 12705 if (!(old_flags & float_flag_inexact)) { 12706 new_flags = get_float_exception_flags(fp_status); 12707 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12708 } 12709 12710 return ret; 12711 } 12712 12713 /* Convert ARM rounding mode to softfloat */ 12714 int arm_rmode_to_sf(int rmode) 12715 { 12716 switch (rmode) { 12717 case FPROUNDING_TIEAWAY: 12718 rmode = float_round_ties_away; 12719 break; 12720 case FPROUNDING_ODD: 12721 /* FIXME: add support for TIEAWAY and ODD */ 12722 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12723 rmode); 12724 /* fall through for now */ 12725 case FPROUNDING_TIEEVEN: 12726 default: 12727 rmode = float_round_nearest_even; 12728 break; 12729 case FPROUNDING_POSINF: 12730 rmode = float_round_up; 12731 break; 12732 case FPROUNDING_NEGINF: 12733 rmode = float_round_down; 12734 break; 12735 case FPROUNDING_ZERO: 12736 rmode = float_round_to_zero; 12737 break; 12738 } 12739 return rmode; 12740 } 12741 12742 /* CRC helpers. 12743 * The upper bytes of val (above the number specified by 'bytes') must have 12744 * been zeroed out by the caller. 12745 */ 12746 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12747 { 12748 uint8_t buf[4]; 12749 12750 stl_le_p(buf, val); 12751 12752 /* zlib crc32 converts the accumulator and output to one's complement. */ 12753 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12754 } 12755 12756 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12757 { 12758 uint8_t buf[4]; 12759 12760 stl_le_p(buf, val); 12761 12762 /* Linux crc32c converts the output to one's complement. */ 12763 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12764 } 12765 12766 /* Return the exception level to which FP-disabled exceptions should 12767 * be taken, or 0 if FP is enabled. 12768 */ 12769 int fp_exception_el(CPUARMState *env, int cur_el) 12770 { 12771 #ifndef CONFIG_USER_ONLY 12772 int fpen; 12773 12774 /* CPACR and the CPTR registers don't exist before v6, so FP is 12775 * always accessible 12776 */ 12777 if (!arm_feature(env, ARM_FEATURE_V6)) { 12778 return 0; 12779 } 12780 12781 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12782 * 0, 2 : trap EL0 and EL1/PL1 accesses 12783 * 1 : trap only EL0 accesses 12784 * 3 : trap no accesses 12785 */ 12786 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12787 switch (fpen) { 12788 case 0: 12789 case 2: 12790 if (cur_el == 0 || cur_el == 1) { 12791 /* Trap to PL1, which might be EL1 or EL3 */ 12792 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12793 return 3; 12794 } 12795 return 1; 12796 } 12797 if (cur_el == 3 && !is_a64(env)) { 12798 /* Secure PL1 running at EL3 */ 12799 return 3; 12800 } 12801 break; 12802 case 1: 12803 if (cur_el == 0) { 12804 return 1; 12805 } 12806 break; 12807 case 3: 12808 break; 12809 } 12810 12811 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12812 * check because zero bits in the registers mean "don't trap". 12813 */ 12814 12815 /* CPTR_EL2 : present in v7VE or v8 */ 12816 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12817 && !arm_is_secure_below_el3(env)) { 12818 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12819 return 2; 12820 } 12821 12822 /* CPTR_EL3 : present in v8 */ 12823 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12824 /* Trap all FP ops to EL3 */ 12825 return 3; 12826 } 12827 #endif 12828 return 0; 12829 } 12830 12831 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12832 target_ulong *cs_base, uint32_t *pflags) 12833 { 12834 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12835 int current_el = arm_current_el(env); 12836 int fp_el = fp_exception_el(env, current_el); 12837 uint32_t flags; 12838 12839 if (is_a64(env)) { 12840 ARMCPU *cpu = arm_env_get_cpu(env); 12841 12842 *pc = env->pc; 12843 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12844 /* Get control bits for tagged addresses */ 12845 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12846 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12847 12848 if (cpu_isar_feature(aa64_sve, cpu)) { 12849 int sve_el = sve_exception_el(env, current_el); 12850 uint32_t zcr_len; 12851 12852 /* If SVE is disabled, but FP is enabled, 12853 * then the effective len is 0. 12854 */ 12855 if (sve_el != 0 && fp_el == 0) { 12856 zcr_len = 0; 12857 } else { 12858 zcr_len = sve_zcr_len_for_el(env, current_el); 12859 } 12860 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12861 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12862 } 12863 } else { 12864 *pc = env->regs[15]; 12865 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12866 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12867 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12868 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12869 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12870 if (!(access_secure_reg(env))) { 12871 flags |= ARM_TBFLAG_NS_MASK; 12872 } 12873 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12874 || arm_el_is_aa64(env, 1)) { 12875 flags |= ARM_TBFLAG_VFPEN_MASK; 12876 } 12877 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12878 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12879 } 12880 12881 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12882 12883 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12884 * states defined in the ARM ARM for software singlestep: 12885 * SS_ACTIVE PSTATE.SS State 12886 * 0 x Inactive (the TB flag for SS is always 0) 12887 * 1 0 Active-pending 12888 * 1 1 Active-not-pending 12889 */ 12890 if (arm_singlestep_active(env)) { 12891 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12892 if (is_a64(env)) { 12893 if (env->pstate & PSTATE_SS) { 12894 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12895 } 12896 } else { 12897 if (env->uncached_cpsr & PSTATE_SS) { 12898 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12899 } 12900 } 12901 } 12902 if (arm_cpu_data_is_big_endian(env)) { 12903 flags |= ARM_TBFLAG_BE_DATA_MASK; 12904 } 12905 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12906 12907 if (arm_v7m_is_handler_mode(env)) { 12908 flags |= ARM_TBFLAG_HANDLER_MASK; 12909 } 12910 12911 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 12912 * suppressing them because the requested execution priority is less than 0. 12913 */ 12914 if (arm_feature(env, ARM_FEATURE_V8) && 12915 arm_feature(env, ARM_FEATURE_M) && 12916 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12917 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12918 flags |= ARM_TBFLAG_STACKCHECK_MASK; 12919 } 12920 12921 *pflags = flags; 12922 *cs_base = 0; 12923 } 12924 12925 #ifdef TARGET_AARCH64 12926 /* 12927 * The manual says that when SVE is enabled and VQ is widened the 12928 * implementation is allowed to zero the previously inaccessible 12929 * portion of the registers. The corollary to that is that when 12930 * SVE is enabled and VQ is narrowed we are also allowed to zero 12931 * the now inaccessible portion of the registers. 12932 * 12933 * The intent of this is that no predicate bit beyond VQ is ever set. 12934 * Which means that some operations on predicate registers themselves 12935 * may operate on full uint64_t or even unrolled across the maximum 12936 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12937 * may well be cheaper than conditionals to restrict the operation 12938 * to the relevant portion of a uint16_t[16]. 12939 */ 12940 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12941 { 12942 int i, j; 12943 uint64_t pmask; 12944 12945 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12946 assert(vq <= arm_env_get_cpu(env)->sve_max_vq); 12947 12948 /* Zap the high bits of the zregs. */ 12949 for (i = 0; i < 32; i++) { 12950 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12951 } 12952 12953 /* Zap the high bits of the pregs and ffr. */ 12954 pmask = 0; 12955 if (vq & 3) { 12956 pmask = ~(-1ULL << (16 * (vq & 3))); 12957 } 12958 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12959 for (i = 0; i < 17; ++i) { 12960 env->vfp.pregs[i].p[j] &= pmask; 12961 } 12962 pmask = 0; 12963 } 12964 } 12965 12966 /* 12967 * Notice a change in SVE vector size when changing EL. 12968 */ 12969 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12970 int new_el, bool el0_a64) 12971 { 12972 ARMCPU *cpu = arm_env_get_cpu(env); 12973 int old_len, new_len; 12974 bool old_a64, new_a64; 12975 12976 /* Nothing to do if no SVE. */ 12977 if (!cpu_isar_feature(aa64_sve, cpu)) { 12978 return; 12979 } 12980 12981 /* Nothing to do if FP is disabled in either EL. */ 12982 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12983 return; 12984 } 12985 12986 /* 12987 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12988 * at ELx, or not available because the EL is in AArch32 state, then 12989 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12990 * has an effective value of 0". 12991 * 12992 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12993 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12994 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12995 * we already have the correct register contents when encountering the 12996 * vq0->vq0 transition between EL0->EL1. 12997 */ 12998 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12999 old_len = (old_a64 && !sve_exception_el(env, old_el) 13000 ? sve_zcr_len_for_el(env, old_el) : 0); 13001 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13002 new_len = (new_a64 && !sve_exception_el(env, new_el) 13003 ? sve_zcr_len_for_el(env, new_el) : 0); 13004 13005 /* When changing vector length, clear inaccessible state. */ 13006 if (new_len < old_len) { 13007 aarch64_sve_narrow_vq(env, new_len + 1); 13008 } 13009 } 13010 #endif 13011