1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "sysemu/tcg.h" 31 #include "qemu/range.h" 32 #include "qapi/qapi-commands-machine-target.h" 33 #include "qapi/error.h" 34 #include "qemu/guest-random.h" 35 #ifdef CONFIG_TCG 36 #include "arm_ldst.h" 37 #include "exec/cpu_ldst.h" 38 #include "semihosting/common-semi.h" 39 #endif 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint64_t regidx; 218 const ARMCPRegInfo *ri; 219 220 regidx = *(uint32_t *)key; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 222 223 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 224 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 225 /* The value array need not be initialized at this point */ 226 cpu->cpreg_array_len++; 227 } 228 } 229 230 static void count_cpreg(gpointer key, gpointer opaque) 231 { 232 ARMCPU *cpu = opaque; 233 uint64_t regidx; 234 const ARMCPRegInfo *ri; 235 236 regidx = *(uint32_t *)key; 237 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 238 239 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 240 cpu->cpreg_array_len++; 241 } 242 } 243 244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 245 { 246 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 247 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 248 249 if (aidx > bidx) { 250 return 1; 251 } 252 if (aidx < bidx) { 253 return -1; 254 } 255 return 0; 256 } 257 258 void init_cpreg_list(ARMCPU *cpu) 259 { 260 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 261 * Note that we require cpreg_tuples[] to be sorted by key ID. 262 */ 263 GList *keys; 264 int arraylen; 265 266 keys = g_hash_table_get_keys(cpu->cp_regs); 267 keys = g_list_sort(keys, cpreg_key_compare); 268 269 cpu->cpreg_array_len = 0; 270 271 g_list_foreach(keys, count_cpreg, cpu); 272 273 arraylen = cpu->cpreg_array_len; 274 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 278 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 279 cpu->cpreg_array_len = 0; 280 281 g_list_foreach(keys, add_cpreg_to_list, cpu); 282 283 assert(cpu->cpreg_array_len == arraylen); 284 285 g_list_free(keys); 286 } 287 288 /* 289 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 290 */ 291 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 292 const ARMCPRegInfo *ri, 293 bool isread) 294 { 295 if (!is_a64(env) && arm_current_el(env) == 3 && 296 arm_is_secure_below_el3(env)) { 297 return CP_ACCESS_TRAP_UNCATEGORIZED; 298 } 299 return CP_ACCESS_OK; 300 } 301 302 /* Some secure-only AArch32 registers trap to EL3 if used from 303 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 304 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 305 * We assume that the .access field is set to PL1_RW. 306 */ 307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 308 const ARMCPRegInfo *ri, 309 bool isread) 310 { 311 if (arm_current_el(env) == 3) { 312 return CP_ACCESS_OK; 313 } 314 if (arm_is_secure_below_el3(env)) { 315 if (env->cp15.scr_el3 & SCR_EEL2) { 316 return CP_ACCESS_TRAP_EL2; 317 } 318 return CP_ACCESS_TRAP_EL3; 319 } 320 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 321 return CP_ACCESS_TRAP_UNCATEGORIZED; 322 } 323 324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 325 { 326 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 327 } 328 329 /* Check for traps to "powerdown debug" registers, which are controlled 330 * by MDCR.TDOSA 331 */ 332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 333 bool isread) 334 { 335 int el = arm_current_el(env); 336 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 337 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 338 (arm_hcr_el2_eff(env) & HCR_TGE); 339 340 if (el < 2 && mdcr_el2_tdosa) { 341 return CP_ACCESS_TRAP_EL2; 342 } 343 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 344 return CP_ACCESS_TRAP_EL3; 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps to "debug ROM" registers, which are controlled 350 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 351 */ 352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 353 bool isread) 354 { 355 int el = arm_current_el(env); 356 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 357 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 358 (arm_hcr_el2_eff(env) & HCR_TGE); 359 360 if (el < 2 && mdcr_el2_tdra) { 361 return CP_ACCESS_TRAP_EL2; 362 } 363 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 364 return CP_ACCESS_TRAP_EL3; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 /* Check for traps to general debug registers, which are controlled 370 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 371 */ 372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 373 bool isread) 374 { 375 int el = arm_current_el(env); 376 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 377 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 378 (arm_hcr_el2_eff(env) & HCR_TGE); 379 380 if (el < 2 && mdcr_el2_tda) { 381 return CP_ACCESS_TRAP_EL2; 382 } 383 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 /* Check for traps to performance monitor registers, which are controlled 390 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 391 */ 392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 393 bool isread) 394 { 395 int el = arm_current_el(env); 396 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 397 398 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 399 return CP_ACCESS_TRAP_EL2; 400 } 401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 402 return CP_ACCESS_TRAP_EL3; 403 } 404 return CP_ACCESS_OK; 405 } 406 407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 409 bool isread) 410 { 411 if (arm_current_el(env) == 1) { 412 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 413 if (arm_hcr_el2_eff(env) & trap) { 414 return CP_ACCESS_TRAP_EL2; 415 } 416 } 417 return CP_ACCESS_OK; 418 } 419 420 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 422 bool isread) 423 { 424 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 return CP_ACCESS_OK; 428 } 429 430 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 435 return CP_ACCESS_TRAP_EL2; 436 } 437 return CP_ACCESS_OK; 438 } 439 440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 445 return CP_ACCESS_TRAP_EL2; 446 } 447 return CP_ACCESS_OK; 448 } 449 450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 451 { 452 ARMCPU *cpu = env_archcpu(env); 453 454 raw_write(env, ri, value); 455 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 456 } 457 458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 459 { 460 ARMCPU *cpu = env_archcpu(env); 461 462 if (raw_read(env, ri) != value) { 463 /* Unlike real hardware the qemu TLB uses virtual addresses, 464 * not modified virtual addresses, so this causes a TLB flush. 465 */ 466 tlb_flush(CPU(cpu)); 467 raw_write(env, ri, value); 468 } 469 } 470 471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 472 uint64_t value) 473 { 474 ARMCPU *cpu = env_archcpu(env); 475 476 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 477 && !extended_addresses_enabled(env)) { 478 /* For VMSA (when not using the LPAE long descriptor page table 479 * format) this register includes the ASID, so do a TLB flush. 480 * For PMSA it is purely a process ID and no action is needed. 481 */ 482 tlb_flush(CPU(cpu)); 483 } 484 raw_write(env, ri, value); 485 } 486 487 /* IS variants of TLB operations must affect all cores */ 488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 489 uint64_t value) 490 { 491 CPUState *cs = env_cpu(env); 492 493 tlb_flush_all_cpus_synced(cs); 494 } 495 496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 497 uint64_t value) 498 { 499 CPUState *cs = env_cpu(env); 500 501 tlb_flush_all_cpus_synced(cs); 502 } 503 504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 505 uint64_t value) 506 { 507 CPUState *cs = env_cpu(env); 508 509 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 510 } 511 512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 CPUState *cs = env_cpu(env); 516 517 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 518 } 519 520 /* 521 * Non-IS variants of TLB operations are upgraded to 522 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 523 * force broadcast of these operations. 524 */ 525 static bool tlb_force_broadcast(CPUARMState *env) 526 { 527 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 528 } 529 530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 /* Invalidate all (TLBIALL) */ 534 CPUState *cs = env_cpu(env); 535 536 if (tlb_force_broadcast(env)) { 537 tlb_flush_all_cpus_synced(cs); 538 } else { 539 tlb_flush(cs); 540 } 541 } 542 543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 547 CPUState *cs = env_cpu(env); 548 549 value &= TARGET_PAGE_MASK; 550 if (tlb_force_broadcast(env)) { 551 tlb_flush_page_all_cpus_synced(cs, value); 552 } else { 553 tlb_flush_page(cs, value); 554 } 555 } 556 557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 /* Invalidate by ASID (TLBIASID) */ 561 CPUState *cs = env_cpu(env); 562 563 if (tlb_force_broadcast(env)) { 564 tlb_flush_all_cpus_synced(cs); 565 } else { 566 tlb_flush(cs); 567 } 568 } 569 570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 574 CPUState *cs = env_cpu(env); 575 576 value &= TARGET_PAGE_MASK; 577 if (tlb_force_broadcast(env)) { 578 tlb_flush_page_all_cpus_synced(cs, value); 579 } else { 580 tlb_flush_page(cs, value); 581 } 582 } 583 584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = env_cpu(env); 588 589 tlb_flush_by_mmuidx(cs, 590 ARMMMUIdxBit_E10_1 | 591 ARMMMUIdxBit_E10_1_PAN | 592 ARMMMUIdxBit_E10_0); 593 } 594 595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_by_mmuidx_all_cpus_synced(cs, 601 ARMMMUIdxBit_E10_1 | 602 ARMMMUIdxBit_E10_1_PAN | 603 ARMMMUIdxBit_E10_0); 604 } 605 606 607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 CPUState *cs = env_cpu(env); 611 612 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 613 } 614 615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 CPUState *cs = env_cpu(env); 619 620 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 621 } 622 623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 624 uint64_t value) 625 { 626 CPUState *cs = env_cpu(env); 627 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 628 629 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 630 } 631 632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 633 uint64_t value) 634 { 635 CPUState *cs = env_cpu(env); 636 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 637 638 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 639 ARMMMUIdxBit_E2); 640 } 641 642 static const ARMCPRegInfo cp_reginfo[] = { 643 /* Define the secure and non-secure FCSE identifier CP registers 644 * separately because there is no secure bank in V8 (no _EL3). This allows 645 * the secure register to be properly reset and migrated. There is also no 646 * v8 EL1 version of the register so the non-secure instance stands alone. 647 */ 648 { .name = "FCSEIDR", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 { .name = "FCSEIDR_S", 654 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 655 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 656 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 657 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 658 /* Define the secure and non-secure context identifier CP registers 659 * separately because there is no secure bank in V8 (no _EL3). This allows 660 * the secure register to be properly reset and migrated. In the 661 * non-secure case, the 32-bit register will have reset and migration 662 * disabled during registration as it is handled by the 64-bit instance. 663 */ 664 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 665 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, 667 .secure = ARM_CP_SECSTATE_NS, 668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 670 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 671 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 672 .access = PL1_RW, .accessfn = access_tvm_trvm, 673 .secure = ARM_CP_SECSTATE_S, 674 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 675 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 676 REGINFO_SENTINEL 677 }; 678 679 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 680 /* NB: Some of these registers exist in v8 but with more precise 681 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 682 */ 683 /* MMU Domain access control / MPU write buffer control */ 684 { .name = "DACR", 685 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 686 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 687 .writefn = dacr_write, .raw_writefn = raw_write, 688 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 689 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 690 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 691 * For v6 and v5, these mappings are overly broad. 692 */ 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 696 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 697 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 699 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 700 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 701 /* Cache maintenance ops; some of this space may be overridden later. */ 702 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 703 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 704 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 705 REGINFO_SENTINEL 706 }; 707 708 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 709 /* Not all pre-v6 cores implemented this WFI, so this is slightly 710 * over-broad. 711 */ 712 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 713 .access = PL1_W, .type = ARM_CP_WFI }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 718 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 719 * is UNPREDICTABLE; we choose to NOP as most implementations do). 720 */ 721 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 722 .access = PL1_W, .type = ARM_CP_WFI }, 723 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 724 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 725 * OMAPCP will override this space. 726 */ 727 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 728 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 729 .resetvalue = 0 }, 730 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 731 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 732 .resetvalue = 0 }, 733 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 734 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 735 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 736 .resetvalue = 0 }, 737 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 738 * implementing it as RAZ means the "debug architecture version" bits 739 * will read as a reserved value, which should cause Linux to not try 740 * to use the debug hardware. 741 */ 742 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 743 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 744 /* MMU TLB control. Note that the wildcarding means we cover not just 745 * the unified TLB ops but also the dside/iside/inner-shareable variants. 746 */ 747 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 748 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 749 .type = ARM_CP_NO_RAW }, 750 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 751 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 752 .type = ARM_CP_NO_RAW }, 753 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 754 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 755 .type = ARM_CP_NO_RAW }, 756 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 757 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 758 .type = ARM_CP_NO_RAW }, 759 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 760 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 761 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 762 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 763 REGINFO_SENTINEL 764 }; 765 766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 767 uint64_t value) 768 { 769 uint32_t mask = 0; 770 771 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 772 if (!arm_feature(env, ARM_FEATURE_V8)) { 773 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 774 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 775 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 776 */ 777 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 778 /* VFP coprocessor: cp10 & cp11 [23:20] */ 779 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 780 781 if (!arm_feature(env, ARM_FEATURE_NEON)) { 782 /* ASEDIS [31] bit is RAO/WI */ 783 value |= (1 << 31); 784 } 785 786 /* VFPv3 and upwards with NEON implement 32 double precision 787 * registers (D0-D31). 788 */ 789 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 790 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 791 value |= (1 << 30); 792 } 793 } 794 value &= mask; 795 } 796 797 /* 798 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 799 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 800 */ 801 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 802 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 803 value &= ~(0xf << 20); 804 value |= env->cp15.cpacr_el1 & (0xf << 20); 805 } 806 807 env->cp15.cpacr_el1 = value; 808 } 809 810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 811 { 812 /* 813 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 814 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 815 */ 816 uint64_t value = env->cp15.cpacr_el1; 817 818 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 819 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 820 value &= ~(0xf << 20); 821 } 822 return value; 823 } 824 825 826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 827 { 828 /* Call cpacr_write() so that we reset with the correct RAO bits set 829 * for our CPU features. 830 */ 831 cpacr_write(env, ri, 0); 832 } 833 834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 835 bool isread) 836 { 837 if (arm_feature(env, ARM_FEATURE_V8)) { 838 /* Check if CPACR accesses are to be trapped to EL2 */ 839 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 840 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 841 return CP_ACCESS_TRAP_EL2; 842 /* Check if CPACR accesses are to be trapped to EL3 */ 843 } else if (arm_current_el(env) < 3 && 844 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 845 return CP_ACCESS_TRAP_EL3; 846 } 847 } 848 849 return CP_ACCESS_OK; 850 } 851 852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 853 bool isread) 854 { 855 /* Check if CPTR accesses are set to trap to EL3 */ 856 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 857 return CP_ACCESS_TRAP_EL3; 858 } 859 860 return CP_ACCESS_OK; 861 } 862 863 static const ARMCPRegInfo v6_cp_reginfo[] = { 864 /* prefetch by MVA in v6, NOP in v7 */ 865 { .name = "MVA_prefetch", 866 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 867 .access = PL1_W, .type = ARM_CP_NOP }, 868 /* We need to break the TB after ISB to execute self-modifying code 869 * correctly and also to take any pending interrupts immediately. 870 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 871 */ 872 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 874 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 877 .access = PL0_W, .type = ARM_CP_NOP }, 878 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 879 .access = PL1_RW, .accessfn = access_tvm_trvm, 880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 881 offsetof(CPUARMState, cp15.ifar_ns) }, 882 .resetvalue = 0, }, 883 /* Watchpoint Fault Address Register : should actually only be present 884 * for 1136, 1176, 11MPCore. 885 */ 886 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 887 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 888 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 889 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 890 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 891 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 892 REGINFO_SENTINEL 893 }; 894 895 typedef struct pm_event { 896 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 897 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 898 bool (*supported)(CPUARMState *); 899 /* 900 * Retrieve the current count of the underlying event. The programmed 901 * counters hold a difference from the return value from this function 902 */ 903 uint64_t (*get_count)(CPUARMState *); 904 /* 905 * Return how many nanoseconds it will take (at a minimum) for count events 906 * to occur. A negative value indicates the counter will never overflow, or 907 * that the counter has otherwise arranged for the overflow bit to be set 908 * and the PMU interrupt to be raised on overflow. 909 */ 910 int64_t (*ns_per_count)(uint64_t); 911 } pm_event; 912 913 static bool event_always_supported(CPUARMState *env) 914 { 915 return true; 916 } 917 918 static uint64_t swinc_get_count(CPUARMState *env) 919 { 920 /* 921 * SW_INCR events are written directly to the pmevcntr's by writes to 922 * PMSWINC, so there is no underlying count maintained by the PMU itself 923 */ 924 return 0; 925 } 926 927 static int64_t swinc_ns_per(uint64_t ignored) 928 { 929 return -1; 930 } 931 932 /* 933 * Return the underlying cycle count for the PMU cycle counters. If we're in 934 * usermode, simply return 0. 935 */ 936 static uint64_t cycles_get_count(CPUARMState *env) 937 { 938 #ifndef CONFIG_USER_ONLY 939 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 940 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 941 #else 942 return cpu_get_host_ticks(); 943 #endif 944 } 945 946 #ifndef CONFIG_USER_ONLY 947 static int64_t cycles_ns_per(uint64_t cycles) 948 { 949 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 950 } 951 952 static bool instructions_supported(CPUARMState *env) 953 { 954 return icount_enabled() == 1; /* Precise instruction counting */ 955 } 956 957 static uint64_t instructions_get_count(CPUARMState *env) 958 { 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 return icount_to_ns((int64_t)icount); 965 } 966 #endif 967 968 static bool pmu_8_1_events_supported(CPUARMState *env) 969 { 970 /* For events which are supported in any v8.1 PMU */ 971 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 972 } 973 974 static bool pmu_8_4_events_supported(CPUARMState *env) 975 { 976 /* For events which are supported in any v8.1 PMU */ 977 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 978 } 979 980 static uint64_t zero_event_get_count(CPUARMState *env) 981 { 982 /* For events which on QEMU never fire, so their count is always zero */ 983 return 0; 984 } 985 986 static int64_t zero_event_ns_per(uint64_t cycles) 987 { 988 /* An event which never fires can never overflow */ 989 return -1; 990 } 991 992 static const pm_event pm_events[] = { 993 { .number = 0x000, /* SW_INCR */ 994 .supported = event_always_supported, 995 .get_count = swinc_get_count, 996 .ns_per_count = swinc_ns_per, 997 }, 998 #ifndef CONFIG_USER_ONLY 999 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1000 .supported = instructions_supported, 1001 .get_count = instructions_get_count, 1002 .ns_per_count = instructions_ns_per, 1003 }, 1004 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1005 .supported = event_always_supported, 1006 .get_count = cycles_get_count, 1007 .ns_per_count = cycles_ns_per, 1008 }, 1009 #endif 1010 { .number = 0x023, /* STALL_FRONTEND */ 1011 .supported = pmu_8_1_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 { .number = 0x024, /* STALL_BACKEND */ 1016 .supported = pmu_8_1_events_supported, 1017 .get_count = zero_event_get_count, 1018 .ns_per_count = zero_event_ns_per, 1019 }, 1020 { .number = 0x03c, /* STALL */ 1021 .supported = pmu_8_4_events_supported, 1022 .get_count = zero_event_get_count, 1023 .ns_per_count = zero_event_ns_per, 1024 }, 1025 }; 1026 1027 /* 1028 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1029 * events (i.e. the statistical profiling extension), this implementation 1030 * should first be updated to something sparse instead of the current 1031 * supported_event_map[] array. 1032 */ 1033 #define MAX_EVENT_ID 0x3c 1034 #define UNSUPPORTED_EVENT UINT16_MAX 1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1036 1037 /* 1038 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1039 * of ARM event numbers to indices in our pm_events array. 1040 * 1041 * Note: Events in the 0x40XX range are not currently supported. 1042 */ 1043 void pmu_init(ARMCPU *cpu) 1044 { 1045 unsigned int i; 1046 1047 /* 1048 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1049 * events to them 1050 */ 1051 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1052 supported_event_map[i] = UNSUPPORTED_EVENT; 1053 } 1054 cpu->pmceid0 = 0; 1055 cpu->pmceid1 = 0; 1056 1057 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1058 const pm_event *cnt = &pm_events[i]; 1059 assert(cnt->number <= MAX_EVENT_ID); 1060 /* We do not currently support events in the 0x40xx range */ 1061 assert(cnt->number <= 0x3f); 1062 1063 if (cnt->supported(&cpu->env)) { 1064 supported_event_map[cnt->number] = i; 1065 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1066 if (cnt->number & 0x20) { 1067 cpu->pmceid1 |= event_mask; 1068 } else { 1069 cpu->pmceid0 |= event_mask; 1070 } 1071 } 1072 } 1073 } 1074 1075 /* 1076 * Check at runtime whether a PMU event is supported for the current machine 1077 */ 1078 static bool event_supported(uint16_t number) 1079 { 1080 if (number > MAX_EVENT_ID) { 1081 return false; 1082 } 1083 return supported_event_map[number] != UNSUPPORTED_EVENT; 1084 } 1085 1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1087 bool isread) 1088 { 1089 /* Performance monitor registers user accessibility is controlled 1090 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1091 * trapping to EL2 or EL3 for other accesses. 1092 */ 1093 int el = arm_current_el(env); 1094 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1095 1096 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1097 return CP_ACCESS_TRAP; 1098 } 1099 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1100 return CP_ACCESS_TRAP_EL2; 1101 } 1102 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1103 return CP_ACCESS_TRAP_EL3; 1104 } 1105 1106 return CP_ACCESS_OK; 1107 } 1108 1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1110 const ARMCPRegInfo *ri, 1111 bool isread) 1112 { 1113 /* ER: event counter read trap control */ 1114 if (arm_feature(env, ARM_FEATURE_V8) 1115 && arm_current_el(env) == 0 1116 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1117 && isread) { 1118 return CP_ACCESS_OK; 1119 } 1120 1121 return pmreg_access(env, ri, isread); 1122 } 1123 1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1125 const ARMCPRegInfo *ri, 1126 bool isread) 1127 { 1128 /* SW: software increment write trap control */ 1129 if (arm_feature(env, ARM_FEATURE_V8) 1130 && arm_current_el(env) == 0 1131 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1132 && !isread) { 1133 return CP_ACCESS_OK; 1134 } 1135 1136 return pmreg_access(env, ri, isread); 1137 } 1138 1139 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1140 const ARMCPRegInfo *ri, 1141 bool isread) 1142 { 1143 /* ER: event counter read trap control */ 1144 if (arm_feature(env, ARM_FEATURE_V8) 1145 && arm_current_el(env) == 0 1146 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1147 return CP_ACCESS_OK; 1148 } 1149 1150 return pmreg_access(env, ri, isread); 1151 } 1152 1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1154 const ARMCPRegInfo *ri, 1155 bool isread) 1156 { 1157 /* CR: cycle counter read trap control */ 1158 if (arm_feature(env, ARM_FEATURE_V8) 1159 && arm_current_el(env) == 0 1160 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1161 && isread) { 1162 return CP_ACCESS_OK; 1163 } 1164 1165 return pmreg_access(env, ri, isread); 1166 } 1167 1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1169 * the current EL, security state, and register configuration. 1170 */ 1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1172 { 1173 uint64_t filter; 1174 bool e, p, u, nsk, nsu, nsh, m; 1175 bool enabled, prohibited, filtered; 1176 bool secure = arm_is_secure(env); 1177 int el = arm_current_el(env); 1178 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1179 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1180 1181 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1182 return false; 1183 } 1184 1185 if (!arm_feature(env, ARM_FEATURE_EL2) || 1186 (counter < hpmn || counter == 31)) { 1187 e = env->cp15.c9_pmcr & PMCRE; 1188 } else { 1189 e = mdcr_el2 & MDCR_HPME; 1190 } 1191 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1192 1193 if (!secure) { 1194 if (el == 2 && (counter < hpmn || counter == 31)) { 1195 prohibited = mdcr_el2 & MDCR_HPMD; 1196 } else { 1197 prohibited = false; 1198 } 1199 } else { 1200 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1201 !(env->cp15.mdcr_el3 & MDCR_SPME); 1202 } 1203 1204 if (prohibited && counter == 31) { 1205 prohibited = env->cp15.c9_pmcr & PMCRDP; 1206 } 1207 1208 if (counter == 31) { 1209 filter = env->cp15.pmccfiltr_el0; 1210 } else { 1211 filter = env->cp15.c14_pmevtyper[counter]; 1212 } 1213 1214 p = filter & PMXEVTYPER_P; 1215 u = filter & PMXEVTYPER_U; 1216 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1217 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1218 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1219 m = arm_el_is_aa64(env, 1) && 1220 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1221 1222 if (el == 0) { 1223 filtered = secure ? u : u != nsu; 1224 } else if (el == 1) { 1225 filtered = secure ? p : p != nsk; 1226 } else if (el == 2) { 1227 filtered = !nsh; 1228 } else { /* EL3 */ 1229 filtered = m != p; 1230 } 1231 1232 if (counter != 31) { 1233 /* 1234 * If not checking PMCCNTR, ensure the counter is setup to an event we 1235 * support 1236 */ 1237 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1238 if (!event_supported(event)) { 1239 return false; 1240 } 1241 } 1242 1243 return enabled && !prohibited && !filtered; 1244 } 1245 1246 static void pmu_update_irq(CPUARMState *env) 1247 { 1248 ARMCPU *cpu = env_archcpu(env); 1249 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1250 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1251 } 1252 1253 /* 1254 * Ensure c15_ccnt is the guest-visible count so that operations such as 1255 * enabling/disabling the counter or filtering, modifying the count itself, 1256 * etc. can be done logically. This is essentially a no-op if the counter is 1257 * not enabled at the time of the call. 1258 */ 1259 static void pmccntr_op_start(CPUARMState *env) 1260 { 1261 uint64_t cycles = cycles_get_count(env); 1262 1263 if (pmu_counter_enabled(env, 31)) { 1264 uint64_t eff_cycles = cycles; 1265 if (env->cp15.c9_pmcr & PMCRD) { 1266 /* Increment once every 64 processor clock cycles */ 1267 eff_cycles /= 64; 1268 } 1269 1270 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1271 1272 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1273 1ull << 63 : 1ull << 31; 1274 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1275 env->cp15.c9_pmovsr |= (1 << 31); 1276 pmu_update_irq(env); 1277 } 1278 1279 env->cp15.c15_ccnt = new_pmccntr; 1280 } 1281 env->cp15.c15_ccnt_delta = cycles; 1282 } 1283 1284 /* 1285 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1286 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1287 * pmccntr_op_start. 1288 */ 1289 static void pmccntr_op_finish(CPUARMState *env) 1290 { 1291 if (pmu_counter_enabled(env, 31)) { 1292 #ifndef CONFIG_USER_ONLY 1293 /* Calculate when the counter will next overflow */ 1294 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1295 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1296 remaining_cycles = (uint32_t)remaining_cycles; 1297 } 1298 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1299 1300 if (overflow_in > 0) { 1301 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1302 overflow_in; 1303 ARMCPU *cpu = env_archcpu(env); 1304 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1305 } 1306 #endif 1307 1308 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1309 if (env->cp15.c9_pmcr & PMCRD) { 1310 /* Increment once every 64 processor clock cycles */ 1311 prev_cycles /= 64; 1312 } 1313 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1314 } 1315 } 1316 1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1318 { 1319 1320 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1321 uint64_t count = 0; 1322 if (event_supported(event)) { 1323 uint16_t event_idx = supported_event_map[event]; 1324 count = pm_events[event_idx].get_count(env); 1325 } 1326 1327 if (pmu_counter_enabled(env, counter)) { 1328 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1329 1330 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1331 env->cp15.c9_pmovsr |= (1 << counter); 1332 pmu_update_irq(env); 1333 } 1334 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1335 } 1336 env->cp15.c14_pmevcntr_delta[counter] = count; 1337 } 1338 1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1340 { 1341 if (pmu_counter_enabled(env, counter)) { 1342 #ifndef CONFIG_USER_ONLY 1343 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1344 uint16_t event_idx = supported_event_map[event]; 1345 uint64_t delta = UINT32_MAX - 1346 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1347 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1348 1349 if (overflow_in > 0) { 1350 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1351 overflow_in; 1352 ARMCPU *cpu = env_archcpu(env); 1353 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1354 } 1355 #endif 1356 1357 env->cp15.c14_pmevcntr_delta[counter] -= 1358 env->cp15.c14_pmevcntr[counter]; 1359 } 1360 } 1361 1362 void pmu_op_start(CPUARMState *env) 1363 { 1364 unsigned int i; 1365 pmccntr_op_start(env); 1366 for (i = 0; i < pmu_num_counters(env); i++) { 1367 pmevcntr_op_start(env, i); 1368 } 1369 } 1370 1371 void pmu_op_finish(CPUARMState *env) 1372 { 1373 unsigned int i; 1374 pmccntr_op_finish(env); 1375 for (i = 0; i < pmu_num_counters(env); i++) { 1376 pmevcntr_op_finish(env, i); 1377 } 1378 } 1379 1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1381 { 1382 pmu_op_start(&cpu->env); 1383 } 1384 1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1386 { 1387 pmu_op_finish(&cpu->env); 1388 } 1389 1390 void arm_pmu_timer_cb(void *opaque) 1391 { 1392 ARMCPU *cpu = opaque; 1393 1394 /* 1395 * Update all the counter values based on the current underlying counts, 1396 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1397 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1398 * counter may expire. 1399 */ 1400 pmu_op_start(&cpu->env); 1401 pmu_op_finish(&cpu->env); 1402 } 1403 1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1405 uint64_t value) 1406 { 1407 pmu_op_start(env); 1408 1409 if (value & PMCRC) { 1410 /* The counter has been reset */ 1411 env->cp15.c15_ccnt = 0; 1412 } 1413 1414 if (value & PMCRP) { 1415 unsigned int i; 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 env->cp15.c14_pmevcntr[i] = 0; 1418 } 1419 } 1420 1421 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1422 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1423 1424 pmu_op_finish(env); 1425 } 1426 1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1428 uint64_t value) 1429 { 1430 unsigned int i; 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 /* Increment a counter's count iff: */ 1433 if ((value & (1 << i)) && /* counter's bit is set */ 1434 /* counter is enabled and not filtered */ 1435 pmu_counter_enabled(env, i) && 1436 /* counter is SW_INCR */ 1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1438 pmevcntr_op_start(env, i); 1439 1440 /* 1441 * Detect if this write causes an overflow since we can't predict 1442 * PMSWINC overflows like we can for other events 1443 */ 1444 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1445 1446 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1447 env->cp15.c9_pmovsr |= (1 << i); 1448 pmu_update_irq(env); 1449 } 1450 1451 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1452 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 } 1457 1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1459 { 1460 uint64_t ret; 1461 pmccntr_op_start(env); 1462 ret = env->cp15.c15_ccnt; 1463 pmccntr_op_finish(env); 1464 return ret; 1465 } 1466 1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1468 uint64_t value) 1469 { 1470 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1471 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1472 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1473 * accessed. 1474 */ 1475 env->cp15.c9_pmselr = value & 0x1f; 1476 } 1477 1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 pmccntr_op_start(env); 1482 env->cp15.c15_ccnt = value; 1483 pmccntr_op_finish(env); 1484 } 1485 1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1487 uint64_t value) 1488 { 1489 uint64_t cur_val = pmccntr_read(env, NULL); 1490 1491 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1492 } 1493 1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1495 uint64_t value) 1496 { 1497 pmccntr_op_start(env); 1498 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1503 uint64_t value) 1504 { 1505 pmccntr_op_start(env); 1506 /* M is not accessible from AArch32 */ 1507 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1508 (value & PMCCFILTR); 1509 pmccntr_op_finish(env); 1510 } 1511 1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1513 { 1514 /* M is not visible in AArch32 */ 1515 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1516 } 1517 1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1519 uint64_t value) 1520 { 1521 value &= pmu_counter_mask(env); 1522 env->cp15.c9_pmcnten |= value; 1523 } 1524 1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 value &= pmu_counter_mask(env); 1529 env->cp15.c9_pmcnten &= ~value; 1530 } 1531 1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1533 uint64_t value) 1534 { 1535 value &= pmu_counter_mask(env); 1536 env->cp15.c9_pmovsr &= ~value; 1537 pmu_update_irq(env); 1538 } 1539 1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1541 uint64_t value) 1542 { 1543 value &= pmu_counter_mask(env); 1544 env->cp15.c9_pmovsr |= value; 1545 pmu_update_irq(env); 1546 } 1547 1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value, const uint8_t counter) 1550 { 1551 if (counter == 31) { 1552 pmccfiltr_write(env, ri, value); 1553 } else if (counter < pmu_num_counters(env)) { 1554 pmevcntr_op_start(env, counter); 1555 1556 /* 1557 * If this counter's event type is changing, store the current 1558 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1559 * pmevcntr_op_finish has the correct baseline when it converts back to 1560 * a delta. 1561 */ 1562 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1563 PMXEVTYPER_EVTCOUNT; 1564 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1565 if (old_event != new_event) { 1566 uint64_t count = 0; 1567 if (event_supported(new_event)) { 1568 uint16_t event_idx = supported_event_map[new_event]; 1569 count = pm_events[event_idx].get_count(env); 1570 } 1571 env->cp15.c14_pmevcntr_delta[counter] = count; 1572 } 1573 1574 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1575 pmevcntr_op_finish(env, counter); 1576 } 1577 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1578 * PMSELR value is equal to or greater than the number of implemented 1579 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1580 */ 1581 } 1582 1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1584 const uint8_t counter) 1585 { 1586 if (counter == 31) { 1587 return env->cp15.pmccfiltr_el0; 1588 } else if (counter < pmu_num_counters(env)) { 1589 return env->cp15.c14_pmevtyper[counter]; 1590 } else { 1591 /* 1592 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1593 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1594 */ 1595 return 0; 1596 } 1597 } 1598 1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1600 uint64_t value) 1601 { 1602 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1603 pmevtyper_write(env, ri, value, counter); 1604 } 1605 1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1607 uint64_t value) 1608 { 1609 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1610 env->cp15.c14_pmevtyper[counter] = value; 1611 1612 /* 1613 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1614 * pmu_op_finish calls when loading saved state for a migration. Because 1615 * we're potentially updating the type of event here, the value written to 1616 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1617 * different counter type. Therefore, we need to set this value to the 1618 * current count for the counter type we're writing so that pmu_op_finish 1619 * has the correct count for its calculation. 1620 */ 1621 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1622 if (event_supported(event)) { 1623 uint16_t event_idx = supported_event_map[event]; 1624 env->cp15.c14_pmevcntr_delta[counter] = 1625 pm_events[event_idx].get_count(env); 1626 } 1627 } 1628 1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1630 { 1631 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1632 return pmevtyper_read(env, ri, counter); 1633 } 1634 1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1639 } 1640 1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1642 { 1643 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1644 } 1645 1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value, uint8_t counter) 1648 { 1649 if (counter < pmu_num_counters(env)) { 1650 pmevcntr_op_start(env, counter); 1651 env->cp15.c14_pmevcntr[counter] = value; 1652 pmevcntr_op_finish(env, counter); 1653 } 1654 /* 1655 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1656 * are CONSTRAINED UNPREDICTABLE. 1657 */ 1658 } 1659 1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint8_t counter) 1662 { 1663 if (counter < pmu_num_counters(env)) { 1664 uint64_t ret; 1665 pmevcntr_op_start(env, counter); 1666 ret = env->cp15.c14_pmevcntr[counter]; 1667 pmevcntr_op_finish(env, counter); 1668 return ret; 1669 } else { 1670 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1671 * are CONSTRAINED UNPREDICTABLE. */ 1672 return 0; 1673 } 1674 } 1675 1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1677 uint64_t value) 1678 { 1679 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1680 pmevcntr_write(env, ri, value, counter); 1681 } 1682 1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1684 { 1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1686 return pmevcntr_read(env, ri, counter); 1687 } 1688 1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1690 uint64_t value) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 assert(counter < pmu_num_counters(env)); 1694 env->cp15.c14_pmevcntr[counter] = value; 1695 pmevcntr_write(env, ri, value, counter); 1696 } 1697 1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1699 { 1700 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1701 assert(counter < pmu_num_counters(env)); 1702 return env->cp15.c14_pmevcntr[counter]; 1703 } 1704 1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 uint64_t value) 1707 { 1708 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1709 } 1710 1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1712 { 1713 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1714 } 1715 1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 if (arm_feature(env, ARM_FEATURE_V8)) { 1720 env->cp15.c9_pmuserenr = value & 0xf; 1721 } else { 1722 env->cp15.c9_pmuserenr = value & 1; 1723 } 1724 } 1725 1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint64_t value) 1728 { 1729 /* We have no event counters so only the C bit can be changed */ 1730 value &= pmu_counter_mask(env); 1731 env->cp15.c9_pminten |= value; 1732 pmu_update_irq(env); 1733 } 1734 1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1736 uint64_t value) 1737 { 1738 value &= pmu_counter_mask(env); 1739 env->cp15.c9_pminten &= ~value; 1740 pmu_update_irq(env); 1741 } 1742 1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 uint64_t value) 1745 { 1746 /* Note that even though the AArch64 view of this register has bits 1747 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1748 * architectural requirements for bits which are RES0 only in some 1749 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1750 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1751 */ 1752 raw_write(env, ri, value & ~0x1FULL); 1753 } 1754 1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1756 { 1757 /* Begin with base v8.0 state. */ 1758 uint32_t valid_mask = 0x3fff; 1759 ARMCPU *cpu = env_archcpu(env); 1760 1761 if (ri->state == ARM_CP_STATE_AA64) { 1762 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1763 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1764 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1765 } 1766 valid_mask &= ~SCR_NET; 1767 1768 if (cpu_isar_feature(aa64_lor, cpu)) { 1769 valid_mask |= SCR_TLOR; 1770 } 1771 if (cpu_isar_feature(aa64_pauth, cpu)) { 1772 valid_mask |= SCR_API | SCR_APK; 1773 } 1774 if (cpu_isar_feature(aa64_sel2, cpu)) { 1775 valid_mask |= SCR_EEL2; 1776 } 1777 if (cpu_isar_feature(aa64_mte, cpu)) { 1778 valid_mask |= SCR_ATA; 1779 } 1780 } else { 1781 valid_mask &= ~(SCR_RW | SCR_ST); 1782 } 1783 1784 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1785 valid_mask &= ~SCR_HCE; 1786 1787 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1788 * supported if EL2 exists. The bit is UNK/SBZP when 1789 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1790 * when EL2 is unavailable. 1791 * On ARMv8, this bit is always available. 1792 */ 1793 if (arm_feature(env, ARM_FEATURE_V7) && 1794 !arm_feature(env, ARM_FEATURE_V8)) { 1795 valid_mask &= ~SCR_SMD; 1796 } 1797 } 1798 1799 /* Clear all-context RES0 bits. */ 1800 value &= valid_mask; 1801 raw_write(env, ri, value); 1802 } 1803 1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1805 { 1806 /* 1807 * scr_write will set the RES1 bits on an AArch64-only CPU. 1808 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1809 */ 1810 scr_write(env, ri, 0); 1811 } 1812 1813 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1814 const ARMCPRegInfo *ri, 1815 bool isread) 1816 { 1817 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1818 return CP_ACCESS_TRAP_EL2; 1819 } 1820 1821 return CP_ACCESS_OK; 1822 } 1823 1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1825 { 1826 ARMCPU *cpu = env_archcpu(env); 1827 1828 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1829 * bank 1830 */ 1831 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1832 ri->secure & ARM_CP_SECSTATE_S); 1833 1834 return cpu->ccsidr[index]; 1835 } 1836 1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1838 uint64_t value) 1839 { 1840 raw_write(env, ri, value & 0xf); 1841 } 1842 1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1844 { 1845 CPUState *cs = env_cpu(env); 1846 bool el1 = arm_current_el(env) == 1; 1847 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1848 uint64_t ret = 0; 1849 1850 if (hcr_el2 & HCR_IMO) { 1851 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1852 ret |= CPSR_I; 1853 } 1854 } else { 1855 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1856 ret |= CPSR_I; 1857 } 1858 } 1859 1860 if (hcr_el2 & HCR_FMO) { 1861 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1862 ret |= CPSR_F; 1863 } 1864 } else { 1865 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1866 ret |= CPSR_F; 1867 } 1868 } 1869 1870 /* External aborts are not possible in QEMU so A bit is always clear */ 1871 return ret; 1872 } 1873 1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1875 bool isread) 1876 { 1877 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1878 return CP_ACCESS_TRAP_EL2; 1879 } 1880 1881 return CP_ACCESS_OK; 1882 } 1883 1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1885 bool isread) 1886 { 1887 if (arm_feature(env, ARM_FEATURE_V8)) { 1888 return access_aa64_tid1(env, ri, isread); 1889 } 1890 1891 return CP_ACCESS_OK; 1892 } 1893 1894 static const ARMCPRegInfo v7_cp_reginfo[] = { 1895 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1896 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1897 .access = PL1_W, .type = ARM_CP_NOP }, 1898 /* Performance monitors are implementation defined in v7, 1899 * but with an ARM recommended set of registers, which we 1900 * follow. 1901 * 1902 * Performance registers fall into three categories: 1903 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1904 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1905 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1906 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1907 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1908 */ 1909 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1910 .access = PL0_RW, .type = ARM_CP_ALIAS, 1911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1912 .writefn = pmcntenset_write, 1913 .accessfn = pmreg_access, 1914 .raw_writefn = raw_write }, 1915 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1917 .access = PL0_RW, .accessfn = pmreg_access, 1918 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1919 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1920 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1921 .access = PL0_RW, 1922 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1923 .accessfn = pmreg_access, 1924 .writefn = pmcntenclr_write, 1925 .type = ARM_CP_ALIAS }, 1926 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1928 .access = PL0_RW, .accessfn = pmreg_access, 1929 .type = ARM_CP_ALIAS, 1930 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1931 .writefn = pmcntenclr_write }, 1932 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1933 .access = PL0_RW, .type = ARM_CP_IO, 1934 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1935 .accessfn = pmreg_access, 1936 .writefn = pmovsr_write, 1937 .raw_writefn = raw_write }, 1938 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1940 .access = PL0_RW, .accessfn = pmreg_access, 1941 .type = ARM_CP_ALIAS | ARM_CP_IO, 1942 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1943 .writefn = pmovsr_write, 1944 .raw_writefn = raw_write }, 1945 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1946 .access = PL0_W, .accessfn = pmreg_access_swinc, 1947 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1948 .writefn = pmswinc_write }, 1949 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1951 .access = PL0_W, .accessfn = pmreg_access_swinc, 1952 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1953 .writefn = pmswinc_write }, 1954 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1955 .access = PL0_RW, .type = ARM_CP_ALIAS, 1956 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1957 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1958 .raw_writefn = raw_write}, 1959 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1960 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1961 .access = PL0_RW, .accessfn = pmreg_access_selr, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1963 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1964 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1965 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1966 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1967 .accessfn = pmreg_access_ccntr }, 1968 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1969 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1970 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1971 .type = ARM_CP_IO, 1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1973 .readfn = pmccntr_read, .writefn = pmccntr_write, 1974 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1975 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1976 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1977 .access = PL0_RW, .accessfn = pmreg_access, 1978 .type = ARM_CP_ALIAS | ARM_CP_IO, 1979 .resetvalue = 0, }, 1980 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1982 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1983 .access = PL0_RW, .accessfn = pmreg_access, 1984 .type = ARM_CP_IO, 1985 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1986 .resetvalue = 0, }, 1987 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access, 1990 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1991 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1994 .accessfn = pmreg_access, 1995 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1996 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access_xevcntr, 1999 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2000 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2002 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2003 .accessfn = pmreg_access_xevcntr, 2004 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2005 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2006 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2007 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2008 .resetvalue = 0, 2009 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2010 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2012 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2013 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2014 .resetvalue = 0, 2015 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2016 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2017 .access = PL1_RW, .accessfn = access_tpm, 2018 .type = ARM_CP_ALIAS | ARM_CP_IO, 2019 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2020 .resetvalue = 0, 2021 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2022 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2023 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .type = ARM_CP_IO, 2026 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2027 .writefn = pmintenset_write, .raw_writefn = raw_write, 2028 .resetvalue = 0x0 }, 2029 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2030 .access = PL1_RW, .accessfn = access_tpm, 2031 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2033 .writefn = pmintenclr_write, }, 2034 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2036 .access = PL1_RW, .accessfn = access_tpm, 2037 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2039 .writefn = pmintenclr_write }, 2040 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2042 .access = PL1_R, 2043 .accessfn = access_aa64_tid2, 2044 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2045 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2046 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2047 .access = PL1_RW, 2048 .accessfn = access_aa64_tid2, 2049 .writefn = csselr_write, .resetvalue = 0, 2050 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2051 offsetof(CPUARMState, cp15.csselr_ns) } }, 2052 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2053 * just RAZ for all cores: 2054 */ 2055 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2057 .access = PL1_R, .type = ARM_CP_CONST, 2058 .accessfn = access_aa64_tid1, 2059 .resetvalue = 0 }, 2060 /* Auxiliary fault status registers: these also are IMPDEF, and we 2061 * choose to RAZ/WI for all cores. 2062 */ 2063 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2064 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2065 .access = PL1_RW, .accessfn = access_tvm_trvm, 2066 .type = ARM_CP_CONST, .resetvalue = 0 }, 2067 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 /* MAIR can just read-as-written because we don't implement caches 2072 * and so don't need to care about memory attributes. 2073 */ 2074 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2076 .access = PL1_RW, .accessfn = access_tvm_trvm, 2077 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2078 .resetvalue = 0 }, 2079 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2080 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2081 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2082 .resetvalue = 0 }, 2083 /* For non-long-descriptor page tables these are PRRR and NMRR; 2084 * regardless they still act as reads-as-written for QEMU. 2085 */ 2086 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2087 * allows them to assign the correct fieldoffset based on the endianness 2088 * handled in the field definitions. 2089 */ 2090 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2091 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2092 .access = PL1_RW, .accessfn = access_tvm_trvm, 2093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2094 offsetof(CPUARMState, cp15.mair0_ns) }, 2095 .resetfn = arm_cp_reset_ignore }, 2096 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2097 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2098 .access = PL1_RW, .accessfn = access_tvm_trvm, 2099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2100 offsetof(CPUARMState, cp15.mair1_ns) }, 2101 .resetfn = arm_cp_reset_ignore }, 2102 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2104 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2105 /* 32 bit ITLB invalidates */ 2106 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2108 .writefn = tlbiall_write }, 2109 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbimva_write }, 2112 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2113 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2114 .writefn = tlbiasid_write }, 2115 /* 32 bit DTLB invalidates */ 2116 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiall_write }, 2119 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbimva_write }, 2122 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2124 .writefn = tlbiasid_write }, 2125 /* 32 bit TLB invalidates */ 2126 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiall_write }, 2129 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbimva_write }, 2132 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiasid_write }, 2135 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2137 .writefn = tlbimvaa_write }, 2138 REGINFO_SENTINEL 2139 }; 2140 2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2142 /* 32 bit TLB invalidates, Inner Shareable */ 2143 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2145 .writefn = tlbiall_is_write }, 2146 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbimva_is_write }, 2149 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbiasid_is_write }, 2152 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbimvaa_is_write }, 2155 REGINFO_SENTINEL 2156 }; 2157 2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2159 /* PMOVSSET is not implemented in v7 before v7ve */ 2160 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2161 .access = PL0_RW, .accessfn = pmreg_access, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2164 .writefn = pmovsset_write, 2165 .raw_writefn = raw_write }, 2166 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2168 .access = PL0_RW, .accessfn = pmreg_access, 2169 .type = ARM_CP_ALIAS | ARM_CP_IO, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2171 .writefn = pmovsset_write, 2172 .raw_writefn = raw_write }, 2173 REGINFO_SENTINEL 2174 }; 2175 2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2177 uint64_t value) 2178 { 2179 value &= 1; 2180 env->teecr = value; 2181 } 2182 2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2184 bool isread) 2185 { 2186 /* 2187 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2188 * at all, so we don't need to check whether we're v8A. 2189 */ 2190 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2191 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2192 return CP_ACCESS_TRAP_EL2; 2193 } 2194 return CP_ACCESS_OK; 2195 } 2196 2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2198 bool isread) 2199 { 2200 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2201 return CP_ACCESS_TRAP; 2202 } 2203 return teecr_access(env, ri, isread); 2204 } 2205 2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2207 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2208 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2209 .resetvalue = 0, 2210 .writefn = teecr_write, .accessfn = teecr_access }, 2211 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2213 .accessfn = teehbr_access, .resetvalue = 0 }, 2214 REGINFO_SENTINEL 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 REGINFO_SENTINEL 2247 }; 2248 2249 #ifndef CONFIG_USER_ONLY 2250 2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2252 bool isread) 2253 { 2254 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2255 * Writable only at the highest implemented exception level. 2256 */ 2257 int el = arm_current_el(env); 2258 uint64_t hcr; 2259 uint32_t cntkctl; 2260 2261 switch (el) { 2262 case 0: 2263 hcr = arm_hcr_el2_eff(env); 2264 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2265 cntkctl = env->cp15.cnthctl_el2; 2266 } else { 2267 cntkctl = env->cp15.c14_cntkctl; 2268 } 2269 if (!extract32(cntkctl, 0, 2)) { 2270 return CP_ACCESS_TRAP; 2271 } 2272 break; 2273 case 1: 2274 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2275 arm_is_secure_below_el3(env)) { 2276 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2277 return CP_ACCESS_TRAP_UNCATEGORIZED; 2278 } 2279 break; 2280 case 2: 2281 case 3: 2282 break; 2283 } 2284 2285 if (!isread && el < arm_highest_el(env)) { 2286 return CP_ACCESS_TRAP_UNCATEGORIZED; 2287 } 2288 2289 return CP_ACCESS_OK; 2290 } 2291 2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2293 bool isread) 2294 { 2295 unsigned int cur_el = arm_current_el(env); 2296 bool has_el2 = arm_is_el2_enabled(env); 2297 uint64_t hcr = arm_hcr_el2_eff(env); 2298 2299 switch (cur_el) { 2300 case 0: 2301 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2302 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2303 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2304 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2305 } 2306 2307 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2308 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2309 return CP_ACCESS_TRAP; 2310 } 2311 2312 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2313 if (hcr & HCR_E2H) { 2314 if (timeridx == GTIMER_PHYS && 2315 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2316 return CP_ACCESS_TRAP_EL2; 2317 } 2318 } else { 2319 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2320 if (has_el2 && timeridx == GTIMER_PHYS && 2321 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2322 return CP_ACCESS_TRAP_EL2; 2323 } 2324 } 2325 break; 2326 2327 case 1: 2328 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2329 if (has_el2 && timeridx == GTIMER_PHYS && 2330 (hcr & HCR_E2H 2331 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2332 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2333 return CP_ACCESS_TRAP_EL2; 2334 } 2335 break; 2336 } 2337 return CP_ACCESS_OK; 2338 } 2339 2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2341 bool isread) 2342 { 2343 unsigned int cur_el = arm_current_el(env); 2344 bool has_el2 = arm_is_el2_enabled(env); 2345 uint64_t hcr = arm_hcr_el2_eff(env); 2346 2347 switch (cur_el) { 2348 case 0: 2349 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2350 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2351 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2352 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2353 } 2354 2355 /* 2356 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2357 * EL0 if EL0[PV]TEN is zero. 2358 */ 2359 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2360 return CP_ACCESS_TRAP; 2361 } 2362 /* fall through */ 2363 2364 case 1: 2365 if (has_el2 && timeridx == GTIMER_PHYS) { 2366 if (hcr & HCR_E2H) { 2367 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2368 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2369 return CP_ACCESS_TRAP_EL2; 2370 } 2371 } else { 2372 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2373 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2374 return CP_ACCESS_TRAP_EL2; 2375 } 2376 } 2377 } 2378 break; 2379 } 2380 return CP_ACCESS_OK; 2381 } 2382 2383 static CPAccessResult gt_pct_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 return gt_counter_access(env, GTIMER_PHYS, isread); 2388 } 2389 2390 static CPAccessResult gt_vct_access(CPUARMState *env, 2391 const ARMCPRegInfo *ri, 2392 bool isread) 2393 { 2394 return gt_counter_access(env, GTIMER_VIRT, isread); 2395 } 2396 2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2398 bool isread) 2399 { 2400 return gt_timer_access(env, GTIMER_PHYS, isread); 2401 } 2402 2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2404 bool isread) 2405 { 2406 return gt_timer_access(env, GTIMER_VIRT, isread); 2407 } 2408 2409 static CPAccessResult gt_stimer_access(CPUARMState *env, 2410 const ARMCPRegInfo *ri, 2411 bool isread) 2412 { 2413 /* The AArch64 register view of the secure physical timer is 2414 * always accessible from EL3, and configurably accessible from 2415 * Secure EL1. 2416 */ 2417 switch (arm_current_el(env)) { 2418 case 1: 2419 if (!arm_is_secure(env)) { 2420 return CP_ACCESS_TRAP; 2421 } 2422 if (!(env->cp15.scr_el3 & SCR_ST)) { 2423 return CP_ACCESS_TRAP_EL3; 2424 } 2425 return CP_ACCESS_OK; 2426 case 0: 2427 case 2: 2428 return CP_ACCESS_TRAP; 2429 case 3: 2430 return CP_ACCESS_OK; 2431 default: 2432 g_assert_not_reached(); 2433 } 2434 } 2435 2436 static uint64_t gt_get_countervalue(CPUARMState *env) 2437 { 2438 ARMCPU *cpu = env_archcpu(env); 2439 2440 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2441 } 2442 2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2444 { 2445 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2446 2447 if (gt->ctl & 1) { 2448 /* Timer enabled: calculate and set current ISTATUS, irq, and 2449 * reset timer to when ISTATUS next has to change 2450 */ 2451 uint64_t offset = timeridx == GTIMER_VIRT ? 2452 cpu->env.cp15.cntvoff_el2 : 0; 2453 uint64_t count = gt_get_countervalue(&cpu->env); 2454 /* Note that this must be unsigned 64 bit arithmetic: */ 2455 int istatus = count - offset >= gt->cval; 2456 uint64_t nexttick; 2457 int irqstate; 2458 2459 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2460 2461 irqstate = (istatus && !(gt->ctl & 2)); 2462 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2463 2464 if (istatus) { 2465 /* Next transition is when count rolls back over to zero */ 2466 nexttick = UINT64_MAX; 2467 } else { 2468 /* Next transition is when we hit cval */ 2469 nexttick = gt->cval + offset; 2470 } 2471 /* Note that the desired next expiry time might be beyond the 2472 * signed-64-bit range of a QEMUTimer -- in this case we just 2473 * set the timer for as far in the future as possible. When the 2474 * timer expires we will reset the timer for any remaining period. 2475 */ 2476 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2477 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2478 } else { 2479 timer_mod(cpu->gt_timer[timeridx], nexttick); 2480 } 2481 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2482 } else { 2483 /* Timer disabled: ISTATUS and timer output always clear */ 2484 gt->ctl &= ~4; 2485 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2486 timer_del(cpu->gt_timer[timeridx]); 2487 trace_arm_gt_recalc_disabled(timeridx); 2488 } 2489 } 2490 2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2492 int timeridx) 2493 { 2494 ARMCPU *cpu = env_archcpu(env); 2495 2496 timer_del(cpu->gt_timer[timeridx]); 2497 } 2498 2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2500 { 2501 return gt_get_countervalue(env); 2502 } 2503 2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2505 { 2506 uint64_t hcr; 2507 2508 switch (arm_current_el(env)) { 2509 case 2: 2510 hcr = arm_hcr_el2_eff(env); 2511 if (hcr & HCR_E2H) { 2512 return 0; 2513 } 2514 break; 2515 case 0: 2516 hcr = arm_hcr_el2_eff(env); 2517 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2518 return 0; 2519 } 2520 break; 2521 } 2522 2523 return env->cp15.cntvoff_el2; 2524 } 2525 2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2527 { 2528 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2529 } 2530 2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2532 int timeridx, 2533 uint64_t value) 2534 { 2535 trace_arm_gt_cval_write(timeridx, value); 2536 env->cp15.c14_timer[timeridx].cval = value; 2537 gt_recalc_timer(env_archcpu(env), timeridx); 2538 } 2539 2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2541 int timeridx) 2542 { 2543 uint64_t offset = 0; 2544 2545 switch (timeridx) { 2546 case GTIMER_VIRT: 2547 case GTIMER_HYPVIRT: 2548 offset = gt_virt_cnt_offset(env); 2549 break; 2550 } 2551 2552 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2553 (gt_get_countervalue(env) - offset)); 2554 } 2555 2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2557 int timeridx, 2558 uint64_t value) 2559 { 2560 uint64_t offset = 0; 2561 2562 switch (timeridx) { 2563 case GTIMER_VIRT: 2564 case GTIMER_HYPVIRT: 2565 offset = gt_virt_cnt_offset(env); 2566 break; 2567 } 2568 2569 trace_arm_gt_tval_write(timeridx, value); 2570 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2571 sextract64(value, 0, 32); 2572 gt_recalc_timer(env_archcpu(env), timeridx); 2573 } 2574 2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2576 int timeridx, 2577 uint64_t value) 2578 { 2579 ARMCPU *cpu = env_archcpu(env); 2580 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2581 2582 trace_arm_gt_ctl_write(timeridx, value); 2583 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2584 if ((oldval ^ value) & 1) { 2585 /* Enable toggled */ 2586 gt_recalc_timer(cpu, timeridx); 2587 } else if ((oldval ^ value) & 2) { 2588 /* IMASK toggled: don't need to recalculate, 2589 * just set the interrupt line based on ISTATUS 2590 */ 2591 int irqstate = (oldval & 4) && !(value & 2); 2592 2593 trace_arm_gt_imask_toggle(timeridx, irqstate); 2594 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2595 } 2596 } 2597 2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2599 { 2600 gt_timer_reset(env, ri, GTIMER_PHYS); 2601 } 2602 2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2604 uint64_t value) 2605 { 2606 gt_cval_write(env, ri, GTIMER_PHYS, value); 2607 } 2608 2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2610 { 2611 return gt_tval_read(env, ri, GTIMER_PHYS); 2612 } 2613 2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2615 uint64_t value) 2616 { 2617 gt_tval_write(env, ri, GTIMER_PHYS, value); 2618 } 2619 2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2624 } 2625 2626 static int gt_phys_redir_timeridx(CPUARMState *env) 2627 { 2628 switch (arm_mmu_idx(env)) { 2629 case ARMMMUIdx_E20_0: 2630 case ARMMMUIdx_E20_2: 2631 case ARMMMUIdx_E20_2_PAN: 2632 case ARMMMUIdx_SE20_0: 2633 case ARMMMUIdx_SE20_2: 2634 case ARMMMUIdx_SE20_2_PAN: 2635 return GTIMER_HYP; 2636 default: 2637 return GTIMER_PHYS; 2638 } 2639 } 2640 2641 static int gt_virt_redir_timeridx(CPUARMState *env) 2642 { 2643 switch (arm_mmu_idx(env)) { 2644 case ARMMMUIdx_E20_0: 2645 case ARMMMUIdx_E20_2: 2646 case ARMMMUIdx_E20_2_PAN: 2647 case ARMMMUIdx_SE20_0: 2648 case ARMMMUIdx_SE20_2: 2649 case ARMMMUIdx_SE20_2_PAN: 2650 return GTIMER_HYPVIRT; 2651 default: 2652 return GTIMER_VIRT; 2653 } 2654 } 2655 2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2657 const ARMCPRegInfo *ri) 2658 { 2659 int timeridx = gt_phys_redir_timeridx(env); 2660 return env->cp15.c14_timer[timeridx].cval; 2661 } 2662 2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2664 uint64_t value) 2665 { 2666 int timeridx = gt_phys_redir_timeridx(env); 2667 gt_cval_write(env, ri, timeridx, value); 2668 } 2669 2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2671 const ARMCPRegInfo *ri) 2672 { 2673 int timeridx = gt_phys_redir_timeridx(env); 2674 return gt_tval_read(env, ri, timeridx); 2675 } 2676 2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2678 uint64_t value) 2679 { 2680 int timeridx = gt_phys_redir_timeridx(env); 2681 gt_tval_write(env, ri, timeridx, value); 2682 } 2683 2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2685 const ARMCPRegInfo *ri) 2686 { 2687 int timeridx = gt_phys_redir_timeridx(env); 2688 return env->cp15.c14_timer[timeridx].ctl; 2689 } 2690 2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2692 uint64_t value) 2693 { 2694 int timeridx = gt_phys_redir_timeridx(env); 2695 gt_ctl_write(env, ri, timeridx, value); 2696 } 2697 2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2699 { 2700 gt_timer_reset(env, ri, GTIMER_VIRT); 2701 } 2702 2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2704 uint64_t value) 2705 { 2706 gt_cval_write(env, ri, GTIMER_VIRT, value); 2707 } 2708 2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2710 { 2711 return gt_tval_read(env, ri, GTIMER_VIRT); 2712 } 2713 2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2715 uint64_t value) 2716 { 2717 gt_tval_write(env, ri, GTIMER_VIRT, value); 2718 } 2719 2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 uint64_t value) 2722 { 2723 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2724 } 2725 2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 uint64_t value) 2728 { 2729 ARMCPU *cpu = env_archcpu(env); 2730 2731 trace_arm_gt_cntvoff_write(value); 2732 raw_write(env, ri, value); 2733 gt_recalc_timer(cpu, GTIMER_VIRT); 2734 } 2735 2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2737 const ARMCPRegInfo *ri) 2738 { 2739 int timeridx = gt_virt_redir_timeridx(env); 2740 return env->cp15.c14_timer[timeridx].cval; 2741 } 2742 2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2744 uint64_t value) 2745 { 2746 int timeridx = gt_virt_redir_timeridx(env); 2747 gt_cval_write(env, ri, timeridx, value); 2748 } 2749 2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2751 const ARMCPRegInfo *ri) 2752 { 2753 int timeridx = gt_virt_redir_timeridx(env); 2754 return gt_tval_read(env, ri, timeridx); 2755 } 2756 2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2758 uint64_t value) 2759 { 2760 int timeridx = gt_virt_redir_timeridx(env); 2761 gt_tval_write(env, ri, timeridx, value); 2762 } 2763 2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2765 const ARMCPRegInfo *ri) 2766 { 2767 int timeridx = gt_virt_redir_timeridx(env); 2768 return env->cp15.c14_timer[timeridx].ctl; 2769 } 2770 2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2772 uint64_t value) 2773 { 2774 int timeridx = gt_virt_redir_timeridx(env); 2775 gt_ctl_write(env, ri, timeridx, value); 2776 } 2777 2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 gt_timer_reset(env, ri, GTIMER_HYP); 2781 } 2782 2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 uint64_t value) 2785 { 2786 gt_cval_write(env, ri, GTIMER_HYP, value); 2787 } 2788 2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2790 { 2791 return gt_tval_read(env, ri, GTIMER_HYP); 2792 } 2793 2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 gt_tval_write(env, ri, GTIMER_HYP, value); 2798 } 2799 2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 uint64_t value) 2802 { 2803 gt_ctl_write(env, ri, GTIMER_HYP, value); 2804 } 2805 2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2807 { 2808 gt_timer_reset(env, ri, GTIMER_SEC); 2809 } 2810 2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2812 uint64_t value) 2813 { 2814 gt_cval_write(env, ri, GTIMER_SEC, value); 2815 } 2816 2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2818 { 2819 return gt_tval_read(env, ri, GTIMER_SEC); 2820 } 2821 2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 gt_tval_write(env, ri, GTIMER_SEC, value); 2826 } 2827 2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 gt_ctl_write(env, ri, GTIMER_SEC, value); 2832 } 2833 2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2837 } 2838 2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2843 } 2844 2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2846 { 2847 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2848 } 2849 2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2854 } 2855 2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2860 } 2861 2862 void arm_gt_ptimer_cb(void *opaque) 2863 { 2864 ARMCPU *cpu = opaque; 2865 2866 gt_recalc_timer(cpu, GTIMER_PHYS); 2867 } 2868 2869 void arm_gt_vtimer_cb(void *opaque) 2870 { 2871 ARMCPU *cpu = opaque; 2872 2873 gt_recalc_timer(cpu, GTIMER_VIRT); 2874 } 2875 2876 void arm_gt_htimer_cb(void *opaque) 2877 { 2878 ARMCPU *cpu = opaque; 2879 2880 gt_recalc_timer(cpu, GTIMER_HYP); 2881 } 2882 2883 void arm_gt_stimer_cb(void *opaque) 2884 { 2885 ARMCPU *cpu = opaque; 2886 2887 gt_recalc_timer(cpu, GTIMER_SEC); 2888 } 2889 2890 void arm_gt_hvtimer_cb(void *opaque) 2891 { 2892 ARMCPU *cpu = opaque; 2893 2894 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2895 } 2896 2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2898 { 2899 ARMCPU *cpu = env_archcpu(env); 2900 2901 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2902 } 2903 2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2905 /* Note that CNTFRQ is purely reads-as-written for the benefit 2906 * of software; writing it doesn't actually change the timer frequency. 2907 * Our reset value matches the fixed frequency we implement the timer at. 2908 */ 2909 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2910 .type = ARM_CP_ALIAS, 2911 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2913 }, 2914 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2915 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2916 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2917 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2918 .resetfn = arm_gt_cntfrq_reset, 2919 }, 2920 /* overall control: mostly access permissions */ 2921 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2922 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2923 .access = PL1_RW, 2924 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2925 .resetvalue = 0, 2926 }, 2927 /* per-timer control */ 2928 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2929 .secure = ARM_CP_SECSTATE_NS, 2930 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2931 .accessfn = gt_ptimer_access, 2932 .fieldoffset = offsetoflow32(CPUARMState, 2933 cp15.c14_timer[GTIMER_PHYS].ctl), 2934 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2935 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2936 }, 2937 { .name = "CNTP_CTL_S", 2938 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2939 .secure = ARM_CP_SECSTATE_S, 2940 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2941 .accessfn = gt_ptimer_access, 2942 .fieldoffset = offsetoflow32(CPUARMState, 2943 cp15.c14_timer[GTIMER_SEC].ctl), 2944 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2945 }, 2946 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2948 .type = ARM_CP_IO, .access = PL0_RW, 2949 .accessfn = gt_ptimer_access, 2950 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2951 .resetvalue = 0, 2952 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2953 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2954 }, 2955 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2956 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2957 .accessfn = gt_vtimer_access, 2958 .fieldoffset = offsetoflow32(CPUARMState, 2959 cp15.c14_timer[GTIMER_VIRT].ctl), 2960 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2961 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2962 }, 2963 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2964 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2965 .type = ARM_CP_IO, .access = PL0_RW, 2966 .accessfn = gt_vtimer_access, 2967 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2968 .resetvalue = 0, 2969 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2970 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2971 }, 2972 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2974 .secure = ARM_CP_SECSTATE_NS, 2975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2976 .accessfn = gt_ptimer_access, 2977 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2978 }, 2979 { .name = "CNTP_TVAL_S", 2980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2981 .secure = ARM_CP_SECSTATE_S, 2982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2983 .accessfn = gt_ptimer_access, 2984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2985 }, 2986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2990 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2991 }, 2992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2994 .accessfn = gt_vtimer_access, 2995 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2996 }, 2997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3001 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3002 }, 3003 /* The counter itself */ 3004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3006 .accessfn = gt_pct_access, 3007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3008 }, 3009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3012 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3013 }, 3014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3016 .accessfn = gt_vct_access, 3017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3018 }, 3019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3023 }, 3024 /* Comparison value, indicating when the timer goes off */ 3025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3026 .secure = ARM_CP_SECSTATE_NS, 3027 .access = PL0_RW, 3028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3030 .accessfn = gt_ptimer_access, 3031 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3032 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3033 }, 3034 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3035 .secure = ARM_CP_SECSTATE_S, 3036 .access = PL0_RW, 3037 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3038 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3039 .accessfn = gt_ptimer_access, 3040 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3041 }, 3042 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3044 .access = PL0_RW, 3045 .type = ARM_CP_IO, 3046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3047 .resetvalue = 0, .accessfn = gt_ptimer_access, 3048 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3049 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3050 }, 3051 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3052 .access = PL0_RW, 3053 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3054 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3055 .accessfn = gt_vtimer_access, 3056 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3057 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3058 }, 3059 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3060 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3061 .access = PL0_RW, 3062 .type = ARM_CP_IO, 3063 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3064 .resetvalue = 0, .accessfn = gt_vtimer_access, 3065 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3066 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3067 }, 3068 /* Secure timer -- this is actually restricted to only EL3 3069 * and configurably Secure-EL1 via the accessfn. 3070 */ 3071 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3072 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3073 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3074 .accessfn = gt_stimer_access, 3075 .readfn = gt_sec_tval_read, 3076 .writefn = gt_sec_tval_write, 3077 .resetfn = gt_sec_timer_reset, 3078 }, 3079 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3080 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3081 .type = ARM_CP_IO, .access = PL1_RW, 3082 .accessfn = gt_stimer_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3084 .resetvalue = 0, 3085 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3086 }, 3087 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3089 .type = ARM_CP_IO, .access = PL1_RW, 3090 .accessfn = gt_stimer_access, 3091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3092 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3093 }, 3094 REGINFO_SENTINEL 3095 }; 3096 3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3098 bool isread) 3099 { 3100 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3101 return CP_ACCESS_TRAP; 3102 } 3103 return CP_ACCESS_OK; 3104 } 3105 3106 #else 3107 3108 /* In user-mode most of the generic timer registers are inaccessible 3109 * however modern kernels (4.12+) allow access to cntvct_el0 3110 */ 3111 3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3113 { 3114 ARMCPU *cpu = env_archcpu(env); 3115 3116 /* Currently we have no support for QEMUTimer in linux-user so we 3117 * can't call gt_get_countervalue(env), instead we directly 3118 * call the lower level functions. 3119 */ 3120 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3121 } 3122 3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3124 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3126 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3128 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3129 }, 3130 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3132 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3133 .readfn = gt_virt_cnt_read, 3134 }, 3135 REGINFO_SENTINEL 3136 }; 3137 3138 #endif 3139 3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3141 { 3142 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3143 raw_write(env, ri, value); 3144 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3145 raw_write(env, ri, value & 0xfffff6ff); 3146 } else { 3147 raw_write(env, ri, value & 0xfffff1ff); 3148 } 3149 } 3150 3151 #ifndef CONFIG_USER_ONLY 3152 /* get_phys_addr() isn't present for user-mode-only targets */ 3153 3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3155 bool isread) 3156 { 3157 if (ri->opc2 & 4) { 3158 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3159 * Secure EL1 (which can only happen if EL3 is AArch64). 3160 * They are simply UNDEF if executed from NS EL1. 3161 * They function normally from EL2 or EL3. 3162 */ 3163 if (arm_current_el(env) == 1) { 3164 if (arm_is_secure_below_el3(env)) { 3165 if (env->cp15.scr_el3 & SCR_EEL2) { 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3169 } 3170 return CP_ACCESS_TRAP_UNCATEGORIZED; 3171 } 3172 } 3173 return CP_ACCESS_OK; 3174 } 3175 3176 #ifdef CONFIG_TCG 3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3178 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3179 { 3180 hwaddr phys_addr; 3181 target_ulong page_size; 3182 int prot; 3183 bool ret; 3184 uint64_t par64; 3185 bool format64 = false; 3186 MemTxAttrs attrs = {}; 3187 ARMMMUFaultInfo fi = {}; 3188 ARMCacheAttrs cacheattrs = {}; 3189 3190 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3191 &prot, &page_size, &fi, &cacheattrs); 3192 3193 if (ret) { 3194 /* 3195 * Some kinds of translation fault must cause exceptions rather 3196 * than being reported in the PAR. 3197 */ 3198 int current_el = arm_current_el(env); 3199 int target_el; 3200 uint32_t syn, fsr, fsc; 3201 bool take_exc = false; 3202 3203 if (fi.s1ptw && current_el == 1 3204 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3205 /* 3206 * Synchronous stage 2 fault on an access made as part of the 3207 * translation table walk for AT S1E0* or AT S1E1* insn 3208 * executed from NS EL1. If this is a synchronous external abort 3209 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3210 * to EL3. Otherwise the fault is taken as an exception to EL2, 3211 * and HPFAR_EL2 holds the faulting IPA. 3212 */ 3213 if (fi.type == ARMFault_SyncExternalOnWalk && 3214 (env->cp15.scr_el3 & SCR_EA)) { 3215 target_el = 3; 3216 } else { 3217 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3218 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3219 env->cp15.hpfar_el2 |= HPFAR_NS; 3220 } 3221 target_el = 2; 3222 } 3223 take_exc = true; 3224 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3225 /* 3226 * Synchronous external aborts during a translation table walk 3227 * are taken as Data Abort exceptions. 3228 */ 3229 if (fi.stage2) { 3230 if (current_el == 3) { 3231 target_el = 3; 3232 } else { 3233 target_el = 2; 3234 } 3235 } else { 3236 target_el = exception_target_el(env); 3237 } 3238 take_exc = true; 3239 } 3240 3241 if (take_exc) { 3242 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3243 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3244 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3245 fsr = arm_fi_to_lfsc(&fi); 3246 fsc = extract32(fsr, 0, 6); 3247 } else { 3248 fsr = arm_fi_to_sfsc(&fi); 3249 fsc = 0x3f; 3250 } 3251 /* 3252 * Report exception with ESR indicating a fault due to a 3253 * translation table walk for a cache maintenance instruction. 3254 */ 3255 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3256 fi.ea, 1, fi.s1ptw, 1, fsc); 3257 env->exception.vaddress = value; 3258 env->exception.fsr = fsr; 3259 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3260 } 3261 } 3262 3263 if (is_a64(env)) { 3264 format64 = true; 3265 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3266 /* 3267 * ATS1Cxx: 3268 * * TTBCR.EAE determines whether the result is returned using the 3269 * 32-bit or the 64-bit PAR format 3270 * * Instructions executed in Hyp mode always use the 64bit format 3271 * 3272 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3273 * * The Non-secure TTBCR.EAE bit is set to 1 3274 * * The implementation includes EL2, and the value of HCR.VM is 1 3275 * 3276 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3277 * 3278 * ATS1Hx always uses the 64bit format. 3279 */ 3280 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3281 3282 if (arm_feature(env, ARM_FEATURE_EL2)) { 3283 if (mmu_idx == ARMMMUIdx_E10_0 || 3284 mmu_idx == ARMMMUIdx_E10_1 || 3285 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3286 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3287 } else { 3288 format64 |= arm_current_el(env) == 2; 3289 } 3290 } 3291 } 3292 3293 if (format64) { 3294 /* Create a 64-bit PAR */ 3295 par64 = (1 << 11); /* LPAE bit always set */ 3296 if (!ret) { 3297 par64 |= phys_addr & ~0xfffULL; 3298 if (!attrs.secure) { 3299 par64 |= (1 << 9); /* NS */ 3300 } 3301 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3302 par64 |= cacheattrs.shareability << 7; /* SH */ 3303 } else { 3304 uint32_t fsr = arm_fi_to_lfsc(&fi); 3305 3306 par64 |= 1; /* F */ 3307 par64 |= (fsr & 0x3f) << 1; /* FS */ 3308 if (fi.stage2) { 3309 par64 |= (1 << 9); /* S */ 3310 } 3311 if (fi.s1ptw) { 3312 par64 |= (1 << 8); /* PTW */ 3313 } 3314 } 3315 } else { 3316 /* fsr is a DFSR/IFSR value for the short descriptor 3317 * translation table format (with WnR always clear). 3318 * Convert it to a 32-bit PAR. 3319 */ 3320 if (!ret) { 3321 /* We do not set any attribute bits in the PAR */ 3322 if (page_size == (1 << 24) 3323 && arm_feature(env, ARM_FEATURE_V7)) { 3324 par64 = (phys_addr & 0xff000000) | (1 << 1); 3325 } else { 3326 par64 = phys_addr & 0xfffff000; 3327 } 3328 if (!attrs.secure) { 3329 par64 |= (1 << 9); /* NS */ 3330 } 3331 } else { 3332 uint32_t fsr = arm_fi_to_sfsc(&fi); 3333 3334 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3335 ((fsr & 0xf) << 1) | 1; 3336 } 3337 } 3338 return par64; 3339 } 3340 #endif /* CONFIG_TCG */ 3341 3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3343 { 3344 #ifdef CONFIG_TCG 3345 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3346 uint64_t par64; 3347 ARMMMUIdx mmu_idx; 3348 int el = arm_current_el(env); 3349 bool secure = arm_is_secure_below_el3(env); 3350 3351 switch (ri->opc2 & 6) { 3352 case 0: 3353 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3354 switch (el) { 3355 case 3: 3356 mmu_idx = ARMMMUIdx_SE3; 3357 break; 3358 case 2: 3359 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3360 /* fall through */ 3361 case 1: 3362 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3363 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3364 : ARMMMUIdx_Stage1_E1_PAN); 3365 } else { 3366 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3367 } 3368 break; 3369 default: 3370 g_assert_not_reached(); 3371 } 3372 break; 3373 case 2: 3374 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3375 switch (el) { 3376 case 3: 3377 mmu_idx = ARMMMUIdx_SE10_0; 3378 break; 3379 case 2: 3380 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3381 mmu_idx = ARMMMUIdx_Stage1_E0; 3382 break; 3383 case 1: 3384 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3385 break; 3386 default: 3387 g_assert_not_reached(); 3388 } 3389 break; 3390 case 4: 3391 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3392 mmu_idx = ARMMMUIdx_E10_1; 3393 break; 3394 case 6: 3395 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3396 mmu_idx = ARMMMUIdx_E10_0; 3397 break; 3398 default: 3399 g_assert_not_reached(); 3400 } 3401 3402 par64 = do_ats_write(env, value, access_type, mmu_idx); 3403 3404 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3405 #else 3406 /* Handled by hardware accelerator. */ 3407 g_assert_not_reached(); 3408 #endif /* CONFIG_TCG */ 3409 } 3410 3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3412 uint64_t value) 3413 { 3414 #ifdef CONFIG_TCG 3415 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3416 uint64_t par64; 3417 3418 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3419 3420 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3421 #else 3422 /* Handled by hardware accelerator. */ 3423 g_assert_not_reached(); 3424 #endif /* CONFIG_TCG */ 3425 } 3426 3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3428 bool isread) 3429 { 3430 if (arm_current_el(env) == 3 && 3431 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3432 return CP_ACCESS_TRAP; 3433 } 3434 return CP_ACCESS_OK; 3435 } 3436 3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3438 uint64_t value) 3439 { 3440 #ifdef CONFIG_TCG 3441 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3442 ARMMMUIdx mmu_idx; 3443 int secure = arm_is_secure_below_el3(env); 3444 3445 switch (ri->opc2 & 6) { 3446 case 0: 3447 switch (ri->opc1) { 3448 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3449 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3450 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3451 : ARMMMUIdx_Stage1_E1_PAN); 3452 } else { 3453 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3454 } 3455 break; 3456 case 4: /* AT S1E2R, AT S1E2W */ 3457 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3458 break; 3459 case 6: /* AT S1E3R, AT S1E3W */ 3460 mmu_idx = ARMMMUIdx_SE3; 3461 break; 3462 default: 3463 g_assert_not_reached(); 3464 } 3465 break; 3466 case 2: /* AT S1E0R, AT S1E0W */ 3467 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3468 break; 3469 case 4: /* AT S12E1R, AT S12E1W */ 3470 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3471 break; 3472 case 6: /* AT S12E0R, AT S12E0W */ 3473 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3474 break; 3475 default: 3476 g_assert_not_reached(); 3477 } 3478 3479 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3480 #else 3481 /* Handled by hardware accelerator. */ 3482 g_assert_not_reached(); 3483 #endif /* CONFIG_TCG */ 3484 } 3485 #endif 3486 3487 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3488 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3489 .access = PL1_RW, .resetvalue = 0, 3490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3491 offsetoflow32(CPUARMState, cp15.par_ns) }, 3492 .writefn = par_write }, 3493 #ifndef CONFIG_USER_ONLY 3494 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3495 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3496 .access = PL1_W, .accessfn = ats_access, 3497 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3498 #endif 3499 REGINFO_SENTINEL 3500 }; 3501 3502 /* Return basic MPU access permission bits. */ 3503 static uint32_t simple_mpu_ap_bits(uint32_t val) 3504 { 3505 uint32_t ret; 3506 uint32_t mask; 3507 int i; 3508 ret = 0; 3509 mask = 3; 3510 for (i = 0; i < 16; i += 2) { 3511 ret |= (val >> i) & mask; 3512 mask <<= 2; 3513 } 3514 return ret; 3515 } 3516 3517 /* Pad basic MPU access permission bits to extended format. */ 3518 static uint32_t extended_mpu_ap_bits(uint32_t val) 3519 { 3520 uint32_t ret; 3521 uint32_t mask; 3522 int i; 3523 ret = 0; 3524 mask = 3; 3525 for (i = 0; i < 16; i += 2) { 3526 ret |= (val & mask) << i; 3527 mask <<= 2; 3528 } 3529 return ret; 3530 } 3531 3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3533 uint64_t value) 3534 { 3535 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3536 } 3537 3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3539 { 3540 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3541 } 3542 3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3544 uint64_t value) 3545 { 3546 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3547 } 3548 3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3550 { 3551 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3552 } 3553 3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3555 { 3556 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3557 3558 if (!u32p) { 3559 return 0; 3560 } 3561 3562 u32p += env->pmsav7.rnr[M_REG_NS]; 3563 return *u32p; 3564 } 3565 3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3567 uint64_t value) 3568 { 3569 ARMCPU *cpu = env_archcpu(env); 3570 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3571 3572 if (!u32p) { 3573 return; 3574 } 3575 3576 u32p += env->pmsav7.rnr[M_REG_NS]; 3577 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3578 *u32p = value; 3579 } 3580 3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3582 uint64_t value) 3583 { 3584 ARMCPU *cpu = env_archcpu(env); 3585 uint32_t nrgs = cpu->pmsav7_dregion; 3586 3587 if (value >= nrgs) { 3588 qemu_log_mask(LOG_GUEST_ERROR, 3589 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3590 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3591 return; 3592 } 3593 3594 raw_write(env, ri, value); 3595 } 3596 3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3598 /* Reset for all these registers is handled in arm_cpu_reset(), 3599 * because the PMSAv7 is also used by M-profile CPUs, which do 3600 * not register cpregs but still need the state to be reset. 3601 */ 3602 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3603 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3604 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3605 .readfn = pmsav7_read, .writefn = pmsav7_write, 3606 .resetfn = arm_cp_reset_ignore }, 3607 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3608 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3609 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3610 .readfn = pmsav7_read, .writefn = pmsav7_write, 3611 .resetfn = arm_cp_reset_ignore }, 3612 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3613 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3614 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3615 .readfn = pmsav7_read, .writefn = pmsav7_write, 3616 .resetfn = arm_cp_reset_ignore }, 3617 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3618 .access = PL1_RW, 3619 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3620 .writefn = pmsav7_rgnr_write, 3621 .resetfn = arm_cp_reset_ignore }, 3622 REGINFO_SENTINEL 3623 }; 3624 3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3627 .access = PL1_RW, .type = ARM_CP_ALIAS, 3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3631 .access = PL1_RW, .type = ARM_CP_ALIAS, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3635 .access = PL1_RW, 3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3637 .resetvalue = 0, }, 3638 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3639 .access = PL1_RW, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3641 .resetvalue = 0, }, 3642 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3643 .access = PL1_RW, 3644 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3645 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3646 .access = PL1_RW, 3647 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3648 /* Protection region base and size registers */ 3649 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3650 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3652 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3653 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3654 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3655 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3656 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3658 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3659 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3660 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3661 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3664 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3667 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3670 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3673 REGINFO_SENTINEL 3674 }; 3675 3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 TCR *tcr = raw_ptr(env, ri); 3680 int maskshift = extract32(value, 0, 3); 3681 3682 if (!arm_feature(env, ARM_FEATURE_V8)) { 3683 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3684 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3685 * using Long-desciptor translation table format */ 3686 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3687 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3688 /* In an implementation that includes the Security Extensions 3689 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3690 * Short-descriptor translation table format. 3691 */ 3692 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3693 } else { 3694 value &= TTBCR_N; 3695 } 3696 } 3697 3698 /* Update the masks corresponding to the TCR bank being written 3699 * Note that we always calculate mask and base_mask, but 3700 * they are only used for short-descriptor tables (ie if EAE is 0); 3701 * for long-descriptor tables the TCR fields are used differently 3702 * and the mask and base_mask values are meaningless. 3703 */ 3704 tcr->raw_tcr = value; 3705 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3706 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3707 } 3708 3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3710 uint64_t value) 3711 { 3712 ARMCPU *cpu = env_archcpu(env); 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3716 /* With LPAE the TTBCR could result in a change of ASID 3717 * via the TTBCR.A1 bit, so do a TLB flush. 3718 */ 3719 tlb_flush(CPU(cpu)); 3720 } 3721 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3722 value = deposit64(tcr->raw_tcr, 0, 32, value); 3723 vmsa_ttbcr_raw_write(env, ri, value); 3724 } 3725 3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3727 { 3728 TCR *tcr = raw_ptr(env, ri); 3729 3730 /* Reset both the TCR as well as the masks corresponding to the bank of 3731 * the TCR being reset. 3732 */ 3733 tcr->raw_tcr = 0; 3734 tcr->mask = 0; 3735 tcr->base_mask = 0xffffc000u; 3736 } 3737 3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3739 uint64_t value) 3740 { 3741 ARMCPU *cpu = env_archcpu(env); 3742 TCR *tcr = raw_ptr(env, ri); 3743 3744 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3745 tlb_flush(CPU(cpu)); 3746 tcr->raw_tcr = value; 3747 } 3748 3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3753 if (cpreg_field_is_64bit(ri) && 3754 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3755 ARMCPU *cpu = env_archcpu(env); 3756 tlb_flush(CPU(cpu)); 3757 } 3758 raw_write(env, ri, value); 3759 } 3760 3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 /* 3765 * If we are running with E2&0 regime, then an ASID is active. 3766 * Flush if that might be changing. Note we're not checking 3767 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3768 * holds the active ASID, only checking the field that might. 3769 */ 3770 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3771 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3772 uint16_t mask = ARMMMUIdxBit_E20_2 | 3773 ARMMMUIdxBit_E20_2_PAN | 3774 ARMMMUIdxBit_E20_0; 3775 3776 if (arm_is_secure_below_el3(env)) { 3777 mask >>= ARM_MMU_IDX_A_NS; 3778 } 3779 3780 tlb_flush_by_mmuidx(env_cpu(env), mask); 3781 } 3782 raw_write(env, ri, value); 3783 } 3784 3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 CPUState *cs = CPU(cpu); 3790 3791 /* 3792 * A change in VMID to the stage2 page table (Stage2) invalidates 3793 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3794 */ 3795 if (raw_read(env, ri) != value) { 3796 uint16_t mask = ARMMMUIdxBit_E10_1 | 3797 ARMMMUIdxBit_E10_1_PAN | 3798 ARMMMUIdxBit_E10_0; 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 mask >>= ARM_MMU_IDX_A_NS; 3802 } 3803 3804 tlb_flush_by_mmuidx(cs, mask); 3805 raw_write(env, ri, value); 3806 } 3807 } 3808 3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3811 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3812 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3813 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3814 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3816 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3817 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3818 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3819 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3820 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3821 offsetof(CPUARMState, cp15.dfar_ns) } }, 3822 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3824 .access = PL1_RW, .accessfn = access_tvm_trvm, 3825 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3826 .resetvalue = 0, }, 3827 REGINFO_SENTINEL 3828 }; 3829 3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3831 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3832 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3835 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3837 .access = PL1_RW, .accessfn = access_tvm_trvm, 3838 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3839 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3840 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3841 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3842 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3843 .access = PL1_RW, .accessfn = access_tvm_trvm, 3844 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3845 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3846 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3847 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3848 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3849 .access = PL1_RW, .accessfn = access_tvm_trvm, 3850 .writefn = vmsa_tcr_el12_write, 3851 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3852 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3853 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3854 .access = PL1_RW, .accessfn = access_tvm_trvm, 3855 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3856 .raw_writefn = vmsa_ttbcr_raw_write, 3857 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3858 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3859 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3860 REGINFO_SENTINEL 3861 }; 3862 3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3864 * qemu tlbs nor adjusting cached masks. 3865 */ 3866 static const ARMCPRegInfo ttbcr2_reginfo = { 3867 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3868 .access = PL1_RW, .accessfn = access_tvm_trvm, 3869 .type = ARM_CP_ALIAS, 3870 .bank_fieldoffsets = { 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3872 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3873 }, 3874 }; 3875 3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 env->cp15.c15_ticonfig = value & 0xe7; 3880 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3881 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3882 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3883 } 3884 3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3886 uint64_t value) 3887 { 3888 env->cp15.c15_threadid = value & 0xffff; 3889 } 3890 3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3892 uint64_t value) 3893 { 3894 /* Wait-for-interrupt (deprecated) */ 3895 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3896 } 3897 3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 /* On OMAP there are registers indicating the max/min index of dcache lines 3902 * containing a dirty line; cache flush operations have to reset these. 3903 */ 3904 env->cp15.c15_i_max = 0x000; 3905 env->cp15.c15_i_min = 0xff0; 3906 } 3907 3908 static const ARMCPRegInfo omap_cp_reginfo[] = { 3909 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3911 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3912 .resetvalue = 0, }, 3913 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, .type = ARM_CP_NOP }, 3915 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3916 .access = PL1_RW, 3917 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3918 .writefn = omap_ticonfig_write }, 3919 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3920 .access = PL1_RW, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3922 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3923 .access = PL1_RW, .resetvalue = 0xff0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3925 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3926 .access = PL1_RW, 3927 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3928 .writefn = omap_threadid_write }, 3929 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3930 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3931 .type = ARM_CP_NO_RAW, 3932 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3933 /* TODO: Peripheral port remap register: 3934 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3935 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3936 * when MMU is off. 3937 */ 3938 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3939 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3940 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3941 .writefn = omap_cachemaint_write }, 3942 { .name = "C9", .cp = 15, .crn = 9, 3943 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3944 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3945 REGINFO_SENTINEL 3946 }; 3947 3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 env->cp15.c15_cpar = value & 0x3fff; 3952 } 3953 3954 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3955 { .name = "XSCALE_CPAR", 3956 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3958 .writefn = xscale_cpar_write, }, 3959 { .name = "XSCALE_AUXCR", 3960 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3962 .resetvalue = 0, }, 3963 /* XScale specific cache-lockdown: since we have no cache we NOP these 3964 * and hope the guest does not really rely on cache behaviour. 3965 */ 3966 { .name = "XSCALE_LOCK_ICACHE_LINE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_UNLOCK_ICACHE", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3971 .access = PL1_W, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_DCACHE_LOCK", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3974 .access = PL1_RW, .type = ARM_CP_NOP }, 3975 { .name = "XSCALE_UNLOCK_DCACHE", 3976 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3977 .access = PL1_W, .type = ARM_CP_NOP }, 3978 REGINFO_SENTINEL 3979 }; 3980 3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3982 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3983 * implementation of this implementation-defined space. 3984 * Ideally this should eventually disappear in favour of actually 3985 * implementing the correct behaviour for all cores. 3986 */ 3987 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3988 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3989 .access = PL1_RW, 3990 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3991 .resetvalue = 0 }, 3992 REGINFO_SENTINEL 3993 }; 3994 3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3996 /* Cache status: RAZ because we have no cache so it's always clean */ 3997 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3999 .resetvalue = 0 }, 4000 REGINFO_SENTINEL 4001 }; 4002 4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4004 /* We never have a a block transfer operation in progress */ 4005 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4007 .resetvalue = 0 }, 4008 /* The cache ops themselves: these all NOP for QEMU */ 4009 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4012 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4017 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4018 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4019 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4020 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4021 REGINFO_SENTINEL 4022 }; 4023 4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4025 /* The cache test-and-clean instructions always return (1 << 30) 4026 * to indicate that there are no dirty cache lines. 4027 */ 4028 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4029 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4030 .resetvalue = (1 << 30) }, 4031 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4032 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4033 .resetvalue = (1 << 30) }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4038 /* Ignore ReadBuffer accesses */ 4039 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4040 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4041 .access = PL1_RW, .resetvalue = 0, 4042 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4043 REGINFO_SENTINEL 4044 }; 4045 4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4047 { 4048 unsigned int cur_el = arm_current_el(env); 4049 4050 if (arm_is_el2_enabled(env) && cur_el == 1) { 4051 return env->cp15.vpidr_el2; 4052 } 4053 return raw_read(env, ri); 4054 } 4055 4056 static uint64_t mpidr_read_val(CPUARMState *env) 4057 { 4058 ARMCPU *cpu = env_archcpu(env); 4059 uint64_t mpidr = cpu->mp_affinity; 4060 4061 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4062 mpidr |= (1U << 31); 4063 /* Cores which are uniprocessor (non-coherent) 4064 * but still implement the MP extensions set 4065 * bit 30. (For instance, Cortex-R5). 4066 */ 4067 if (cpu->mp_is_up) { 4068 mpidr |= (1u << 30); 4069 } 4070 } 4071 return mpidr; 4072 } 4073 4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4075 { 4076 unsigned int cur_el = arm_current_el(env); 4077 4078 if (arm_is_el2_enabled(env) && cur_el == 1) { 4079 return env->cp15.vmpidr_el2; 4080 } 4081 return mpidr_read_val(env); 4082 } 4083 4084 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4085 /* NOP AMAIR0/1 */ 4086 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4087 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .type = ARM_CP_CONST, .resetvalue = 0 }, 4090 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4091 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4092 .access = PL1_RW, .accessfn = access_tvm_trvm, 4093 .type = ARM_CP_CONST, .resetvalue = 0 }, 4094 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4095 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4097 offsetof(CPUARMState, cp15.par_ns)} }, 4098 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4099 .access = PL1_RW, .accessfn = access_tvm_trvm, 4100 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4102 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4103 .writefn = vmsa_ttbr_write, }, 4104 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4107 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4108 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4109 .writefn = vmsa_ttbr_write, }, 4110 REGINFO_SENTINEL 4111 }; 4112 4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4114 { 4115 return vfp_get_fpcr(env); 4116 } 4117 4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4119 uint64_t value) 4120 { 4121 vfp_set_fpcr(env, value); 4122 } 4123 4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4125 { 4126 return vfp_get_fpsr(env); 4127 } 4128 4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4130 uint64_t value) 4131 { 4132 vfp_set_fpsr(env, value); 4133 } 4134 4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4136 bool isread) 4137 { 4138 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4139 return CP_ACCESS_TRAP; 4140 } 4141 return CP_ACCESS_OK; 4142 } 4143 4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 env->daif = value & PSTATE_DAIF; 4148 } 4149 4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4151 { 4152 return env->pstate & PSTATE_PAN; 4153 } 4154 4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4156 uint64_t value) 4157 { 4158 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4159 } 4160 4161 static const ARMCPRegInfo pan_reginfo = { 4162 .name = "PAN", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4164 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4165 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4166 }; 4167 4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4169 { 4170 return env->pstate & PSTATE_UAO; 4171 } 4172 4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4174 uint64_t value) 4175 { 4176 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4177 } 4178 4179 static const ARMCPRegInfo uao_reginfo = { 4180 .name = "UAO", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4182 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4183 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4184 }; 4185 4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4187 { 4188 return env->pstate & PSTATE_DIT; 4189 } 4190 4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4192 uint64_t value) 4193 { 4194 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4195 } 4196 4197 static const ARMCPRegInfo dit_reginfo = { 4198 .name = "DIT", .state = ARM_CP_STATE_AA64, 4199 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4200 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4201 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4202 }; 4203 4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4205 { 4206 return env->pstate & PSTATE_SSBS; 4207 } 4208 4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4210 uint64_t value) 4211 { 4212 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4213 } 4214 4215 static const ARMCPRegInfo ssbs_reginfo = { 4216 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4218 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4219 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4220 }; 4221 4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4223 const ARMCPRegInfo *ri, 4224 bool isread) 4225 { 4226 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4227 switch (arm_current_el(env)) { 4228 case 0: 4229 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4230 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4231 return CP_ACCESS_TRAP; 4232 } 4233 /* fall through */ 4234 case 1: 4235 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4236 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4237 return CP_ACCESS_TRAP_EL2; 4238 } 4239 break; 4240 } 4241 return CP_ACCESS_OK; 4242 } 4243 4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4245 const ARMCPRegInfo *ri, 4246 bool isread) 4247 { 4248 /* Cache invalidate/clean to Point of Unification... */ 4249 switch (arm_current_el(env)) { 4250 case 0: 4251 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4252 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4253 return CP_ACCESS_TRAP; 4254 } 4255 /* fall through */ 4256 case 1: 4257 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4258 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4259 return CP_ACCESS_TRAP_EL2; 4260 } 4261 break; 4262 } 4263 return CP_ACCESS_OK; 4264 } 4265 4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4267 * Page D4-1736 (DDI0487A.b) 4268 */ 4269 4270 static int vae1_tlbmask(CPUARMState *env) 4271 { 4272 uint64_t hcr = arm_hcr_el2_eff(env); 4273 uint16_t mask; 4274 4275 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4276 mask = ARMMMUIdxBit_E20_2 | 4277 ARMMMUIdxBit_E20_2_PAN | 4278 ARMMMUIdxBit_E20_0; 4279 } else { 4280 mask = ARMMMUIdxBit_E10_1 | 4281 ARMMMUIdxBit_E10_1_PAN | 4282 ARMMMUIdxBit_E10_0; 4283 } 4284 4285 if (arm_is_secure_below_el3(env)) { 4286 mask >>= ARM_MMU_IDX_A_NS; 4287 } 4288 4289 return mask; 4290 } 4291 4292 /* Return 56 if TBI is enabled, 64 otherwise. */ 4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4294 uint64_t addr) 4295 { 4296 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4297 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4298 int select = extract64(addr, 55, 1); 4299 4300 return (tbi >> select) & 1 ? 56 : 64; 4301 } 4302 4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4304 { 4305 uint64_t hcr = arm_hcr_el2_eff(env); 4306 ARMMMUIdx mmu_idx; 4307 4308 /* Only the regime of the mmu_idx below is significant. */ 4309 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4310 mmu_idx = ARMMMUIdx_E20_0; 4311 } else { 4312 mmu_idx = ARMMMUIdx_E10_0; 4313 } 4314 4315 if (arm_is_secure_below_el3(env)) { 4316 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4317 } 4318 4319 return tlbbits_for_regime(env, mmu_idx, addr); 4320 } 4321 4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4323 uint64_t value) 4324 { 4325 CPUState *cs = env_cpu(env); 4326 int mask = vae1_tlbmask(env); 4327 4328 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4329 } 4330 4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4332 uint64_t value) 4333 { 4334 CPUState *cs = env_cpu(env); 4335 int mask = vae1_tlbmask(env); 4336 4337 if (tlb_force_broadcast(env)) { 4338 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4339 } else { 4340 tlb_flush_by_mmuidx(cs, mask); 4341 } 4342 } 4343 4344 static int alle1_tlbmask(CPUARMState *env) 4345 { 4346 /* 4347 * Note that the 'ALL' scope must invalidate both stage 1 and 4348 * stage 2 translations, whereas most other scopes only invalidate 4349 * stage 1 translations. 4350 */ 4351 if (arm_is_secure_below_el3(env)) { 4352 return ARMMMUIdxBit_SE10_1 | 4353 ARMMMUIdxBit_SE10_1_PAN | 4354 ARMMMUIdxBit_SE10_0; 4355 } else { 4356 return ARMMMUIdxBit_E10_1 | 4357 ARMMMUIdxBit_E10_1_PAN | 4358 ARMMMUIdxBit_E10_0; 4359 } 4360 } 4361 4362 static int e2_tlbmask(CPUARMState *env) 4363 { 4364 if (arm_is_secure_below_el3(env)) { 4365 return ARMMMUIdxBit_SE20_0 | 4366 ARMMMUIdxBit_SE20_2 | 4367 ARMMMUIdxBit_SE20_2_PAN | 4368 ARMMMUIdxBit_SE2; 4369 } else { 4370 return ARMMMUIdxBit_E20_0 | 4371 ARMMMUIdxBit_E20_2 | 4372 ARMMMUIdxBit_E20_2_PAN | 4373 ARMMMUIdxBit_E2; 4374 } 4375 } 4376 4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 CPUState *cs = env_cpu(env); 4381 int mask = alle1_tlbmask(env); 4382 4383 tlb_flush_by_mmuidx(cs, mask); 4384 } 4385 4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4387 uint64_t value) 4388 { 4389 CPUState *cs = env_cpu(env); 4390 int mask = e2_tlbmask(env); 4391 4392 tlb_flush_by_mmuidx(cs, mask); 4393 } 4394 4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4396 uint64_t value) 4397 { 4398 ARMCPU *cpu = env_archcpu(env); 4399 CPUState *cs = CPU(cpu); 4400 4401 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4402 } 4403 4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 CPUState *cs = env_cpu(env); 4408 int mask = alle1_tlbmask(env); 4409 4410 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4411 } 4412 4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 CPUState *cs = env_cpu(env); 4417 int mask = e2_tlbmask(env); 4418 4419 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4420 } 4421 4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 CPUState *cs = env_cpu(env); 4426 4427 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4428 } 4429 4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4431 uint64_t value) 4432 { 4433 /* Invalidate by VA, EL2 4434 * Currently handles both VAE2 and VALE2, since we don't support 4435 * flush-last-level-only. 4436 */ 4437 CPUState *cs = env_cpu(env); 4438 int mask = e2_tlbmask(env); 4439 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4440 4441 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4442 } 4443 4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4445 uint64_t value) 4446 { 4447 /* Invalidate by VA, EL3 4448 * Currently handles both VAE3 and VALE3, since we don't support 4449 * flush-last-level-only. 4450 */ 4451 ARMCPU *cpu = env_archcpu(env); 4452 CPUState *cs = CPU(cpu); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 4455 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4456 } 4457 4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 CPUState *cs = env_cpu(env); 4462 int mask = vae1_tlbmask(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 int bits = vae1_tlbbits(env, pageaddr); 4465 4466 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4467 } 4468 4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4470 uint64_t value) 4471 { 4472 /* Invalidate by VA, EL1&0 (AArch64 version). 4473 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4474 * since we don't support flush-for-specific-ASID-only or 4475 * flush-last-level-only. 4476 */ 4477 CPUState *cs = env_cpu(env); 4478 int mask = vae1_tlbmask(env); 4479 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4480 int bits = vae1_tlbbits(env, pageaddr); 4481 4482 if (tlb_force_broadcast(env)) { 4483 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4484 } else { 4485 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4486 } 4487 } 4488 4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4490 uint64_t value) 4491 { 4492 CPUState *cs = env_cpu(env); 4493 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4494 bool secure = arm_is_secure_below_el3(env); 4495 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4496 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4497 pageaddr); 4498 4499 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4500 } 4501 4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4503 uint64_t value) 4504 { 4505 CPUState *cs = env_cpu(env); 4506 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4507 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4508 4509 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4510 ARMMMUIdxBit_SE3, bits); 4511 } 4512 4513 #ifdef TARGET_AARCH64 4514 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4515 uint64_t value) 4516 { 4517 unsigned int page_shift; 4518 unsigned int page_size_granule; 4519 uint64_t num; 4520 uint64_t scale; 4521 uint64_t exponent; 4522 uint64_t length; 4523 4524 num = extract64(value, 39, 5); 4525 scale = extract64(value, 44, 2); 4526 page_size_granule = extract64(value, 46, 2); 4527 4528 if (page_size_granule == 0) { 4529 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4530 page_size_granule); 4531 return 0; 4532 } 4533 4534 page_shift = (page_size_granule - 1) * 2 + 12; 4535 4536 exponent = (5 * scale) + 1; 4537 length = (num + 1) << (exponent + page_shift); 4538 4539 return length; 4540 } 4541 4542 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4543 bool two_ranges) 4544 { 4545 /* TODO: ARMv8.7 FEAT_LPA2 */ 4546 uint64_t pageaddr; 4547 4548 if (two_ranges) { 4549 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4550 } else { 4551 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4552 } 4553 4554 return pageaddr; 4555 } 4556 4557 static void do_rvae_write(CPUARMState *env, uint64_t value, 4558 int idxmap, bool synced) 4559 { 4560 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4561 bool two_ranges = regime_has_2_ranges(one_idx); 4562 uint64_t baseaddr, length; 4563 int bits; 4564 4565 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4566 length = tlbi_aa64_range_get_length(env, value); 4567 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4568 4569 if (synced) { 4570 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4571 baseaddr, 4572 length, 4573 idxmap, 4574 bits); 4575 } else { 4576 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4577 length, idxmap, bits); 4578 } 4579 } 4580 4581 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4582 const ARMCPRegInfo *ri, 4583 uint64_t value) 4584 { 4585 /* 4586 * Invalidate by VA range, EL1&0. 4587 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4588 * since we don't support flush-for-specific-ASID-only or 4589 * flush-last-level-only. 4590 */ 4591 4592 do_rvae_write(env, value, vae1_tlbmask(env), 4593 tlb_force_broadcast(env)); 4594 } 4595 4596 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4597 const ARMCPRegInfo *ri, 4598 uint64_t value) 4599 { 4600 /* 4601 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4602 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4603 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4604 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4605 * shareable specific flushes. 4606 */ 4607 4608 do_rvae_write(env, value, vae1_tlbmask(env), true); 4609 } 4610 4611 static int vae2_tlbmask(CPUARMState *env) 4612 { 4613 return (arm_is_secure_below_el3(env) 4614 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4615 } 4616 4617 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4618 const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 /* 4622 * Invalidate by VA range, EL2. 4623 * Currently handles all of RVAE2 and RVALE2, 4624 * since we don't support flush-for-specific-ASID-only or 4625 * flush-last-level-only. 4626 */ 4627 4628 do_rvae_write(env, value, vae2_tlbmask(env), 4629 tlb_force_broadcast(env)); 4630 4631 4632 } 4633 4634 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4635 const ARMCPRegInfo *ri, 4636 uint64_t value) 4637 { 4638 /* 4639 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4640 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4641 * since we don't support flush-for-specific-ASID-only, 4642 * flush-last-level-only or inner/outer shareable specific flushes. 4643 */ 4644 4645 do_rvae_write(env, value, vae2_tlbmask(env), true); 4646 4647 } 4648 4649 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4650 const ARMCPRegInfo *ri, 4651 uint64_t value) 4652 { 4653 /* 4654 * Invalidate by VA range, EL3. 4655 * Currently handles all of RVAE3 and RVALE3, 4656 * since we don't support flush-for-specific-ASID-only or 4657 * flush-last-level-only. 4658 */ 4659 4660 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4661 tlb_force_broadcast(env)); 4662 } 4663 4664 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4665 const ARMCPRegInfo *ri, 4666 uint64_t value) 4667 { 4668 /* 4669 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4670 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4671 * since we don't support flush-for-specific-ASID-only, 4672 * flush-last-level-only or inner/outer specific flushes. 4673 */ 4674 4675 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4676 } 4677 #endif 4678 4679 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4680 bool isread) 4681 { 4682 int cur_el = arm_current_el(env); 4683 4684 if (cur_el < 2) { 4685 uint64_t hcr = arm_hcr_el2_eff(env); 4686 4687 if (cur_el == 0) { 4688 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4689 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4690 return CP_ACCESS_TRAP_EL2; 4691 } 4692 } else { 4693 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4694 return CP_ACCESS_TRAP; 4695 } 4696 if (hcr & HCR_TDZ) { 4697 return CP_ACCESS_TRAP_EL2; 4698 } 4699 } 4700 } else if (hcr & HCR_TDZ) { 4701 return CP_ACCESS_TRAP_EL2; 4702 } 4703 } 4704 return CP_ACCESS_OK; 4705 } 4706 4707 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4708 { 4709 ARMCPU *cpu = env_archcpu(env); 4710 int dzp_bit = 1 << 4; 4711 4712 /* DZP indicates whether DC ZVA access is allowed */ 4713 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4714 dzp_bit = 0; 4715 } 4716 return cpu->dcz_blocksize | dzp_bit; 4717 } 4718 4719 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4720 bool isread) 4721 { 4722 if (!(env->pstate & PSTATE_SP)) { 4723 /* Access to SP_EL0 is undefined if it's being used as 4724 * the stack pointer. 4725 */ 4726 return CP_ACCESS_TRAP_UNCATEGORIZED; 4727 } 4728 return CP_ACCESS_OK; 4729 } 4730 4731 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4732 { 4733 return env->pstate & PSTATE_SP; 4734 } 4735 4736 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4737 { 4738 update_spsel(env, val); 4739 } 4740 4741 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4742 uint64_t value) 4743 { 4744 ARMCPU *cpu = env_archcpu(env); 4745 4746 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4747 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4748 value &= ~SCTLR_M; 4749 } 4750 4751 /* ??? Lots of these bits are not implemented. */ 4752 4753 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4754 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4755 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4756 } else { 4757 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4758 SCTLR_ATA0 | SCTLR_ATA); 4759 } 4760 } 4761 4762 if (raw_read(env, ri) == value) { 4763 /* Skip the TLB flush if nothing actually changed; Linux likes 4764 * to do a lot of pointless SCTLR writes. 4765 */ 4766 return; 4767 } 4768 4769 raw_write(env, ri, value); 4770 4771 /* This may enable/disable the MMU, so do a TLB flush. */ 4772 tlb_flush(CPU(cpu)); 4773 4774 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4775 /* 4776 * Normally we would always end the TB on an SCTLR write; see the 4777 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4778 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4779 * of hflags from the translator, so do it here. 4780 */ 4781 arm_rebuild_hflags(env); 4782 } 4783 } 4784 4785 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4786 bool isread) 4787 { 4788 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4789 return CP_ACCESS_TRAP_FP_EL2; 4790 } 4791 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4792 return CP_ACCESS_TRAP_FP_EL3; 4793 } 4794 return CP_ACCESS_OK; 4795 } 4796 4797 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4798 uint64_t value) 4799 { 4800 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4801 } 4802 4803 static const ARMCPRegInfo v8_cp_reginfo[] = { 4804 /* Minimal set of EL0-visible registers. This will need to be expanded 4805 * significantly for system emulation of AArch64 CPUs. 4806 */ 4807 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4809 .access = PL0_RW, .type = ARM_CP_NZCV }, 4810 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4812 .type = ARM_CP_NO_RAW, 4813 .access = PL0_RW, .accessfn = aa64_daif_access, 4814 .fieldoffset = offsetof(CPUARMState, daif), 4815 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4816 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4818 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4819 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4820 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4822 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4823 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4824 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4825 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4826 .access = PL0_R, .type = ARM_CP_NO_RAW, 4827 .readfn = aa64_dczid_read }, 4828 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4829 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4830 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4831 #ifndef CONFIG_USER_ONLY 4832 /* Avoid overhead of an access check that always passes in user-mode */ 4833 .accessfn = aa64_zva_access, 4834 #endif 4835 }, 4836 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4838 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4839 /* Cache ops: all NOPs since we don't emulate caches */ 4840 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4842 .access = PL1_W, .type = ARM_CP_NOP, 4843 .accessfn = aa64_cacheop_pou_access }, 4844 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4846 .access = PL1_W, .type = ARM_CP_NOP, 4847 .accessfn = aa64_cacheop_pou_access }, 4848 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4849 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4850 .access = PL0_W, .type = ARM_CP_NOP, 4851 .accessfn = aa64_cacheop_pou_access }, 4852 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4853 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4854 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4855 .type = ARM_CP_NOP }, 4856 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4858 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4859 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4861 .access = PL0_W, .type = ARM_CP_NOP, 4862 .accessfn = aa64_cacheop_poc_access }, 4863 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4865 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4866 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4868 .access = PL0_W, .type = ARM_CP_NOP, 4869 .accessfn = aa64_cacheop_pou_access }, 4870 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4872 .access = PL0_W, .type = ARM_CP_NOP, 4873 .accessfn = aa64_cacheop_poc_access }, 4874 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4876 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4877 /* TLBI operations */ 4878 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4881 .writefn = tlbi_aa64_vmalle1is_write }, 4882 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4885 .writefn = tlbi_aa64_vae1is_write }, 4886 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4889 .writefn = tlbi_aa64_vmalle1is_write }, 4890 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4893 .writefn = tlbi_aa64_vae1is_write }, 4894 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4897 .writefn = tlbi_aa64_vae1is_write }, 4898 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4901 .writefn = tlbi_aa64_vae1is_write }, 4902 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4905 .writefn = tlbi_aa64_vmalle1_write }, 4906 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4908 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4909 .writefn = tlbi_aa64_vae1_write }, 4910 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4912 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4913 .writefn = tlbi_aa64_vmalle1_write }, 4914 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4916 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4917 .writefn = tlbi_aa64_vae1_write }, 4918 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4920 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4921 .writefn = tlbi_aa64_vae1_write }, 4922 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4924 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4925 .writefn = tlbi_aa64_vae1_write }, 4926 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4928 .access = PL2_W, .type = ARM_CP_NOP }, 4929 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4931 .access = PL2_W, .type = ARM_CP_NOP }, 4932 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4934 .access = PL2_W, .type = ARM_CP_NO_RAW, 4935 .writefn = tlbi_aa64_alle1is_write }, 4936 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4938 .access = PL2_W, .type = ARM_CP_NO_RAW, 4939 .writefn = tlbi_aa64_alle1is_write }, 4940 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4942 .access = PL2_W, .type = ARM_CP_NOP }, 4943 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4945 .access = PL2_W, .type = ARM_CP_NOP }, 4946 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4948 .access = PL2_W, .type = ARM_CP_NO_RAW, 4949 .writefn = tlbi_aa64_alle1_write }, 4950 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4952 .access = PL2_W, .type = ARM_CP_NO_RAW, 4953 .writefn = tlbi_aa64_alle1is_write }, 4954 #ifndef CONFIG_USER_ONLY 4955 /* 64 bit address translation operations */ 4956 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4958 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4959 .writefn = ats_write64 }, 4960 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4962 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4963 .writefn = ats_write64 }, 4964 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4966 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4967 .writefn = ats_write64 }, 4968 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4969 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4970 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4971 .writefn = ats_write64 }, 4972 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4973 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4974 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4975 .writefn = ats_write64 }, 4976 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4978 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4979 .writefn = ats_write64 }, 4980 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4982 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4983 .writefn = ats_write64 }, 4984 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4986 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4987 .writefn = ats_write64 }, 4988 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4989 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4991 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4992 .writefn = ats_write64 }, 4993 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4995 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4996 .writefn = ats_write64 }, 4997 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4998 .type = ARM_CP_ALIAS, 4999 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5000 .access = PL1_RW, .resetvalue = 0, 5001 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5002 .writefn = par_write }, 5003 #endif 5004 /* TLB invalidate last level of translation table walk */ 5005 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5006 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5007 .writefn = tlbimva_is_write }, 5008 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5009 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5010 .writefn = tlbimvaa_is_write }, 5011 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5012 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5013 .writefn = tlbimva_write }, 5014 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5015 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5016 .writefn = tlbimvaa_write }, 5017 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5018 .type = ARM_CP_NO_RAW, .access = PL2_W, 5019 .writefn = tlbimva_hyp_write }, 5020 { .name = "TLBIMVALHIS", 5021 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5022 .type = ARM_CP_NO_RAW, .access = PL2_W, 5023 .writefn = tlbimva_hyp_is_write }, 5024 { .name = "TLBIIPAS2", 5025 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5026 .type = ARM_CP_NOP, .access = PL2_W }, 5027 { .name = "TLBIIPAS2IS", 5028 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5029 .type = ARM_CP_NOP, .access = PL2_W }, 5030 { .name = "TLBIIPAS2L", 5031 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5032 .type = ARM_CP_NOP, .access = PL2_W }, 5033 { .name = "TLBIIPAS2LIS", 5034 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5035 .type = ARM_CP_NOP, .access = PL2_W }, 5036 /* 32 bit cache operations */ 5037 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5038 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5039 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5040 .type = ARM_CP_NOP, .access = PL1_W }, 5041 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5043 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5045 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5046 .type = ARM_CP_NOP, .access = PL1_W }, 5047 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5048 .type = ARM_CP_NOP, .access = PL1_W }, 5049 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5051 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5053 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5055 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5057 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5059 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5060 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5061 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5062 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5063 /* MMU Domain access control / MPU write buffer control */ 5064 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5065 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5066 .writefn = dacr_write, .raw_writefn = raw_write, 5067 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5068 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5069 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5070 .type = ARM_CP_ALIAS, 5071 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5072 .access = PL1_RW, 5073 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5074 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5075 .type = ARM_CP_ALIAS, 5076 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5077 .access = PL1_RW, 5078 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5079 /* We rely on the access checks not allowing the guest to write to the 5080 * state field when SPSel indicates that it's being used as the stack 5081 * pointer. 5082 */ 5083 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5084 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5085 .access = PL1_RW, .accessfn = sp_el0_access, 5086 .type = ARM_CP_ALIAS, 5087 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5088 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5090 .access = PL2_RW, .type = ARM_CP_ALIAS, 5091 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5092 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5094 .type = ARM_CP_NO_RAW, 5095 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5096 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5097 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5098 .type = ARM_CP_ALIAS, 5099 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5100 .access = PL2_RW, .accessfn = fpexc32_access }, 5101 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5103 .access = PL2_RW, .resetvalue = 0, 5104 .writefn = dacr_write, .raw_writefn = raw_write, 5105 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5106 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5107 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5108 .access = PL2_RW, .resetvalue = 0, 5109 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5110 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5111 .type = ARM_CP_ALIAS, 5112 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5113 .access = PL2_RW, 5114 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5115 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5116 .type = ARM_CP_ALIAS, 5117 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5118 .access = PL2_RW, 5119 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5120 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5121 .type = ARM_CP_ALIAS, 5122 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5123 .access = PL2_RW, 5124 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5125 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5126 .type = ARM_CP_ALIAS, 5127 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5128 .access = PL2_RW, 5129 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5130 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5131 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5132 .resetvalue = 0, 5133 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5134 { .name = "SDCR", .type = ARM_CP_ALIAS, 5135 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5136 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5137 .writefn = sdcr_write, 5138 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5139 REGINFO_SENTINEL 5140 }; 5141 5142 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5143 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5144 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5145 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5146 .access = PL2_RW, 5147 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5148 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5149 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5150 .access = PL2_RW, 5151 .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5154 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5155 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5156 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5157 .access = PL2_RW, 5158 .type = ARM_CP_CONST, .resetvalue = 0 }, 5159 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5160 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5161 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5162 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5163 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5164 .access = PL2_RW, .type = ARM_CP_CONST, 5165 .resetvalue = 0 }, 5166 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5167 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5168 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5169 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5170 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5171 .access = PL2_RW, .type = ARM_CP_CONST, 5172 .resetvalue = 0 }, 5173 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5174 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5175 .access = PL2_RW, .type = ARM_CP_CONST, 5176 .resetvalue = 0 }, 5177 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5178 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5179 .access = PL2_RW, .type = ARM_CP_CONST, 5180 .resetvalue = 0 }, 5181 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5182 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5183 .access = PL2_RW, .type = ARM_CP_CONST, 5184 .resetvalue = 0 }, 5185 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5186 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5187 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5188 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5189 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5190 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5191 .type = ARM_CP_CONST, .resetvalue = 0 }, 5192 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5193 .cp = 15, .opc1 = 6, .crm = 2, 5194 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5195 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5196 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5197 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5198 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5199 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5202 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5203 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5205 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5206 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5207 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5208 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5209 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5210 .resetvalue = 0 }, 5211 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5212 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5213 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5214 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5215 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5216 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5217 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5218 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5219 .resetvalue = 0 }, 5220 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5221 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5222 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5223 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5224 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5225 .resetvalue = 0 }, 5226 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5227 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5228 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5229 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5230 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5231 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5232 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5234 .access = PL2_RW, .accessfn = access_tda, 5235 .type = ARM_CP_CONST, .resetvalue = 0 }, 5236 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5237 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5238 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5239 .type = ARM_CP_CONST, .resetvalue = 0 }, 5240 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5241 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5242 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5243 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5244 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5245 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5246 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5247 .type = ARM_CP_CONST, 5248 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5249 .access = PL2_RW, .resetvalue = 0 }, 5250 REGINFO_SENTINEL 5251 }; 5252 5253 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5254 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5255 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5256 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5257 .access = PL2_RW, 5258 .type = ARM_CP_CONST, .resetvalue = 0 }, 5259 REGINFO_SENTINEL 5260 }; 5261 5262 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5263 { 5264 ARMCPU *cpu = env_archcpu(env); 5265 5266 if (arm_feature(env, ARM_FEATURE_V8)) { 5267 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5268 } else { 5269 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5270 } 5271 5272 if (arm_feature(env, ARM_FEATURE_EL3)) { 5273 valid_mask &= ~HCR_HCD; 5274 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5275 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5276 * However, if we're using the SMC PSCI conduit then QEMU is 5277 * effectively acting like EL3 firmware and so the guest at 5278 * EL2 should retain the ability to prevent EL1 from being 5279 * able to make SMC calls into the ersatz firmware, so in 5280 * that case HCR.TSC should be read/write. 5281 */ 5282 valid_mask &= ~HCR_TSC; 5283 } 5284 5285 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5286 if (cpu_isar_feature(aa64_vh, cpu)) { 5287 valid_mask |= HCR_E2H; 5288 } 5289 if (cpu_isar_feature(aa64_lor, cpu)) { 5290 valid_mask |= HCR_TLOR; 5291 } 5292 if (cpu_isar_feature(aa64_pauth, cpu)) { 5293 valid_mask |= HCR_API | HCR_APK; 5294 } 5295 if (cpu_isar_feature(aa64_mte, cpu)) { 5296 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5297 } 5298 } 5299 5300 /* Clear RES0 bits. */ 5301 value &= valid_mask; 5302 5303 /* 5304 * These bits change the MMU setup: 5305 * HCR_VM enables stage 2 translation 5306 * HCR_PTW forbids certain page-table setups 5307 * HCR_DC disables stage1 and enables stage2 translation 5308 * HCR_DCT enables tagging on (disabled) stage1 translation 5309 */ 5310 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5311 tlb_flush(CPU(cpu)); 5312 } 5313 env->cp15.hcr_el2 = value; 5314 5315 /* 5316 * Updates to VI and VF require us to update the status of 5317 * virtual interrupts, which are the logical OR of these bits 5318 * and the state of the input lines from the GIC. (This requires 5319 * that we have the iothread lock, which is done by marking the 5320 * reginfo structs as ARM_CP_IO.) 5321 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5322 * possible for it to be taken immediately, because VIRQ and 5323 * VFIQ are masked unless running at EL0 or EL1, and HCR 5324 * can only be written at EL2. 5325 */ 5326 g_assert(qemu_mutex_iothread_locked()); 5327 arm_cpu_update_virq(cpu); 5328 arm_cpu_update_vfiq(cpu); 5329 } 5330 5331 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5332 { 5333 do_hcr_write(env, value, 0); 5334 } 5335 5336 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5337 uint64_t value) 5338 { 5339 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5340 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5341 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5342 } 5343 5344 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5345 uint64_t value) 5346 { 5347 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5348 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5349 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5350 } 5351 5352 /* 5353 * Return the effective value of HCR_EL2. 5354 * Bits that are not included here: 5355 * RW (read from SCR_EL3.RW as needed) 5356 */ 5357 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5358 { 5359 uint64_t ret = env->cp15.hcr_el2; 5360 5361 if (!arm_is_el2_enabled(env)) { 5362 /* 5363 * "This register has no effect if EL2 is not enabled in the 5364 * current Security state". This is ARMv8.4-SecEL2 speak for 5365 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5366 * 5367 * Prior to that, the language was "In an implementation that 5368 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5369 * as if this field is 0 for all purposes other than a direct 5370 * read or write access of HCR_EL2". With lots of enumeration 5371 * on a per-field basis. In current QEMU, this is condition 5372 * is arm_is_secure_below_el3. 5373 * 5374 * Since the v8.4 language applies to the entire register, and 5375 * appears to be backward compatible, use that. 5376 */ 5377 return 0; 5378 } 5379 5380 /* 5381 * For a cpu that supports both aarch64 and aarch32, we can set bits 5382 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5383 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5384 */ 5385 if (!arm_el_is_aa64(env, 2)) { 5386 uint64_t aa32_valid; 5387 5388 /* 5389 * These bits are up-to-date as of ARMv8.6. 5390 * For HCR, it's easiest to list just the 2 bits that are invalid. 5391 * For HCR2, list those that are valid. 5392 */ 5393 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5394 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5395 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5396 ret &= aa32_valid; 5397 } 5398 5399 if (ret & HCR_TGE) { 5400 /* These bits are up-to-date as of ARMv8.6. */ 5401 if (ret & HCR_E2H) { 5402 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5403 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5404 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5405 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5406 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5407 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5408 } else { 5409 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5410 } 5411 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5412 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5413 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5414 HCR_TLOR); 5415 } 5416 5417 return ret; 5418 } 5419 5420 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5421 uint64_t value) 5422 { 5423 /* 5424 * For A-profile AArch32 EL3, if NSACR.CP10 5425 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5426 */ 5427 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5428 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5429 value &= ~(0x3 << 10); 5430 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5431 } 5432 env->cp15.cptr_el[2] = value; 5433 } 5434 5435 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5436 { 5437 /* 5438 * For A-profile AArch32 EL3, if NSACR.CP10 5439 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5440 */ 5441 uint64_t value = env->cp15.cptr_el[2]; 5442 5443 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5444 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5445 value |= 0x3 << 10; 5446 } 5447 return value; 5448 } 5449 5450 static const ARMCPRegInfo el2_cp_reginfo[] = { 5451 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5452 .type = ARM_CP_IO, 5453 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5454 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5455 .writefn = hcr_write }, 5456 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5457 .type = ARM_CP_ALIAS | ARM_CP_IO, 5458 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5459 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5460 .writefn = hcr_writelow }, 5461 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5462 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5463 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5464 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5465 .type = ARM_CP_ALIAS, 5466 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5467 .access = PL2_RW, 5468 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5469 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5470 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5471 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5472 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5473 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5474 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5475 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5476 .type = ARM_CP_ALIAS, 5477 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5478 .access = PL2_RW, 5479 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5480 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5481 .type = ARM_CP_ALIAS, 5482 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5483 .access = PL2_RW, 5484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5485 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5486 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5487 .access = PL2_RW, .writefn = vbar_write, 5488 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5489 .resetvalue = 0 }, 5490 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5491 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5492 .access = PL3_RW, .type = ARM_CP_ALIAS, 5493 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5494 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5495 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5496 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5497 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5498 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5499 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5500 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5501 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5502 .resetvalue = 0 }, 5503 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5504 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5505 .access = PL2_RW, .type = ARM_CP_ALIAS, 5506 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5507 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5508 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5509 .access = PL2_RW, .type = ARM_CP_CONST, 5510 .resetvalue = 0 }, 5511 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5512 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5513 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5514 .access = PL2_RW, .type = ARM_CP_CONST, 5515 .resetvalue = 0 }, 5516 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5517 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5518 .access = PL2_RW, .type = ARM_CP_CONST, 5519 .resetvalue = 0 }, 5520 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5521 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5522 .access = PL2_RW, .type = ARM_CP_CONST, 5523 .resetvalue = 0 }, 5524 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5525 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5526 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5527 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5528 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5529 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5530 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5531 .type = ARM_CP_ALIAS, 5532 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5533 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5534 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5535 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5536 .access = PL2_RW, 5537 /* no .writefn needed as this can't cause an ASID change; 5538 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5539 */ 5540 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5541 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5542 .cp = 15, .opc1 = 6, .crm = 2, 5543 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5544 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5545 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5546 .writefn = vttbr_write }, 5547 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5548 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5549 .access = PL2_RW, .writefn = vttbr_write, 5550 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5551 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5552 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5553 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5554 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5555 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5556 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5557 .access = PL2_RW, .resetvalue = 0, 5558 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5559 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5560 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5561 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5562 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5563 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5564 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5565 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5566 { .name = "TLBIALLNSNH", 5567 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5568 .type = ARM_CP_NO_RAW, .access = PL2_W, 5569 .writefn = tlbiall_nsnh_write }, 5570 { .name = "TLBIALLNSNHIS", 5571 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5572 .type = ARM_CP_NO_RAW, .access = PL2_W, 5573 .writefn = tlbiall_nsnh_is_write }, 5574 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5575 .type = ARM_CP_NO_RAW, .access = PL2_W, 5576 .writefn = tlbiall_hyp_write }, 5577 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5578 .type = ARM_CP_NO_RAW, .access = PL2_W, 5579 .writefn = tlbiall_hyp_is_write }, 5580 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5581 .type = ARM_CP_NO_RAW, .access = PL2_W, 5582 .writefn = tlbimva_hyp_write }, 5583 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5584 .type = ARM_CP_NO_RAW, .access = PL2_W, 5585 .writefn = tlbimva_hyp_is_write }, 5586 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5587 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5588 .type = ARM_CP_NO_RAW, .access = PL2_W, 5589 .writefn = tlbi_aa64_alle2_write }, 5590 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5592 .type = ARM_CP_NO_RAW, .access = PL2_W, 5593 .writefn = tlbi_aa64_vae2_write }, 5594 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5596 .access = PL2_W, .type = ARM_CP_NO_RAW, 5597 .writefn = tlbi_aa64_vae2_write }, 5598 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5599 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5600 .access = PL2_W, .type = ARM_CP_NO_RAW, 5601 .writefn = tlbi_aa64_alle2is_write }, 5602 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5603 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5604 .type = ARM_CP_NO_RAW, .access = PL2_W, 5605 .writefn = tlbi_aa64_vae2is_write }, 5606 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5608 .access = PL2_W, .type = ARM_CP_NO_RAW, 5609 .writefn = tlbi_aa64_vae2is_write }, 5610 #ifndef CONFIG_USER_ONLY 5611 /* Unlike the other EL2-related AT operations, these must 5612 * UNDEF from EL3 if EL2 is not implemented, which is why we 5613 * define them here rather than with the rest of the AT ops. 5614 */ 5615 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5616 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5617 .access = PL2_W, .accessfn = at_s1e2_access, 5618 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5619 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5620 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5621 .access = PL2_W, .accessfn = at_s1e2_access, 5622 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5623 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5624 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5625 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5626 * to behave as if SCR.NS was 1. 5627 */ 5628 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5629 .access = PL2_W, 5630 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5631 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5632 .access = PL2_W, 5633 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5634 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5635 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5636 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5637 * reset values as IMPDEF. We choose to reset to 3 to comply with 5638 * both ARMv7 and ARMv8. 5639 */ 5640 .access = PL2_RW, .resetvalue = 3, 5641 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5642 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5644 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5645 .writefn = gt_cntvoff_write, 5646 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5647 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5648 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5649 .writefn = gt_cntvoff_write, 5650 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5651 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5653 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5654 .type = ARM_CP_IO, .access = PL2_RW, 5655 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5656 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5657 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5658 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5659 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5660 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5661 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5662 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5663 .resetfn = gt_hyp_timer_reset, 5664 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5665 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5666 .type = ARM_CP_IO, 5667 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5668 .access = PL2_RW, 5669 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5670 .resetvalue = 0, 5671 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5672 #endif 5673 /* The only field of MDCR_EL2 that has a defined architectural reset value 5674 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5675 */ 5676 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5677 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5678 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5679 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5680 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5681 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5682 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5683 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5684 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5686 .access = PL2_RW, 5687 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5688 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5689 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5690 .access = PL2_RW, 5691 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5692 REGINFO_SENTINEL 5693 }; 5694 5695 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5696 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5697 .type = ARM_CP_ALIAS | ARM_CP_IO, 5698 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5699 .access = PL2_RW, 5700 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5701 .writefn = hcr_writehigh }, 5702 REGINFO_SENTINEL 5703 }; 5704 5705 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5706 bool isread) 5707 { 5708 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5709 return CP_ACCESS_OK; 5710 } 5711 return CP_ACCESS_TRAP_UNCATEGORIZED; 5712 } 5713 5714 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5715 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5716 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5717 .access = PL2_RW, .accessfn = sel2_access, 5718 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5719 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5720 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5721 .access = PL2_RW, .accessfn = sel2_access, 5722 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5723 REGINFO_SENTINEL 5724 }; 5725 5726 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5727 bool isread) 5728 { 5729 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5730 * At Secure EL1 it traps to EL3 or EL2. 5731 */ 5732 if (arm_current_el(env) == 3) { 5733 return CP_ACCESS_OK; 5734 } 5735 if (arm_is_secure_below_el3(env)) { 5736 if (env->cp15.scr_el3 & SCR_EEL2) { 5737 return CP_ACCESS_TRAP_EL2; 5738 } 5739 return CP_ACCESS_TRAP_EL3; 5740 } 5741 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5742 if (isread) { 5743 return CP_ACCESS_OK; 5744 } 5745 return CP_ACCESS_TRAP_UNCATEGORIZED; 5746 } 5747 5748 static const ARMCPRegInfo el3_cp_reginfo[] = { 5749 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5750 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5751 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5752 .resetfn = scr_reset, .writefn = scr_write }, 5753 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5754 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5755 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5756 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5757 .writefn = scr_write }, 5758 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5760 .access = PL3_RW, .resetvalue = 0, 5761 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5762 { .name = "SDER", 5763 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5764 .access = PL3_RW, .resetvalue = 0, 5765 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5766 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5767 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5768 .writefn = vbar_write, .resetvalue = 0, 5769 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5770 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5772 .access = PL3_RW, .resetvalue = 0, 5773 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5774 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5776 .access = PL3_RW, 5777 /* no .writefn needed as this can't cause an ASID change; 5778 * we must provide a .raw_writefn and .resetfn because we handle 5779 * reset and migration for the AArch32 TTBCR(S), which might be 5780 * using mask and base_mask. 5781 */ 5782 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5783 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5784 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5785 .type = ARM_CP_ALIAS, 5786 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5787 .access = PL3_RW, 5788 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5789 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5790 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5791 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5792 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5794 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5795 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5796 .type = ARM_CP_ALIAS, 5797 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5798 .access = PL3_RW, 5799 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5800 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5801 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5802 .access = PL3_RW, .writefn = vbar_write, 5803 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5804 .resetvalue = 0 }, 5805 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5806 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5807 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5808 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5809 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5810 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5811 .access = PL3_RW, .resetvalue = 0, 5812 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5813 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5814 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5815 .access = PL3_RW, .type = ARM_CP_CONST, 5816 .resetvalue = 0 }, 5817 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5818 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5819 .access = PL3_RW, .type = ARM_CP_CONST, 5820 .resetvalue = 0 }, 5821 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5822 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5823 .access = PL3_RW, .type = ARM_CP_CONST, 5824 .resetvalue = 0 }, 5825 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5826 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5827 .access = PL3_W, .type = ARM_CP_NO_RAW, 5828 .writefn = tlbi_aa64_alle3is_write }, 5829 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5830 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5831 .access = PL3_W, .type = ARM_CP_NO_RAW, 5832 .writefn = tlbi_aa64_vae3is_write }, 5833 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5834 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5835 .access = PL3_W, .type = ARM_CP_NO_RAW, 5836 .writefn = tlbi_aa64_vae3is_write }, 5837 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5838 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5839 .access = PL3_W, .type = ARM_CP_NO_RAW, 5840 .writefn = tlbi_aa64_alle3_write }, 5841 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5842 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5843 .access = PL3_W, .type = ARM_CP_NO_RAW, 5844 .writefn = tlbi_aa64_vae3_write }, 5845 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5846 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5847 .access = PL3_W, .type = ARM_CP_NO_RAW, 5848 .writefn = tlbi_aa64_vae3_write }, 5849 REGINFO_SENTINEL 5850 }; 5851 5852 #ifndef CONFIG_USER_ONLY 5853 /* Test if system register redirection is to occur in the current state. */ 5854 static bool redirect_for_e2h(CPUARMState *env) 5855 { 5856 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5857 } 5858 5859 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5860 { 5861 CPReadFn *readfn; 5862 5863 if (redirect_for_e2h(env)) { 5864 /* Switch to the saved EL2 version of the register. */ 5865 ri = ri->opaque; 5866 readfn = ri->readfn; 5867 } else { 5868 readfn = ri->orig_readfn; 5869 } 5870 if (readfn == NULL) { 5871 readfn = raw_read; 5872 } 5873 return readfn(env, ri); 5874 } 5875 5876 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5877 uint64_t value) 5878 { 5879 CPWriteFn *writefn; 5880 5881 if (redirect_for_e2h(env)) { 5882 /* Switch to the saved EL2 version of the register. */ 5883 ri = ri->opaque; 5884 writefn = ri->writefn; 5885 } else { 5886 writefn = ri->orig_writefn; 5887 } 5888 if (writefn == NULL) { 5889 writefn = raw_write; 5890 } 5891 writefn(env, ri, value); 5892 } 5893 5894 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5895 { 5896 struct E2HAlias { 5897 uint32_t src_key, dst_key, new_key; 5898 const char *src_name, *dst_name, *new_name; 5899 bool (*feature)(const ARMISARegisters *id); 5900 }; 5901 5902 #define K(op0, op1, crn, crm, op2) \ 5903 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5904 5905 static const struct E2HAlias aliases[] = { 5906 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5907 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5908 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5909 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5910 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5911 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5912 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5913 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5914 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5915 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5916 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5917 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5918 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5919 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5920 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5921 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5922 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5923 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5924 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5925 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5926 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5927 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5928 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5929 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5930 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5931 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5932 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5933 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5934 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5935 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5936 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5937 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5938 5939 /* 5940 * Note that redirection of ZCR is mentioned in the description 5941 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5942 * not in the summary table. 5943 */ 5944 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5945 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5946 5947 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5948 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5949 5950 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5951 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5952 }; 5953 #undef K 5954 5955 size_t i; 5956 5957 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5958 const struct E2HAlias *a = &aliases[i]; 5959 ARMCPRegInfo *src_reg, *dst_reg; 5960 5961 if (a->feature && !a->feature(&cpu->isar)) { 5962 continue; 5963 } 5964 5965 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5966 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5967 g_assert(src_reg != NULL); 5968 g_assert(dst_reg != NULL); 5969 5970 /* Cross-compare names to detect typos in the keys. */ 5971 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5972 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5973 5974 /* None of the core system registers use opaque; we will. */ 5975 g_assert(src_reg->opaque == NULL); 5976 5977 /* Create alias before redirection so we dup the right data. */ 5978 if (a->new_key) { 5979 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5980 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5981 bool ok; 5982 5983 new_reg->name = a->new_name; 5984 new_reg->type |= ARM_CP_ALIAS; 5985 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5986 new_reg->access &= PL2_RW | PL3_RW; 5987 5988 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5989 g_assert(ok); 5990 } 5991 5992 src_reg->opaque = dst_reg; 5993 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5994 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5995 if (!src_reg->raw_readfn) { 5996 src_reg->raw_readfn = raw_read; 5997 } 5998 if (!src_reg->raw_writefn) { 5999 src_reg->raw_writefn = raw_write; 6000 } 6001 src_reg->readfn = el2_e2h_read; 6002 src_reg->writefn = el2_e2h_write; 6003 } 6004 } 6005 #endif 6006 6007 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6008 bool isread) 6009 { 6010 int cur_el = arm_current_el(env); 6011 6012 if (cur_el < 2) { 6013 uint64_t hcr = arm_hcr_el2_eff(env); 6014 6015 if (cur_el == 0) { 6016 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6017 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6018 return CP_ACCESS_TRAP_EL2; 6019 } 6020 } else { 6021 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6022 return CP_ACCESS_TRAP; 6023 } 6024 if (hcr & HCR_TID2) { 6025 return CP_ACCESS_TRAP_EL2; 6026 } 6027 } 6028 } else if (hcr & HCR_TID2) { 6029 return CP_ACCESS_TRAP_EL2; 6030 } 6031 } 6032 6033 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6034 return CP_ACCESS_TRAP_EL2; 6035 } 6036 6037 return CP_ACCESS_OK; 6038 } 6039 6040 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6041 uint64_t value) 6042 { 6043 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6044 * read via a bit in OSLSR_EL1. 6045 */ 6046 int oslock; 6047 6048 if (ri->state == ARM_CP_STATE_AA32) { 6049 oslock = (value == 0xC5ACCE55); 6050 } else { 6051 oslock = value & 1; 6052 } 6053 6054 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6055 } 6056 6057 static const ARMCPRegInfo debug_cp_reginfo[] = { 6058 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6059 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6060 * unlike DBGDRAR it is never accessible from EL0. 6061 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6062 * accessor. 6063 */ 6064 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6065 .access = PL0_R, .accessfn = access_tdra, 6066 .type = ARM_CP_CONST, .resetvalue = 0 }, 6067 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6068 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6069 .access = PL1_R, .accessfn = access_tdra, 6070 .type = ARM_CP_CONST, .resetvalue = 0 }, 6071 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6072 .access = PL0_R, .accessfn = access_tdra, 6073 .type = ARM_CP_CONST, .resetvalue = 0 }, 6074 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6075 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6076 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6077 .access = PL1_RW, .accessfn = access_tda, 6078 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6079 .resetvalue = 0 }, 6080 /* 6081 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6082 * Debug Communication Channel is not implemented. 6083 */ 6084 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6085 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6086 .access = PL0_R, .accessfn = access_tda, 6087 .type = ARM_CP_CONST, .resetvalue = 0 }, 6088 /* 6089 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6090 * it is unlikely a guest will care. 6091 * We don't implement the configurable EL0 access. 6092 */ 6093 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6094 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6095 .type = ARM_CP_ALIAS, 6096 .access = PL1_R, .accessfn = access_tda, 6097 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6098 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6099 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6100 .access = PL1_W, .type = ARM_CP_NO_RAW, 6101 .accessfn = access_tdosa, 6102 .writefn = oslar_write }, 6103 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6104 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6105 .access = PL1_R, .resetvalue = 10, 6106 .accessfn = access_tdosa, 6107 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6108 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6109 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6110 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6111 .access = PL1_RW, .accessfn = access_tdosa, 6112 .type = ARM_CP_NOP }, 6113 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6114 * implement vector catch debug events yet. 6115 */ 6116 { .name = "DBGVCR", 6117 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6118 .access = PL1_RW, .accessfn = access_tda, 6119 .type = ARM_CP_NOP }, 6120 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6121 * to save and restore a 32-bit guest's DBGVCR) 6122 */ 6123 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6124 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6125 .access = PL2_RW, .accessfn = access_tda, 6126 .type = ARM_CP_NOP }, 6127 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6128 * Channel but Linux may try to access this register. The 32-bit 6129 * alias is DBGDCCINT. 6130 */ 6131 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6132 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6133 .access = PL1_RW, .accessfn = access_tda, 6134 .type = ARM_CP_NOP }, 6135 REGINFO_SENTINEL 6136 }; 6137 6138 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6139 /* 64 bit access versions of the (dummy) debug registers */ 6140 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6141 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6142 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6143 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6144 REGINFO_SENTINEL 6145 }; 6146 6147 /* Return the exception level to which exceptions should be taken 6148 * via SVEAccessTrap. If an exception should be routed through 6149 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6150 * take care of raising that exception. 6151 * C.f. the ARM pseudocode function CheckSVEEnabled. 6152 */ 6153 int sve_exception_el(CPUARMState *env, int el) 6154 { 6155 #ifndef CONFIG_USER_ONLY 6156 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6157 6158 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6159 /* Check CPACR.ZEN. */ 6160 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6161 case 1: 6162 if (el != 0) { 6163 break; 6164 } 6165 /* fall through */ 6166 case 0: 6167 case 2: 6168 /* route_to_el2 */ 6169 return hcr_el2 & HCR_TGE ? 2 : 1; 6170 } 6171 6172 /* Check CPACR.FPEN. */ 6173 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6174 case 1: 6175 if (el != 0) { 6176 break; 6177 } 6178 /* fall through */ 6179 case 0: 6180 case 2: 6181 return 0; 6182 } 6183 } 6184 6185 /* 6186 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6187 */ 6188 if (el <= 2) { 6189 if (hcr_el2 & HCR_E2H) { 6190 /* Check CPTR_EL2.ZEN. */ 6191 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6192 case 1: 6193 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6194 break; 6195 } 6196 /* fall through */ 6197 case 0: 6198 case 2: 6199 return 2; 6200 } 6201 6202 /* Check CPTR_EL2.FPEN. */ 6203 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6204 case 1: 6205 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6206 break; 6207 } 6208 /* fall through */ 6209 case 0: 6210 case 2: 6211 return 0; 6212 } 6213 } else if (arm_is_el2_enabled(env)) { 6214 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6215 return 2; 6216 } 6217 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6218 return 0; 6219 } 6220 } 6221 } 6222 6223 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6224 if (arm_feature(env, ARM_FEATURE_EL3) 6225 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6226 return 3; 6227 } 6228 #endif 6229 return 0; 6230 } 6231 6232 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6233 { 6234 uint32_t end_len; 6235 6236 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6237 end_len = start_len; 6238 6239 if (!test_bit(start_len, cpu->sve_vq_map)) { 6240 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6241 assert(end_len < start_len); 6242 } 6243 return end_len; 6244 } 6245 6246 /* 6247 * Given that SVE is enabled, return the vector length for EL. 6248 */ 6249 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6250 { 6251 ARMCPU *cpu = env_archcpu(env); 6252 uint32_t zcr_len = cpu->sve_max_vq - 1; 6253 6254 if (el <= 1 && 6255 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6256 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6257 } 6258 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6259 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6260 } 6261 if (arm_feature(env, ARM_FEATURE_EL3)) { 6262 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6263 } 6264 6265 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6266 } 6267 6268 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6269 uint64_t value) 6270 { 6271 int cur_el = arm_current_el(env); 6272 int old_len = sve_zcr_len_for_el(env, cur_el); 6273 int new_len; 6274 6275 /* Bits other than [3:0] are RAZ/WI. */ 6276 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6277 raw_write(env, ri, value & 0xf); 6278 6279 /* 6280 * Because we arrived here, we know both FP and SVE are enabled; 6281 * otherwise we would have trapped access to the ZCR_ELn register. 6282 */ 6283 new_len = sve_zcr_len_for_el(env, cur_el); 6284 if (new_len < old_len) { 6285 aarch64_sve_narrow_vq(env, new_len + 1); 6286 } 6287 } 6288 6289 static const ARMCPRegInfo zcr_el1_reginfo = { 6290 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6291 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6292 .access = PL1_RW, .type = ARM_CP_SVE, 6293 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6294 .writefn = zcr_write, .raw_writefn = raw_write 6295 }; 6296 6297 static const ARMCPRegInfo zcr_el2_reginfo = { 6298 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6299 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6300 .access = PL2_RW, .type = ARM_CP_SVE, 6301 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6302 .writefn = zcr_write, .raw_writefn = raw_write 6303 }; 6304 6305 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6306 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6307 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6308 .access = PL2_RW, .type = ARM_CP_SVE, 6309 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6310 }; 6311 6312 static const ARMCPRegInfo zcr_el3_reginfo = { 6313 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6314 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6315 .access = PL3_RW, .type = ARM_CP_SVE, 6316 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6317 .writefn = zcr_write, .raw_writefn = raw_write 6318 }; 6319 6320 void hw_watchpoint_update(ARMCPU *cpu, int n) 6321 { 6322 CPUARMState *env = &cpu->env; 6323 vaddr len = 0; 6324 vaddr wvr = env->cp15.dbgwvr[n]; 6325 uint64_t wcr = env->cp15.dbgwcr[n]; 6326 int mask; 6327 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6328 6329 if (env->cpu_watchpoint[n]) { 6330 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6331 env->cpu_watchpoint[n] = NULL; 6332 } 6333 6334 if (!extract64(wcr, 0, 1)) { 6335 /* E bit clear : watchpoint disabled */ 6336 return; 6337 } 6338 6339 switch (extract64(wcr, 3, 2)) { 6340 case 0: 6341 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6342 return; 6343 case 1: 6344 flags |= BP_MEM_READ; 6345 break; 6346 case 2: 6347 flags |= BP_MEM_WRITE; 6348 break; 6349 case 3: 6350 flags |= BP_MEM_ACCESS; 6351 break; 6352 } 6353 6354 /* Attempts to use both MASK and BAS fields simultaneously are 6355 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6356 * thus generating a watchpoint for every byte in the masked region. 6357 */ 6358 mask = extract64(wcr, 24, 4); 6359 if (mask == 1 || mask == 2) { 6360 /* Reserved values of MASK; we must act as if the mask value was 6361 * some non-reserved value, or as if the watchpoint were disabled. 6362 * We choose the latter. 6363 */ 6364 return; 6365 } else if (mask) { 6366 /* Watchpoint covers an aligned area up to 2GB in size */ 6367 len = 1ULL << mask; 6368 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6369 * whether the watchpoint fires when the unmasked bits match; we opt 6370 * to generate the exceptions. 6371 */ 6372 wvr &= ~(len - 1); 6373 } else { 6374 /* Watchpoint covers bytes defined by the byte address select bits */ 6375 int bas = extract64(wcr, 5, 8); 6376 int basstart; 6377 6378 if (extract64(wvr, 2, 1)) { 6379 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6380 * ignored, and BAS[3:0] define which bytes to watch. 6381 */ 6382 bas &= 0xf; 6383 } 6384 6385 if (bas == 0) { 6386 /* This must act as if the watchpoint is disabled */ 6387 return; 6388 } 6389 6390 /* The BAS bits are supposed to be programmed to indicate a contiguous 6391 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6392 * we fire for each byte in the word/doubleword addressed by the WVR. 6393 * We choose to ignore any non-zero bits after the first range of 1s. 6394 */ 6395 basstart = ctz32(bas); 6396 len = cto32(bas >> basstart); 6397 wvr += basstart; 6398 } 6399 6400 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6401 &env->cpu_watchpoint[n]); 6402 } 6403 6404 void hw_watchpoint_update_all(ARMCPU *cpu) 6405 { 6406 int i; 6407 CPUARMState *env = &cpu->env; 6408 6409 /* Completely clear out existing QEMU watchpoints and our array, to 6410 * avoid possible stale entries following migration load. 6411 */ 6412 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6413 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6414 6415 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6416 hw_watchpoint_update(cpu, i); 6417 } 6418 } 6419 6420 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6421 uint64_t value) 6422 { 6423 ARMCPU *cpu = env_archcpu(env); 6424 int i = ri->crm; 6425 6426 /* 6427 * Bits [1:0] are RES0. 6428 * 6429 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6430 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6431 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6432 * whether the RESS bits are ignored when comparing an address. 6433 * 6434 * Therefore we are allowed to compare the entire register, which lets 6435 * us avoid considering whether or not FEAT_LVA is actually enabled. 6436 */ 6437 value &= ~3ULL; 6438 6439 raw_write(env, ri, value); 6440 hw_watchpoint_update(cpu, i); 6441 } 6442 6443 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6444 uint64_t value) 6445 { 6446 ARMCPU *cpu = env_archcpu(env); 6447 int i = ri->crm; 6448 6449 raw_write(env, ri, value); 6450 hw_watchpoint_update(cpu, i); 6451 } 6452 6453 void hw_breakpoint_update(ARMCPU *cpu, int n) 6454 { 6455 CPUARMState *env = &cpu->env; 6456 uint64_t bvr = env->cp15.dbgbvr[n]; 6457 uint64_t bcr = env->cp15.dbgbcr[n]; 6458 vaddr addr; 6459 int bt; 6460 int flags = BP_CPU; 6461 6462 if (env->cpu_breakpoint[n]) { 6463 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6464 env->cpu_breakpoint[n] = NULL; 6465 } 6466 6467 if (!extract64(bcr, 0, 1)) { 6468 /* E bit clear : watchpoint disabled */ 6469 return; 6470 } 6471 6472 bt = extract64(bcr, 20, 4); 6473 6474 switch (bt) { 6475 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6476 case 5: /* linked address mismatch (reserved if AArch64) */ 6477 qemu_log_mask(LOG_UNIMP, 6478 "arm: address mismatch breakpoint types not implemented\n"); 6479 return; 6480 case 0: /* unlinked address match */ 6481 case 1: /* linked address match */ 6482 { 6483 /* 6484 * Bits [1:0] are RES0. 6485 * 6486 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6487 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6488 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6489 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6490 * whether the RESS bits are ignored when comparing an address. 6491 * Therefore we are allowed to compare the entire register, which 6492 * lets us avoid considering whether FEAT_LVA is actually enabled. 6493 * 6494 * The BAS field is used to allow setting breakpoints on 16-bit 6495 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6496 * a bp will fire if the addresses covered by the bp and the addresses 6497 * covered by the insn overlap but the insn doesn't start at the 6498 * start of the bp address range. We choose to require the insn and 6499 * the bp to have the same address. The constraints on writing to 6500 * BAS enforced in dbgbcr_write mean we have only four cases: 6501 * 0b0000 => no breakpoint 6502 * 0b0011 => breakpoint on addr 6503 * 0b1100 => breakpoint on addr + 2 6504 * 0b1111 => breakpoint on addr 6505 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6506 */ 6507 int bas = extract64(bcr, 5, 4); 6508 addr = bvr & ~3ULL; 6509 if (bas == 0) { 6510 return; 6511 } 6512 if (bas == 0xc) { 6513 addr += 2; 6514 } 6515 break; 6516 } 6517 case 2: /* unlinked context ID match */ 6518 case 8: /* unlinked VMID match (reserved if no EL2) */ 6519 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6520 qemu_log_mask(LOG_UNIMP, 6521 "arm: unlinked context breakpoint types not implemented\n"); 6522 return; 6523 case 9: /* linked VMID match (reserved if no EL2) */ 6524 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6525 case 3: /* linked context ID match */ 6526 default: 6527 /* We must generate no events for Linked context matches (unless 6528 * they are linked to by some other bp/wp, which is handled in 6529 * updates for the linking bp/wp). We choose to also generate no events 6530 * for reserved values. 6531 */ 6532 return; 6533 } 6534 6535 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6536 } 6537 6538 void hw_breakpoint_update_all(ARMCPU *cpu) 6539 { 6540 int i; 6541 CPUARMState *env = &cpu->env; 6542 6543 /* Completely clear out existing QEMU breakpoints and our array, to 6544 * avoid possible stale entries following migration load. 6545 */ 6546 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6547 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6548 6549 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6550 hw_breakpoint_update(cpu, i); 6551 } 6552 } 6553 6554 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6555 uint64_t value) 6556 { 6557 ARMCPU *cpu = env_archcpu(env); 6558 int i = ri->crm; 6559 6560 raw_write(env, ri, value); 6561 hw_breakpoint_update(cpu, i); 6562 } 6563 6564 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6565 uint64_t value) 6566 { 6567 ARMCPU *cpu = env_archcpu(env); 6568 int i = ri->crm; 6569 6570 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6571 * copy of BAS[0]. 6572 */ 6573 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6574 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6575 6576 raw_write(env, ri, value); 6577 hw_breakpoint_update(cpu, i); 6578 } 6579 6580 static void define_debug_regs(ARMCPU *cpu) 6581 { 6582 /* Define v7 and v8 architectural debug registers. 6583 * These are just dummy implementations for now. 6584 */ 6585 int i; 6586 int wrps, brps, ctx_cmps; 6587 6588 /* 6589 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6590 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6591 * the register must not exist for this cpu. 6592 */ 6593 if (cpu->isar.dbgdidr != 0) { 6594 ARMCPRegInfo dbgdidr = { 6595 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6596 .opc1 = 0, .opc2 = 0, 6597 .access = PL0_R, .accessfn = access_tda, 6598 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6599 }; 6600 define_one_arm_cp_reg(cpu, &dbgdidr); 6601 } 6602 6603 /* Note that all these register fields hold "number of Xs minus 1". */ 6604 brps = arm_num_brps(cpu); 6605 wrps = arm_num_wrps(cpu); 6606 ctx_cmps = arm_num_ctx_cmps(cpu); 6607 6608 assert(ctx_cmps <= brps); 6609 6610 define_arm_cp_regs(cpu, debug_cp_reginfo); 6611 6612 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6613 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6614 } 6615 6616 for (i = 0; i < brps; i++) { 6617 ARMCPRegInfo dbgregs[] = { 6618 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6619 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6620 .access = PL1_RW, .accessfn = access_tda, 6621 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6622 .writefn = dbgbvr_write, .raw_writefn = raw_write 6623 }, 6624 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6625 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6626 .access = PL1_RW, .accessfn = access_tda, 6627 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6628 .writefn = dbgbcr_write, .raw_writefn = raw_write 6629 }, 6630 REGINFO_SENTINEL 6631 }; 6632 define_arm_cp_regs(cpu, dbgregs); 6633 } 6634 6635 for (i = 0; i < wrps; i++) { 6636 ARMCPRegInfo dbgregs[] = { 6637 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6638 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6639 .access = PL1_RW, .accessfn = access_tda, 6640 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6641 .writefn = dbgwvr_write, .raw_writefn = raw_write 6642 }, 6643 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6644 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6645 .access = PL1_RW, .accessfn = access_tda, 6646 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6647 .writefn = dbgwcr_write, .raw_writefn = raw_write 6648 }, 6649 REGINFO_SENTINEL 6650 }; 6651 define_arm_cp_regs(cpu, dbgregs); 6652 } 6653 } 6654 6655 static void define_pmu_regs(ARMCPU *cpu) 6656 { 6657 /* 6658 * v7 performance monitor control register: same implementor 6659 * field as main ID register, and we implement four counters in 6660 * addition to the cycle count register. 6661 */ 6662 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6663 ARMCPRegInfo pmcr = { 6664 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6665 .access = PL0_RW, 6666 .type = ARM_CP_IO | ARM_CP_ALIAS, 6667 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6668 .accessfn = pmreg_access, .writefn = pmcr_write, 6669 .raw_writefn = raw_write, 6670 }; 6671 ARMCPRegInfo pmcr64 = { 6672 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6673 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6674 .access = PL0_RW, .accessfn = pmreg_access, 6675 .type = ARM_CP_IO, 6676 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6677 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6678 PMCRLC, 6679 .writefn = pmcr_write, .raw_writefn = raw_write, 6680 }; 6681 define_one_arm_cp_reg(cpu, &pmcr); 6682 define_one_arm_cp_reg(cpu, &pmcr64); 6683 for (i = 0; i < pmcrn; i++) { 6684 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6685 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6686 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6687 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6688 ARMCPRegInfo pmev_regs[] = { 6689 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6690 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6691 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6692 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6693 .accessfn = pmreg_access }, 6694 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6695 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6696 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6697 .type = ARM_CP_IO, 6698 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6699 .raw_readfn = pmevcntr_rawread, 6700 .raw_writefn = pmevcntr_rawwrite }, 6701 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6702 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6703 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6704 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6705 .accessfn = pmreg_access }, 6706 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6707 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6708 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6709 .type = ARM_CP_IO, 6710 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6711 .raw_writefn = pmevtyper_rawwrite }, 6712 REGINFO_SENTINEL 6713 }; 6714 define_arm_cp_regs(cpu, pmev_regs); 6715 g_free(pmevcntr_name); 6716 g_free(pmevcntr_el0_name); 6717 g_free(pmevtyper_name); 6718 g_free(pmevtyper_el0_name); 6719 } 6720 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6721 ARMCPRegInfo v81_pmu_regs[] = { 6722 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6723 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6724 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6725 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6726 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6727 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6728 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6729 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6730 REGINFO_SENTINEL 6731 }; 6732 define_arm_cp_regs(cpu, v81_pmu_regs); 6733 } 6734 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6735 static const ARMCPRegInfo v84_pmmir = { 6736 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6737 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6738 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6739 .resetvalue = 0 6740 }; 6741 define_one_arm_cp_reg(cpu, &v84_pmmir); 6742 } 6743 } 6744 6745 /* We don't know until after realize whether there's a GICv3 6746 * attached, and that is what registers the gicv3 sysregs. 6747 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6748 * at runtime. 6749 */ 6750 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6751 { 6752 ARMCPU *cpu = env_archcpu(env); 6753 uint64_t pfr1 = cpu->isar.id_pfr1; 6754 6755 if (env->gicv3state) { 6756 pfr1 |= 1 << 28; 6757 } 6758 return pfr1; 6759 } 6760 6761 #ifndef CONFIG_USER_ONLY 6762 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6763 { 6764 ARMCPU *cpu = env_archcpu(env); 6765 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6766 6767 if (env->gicv3state) { 6768 pfr0 |= 1 << 24; 6769 } 6770 return pfr0; 6771 } 6772 #endif 6773 6774 /* Shared logic between LORID and the rest of the LOR* registers. 6775 * Secure state exclusion has already been dealt with. 6776 */ 6777 static CPAccessResult access_lor_ns(CPUARMState *env, 6778 const ARMCPRegInfo *ri, bool isread) 6779 { 6780 int el = arm_current_el(env); 6781 6782 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6783 return CP_ACCESS_TRAP_EL2; 6784 } 6785 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6786 return CP_ACCESS_TRAP_EL3; 6787 } 6788 return CP_ACCESS_OK; 6789 } 6790 6791 static CPAccessResult access_lor_other(CPUARMState *env, 6792 const ARMCPRegInfo *ri, bool isread) 6793 { 6794 if (arm_is_secure_below_el3(env)) { 6795 /* Access denied in secure mode. */ 6796 return CP_ACCESS_TRAP; 6797 } 6798 return access_lor_ns(env, ri, isread); 6799 } 6800 6801 /* 6802 * A trivial implementation of ARMv8.1-LOR leaves all of these 6803 * registers fixed at 0, which indicates that there are zero 6804 * supported Limited Ordering regions. 6805 */ 6806 static const ARMCPRegInfo lor_reginfo[] = { 6807 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6808 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6809 .access = PL1_RW, .accessfn = access_lor_other, 6810 .type = ARM_CP_CONST, .resetvalue = 0 }, 6811 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6812 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6813 .access = PL1_RW, .accessfn = access_lor_other, 6814 .type = ARM_CP_CONST, .resetvalue = 0 }, 6815 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6816 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6817 .access = PL1_RW, .accessfn = access_lor_other, 6818 .type = ARM_CP_CONST, .resetvalue = 0 }, 6819 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6820 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6821 .access = PL1_RW, .accessfn = access_lor_other, 6822 .type = ARM_CP_CONST, .resetvalue = 0 }, 6823 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6824 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6825 .access = PL1_R, .accessfn = access_lor_ns, 6826 .type = ARM_CP_CONST, .resetvalue = 0 }, 6827 REGINFO_SENTINEL 6828 }; 6829 6830 #ifdef TARGET_AARCH64 6831 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6832 bool isread) 6833 { 6834 int el = arm_current_el(env); 6835 6836 if (el < 2 && 6837 arm_feature(env, ARM_FEATURE_EL2) && 6838 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6839 return CP_ACCESS_TRAP_EL2; 6840 } 6841 if (el < 3 && 6842 arm_feature(env, ARM_FEATURE_EL3) && 6843 !(env->cp15.scr_el3 & SCR_APK)) { 6844 return CP_ACCESS_TRAP_EL3; 6845 } 6846 return CP_ACCESS_OK; 6847 } 6848 6849 static const ARMCPRegInfo pauth_reginfo[] = { 6850 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6851 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6852 .access = PL1_RW, .accessfn = access_pauth, 6853 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6854 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6856 .access = PL1_RW, .accessfn = access_pauth, 6857 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6858 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6860 .access = PL1_RW, .accessfn = access_pauth, 6861 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6862 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6864 .access = PL1_RW, .accessfn = access_pauth, 6865 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6866 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6868 .access = PL1_RW, .accessfn = access_pauth, 6869 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6870 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6872 .access = PL1_RW, .accessfn = access_pauth, 6873 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6874 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6876 .access = PL1_RW, .accessfn = access_pauth, 6877 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6878 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6879 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6880 .access = PL1_RW, .accessfn = access_pauth, 6881 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6882 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6884 .access = PL1_RW, .accessfn = access_pauth, 6885 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6886 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6888 .access = PL1_RW, .accessfn = access_pauth, 6889 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6890 REGINFO_SENTINEL 6891 }; 6892 6893 static const ARMCPRegInfo tlbirange_reginfo[] = { 6894 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6896 .access = PL1_W, .type = ARM_CP_NO_RAW, 6897 .writefn = tlbi_aa64_rvae1is_write }, 6898 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6900 .access = PL1_W, .type = ARM_CP_NO_RAW, 6901 .writefn = tlbi_aa64_rvae1is_write }, 6902 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6904 .access = PL1_W, .type = ARM_CP_NO_RAW, 6905 .writefn = tlbi_aa64_rvae1is_write }, 6906 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6908 .access = PL1_W, .type = ARM_CP_NO_RAW, 6909 .writefn = tlbi_aa64_rvae1is_write }, 6910 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6912 .access = PL1_W, .type = ARM_CP_NO_RAW, 6913 .writefn = tlbi_aa64_rvae1is_write }, 6914 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6916 .access = PL1_W, .type = ARM_CP_NO_RAW, 6917 .writefn = tlbi_aa64_rvae1is_write }, 6918 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6920 .access = PL1_W, .type = ARM_CP_NO_RAW, 6921 .writefn = tlbi_aa64_rvae1is_write }, 6922 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6923 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6924 .access = PL1_W, .type = ARM_CP_NO_RAW, 6925 .writefn = tlbi_aa64_rvae1is_write }, 6926 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6927 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6928 .access = PL1_W, .type = ARM_CP_NO_RAW, 6929 .writefn = tlbi_aa64_rvae1_write }, 6930 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6931 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6932 .access = PL1_W, .type = ARM_CP_NO_RAW, 6933 .writefn = tlbi_aa64_rvae1_write }, 6934 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6935 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6936 .access = PL1_W, .type = ARM_CP_NO_RAW, 6937 .writefn = tlbi_aa64_rvae1_write }, 6938 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6939 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6940 .access = PL1_W, .type = ARM_CP_NO_RAW, 6941 .writefn = tlbi_aa64_rvae1_write }, 6942 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6944 .access = PL2_W, .type = ARM_CP_NOP }, 6945 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6947 .access = PL2_W, .type = ARM_CP_NOP }, 6948 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6950 .access = PL2_W, .type = ARM_CP_NO_RAW, 6951 .writefn = tlbi_aa64_rvae2is_write }, 6952 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6953 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6954 .access = PL2_W, .type = ARM_CP_NO_RAW, 6955 .writefn = tlbi_aa64_rvae2is_write }, 6956 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6957 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6958 .access = PL2_W, .type = ARM_CP_NOP }, 6959 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6961 .access = PL2_W, .type = ARM_CP_NOP }, 6962 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6964 .access = PL2_W, .type = ARM_CP_NO_RAW, 6965 .writefn = tlbi_aa64_rvae2is_write }, 6966 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6967 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6968 .access = PL2_W, .type = ARM_CP_NO_RAW, 6969 .writefn = tlbi_aa64_rvae2is_write }, 6970 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6972 .access = PL2_W, .type = ARM_CP_NO_RAW, 6973 .writefn = tlbi_aa64_rvae2_write }, 6974 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6976 .access = PL2_W, .type = ARM_CP_NO_RAW, 6977 .writefn = tlbi_aa64_rvae2_write }, 6978 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6980 .access = PL3_W, .type = ARM_CP_NO_RAW, 6981 .writefn = tlbi_aa64_rvae3is_write }, 6982 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6984 .access = PL3_W, .type = ARM_CP_NO_RAW, 6985 .writefn = tlbi_aa64_rvae3is_write }, 6986 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6988 .access = PL3_W, .type = ARM_CP_NO_RAW, 6989 .writefn = tlbi_aa64_rvae3is_write }, 6990 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6991 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6992 .access = PL3_W, .type = ARM_CP_NO_RAW, 6993 .writefn = tlbi_aa64_rvae3is_write }, 6994 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6996 .access = PL3_W, .type = ARM_CP_NO_RAW, 6997 .writefn = tlbi_aa64_rvae3_write }, 6998 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6999 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7000 .access = PL3_W, .type = ARM_CP_NO_RAW, 7001 .writefn = tlbi_aa64_rvae3_write }, 7002 REGINFO_SENTINEL 7003 }; 7004 7005 static const ARMCPRegInfo tlbios_reginfo[] = { 7006 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7007 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7008 .access = PL1_W, .type = ARM_CP_NO_RAW, 7009 .writefn = tlbi_aa64_vmalle1is_write }, 7010 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7011 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7012 .access = PL1_W, .type = ARM_CP_NO_RAW, 7013 .writefn = tlbi_aa64_vae1is_write }, 7014 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7015 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7016 .access = PL1_W, .type = ARM_CP_NO_RAW, 7017 .writefn = tlbi_aa64_vmalle1is_write }, 7018 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7020 .access = PL1_W, .type = ARM_CP_NO_RAW, 7021 .writefn = tlbi_aa64_vae1is_write }, 7022 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7023 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7024 .access = PL1_W, .type = ARM_CP_NO_RAW, 7025 .writefn = tlbi_aa64_vae1is_write }, 7026 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7027 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7028 .access = PL1_W, .type = ARM_CP_NO_RAW, 7029 .writefn = tlbi_aa64_vae1is_write }, 7030 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7031 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7032 .access = PL2_W, .type = ARM_CP_NO_RAW, 7033 .writefn = tlbi_aa64_alle2is_write }, 7034 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7035 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7036 .access = PL2_W, .type = ARM_CP_NO_RAW, 7037 .writefn = tlbi_aa64_vae2is_write }, 7038 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7040 .access = PL2_W, .type = ARM_CP_NO_RAW, 7041 .writefn = tlbi_aa64_alle1is_write }, 7042 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7044 .access = PL2_W, .type = ARM_CP_NO_RAW, 7045 .writefn = tlbi_aa64_vae2is_write }, 7046 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7048 .access = PL2_W, .type = ARM_CP_NO_RAW, 7049 .writefn = tlbi_aa64_alle1is_write }, 7050 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7051 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7052 .access = PL2_W, .type = ARM_CP_NOP }, 7053 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7055 .access = PL2_W, .type = ARM_CP_NOP }, 7056 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7058 .access = PL2_W, .type = ARM_CP_NOP }, 7059 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7061 .access = PL2_W, .type = ARM_CP_NOP }, 7062 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7063 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7064 .access = PL3_W, .type = ARM_CP_NO_RAW, 7065 .writefn = tlbi_aa64_alle3is_write }, 7066 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7067 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7068 .access = PL3_W, .type = ARM_CP_NO_RAW, 7069 .writefn = tlbi_aa64_vae3is_write }, 7070 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7072 .access = PL3_W, .type = ARM_CP_NO_RAW, 7073 .writefn = tlbi_aa64_vae3is_write }, 7074 REGINFO_SENTINEL 7075 }; 7076 7077 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7078 { 7079 Error *err = NULL; 7080 uint64_t ret; 7081 7082 /* Success sets NZCV = 0000. */ 7083 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7084 7085 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7086 /* 7087 * ??? Failed, for unknown reasons in the crypto subsystem. 7088 * The best we can do is log the reason and return the 7089 * timed-out indication to the guest. There is no reason 7090 * we know to expect this failure to be transitory, so the 7091 * guest may well hang retrying the operation. 7092 */ 7093 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7094 ri->name, error_get_pretty(err)); 7095 error_free(err); 7096 7097 env->ZF = 0; /* NZCF = 0100 */ 7098 return 0; 7099 } 7100 return ret; 7101 } 7102 7103 /* We do not support re-seeding, so the two registers operate the same. */ 7104 static const ARMCPRegInfo rndr_reginfo[] = { 7105 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7106 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7107 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7108 .access = PL0_R, .readfn = rndr_readfn }, 7109 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7110 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7111 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7112 .access = PL0_R, .readfn = rndr_readfn }, 7113 REGINFO_SENTINEL 7114 }; 7115 7116 #ifndef CONFIG_USER_ONLY 7117 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7118 uint64_t value) 7119 { 7120 ARMCPU *cpu = env_archcpu(env); 7121 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7122 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7123 uint64_t vaddr_in = (uint64_t) value; 7124 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7125 void *haddr; 7126 int mem_idx = cpu_mmu_index(env, false); 7127 7128 /* This won't be crossing page boundaries */ 7129 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7130 if (haddr) { 7131 7132 ram_addr_t offset; 7133 MemoryRegion *mr; 7134 7135 /* RCU lock is already being held */ 7136 mr = memory_region_from_host(haddr, &offset); 7137 7138 if (mr) { 7139 memory_region_writeback(mr, offset, dline_size); 7140 } 7141 } 7142 } 7143 7144 static const ARMCPRegInfo dcpop_reg[] = { 7145 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7146 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7147 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7148 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7149 REGINFO_SENTINEL 7150 }; 7151 7152 static const ARMCPRegInfo dcpodp_reg[] = { 7153 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7155 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7156 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7157 REGINFO_SENTINEL 7158 }; 7159 #endif /*CONFIG_USER_ONLY*/ 7160 7161 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7162 bool isread) 7163 { 7164 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7165 return CP_ACCESS_TRAP_EL2; 7166 } 7167 7168 return CP_ACCESS_OK; 7169 } 7170 7171 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7172 bool isread) 7173 { 7174 int el = arm_current_el(env); 7175 7176 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7177 uint64_t hcr = arm_hcr_el2_eff(env); 7178 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7179 return CP_ACCESS_TRAP_EL2; 7180 } 7181 } 7182 if (el < 3 && 7183 arm_feature(env, ARM_FEATURE_EL3) && 7184 !(env->cp15.scr_el3 & SCR_ATA)) { 7185 return CP_ACCESS_TRAP_EL3; 7186 } 7187 return CP_ACCESS_OK; 7188 } 7189 7190 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7191 { 7192 return env->pstate & PSTATE_TCO; 7193 } 7194 7195 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7196 { 7197 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7198 } 7199 7200 static const ARMCPRegInfo mte_reginfo[] = { 7201 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7203 .access = PL1_RW, .accessfn = access_mte, 7204 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7205 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7207 .access = PL1_RW, .accessfn = access_mte, 7208 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7209 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7211 .access = PL2_RW, .accessfn = access_mte, 7212 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7213 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7215 .access = PL3_RW, 7216 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7217 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7219 .access = PL1_RW, .accessfn = access_mte, 7220 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7221 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7223 .access = PL1_RW, .accessfn = access_mte, 7224 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7225 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7227 .access = PL1_R, .accessfn = access_aa64_tid5, 7228 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7229 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7231 .type = ARM_CP_NO_RAW, 7232 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7233 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7235 .type = ARM_CP_NOP, .access = PL1_W, 7236 .accessfn = aa64_cacheop_poc_access }, 7237 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7239 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7240 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7242 .type = ARM_CP_NOP, .access = PL1_W, 7243 .accessfn = aa64_cacheop_poc_access }, 7244 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7246 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7247 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7249 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7250 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7252 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7253 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7255 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7256 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7258 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7259 REGINFO_SENTINEL 7260 }; 7261 7262 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7263 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7265 .type = ARM_CP_CONST, .access = PL0_RW, }, 7266 REGINFO_SENTINEL 7267 }; 7268 7269 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7270 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7271 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7272 .type = ARM_CP_NOP, .access = PL0_W, 7273 .accessfn = aa64_cacheop_poc_access }, 7274 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7275 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7276 .type = ARM_CP_NOP, .access = PL0_W, 7277 .accessfn = aa64_cacheop_poc_access }, 7278 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7279 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7280 .type = ARM_CP_NOP, .access = PL0_W, 7281 .accessfn = aa64_cacheop_poc_access }, 7282 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7283 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7284 .type = ARM_CP_NOP, .access = PL0_W, 7285 .accessfn = aa64_cacheop_poc_access }, 7286 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7287 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7288 .type = ARM_CP_NOP, .access = PL0_W, 7289 .accessfn = aa64_cacheop_poc_access }, 7290 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7291 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7292 .type = ARM_CP_NOP, .access = PL0_W, 7293 .accessfn = aa64_cacheop_poc_access }, 7294 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7295 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7296 .type = ARM_CP_NOP, .access = PL0_W, 7297 .accessfn = aa64_cacheop_poc_access }, 7298 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7299 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7300 .type = ARM_CP_NOP, .access = PL0_W, 7301 .accessfn = aa64_cacheop_poc_access }, 7302 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7303 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7304 .access = PL0_W, .type = ARM_CP_DC_GVA, 7305 #ifndef CONFIG_USER_ONLY 7306 /* Avoid overhead of an access check that always passes in user-mode */ 7307 .accessfn = aa64_zva_access, 7308 #endif 7309 }, 7310 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7312 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7313 #ifndef CONFIG_USER_ONLY 7314 /* Avoid overhead of an access check that always passes in user-mode */ 7315 .accessfn = aa64_zva_access, 7316 #endif 7317 }, 7318 REGINFO_SENTINEL 7319 }; 7320 7321 #endif 7322 7323 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7324 bool isread) 7325 { 7326 int el = arm_current_el(env); 7327 7328 if (el == 0) { 7329 uint64_t sctlr = arm_sctlr(env, el); 7330 if (!(sctlr & SCTLR_EnRCTX)) { 7331 return CP_ACCESS_TRAP; 7332 } 7333 } else if (el == 1) { 7334 uint64_t hcr = arm_hcr_el2_eff(env); 7335 if (hcr & HCR_NV) { 7336 return CP_ACCESS_TRAP_EL2; 7337 } 7338 } 7339 return CP_ACCESS_OK; 7340 } 7341 7342 static const ARMCPRegInfo predinv_reginfo[] = { 7343 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7344 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7345 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7346 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7348 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7349 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7351 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7352 /* 7353 * Note the AArch32 opcodes have a different OPC1. 7354 */ 7355 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7356 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7357 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7358 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7359 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7360 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7361 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7362 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7363 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7364 REGINFO_SENTINEL 7365 }; 7366 7367 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7368 { 7369 /* Read the high 32 bits of the current CCSIDR */ 7370 return extract64(ccsidr_read(env, ri), 32, 32); 7371 } 7372 7373 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7374 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7375 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7376 .access = PL1_R, 7377 .accessfn = access_aa64_tid2, 7378 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7379 REGINFO_SENTINEL 7380 }; 7381 7382 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7383 bool isread) 7384 { 7385 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7386 return CP_ACCESS_TRAP_EL2; 7387 } 7388 7389 return CP_ACCESS_OK; 7390 } 7391 7392 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7393 bool isread) 7394 { 7395 if (arm_feature(env, ARM_FEATURE_V8)) { 7396 return access_aa64_tid3(env, ri, isread); 7397 } 7398 7399 return CP_ACCESS_OK; 7400 } 7401 7402 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7403 bool isread) 7404 { 7405 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7406 return CP_ACCESS_TRAP_EL2; 7407 } 7408 7409 return CP_ACCESS_OK; 7410 } 7411 7412 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7413 const ARMCPRegInfo *ri, bool isread) 7414 { 7415 /* 7416 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7417 * in v7A, not in v8A. 7418 */ 7419 if (!arm_feature(env, ARM_FEATURE_V8) && 7420 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7421 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7422 return CP_ACCESS_TRAP_EL2; 7423 } 7424 return CP_ACCESS_OK; 7425 } 7426 7427 static const ARMCPRegInfo jazelle_regs[] = { 7428 { .name = "JIDR", 7429 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7430 .access = PL1_R, .accessfn = access_jazelle, 7431 .type = ARM_CP_CONST, .resetvalue = 0 }, 7432 { .name = "JOSCR", 7433 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7434 .accessfn = access_joscr_jmcr, 7435 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7436 { .name = "JMCR", 7437 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7438 .accessfn = access_joscr_jmcr, 7439 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7440 REGINFO_SENTINEL 7441 }; 7442 7443 static const ARMCPRegInfo vhe_reginfo[] = { 7444 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7445 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7446 .access = PL2_RW, 7447 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7448 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7450 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7451 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7452 #ifndef CONFIG_USER_ONLY 7453 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7455 .fieldoffset = 7456 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7457 .type = ARM_CP_IO, .access = PL2_RW, 7458 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7459 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7460 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7461 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7462 .resetfn = gt_hv_timer_reset, 7463 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7464 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7465 .type = ARM_CP_IO, 7466 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7467 .access = PL2_RW, 7468 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7469 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7470 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7472 .type = ARM_CP_IO | ARM_CP_ALIAS, 7473 .access = PL2_RW, .accessfn = e2h_access, 7474 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7475 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7476 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7478 .type = ARM_CP_IO | ARM_CP_ALIAS, 7479 .access = PL2_RW, .accessfn = e2h_access, 7480 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7481 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7482 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7483 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7484 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7485 .access = PL2_RW, .accessfn = e2h_access, 7486 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7487 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7489 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7490 .access = PL2_RW, .accessfn = e2h_access, 7491 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7492 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7494 .type = ARM_CP_IO | ARM_CP_ALIAS, 7495 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7496 .access = PL2_RW, .accessfn = e2h_access, 7497 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7498 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7500 .type = ARM_CP_IO | ARM_CP_ALIAS, 7501 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7502 .access = PL2_RW, .accessfn = e2h_access, 7503 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7504 #endif 7505 REGINFO_SENTINEL 7506 }; 7507 7508 #ifndef CONFIG_USER_ONLY 7509 static const ARMCPRegInfo ats1e1_reginfo[] = { 7510 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7511 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7512 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7513 .writefn = ats_write64 }, 7514 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7515 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7516 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7517 .writefn = ats_write64 }, 7518 REGINFO_SENTINEL 7519 }; 7520 7521 static const ARMCPRegInfo ats1cp_reginfo[] = { 7522 { .name = "ATS1CPRP", 7523 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7524 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7525 .writefn = ats_write }, 7526 { .name = "ATS1CPWP", 7527 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7528 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7529 .writefn = ats_write }, 7530 REGINFO_SENTINEL 7531 }; 7532 #endif 7533 7534 /* 7535 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7536 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7537 * is non-zero, which is never for ARMv7, optionally in ARMv8 7538 * and mandatorily for ARMv8.2 and up. 7539 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7540 * implementation is RAZ/WI we can ignore this detail, as we 7541 * do for ACTLR. 7542 */ 7543 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7544 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7545 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7546 .access = PL1_RW, .accessfn = access_tacr, 7547 .type = ARM_CP_CONST, .resetvalue = 0 }, 7548 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7549 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7550 .access = PL2_RW, .type = ARM_CP_CONST, 7551 .resetvalue = 0 }, 7552 REGINFO_SENTINEL 7553 }; 7554 7555 void register_cp_regs_for_features(ARMCPU *cpu) 7556 { 7557 /* Register all the coprocessor registers based on feature bits */ 7558 CPUARMState *env = &cpu->env; 7559 if (arm_feature(env, ARM_FEATURE_M)) { 7560 /* M profile has no coprocessor registers */ 7561 return; 7562 } 7563 7564 define_arm_cp_regs(cpu, cp_reginfo); 7565 if (!arm_feature(env, ARM_FEATURE_V8)) { 7566 /* Must go early as it is full of wildcards that may be 7567 * overridden by later definitions. 7568 */ 7569 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7570 } 7571 7572 if (arm_feature(env, ARM_FEATURE_V6)) { 7573 /* The ID registers all have impdef reset values */ 7574 ARMCPRegInfo v6_idregs[] = { 7575 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7577 .access = PL1_R, .type = ARM_CP_CONST, 7578 .accessfn = access_aa32_tid3, 7579 .resetvalue = cpu->isar.id_pfr0 }, 7580 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7581 * the value of the GIC field until after we define these regs. 7582 */ 7583 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7585 .access = PL1_R, .type = ARM_CP_NO_RAW, 7586 .accessfn = access_aa32_tid3, 7587 .readfn = id_pfr1_read, 7588 .writefn = arm_cp_write_ignore }, 7589 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa32_tid3, 7593 .resetvalue = cpu->isar.id_dfr0 }, 7594 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7596 .access = PL1_R, .type = ARM_CP_CONST, 7597 .accessfn = access_aa32_tid3, 7598 .resetvalue = cpu->id_afr0 }, 7599 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7601 .access = PL1_R, .type = ARM_CP_CONST, 7602 .accessfn = access_aa32_tid3, 7603 .resetvalue = cpu->isar.id_mmfr0 }, 7604 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7606 .access = PL1_R, .type = ARM_CP_CONST, 7607 .accessfn = access_aa32_tid3, 7608 .resetvalue = cpu->isar.id_mmfr1 }, 7609 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7611 .access = PL1_R, .type = ARM_CP_CONST, 7612 .accessfn = access_aa32_tid3, 7613 .resetvalue = cpu->isar.id_mmfr2 }, 7614 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7616 .access = PL1_R, .type = ARM_CP_CONST, 7617 .accessfn = access_aa32_tid3, 7618 .resetvalue = cpu->isar.id_mmfr3 }, 7619 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7621 .access = PL1_R, .type = ARM_CP_CONST, 7622 .accessfn = access_aa32_tid3, 7623 .resetvalue = cpu->isar.id_isar0 }, 7624 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7626 .access = PL1_R, .type = ARM_CP_CONST, 7627 .accessfn = access_aa32_tid3, 7628 .resetvalue = cpu->isar.id_isar1 }, 7629 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7631 .access = PL1_R, .type = ARM_CP_CONST, 7632 .accessfn = access_aa32_tid3, 7633 .resetvalue = cpu->isar.id_isar2 }, 7634 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7636 .access = PL1_R, .type = ARM_CP_CONST, 7637 .accessfn = access_aa32_tid3, 7638 .resetvalue = cpu->isar.id_isar3 }, 7639 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7641 .access = PL1_R, .type = ARM_CP_CONST, 7642 .accessfn = access_aa32_tid3, 7643 .resetvalue = cpu->isar.id_isar4 }, 7644 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7646 .access = PL1_R, .type = ARM_CP_CONST, 7647 .accessfn = access_aa32_tid3, 7648 .resetvalue = cpu->isar.id_isar5 }, 7649 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7651 .access = PL1_R, .type = ARM_CP_CONST, 7652 .accessfn = access_aa32_tid3, 7653 .resetvalue = cpu->isar.id_mmfr4 }, 7654 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7656 .access = PL1_R, .type = ARM_CP_CONST, 7657 .accessfn = access_aa32_tid3, 7658 .resetvalue = cpu->isar.id_isar6 }, 7659 REGINFO_SENTINEL 7660 }; 7661 define_arm_cp_regs(cpu, v6_idregs); 7662 define_arm_cp_regs(cpu, v6_cp_reginfo); 7663 } else { 7664 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7665 } 7666 if (arm_feature(env, ARM_FEATURE_V6K)) { 7667 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7668 } 7669 if (arm_feature(env, ARM_FEATURE_V7MP) && 7670 !arm_feature(env, ARM_FEATURE_PMSA)) { 7671 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7672 } 7673 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7674 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7675 } 7676 if (arm_feature(env, ARM_FEATURE_V7)) { 7677 ARMCPRegInfo clidr = { 7678 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7679 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7680 .access = PL1_R, .type = ARM_CP_CONST, 7681 .accessfn = access_aa64_tid2, 7682 .resetvalue = cpu->clidr 7683 }; 7684 define_one_arm_cp_reg(cpu, &clidr); 7685 define_arm_cp_regs(cpu, v7_cp_reginfo); 7686 define_debug_regs(cpu); 7687 define_pmu_regs(cpu); 7688 } else { 7689 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7690 } 7691 if (arm_feature(env, ARM_FEATURE_V8)) { 7692 /* AArch64 ID registers, which all have impdef reset values. 7693 * Note that within the ID register ranges the unused slots 7694 * must all RAZ, not UNDEF; future architecture versions may 7695 * define new registers here. 7696 */ 7697 ARMCPRegInfo v8_idregs[] = { 7698 /* 7699 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7700 * emulation because we don't know the right value for the 7701 * GIC field until after we define these regs. 7702 */ 7703 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7705 .access = PL1_R, 7706 #ifdef CONFIG_USER_ONLY 7707 .type = ARM_CP_CONST, 7708 .resetvalue = cpu->isar.id_aa64pfr0 7709 #else 7710 .type = ARM_CP_NO_RAW, 7711 .accessfn = access_aa64_tid3, 7712 .readfn = id_aa64pfr0_read, 7713 .writefn = arm_cp_write_ignore 7714 #endif 7715 }, 7716 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = cpu->isar.id_aa64pfr1}, 7721 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = 0 }, 7726 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = 0 }, 7731 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = cpu->isar.id_aa64zfr0 }, 7736 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = 0 }, 7741 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa64_tid3, 7745 .resetvalue = 0 }, 7746 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa64_tid3, 7750 .resetvalue = 0 }, 7751 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa64_tid3, 7755 .resetvalue = cpu->isar.id_aa64dfr0 }, 7756 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa64_tid3, 7760 .resetvalue = cpu->isar.id_aa64dfr1 }, 7761 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa64_tid3, 7765 .resetvalue = 0 }, 7766 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa64_tid3, 7770 .resetvalue = 0 }, 7771 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa64_tid3, 7775 .resetvalue = cpu->id_aa64afr0 }, 7776 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa64_tid3, 7780 .resetvalue = cpu->id_aa64afr1 }, 7781 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa64_tid3, 7785 .resetvalue = 0 }, 7786 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = 0 }, 7791 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = cpu->isar.id_aa64isar0 }, 7796 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa64_tid3, 7800 .resetvalue = cpu->isar.id_aa64isar1 }, 7801 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = 0 }, 7806 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa64_tid3, 7810 .resetvalue = 0 }, 7811 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa64_tid3, 7815 .resetvalue = 0 }, 7816 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa64_tid3, 7820 .resetvalue = 0 }, 7821 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7823 .access = PL1_R, .type = ARM_CP_CONST, 7824 .accessfn = access_aa64_tid3, 7825 .resetvalue = 0 }, 7826 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .accessfn = access_aa64_tid3, 7830 .resetvalue = 0 }, 7831 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7833 .access = PL1_R, .type = ARM_CP_CONST, 7834 .accessfn = access_aa64_tid3, 7835 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7836 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7838 .access = PL1_R, .type = ARM_CP_CONST, 7839 .accessfn = access_aa64_tid3, 7840 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7841 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7843 .access = PL1_R, .type = ARM_CP_CONST, 7844 .accessfn = access_aa64_tid3, 7845 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7846 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7848 .access = PL1_R, .type = ARM_CP_CONST, 7849 .accessfn = access_aa64_tid3, 7850 .resetvalue = 0 }, 7851 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7853 .access = PL1_R, .type = ARM_CP_CONST, 7854 .accessfn = access_aa64_tid3, 7855 .resetvalue = 0 }, 7856 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7858 .access = PL1_R, .type = ARM_CP_CONST, 7859 .accessfn = access_aa64_tid3, 7860 .resetvalue = 0 }, 7861 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7863 .access = PL1_R, .type = ARM_CP_CONST, 7864 .accessfn = access_aa64_tid3, 7865 .resetvalue = 0 }, 7866 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7868 .access = PL1_R, .type = ARM_CP_CONST, 7869 .accessfn = access_aa64_tid3, 7870 .resetvalue = 0 }, 7871 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7873 .access = PL1_R, .type = ARM_CP_CONST, 7874 .accessfn = access_aa64_tid3, 7875 .resetvalue = cpu->isar.mvfr0 }, 7876 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7878 .access = PL1_R, .type = ARM_CP_CONST, 7879 .accessfn = access_aa64_tid3, 7880 .resetvalue = cpu->isar.mvfr1 }, 7881 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7883 .access = PL1_R, .type = ARM_CP_CONST, 7884 .accessfn = access_aa64_tid3, 7885 .resetvalue = cpu->isar.mvfr2 }, 7886 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7888 .access = PL1_R, .type = ARM_CP_CONST, 7889 .accessfn = access_aa64_tid3, 7890 .resetvalue = 0 }, 7891 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7893 .access = PL1_R, .type = ARM_CP_CONST, 7894 .accessfn = access_aa64_tid3, 7895 .resetvalue = cpu->isar.id_pfr2 }, 7896 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7898 .access = PL1_R, .type = ARM_CP_CONST, 7899 .accessfn = access_aa64_tid3, 7900 .resetvalue = 0 }, 7901 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7903 .access = PL1_R, .type = ARM_CP_CONST, 7904 .accessfn = access_aa64_tid3, 7905 .resetvalue = 0 }, 7906 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7908 .access = PL1_R, .type = ARM_CP_CONST, 7909 .accessfn = access_aa64_tid3, 7910 .resetvalue = 0 }, 7911 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7912 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7913 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7914 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7915 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7917 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7918 .resetvalue = cpu->pmceid0 }, 7919 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7920 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7921 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7922 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7923 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7925 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7926 .resetvalue = cpu->pmceid1 }, 7927 REGINFO_SENTINEL 7928 }; 7929 #ifdef CONFIG_USER_ONLY 7930 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7931 { .name = "ID_AA64PFR0_EL1", 7932 .exported_bits = 0x000f000f00ff0000, 7933 .fixed_bits = 0x0000000000000011 }, 7934 { .name = "ID_AA64PFR1_EL1", 7935 .exported_bits = 0x00000000000000f0 }, 7936 { .name = "ID_AA64PFR*_EL1_RESERVED", 7937 .is_glob = true }, 7938 { .name = "ID_AA64ZFR0_EL1" }, 7939 { .name = "ID_AA64MMFR0_EL1", 7940 .fixed_bits = 0x00000000ff000000 }, 7941 { .name = "ID_AA64MMFR1_EL1" }, 7942 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7943 .is_glob = true }, 7944 { .name = "ID_AA64DFR0_EL1", 7945 .fixed_bits = 0x0000000000000006 }, 7946 { .name = "ID_AA64DFR1_EL1" }, 7947 { .name = "ID_AA64DFR*_EL1_RESERVED", 7948 .is_glob = true }, 7949 { .name = "ID_AA64AFR*", 7950 .is_glob = true }, 7951 { .name = "ID_AA64ISAR0_EL1", 7952 .exported_bits = 0x00fffffff0fffff0 }, 7953 { .name = "ID_AA64ISAR1_EL1", 7954 .exported_bits = 0x000000f0ffffffff }, 7955 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7956 .is_glob = true }, 7957 REGUSERINFO_SENTINEL 7958 }; 7959 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7960 #endif 7961 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7962 if (!arm_feature(env, ARM_FEATURE_EL3) && 7963 !arm_feature(env, ARM_FEATURE_EL2)) { 7964 ARMCPRegInfo rvbar = { 7965 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7966 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7967 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7968 }; 7969 define_one_arm_cp_reg(cpu, &rvbar); 7970 } 7971 define_arm_cp_regs(cpu, v8_idregs); 7972 define_arm_cp_regs(cpu, v8_cp_reginfo); 7973 } 7974 if (arm_feature(env, ARM_FEATURE_EL2)) { 7975 uint64_t vmpidr_def = mpidr_read_val(env); 7976 ARMCPRegInfo vpidr_regs[] = { 7977 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7978 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7979 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7980 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7981 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7982 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7983 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7984 .access = PL2_RW, .resetvalue = cpu->midr, 7985 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7986 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7987 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7988 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7989 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7990 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7991 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7992 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7993 .access = PL2_RW, 7994 .resetvalue = vmpidr_def, 7995 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7996 REGINFO_SENTINEL 7997 }; 7998 define_arm_cp_regs(cpu, vpidr_regs); 7999 define_arm_cp_regs(cpu, el2_cp_reginfo); 8000 if (arm_feature(env, ARM_FEATURE_V8)) { 8001 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8002 } 8003 if (cpu_isar_feature(aa64_sel2, cpu)) { 8004 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8005 } 8006 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8007 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8008 ARMCPRegInfo rvbar = { 8009 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8010 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8011 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 8012 }; 8013 define_one_arm_cp_reg(cpu, &rvbar); 8014 } 8015 } else { 8016 /* If EL2 is missing but higher ELs are enabled, we need to 8017 * register the no_el2 reginfos. 8018 */ 8019 if (arm_feature(env, ARM_FEATURE_EL3)) { 8020 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8021 * of MIDR_EL1 and MPIDR_EL1. 8022 */ 8023 ARMCPRegInfo vpidr_regs[] = { 8024 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8025 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8026 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8027 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8028 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8029 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8030 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8031 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8032 .type = ARM_CP_NO_RAW, 8033 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8034 REGINFO_SENTINEL 8035 }; 8036 define_arm_cp_regs(cpu, vpidr_regs); 8037 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8038 if (arm_feature(env, ARM_FEATURE_V8)) { 8039 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8040 } 8041 } 8042 } 8043 if (arm_feature(env, ARM_FEATURE_EL3)) { 8044 define_arm_cp_regs(cpu, el3_cp_reginfo); 8045 ARMCPRegInfo el3_regs[] = { 8046 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8047 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8048 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8049 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8050 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8051 .access = PL3_RW, 8052 .raw_writefn = raw_write, .writefn = sctlr_write, 8053 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8054 .resetvalue = cpu->reset_sctlr }, 8055 REGINFO_SENTINEL 8056 }; 8057 8058 define_arm_cp_regs(cpu, el3_regs); 8059 } 8060 /* The behaviour of NSACR is sufficiently various that we don't 8061 * try to describe it in a single reginfo: 8062 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8063 * reads as constant 0xc00 from NS EL1 and NS EL2 8064 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8065 * if v7 without EL3, register doesn't exist 8066 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8067 */ 8068 if (arm_feature(env, ARM_FEATURE_EL3)) { 8069 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8070 ARMCPRegInfo nsacr = { 8071 .name = "NSACR", .type = ARM_CP_CONST, 8072 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8073 .access = PL1_RW, .accessfn = nsacr_access, 8074 .resetvalue = 0xc00 8075 }; 8076 define_one_arm_cp_reg(cpu, &nsacr); 8077 } else { 8078 ARMCPRegInfo nsacr = { 8079 .name = "NSACR", 8080 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8081 .access = PL3_RW | PL1_R, 8082 .resetvalue = 0, 8083 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8084 }; 8085 define_one_arm_cp_reg(cpu, &nsacr); 8086 } 8087 } else { 8088 if (arm_feature(env, ARM_FEATURE_V8)) { 8089 ARMCPRegInfo nsacr = { 8090 .name = "NSACR", .type = ARM_CP_CONST, 8091 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8092 .access = PL1_R, 8093 .resetvalue = 0xc00 8094 }; 8095 define_one_arm_cp_reg(cpu, &nsacr); 8096 } 8097 } 8098 8099 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8100 if (arm_feature(env, ARM_FEATURE_V6)) { 8101 /* PMSAv6 not implemented */ 8102 assert(arm_feature(env, ARM_FEATURE_V7)); 8103 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8104 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8105 } else { 8106 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8107 } 8108 } else { 8109 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8110 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8111 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8112 if (cpu_isar_feature(aa32_hpd, cpu)) { 8113 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8114 } 8115 } 8116 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8117 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8118 } 8119 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8120 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8121 } 8122 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8123 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8124 } 8125 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8126 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8127 } 8128 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8129 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8130 } 8131 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8132 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8133 } 8134 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8135 define_arm_cp_regs(cpu, omap_cp_reginfo); 8136 } 8137 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8138 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8139 } 8140 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8141 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8142 } 8143 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8144 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8145 } 8146 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8147 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8148 } 8149 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8150 define_arm_cp_regs(cpu, jazelle_regs); 8151 } 8152 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8153 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8154 * be read-only (ie write causes UNDEF exception). 8155 */ 8156 { 8157 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8158 /* Pre-v8 MIDR space. 8159 * Note that the MIDR isn't a simple constant register because 8160 * of the TI925 behaviour where writes to another register can 8161 * cause the MIDR value to change. 8162 * 8163 * Unimplemented registers in the c15 0 0 0 space default to 8164 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8165 * and friends override accordingly. 8166 */ 8167 { .name = "MIDR", 8168 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8169 .access = PL1_R, .resetvalue = cpu->midr, 8170 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8171 .readfn = midr_read, 8172 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8173 .type = ARM_CP_OVERRIDE }, 8174 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8175 { .name = "DUMMY", 8176 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8177 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8178 { .name = "DUMMY", 8179 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8180 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8181 { .name = "DUMMY", 8182 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8184 { .name = "DUMMY", 8185 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8187 { .name = "DUMMY", 8188 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8190 REGINFO_SENTINEL 8191 }; 8192 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8193 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8195 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8196 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8197 .readfn = midr_read }, 8198 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8199 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8200 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8201 .access = PL1_R, .resetvalue = cpu->midr }, 8202 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8203 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8204 .access = PL1_R, .resetvalue = cpu->midr }, 8205 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8207 .access = PL1_R, 8208 .accessfn = access_aa64_tid1, 8209 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8210 REGINFO_SENTINEL 8211 }; 8212 ARMCPRegInfo id_cp_reginfo[] = { 8213 /* These are common to v8 and pre-v8 */ 8214 { .name = "CTR", 8215 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8216 .access = PL1_R, .accessfn = ctr_el0_access, 8217 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8218 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8219 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8220 .access = PL0_R, .accessfn = ctr_el0_access, 8221 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8222 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8223 { .name = "TCMTR", 8224 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8225 .access = PL1_R, 8226 .accessfn = access_aa32_tid1, 8227 .type = ARM_CP_CONST, .resetvalue = 0 }, 8228 REGINFO_SENTINEL 8229 }; 8230 /* TLBTR is specific to VMSA */ 8231 ARMCPRegInfo id_tlbtr_reginfo = { 8232 .name = "TLBTR", 8233 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8234 .access = PL1_R, 8235 .accessfn = access_aa32_tid1, 8236 .type = ARM_CP_CONST, .resetvalue = 0, 8237 }; 8238 /* MPUIR is specific to PMSA V6+ */ 8239 ARMCPRegInfo id_mpuir_reginfo = { 8240 .name = "MPUIR", 8241 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8242 .access = PL1_R, .type = ARM_CP_CONST, 8243 .resetvalue = cpu->pmsav7_dregion << 8 8244 }; 8245 ARMCPRegInfo crn0_wi_reginfo = { 8246 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8247 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8248 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8249 }; 8250 #ifdef CONFIG_USER_ONLY 8251 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8252 { .name = "MIDR_EL1", 8253 .exported_bits = 0x00000000ffffffff }, 8254 { .name = "REVIDR_EL1" }, 8255 REGUSERINFO_SENTINEL 8256 }; 8257 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8258 #endif 8259 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8260 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8261 ARMCPRegInfo *r; 8262 /* Register the blanket "writes ignored" value first to cover the 8263 * whole space. Then update the specific ID registers to allow write 8264 * access, so that they ignore writes rather than causing them to 8265 * UNDEF. 8266 */ 8267 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8268 for (r = id_pre_v8_midr_cp_reginfo; 8269 r->type != ARM_CP_SENTINEL; r++) { 8270 r->access = PL1_RW; 8271 } 8272 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8273 r->access = PL1_RW; 8274 } 8275 id_mpuir_reginfo.access = PL1_RW; 8276 id_tlbtr_reginfo.access = PL1_RW; 8277 } 8278 if (arm_feature(env, ARM_FEATURE_V8)) { 8279 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8280 } else { 8281 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8282 } 8283 define_arm_cp_regs(cpu, id_cp_reginfo); 8284 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8285 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8286 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8287 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8288 } 8289 } 8290 8291 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8292 ARMCPRegInfo mpidr_cp_reginfo[] = { 8293 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8294 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8295 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8296 REGINFO_SENTINEL 8297 }; 8298 #ifdef CONFIG_USER_ONLY 8299 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8300 { .name = "MPIDR_EL1", 8301 .fixed_bits = 0x0000000080000000 }, 8302 REGUSERINFO_SENTINEL 8303 }; 8304 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8305 #endif 8306 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8307 } 8308 8309 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8310 ARMCPRegInfo auxcr_reginfo[] = { 8311 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8312 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8313 .access = PL1_RW, .accessfn = access_tacr, 8314 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8315 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8316 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8317 .access = PL2_RW, .type = ARM_CP_CONST, 8318 .resetvalue = 0 }, 8319 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8320 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8321 .access = PL3_RW, .type = ARM_CP_CONST, 8322 .resetvalue = 0 }, 8323 REGINFO_SENTINEL 8324 }; 8325 define_arm_cp_regs(cpu, auxcr_reginfo); 8326 if (cpu_isar_feature(aa32_ac2, cpu)) { 8327 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8328 } 8329 } 8330 8331 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8332 /* 8333 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8334 * There are two flavours: 8335 * (1) older 32-bit only cores have a simple 32-bit CBAR 8336 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8337 * 32-bit register visible to AArch32 at a different encoding 8338 * to the "flavour 1" register and with the bits rearranged to 8339 * be able to squash a 64-bit address into the 32-bit view. 8340 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8341 * in future if we support AArch32-only configs of some of the 8342 * AArch64 cores we might need to add a specific feature flag 8343 * to indicate cores with "flavour 2" CBAR. 8344 */ 8345 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8346 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8347 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8348 | extract64(cpu->reset_cbar, 32, 12); 8349 ARMCPRegInfo cbar_reginfo[] = { 8350 { .name = "CBAR", 8351 .type = ARM_CP_CONST, 8352 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8353 .access = PL1_R, .resetvalue = cbar32 }, 8354 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8355 .type = ARM_CP_CONST, 8356 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8357 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8358 REGINFO_SENTINEL 8359 }; 8360 /* We don't implement a r/w 64 bit CBAR currently */ 8361 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8362 define_arm_cp_regs(cpu, cbar_reginfo); 8363 } else { 8364 ARMCPRegInfo cbar = { 8365 .name = "CBAR", 8366 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8367 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8368 .fieldoffset = offsetof(CPUARMState, 8369 cp15.c15_config_base_address) 8370 }; 8371 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8372 cbar.access = PL1_R; 8373 cbar.fieldoffset = 0; 8374 cbar.type = ARM_CP_CONST; 8375 } 8376 define_one_arm_cp_reg(cpu, &cbar); 8377 } 8378 } 8379 8380 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8381 ARMCPRegInfo vbar_cp_reginfo[] = { 8382 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8383 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8384 .access = PL1_RW, .writefn = vbar_write, 8385 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8386 offsetof(CPUARMState, cp15.vbar_ns) }, 8387 .resetvalue = 0 }, 8388 REGINFO_SENTINEL 8389 }; 8390 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8391 } 8392 8393 /* Generic registers whose values depend on the implementation */ 8394 { 8395 ARMCPRegInfo sctlr = { 8396 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8397 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8398 .access = PL1_RW, .accessfn = access_tvm_trvm, 8399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8400 offsetof(CPUARMState, cp15.sctlr_ns) }, 8401 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8402 .raw_writefn = raw_write, 8403 }; 8404 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8405 /* Normally we would always end the TB on an SCTLR write, but Linux 8406 * arch/arm/mach-pxa/sleep.S expects two instructions following 8407 * an MMU enable to execute from cache. Imitate this behaviour. 8408 */ 8409 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8410 } 8411 define_one_arm_cp_reg(cpu, &sctlr); 8412 } 8413 8414 if (cpu_isar_feature(aa64_lor, cpu)) { 8415 define_arm_cp_regs(cpu, lor_reginfo); 8416 } 8417 if (cpu_isar_feature(aa64_pan, cpu)) { 8418 define_one_arm_cp_reg(cpu, &pan_reginfo); 8419 } 8420 #ifndef CONFIG_USER_ONLY 8421 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8422 define_arm_cp_regs(cpu, ats1e1_reginfo); 8423 } 8424 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8425 define_arm_cp_regs(cpu, ats1cp_reginfo); 8426 } 8427 #endif 8428 if (cpu_isar_feature(aa64_uao, cpu)) { 8429 define_one_arm_cp_reg(cpu, &uao_reginfo); 8430 } 8431 8432 if (cpu_isar_feature(aa64_dit, cpu)) { 8433 define_one_arm_cp_reg(cpu, &dit_reginfo); 8434 } 8435 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8436 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8437 } 8438 8439 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8440 define_arm_cp_regs(cpu, vhe_reginfo); 8441 } 8442 8443 if (cpu_isar_feature(aa64_sve, cpu)) { 8444 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8445 if (arm_feature(env, ARM_FEATURE_EL2)) { 8446 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8447 } else { 8448 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8449 } 8450 if (arm_feature(env, ARM_FEATURE_EL3)) { 8451 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8452 } 8453 } 8454 8455 #ifdef TARGET_AARCH64 8456 if (cpu_isar_feature(aa64_pauth, cpu)) { 8457 define_arm_cp_regs(cpu, pauth_reginfo); 8458 } 8459 if (cpu_isar_feature(aa64_rndr, cpu)) { 8460 define_arm_cp_regs(cpu, rndr_reginfo); 8461 } 8462 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8463 define_arm_cp_regs(cpu, tlbirange_reginfo); 8464 } 8465 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8466 define_arm_cp_regs(cpu, tlbios_reginfo); 8467 } 8468 #ifndef CONFIG_USER_ONLY 8469 /* Data Cache clean instructions up to PoP */ 8470 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8471 define_one_arm_cp_reg(cpu, dcpop_reg); 8472 8473 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8474 define_one_arm_cp_reg(cpu, dcpodp_reg); 8475 } 8476 } 8477 #endif /*CONFIG_USER_ONLY*/ 8478 8479 /* 8480 * If full MTE is enabled, add all of the system registers. 8481 * If only "instructions available at EL0" are enabled, 8482 * then define only a RAZ/WI version of PSTATE.TCO. 8483 */ 8484 if (cpu_isar_feature(aa64_mte, cpu)) { 8485 define_arm_cp_regs(cpu, mte_reginfo); 8486 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8487 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8488 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8489 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8490 } 8491 #endif 8492 8493 if (cpu_isar_feature(any_predinv, cpu)) { 8494 define_arm_cp_regs(cpu, predinv_reginfo); 8495 } 8496 8497 if (cpu_isar_feature(any_ccidx, cpu)) { 8498 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8499 } 8500 8501 #ifndef CONFIG_USER_ONLY 8502 /* 8503 * Register redirections and aliases must be done last, 8504 * after the registers from the other extensions have been defined. 8505 */ 8506 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8507 define_arm_vh_e2h_redirects_aliases(cpu); 8508 } 8509 #endif 8510 } 8511 8512 /* Sort alphabetically by type name, except for "any". */ 8513 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8514 { 8515 ObjectClass *class_a = (ObjectClass *)a; 8516 ObjectClass *class_b = (ObjectClass *)b; 8517 const char *name_a, *name_b; 8518 8519 name_a = object_class_get_name(class_a); 8520 name_b = object_class_get_name(class_b); 8521 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8522 return 1; 8523 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8524 return -1; 8525 } else { 8526 return strcmp(name_a, name_b); 8527 } 8528 } 8529 8530 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8531 { 8532 ObjectClass *oc = data; 8533 const char *typename; 8534 char *name; 8535 8536 typename = object_class_get_name(oc); 8537 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8538 qemu_printf(" %s\n", name); 8539 g_free(name); 8540 } 8541 8542 void arm_cpu_list(void) 8543 { 8544 GSList *list; 8545 8546 list = object_class_get_list(TYPE_ARM_CPU, false); 8547 list = g_slist_sort(list, arm_cpu_list_compare); 8548 qemu_printf("Available CPUs:\n"); 8549 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8550 g_slist_free(list); 8551 } 8552 8553 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8554 { 8555 ObjectClass *oc = data; 8556 CpuDefinitionInfoList **cpu_list = user_data; 8557 CpuDefinitionInfo *info; 8558 const char *typename; 8559 8560 typename = object_class_get_name(oc); 8561 info = g_malloc0(sizeof(*info)); 8562 info->name = g_strndup(typename, 8563 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8564 info->q_typename = g_strdup(typename); 8565 8566 QAPI_LIST_PREPEND(*cpu_list, info); 8567 } 8568 8569 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8570 { 8571 CpuDefinitionInfoList *cpu_list = NULL; 8572 GSList *list; 8573 8574 list = object_class_get_list(TYPE_ARM_CPU, false); 8575 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8576 g_slist_free(list); 8577 8578 return cpu_list; 8579 } 8580 8581 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8582 void *opaque, int state, int secstate, 8583 int crm, int opc1, int opc2, 8584 const char *name) 8585 { 8586 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8587 * add a single reginfo struct to the hash table. 8588 */ 8589 uint32_t *key = g_new(uint32_t, 1); 8590 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8591 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8592 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8593 8594 r2->name = g_strdup(name); 8595 /* Reset the secure state to the specific incoming state. This is 8596 * necessary as the register may have been defined with both states. 8597 */ 8598 r2->secure = secstate; 8599 8600 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8601 /* Register is banked (using both entries in array). 8602 * Overwriting fieldoffset as the array is only used to define 8603 * banked registers but later only fieldoffset is used. 8604 */ 8605 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8606 } 8607 8608 if (state == ARM_CP_STATE_AA32) { 8609 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8610 /* If the register is banked then we don't need to migrate or 8611 * reset the 32-bit instance in certain cases: 8612 * 8613 * 1) If the register has both 32-bit and 64-bit instances then we 8614 * can count on the 64-bit instance taking care of the 8615 * non-secure bank. 8616 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8617 * taking care of the secure bank. This requires that separate 8618 * 32 and 64-bit definitions are provided. 8619 */ 8620 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8621 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8622 r2->type |= ARM_CP_ALIAS; 8623 } 8624 } else if ((secstate != r->secure) && !ns) { 8625 /* The register is not banked so we only want to allow migration of 8626 * the non-secure instance. 8627 */ 8628 r2->type |= ARM_CP_ALIAS; 8629 } 8630 8631 if (r->state == ARM_CP_STATE_BOTH) { 8632 /* We assume it is a cp15 register if the .cp field is left unset. 8633 */ 8634 if (r2->cp == 0) { 8635 r2->cp = 15; 8636 } 8637 8638 #ifdef HOST_WORDS_BIGENDIAN 8639 if (r2->fieldoffset) { 8640 r2->fieldoffset += sizeof(uint32_t); 8641 } 8642 #endif 8643 } 8644 } 8645 if (state == ARM_CP_STATE_AA64) { 8646 /* To allow abbreviation of ARMCPRegInfo 8647 * definitions, we treat cp == 0 as equivalent to 8648 * the value for "standard guest-visible sysreg". 8649 * STATE_BOTH definitions are also always "standard 8650 * sysreg" in their AArch64 view (the .cp value may 8651 * be non-zero for the benefit of the AArch32 view). 8652 */ 8653 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8654 r2->cp = CP_REG_ARM64_SYSREG_CP; 8655 } 8656 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8657 r2->opc0, opc1, opc2); 8658 } else { 8659 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8660 } 8661 if (opaque) { 8662 r2->opaque = opaque; 8663 } 8664 /* reginfo passed to helpers is correct for the actual access, 8665 * and is never ARM_CP_STATE_BOTH: 8666 */ 8667 r2->state = state; 8668 /* Make sure reginfo passed to helpers for wildcarded regs 8669 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8670 */ 8671 r2->crm = crm; 8672 r2->opc1 = opc1; 8673 r2->opc2 = opc2; 8674 /* By convention, for wildcarded registers only the first 8675 * entry is used for migration; the others are marked as 8676 * ALIAS so we don't try to transfer the register 8677 * multiple times. Special registers (ie NOP/WFI) are 8678 * never migratable and not even raw-accessible. 8679 */ 8680 if ((r->type & ARM_CP_SPECIAL)) { 8681 r2->type |= ARM_CP_NO_RAW; 8682 } 8683 if (((r->crm == CP_ANY) && crm != 0) || 8684 ((r->opc1 == CP_ANY) && opc1 != 0) || 8685 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8686 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8687 } 8688 8689 /* Check that raw accesses are either forbidden or handled. Note that 8690 * we can't assert this earlier because the setup of fieldoffset for 8691 * banked registers has to be done first. 8692 */ 8693 if (!(r2->type & ARM_CP_NO_RAW)) { 8694 assert(!raw_accessors_invalid(r2)); 8695 } 8696 8697 /* Overriding of an existing definition must be explicitly 8698 * requested. 8699 */ 8700 if (!(r->type & ARM_CP_OVERRIDE)) { 8701 ARMCPRegInfo *oldreg; 8702 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8703 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8704 fprintf(stderr, "Register redefined: cp=%d %d bit " 8705 "crn=%d crm=%d opc1=%d opc2=%d, " 8706 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8707 r2->crn, r2->crm, r2->opc1, r2->opc2, 8708 oldreg->name, r2->name); 8709 g_assert_not_reached(); 8710 } 8711 } 8712 g_hash_table_insert(cpu->cp_regs, key, r2); 8713 } 8714 8715 8716 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8717 const ARMCPRegInfo *r, void *opaque) 8718 { 8719 /* Define implementations of coprocessor registers. 8720 * We store these in a hashtable because typically 8721 * there are less than 150 registers in a space which 8722 * is 16*16*16*8*8 = 262144 in size. 8723 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8724 * If a register is defined twice then the second definition is 8725 * used, so this can be used to define some generic registers and 8726 * then override them with implementation specific variations. 8727 * At least one of the original and the second definition should 8728 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8729 * against accidental use. 8730 * 8731 * The state field defines whether the register is to be 8732 * visible in the AArch32 or AArch64 execution state. If the 8733 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8734 * reginfo structure for the AArch32 view, which sees the lower 8735 * 32 bits of the 64 bit register. 8736 * 8737 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8738 * be wildcarded. AArch64 registers are always considered to be 64 8739 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8740 * the register, if any. 8741 */ 8742 int crm, opc1, opc2, state; 8743 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8744 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8745 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8746 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8747 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8748 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8749 /* 64 bit registers have only CRm and Opc1 fields */ 8750 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8751 /* op0 only exists in the AArch64 encodings */ 8752 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8753 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8754 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8755 /* 8756 * This API is only for Arm's system coprocessors (14 and 15) or 8757 * (M-profile or v7A-and-earlier only) for implementation defined 8758 * coprocessors in the range 0..7. Our decode assumes this, since 8759 * 8..13 can be used for other insns including VFP and Neon. See 8760 * valid_cp() in translate.c. Assert here that we haven't tried 8761 * to use an invalid coprocessor number. 8762 */ 8763 switch (r->state) { 8764 case ARM_CP_STATE_BOTH: 8765 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8766 if (r->cp == 0) { 8767 break; 8768 } 8769 /* fall through */ 8770 case ARM_CP_STATE_AA32: 8771 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8772 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8773 assert(r->cp >= 14 && r->cp <= 15); 8774 } else { 8775 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8776 } 8777 break; 8778 case ARM_CP_STATE_AA64: 8779 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8780 break; 8781 default: 8782 g_assert_not_reached(); 8783 } 8784 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8785 * encodes a minimum access level for the register. We roll this 8786 * runtime check into our general permission check code, so check 8787 * here that the reginfo's specified permissions are strict enough 8788 * to encompass the generic architectural permission check. 8789 */ 8790 if (r->state != ARM_CP_STATE_AA32) { 8791 int mask = 0; 8792 switch (r->opc1) { 8793 case 0: 8794 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8795 mask = PL0U_R | PL1_RW; 8796 break; 8797 case 1: case 2: 8798 /* min_EL EL1 */ 8799 mask = PL1_RW; 8800 break; 8801 case 3: 8802 /* min_EL EL0 */ 8803 mask = PL0_RW; 8804 break; 8805 case 4: 8806 case 5: 8807 /* min_EL EL2 */ 8808 mask = PL2_RW; 8809 break; 8810 case 6: 8811 /* min_EL EL3 */ 8812 mask = PL3_RW; 8813 break; 8814 case 7: 8815 /* min_EL EL1, secure mode only (we don't check the latter) */ 8816 mask = PL1_RW; 8817 break; 8818 default: 8819 /* broken reginfo with out-of-range opc1 */ 8820 assert(false); 8821 break; 8822 } 8823 /* assert our permissions are not too lax (stricter is fine) */ 8824 assert((r->access & ~mask) == 0); 8825 } 8826 8827 /* Check that the register definition has enough info to handle 8828 * reads and writes if they are permitted. 8829 */ 8830 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8831 if (r->access & PL3_R) { 8832 assert((r->fieldoffset || 8833 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8834 r->readfn); 8835 } 8836 if (r->access & PL3_W) { 8837 assert((r->fieldoffset || 8838 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8839 r->writefn); 8840 } 8841 } 8842 /* Bad type field probably means missing sentinel at end of reg list */ 8843 assert(cptype_valid(r->type)); 8844 for (crm = crmmin; crm <= crmmax; crm++) { 8845 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8846 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8847 for (state = ARM_CP_STATE_AA32; 8848 state <= ARM_CP_STATE_AA64; state++) { 8849 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8850 continue; 8851 } 8852 if (state == ARM_CP_STATE_AA32) { 8853 /* Under AArch32 CP registers can be common 8854 * (same for secure and non-secure world) or banked. 8855 */ 8856 char *name; 8857 8858 switch (r->secure) { 8859 case ARM_CP_SECSTATE_S: 8860 case ARM_CP_SECSTATE_NS: 8861 add_cpreg_to_hashtable(cpu, r, opaque, state, 8862 r->secure, crm, opc1, opc2, 8863 r->name); 8864 break; 8865 default: 8866 name = g_strdup_printf("%s_S", r->name); 8867 add_cpreg_to_hashtable(cpu, r, opaque, state, 8868 ARM_CP_SECSTATE_S, 8869 crm, opc1, opc2, name); 8870 g_free(name); 8871 add_cpreg_to_hashtable(cpu, r, opaque, state, 8872 ARM_CP_SECSTATE_NS, 8873 crm, opc1, opc2, r->name); 8874 break; 8875 } 8876 } else { 8877 /* AArch64 registers get mapped to non-secure instance 8878 * of AArch32 */ 8879 add_cpreg_to_hashtable(cpu, r, opaque, state, 8880 ARM_CP_SECSTATE_NS, 8881 crm, opc1, opc2, r->name); 8882 } 8883 } 8884 } 8885 } 8886 } 8887 } 8888 8889 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8890 const ARMCPRegInfo *regs, void *opaque) 8891 { 8892 /* Define a whole list of registers */ 8893 const ARMCPRegInfo *r; 8894 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8895 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8896 } 8897 } 8898 8899 /* 8900 * Modify ARMCPRegInfo for access from userspace. 8901 * 8902 * This is a data driven modification directed by 8903 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8904 * user-space cannot alter any values and dynamic values pertaining to 8905 * execution state are hidden from user space view anyway. 8906 */ 8907 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8908 { 8909 const ARMCPRegUserSpaceInfo *m; 8910 ARMCPRegInfo *r; 8911 8912 for (m = mods; m->name; m++) { 8913 GPatternSpec *pat = NULL; 8914 if (m->is_glob) { 8915 pat = g_pattern_spec_new(m->name); 8916 } 8917 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8918 if (pat && g_pattern_match_string(pat, r->name)) { 8919 r->type = ARM_CP_CONST; 8920 r->access = PL0U_R; 8921 r->resetvalue = 0; 8922 /* continue */ 8923 } else if (strcmp(r->name, m->name) == 0) { 8924 r->type = ARM_CP_CONST; 8925 r->access = PL0U_R; 8926 r->resetvalue &= m->exported_bits; 8927 r->resetvalue |= m->fixed_bits; 8928 break; 8929 } 8930 } 8931 if (pat) { 8932 g_pattern_spec_free(pat); 8933 } 8934 } 8935 } 8936 8937 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8938 { 8939 return g_hash_table_lookup(cpregs, &encoded_cp); 8940 } 8941 8942 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8943 uint64_t value) 8944 { 8945 /* Helper coprocessor write function for write-ignore registers */ 8946 } 8947 8948 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8949 { 8950 /* Helper coprocessor write function for read-as-zero registers */ 8951 return 0; 8952 } 8953 8954 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8955 { 8956 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8957 } 8958 8959 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8960 { 8961 /* Return true if it is not valid for us to switch to 8962 * this CPU mode (ie all the UNPREDICTABLE cases in 8963 * the ARM ARM CPSRWriteByInstr pseudocode). 8964 */ 8965 8966 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8967 if (write_type == CPSRWriteByInstr && 8968 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8969 mode == ARM_CPU_MODE_HYP)) { 8970 return 1; 8971 } 8972 8973 switch (mode) { 8974 case ARM_CPU_MODE_USR: 8975 return 0; 8976 case ARM_CPU_MODE_SYS: 8977 case ARM_CPU_MODE_SVC: 8978 case ARM_CPU_MODE_ABT: 8979 case ARM_CPU_MODE_UND: 8980 case ARM_CPU_MODE_IRQ: 8981 case ARM_CPU_MODE_FIQ: 8982 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8983 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8984 */ 8985 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8986 * and CPS are treated as illegal mode changes. 8987 */ 8988 if (write_type == CPSRWriteByInstr && 8989 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8990 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8991 return 1; 8992 } 8993 return 0; 8994 case ARM_CPU_MODE_HYP: 8995 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8996 case ARM_CPU_MODE_MON: 8997 return arm_current_el(env) < 3; 8998 default: 8999 return 1; 9000 } 9001 } 9002 9003 uint32_t cpsr_read(CPUARMState *env) 9004 { 9005 int ZF; 9006 ZF = (env->ZF == 0); 9007 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9008 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9009 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9010 | ((env->condexec_bits & 0xfc) << 8) 9011 | (env->GE << 16) | (env->daif & CPSR_AIF); 9012 } 9013 9014 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9015 CPSRWriteType write_type) 9016 { 9017 uint32_t changed_daif; 9018 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9019 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9020 9021 if (mask & CPSR_NZCV) { 9022 env->ZF = (~val) & CPSR_Z; 9023 env->NF = val; 9024 env->CF = (val >> 29) & 1; 9025 env->VF = (val << 3) & 0x80000000; 9026 } 9027 if (mask & CPSR_Q) 9028 env->QF = ((val & CPSR_Q) != 0); 9029 if (mask & CPSR_T) 9030 env->thumb = ((val & CPSR_T) != 0); 9031 if (mask & CPSR_IT_0_1) { 9032 env->condexec_bits &= ~3; 9033 env->condexec_bits |= (val >> 25) & 3; 9034 } 9035 if (mask & CPSR_IT_2_7) { 9036 env->condexec_bits &= 3; 9037 env->condexec_bits |= (val >> 8) & 0xfc; 9038 } 9039 if (mask & CPSR_GE) { 9040 env->GE = (val >> 16) & 0xf; 9041 } 9042 9043 /* In a V7 implementation that includes the security extensions but does 9044 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9045 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9046 * bits respectively. 9047 * 9048 * In a V8 implementation, it is permitted for privileged software to 9049 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9050 */ 9051 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9052 arm_feature(env, ARM_FEATURE_EL3) && 9053 !arm_feature(env, ARM_FEATURE_EL2) && 9054 !arm_is_secure(env)) { 9055 9056 changed_daif = (env->daif ^ val) & mask; 9057 9058 if (changed_daif & CPSR_A) { 9059 /* Check to see if we are allowed to change the masking of async 9060 * abort exceptions from a non-secure state. 9061 */ 9062 if (!(env->cp15.scr_el3 & SCR_AW)) { 9063 qemu_log_mask(LOG_GUEST_ERROR, 9064 "Ignoring attempt to switch CPSR_A flag from " 9065 "non-secure world with SCR.AW bit clear\n"); 9066 mask &= ~CPSR_A; 9067 } 9068 } 9069 9070 if (changed_daif & CPSR_F) { 9071 /* Check to see if we are allowed to change the masking of FIQ 9072 * exceptions from a non-secure state. 9073 */ 9074 if (!(env->cp15.scr_el3 & SCR_FW)) { 9075 qemu_log_mask(LOG_GUEST_ERROR, 9076 "Ignoring attempt to switch CPSR_F flag from " 9077 "non-secure world with SCR.FW bit clear\n"); 9078 mask &= ~CPSR_F; 9079 } 9080 9081 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9082 * If this bit is set software is not allowed to mask 9083 * FIQs, but is allowed to set CPSR_F to 0. 9084 */ 9085 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9086 (val & CPSR_F)) { 9087 qemu_log_mask(LOG_GUEST_ERROR, 9088 "Ignoring attempt to enable CPSR_F flag " 9089 "(non-maskable FIQ [NMFI] support enabled)\n"); 9090 mask &= ~CPSR_F; 9091 } 9092 } 9093 } 9094 9095 env->daif &= ~(CPSR_AIF & mask); 9096 env->daif |= val & CPSR_AIF & mask; 9097 9098 if (write_type != CPSRWriteRaw && 9099 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9100 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9101 /* Note that we can only get here in USR mode if this is a 9102 * gdb stub write; for this case we follow the architectural 9103 * behaviour for guest writes in USR mode of ignoring an attempt 9104 * to switch mode. (Those are caught by translate.c for writes 9105 * triggered by guest instructions.) 9106 */ 9107 mask &= ~CPSR_M; 9108 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9109 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9110 * v7, and has defined behaviour in v8: 9111 * + leave CPSR.M untouched 9112 * + allow changes to the other CPSR fields 9113 * + set PSTATE.IL 9114 * For user changes via the GDB stub, we don't set PSTATE.IL, 9115 * as this would be unnecessarily harsh for a user error. 9116 */ 9117 mask &= ~CPSR_M; 9118 if (write_type != CPSRWriteByGDBStub && 9119 arm_feature(env, ARM_FEATURE_V8)) { 9120 mask |= CPSR_IL; 9121 val |= CPSR_IL; 9122 } 9123 qemu_log_mask(LOG_GUEST_ERROR, 9124 "Illegal AArch32 mode switch attempt from %s to %s\n", 9125 aarch32_mode_name(env->uncached_cpsr), 9126 aarch32_mode_name(val)); 9127 } else { 9128 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9129 write_type == CPSRWriteExceptionReturn ? 9130 "Exception return from AArch32" : 9131 "AArch32 mode switch from", 9132 aarch32_mode_name(env->uncached_cpsr), 9133 aarch32_mode_name(val), env->regs[15]); 9134 switch_mode(env, val & CPSR_M); 9135 } 9136 } 9137 mask &= ~CACHED_CPSR_BITS; 9138 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9139 if (rebuild_hflags) { 9140 arm_rebuild_hflags(env); 9141 } 9142 } 9143 9144 /* Sign/zero extend */ 9145 uint32_t HELPER(sxtb16)(uint32_t x) 9146 { 9147 uint32_t res; 9148 res = (uint16_t)(int8_t)x; 9149 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9150 return res; 9151 } 9152 9153 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9154 { 9155 /* 9156 * Take a division-by-zero exception if necessary; otherwise return 9157 * to get the usual non-trapping division behaviour (result of 0) 9158 */ 9159 if (arm_feature(env, ARM_FEATURE_M) 9160 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9161 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9162 } 9163 } 9164 9165 uint32_t HELPER(uxtb16)(uint32_t x) 9166 { 9167 uint32_t res; 9168 res = (uint16_t)(uint8_t)x; 9169 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9170 return res; 9171 } 9172 9173 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9174 { 9175 if (den == 0) { 9176 handle_possible_div0_trap(env, GETPC()); 9177 return 0; 9178 } 9179 if (num == INT_MIN && den == -1) { 9180 return INT_MIN; 9181 } 9182 return num / den; 9183 } 9184 9185 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9186 { 9187 if (den == 0) { 9188 handle_possible_div0_trap(env, GETPC()); 9189 return 0; 9190 } 9191 return num / den; 9192 } 9193 9194 uint32_t HELPER(rbit)(uint32_t x) 9195 { 9196 return revbit32(x); 9197 } 9198 9199 #ifdef CONFIG_USER_ONLY 9200 9201 static void switch_mode(CPUARMState *env, int mode) 9202 { 9203 ARMCPU *cpu = env_archcpu(env); 9204 9205 if (mode != ARM_CPU_MODE_USR) { 9206 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9207 } 9208 } 9209 9210 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9211 uint32_t cur_el, bool secure) 9212 { 9213 return 1; 9214 } 9215 9216 void aarch64_sync_64_to_32(CPUARMState *env) 9217 { 9218 g_assert_not_reached(); 9219 } 9220 9221 #else 9222 9223 static void switch_mode(CPUARMState *env, int mode) 9224 { 9225 int old_mode; 9226 int i; 9227 9228 old_mode = env->uncached_cpsr & CPSR_M; 9229 if (mode == old_mode) 9230 return; 9231 9232 if (old_mode == ARM_CPU_MODE_FIQ) { 9233 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9234 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9235 } else if (mode == ARM_CPU_MODE_FIQ) { 9236 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9237 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9238 } 9239 9240 i = bank_number(old_mode); 9241 env->banked_r13[i] = env->regs[13]; 9242 env->banked_spsr[i] = env->spsr; 9243 9244 i = bank_number(mode); 9245 env->regs[13] = env->banked_r13[i]; 9246 env->spsr = env->banked_spsr[i]; 9247 9248 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9249 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9250 } 9251 9252 /* Physical Interrupt Target EL Lookup Table 9253 * 9254 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9255 * 9256 * The below multi-dimensional table is used for looking up the target 9257 * exception level given numerous condition criteria. Specifically, the 9258 * target EL is based on SCR and HCR routing controls as well as the 9259 * currently executing EL and secure state. 9260 * 9261 * Dimensions: 9262 * target_el_table[2][2][2][2][2][4] 9263 * | | | | | +--- Current EL 9264 * | | | | +------ Non-secure(0)/Secure(1) 9265 * | | | +--------- HCR mask override 9266 * | | +------------ SCR exec state control 9267 * | +--------------- SCR mask override 9268 * +------------------ 32-bit(0)/64-bit(1) EL3 9269 * 9270 * The table values are as such: 9271 * 0-3 = EL0-EL3 9272 * -1 = Cannot occur 9273 * 9274 * The ARM ARM target EL table includes entries indicating that an "exception 9275 * is not taken". The two cases where this is applicable are: 9276 * 1) An exception is taken from EL3 but the SCR does not have the exception 9277 * routed to EL3. 9278 * 2) An exception is taken from EL2 but the HCR does not have the exception 9279 * routed to EL2. 9280 * In these two cases, the below table contain a target of EL1. This value is 9281 * returned as it is expected that the consumer of the table data will check 9282 * for "target EL >= current EL" to ensure the exception is not taken. 9283 * 9284 * SCR HCR 9285 * 64 EA AMO From 9286 * BIT IRQ IMO Non-secure Secure 9287 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9288 */ 9289 static const int8_t target_el_table[2][2][2][2][2][4] = { 9290 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9291 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9292 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9293 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9294 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9295 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9296 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9297 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9298 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9299 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9300 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9301 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9302 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9303 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9304 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9305 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9306 }; 9307 9308 /* 9309 * Determine the target EL for physical exceptions 9310 */ 9311 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9312 uint32_t cur_el, bool secure) 9313 { 9314 CPUARMState *env = cs->env_ptr; 9315 bool rw; 9316 bool scr; 9317 bool hcr; 9318 int target_el; 9319 /* Is the highest EL AArch64? */ 9320 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9321 uint64_t hcr_el2; 9322 9323 if (arm_feature(env, ARM_FEATURE_EL3)) { 9324 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9325 } else { 9326 /* Either EL2 is the highest EL (and so the EL2 register width 9327 * is given by is64); or there is no EL2 or EL3, in which case 9328 * the value of 'rw' does not affect the table lookup anyway. 9329 */ 9330 rw = is64; 9331 } 9332 9333 hcr_el2 = arm_hcr_el2_eff(env); 9334 switch (excp_idx) { 9335 case EXCP_IRQ: 9336 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9337 hcr = hcr_el2 & HCR_IMO; 9338 break; 9339 case EXCP_FIQ: 9340 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9341 hcr = hcr_el2 & HCR_FMO; 9342 break; 9343 default: 9344 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9345 hcr = hcr_el2 & HCR_AMO; 9346 break; 9347 }; 9348 9349 /* 9350 * For these purposes, TGE and AMO/IMO/FMO both force the 9351 * interrupt to EL2. Fold TGE into the bit extracted above. 9352 */ 9353 hcr |= (hcr_el2 & HCR_TGE) != 0; 9354 9355 /* Perform a table-lookup for the target EL given the current state */ 9356 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9357 9358 assert(target_el > 0); 9359 9360 return target_el; 9361 } 9362 9363 void arm_log_exception(CPUState *cs) 9364 { 9365 int idx = cs->exception_index; 9366 9367 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9368 const char *exc = NULL; 9369 static const char * const excnames[] = { 9370 [EXCP_UDEF] = "Undefined Instruction", 9371 [EXCP_SWI] = "SVC", 9372 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9373 [EXCP_DATA_ABORT] = "Data Abort", 9374 [EXCP_IRQ] = "IRQ", 9375 [EXCP_FIQ] = "FIQ", 9376 [EXCP_BKPT] = "Breakpoint", 9377 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9378 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9379 [EXCP_HVC] = "Hypervisor Call", 9380 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9381 [EXCP_SMC] = "Secure Monitor Call", 9382 [EXCP_VIRQ] = "Virtual IRQ", 9383 [EXCP_VFIQ] = "Virtual FIQ", 9384 [EXCP_SEMIHOST] = "Semihosting call", 9385 [EXCP_NOCP] = "v7M NOCP UsageFault", 9386 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9387 [EXCP_STKOF] = "v8M STKOF UsageFault", 9388 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9389 [EXCP_LSERR] = "v8M LSERR UsageFault", 9390 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9391 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9392 }; 9393 9394 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9395 exc = excnames[idx]; 9396 } 9397 if (!exc) { 9398 exc = "unknown"; 9399 } 9400 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9401 idx, exc, cs->cpu_index); 9402 } 9403 } 9404 9405 /* 9406 * Function used to synchronize QEMU's AArch64 register set with AArch32 9407 * register set. This is necessary when switching between AArch32 and AArch64 9408 * execution state. 9409 */ 9410 void aarch64_sync_32_to_64(CPUARMState *env) 9411 { 9412 int i; 9413 uint32_t mode = env->uncached_cpsr & CPSR_M; 9414 9415 /* We can blanket copy R[0:7] to X[0:7] */ 9416 for (i = 0; i < 8; i++) { 9417 env->xregs[i] = env->regs[i]; 9418 } 9419 9420 /* 9421 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9422 * Otherwise, they come from the banked user regs. 9423 */ 9424 if (mode == ARM_CPU_MODE_FIQ) { 9425 for (i = 8; i < 13; i++) { 9426 env->xregs[i] = env->usr_regs[i - 8]; 9427 } 9428 } else { 9429 for (i = 8; i < 13; i++) { 9430 env->xregs[i] = env->regs[i]; 9431 } 9432 } 9433 9434 /* 9435 * Registers x13-x23 are the various mode SP and FP registers. Registers 9436 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9437 * from the mode banked register. 9438 */ 9439 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9440 env->xregs[13] = env->regs[13]; 9441 env->xregs[14] = env->regs[14]; 9442 } else { 9443 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9444 /* HYP is an exception in that it is copied from r14 */ 9445 if (mode == ARM_CPU_MODE_HYP) { 9446 env->xregs[14] = env->regs[14]; 9447 } else { 9448 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9449 } 9450 } 9451 9452 if (mode == ARM_CPU_MODE_HYP) { 9453 env->xregs[15] = env->regs[13]; 9454 } else { 9455 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9456 } 9457 9458 if (mode == ARM_CPU_MODE_IRQ) { 9459 env->xregs[16] = env->regs[14]; 9460 env->xregs[17] = env->regs[13]; 9461 } else { 9462 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9463 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9464 } 9465 9466 if (mode == ARM_CPU_MODE_SVC) { 9467 env->xregs[18] = env->regs[14]; 9468 env->xregs[19] = env->regs[13]; 9469 } else { 9470 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9471 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9472 } 9473 9474 if (mode == ARM_CPU_MODE_ABT) { 9475 env->xregs[20] = env->regs[14]; 9476 env->xregs[21] = env->regs[13]; 9477 } else { 9478 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9479 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9480 } 9481 9482 if (mode == ARM_CPU_MODE_UND) { 9483 env->xregs[22] = env->regs[14]; 9484 env->xregs[23] = env->regs[13]; 9485 } else { 9486 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9487 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9488 } 9489 9490 /* 9491 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9492 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9493 * FIQ bank for r8-r14. 9494 */ 9495 if (mode == ARM_CPU_MODE_FIQ) { 9496 for (i = 24; i < 31; i++) { 9497 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9498 } 9499 } else { 9500 for (i = 24; i < 29; i++) { 9501 env->xregs[i] = env->fiq_regs[i - 24]; 9502 } 9503 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9504 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9505 } 9506 9507 env->pc = env->regs[15]; 9508 } 9509 9510 /* 9511 * Function used to synchronize QEMU's AArch32 register set with AArch64 9512 * register set. This is necessary when switching between AArch32 and AArch64 9513 * execution state. 9514 */ 9515 void aarch64_sync_64_to_32(CPUARMState *env) 9516 { 9517 int i; 9518 uint32_t mode = env->uncached_cpsr & CPSR_M; 9519 9520 /* We can blanket copy X[0:7] to R[0:7] */ 9521 for (i = 0; i < 8; i++) { 9522 env->regs[i] = env->xregs[i]; 9523 } 9524 9525 /* 9526 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9527 * Otherwise, we copy x8-x12 into the banked user regs. 9528 */ 9529 if (mode == ARM_CPU_MODE_FIQ) { 9530 for (i = 8; i < 13; i++) { 9531 env->usr_regs[i - 8] = env->xregs[i]; 9532 } 9533 } else { 9534 for (i = 8; i < 13; i++) { 9535 env->regs[i] = env->xregs[i]; 9536 } 9537 } 9538 9539 /* 9540 * Registers r13 & r14 depend on the current mode. 9541 * If we are in a given mode, we copy the corresponding x registers to r13 9542 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9543 * for the mode. 9544 */ 9545 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9546 env->regs[13] = env->xregs[13]; 9547 env->regs[14] = env->xregs[14]; 9548 } else { 9549 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9550 9551 /* 9552 * HYP is an exception in that it does not have its own banked r14 but 9553 * shares the USR r14 9554 */ 9555 if (mode == ARM_CPU_MODE_HYP) { 9556 env->regs[14] = env->xregs[14]; 9557 } else { 9558 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9559 } 9560 } 9561 9562 if (mode == ARM_CPU_MODE_HYP) { 9563 env->regs[13] = env->xregs[15]; 9564 } else { 9565 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9566 } 9567 9568 if (mode == ARM_CPU_MODE_IRQ) { 9569 env->regs[14] = env->xregs[16]; 9570 env->regs[13] = env->xregs[17]; 9571 } else { 9572 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9573 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9574 } 9575 9576 if (mode == ARM_CPU_MODE_SVC) { 9577 env->regs[14] = env->xregs[18]; 9578 env->regs[13] = env->xregs[19]; 9579 } else { 9580 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9581 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9582 } 9583 9584 if (mode == ARM_CPU_MODE_ABT) { 9585 env->regs[14] = env->xregs[20]; 9586 env->regs[13] = env->xregs[21]; 9587 } else { 9588 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9589 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9590 } 9591 9592 if (mode == ARM_CPU_MODE_UND) { 9593 env->regs[14] = env->xregs[22]; 9594 env->regs[13] = env->xregs[23]; 9595 } else { 9596 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9597 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9598 } 9599 9600 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9601 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9602 * FIQ bank for r8-r14. 9603 */ 9604 if (mode == ARM_CPU_MODE_FIQ) { 9605 for (i = 24; i < 31; i++) { 9606 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9607 } 9608 } else { 9609 for (i = 24; i < 29; i++) { 9610 env->fiq_regs[i - 24] = env->xregs[i]; 9611 } 9612 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9613 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9614 } 9615 9616 env->regs[15] = env->pc; 9617 } 9618 9619 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9620 uint32_t mask, uint32_t offset, 9621 uint32_t newpc) 9622 { 9623 int new_el; 9624 9625 /* Change the CPU state so as to actually take the exception. */ 9626 switch_mode(env, new_mode); 9627 9628 /* 9629 * For exceptions taken to AArch32 we must clear the SS bit in both 9630 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9631 */ 9632 env->pstate &= ~PSTATE_SS; 9633 env->spsr = cpsr_read(env); 9634 /* Clear IT bits. */ 9635 env->condexec_bits = 0; 9636 /* Switch to the new mode, and to the correct instruction set. */ 9637 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9638 9639 /* This must be after mode switching. */ 9640 new_el = arm_current_el(env); 9641 9642 /* Set new mode endianness */ 9643 env->uncached_cpsr &= ~CPSR_E; 9644 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9645 env->uncached_cpsr |= CPSR_E; 9646 } 9647 /* J and IL must always be cleared for exception entry */ 9648 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9649 env->daif |= mask; 9650 9651 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9652 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9653 env->uncached_cpsr |= CPSR_SSBS; 9654 } else { 9655 env->uncached_cpsr &= ~CPSR_SSBS; 9656 } 9657 } 9658 9659 if (new_mode == ARM_CPU_MODE_HYP) { 9660 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9661 env->elr_el[2] = env->regs[15]; 9662 } else { 9663 /* CPSR.PAN is normally preserved preserved unless... */ 9664 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9665 switch (new_el) { 9666 case 3: 9667 if (!arm_is_secure_below_el3(env)) { 9668 /* ... the target is EL3, from non-secure state. */ 9669 env->uncached_cpsr &= ~CPSR_PAN; 9670 break; 9671 } 9672 /* ... the target is EL3, from secure state ... */ 9673 /* fall through */ 9674 case 1: 9675 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9676 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9677 env->uncached_cpsr |= CPSR_PAN; 9678 } 9679 break; 9680 } 9681 } 9682 /* 9683 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9684 * and we should just guard the thumb mode on V4 9685 */ 9686 if (arm_feature(env, ARM_FEATURE_V4T)) { 9687 env->thumb = 9688 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9689 } 9690 env->regs[14] = env->regs[15] + offset; 9691 } 9692 env->regs[15] = newpc; 9693 arm_rebuild_hflags(env); 9694 } 9695 9696 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9697 { 9698 /* 9699 * Handle exception entry to Hyp mode; this is sufficiently 9700 * different to entry to other AArch32 modes that we handle it 9701 * separately here. 9702 * 9703 * The vector table entry used is always the 0x14 Hyp mode entry point, 9704 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9705 * The offset applied to the preferred return address is always zero 9706 * (see DDI0487C.a section G1.12.3). 9707 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9708 */ 9709 uint32_t addr, mask; 9710 ARMCPU *cpu = ARM_CPU(cs); 9711 CPUARMState *env = &cpu->env; 9712 9713 switch (cs->exception_index) { 9714 case EXCP_UDEF: 9715 addr = 0x04; 9716 break; 9717 case EXCP_SWI: 9718 addr = 0x08; 9719 break; 9720 case EXCP_BKPT: 9721 /* Fall through to prefetch abort. */ 9722 case EXCP_PREFETCH_ABORT: 9723 env->cp15.ifar_s = env->exception.vaddress; 9724 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9725 (uint32_t)env->exception.vaddress); 9726 addr = 0x0c; 9727 break; 9728 case EXCP_DATA_ABORT: 9729 env->cp15.dfar_s = env->exception.vaddress; 9730 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9731 (uint32_t)env->exception.vaddress); 9732 addr = 0x10; 9733 break; 9734 case EXCP_IRQ: 9735 addr = 0x18; 9736 break; 9737 case EXCP_FIQ: 9738 addr = 0x1c; 9739 break; 9740 case EXCP_HVC: 9741 addr = 0x08; 9742 break; 9743 case EXCP_HYP_TRAP: 9744 addr = 0x14; 9745 break; 9746 default: 9747 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9748 } 9749 9750 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9751 if (!arm_feature(env, ARM_FEATURE_V8)) { 9752 /* 9753 * QEMU syndrome values are v8-style. v7 has the IL bit 9754 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9755 * If this is a v7 CPU, squash the IL bit in those cases. 9756 */ 9757 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9758 (cs->exception_index == EXCP_DATA_ABORT && 9759 !(env->exception.syndrome & ARM_EL_ISV)) || 9760 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9761 env->exception.syndrome &= ~ARM_EL_IL; 9762 } 9763 } 9764 env->cp15.esr_el[2] = env->exception.syndrome; 9765 } 9766 9767 if (arm_current_el(env) != 2 && addr < 0x14) { 9768 addr = 0x14; 9769 } 9770 9771 mask = 0; 9772 if (!(env->cp15.scr_el3 & SCR_EA)) { 9773 mask |= CPSR_A; 9774 } 9775 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9776 mask |= CPSR_I; 9777 } 9778 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9779 mask |= CPSR_F; 9780 } 9781 9782 addr += env->cp15.hvbar; 9783 9784 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9785 } 9786 9787 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9788 { 9789 ARMCPU *cpu = ARM_CPU(cs); 9790 CPUARMState *env = &cpu->env; 9791 uint32_t addr; 9792 uint32_t mask; 9793 int new_mode; 9794 uint32_t offset; 9795 uint32_t moe; 9796 9797 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9798 switch (syn_get_ec(env->exception.syndrome)) { 9799 case EC_BREAKPOINT: 9800 case EC_BREAKPOINT_SAME_EL: 9801 moe = 1; 9802 break; 9803 case EC_WATCHPOINT: 9804 case EC_WATCHPOINT_SAME_EL: 9805 moe = 10; 9806 break; 9807 case EC_AA32_BKPT: 9808 moe = 3; 9809 break; 9810 case EC_VECTORCATCH: 9811 moe = 5; 9812 break; 9813 default: 9814 moe = 0; 9815 break; 9816 } 9817 9818 if (moe) { 9819 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9820 } 9821 9822 if (env->exception.target_el == 2) { 9823 arm_cpu_do_interrupt_aarch32_hyp(cs); 9824 return; 9825 } 9826 9827 switch (cs->exception_index) { 9828 case EXCP_UDEF: 9829 new_mode = ARM_CPU_MODE_UND; 9830 addr = 0x04; 9831 mask = CPSR_I; 9832 if (env->thumb) 9833 offset = 2; 9834 else 9835 offset = 4; 9836 break; 9837 case EXCP_SWI: 9838 new_mode = ARM_CPU_MODE_SVC; 9839 addr = 0x08; 9840 mask = CPSR_I; 9841 /* The PC already points to the next instruction. */ 9842 offset = 0; 9843 break; 9844 case EXCP_BKPT: 9845 /* Fall through to prefetch abort. */ 9846 case EXCP_PREFETCH_ABORT: 9847 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9848 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9849 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9850 env->exception.fsr, (uint32_t)env->exception.vaddress); 9851 new_mode = ARM_CPU_MODE_ABT; 9852 addr = 0x0c; 9853 mask = CPSR_A | CPSR_I; 9854 offset = 4; 9855 break; 9856 case EXCP_DATA_ABORT: 9857 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9858 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9859 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9860 env->exception.fsr, 9861 (uint32_t)env->exception.vaddress); 9862 new_mode = ARM_CPU_MODE_ABT; 9863 addr = 0x10; 9864 mask = CPSR_A | CPSR_I; 9865 offset = 8; 9866 break; 9867 case EXCP_IRQ: 9868 new_mode = ARM_CPU_MODE_IRQ; 9869 addr = 0x18; 9870 /* Disable IRQ and imprecise data aborts. */ 9871 mask = CPSR_A | CPSR_I; 9872 offset = 4; 9873 if (env->cp15.scr_el3 & SCR_IRQ) { 9874 /* IRQ routed to monitor mode */ 9875 new_mode = ARM_CPU_MODE_MON; 9876 mask |= CPSR_F; 9877 } 9878 break; 9879 case EXCP_FIQ: 9880 new_mode = ARM_CPU_MODE_FIQ; 9881 addr = 0x1c; 9882 /* Disable FIQ, IRQ and imprecise data aborts. */ 9883 mask = CPSR_A | CPSR_I | CPSR_F; 9884 if (env->cp15.scr_el3 & SCR_FIQ) { 9885 /* FIQ routed to monitor mode */ 9886 new_mode = ARM_CPU_MODE_MON; 9887 } 9888 offset = 4; 9889 break; 9890 case EXCP_VIRQ: 9891 new_mode = ARM_CPU_MODE_IRQ; 9892 addr = 0x18; 9893 /* Disable IRQ and imprecise data aborts. */ 9894 mask = CPSR_A | CPSR_I; 9895 offset = 4; 9896 break; 9897 case EXCP_VFIQ: 9898 new_mode = ARM_CPU_MODE_FIQ; 9899 addr = 0x1c; 9900 /* Disable FIQ, IRQ and imprecise data aborts. */ 9901 mask = CPSR_A | CPSR_I | CPSR_F; 9902 offset = 4; 9903 break; 9904 case EXCP_SMC: 9905 new_mode = ARM_CPU_MODE_MON; 9906 addr = 0x08; 9907 mask = CPSR_A | CPSR_I | CPSR_F; 9908 offset = 0; 9909 break; 9910 default: 9911 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9912 return; /* Never happens. Keep compiler happy. */ 9913 } 9914 9915 if (new_mode == ARM_CPU_MODE_MON) { 9916 addr += env->cp15.mvbar; 9917 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9918 /* High vectors. When enabled, base address cannot be remapped. */ 9919 addr += 0xffff0000; 9920 } else { 9921 /* ARM v7 architectures provide a vector base address register to remap 9922 * the interrupt vector table. 9923 * This register is only followed in non-monitor mode, and is banked. 9924 * Note: only bits 31:5 are valid. 9925 */ 9926 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9927 } 9928 9929 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9930 env->cp15.scr_el3 &= ~SCR_NS; 9931 } 9932 9933 take_aarch32_exception(env, new_mode, mask, offset, addr); 9934 } 9935 9936 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9937 { 9938 /* 9939 * Return the register number of the AArch64 view of the AArch32 9940 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9941 * be that of the AArch32 mode the exception came from. 9942 */ 9943 int mode = env->uncached_cpsr & CPSR_M; 9944 9945 switch (aarch32_reg) { 9946 case 0 ... 7: 9947 return aarch32_reg; 9948 case 8 ... 12: 9949 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9950 case 13: 9951 switch (mode) { 9952 case ARM_CPU_MODE_USR: 9953 case ARM_CPU_MODE_SYS: 9954 return 13; 9955 case ARM_CPU_MODE_HYP: 9956 return 15; 9957 case ARM_CPU_MODE_IRQ: 9958 return 17; 9959 case ARM_CPU_MODE_SVC: 9960 return 19; 9961 case ARM_CPU_MODE_ABT: 9962 return 21; 9963 case ARM_CPU_MODE_UND: 9964 return 23; 9965 case ARM_CPU_MODE_FIQ: 9966 return 29; 9967 default: 9968 g_assert_not_reached(); 9969 } 9970 case 14: 9971 switch (mode) { 9972 case ARM_CPU_MODE_USR: 9973 case ARM_CPU_MODE_SYS: 9974 case ARM_CPU_MODE_HYP: 9975 return 14; 9976 case ARM_CPU_MODE_IRQ: 9977 return 16; 9978 case ARM_CPU_MODE_SVC: 9979 return 18; 9980 case ARM_CPU_MODE_ABT: 9981 return 20; 9982 case ARM_CPU_MODE_UND: 9983 return 22; 9984 case ARM_CPU_MODE_FIQ: 9985 return 30; 9986 default: 9987 g_assert_not_reached(); 9988 } 9989 case 15: 9990 return 31; 9991 default: 9992 g_assert_not_reached(); 9993 } 9994 } 9995 9996 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9997 { 9998 uint32_t ret = cpsr_read(env); 9999 10000 /* Move DIT to the correct location for SPSR_ELx */ 10001 if (ret & CPSR_DIT) { 10002 ret &= ~CPSR_DIT; 10003 ret |= PSTATE_DIT; 10004 } 10005 /* Merge PSTATE.SS into SPSR_ELx */ 10006 ret |= env->pstate & PSTATE_SS; 10007 10008 return ret; 10009 } 10010 10011 /* Handle exception entry to a target EL which is using AArch64 */ 10012 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10013 { 10014 ARMCPU *cpu = ARM_CPU(cs); 10015 CPUARMState *env = &cpu->env; 10016 unsigned int new_el = env->exception.target_el; 10017 target_ulong addr = env->cp15.vbar_el[new_el]; 10018 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10019 unsigned int old_mode; 10020 unsigned int cur_el = arm_current_el(env); 10021 int rt; 10022 10023 /* 10024 * Note that new_el can never be 0. If cur_el is 0, then 10025 * el0_a64 is is_a64(), else el0_a64 is ignored. 10026 */ 10027 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10028 10029 if (cur_el < new_el) { 10030 /* Entry vector offset depends on whether the implemented EL 10031 * immediately lower than the target level is using AArch32 or AArch64 10032 */ 10033 bool is_aa64; 10034 uint64_t hcr; 10035 10036 switch (new_el) { 10037 case 3: 10038 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10039 break; 10040 case 2: 10041 hcr = arm_hcr_el2_eff(env); 10042 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10043 is_aa64 = (hcr & HCR_RW) != 0; 10044 break; 10045 } 10046 /* fall through */ 10047 case 1: 10048 is_aa64 = is_a64(env); 10049 break; 10050 default: 10051 g_assert_not_reached(); 10052 } 10053 10054 if (is_aa64) { 10055 addr += 0x400; 10056 } else { 10057 addr += 0x600; 10058 } 10059 } else if (pstate_read(env) & PSTATE_SP) { 10060 addr += 0x200; 10061 } 10062 10063 switch (cs->exception_index) { 10064 case EXCP_PREFETCH_ABORT: 10065 case EXCP_DATA_ABORT: 10066 env->cp15.far_el[new_el] = env->exception.vaddress; 10067 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10068 env->cp15.far_el[new_el]); 10069 /* fall through */ 10070 case EXCP_BKPT: 10071 case EXCP_UDEF: 10072 case EXCP_SWI: 10073 case EXCP_HVC: 10074 case EXCP_HYP_TRAP: 10075 case EXCP_SMC: 10076 switch (syn_get_ec(env->exception.syndrome)) { 10077 case EC_ADVSIMDFPACCESSTRAP: 10078 /* 10079 * QEMU internal FP/SIMD syndromes from AArch32 include the 10080 * TA and coproc fields which are only exposed if the exception 10081 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10082 * AArch64 format syndrome. 10083 */ 10084 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10085 break; 10086 case EC_CP14RTTRAP: 10087 case EC_CP15RTTRAP: 10088 case EC_CP14DTTRAP: 10089 /* 10090 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10091 * the raw register field from the insn; when taking this to 10092 * AArch64 we must convert it to the AArch64 view of the register 10093 * number. Notice that we read a 4-bit AArch32 register number and 10094 * write back a 5-bit AArch64 one. 10095 */ 10096 rt = extract32(env->exception.syndrome, 5, 4); 10097 rt = aarch64_regnum(env, rt); 10098 env->exception.syndrome = deposit32(env->exception.syndrome, 10099 5, 5, rt); 10100 break; 10101 case EC_CP15RRTTRAP: 10102 case EC_CP14RRTTRAP: 10103 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10104 rt = extract32(env->exception.syndrome, 5, 4); 10105 rt = aarch64_regnum(env, rt); 10106 env->exception.syndrome = deposit32(env->exception.syndrome, 10107 5, 5, rt); 10108 rt = extract32(env->exception.syndrome, 10, 4); 10109 rt = aarch64_regnum(env, rt); 10110 env->exception.syndrome = deposit32(env->exception.syndrome, 10111 10, 5, rt); 10112 break; 10113 } 10114 env->cp15.esr_el[new_el] = env->exception.syndrome; 10115 break; 10116 case EXCP_IRQ: 10117 case EXCP_VIRQ: 10118 addr += 0x80; 10119 break; 10120 case EXCP_FIQ: 10121 case EXCP_VFIQ: 10122 addr += 0x100; 10123 break; 10124 default: 10125 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10126 } 10127 10128 if (is_a64(env)) { 10129 old_mode = pstate_read(env); 10130 aarch64_save_sp(env, arm_current_el(env)); 10131 env->elr_el[new_el] = env->pc; 10132 } else { 10133 old_mode = cpsr_read_for_spsr_elx(env); 10134 env->elr_el[new_el] = env->regs[15]; 10135 10136 aarch64_sync_32_to_64(env); 10137 10138 env->condexec_bits = 0; 10139 } 10140 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10141 10142 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10143 env->elr_el[new_el]); 10144 10145 if (cpu_isar_feature(aa64_pan, cpu)) { 10146 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10147 new_mode |= old_mode & PSTATE_PAN; 10148 switch (new_el) { 10149 case 2: 10150 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10151 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10152 != (HCR_E2H | HCR_TGE)) { 10153 break; 10154 } 10155 /* fall through */ 10156 case 1: 10157 /* ... the target is EL1 ... */ 10158 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10159 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10160 new_mode |= PSTATE_PAN; 10161 } 10162 break; 10163 } 10164 } 10165 if (cpu_isar_feature(aa64_mte, cpu)) { 10166 new_mode |= PSTATE_TCO; 10167 } 10168 10169 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10170 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10171 new_mode |= PSTATE_SSBS; 10172 } else { 10173 new_mode &= ~PSTATE_SSBS; 10174 } 10175 } 10176 10177 pstate_write(env, PSTATE_DAIF | new_mode); 10178 env->aarch64 = 1; 10179 aarch64_restore_sp(env, new_el); 10180 helper_rebuild_hflags_a64(env, new_el); 10181 10182 env->pc = addr; 10183 10184 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10185 new_el, env->pc, pstate_read(env)); 10186 } 10187 10188 /* 10189 * Do semihosting call and set the appropriate return value. All the 10190 * permission and validity checks have been done at translate time. 10191 * 10192 * We only see semihosting exceptions in TCG only as they are not 10193 * trapped to the hypervisor in KVM. 10194 */ 10195 #ifdef CONFIG_TCG 10196 static void handle_semihosting(CPUState *cs) 10197 { 10198 ARMCPU *cpu = ARM_CPU(cs); 10199 CPUARMState *env = &cpu->env; 10200 10201 if (is_a64(env)) { 10202 qemu_log_mask(CPU_LOG_INT, 10203 "...handling as semihosting call 0x%" PRIx64 "\n", 10204 env->xregs[0]); 10205 env->xregs[0] = do_common_semihosting(cs); 10206 env->pc += 4; 10207 } else { 10208 qemu_log_mask(CPU_LOG_INT, 10209 "...handling as semihosting call 0x%x\n", 10210 env->regs[0]); 10211 env->regs[0] = do_common_semihosting(cs); 10212 env->regs[15] += env->thumb ? 2 : 4; 10213 } 10214 } 10215 #endif 10216 10217 /* Handle a CPU exception for A and R profile CPUs. 10218 * Do any appropriate logging, handle PSCI calls, and then hand off 10219 * to the AArch64-entry or AArch32-entry function depending on the 10220 * target exception level's register width. 10221 * 10222 * Note: this is used for both TCG (as the do_interrupt tcg op), 10223 * and KVM to re-inject guest debug exceptions, and to 10224 * inject a Synchronous-External-Abort. 10225 */ 10226 void arm_cpu_do_interrupt(CPUState *cs) 10227 { 10228 ARMCPU *cpu = ARM_CPU(cs); 10229 CPUARMState *env = &cpu->env; 10230 unsigned int new_el = env->exception.target_el; 10231 10232 assert(!arm_feature(env, ARM_FEATURE_M)); 10233 10234 arm_log_exception(cs); 10235 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10236 new_el); 10237 if (qemu_loglevel_mask(CPU_LOG_INT) 10238 && !excp_is_internal(cs->exception_index)) { 10239 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10240 syn_get_ec(env->exception.syndrome), 10241 env->exception.syndrome); 10242 } 10243 10244 if (arm_is_psci_call(cpu, cs->exception_index)) { 10245 arm_handle_psci_call(cpu); 10246 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10247 return; 10248 } 10249 10250 /* 10251 * Semihosting semantics depend on the register width of the code 10252 * that caused the exception, not the target exception level, so 10253 * must be handled here. 10254 */ 10255 #ifdef CONFIG_TCG 10256 if (cs->exception_index == EXCP_SEMIHOST) { 10257 handle_semihosting(cs); 10258 return; 10259 } 10260 #endif 10261 10262 /* Hooks may change global state so BQL should be held, also the 10263 * BQL needs to be held for any modification of 10264 * cs->interrupt_request. 10265 */ 10266 g_assert(qemu_mutex_iothread_locked()); 10267 10268 arm_call_pre_el_change_hook(cpu); 10269 10270 assert(!excp_is_internal(cs->exception_index)); 10271 if (arm_el_is_aa64(env, new_el)) { 10272 arm_cpu_do_interrupt_aarch64(cs); 10273 } else { 10274 arm_cpu_do_interrupt_aarch32(cs); 10275 } 10276 10277 arm_call_el_change_hook(cpu); 10278 10279 if (!kvm_enabled()) { 10280 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10281 } 10282 } 10283 #endif /* !CONFIG_USER_ONLY */ 10284 10285 uint64_t arm_sctlr(CPUARMState *env, int el) 10286 { 10287 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10288 if (el == 0) { 10289 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10290 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10291 ? 2 : 1; 10292 } 10293 return env->cp15.sctlr_el[el]; 10294 } 10295 10296 /* Return the SCTLR value which controls this address translation regime */ 10297 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10298 { 10299 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10300 } 10301 10302 #ifndef CONFIG_USER_ONLY 10303 10304 /* Return true if the specified stage of address translation is disabled */ 10305 static inline bool regime_translation_disabled(CPUARMState *env, 10306 ARMMMUIdx mmu_idx) 10307 { 10308 uint64_t hcr_el2; 10309 10310 if (arm_feature(env, ARM_FEATURE_M)) { 10311 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10312 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10313 case R_V7M_MPU_CTRL_ENABLE_MASK: 10314 /* Enabled, but not for HardFault and NMI */ 10315 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10316 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10317 /* Enabled for all cases */ 10318 return false; 10319 case 0: 10320 default: 10321 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10322 * we warned about that in armv7m_nvic.c when the guest set it. 10323 */ 10324 return true; 10325 } 10326 } 10327 10328 hcr_el2 = arm_hcr_el2_eff(env); 10329 10330 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10331 /* HCR.DC means HCR.VM behaves as 1 */ 10332 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10333 } 10334 10335 if (hcr_el2 & HCR_TGE) { 10336 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10337 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10338 return true; 10339 } 10340 } 10341 10342 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10343 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10344 return true; 10345 } 10346 10347 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10348 } 10349 10350 static inline bool regime_translation_big_endian(CPUARMState *env, 10351 ARMMMUIdx mmu_idx) 10352 { 10353 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10354 } 10355 10356 /* Return the TTBR associated with this translation regime */ 10357 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10358 int ttbrn) 10359 { 10360 if (mmu_idx == ARMMMUIdx_Stage2) { 10361 return env->cp15.vttbr_el2; 10362 } 10363 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10364 return env->cp15.vsttbr_el2; 10365 } 10366 if (ttbrn == 0) { 10367 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10368 } else { 10369 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10370 } 10371 } 10372 10373 #endif /* !CONFIG_USER_ONLY */ 10374 10375 /* Convert a possible stage1+2 MMU index into the appropriate 10376 * stage 1 MMU index 10377 */ 10378 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10379 { 10380 switch (mmu_idx) { 10381 case ARMMMUIdx_SE10_0: 10382 return ARMMMUIdx_Stage1_SE0; 10383 case ARMMMUIdx_SE10_1: 10384 return ARMMMUIdx_Stage1_SE1; 10385 case ARMMMUIdx_SE10_1_PAN: 10386 return ARMMMUIdx_Stage1_SE1_PAN; 10387 case ARMMMUIdx_E10_0: 10388 return ARMMMUIdx_Stage1_E0; 10389 case ARMMMUIdx_E10_1: 10390 return ARMMMUIdx_Stage1_E1; 10391 case ARMMMUIdx_E10_1_PAN: 10392 return ARMMMUIdx_Stage1_E1_PAN; 10393 default: 10394 return mmu_idx; 10395 } 10396 } 10397 10398 /* Return true if the translation regime is using LPAE format page tables */ 10399 static inline bool regime_using_lpae_format(CPUARMState *env, 10400 ARMMMUIdx mmu_idx) 10401 { 10402 int el = regime_el(env, mmu_idx); 10403 if (el == 2 || arm_el_is_aa64(env, el)) { 10404 return true; 10405 } 10406 if (arm_feature(env, ARM_FEATURE_LPAE) 10407 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10408 return true; 10409 } 10410 return false; 10411 } 10412 10413 /* Returns true if the stage 1 translation regime is using LPAE format page 10414 * tables. Used when raising alignment exceptions, whose FSR changes depending 10415 * on whether the long or short descriptor format is in use. */ 10416 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10417 { 10418 mmu_idx = stage_1_mmu_idx(mmu_idx); 10419 10420 return regime_using_lpae_format(env, mmu_idx); 10421 } 10422 10423 #ifndef CONFIG_USER_ONLY 10424 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10425 { 10426 switch (mmu_idx) { 10427 case ARMMMUIdx_SE10_0: 10428 case ARMMMUIdx_E20_0: 10429 case ARMMMUIdx_SE20_0: 10430 case ARMMMUIdx_Stage1_E0: 10431 case ARMMMUIdx_Stage1_SE0: 10432 case ARMMMUIdx_MUser: 10433 case ARMMMUIdx_MSUser: 10434 case ARMMMUIdx_MUserNegPri: 10435 case ARMMMUIdx_MSUserNegPri: 10436 return true; 10437 default: 10438 return false; 10439 case ARMMMUIdx_E10_0: 10440 case ARMMMUIdx_E10_1: 10441 case ARMMMUIdx_E10_1_PAN: 10442 g_assert_not_reached(); 10443 } 10444 } 10445 10446 /* Translate section/page access permissions to page 10447 * R/W protection flags 10448 * 10449 * @env: CPUARMState 10450 * @mmu_idx: MMU index indicating required translation regime 10451 * @ap: The 3-bit access permissions (AP[2:0]) 10452 * @domain_prot: The 2-bit domain access permissions 10453 */ 10454 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10455 int ap, int domain_prot) 10456 { 10457 bool is_user = regime_is_user(env, mmu_idx); 10458 10459 if (domain_prot == 3) { 10460 return PAGE_READ | PAGE_WRITE; 10461 } 10462 10463 switch (ap) { 10464 case 0: 10465 if (arm_feature(env, ARM_FEATURE_V7)) { 10466 return 0; 10467 } 10468 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10469 case SCTLR_S: 10470 return is_user ? 0 : PAGE_READ; 10471 case SCTLR_R: 10472 return PAGE_READ; 10473 default: 10474 return 0; 10475 } 10476 case 1: 10477 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10478 case 2: 10479 if (is_user) { 10480 return PAGE_READ; 10481 } else { 10482 return PAGE_READ | PAGE_WRITE; 10483 } 10484 case 3: 10485 return PAGE_READ | PAGE_WRITE; 10486 case 4: /* Reserved. */ 10487 return 0; 10488 case 5: 10489 return is_user ? 0 : PAGE_READ; 10490 case 6: 10491 return PAGE_READ; 10492 case 7: 10493 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10494 return 0; 10495 } 10496 return PAGE_READ; 10497 default: 10498 g_assert_not_reached(); 10499 } 10500 } 10501 10502 /* Translate section/page access permissions to page 10503 * R/W protection flags. 10504 * 10505 * @ap: The 2-bit simple AP (AP[2:1]) 10506 * @is_user: TRUE if accessing from PL0 10507 */ 10508 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10509 { 10510 switch (ap) { 10511 case 0: 10512 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10513 case 1: 10514 return PAGE_READ | PAGE_WRITE; 10515 case 2: 10516 return is_user ? 0 : PAGE_READ; 10517 case 3: 10518 return PAGE_READ; 10519 default: 10520 g_assert_not_reached(); 10521 } 10522 } 10523 10524 static inline int 10525 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10526 { 10527 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10528 } 10529 10530 /* Translate S2 section/page access permissions to protection flags 10531 * 10532 * @env: CPUARMState 10533 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10534 * @xn: XN (execute-never) bits 10535 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10536 */ 10537 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10538 { 10539 int prot = 0; 10540 10541 if (s2ap & 1) { 10542 prot |= PAGE_READ; 10543 } 10544 if (s2ap & 2) { 10545 prot |= PAGE_WRITE; 10546 } 10547 10548 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10549 switch (xn) { 10550 case 0: 10551 prot |= PAGE_EXEC; 10552 break; 10553 case 1: 10554 if (s1_is_el0) { 10555 prot |= PAGE_EXEC; 10556 } 10557 break; 10558 case 2: 10559 break; 10560 case 3: 10561 if (!s1_is_el0) { 10562 prot |= PAGE_EXEC; 10563 } 10564 break; 10565 default: 10566 g_assert_not_reached(); 10567 } 10568 } else { 10569 if (!extract32(xn, 1, 1)) { 10570 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10571 prot |= PAGE_EXEC; 10572 } 10573 } 10574 } 10575 return prot; 10576 } 10577 10578 /* Translate section/page access permissions to protection flags 10579 * 10580 * @env: CPUARMState 10581 * @mmu_idx: MMU index indicating required translation regime 10582 * @is_aa64: TRUE if AArch64 10583 * @ap: The 2-bit simple AP (AP[2:1]) 10584 * @ns: NS (non-secure) bit 10585 * @xn: XN (execute-never) bit 10586 * @pxn: PXN (privileged execute-never) bit 10587 */ 10588 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10589 int ap, int ns, int xn, int pxn) 10590 { 10591 bool is_user = regime_is_user(env, mmu_idx); 10592 int prot_rw, user_rw; 10593 bool have_wxn; 10594 int wxn = 0; 10595 10596 assert(mmu_idx != ARMMMUIdx_Stage2); 10597 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10598 10599 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10600 if (is_user) { 10601 prot_rw = user_rw; 10602 } else { 10603 if (user_rw && regime_is_pan(env, mmu_idx)) { 10604 /* PAN forbids data accesses but doesn't affect insn fetch */ 10605 prot_rw = 0; 10606 } else { 10607 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10608 } 10609 } 10610 10611 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10612 return prot_rw; 10613 } 10614 10615 /* TODO have_wxn should be replaced with 10616 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10617 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10618 * compatible processors have EL2, which is required for [U]WXN. 10619 */ 10620 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10621 10622 if (have_wxn) { 10623 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10624 } 10625 10626 if (is_aa64) { 10627 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10628 xn = pxn || (user_rw & PAGE_WRITE); 10629 } 10630 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10631 switch (regime_el(env, mmu_idx)) { 10632 case 1: 10633 case 3: 10634 if (is_user) { 10635 xn = xn || !(user_rw & PAGE_READ); 10636 } else { 10637 int uwxn = 0; 10638 if (have_wxn) { 10639 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10640 } 10641 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10642 (uwxn && (user_rw & PAGE_WRITE)); 10643 } 10644 break; 10645 case 2: 10646 break; 10647 } 10648 } else { 10649 xn = wxn = 0; 10650 } 10651 10652 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10653 return prot_rw; 10654 } 10655 return prot_rw | PAGE_EXEC; 10656 } 10657 10658 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10659 uint32_t *table, uint32_t address) 10660 { 10661 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10662 TCR *tcr = regime_tcr(env, mmu_idx); 10663 10664 if (address & tcr->mask) { 10665 if (tcr->raw_tcr & TTBCR_PD1) { 10666 /* Translation table walk disabled for TTBR1 */ 10667 return false; 10668 } 10669 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10670 } else { 10671 if (tcr->raw_tcr & TTBCR_PD0) { 10672 /* Translation table walk disabled for TTBR0 */ 10673 return false; 10674 } 10675 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10676 } 10677 *table |= (address >> 18) & 0x3ffc; 10678 return true; 10679 } 10680 10681 /* Translate a S1 pagetable walk through S2 if needed. */ 10682 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10683 hwaddr addr, bool *is_secure, 10684 ARMMMUFaultInfo *fi) 10685 { 10686 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10687 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10688 target_ulong s2size; 10689 hwaddr s2pa; 10690 int s2prot; 10691 int ret; 10692 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10693 : ARMMMUIdx_Stage2; 10694 ARMCacheAttrs cacheattrs = {}; 10695 MemTxAttrs txattrs = {}; 10696 10697 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10698 &s2pa, &txattrs, &s2prot, &s2size, fi, 10699 &cacheattrs); 10700 if (ret) { 10701 assert(fi->type != ARMFault_None); 10702 fi->s2addr = addr; 10703 fi->stage2 = true; 10704 fi->s1ptw = true; 10705 fi->s1ns = !*is_secure; 10706 return ~0; 10707 } 10708 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10709 (cacheattrs.attrs & 0xf0) == 0) { 10710 /* 10711 * PTW set and S1 walk touched S2 Device memory: 10712 * generate Permission fault. 10713 */ 10714 fi->type = ARMFault_Permission; 10715 fi->s2addr = addr; 10716 fi->stage2 = true; 10717 fi->s1ptw = true; 10718 fi->s1ns = !*is_secure; 10719 return ~0; 10720 } 10721 10722 if (arm_is_secure_below_el3(env)) { 10723 /* Check if page table walk is to secure or non-secure PA space. */ 10724 if (*is_secure) { 10725 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10726 } else { 10727 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10728 } 10729 } else { 10730 assert(!*is_secure); 10731 } 10732 10733 addr = s2pa; 10734 } 10735 return addr; 10736 } 10737 10738 /* All loads done in the course of a page table walk go through here. */ 10739 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10740 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10741 { 10742 ARMCPU *cpu = ARM_CPU(cs); 10743 CPUARMState *env = &cpu->env; 10744 MemTxAttrs attrs = {}; 10745 MemTxResult result = MEMTX_OK; 10746 AddressSpace *as; 10747 uint32_t data; 10748 10749 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10750 attrs.secure = is_secure; 10751 as = arm_addressspace(cs, attrs); 10752 if (fi->s1ptw) { 10753 return 0; 10754 } 10755 if (regime_translation_big_endian(env, mmu_idx)) { 10756 data = address_space_ldl_be(as, addr, attrs, &result); 10757 } else { 10758 data = address_space_ldl_le(as, addr, attrs, &result); 10759 } 10760 if (result == MEMTX_OK) { 10761 return data; 10762 } 10763 fi->type = ARMFault_SyncExternalOnWalk; 10764 fi->ea = arm_extabort_type(result); 10765 return 0; 10766 } 10767 10768 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10769 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10770 { 10771 ARMCPU *cpu = ARM_CPU(cs); 10772 CPUARMState *env = &cpu->env; 10773 MemTxAttrs attrs = {}; 10774 MemTxResult result = MEMTX_OK; 10775 AddressSpace *as; 10776 uint64_t data; 10777 10778 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10779 attrs.secure = is_secure; 10780 as = arm_addressspace(cs, attrs); 10781 if (fi->s1ptw) { 10782 return 0; 10783 } 10784 if (regime_translation_big_endian(env, mmu_idx)) { 10785 data = address_space_ldq_be(as, addr, attrs, &result); 10786 } else { 10787 data = address_space_ldq_le(as, addr, attrs, &result); 10788 } 10789 if (result == MEMTX_OK) { 10790 return data; 10791 } 10792 fi->type = ARMFault_SyncExternalOnWalk; 10793 fi->ea = arm_extabort_type(result); 10794 return 0; 10795 } 10796 10797 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10798 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10799 hwaddr *phys_ptr, int *prot, 10800 target_ulong *page_size, 10801 ARMMMUFaultInfo *fi) 10802 { 10803 CPUState *cs = env_cpu(env); 10804 int level = 1; 10805 uint32_t table; 10806 uint32_t desc; 10807 int type; 10808 int ap; 10809 int domain = 0; 10810 int domain_prot; 10811 hwaddr phys_addr; 10812 uint32_t dacr; 10813 10814 /* Pagetable walk. */ 10815 /* Lookup l1 descriptor. */ 10816 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10817 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10818 fi->type = ARMFault_Translation; 10819 goto do_fault; 10820 } 10821 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10822 mmu_idx, fi); 10823 if (fi->type != ARMFault_None) { 10824 goto do_fault; 10825 } 10826 type = (desc & 3); 10827 domain = (desc >> 5) & 0x0f; 10828 if (regime_el(env, mmu_idx) == 1) { 10829 dacr = env->cp15.dacr_ns; 10830 } else { 10831 dacr = env->cp15.dacr_s; 10832 } 10833 domain_prot = (dacr >> (domain * 2)) & 3; 10834 if (type == 0) { 10835 /* Section translation fault. */ 10836 fi->type = ARMFault_Translation; 10837 goto do_fault; 10838 } 10839 if (type != 2) { 10840 level = 2; 10841 } 10842 if (domain_prot == 0 || domain_prot == 2) { 10843 fi->type = ARMFault_Domain; 10844 goto do_fault; 10845 } 10846 if (type == 2) { 10847 /* 1Mb section. */ 10848 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10849 ap = (desc >> 10) & 3; 10850 *page_size = 1024 * 1024; 10851 } else { 10852 /* Lookup l2 entry. */ 10853 if (type == 1) { 10854 /* Coarse pagetable. */ 10855 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10856 } else { 10857 /* Fine pagetable. */ 10858 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10859 } 10860 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10861 mmu_idx, fi); 10862 if (fi->type != ARMFault_None) { 10863 goto do_fault; 10864 } 10865 switch (desc & 3) { 10866 case 0: /* Page translation fault. */ 10867 fi->type = ARMFault_Translation; 10868 goto do_fault; 10869 case 1: /* 64k page. */ 10870 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10871 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10872 *page_size = 0x10000; 10873 break; 10874 case 2: /* 4k page. */ 10875 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10876 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10877 *page_size = 0x1000; 10878 break; 10879 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10880 if (type == 1) { 10881 /* ARMv6/XScale extended small page format */ 10882 if (arm_feature(env, ARM_FEATURE_XSCALE) 10883 || arm_feature(env, ARM_FEATURE_V6)) { 10884 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10885 *page_size = 0x1000; 10886 } else { 10887 /* UNPREDICTABLE in ARMv5; we choose to take a 10888 * page translation fault. 10889 */ 10890 fi->type = ARMFault_Translation; 10891 goto do_fault; 10892 } 10893 } else { 10894 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10895 *page_size = 0x400; 10896 } 10897 ap = (desc >> 4) & 3; 10898 break; 10899 default: 10900 /* Never happens, but compiler isn't smart enough to tell. */ 10901 abort(); 10902 } 10903 } 10904 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10905 *prot |= *prot ? PAGE_EXEC : 0; 10906 if (!(*prot & (1 << access_type))) { 10907 /* Access permission fault. */ 10908 fi->type = ARMFault_Permission; 10909 goto do_fault; 10910 } 10911 *phys_ptr = phys_addr; 10912 return false; 10913 do_fault: 10914 fi->domain = domain; 10915 fi->level = level; 10916 return true; 10917 } 10918 10919 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10920 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10921 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10922 target_ulong *page_size, ARMMMUFaultInfo *fi) 10923 { 10924 CPUState *cs = env_cpu(env); 10925 ARMCPU *cpu = env_archcpu(env); 10926 int level = 1; 10927 uint32_t table; 10928 uint32_t desc; 10929 uint32_t xn; 10930 uint32_t pxn = 0; 10931 int type; 10932 int ap; 10933 int domain = 0; 10934 int domain_prot; 10935 hwaddr phys_addr; 10936 uint32_t dacr; 10937 bool ns; 10938 10939 /* Pagetable walk. */ 10940 /* Lookup l1 descriptor. */ 10941 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10942 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10943 fi->type = ARMFault_Translation; 10944 goto do_fault; 10945 } 10946 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10947 mmu_idx, fi); 10948 if (fi->type != ARMFault_None) { 10949 goto do_fault; 10950 } 10951 type = (desc & 3); 10952 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10953 /* Section translation fault, or attempt to use the encoding 10954 * which is Reserved on implementations without PXN. 10955 */ 10956 fi->type = ARMFault_Translation; 10957 goto do_fault; 10958 } 10959 if ((type == 1) || !(desc & (1 << 18))) { 10960 /* Page or Section. */ 10961 domain = (desc >> 5) & 0x0f; 10962 } 10963 if (regime_el(env, mmu_idx) == 1) { 10964 dacr = env->cp15.dacr_ns; 10965 } else { 10966 dacr = env->cp15.dacr_s; 10967 } 10968 if (type == 1) { 10969 level = 2; 10970 } 10971 domain_prot = (dacr >> (domain * 2)) & 3; 10972 if (domain_prot == 0 || domain_prot == 2) { 10973 /* Section or Page domain fault */ 10974 fi->type = ARMFault_Domain; 10975 goto do_fault; 10976 } 10977 if (type != 1) { 10978 if (desc & (1 << 18)) { 10979 /* Supersection. */ 10980 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10981 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10982 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10983 *page_size = 0x1000000; 10984 } else { 10985 /* Section. */ 10986 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10987 *page_size = 0x100000; 10988 } 10989 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10990 xn = desc & (1 << 4); 10991 pxn = desc & 1; 10992 ns = extract32(desc, 19, 1); 10993 } else { 10994 if (cpu_isar_feature(aa32_pxn, cpu)) { 10995 pxn = (desc >> 2) & 1; 10996 } 10997 ns = extract32(desc, 3, 1); 10998 /* Lookup l2 entry. */ 10999 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11000 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11001 mmu_idx, fi); 11002 if (fi->type != ARMFault_None) { 11003 goto do_fault; 11004 } 11005 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11006 switch (desc & 3) { 11007 case 0: /* Page translation fault. */ 11008 fi->type = ARMFault_Translation; 11009 goto do_fault; 11010 case 1: /* 64k page. */ 11011 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11012 xn = desc & (1 << 15); 11013 *page_size = 0x10000; 11014 break; 11015 case 2: case 3: /* 4k page. */ 11016 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11017 xn = desc & 1; 11018 *page_size = 0x1000; 11019 break; 11020 default: 11021 /* Never happens, but compiler isn't smart enough to tell. */ 11022 abort(); 11023 } 11024 } 11025 if (domain_prot == 3) { 11026 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11027 } else { 11028 if (pxn && !regime_is_user(env, mmu_idx)) { 11029 xn = 1; 11030 } 11031 if (xn && access_type == MMU_INST_FETCH) { 11032 fi->type = ARMFault_Permission; 11033 goto do_fault; 11034 } 11035 11036 if (arm_feature(env, ARM_FEATURE_V6K) && 11037 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11038 /* The simplified model uses AP[0] as an access control bit. */ 11039 if ((ap & 1) == 0) { 11040 /* Access flag fault. */ 11041 fi->type = ARMFault_AccessFlag; 11042 goto do_fault; 11043 } 11044 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11045 } else { 11046 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11047 } 11048 if (*prot && !xn) { 11049 *prot |= PAGE_EXEC; 11050 } 11051 if (!(*prot & (1 << access_type))) { 11052 /* Access permission fault. */ 11053 fi->type = ARMFault_Permission; 11054 goto do_fault; 11055 } 11056 } 11057 if (ns) { 11058 /* The NS bit will (as required by the architecture) have no effect if 11059 * the CPU doesn't support TZ or this is a non-secure translation 11060 * regime, because the attribute will already be non-secure. 11061 */ 11062 attrs->secure = false; 11063 } 11064 *phys_ptr = phys_addr; 11065 return false; 11066 do_fault: 11067 fi->domain = domain; 11068 fi->level = level; 11069 return true; 11070 } 11071 11072 /* 11073 * check_s2_mmu_setup 11074 * @cpu: ARMCPU 11075 * @is_aa64: True if the translation regime is in AArch64 state 11076 * @startlevel: Suggested starting level 11077 * @inputsize: Bitsize of IPAs 11078 * @stride: Page-table stride (See the ARM ARM) 11079 * 11080 * Returns true if the suggested S2 translation parameters are OK and 11081 * false otherwise. 11082 */ 11083 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11084 int inputsize, int stride, int outputsize) 11085 { 11086 const int grainsize = stride + 3; 11087 int startsizecheck; 11088 11089 /* Negative levels are never allowed. */ 11090 if (level < 0) { 11091 return false; 11092 } 11093 11094 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11095 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11096 return false; 11097 } 11098 11099 if (is_aa64) { 11100 switch (stride) { 11101 case 13: /* 64KB Pages. */ 11102 if (level == 0 || (level == 1 && outputsize <= 42)) { 11103 return false; 11104 } 11105 break; 11106 case 11: /* 16KB Pages. */ 11107 if (level == 0 || (level == 1 && outputsize <= 40)) { 11108 return false; 11109 } 11110 break; 11111 case 9: /* 4KB Pages. */ 11112 if (level == 0 && outputsize <= 42) { 11113 return false; 11114 } 11115 break; 11116 default: 11117 g_assert_not_reached(); 11118 } 11119 11120 /* Inputsize checks. */ 11121 if (inputsize > outputsize && 11122 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11123 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11124 return false; 11125 } 11126 } else { 11127 /* AArch32 only supports 4KB pages. Assert on that. */ 11128 assert(stride == 9); 11129 11130 if (level == 0) { 11131 return false; 11132 } 11133 } 11134 return true; 11135 } 11136 11137 /* Translate from the 4-bit stage 2 representation of 11138 * memory attributes (without cache-allocation hints) to 11139 * the 8-bit representation of the stage 1 MAIR registers 11140 * (which includes allocation hints). 11141 * 11142 * ref: shared/translation/attrs/S2AttrDecode() 11143 * .../S2ConvertAttrsHints() 11144 */ 11145 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11146 { 11147 uint8_t hiattr = extract32(s2attrs, 2, 2); 11148 uint8_t loattr = extract32(s2attrs, 0, 2); 11149 uint8_t hihint = 0, lohint = 0; 11150 11151 if (hiattr != 0) { /* normal memory */ 11152 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11153 hiattr = loattr = 1; /* non-cacheable */ 11154 } else { 11155 if (hiattr != 1) { /* Write-through or write-back */ 11156 hihint = 3; /* RW allocate */ 11157 } 11158 if (loattr != 1) { /* Write-through or write-back */ 11159 lohint = 3; /* RW allocate */ 11160 } 11161 } 11162 } 11163 11164 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11165 } 11166 #endif /* !CONFIG_USER_ONLY */ 11167 11168 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11169 static const uint8_t pamax_map[] = { 11170 [0] = 32, 11171 [1] = 36, 11172 [2] = 40, 11173 [3] = 42, 11174 [4] = 44, 11175 [5] = 48, 11176 }; 11177 11178 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11179 unsigned int arm_pamax(ARMCPU *cpu) 11180 { 11181 unsigned int parange = 11182 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11183 11184 /* 11185 * id_aa64mmfr0 is a read-only register so values outside of the 11186 * supported mappings can be considered an implementation error. 11187 */ 11188 assert(parange < ARRAY_SIZE(pamax_map)); 11189 return pamax_map[parange]; 11190 } 11191 11192 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11193 { 11194 if (regime_has_2_ranges(mmu_idx)) { 11195 return extract64(tcr, 37, 2); 11196 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11197 return 0; /* VTCR_EL2 */ 11198 } else { 11199 /* Replicate the single TBI bit so we always have 2 bits. */ 11200 return extract32(tcr, 20, 1) * 3; 11201 } 11202 } 11203 11204 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11205 { 11206 if (regime_has_2_ranges(mmu_idx)) { 11207 return extract64(tcr, 51, 2); 11208 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11209 return 0; /* VTCR_EL2 */ 11210 } else { 11211 /* Replicate the single TBID bit so we always have 2 bits. */ 11212 return extract32(tcr, 29, 1) * 3; 11213 } 11214 } 11215 11216 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11217 { 11218 if (regime_has_2_ranges(mmu_idx)) { 11219 return extract64(tcr, 57, 2); 11220 } else { 11221 /* Replicate the single TCMA bit so we always have 2 bits. */ 11222 return extract32(tcr, 30, 1) * 3; 11223 } 11224 } 11225 11226 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11227 ARMMMUIdx mmu_idx, bool data) 11228 { 11229 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11230 bool epd, hpd, using16k, using64k, tsz_oob; 11231 int select, tsz, tbi, max_tsz, min_tsz, ps; 11232 11233 if (!regime_has_2_ranges(mmu_idx)) { 11234 select = 0; 11235 tsz = extract32(tcr, 0, 6); 11236 using64k = extract32(tcr, 14, 1); 11237 using16k = extract32(tcr, 15, 1); 11238 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11239 /* VTCR_EL2 */ 11240 hpd = false; 11241 } else { 11242 hpd = extract32(tcr, 24, 1); 11243 } 11244 epd = false; 11245 ps = extract32(tcr, 16, 3); 11246 } else { 11247 /* 11248 * Bit 55 is always between the two regions, and is canonical for 11249 * determining if address tagging is enabled. 11250 */ 11251 select = extract64(va, 55, 1); 11252 if (!select) { 11253 tsz = extract32(tcr, 0, 6); 11254 epd = extract32(tcr, 7, 1); 11255 using64k = extract32(tcr, 14, 1); 11256 using16k = extract32(tcr, 15, 1); 11257 hpd = extract64(tcr, 41, 1); 11258 } else { 11259 int tg = extract32(tcr, 30, 2); 11260 using16k = tg == 1; 11261 using64k = tg == 3; 11262 tsz = extract32(tcr, 16, 6); 11263 epd = extract32(tcr, 23, 1); 11264 hpd = extract64(tcr, 42, 1); 11265 } 11266 ps = extract64(tcr, 32, 3); 11267 } 11268 11269 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11270 max_tsz = 48 - using64k; 11271 } else { 11272 max_tsz = 39; 11273 } 11274 11275 min_tsz = 16; 11276 if (using64k) { 11277 if (cpu_isar_feature(aa64_lva, env_archcpu(env))) { 11278 min_tsz = 12; 11279 } 11280 } 11281 /* TODO: FEAT_LPA2 */ 11282 11283 if (tsz > max_tsz) { 11284 tsz = max_tsz; 11285 tsz_oob = true; 11286 } else if (tsz < min_tsz) { 11287 tsz = min_tsz; 11288 tsz_oob = true; 11289 } else { 11290 tsz_oob = false; 11291 } 11292 11293 /* Present TBI as a composite with TBID. */ 11294 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11295 if (!data) { 11296 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11297 } 11298 tbi = (tbi >> select) & 1; 11299 11300 return (ARMVAParameters) { 11301 .tsz = tsz, 11302 .ps = ps, 11303 .select = select, 11304 .tbi = tbi, 11305 .epd = epd, 11306 .hpd = hpd, 11307 .using16k = using16k, 11308 .using64k = using64k, 11309 .tsz_oob = tsz_oob, 11310 }; 11311 } 11312 11313 #ifndef CONFIG_USER_ONLY 11314 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11315 ARMMMUIdx mmu_idx) 11316 { 11317 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11318 uint32_t el = regime_el(env, mmu_idx); 11319 int select, tsz; 11320 bool epd, hpd; 11321 11322 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11323 11324 if (mmu_idx == ARMMMUIdx_Stage2) { 11325 /* VTCR */ 11326 bool sext = extract32(tcr, 4, 1); 11327 bool sign = extract32(tcr, 3, 1); 11328 11329 /* 11330 * If the sign-extend bit is not the same as t0sz[3], the result 11331 * is unpredictable. Flag this as a guest error. 11332 */ 11333 if (sign != sext) { 11334 qemu_log_mask(LOG_GUEST_ERROR, 11335 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11336 } 11337 tsz = sextract32(tcr, 0, 4) + 8; 11338 select = 0; 11339 hpd = false; 11340 epd = false; 11341 } else if (el == 2) { 11342 /* HTCR */ 11343 tsz = extract32(tcr, 0, 3); 11344 select = 0; 11345 hpd = extract64(tcr, 24, 1); 11346 epd = false; 11347 } else { 11348 int t0sz = extract32(tcr, 0, 3); 11349 int t1sz = extract32(tcr, 16, 3); 11350 11351 if (t1sz == 0) { 11352 select = va > (0xffffffffu >> t0sz); 11353 } else { 11354 /* Note that we will detect errors later. */ 11355 select = va >= ~(0xffffffffu >> t1sz); 11356 } 11357 if (!select) { 11358 tsz = t0sz; 11359 epd = extract32(tcr, 7, 1); 11360 hpd = extract64(tcr, 41, 1); 11361 } else { 11362 tsz = t1sz; 11363 epd = extract32(tcr, 23, 1); 11364 hpd = extract64(tcr, 42, 1); 11365 } 11366 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11367 hpd &= extract32(tcr, 6, 1); 11368 } 11369 11370 return (ARMVAParameters) { 11371 .tsz = tsz, 11372 .select = select, 11373 .epd = epd, 11374 .hpd = hpd, 11375 }; 11376 } 11377 11378 /** 11379 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11380 * 11381 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11382 * prot and page_size may not be filled in, and the populated fsr value provides 11383 * information on why the translation aborted, in the format of a long-format 11384 * DFSR/IFSR fault register, with the following caveats: 11385 * * the WnR bit is never set (the caller must do this). 11386 * 11387 * @env: CPUARMState 11388 * @address: virtual address to get physical address for 11389 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11390 * @mmu_idx: MMU index indicating required translation regime 11391 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11392 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11393 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11394 * @phys_ptr: set to the physical address corresponding to the virtual address 11395 * @attrs: set to the memory transaction attributes to use 11396 * @prot: set to the permissions for the page containing phys_ptr 11397 * @page_size_ptr: set to the size of the page containing phys_ptr 11398 * @fi: set to fault info if the translation fails 11399 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11400 */ 11401 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11402 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11403 bool s1_is_el0, 11404 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11405 target_ulong *page_size_ptr, 11406 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11407 { 11408 ARMCPU *cpu = env_archcpu(env); 11409 CPUState *cs = CPU(cpu); 11410 /* Read an LPAE long-descriptor translation table. */ 11411 ARMFaultType fault_type = ARMFault_Translation; 11412 uint32_t level; 11413 ARMVAParameters param; 11414 uint64_t ttbr; 11415 hwaddr descaddr, indexmask, indexmask_grainsize; 11416 uint32_t tableattrs; 11417 target_ulong page_size; 11418 uint32_t attrs; 11419 int32_t stride; 11420 int addrsize, inputsize, outputsize; 11421 TCR *tcr = regime_tcr(env, mmu_idx); 11422 int ap, ns, xn, pxn; 11423 uint32_t el = regime_el(env, mmu_idx); 11424 uint64_t descaddrmask; 11425 bool aarch64 = arm_el_is_aa64(env, el); 11426 bool guarded = false; 11427 11428 /* TODO: This code does not support shareability levels. */ 11429 if (aarch64) { 11430 int ps; 11431 11432 param = aa64_va_parameters(env, address, mmu_idx, 11433 access_type != MMU_INST_FETCH); 11434 level = 0; 11435 11436 /* 11437 * If TxSZ is programmed to a value larger than the maximum, 11438 * or smaller than the effective minimum, it is IMPLEMENTATION 11439 * DEFINED whether we behave as if the field were programmed 11440 * within bounds, or if a level 0 Translation fault is generated. 11441 * 11442 * With FEAT_LVA, fault on less than minimum becomes required, 11443 * so our choice is to always raise the fault. 11444 */ 11445 if (param.tsz_oob) { 11446 fault_type = ARMFault_Translation; 11447 goto do_fault; 11448 } 11449 11450 addrsize = 64 - 8 * param.tbi; 11451 inputsize = 64 - param.tsz; 11452 11453 /* 11454 * Bound PS by PARANGE to find the effective output address size. 11455 * ID_AA64MMFR0 is a read-only register so values outside of the 11456 * supported mappings can be considered an implementation error. 11457 */ 11458 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11459 ps = MIN(ps, param.ps); 11460 assert(ps < ARRAY_SIZE(pamax_map)); 11461 outputsize = pamax_map[ps]; 11462 } else { 11463 param = aa32_va_parameters(env, address, mmu_idx); 11464 level = 1; 11465 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11466 inputsize = addrsize - param.tsz; 11467 outputsize = 40; 11468 } 11469 11470 /* 11471 * We determined the region when collecting the parameters, but we 11472 * have not yet validated that the address is valid for the region. 11473 * Extract the top bits and verify that they all match select. 11474 * 11475 * For aa32, if inputsize == addrsize, then we have selected the 11476 * region by exclusion in aa32_va_parameters and there is no more 11477 * validation to do here. 11478 */ 11479 if (inputsize < addrsize) { 11480 target_ulong top_bits = sextract64(address, inputsize, 11481 addrsize - inputsize); 11482 if (-top_bits != param.select) { 11483 /* The gap between the two regions is a Translation fault */ 11484 fault_type = ARMFault_Translation; 11485 goto do_fault; 11486 } 11487 } 11488 11489 if (param.using64k) { 11490 stride = 13; 11491 } else if (param.using16k) { 11492 stride = 11; 11493 } else { 11494 stride = 9; 11495 } 11496 11497 /* Note that QEMU ignores shareability and cacheability attributes, 11498 * so we don't need to do anything with the SH, ORGN, IRGN fields 11499 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11500 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11501 * implement any ASID-like capability so we can ignore it (instead 11502 * we will always flush the TLB any time the ASID is changed). 11503 */ 11504 ttbr = regime_ttbr(env, mmu_idx, param.select); 11505 11506 /* Here we should have set up all the parameters for the translation: 11507 * inputsize, ttbr, epd, stride, tbi 11508 */ 11509 11510 if (param.epd) { 11511 /* Translation table walk disabled => Translation fault on TLB miss 11512 * Note: This is always 0 on 64-bit EL2 and EL3. 11513 */ 11514 goto do_fault; 11515 } 11516 11517 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11518 /* The starting level depends on the virtual address size (which can 11519 * be up to 48 bits) and the translation granule size. It indicates 11520 * the number of strides (stride bits at a time) needed to 11521 * consume the bits of the input address. In the pseudocode this is: 11522 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11523 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11524 * our 'stride + 3' and 'stride' is our 'stride'. 11525 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11526 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11527 * = 4 - (inputsize - 4) / stride; 11528 */ 11529 level = 4 - (inputsize - 4) / stride; 11530 } else { 11531 /* For stage 2 translations the starting level is specified by the 11532 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11533 */ 11534 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11535 uint32_t startlevel; 11536 bool ok; 11537 11538 if (!aarch64 || stride == 9) { 11539 /* AArch32 or 4KB pages */ 11540 startlevel = 2 - sl0; 11541 11542 if (cpu_isar_feature(aa64_st, cpu)) { 11543 startlevel &= 3; 11544 } 11545 } else { 11546 /* 16KB or 64KB pages */ 11547 startlevel = 3 - sl0; 11548 } 11549 11550 /* Check that the starting level is valid. */ 11551 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11552 inputsize, stride, outputsize); 11553 if (!ok) { 11554 fault_type = ARMFault_Translation; 11555 goto do_fault; 11556 } 11557 level = startlevel; 11558 } 11559 11560 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11561 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11562 11563 /* Now we can extract the actual base address from the TTBR */ 11564 descaddr = extract64(ttbr, 0, 48); 11565 11566 /* 11567 * If the base address is out of range, raise AddressSizeFault. 11568 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11569 * but we've just cleared the bits above 47, so simplify the test. 11570 */ 11571 if (descaddr >> outputsize) { 11572 level = 0; 11573 fault_type = ARMFault_AddressSize; 11574 goto do_fault; 11575 } 11576 11577 /* 11578 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11579 * and also to mask out CnP (bit 0) which could validly be non-zero. 11580 */ 11581 descaddr &= ~indexmask; 11582 11583 /* 11584 * For AArch32, the address field in the descriptor goes up to bit 39 11585 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11586 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11587 * bits as part of the address, which will be checked via outputsize. 11588 * For AArch64, the address field always goes up to bit 47 (with extra 11589 * bits for FEAT_LPA placed elsewhere). AArch64 implies v8. 11590 */ 11591 if (arm_feature(env, ARM_FEATURE_V8)) { 11592 descaddrmask = MAKE_64BIT_MASK(0, 48); 11593 } else { 11594 descaddrmask = MAKE_64BIT_MASK(0, 40); 11595 } 11596 descaddrmask &= ~indexmask_grainsize; 11597 11598 /* Secure accesses start with the page table in secure memory and 11599 * can be downgraded to non-secure at any step. Non-secure accesses 11600 * remain non-secure. We implement this by just ORing in the NSTable/NS 11601 * bits at each step. 11602 */ 11603 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11604 for (;;) { 11605 uint64_t descriptor; 11606 bool nstable; 11607 11608 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11609 descaddr &= ~7ULL; 11610 nstable = extract32(tableattrs, 4, 1); 11611 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11612 if (fi->type != ARMFault_None) { 11613 goto do_fault; 11614 } 11615 11616 if (!(descriptor & 1) || 11617 (!(descriptor & 2) && (level == 3))) { 11618 /* Invalid, or the Reserved level 3 encoding */ 11619 goto do_fault; 11620 } 11621 11622 descaddr = descriptor & descaddrmask; 11623 if (descaddr >> outputsize) { 11624 fault_type = ARMFault_AddressSize; 11625 goto do_fault; 11626 } 11627 11628 if ((descriptor & 2) && (level < 3)) { 11629 /* Table entry. The top five bits are attributes which may 11630 * propagate down through lower levels of the table (and 11631 * which are all arranged so that 0 means "no effect", so 11632 * we can gather them up by ORing in the bits at each level). 11633 */ 11634 tableattrs |= extract64(descriptor, 59, 5); 11635 level++; 11636 indexmask = indexmask_grainsize; 11637 continue; 11638 } 11639 /* Block entry at level 1 or 2, or page entry at level 3. 11640 * These are basically the same thing, although the number 11641 * of bits we pull in from the vaddr varies. 11642 */ 11643 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11644 descaddr |= (address & (page_size - 1)); 11645 /* Extract attributes from the descriptor */ 11646 attrs = extract64(descriptor, 2, 10) 11647 | (extract64(descriptor, 52, 12) << 10); 11648 11649 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11650 /* Stage 2 table descriptors do not include any attribute fields */ 11651 break; 11652 } 11653 /* Merge in attributes from table descriptors */ 11654 attrs |= nstable << 3; /* NS */ 11655 guarded = extract64(descriptor, 50, 1); /* GP */ 11656 if (param.hpd) { 11657 /* HPD disables all the table attributes except NSTable. */ 11658 break; 11659 } 11660 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11661 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11662 * means "force PL1 access only", which means forcing AP[1] to 0. 11663 */ 11664 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11665 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11666 break; 11667 } 11668 /* Here descaddr is the final physical address, and attributes 11669 * are all in attrs. 11670 */ 11671 fault_type = ARMFault_AccessFlag; 11672 if ((attrs & (1 << 8)) == 0) { 11673 /* Access flag */ 11674 goto do_fault; 11675 } 11676 11677 ap = extract32(attrs, 4, 2); 11678 11679 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11680 ns = mmu_idx == ARMMMUIdx_Stage2; 11681 xn = extract32(attrs, 11, 2); 11682 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11683 } else { 11684 ns = extract32(attrs, 3, 1); 11685 xn = extract32(attrs, 12, 1); 11686 pxn = extract32(attrs, 11, 1); 11687 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11688 } 11689 11690 fault_type = ARMFault_Permission; 11691 if (!(*prot & (1 << access_type))) { 11692 goto do_fault; 11693 } 11694 11695 if (ns) { 11696 /* The NS bit will (as required by the architecture) have no effect if 11697 * the CPU doesn't support TZ or this is a non-secure translation 11698 * regime, because the attribute will already be non-secure. 11699 */ 11700 txattrs->secure = false; 11701 } 11702 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11703 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11704 arm_tlb_bti_gp(txattrs) = true; 11705 } 11706 11707 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11708 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11709 } else { 11710 /* Index into MAIR registers for cache attributes */ 11711 uint8_t attrindx = extract32(attrs, 0, 3); 11712 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11713 assert(attrindx <= 7); 11714 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11715 } 11716 cacheattrs->shareability = extract32(attrs, 6, 2); 11717 11718 *phys_ptr = descaddr; 11719 *page_size_ptr = page_size; 11720 return false; 11721 11722 do_fault: 11723 fi->type = fault_type; 11724 fi->level = level; 11725 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11726 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11727 mmu_idx == ARMMMUIdx_Stage2_S); 11728 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11729 return true; 11730 } 11731 11732 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11733 ARMMMUIdx mmu_idx, 11734 int32_t address, int *prot) 11735 { 11736 if (!arm_feature(env, ARM_FEATURE_M)) { 11737 *prot = PAGE_READ | PAGE_WRITE; 11738 switch (address) { 11739 case 0xF0000000 ... 0xFFFFFFFF: 11740 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11741 /* hivecs execing is ok */ 11742 *prot |= PAGE_EXEC; 11743 } 11744 break; 11745 case 0x00000000 ... 0x7FFFFFFF: 11746 *prot |= PAGE_EXEC; 11747 break; 11748 } 11749 } else { 11750 /* Default system address map for M profile cores. 11751 * The architecture specifies which regions are execute-never; 11752 * at the MPU level no other checks are defined. 11753 */ 11754 switch (address) { 11755 case 0x00000000 ... 0x1fffffff: /* ROM */ 11756 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11757 case 0x60000000 ... 0x7fffffff: /* RAM */ 11758 case 0x80000000 ... 0x9fffffff: /* RAM */ 11759 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11760 break; 11761 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11762 case 0xa0000000 ... 0xbfffffff: /* Device */ 11763 case 0xc0000000 ... 0xdfffffff: /* Device */ 11764 case 0xe0000000 ... 0xffffffff: /* System */ 11765 *prot = PAGE_READ | PAGE_WRITE; 11766 break; 11767 default: 11768 g_assert_not_reached(); 11769 } 11770 } 11771 } 11772 11773 static bool pmsav7_use_background_region(ARMCPU *cpu, 11774 ARMMMUIdx mmu_idx, bool is_user) 11775 { 11776 /* Return true if we should use the default memory map as a 11777 * "background" region if there are no hits against any MPU regions. 11778 */ 11779 CPUARMState *env = &cpu->env; 11780 11781 if (is_user) { 11782 return false; 11783 } 11784 11785 if (arm_feature(env, ARM_FEATURE_M)) { 11786 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11787 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11788 } else { 11789 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11790 } 11791 } 11792 11793 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11794 { 11795 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11796 return arm_feature(env, ARM_FEATURE_M) && 11797 extract32(address, 20, 12) == 0xe00; 11798 } 11799 11800 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11801 { 11802 /* True if address is in the M profile system region 11803 * 0xe0000000 - 0xffffffff 11804 */ 11805 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11806 } 11807 11808 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11809 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11810 hwaddr *phys_ptr, int *prot, 11811 target_ulong *page_size, 11812 ARMMMUFaultInfo *fi) 11813 { 11814 ARMCPU *cpu = env_archcpu(env); 11815 int n; 11816 bool is_user = regime_is_user(env, mmu_idx); 11817 11818 *phys_ptr = address; 11819 *page_size = TARGET_PAGE_SIZE; 11820 *prot = 0; 11821 11822 if (regime_translation_disabled(env, mmu_idx) || 11823 m_is_ppb_region(env, address)) { 11824 /* MPU disabled or M profile PPB access: use default memory map. 11825 * The other case which uses the default memory map in the 11826 * v7M ARM ARM pseudocode is exception vector reads from the vector 11827 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11828 * which always does a direct read using address_space_ldl(), rather 11829 * than going via this function, so we don't need to check that here. 11830 */ 11831 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11832 } else { /* MPU enabled */ 11833 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11834 /* region search */ 11835 uint32_t base = env->pmsav7.drbar[n]; 11836 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11837 uint32_t rmask; 11838 bool srdis = false; 11839 11840 if (!(env->pmsav7.drsr[n] & 0x1)) { 11841 continue; 11842 } 11843 11844 if (!rsize) { 11845 qemu_log_mask(LOG_GUEST_ERROR, 11846 "DRSR[%d]: Rsize field cannot be 0\n", n); 11847 continue; 11848 } 11849 rsize++; 11850 rmask = (1ull << rsize) - 1; 11851 11852 if (base & rmask) { 11853 qemu_log_mask(LOG_GUEST_ERROR, 11854 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11855 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11856 n, base, rmask); 11857 continue; 11858 } 11859 11860 if (address < base || address > base + rmask) { 11861 /* 11862 * Address not in this region. We must check whether the 11863 * region covers addresses in the same page as our address. 11864 * In that case we must not report a size that covers the 11865 * whole page for a subsequent hit against a different MPU 11866 * region or the background region, because it would result in 11867 * incorrect TLB hits for subsequent accesses to addresses that 11868 * are in this MPU region. 11869 */ 11870 if (ranges_overlap(base, rmask, 11871 address & TARGET_PAGE_MASK, 11872 TARGET_PAGE_SIZE)) { 11873 *page_size = 1; 11874 } 11875 continue; 11876 } 11877 11878 /* Region matched */ 11879 11880 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11881 int i, snd; 11882 uint32_t srdis_mask; 11883 11884 rsize -= 3; /* sub region size (power of 2) */ 11885 snd = ((address - base) >> rsize) & 0x7; 11886 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11887 11888 srdis_mask = srdis ? 0x3 : 0x0; 11889 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11890 /* This will check in groups of 2, 4 and then 8, whether 11891 * the subregion bits are consistent. rsize is incremented 11892 * back up to give the region size, considering consistent 11893 * adjacent subregions as one region. Stop testing if rsize 11894 * is already big enough for an entire QEMU page. 11895 */ 11896 int snd_rounded = snd & ~(i - 1); 11897 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11898 snd_rounded + 8, i); 11899 if (srdis_mask ^ srdis_multi) { 11900 break; 11901 } 11902 srdis_mask = (srdis_mask << i) | srdis_mask; 11903 rsize++; 11904 } 11905 } 11906 if (srdis) { 11907 continue; 11908 } 11909 if (rsize < TARGET_PAGE_BITS) { 11910 *page_size = 1 << rsize; 11911 } 11912 break; 11913 } 11914 11915 if (n == -1) { /* no hits */ 11916 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11917 /* background fault */ 11918 fi->type = ARMFault_Background; 11919 return true; 11920 } 11921 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11922 } else { /* a MPU hit! */ 11923 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11924 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11925 11926 if (m_is_system_region(env, address)) { 11927 /* System space is always execute never */ 11928 xn = 1; 11929 } 11930 11931 if (is_user) { /* User mode AP bit decoding */ 11932 switch (ap) { 11933 case 0: 11934 case 1: 11935 case 5: 11936 break; /* no access */ 11937 case 3: 11938 *prot |= PAGE_WRITE; 11939 /* fall through */ 11940 case 2: 11941 case 6: 11942 *prot |= PAGE_READ | PAGE_EXEC; 11943 break; 11944 case 7: 11945 /* for v7M, same as 6; for R profile a reserved value */ 11946 if (arm_feature(env, ARM_FEATURE_M)) { 11947 *prot |= PAGE_READ | PAGE_EXEC; 11948 break; 11949 } 11950 /* fall through */ 11951 default: 11952 qemu_log_mask(LOG_GUEST_ERROR, 11953 "DRACR[%d]: Bad value for AP bits: 0x%" 11954 PRIx32 "\n", n, ap); 11955 } 11956 } else { /* Priv. mode AP bits decoding */ 11957 switch (ap) { 11958 case 0: 11959 break; /* no access */ 11960 case 1: 11961 case 2: 11962 case 3: 11963 *prot |= PAGE_WRITE; 11964 /* fall through */ 11965 case 5: 11966 case 6: 11967 *prot |= PAGE_READ | PAGE_EXEC; 11968 break; 11969 case 7: 11970 /* for v7M, same as 6; for R profile a reserved value */ 11971 if (arm_feature(env, ARM_FEATURE_M)) { 11972 *prot |= PAGE_READ | PAGE_EXEC; 11973 break; 11974 } 11975 /* fall through */ 11976 default: 11977 qemu_log_mask(LOG_GUEST_ERROR, 11978 "DRACR[%d]: Bad value for AP bits: 0x%" 11979 PRIx32 "\n", n, ap); 11980 } 11981 } 11982 11983 /* execute never */ 11984 if (xn) { 11985 *prot &= ~PAGE_EXEC; 11986 } 11987 } 11988 } 11989 11990 fi->type = ARMFault_Permission; 11991 fi->level = 1; 11992 return !(*prot & (1 << access_type)); 11993 } 11994 11995 static bool v8m_is_sau_exempt(CPUARMState *env, 11996 uint32_t address, MMUAccessType access_type) 11997 { 11998 /* The architecture specifies that certain address ranges are 11999 * exempt from v8M SAU/IDAU checks. 12000 */ 12001 return 12002 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12003 (address >= 0xe0000000 && address <= 0xe0002fff) || 12004 (address >= 0xe000e000 && address <= 0xe000efff) || 12005 (address >= 0xe002e000 && address <= 0xe002efff) || 12006 (address >= 0xe0040000 && address <= 0xe0041fff) || 12007 (address >= 0xe00ff000 && address <= 0xe00fffff); 12008 } 12009 12010 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12011 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12012 V8M_SAttributes *sattrs) 12013 { 12014 /* Look up the security attributes for this address. Compare the 12015 * pseudocode SecurityCheck() function. 12016 * We assume the caller has zero-initialized *sattrs. 12017 */ 12018 ARMCPU *cpu = env_archcpu(env); 12019 int r; 12020 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12021 int idau_region = IREGION_NOTVALID; 12022 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12023 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12024 12025 if (cpu->idau) { 12026 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12027 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12028 12029 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12030 &idau_nsc); 12031 } 12032 12033 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12034 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12035 return; 12036 } 12037 12038 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12039 sattrs->ns = !regime_is_secure(env, mmu_idx); 12040 return; 12041 } 12042 12043 if (idau_region != IREGION_NOTVALID) { 12044 sattrs->irvalid = true; 12045 sattrs->iregion = idau_region; 12046 } 12047 12048 switch (env->sau.ctrl & 3) { 12049 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12050 break; 12051 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12052 sattrs->ns = true; 12053 break; 12054 default: /* SAU.ENABLE == 1 */ 12055 for (r = 0; r < cpu->sau_sregion; r++) { 12056 if (env->sau.rlar[r] & 1) { 12057 uint32_t base = env->sau.rbar[r] & ~0x1f; 12058 uint32_t limit = env->sau.rlar[r] | 0x1f; 12059 12060 if (base <= address && limit >= address) { 12061 if (base > addr_page_base || limit < addr_page_limit) { 12062 sattrs->subpage = true; 12063 } 12064 if (sattrs->srvalid) { 12065 /* If we hit in more than one region then we must report 12066 * as Secure, not NS-Callable, with no valid region 12067 * number info. 12068 */ 12069 sattrs->ns = false; 12070 sattrs->nsc = false; 12071 sattrs->sregion = 0; 12072 sattrs->srvalid = false; 12073 break; 12074 } else { 12075 if (env->sau.rlar[r] & 2) { 12076 sattrs->nsc = true; 12077 } else { 12078 sattrs->ns = true; 12079 } 12080 sattrs->srvalid = true; 12081 sattrs->sregion = r; 12082 } 12083 } else { 12084 /* 12085 * Address not in this region. We must check whether the 12086 * region covers addresses in the same page as our address. 12087 * In that case we must not report a size that covers the 12088 * whole page for a subsequent hit against a different MPU 12089 * region or the background region, because it would result 12090 * in incorrect TLB hits for subsequent accesses to 12091 * addresses that are in this MPU region. 12092 */ 12093 if (limit >= base && 12094 ranges_overlap(base, limit - base + 1, 12095 addr_page_base, 12096 TARGET_PAGE_SIZE)) { 12097 sattrs->subpage = true; 12098 } 12099 } 12100 } 12101 } 12102 break; 12103 } 12104 12105 /* 12106 * The IDAU will override the SAU lookup results if it specifies 12107 * higher security than the SAU does. 12108 */ 12109 if (!idau_ns) { 12110 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12111 sattrs->ns = false; 12112 sattrs->nsc = idau_nsc; 12113 } 12114 } 12115 } 12116 12117 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12118 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12119 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12120 int *prot, bool *is_subpage, 12121 ARMMMUFaultInfo *fi, uint32_t *mregion) 12122 { 12123 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12124 * that a full phys-to-virt translation does). 12125 * mregion is (if not NULL) set to the region number which matched, 12126 * or -1 if no region number is returned (MPU off, address did not 12127 * hit a region, address hit in multiple regions). 12128 * We set is_subpage to true if the region hit doesn't cover the 12129 * entire TARGET_PAGE the address is within. 12130 */ 12131 ARMCPU *cpu = env_archcpu(env); 12132 bool is_user = regime_is_user(env, mmu_idx); 12133 uint32_t secure = regime_is_secure(env, mmu_idx); 12134 int n; 12135 int matchregion = -1; 12136 bool hit = false; 12137 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12138 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12139 12140 *is_subpage = false; 12141 *phys_ptr = address; 12142 *prot = 0; 12143 if (mregion) { 12144 *mregion = -1; 12145 } 12146 12147 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12148 * was an exception vector read from the vector table (which is always 12149 * done using the default system address map), because those accesses 12150 * are done in arm_v7m_load_vector(), which always does a direct 12151 * read using address_space_ldl(), rather than going via this function. 12152 */ 12153 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12154 hit = true; 12155 } else if (m_is_ppb_region(env, address)) { 12156 hit = true; 12157 } else { 12158 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12159 hit = true; 12160 } 12161 12162 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12163 /* region search */ 12164 /* Note that the base address is bits [31:5] from the register 12165 * with bits [4:0] all zeroes, but the limit address is bits 12166 * [31:5] from the register with bits [4:0] all ones. 12167 */ 12168 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12169 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12170 12171 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12172 /* Region disabled */ 12173 continue; 12174 } 12175 12176 if (address < base || address > limit) { 12177 /* 12178 * Address not in this region. We must check whether the 12179 * region covers addresses in the same page as our address. 12180 * In that case we must not report a size that covers the 12181 * whole page for a subsequent hit against a different MPU 12182 * region or the background region, because it would result in 12183 * incorrect TLB hits for subsequent accesses to addresses that 12184 * are in this MPU region. 12185 */ 12186 if (limit >= base && 12187 ranges_overlap(base, limit - base + 1, 12188 addr_page_base, 12189 TARGET_PAGE_SIZE)) { 12190 *is_subpage = true; 12191 } 12192 continue; 12193 } 12194 12195 if (base > addr_page_base || limit < addr_page_limit) { 12196 *is_subpage = true; 12197 } 12198 12199 if (matchregion != -1) { 12200 /* Multiple regions match -- always a failure (unlike 12201 * PMSAv7 where highest-numbered-region wins) 12202 */ 12203 fi->type = ARMFault_Permission; 12204 fi->level = 1; 12205 return true; 12206 } 12207 12208 matchregion = n; 12209 hit = true; 12210 } 12211 } 12212 12213 if (!hit) { 12214 /* background fault */ 12215 fi->type = ARMFault_Background; 12216 return true; 12217 } 12218 12219 if (matchregion == -1) { 12220 /* hit using the background region */ 12221 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12222 } else { 12223 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12224 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12225 bool pxn = false; 12226 12227 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12228 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12229 } 12230 12231 if (m_is_system_region(env, address)) { 12232 /* System space is always execute never */ 12233 xn = 1; 12234 } 12235 12236 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12237 if (*prot && !xn && !(pxn && !is_user)) { 12238 *prot |= PAGE_EXEC; 12239 } 12240 /* We don't need to look the attribute up in the MAIR0/MAIR1 12241 * registers because that only tells us about cacheability. 12242 */ 12243 if (mregion) { 12244 *mregion = matchregion; 12245 } 12246 } 12247 12248 fi->type = ARMFault_Permission; 12249 fi->level = 1; 12250 return !(*prot & (1 << access_type)); 12251 } 12252 12253 12254 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12255 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12256 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12257 int *prot, target_ulong *page_size, 12258 ARMMMUFaultInfo *fi) 12259 { 12260 uint32_t secure = regime_is_secure(env, mmu_idx); 12261 V8M_SAttributes sattrs = {}; 12262 bool ret; 12263 bool mpu_is_subpage; 12264 12265 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12266 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12267 if (access_type == MMU_INST_FETCH) { 12268 /* Instruction fetches always use the MMU bank and the 12269 * transaction attribute determined by the fetch address, 12270 * regardless of CPU state. This is painful for QEMU 12271 * to handle, because it would mean we need to encode 12272 * into the mmu_idx not just the (user, negpri) information 12273 * for the current security state but also that for the 12274 * other security state, which would balloon the number 12275 * of mmu_idx values needed alarmingly. 12276 * Fortunately we can avoid this because it's not actually 12277 * possible to arbitrarily execute code from memory with 12278 * the wrong security attribute: it will always generate 12279 * an exception of some kind or another, apart from the 12280 * special case of an NS CPU executing an SG instruction 12281 * in S&NSC memory. So we always just fail the translation 12282 * here and sort things out in the exception handler 12283 * (including possibly emulating an SG instruction). 12284 */ 12285 if (sattrs.ns != !secure) { 12286 if (sattrs.nsc) { 12287 fi->type = ARMFault_QEMU_NSCExec; 12288 } else { 12289 fi->type = ARMFault_QEMU_SFault; 12290 } 12291 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12292 *phys_ptr = address; 12293 *prot = 0; 12294 return true; 12295 } 12296 } else { 12297 /* For data accesses we always use the MMU bank indicated 12298 * by the current CPU state, but the security attributes 12299 * might downgrade a secure access to nonsecure. 12300 */ 12301 if (sattrs.ns) { 12302 txattrs->secure = false; 12303 } else if (!secure) { 12304 /* NS access to S memory must fault. 12305 * Architecturally we should first check whether the 12306 * MPU information for this address indicates that we 12307 * are doing an unaligned access to Device memory, which 12308 * should generate a UsageFault instead. QEMU does not 12309 * currently check for that kind of unaligned access though. 12310 * If we added it we would need to do so as a special case 12311 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12312 */ 12313 fi->type = ARMFault_QEMU_SFault; 12314 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12315 *phys_ptr = address; 12316 *prot = 0; 12317 return true; 12318 } 12319 } 12320 } 12321 12322 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12323 txattrs, prot, &mpu_is_subpage, fi, NULL); 12324 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12325 return ret; 12326 } 12327 12328 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12329 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12330 hwaddr *phys_ptr, int *prot, 12331 ARMMMUFaultInfo *fi) 12332 { 12333 int n; 12334 uint32_t mask; 12335 uint32_t base; 12336 bool is_user = regime_is_user(env, mmu_idx); 12337 12338 if (regime_translation_disabled(env, mmu_idx)) { 12339 /* MPU disabled. */ 12340 *phys_ptr = address; 12341 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12342 return false; 12343 } 12344 12345 *phys_ptr = address; 12346 for (n = 7; n >= 0; n--) { 12347 base = env->cp15.c6_region[n]; 12348 if ((base & 1) == 0) { 12349 continue; 12350 } 12351 mask = 1 << ((base >> 1) & 0x1f); 12352 /* Keep this shift separate from the above to avoid an 12353 (undefined) << 32. */ 12354 mask = (mask << 1) - 1; 12355 if (((base ^ address) & ~mask) == 0) { 12356 break; 12357 } 12358 } 12359 if (n < 0) { 12360 fi->type = ARMFault_Background; 12361 return true; 12362 } 12363 12364 if (access_type == MMU_INST_FETCH) { 12365 mask = env->cp15.pmsav5_insn_ap; 12366 } else { 12367 mask = env->cp15.pmsav5_data_ap; 12368 } 12369 mask = (mask >> (n * 4)) & 0xf; 12370 switch (mask) { 12371 case 0: 12372 fi->type = ARMFault_Permission; 12373 fi->level = 1; 12374 return true; 12375 case 1: 12376 if (is_user) { 12377 fi->type = ARMFault_Permission; 12378 fi->level = 1; 12379 return true; 12380 } 12381 *prot = PAGE_READ | PAGE_WRITE; 12382 break; 12383 case 2: 12384 *prot = PAGE_READ; 12385 if (!is_user) { 12386 *prot |= PAGE_WRITE; 12387 } 12388 break; 12389 case 3: 12390 *prot = PAGE_READ | PAGE_WRITE; 12391 break; 12392 case 5: 12393 if (is_user) { 12394 fi->type = ARMFault_Permission; 12395 fi->level = 1; 12396 return true; 12397 } 12398 *prot = PAGE_READ; 12399 break; 12400 case 6: 12401 *prot = PAGE_READ; 12402 break; 12403 default: 12404 /* Bad permission. */ 12405 fi->type = ARMFault_Permission; 12406 fi->level = 1; 12407 return true; 12408 } 12409 *prot |= PAGE_EXEC; 12410 return false; 12411 } 12412 12413 /* Combine either inner or outer cacheability attributes for normal 12414 * memory, according to table D4-42 and pseudocode procedure 12415 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12416 * 12417 * NB: only stage 1 includes allocation hints (RW bits), leading to 12418 * some asymmetry. 12419 */ 12420 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12421 { 12422 if (s1 == 4 || s2 == 4) { 12423 /* non-cacheable has precedence */ 12424 return 4; 12425 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12426 /* stage 1 write-through takes precedence */ 12427 return s1; 12428 } else if (extract32(s2, 2, 2) == 2) { 12429 /* stage 2 write-through takes precedence, but the allocation hint 12430 * is still taken from stage 1 12431 */ 12432 return (2 << 2) | extract32(s1, 0, 2); 12433 } else { /* write-back */ 12434 return s1; 12435 } 12436 } 12437 12438 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12439 * and CombineS1S2Desc() 12440 * 12441 * @s1: Attributes from stage 1 walk 12442 * @s2: Attributes from stage 2 walk 12443 */ 12444 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12445 { 12446 uint8_t s1lo, s2lo, s1hi, s2hi; 12447 ARMCacheAttrs ret; 12448 bool tagged = false; 12449 12450 if (s1.attrs == 0xf0) { 12451 tagged = true; 12452 s1.attrs = 0xff; 12453 } 12454 12455 s1lo = extract32(s1.attrs, 0, 4); 12456 s2lo = extract32(s2.attrs, 0, 4); 12457 s1hi = extract32(s1.attrs, 4, 4); 12458 s2hi = extract32(s2.attrs, 4, 4); 12459 12460 /* Combine shareability attributes (table D4-43) */ 12461 if (s1.shareability == 2 || s2.shareability == 2) { 12462 /* if either are outer-shareable, the result is outer-shareable */ 12463 ret.shareability = 2; 12464 } else if (s1.shareability == 3 || s2.shareability == 3) { 12465 /* if either are inner-shareable, the result is inner-shareable */ 12466 ret.shareability = 3; 12467 } else { 12468 /* both non-shareable */ 12469 ret.shareability = 0; 12470 } 12471 12472 /* Combine memory type and cacheability attributes */ 12473 if (s1hi == 0 || s2hi == 0) { 12474 /* Device has precedence over normal */ 12475 if (s1lo == 0 || s2lo == 0) { 12476 /* nGnRnE has precedence over anything */ 12477 ret.attrs = 0; 12478 } else if (s1lo == 4 || s2lo == 4) { 12479 /* non-Reordering has precedence over Reordering */ 12480 ret.attrs = 4; /* nGnRE */ 12481 } else if (s1lo == 8 || s2lo == 8) { 12482 /* non-Gathering has precedence over Gathering */ 12483 ret.attrs = 8; /* nGRE */ 12484 } else { 12485 ret.attrs = 0xc; /* GRE */ 12486 } 12487 12488 /* Any location for which the resultant memory type is any 12489 * type of Device memory is always treated as Outer Shareable. 12490 */ 12491 ret.shareability = 2; 12492 } else { /* Normal memory */ 12493 /* Outer/inner cacheability combine independently */ 12494 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12495 | combine_cacheattr_nibble(s1lo, s2lo); 12496 12497 if (ret.attrs == 0x44) { 12498 /* Any location for which the resultant memory type is Normal 12499 * Inner Non-cacheable, Outer Non-cacheable is always treated 12500 * as Outer Shareable. 12501 */ 12502 ret.shareability = 2; 12503 } 12504 } 12505 12506 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12507 if (tagged && ret.attrs == 0xff) { 12508 ret.attrs = 0xf0; 12509 } 12510 12511 return ret; 12512 } 12513 12514 12515 /* get_phys_addr - get the physical address for this virtual address 12516 * 12517 * Find the physical address corresponding to the given virtual address, 12518 * by doing a translation table walk on MMU based systems or using the 12519 * MPU state on MPU based systems. 12520 * 12521 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12522 * prot and page_size may not be filled in, and the populated fsr value provides 12523 * information on why the translation aborted, in the format of a 12524 * DFSR/IFSR fault register, with the following caveats: 12525 * * we honour the short vs long DFSR format differences. 12526 * * the WnR bit is never set (the caller must do this). 12527 * * for PSMAv5 based systems we don't bother to return a full FSR format 12528 * value. 12529 * 12530 * @env: CPUARMState 12531 * @address: virtual address to get physical address for 12532 * @access_type: 0 for read, 1 for write, 2 for execute 12533 * @mmu_idx: MMU index indicating required translation regime 12534 * @phys_ptr: set to the physical address corresponding to the virtual address 12535 * @attrs: set to the memory transaction attributes to use 12536 * @prot: set to the permissions for the page containing phys_ptr 12537 * @page_size: set to the size of the page containing phys_ptr 12538 * @fi: set to fault info if the translation fails 12539 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12540 */ 12541 bool get_phys_addr(CPUARMState *env, target_ulong address, 12542 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12543 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12544 target_ulong *page_size, 12545 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12546 { 12547 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12548 12549 if (mmu_idx != s1_mmu_idx) { 12550 /* Call ourselves recursively to do the stage 1 and then stage 2 12551 * translations if mmu_idx is a two-stage regime. 12552 */ 12553 if (arm_feature(env, ARM_FEATURE_EL2)) { 12554 hwaddr ipa; 12555 int s2_prot; 12556 int ret; 12557 ARMCacheAttrs cacheattrs2 = {}; 12558 ARMMMUIdx s2_mmu_idx; 12559 bool is_el0; 12560 12561 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12562 attrs, prot, page_size, fi, cacheattrs); 12563 12564 /* If S1 fails or S2 is disabled, return early. */ 12565 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12566 *phys_ptr = ipa; 12567 return ret; 12568 } 12569 12570 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12571 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12572 12573 /* S1 is done. Now do S2 translation. */ 12574 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12575 phys_ptr, attrs, &s2_prot, 12576 page_size, fi, &cacheattrs2); 12577 fi->s2addr = ipa; 12578 /* Combine the S1 and S2 perms. */ 12579 *prot &= s2_prot; 12580 12581 /* If S2 fails, return early. */ 12582 if (ret) { 12583 return ret; 12584 } 12585 12586 /* Combine the S1 and S2 cache attributes. */ 12587 if (arm_hcr_el2_eff(env) & HCR_DC) { 12588 /* 12589 * HCR.DC forces the first stage attributes to 12590 * Normal Non-Shareable, 12591 * Inner Write-Back Read-Allocate Write-Allocate, 12592 * Outer Write-Back Read-Allocate Write-Allocate. 12593 * Do not overwrite Tagged within attrs. 12594 */ 12595 if (cacheattrs->attrs != 0xf0) { 12596 cacheattrs->attrs = 0xff; 12597 } 12598 cacheattrs->shareability = 0; 12599 } 12600 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12601 12602 /* Check if IPA translates to secure or non-secure PA space. */ 12603 if (arm_is_secure_below_el3(env)) { 12604 if (attrs->secure) { 12605 attrs->secure = 12606 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12607 } else { 12608 attrs->secure = 12609 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12610 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12611 } 12612 } 12613 return 0; 12614 } else { 12615 /* 12616 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12617 */ 12618 mmu_idx = stage_1_mmu_idx(mmu_idx); 12619 } 12620 } 12621 12622 /* The page table entries may downgrade secure to non-secure, but 12623 * cannot upgrade an non-secure translation regime's attributes 12624 * to secure. 12625 */ 12626 attrs->secure = regime_is_secure(env, mmu_idx); 12627 attrs->user = regime_is_user(env, mmu_idx); 12628 12629 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12630 * In v7 and earlier it affects all stage 1 translations. 12631 */ 12632 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12633 && !arm_feature(env, ARM_FEATURE_V8)) { 12634 if (regime_el(env, mmu_idx) == 3) { 12635 address += env->cp15.fcseidr_s; 12636 } else { 12637 address += env->cp15.fcseidr_ns; 12638 } 12639 } 12640 12641 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12642 bool ret; 12643 *page_size = TARGET_PAGE_SIZE; 12644 12645 if (arm_feature(env, ARM_FEATURE_V8)) { 12646 /* PMSAv8 */ 12647 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12648 phys_ptr, attrs, prot, page_size, fi); 12649 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12650 /* PMSAv7 */ 12651 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12652 phys_ptr, prot, page_size, fi); 12653 } else { 12654 /* Pre-v7 MPU */ 12655 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12656 phys_ptr, prot, fi); 12657 } 12658 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12659 " mmu_idx %u -> %s (prot %c%c%c)\n", 12660 access_type == MMU_DATA_LOAD ? "reading" : 12661 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12662 (uint32_t)address, mmu_idx, 12663 ret ? "Miss" : "Hit", 12664 *prot & PAGE_READ ? 'r' : '-', 12665 *prot & PAGE_WRITE ? 'w' : '-', 12666 *prot & PAGE_EXEC ? 'x' : '-'); 12667 12668 return ret; 12669 } 12670 12671 /* Definitely a real MMU, not an MPU */ 12672 12673 if (regime_translation_disabled(env, mmu_idx)) { 12674 uint64_t hcr; 12675 uint8_t memattr; 12676 12677 /* 12678 * MMU disabled. S1 addresses within aa64 translation regimes are 12679 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12680 */ 12681 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12682 int r_el = regime_el(env, mmu_idx); 12683 if (arm_el_is_aa64(env, r_el)) { 12684 int pamax = arm_pamax(env_archcpu(env)); 12685 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12686 int addrtop, tbi; 12687 12688 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12689 if (access_type == MMU_INST_FETCH) { 12690 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12691 } 12692 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12693 addrtop = (tbi ? 55 : 63); 12694 12695 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12696 fi->type = ARMFault_AddressSize; 12697 fi->level = 0; 12698 fi->stage2 = false; 12699 return 1; 12700 } 12701 12702 /* 12703 * When TBI is disabled, we've just validated that all of the 12704 * bits above PAMax are zero, so logically we only need to 12705 * clear the top byte for TBI. But it's clearer to follow 12706 * the pseudocode set of addrdesc.paddress. 12707 */ 12708 address = extract64(address, 0, 52); 12709 } 12710 } 12711 *phys_ptr = address; 12712 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12713 *page_size = TARGET_PAGE_SIZE; 12714 12715 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12716 hcr = arm_hcr_el2_eff(env); 12717 cacheattrs->shareability = 0; 12718 if (hcr & HCR_DC) { 12719 if (hcr & HCR_DCT) { 12720 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12721 } else { 12722 memattr = 0xff; /* Normal, WB, RWA */ 12723 } 12724 } else if (access_type == MMU_INST_FETCH) { 12725 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12726 memattr = 0xee; /* Normal, WT, RA, NT */ 12727 } else { 12728 memattr = 0x44; /* Normal, NC, No */ 12729 } 12730 cacheattrs->shareability = 2; /* outer sharable */ 12731 } else { 12732 memattr = 0x00; /* Device, nGnRnE */ 12733 } 12734 cacheattrs->attrs = memattr; 12735 return 0; 12736 } 12737 12738 if (regime_using_lpae_format(env, mmu_idx)) { 12739 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12740 phys_ptr, attrs, prot, page_size, 12741 fi, cacheattrs); 12742 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12743 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12744 phys_ptr, attrs, prot, page_size, fi); 12745 } else { 12746 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12747 phys_ptr, prot, page_size, fi); 12748 } 12749 } 12750 12751 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12752 MemTxAttrs *attrs) 12753 { 12754 ARMCPU *cpu = ARM_CPU(cs); 12755 CPUARMState *env = &cpu->env; 12756 hwaddr phys_addr; 12757 target_ulong page_size; 12758 int prot; 12759 bool ret; 12760 ARMMMUFaultInfo fi = {}; 12761 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12762 ARMCacheAttrs cacheattrs = {}; 12763 12764 *attrs = (MemTxAttrs) {}; 12765 12766 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12767 attrs, &prot, &page_size, &fi, &cacheattrs); 12768 12769 if (ret) { 12770 return -1; 12771 } 12772 return phys_addr; 12773 } 12774 12775 #endif 12776 12777 /* Note that signed overflow is undefined in C. The following routines are 12778 careful to use unsigned types where modulo arithmetic is required. 12779 Failure to do so _will_ break on newer gcc. */ 12780 12781 /* Signed saturating arithmetic. */ 12782 12783 /* Perform 16-bit signed saturating addition. */ 12784 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12785 { 12786 uint16_t res; 12787 12788 res = a + b; 12789 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12790 if (a & 0x8000) 12791 res = 0x8000; 12792 else 12793 res = 0x7fff; 12794 } 12795 return res; 12796 } 12797 12798 /* Perform 8-bit signed saturating addition. */ 12799 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12800 { 12801 uint8_t res; 12802 12803 res = a + b; 12804 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12805 if (a & 0x80) 12806 res = 0x80; 12807 else 12808 res = 0x7f; 12809 } 12810 return res; 12811 } 12812 12813 /* Perform 16-bit signed saturating subtraction. */ 12814 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12815 { 12816 uint16_t res; 12817 12818 res = a - b; 12819 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12820 if (a & 0x8000) 12821 res = 0x8000; 12822 else 12823 res = 0x7fff; 12824 } 12825 return res; 12826 } 12827 12828 /* Perform 8-bit signed saturating subtraction. */ 12829 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12830 { 12831 uint8_t res; 12832 12833 res = a - b; 12834 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12835 if (a & 0x80) 12836 res = 0x80; 12837 else 12838 res = 0x7f; 12839 } 12840 return res; 12841 } 12842 12843 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12844 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12845 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12846 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12847 #define PFX q 12848 12849 #include "op_addsub.h" 12850 12851 /* Unsigned saturating arithmetic. */ 12852 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12853 { 12854 uint16_t res; 12855 res = a + b; 12856 if (res < a) 12857 res = 0xffff; 12858 return res; 12859 } 12860 12861 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12862 { 12863 if (a > b) 12864 return a - b; 12865 else 12866 return 0; 12867 } 12868 12869 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12870 { 12871 uint8_t res; 12872 res = a + b; 12873 if (res < a) 12874 res = 0xff; 12875 return res; 12876 } 12877 12878 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12879 { 12880 if (a > b) 12881 return a - b; 12882 else 12883 return 0; 12884 } 12885 12886 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12887 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12888 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12889 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12890 #define PFX uq 12891 12892 #include "op_addsub.h" 12893 12894 /* Signed modulo arithmetic. */ 12895 #define SARITH16(a, b, n, op) do { \ 12896 int32_t sum; \ 12897 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12898 RESULT(sum, n, 16); \ 12899 if (sum >= 0) \ 12900 ge |= 3 << (n * 2); \ 12901 } while(0) 12902 12903 #define SARITH8(a, b, n, op) do { \ 12904 int32_t sum; \ 12905 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12906 RESULT(sum, n, 8); \ 12907 if (sum >= 0) \ 12908 ge |= 1 << n; \ 12909 } while(0) 12910 12911 12912 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12913 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12914 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12915 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12916 #define PFX s 12917 #define ARITH_GE 12918 12919 #include "op_addsub.h" 12920 12921 /* Unsigned modulo arithmetic. */ 12922 #define ADD16(a, b, n) do { \ 12923 uint32_t sum; \ 12924 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12925 RESULT(sum, n, 16); \ 12926 if ((sum >> 16) == 1) \ 12927 ge |= 3 << (n * 2); \ 12928 } while(0) 12929 12930 #define ADD8(a, b, n) do { \ 12931 uint32_t sum; \ 12932 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12933 RESULT(sum, n, 8); \ 12934 if ((sum >> 8) == 1) \ 12935 ge |= 1 << n; \ 12936 } while(0) 12937 12938 #define SUB16(a, b, n) do { \ 12939 uint32_t sum; \ 12940 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12941 RESULT(sum, n, 16); \ 12942 if ((sum >> 16) == 0) \ 12943 ge |= 3 << (n * 2); \ 12944 } while(0) 12945 12946 #define SUB8(a, b, n) do { \ 12947 uint32_t sum; \ 12948 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12949 RESULT(sum, n, 8); \ 12950 if ((sum >> 8) == 0) \ 12951 ge |= 1 << n; \ 12952 } while(0) 12953 12954 #define PFX u 12955 #define ARITH_GE 12956 12957 #include "op_addsub.h" 12958 12959 /* Halved signed arithmetic. */ 12960 #define ADD16(a, b, n) \ 12961 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12962 #define SUB16(a, b, n) \ 12963 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12964 #define ADD8(a, b, n) \ 12965 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12966 #define SUB8(a, b, n) \ 12967 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12968 #define PFX sh 12969 12970 #include "op_addsub.h" 12971 12972 /* Halved unsigned arithmetic. */ 12973 #define ADD16(a, b, n) \ 12974 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12975 #define SUB16(a, b, n) \ 12976 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12977 #define ADD8(a, b, n) \ 12978 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12979 #define SUB8(a, b, n) \ 12980 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12981 #define PFX uh 12982 12983 #include "op_addsub.h" 12984 12985 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12986 { 12987 if (a > b) 12988 return a - b; 12989 else 12990 return b - a; 12991 } 12992 12993 /* Unsigned sum of absolute byte differences. */ 12994 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12995 { 12996 uint32_t sum; 12997 sum = do_usad(a, b); 12998 sum += do_usad(a >> 8, b >> 8); 12999 sum += do_usad(a >> 16, b >> 16); 13000 sum += do_usad(a >> 24, b >> 24); 13001 return sum; 13002 } 13003 13004 /* For ARMv6 SEL instruction. */ 13005 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13006 { 13007 uint32_t mask; 13008 13009 mask = 0; 13010 if (flags & 1) 13011 mask |= 0xff; 13012 if (flags & 2) 13013 mask |= 0xff00; 13014 if (flags & 4) 13015 mask |= 0xff0000; 13016 if (flags & 8) 13017 mask |= 0xff000000; 13018 return (a & mask) | (b & ~mask); 13019 } 13020 13021 /* CRC helpers. 13022 * The upper bytes of val (above the number specified by 'bytes') must have 13023 * been zeroed out by the caller. 13024 */ 13025 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13026 { 13027 uint8_t buf[4]; 13028 13029 stl_le_p(buf, val); 13030 13031 /* zlib crc32 converts the accumulator and output to one's complement. */ 13032 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13033 } 13034 13035 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13036 { 13037 uint8_t buf[4]; 13038 13039 stl_le_p(buf, val); 13040 13041 /* Linux crc32c converts the output to one's complement. */ 13042 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13043 } 13044 13045 /* Return the exception level to which FP-disabled exceptions should 13046 * be taken, or 0 if FP is enabled. 13047 */ 13048 int fp_exception_el(CPUARMState *env, int cur_el) 13049 { 13050 #ifndef CONFIG_USER_ONLY 13051 uint64_t hcr_el2; 13052 13053 /* CPACR and the CPTR registers don't exist before v6, so FP is 13054 * always accessible 13055 */ 13056 if (!arm_feature(env, ARM_FEATURE_V6)) { 13057 return 0; 13058 } 13059 13060 if (arm_feature(env, ARM_FEATURE_M)) { 13061 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13062 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13063 return 1; 13064 } 13065 13066 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13067 if (!extract32(env->v7m.nsacr, 10, 1)) { 13068 /* FP insns cause a NOCP UsageFault taken to Secure */ 13069 return 3; 13070 } 13071 } 13072 13073 return 0; 13074 } 13075 13076 hcr_el2 = arm_hcr_el2_eff(env); 13077 13078 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13079 * 0, 2 : trap EL0 and EL1/PL1 accesses 13080 * 1 : trap only EL0 accesses 13081 * 3 : trap no accesses 13082 * This register is ignored if E2H+TGE are both set. 13083 */ 13084 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13085 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13086 13087 switch (fpen) { 13088 case 0: 13089 case 2: 13090 if (cur_el == 0 || cur_el == 1) { 13091 /* Trap to PL1, which might be EL1 or EL3 */ 13092 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13093 return 3; 13094 } 13095 return 1; 13096 } 13097 if (cur_el == 3 && !is_a64(env)) { 13098 /* Secure PL1 running at EL3 */ 13099 return 3; 13100 } 13101 break; 13102 case 1: 13103 if (cur_el == 0) { 13104 return 1; 13105 } 13106 break; 13107 case 3: 13108 break; 13109 } 13110 } 13111 13112 /* 13113 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13114 * to control non-secure access to the FPU. It doesn't have any 13115 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13116 */ 13117 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13118 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13119 if (!extract32(env->cp15.nsacr, 10, 1)) { 13120 /* FP insns act as UNDEF */ 13121 return cur_el == 2 ? 2 : 1; 13122 } 13123 } 13124 13125 /* 13126 * CPTR_EL2 is present in v7VE or v8, and changes format 13127 * with HCR_EL2.E2H (regardless of TGE). 13128 */ 13129 if (cur_el <= 2) { 13130 if (hcr_el2 & HCR_E2H) { 13131 /* Check CPTR_EL2.FPEN. */ 13132 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13133 case 1: 13134 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13135 break; 13136 } 13137 /* fall through */ 13138 case 0: 13139 case 2: 13140 return 2; 13141 } 13142 } else if (arm_is_el2_enabled(env)) { 13143 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13144 return 2; 13145 } 13146 } 13147 } 13148 13149 /* CPTR_EL3 : present in v8 */ 13150 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13151 /* Trap all FP ops to EL3 */ 13152 return 3; 13153 } 13154 #endif 13155 return 0; 13156 } 13157 13158 /* Return the exception level we're running at if this is our mmu_idx */ 13159 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13160 { 13161 if (mmu_idx & ARM_MMU_IDX_M) { 13162 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13163 } 13164 13165 switch (mmu_idx) { 13166 case ARMMMUIdx_E10_0: 13167 case ARMMMUIdx_E20_0: 13168 case ARMMMUIdx_SE10_0: 13169 case ARMMMUIdx_SE20_0: 13170 return 0; 13171 case ARMMMUIdx_E10_1: 13172 case ARMMMUIdx_E10_1_PAN: 13173 case ARMMMUIdx_SE10_1: 13174 case ARMMMUIdx_SE10_1_PAN: 13175 return 1; 13176 case ARMMMUIdx_E2: 13177 case ARMMMUIdx_E20_2: 13178 case ARMMMUIdx_E20_2_PAN: 13179 case ARMMMUIdx_SE2: 13180 case ARMMMUIdx_SE20_2: 13181 case ARMMMUIdx_SE20_2_PAN: 13182 return 2; 13183 case ARMMMUIdx_SE3: 13184 return 3; 13185 default: 13186 g_assert_not_reached(); 13187 } 13188 } 13189 13190 #ifndef CONFIG_TCG 13191 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13192 { 13193 g_assert_not_reached(); 13194 } 13195 #endif 13196 13197 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13198 { 13199 ARMMMUIdx idx; 13200 uint64_t hcr; 13201 13202 if (arm_feature(env, ARM_FEATURE_M)) { 13203 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13204 } 13205 13206 /* See ARM pseudo-function ELIsInHost. */ 13207 switch (el) { 13208 case 0: 13209 hcr = arm_hcr_el2_eff(env); 13210 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13211 idx = ARMMMUIdx_E20_0; 13212 } else { 13213 idx = ARMMMUIdx_E10_0; 13214 } 13215 break; 13216 case 1: 13217 if (env->pstate & PSTATE_PAN) { 13218 idx = ARMMMUIdx_E10_1_PAN; 13219 } else { 13220 idx = ARMMMUIdx_E10_1; 13221 } 13222 break; 13223 case 2: 13224 /* Note that TGE does not apply at EL2. */ 13225 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13226 if (env->pstate & PSTATE_PAN) { 13227 idx = ARMMMUIdx_E20_2_PAN; 13228 } else { 13229 idx = ARMMMUIdx_E20_2; 13230 } 13231 } else { 13232 idx = ARMMMUIdx_E2; 13233 } 13234 break; 13235 case 3: 13236 return ARMMMUIdx_SE3; 13237 default: 13238 g_assert_not_reached(); 13239 } 13240 13241 if (arm_is_secure_below_el3(env)) { 13242 idx &= ~ARM_MMU_IDX_A_NS; 13243 } 13244 13245 return idx; 13246 } 13247 13248 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13249 { 13250 return arm_mmu_idx_el(env, arm_current_el(env)); 13251 } 13252 13253 #ifndef CONFIG_USER_ONLY 13254 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13255 { 13256 return stage_1_mmu_idx(arm_mmu_idx(env)); 13257 } 13258 #endif 13259 13260 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13261 ARMMMUIdx mmu_idx, 13262 CPUARMTBFlags flags) 13263 { 13264 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13265 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13266 13267 if (arm_singlestep_active(env)) { 13268 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13269 } 13270 return flags; 13271 } 13272 13273 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13274 ARMMMUIdx mmu_idx, 13275 CPUARMTBFlags flags) 13276 { 13277 bool sctlr_b = arm_sctlr_b(env); 13278 13279 if (sctlr_b) { 13280 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13281 } 13282 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13283 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13284 } 13285 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13286 13287 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13288 } 13289 13290 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13291 ARMMMUIdx mmu_idx) 13292 { 13293 CPUARMTBFlags flags = {}; 13294 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13295 13296 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13297 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13298 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13299 } 13300 13301 if (arm_v7m_is_handler_mode(env)) { 13302 DP_TBFLAG_M32(flags, HANDLER, 1); 13303 } 13304 13305 /* 13306 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13307 * is suppressing them because the requested execution priority 13308 * is less than 0. 13309 */ 13310 if (arm_feature(env, ARM_FEATURE_V8) && 13311 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13312 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13313 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13314 } 13315 13316 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13317 } 13318 13319 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13320 { 13321 CPUARMTBFlags flags = {}; 13322 13323 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13324 return flags; 13325 } 13326 13327 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13328 ARMMMUIdx mmu_idx) 13329 { 13330 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13331 int el = arm_current_el(env); 13332 13333 if (arm_sctlr(env, el) & SCTLR_A) { 13334 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13335 } 13336 13337 if (arm_el_is_aa64(env, 1)) { 13338 DP_TBFLAG_A32(flags, VFPEN, 1); 13339 } 13340 13341 if (el < 2 && env->cp15.hstr_el2 && 13342 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13343 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13344 } 13345 13346 if (env->uncached_cpsr & CPSR_IL) { 13347 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13348 } 13349 13350 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13351 } 13352 13353 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13354 ARMMMUIdx mmu_idx) 13355 { 13356 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13357 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13358 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13359 uint64_t sctlr; 13360 int tbii, tbid; 13361 13362 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13363 13364 /* Get control bits for tagged addresses. */ 13365 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13366 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13367 13368 DP_TBFLAG_A64(flags, TBII, tbii); 13369 DP_TBFLAG_A64(flags, TBID, tbid); 13370 13371 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13372 int sve_el = sve_exception_el(env, el); 13373 uint32_t zcr_len; 13374 13375 /* 13376 * If SVE is disabled, but FP is enabled, 13377 * then the effective len is 0. 13378 */ 13379 if (sve_el != 0 && fp_el == 0) { 13380 zcr_len = 0; 13381 } else { 13382 zcr_len = sve_zcr_len_for_el(env, el); 13383 } 13384 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13385 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13386 } 13387 13388 sctlr = regime_sctlr(env, stage1); 13389 13390 if (sctlr & SCTLR_A) { 13391 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13392 } 13393 13394 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13395 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13396 } 13397 13398 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13399 /* 13400 * In order to save space in flags, we record only whether 13401 * pauth is "inactive", meaning all insns are implemented as 13402 * a nop, or "active" when some action must be performed. 13403 * The decision of which action to take is left to a helper. 13404 */ 13405 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13406 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13407 } 13408 } 13409 13410 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13411 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13412 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13413 DP_TBFLAG_A64(flags, BT, 1); 13414 } 13415 } 13416 13417 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13418 if (!(env->pstate & PSTATE_UAO)) { 13419 switch (mmu_idx) { 13420 case ARMMMUIdx_E10_1: 13421 case ARMMMUIdx_E10_1_PAN: 13422 case ARMMMUIdx_SE10_1: 13423 case ARMMMUIdx_SE10_1_PAN: 13424 /* TODO: ARMv8.3-NV */ 13425 DP_TBFLAG_A64(flags, UNPRIV, 1); 13426 break; 13427 case ARMMMUIdx_E20_2: 13428 case ARMMMUIdx_E20_2_PAN: 13429 case ARMMMUIdx_SE20_2: 13430 case ARMMMUIdx_SE20_2_PAN: 13431 /* 13432 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13433 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13434 */ 13435 if (env->cp15.hcr_el2 & HCR_TGE) { 13436 DP_TBFLAG_A64(flags, UNPRIV, 1); 13437 } 13438 break; 13439 default: 13440 break; 13441 } 13442 } 13443 13444 if (env->pstate & PSTATE_IL) { 13445 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13446 } 13447 13448 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13449 /* 13450 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13451 * if all accesses must be Unchecked: 13452 * 1) If no TBI, then there are no tags in the address to check, 13453 * 2) If Tag Check Override, then all accesses are Unchecked, 13454 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13455 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13456 */ 13457 if (allocation_tag_access_enabled(env, el, sctlr)) { 13458 DP_TBFLAG_A64(flags, ATA, 1); 13459 if (tbid 13460 && !(env->pstate & PSTATE_TCO) 13461 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13462 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13463 } 13464 } 13465 /* And again for unprivileged accesses, if required. */ 13466 if (EX_TBFLAG_A64(flags, UNPRIV) 13467 && tbid 13468 && !(env->pstate & PSTATE_TCO) 13469 && (sctlr & SCTLR_TCF0) 13470 && allocation_tag_access_enabled(env, 0, sctlr)) { 13471 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13472 } 13473 /* Cache TCMA as well as TBI. */ 13474 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13475 } 13476 13477 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13478 } 13479 13480 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13481 { 13482 int el = arm_current_el(env); 13483 int fp_el = fp_exception_el(env, el); 13484 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13485 13486 if (is_a64(env)) { 13487 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13488 } else if (arm_feature(env, ARM_FEATURE_M)) { 13489 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13490 } else { 13491 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13492 } 13493 } 13494 13495 void arm_rebuild_hflags(CPUARMState *env) 13496 { 13497 env->hflags = rebuild_hflags_internal(env); 13498 } 13499 13500 /* 13501 * If we have triggered a EL state change we can't rely on the 13502 * translator having passed it to us, we need to recompute. 13503 */ 13504 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13505 { 13506 int el = arm_current_el(env); 13507 int fp_el = fp_exception_el(env, el); 13508 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13509 13510 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13511 } 13512 13513 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13514 { 13515 int fp_el = fp_exception_el(env, el); 13516 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13517 13518 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13519 } 13520 13521 /* 13522 * If we have triggered a EL state change we can't rely on the 13523 * translator having passed it to us, we need to recompute. 13524 */ 13525 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13526 { 13527 int el = arm_current_el(env); 13528 int fp_el = fp_exception_el(env, el); 13529 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13530 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13531 } 13532 13533 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13534 { 13535 int fp_el = fp_exception_el(env, el); 13536 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13537 13538 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13539 } 13540 13541 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13542 { 13543 int fp_el = fp_exception_el(env, el); 13544 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13545 13546 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13547 } 13548 13549 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13550 { 13551 #ifdef CONFIG_DEBUG_TCG 13552 CPUARMTBFlags c = env->hflags; 13553 CPUARMTBFlags r = rebuild_hflags_internal(env); 13554 13555 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13556 fprintf(stderr, "TCG hflags mismatch " 13557 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13558 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13559 c.flags, c.flags2, r.flags, r.flags2); 13560 abort(); 13561 } 13562 #endif 13563 } 13564 13565 static bool mve_no_pred(CPUARMState *env) 13566 { 13567 /* 13568 * Return true if there is definitely no predication of MVE 13569 * instructions by VPR or LTPSIZE. (Returning false even if there 13570 * isn't any predication is OK; generated code will just be 13571 * a little worse.) 13572 * If the CPU does not implement MVE then this TB flag is always 0. 13573 * 13574 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13575 * logic in gen_update_fp_context() needs to be updated to match. 13576 * 13577 * We do not include the effect of the ECI bits here -- they are 13578 * tracked in other TB flags. This simplifies the logic for 13579 * "when did we emit code that changes the MVE_NO_PRED TB flag 13580 * and thus need to end the TB?". 13581 */ 13582 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13583 return false; 13584 } 13585 if (env->v7m.vpr) { 13586 return false; 13587 } 13588 if (env->v7m.ltpsize < 4) { 13589 return false; 13590 } 13591 return true; 13592 } 13593 13594 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13595 target_ulong *cs_base, uint32_t *pflags) 13596 { 13597 CPUARMTBFlags flags; 13598 13599 assert_hflags_rebuild_correctly(env); 13600 flags = env->hflags; 13601 13602 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13603 *pc = env->pc; 13604 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13605 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13606 } 13607 } else { 13608 *pc = env->regs[15]; 13609 13610 if (arm_feature(env, ARM_FEATURE_M)) { 13611 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13612 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13613 != env->v7m.secure) { 13614 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13615 } 13616 13617 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13618 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13619 (env->v7m.secure && 13620 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13621 /* 13622 * ASPEN is set, but FPCA/SFPA indicate that there is no 13623 * active FP context; we must create a new FP context before 13624 * executing any FP insn. 13625 */ 13626 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13627 } 13628 13629 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13630 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13631 DP_TBFLAG_M32(flags, LSPACT, 1); 13632 } 13633 13634 if (mve_no_pred(env)) { 13635 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13636 } 13637 } else { 13638 /* 13639 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13640 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13641 */ 13642 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13643 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13644 } else { 13645 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13646 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13647 } 13648 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13649 DP_TBFLAG_A32(flags, VFPEN, 1); 13650 } 13651 } 13652 13653 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13654 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13655 } 13656 13657 /* 13658 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13659 * states defined in the ARM ARM for software singlestep: 13660 * SS_ACTIVE PSTATE.SS State 13661 * 0 x Inactive (the TB flag for SS is always 0) 13662 * 1 0 Active-pending 13663 * 1 1 Active-not-pending 13664 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13665 */ 13666 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13667 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13668 } 13669 13670 *pflags = flags.flags; 13671 *cs_base = flags.flags2; 13672 } 13673 13674 #ifdef TARGET_AARCH64 13675 /* 13676 * The manual says that when SVE is enabled and VQ is widened the 13677 * implementation is allowed to zero the previously inaccessible 13678 * portion of the registers. The corollary to that is that when 13679 * SVE is enabled and VQ is narrowed we are also allowed to zero 13680 * the now inaccessible portion of the registers. 13681 * 13682 * The intent of this is that no predicate bit beyond VQ is ever set. 13683 * Which means that some operations on predicate registers themselves 13684 * may operate on full uint64_t or even unrolled across the maximum 13685 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13686 * may well be cheaper than conditionals to restrict the operation 13687 * to the relevant portion of a uint16_t[16]. 13688 */ 13689 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13690 { 13691 int i, j; 13692 uint64_t pmask; 13693 13694 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13695 assert(vq <= env_archcpu(env)->sve_max_vq); 13696 13697 /* Zap the high bits of the zregs. */ 13698 for (i = 0; i < 32; i++) { 13699 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13700 } 13701 13702 /* Zap the high bits of the pregs and ffr. */ 13703 pmask = 0; 13704 if (vq & 3) { 13705 pmask = ~(-1ULL << (16 * (vq & 3))); 13706 } 13707 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13708 for (i = 0; i < 17; ++i) { 13709 env->vfp.pregs[i].p[j] &= pmask; 13710 } 13711 pmask = 0; 13712 } 13713 } 13714 13715 /* 13716 * Notice a change in SVE vector size when changing EL. 13717 */ 13718 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13719 int new_el, bool el0_a64) 13720 { 13721 ARMCPU *cpu = env_archcpu(env); 13722 int old_len, new_len; 13723 bool old_a64, new_a64; 13724 13725 /* Nothing to do if no SVE. */ 13726 if (!cpu_isar_feature(aa64_sve, cpu)) { 13727 return; 13728 } 13729 13730 /* Nothing to do if FP is disabled in either EL. */ 13731 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13732 return; 13733 } 13734 13735 /* 13736 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13737 * at ELx, or not available because the EL is in AArch32 state, then 13738 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13739 * has an effective value of 0". 13740 * 13741 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13742 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13743 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13744 * we already have the correct register contents when encountering the 13745 * vq0->vq0 transition between EL0->EL1. 13746 */ 13747 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13748 old_len = (old_a64 && !sve_exception_el(env, old_el) 13749 ? sve_zcr_len_for_el(env, old_el) : 0); 13750 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13751 new_len = (new_a64 && !sve_exception_el(env, new_el) 13752 ? sve_zcr_len_for_el(env, new_el) : 0); 13753 13754 /* When changing vector length, clear inaccessible state. */ 13755 if (new_len < old_len) { 13756 aarch64_sve_narrow_vq(env, new_len + 1); 13757 } 13758 } 13759 #endif 13760