1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 #include "fpu/softfloat.h" 19 20 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 21 22 #ifndef CONFIG_USER_ONLY 23 /* Cacheability and shareability attributes for a memory access */ 24 typedef struct ARMCacheAttrs { 25 unsigned int attrs:8; /* as in the MAIR register encoding */ 26 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 27 } ARMCacheAttrs; 28 29 static bool get_phys_addr(CPUARMState *env, target_ulong address, 30 MMUAccessType access_type, ARMMMUIdx mmu_idx, 31 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 32 target_ulong *page_size, 33 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 34 35 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 36 MMUAccessType access_type, ARMMMUIdx mmu_idx, 37 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 38 target_ulong *page_size_ptr, 39 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 40 41 /* Security attributes for an address, as returned by v8m_security_lookup. */ 42 typedef struct V8M_SAttributes { 43 bool ns; 44 bool nsc; 45 uint8_t sregion; 46 bool srvalid; 47 uint8_t iregion; 48 bool irvalid; 49 } V8M_SAttributes; 50 51 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 52 MMUAccessType access_type, ARMMMUIdx mmu_idx, 53 V8M_SAttributes *sattrs); 54 55 /* Definitions for the PMCCNTR and PMCR registers */ 56 #define PMCRD 0x8 57 #define PMCRC 0x4 58 #define PMCRE 0x1 59 #endif 60 61 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 62 { 63 int nregs; 64 65 /* VFP data registers are always little-endian. */ 66 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 67 if (reg < nregs) { 68 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 69 return 8; 70 } 71 if (arm_feature(env, ARM_FEATURE_NEON)) { 72 /* Aliases for Q regs. */ 73 nregs += 16; 74 if (reg < nregs) { 75 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 76 stq_le_p(buf, q[0]); 77 stq_le_p(buf + 8, q[1]); 78 return 16; 79 } 80 } 81 switch (reg - nregs) { 82 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 83 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 84 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 85 } 86 return 0; 87 } 88 89 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 90 { 91 int nregs; 92 93 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 94 if (reg < nregs) { 95 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 96 return 8; 97 } 98 if (arm_feature(env, ARM_FEATURE_NEON)) { 99 nregs += 16; 100 if (reg < nregs) { 101 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 102 q[0] = ldq_le_p(buf); 103 q[1] = ldq_le_p(buf + 8); 104 return 16; 105 } 106 } 107 switch (reg - nregs) { 108 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 109 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 110 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 111 } 112 return 0; 113 } 114 115 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 116 { 117 switch (reg) { 118 case 0 ... 31: 119 /* 128 bit FP register */ 120 { 121 uint64_t *q = aa64_vfp_qreg(env, reg); 122 stq_le_p(buf, q[0]); 123 stq_le_p(buf + 8, q[1]); 124 return 16; 125 } 126 case 32: 127 /* FPSR */ 128 stl_p(buf, vfp_get_fpsr(env)); 129 return 4; 130 case 33: 131 /* FPCR */ 132 stl_p(buf, vfp_get_fpcr(env)); 133 return 4; 134 default: 135 return 0; 136 } 137 } 138 139 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 140 { 141 switch (reg) { 142 case 0 ... 31: 143 /* 128 bit FP register */ 144 { 145 uint64_t *q = aa64_vfp_qreg(env, reg); 146 q[0] = ldq_le_p(buf); 147 q[1] = ldq_le_p(buf + 8); 148 return 16; 149 } 150 case 32: 151 /* FPSR */ 152 vfp_set_fpsr(env, ldl_p(buf)); 153 return 4; 154 case 33: 155 /* FPCR */ 156 vfp_set_fpcr(env, ldl_p(buf)); 157 return 4; 158 default: 159 return 0; 160 } 161 } 162 163 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 return CPREG_FIELD64(env, ri); 168 } else { 169 return CPREG_FIELD32(env, ri); 170 } 171 } 172 173 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 174 uint64_t value) 175 { 176 assert(ri->fieldoffset); 177 if (cpreg_field_is_64bit(ri)) { 178 CPREG_FIELD64(env, ri) = value; 179 } else { 180 CPREG_FIELD32(env, ri) = value; 181 } 182 } 183 184 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 185 { 186 return (char *)env + ri->fieldoffset; 187 } 188 189 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 190 { 191 /* Raw read of a coprocessor register (as needed for migration, etc). */ 192 if (ri->type & ARM_CP_CONST) { 193 return ri->resetvalue; 194 } else if (ri->raw_readfn) { 195 return ri->raw_readfn(env, ri); 196 } else if (ri->readfn) { 197 return ri->readfn(env, ri); 198 } else { 199 return raw_read(env, ri); 200 } 201 } 202 203 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 204 uint64_t v) 205 { 206 /* Raw write of a coprocessor register (as needed for migration, etc). 207 * Note that constant registers are treated as write-ignored; the 208 * caller should check for success by whether a readback gives the 209 * value written. 210 */ 211 if (ri->type & ARM_CP_CONST) { 212 return; 213 } else if (ri->raw_writefn) { 214 ri->raw_writefn(env, ri, v); 215 } else if (ri->writefn) { 216 ri->writefn(env, ri, v); 217 } else { 218 raw_write(env, ri, v); 219 } 220 } 221 222 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 223 { 224 /* Return true if the regdef would cause an assertion if you called 225 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 226 * program bug for it not to have the NO_RAW flag). 227 * NB that returning false here doesn't necessarily mean that calling 228 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 229 * read/write access functions which are safe for raw use" from "has 230 * read/write access functions which have side effects but has forgotten 231 * to provide raw access functions". 232 * The tests here line up with the conditions in read/write_raw_cp_reg() 233 * and assertions in raw_read()/raw_write(). 234 */ 235 if ((ri->type & ARM_CP_CONST) || 236 ri->fieldoffset || 237 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 238 return false; 239 } 240 return true; 241 } 242 243 bool write_cpustate_to_list(ARMCPU *cpu) 244 { 245 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 246 int i; 247 bool ok = true; 248 249 for (i = 0; i < cpu->cpreg_array_len; i++) { 250 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 251 const ARMCPRegInfo *ri; 252 253 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 254 if (!ri) { 255 ok = false; 256 continue; 257 } 258 if (ri->type & ARM_CP_NO_RAW) { 259 continue; 260 } 261 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 262 } 263 return ok; 264 } 265 266 bool write_list_to_cpustate(ARMCPU *cpu) 267 { 268 int i; 269 bool ok = true; 270 271 for (i = 0; i < cpu->cpreg_array_len; i++) { 272 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 273 uint64_t v = cpu->cpreg_values[i]; 274 const ARMCPRegInfo *ri; 275 276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 277 if (!ri) { 278 ok = false; 279 continue; 280 } 281 if (ri->type & ARM_CP_NO_RAW) { 282 continue; 283 } 284 /* Write value and confirm it reads back as written 285 * (to catch read-only registers and partially read-only 286 * registers where the incoming migration value doesn't match) 287 */ 288 write_raw_cp_reg(&cpu->env, ri, v); 289 if (read_raw_cp_reg(&cpu->env, ri) != v) { 290 ok = false; 291 } 292 } 293 return ok; 294 } 295 296 static void add_cpreg_to_list(gpointer key, gpointer opaque) 297 { 298 ARMCPU *cpu = opaque; 299 uint64_t regidx; 300 const ARMCPRegInfo *ri; 301 302 regidx = *(uint32_t *)key; 303 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 304 305 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 306 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 307 /* The value array need not be initialized at this point */ 308 cpu->cpreg_array_len++; 309 } 310 } 311 312 static void count_cpreg(gpointer key, gpointer opaque) 313 { 314 ARMCPU *cpu = opaque; 315 uint64_t regidx; 316 const ARMCPRegInfo *ri; 317 318 regidx = *(uint32_t *)key; 319 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 320 321 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 322 cpu->cpreg_array_len++; 323 } 324 } 325 326 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 327 { 328 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 329 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 330 331 if (aidx > bidx) { 332 return 1; 333 } 334 if (aidx < bidx) { 335 return -1; 336 } 337 return 0; 338 } 339 340 void init_cpreg_list(ARMCPU *cpu) 341 { 342 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 343 * Note that we require cpreg_tuples[] to be sorted by key ID. 344 */ 345 GList *keys; 346 int arraylen; 347 348 keys = g_hash_table_get_keys(cpu->cp_regs); 349 keys = g_list_sort(keys, cpreg_key_compare); 350 351 cpu->cpreg_array_len = 0; 352 353 g_list_foreach(keys, count_cpreg, cpu); 354 355 arraylen = cpu->cpreg_array_len; 356 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 357 cpu->cpreg_values = g_new(uint64_t, arraylen); 358 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 359 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 360 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 361 cpu->cpreg_array_len = 0; 362 363 g_list_foreach(keys, add_cpreg_to_list, cpu); 364 365 assert(cpu->cpreg_array_len == arraylen); 366 367 g_list_free(keys); 368 } 369 370 /* 371 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 372 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 373 * 374 * access_el3_aa32ns: Used to check AArch32 register views. 375 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 376 */ 377 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 378 const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 bool secure = arm_is_secure_below_el3(env); 382 383 assert(!arm_el_is_aa64(env, 3)); 384 if (secure) { 385 return CP_ACCESS_TRAP_UNCATEGORIZED; 386 } 387 return CP_ACCESS_OK; 388 } 389 390 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 391 const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (!arm_el_is_aa64(env, 3)) { 395 return access_el3_aa32ns(env, ri, isread); 396 } 397 return CP_ACCESS_OK; 398 } 399 400 /* Some secure-only AArch32 registers trap to EL3 if used from 401 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 402 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 403 * We assume that the .access field is set to PL1_RW. 404 */ 405 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 406 const ARMCPRegInfo *ri, 407 bool isread) 408 { 409 if (arm_current_el(env) == 3) { 410 return CP_ACCESS_OK; 411 } 412 if (arm_is_secure_below_el3(env)) { 413 return CP_ACCESS_TRAP_EL3; 414 } 415 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 416 return CP_ACCESS_TRAP_UNCATEGORIZED; 417 } 418 419 /* Check for traps to "powerdown debug" registers, which are controlled 420 * by MDCR.TDOSA 421 */ 422 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 423 bool isread) 424 { 425 int el = arm_current_el(env); 426 427 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 428 && !arm_is_secure_below_el3(env)) { 429 return CP_ACCESS_TRAP_EL2; 430 } 431 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 432 return CP_ACCESS_TRAP_EL3; 433 } 434 return CP_ACCESS_OK; 435 } 436 437 /* Check for traps to "debug ROM" registers, which are controlled 438 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 439 */ 440 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 441 bool isread) 442 { 443 int el = arm_current_el(env); 444 445 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 446 && !arm_is_secure_below_el3(env)) { 447 return CP_ACCESS_TRAP_EL2; 448 } 449 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 450 return CP_ACCESS_TRAP_EL3; 451 } 452 return CP_ACCESS_OK; 453 } 454 455 /* Check for traps to general debug registers, which are controlled 456 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 457 */ 458 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 459 bool isread) 460 { 461 int el = arm_current_el(env); 462 463 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 464 && !arm_is_secure_below_el3(env)) { 465 return CP_ACCESS_TRAP_EL2; 466 } 467 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 468 return CP_ACCESS_TRAP_EL3; 469 } 470 return CP_ACCESS_OK; 471 } 472 473 /* Check for traps to performance monitor registers, which are controlled 474 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 475 */ 476 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 477 bool isread) 478 { 479 int el = arm_current_el(env); 480 481 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 482 && !arm_is_secure_below_el3(env)) { 483 return CP_ACCESS_TRAP_EL2; 484 } 485 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 486 return CP_ACCESS_TRAP_EL3; 487 } 488 return CP_ACCESS_OK; 489 } 490 491 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 492 { 493 ARMCPU *cpu = arm_env_get_cpu(env); 494 495 raw_write(env, ri, value); 496 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 497 } 498 499 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 500 { 501 ARMCPU *cpu = arm_env_get_cpu(env); 502 503 if (raw_read(env, ri) != value) { 504 /* Unlike real hardware the qemu TLB uses virtual addresses, 505 * not modified virtual addresses, so this causes a TLB flush. 506 */ 507 tlb_flush(CPU(cpu)); 508 raw_write(env, ri, value); 509 } 510 } 511 512 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 ARMCPU *cpu = arm_env_get_cpu(env); 516 517 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 518 && !extended_addresses_enabled(env)) { 519 /* For VMSA (when not using the LPAE long descriptor page table 520 * format) this register includes the ASID, so do a TLB flush. 521 * For PMSA it is purely a process ID and no action is needed. 522 */ 523 tlb_flush(CPU(cpu)); 524 } 525 raw_write(env, ri, value); 526 } 527 528 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 529 uint64_t value) 530 { 531 /* Invalidate all (TLBIALL) */ 532 ARMCPU *cpu = arm_env_get_cpu(env); 533 534 tlb_flush(CPU(cpu)); 535 } 536 537 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 538 uint64_t value) 539 { 540 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 541 ARMCPU *cpu = arm_env_get_cpu(env); 542 543 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 544 } 545 546 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 /* Invalidate by ASID (TLBIASID) */ 550 ARMCPU *cpu = arm_env_get_cpu(env); 551 552 tlb_flush(CPU(cpu)); 553 } 554 555 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 556 uint64_t value) 557 { 558 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 559 ARMCPU *cpu = arm_env_get_cpu(env); 560 561 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 562 } 563 564 /* IS variants of TLB operations must affect all cores */ 565 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = ENV_GET_CPU(env); 569 570 tlb_flush_all_cpus_synced(cs); 571 } 572 573 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = ENV_GET_CPU(env); 577 578 tlb_flush_all_cpus_synced(cs); 579 } 580 581 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = ENV_GET_CPU(env); 585 586 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 587 } 588 589 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 590 uint64_t value) 591 { 592 CPUState *cs = ENV_GET_CPU(env); 593 594 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 595 } 596 597 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 598 uint64_t value) 599 { 600 CPUState *cs = ENV_GET_CPU(env); 601 602 tlb_flush_by_mmuidx(cs, 603 ARMMMUIdxBit_S12NSE1 | 604 ARMMMUIdxBit_S12NSE0 | 605 ARMMMUIdxBit_S2NS); 606 } 607 608 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 609 uint64_t value) 610 { 611 CPUState *cs = ENV_GET_CPU(env); 612 613 tlb_flush_by_mmuidx_all_cpus_synced(cs, 614 ARMMMUIdxBit_S12NSE1 | 615 ARMMMUIdxBit_S12NSE0 | 616 ARMMMUIdxBit_S2NS); 617 } 618 619 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 620 uint64_t value) 621 { 622 /* Invalidate by IPA. This has to invalidate any structures that 623 * contain only stage 2 translation information, but does not need 624 * to apply to structures that contain combined stage 1 and stage 2 625 * translation information. 626 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 627 */ 628 CPUState *cs = ENV_GET_CPU(env); 629 uint64_t pageaddr; 630 631 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 632 return; 633 } 634 635 pageaddr = sextract64(value << 12, 0, 40); 636 637 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 638 } 639 640 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 641 uint64_t value) 642 { 643 CPUState *cs = ENV_GET_CPU(env); 644 uint64_t pageaddr; 645 646 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 647 return; 648 } 649 650 pageaddr = sextract64(value << 12, 0, 40); 651 652 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 653 ARMMMUIdxBit_S2NS); 654 } 655 656 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 657 uint64_t value) 658 { 659 CPUState *cs = ENV_GET_CPU(env); 660 661 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 662 } 663 664 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 665 uint64_t value) 666 { 667 CPUState *cs = ENV_GET_CPU(env); 668 669 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 670 } 671 672 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 673 uint64_t value) 674 { 675 CPUState *cs = ENV_GET_CPU(env); 676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 677 678 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 679 } 680 681 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 682 uint64_t value) 683 { 684 CPUState *cs = ENV_GET_CPU(env); 685 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 686 687 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 688 ARMMMUIdxBit_S1E2); 689 } 690 691 static const ARMCPRegInfo cp_reginfo[] = { 692 /* Define the secure and non-secure FCSE identifier CP registers 693 * separately because there is no secure bank in V8 (no _EL3). This allows 694 * the secure register to be properly reset and migrated. There is also no 695 * v8 EL1 version of the register so the non-secure instance stands alone. 696 */ 697 { .name = "FCSEIDR(NS)", 698 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 699 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 700 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 701 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 702 { .name = "FCSEIDR(S)", 703 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 704 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 705 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 706 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 707 /* Define the secure and non-secure context identifier CP registers 708 * separately because there is no secure bank in V8 (no _EL3). This allows 709 * the secure register to be properly reset and migrated. In the 710 * non-secure case, the 32-bit register will have reset and migration 711 * disabled during registration as it is handled by the 64-bit instance. 712 */ 713 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 714 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 715 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 716 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 717 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 718 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 719 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 720 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 721 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 722 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 723 REGINFO_SENTINEL 724 }; 725 726 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 727 /* NB: Some of these registers exist in v8 but with more precise 728 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 729 */ 730 /* MMU Domain access control / MPU write buffer control */ 731 { .name = "DACR", 732 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 733 .access = PL1_RW, .resetvalue = 0, 734 .writefn = dacr_write, .raw_writefn = raw_write, 735 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 736 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 737 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 738 * For v6 and v5, these mappings are overly broad. 739 */ 740 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 741 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 742 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 743 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 744 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 745 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 746 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 747 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 748 /* Cache maintenance ops; some of this space may be overridden later. */ 749 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 750 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 751 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 752 REGINFO_SENTINEL 753 }; 754 755 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 756 /* Not all pre-v6 cores implemented this WFI, so this is slightly 757 * over-broad. 758 */ 759 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 760 .access = PL1_W, .type = ARM_CP_WFI }, 761 REGINFO_SENTINEL 762 }; 763 764 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 765 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 766 * is UNPREDICTABLE; we choose to NOP as most implementations do). 767 */ 768 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 769 .access = PL1_W, .type = ARM_CP_WFI }, 770 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 771 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 772 * OMAPCP will override this space. 773 */ 774 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 775 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 776 .resetvalue = 0 }, 777 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 778 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 779 .resetvalue = 0 }, 780 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 781 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 782 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 783 .resetvalue = 0 }, 784 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 785 * implementing it as RAZ means the "debug architecture version" bits 786 * will read as a reserved value, which should cause Linux to not try 787 * to use the debug hardware. 788 */ 789 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 790 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 791 /* MMU TLB control. Note that the wildcarding means we cover not just 792 * the unified TLB ops but also the dside/iside/inner-shareable variants. 793 */ 794 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 795 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 796 .type = ARM_CP_NO_RAW }, 797 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 798 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 799 .type = ARM_CP_NO_RAW }, 800 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 801 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 802 .type = ARM_CP_NO_RAW }, 803 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 804 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 805 .type = ARM_CP_NO_RAW }, 806 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 807 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 808 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 809 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 810 REGINFO_SENTINEL 811 }; 812 813 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 814 uint64_t value) 815 { 816 uint32_t mask = 0; 817 818 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 819 if (!arm_feature(env, ARM_FEATURE_V8)) { 820 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 821 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 822 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 823 */ 824 if (arm_feature(env, ARM_FEATURE_VFP)) { 825 /* VFP coprocessor: cp10 & cp11 [23:20] */ 826 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 827 828 if (!arm_feature(env, ARM_FEATURE_NEON)) { 829 /* ASEDIS [31] bit is RAO/WI */ 830 value |= (1 << 31); 831 } 832 833 /* VFPv3 and upwards with NEON implement 32 double precision 834 * registers (D0-D31). 835 */ 836 if (!arm_feature(env, ARM_FEATURE_NEON) || 837 !arm_feature(env, ARM_FEATURE_VFP3)) { 838 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 839 value |= (1 << 30); 840 } 841 } 842 value &= mask; 843 } 844 env->cp15.cpacr_el1 = value; 845 } 846 847 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 848 bool isread) 849 { 850 if (arm_feature(env, ARM_FEATURE_V8)) { 851 /* Check if CPACR accesses are to be trapped to EL2 */ 852 if (arm_current_el(env) == 1 && 853 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 854 return CP_ACCESS_TRAP_EL2; 855 /* Check if CPACR accesses are to be trapped to EL3 */ 856 } else if (arm_current_el(env) < 3 && 857 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 858 return CP_ACCESS_TRAP_EL3; 859 } 860 } 861 862 return CP_ACCESS_OK; 863 } 864 865 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 866 bool isread) 867 { 868 /* Check if CPTR accesses are set to trap to EL3 */ 869 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 870 return CP_ACCESS_TRAP_EL3; 871 } 872 873 return CP_ACCESS_OK; 874 } 875 876 static const ARMCPRegInfo v6_cp_reginfo[] = { 877 /* prefetch by MVA in v6, NOP in v7 */ 878 { .name = "MVA_prefetch", 879 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 880 .access = PL1_W, .type = ARM_CP_NOP }, 881 /* We need to break the TB after ISB to execute self-modifying code 882 * correctly and also to take any pending interrupts immediately. 883 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 884 */ 885 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 886 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 887 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 888 .access = PL0_W, .type = ARM_CP_NOP }, 889 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 890 .access = PL0_W, .type = ARM_CP_NOP }, 891 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 892 .access = PL1_RW, 893 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 894 offsetof(CPUARMState, cp15.ifar_ns) }, 895 .resetvalue = 0, }, 896 /* Watchpoint Fault Address Register : should actually only be present 897 * for 1136, 1176, 11MPCore. 898 */ 899 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 900 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 901 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 902 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 903 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 904 .resetvalue = 0, .writefn = cpacr_write }, 905 REGINFO_SENTINEL 906 }; 907 908 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 909 bool isread) 910 { 911 /* Performance monitor registers user accessibility is controlled 912 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 913 * trapping to EL2 or EL3 for other accesses. 914 */ 915 int el = arm_current_el(env); 916 917 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 918 return CP_ACCESS_TRAP; 919 } 920 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 921 && !arm_is_secure_below_el3(env)) { 922 return CP_ACCESS_TRAP_EL2; 923 } 924 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 925 return CP_ACCESS_TRAP_EL3; 926 } 927 928 return CP_ACCESS_OK; 929 } 930 931 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 932 const ARMCPRegInfo *ri, 933 bool isread) 934 { 935 /* ER: event counter read trap control */ 936 if (arm_feature(env, ARM_FEATURE_V8) 937 && arm_current_el(env) == 0 938 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 939 && isread) { 940 return CP_ACCESS_OK; 941 } 942 943 return pmreg_access(env, ri, isread); 944 } 945 946 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 947 const ARMCPRegInfo *ri, 948 bool isread) 949 { 950 /* SW: software increment write trap control */ 951 if (arm_feature(env, ARM_FEATURE_V8) 952 && arm_current_el(env) == 0 953 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 954 && !isread) { 955 return CP_ACCESS_OK; 956 } 957 958 return pmreg_access(env, ri, isread); 959 } 960 961 #ifndef CONFIG_USER_ONLY 962 963 static CPAccessResult pmreg_access_selr(CPUARMState *env, 964 const ARMCPRegInfo *ri, 965 bool isread) 966 { 967 /* ER: event counter read trap control */ 968 if (arm_feature(env, ARM_FEATURE_V8) 969 && arm_current_el(env) == 0 970 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 971 return CP_ACCESS_OK; 972 } 973 974 return pmreg_access(env, ri, isread); 975 } 976 977 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 978 const ARMCPRegInfo *ri, 979 bool isread) 980 { 981 /* CR: cycle counter read trap control */ 982 if (arm_feature(env, ARM_FEATURE_V8) 983 && arm_current_el(env) == 0 984 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 985 && isread) { 986 return CP_ACCESS_OK; 987 } 988 989 return pmreg_access(env, ri, isread); 990 } 991 992 static inline bool arm_ccnt_enabled(CPUARMState *env) 993 { 994 /* This does not support checking PMCCFILTR_EL0 register */ 995 996 if (!(env->cp15.c9_pmcr & PMCRE)) { 997 return false; 998 } 999 1000 return true; 1001 } 1002 1003 void pmccntr_sync(CPUARMState *env) 1004 { 1005 uint64_t temp_ticks; 1006 1007 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1008 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1009 1010 if (env->cp15.c9_pmcr & PMCRD) { 1011 /* Increment once every 64 processor clock cycles */ 1012 temp_ticks /= 64; 1013 } 1014 1015 if (arm_ccnt_enabled(env)) { 1016 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1017 } 1018 } 1019 1020 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1021 uint64_t value) 1022 { 1023 pmccntr_sync(env); 1024 1025 if (value & PMCRC) { 1026 /* The counter has been reset */ 1027 env->cp15.c15_ccnt = 0; 1028 } 1029 1030 /* only the DP, X, D and E bits are writable */ 1031 env->cp15.c9_pmcr &= ~0x39; 1032 env->cp15.c9_pmcr |= (value & 0x39); 1033 1034 pmccntr_sync(env); 1035 } 1036 1037 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1038 { 1039 uint64_t total_ticks; 1040 1041 if (!arm_ccnt_enabled(env)) { 1042 /* Counter is disabled, do not change value */ 1043 return env->cp15.c15_ccnt; 1044 } 1045 1046 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1047 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1048 1049 if (env->cp15.c9_pmcr & PMCRD) { 1050 /* Increment once every 64 processor clock cycles */ 1051 total_ticks /= 64; 1052 } 1053 return total_ticks - env->cp15.c15_ccnt; 1054 } 1055 1056 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1057 uint64_t value) 1058 { 1059 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1060 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1061 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1062 * accessed. 1063 */ 1064 env->cp15.c9_pmselr = value & 0x1f; 1065 } 1066 1067 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1068 uint64_t value) 1069 { 1070 uint64_t total_ticks; 1071 1072 if (!arm_ccnt_enabled(env)) { 1073 /* Counter is disabled, set the absolute value */ 1074 env->cp15.c15_ccnt = value; 1075 return; 1076 } 1077 1078 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1079 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1080 1081 if (env->cp15.c9_pmcr & PMCRD) { 1082 /* Increment once every 64 processor clock cycles */ 1083 total_ticks /= 64; 1084 } 1085 env->cp15.c15_ccnt = total_ticks - value; 1086 } 1087 1088 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1089 uint64_t value) 1090 { 1091 uint64_t cur_val = pmccntr_read(env, NULL); 1092 1093 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1094 } 1095 1096 #else /* CONFIG_USER_ONLY */ 1097 1098 void pmccntr_sync(CPUARMState *env) 1099 { 1100 } 1101 1102 #endif 1103 1104 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1105 uint64_t value) 1106 { 1107 pmccntr_sync(env); 1108 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1109 pmccntr_sync(env); 1110 } 1111 1112 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1113 uint64_t value) 1114 { 1115 value &= (1 << 31); 1116 env->cp15.c9_pmcnten |= value; 1117 } 1118 1119 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1120 uint64_t value) 1121 { 1122 value &= (1 << 31); 1123 env->cp15.c9_pmcnten &= ~value; 1124 } 1125 1126 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1127 uint64_t value) 1128 { 1129 env->cp15.c9_pmovsr &= ~value; 1130 } 1131 1132 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1133 uint64_t value) 1134 { 1135 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1136 * PMSELR value is equal to or greater than the number of implemented 1137 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1138 */ 1139 if (env->cp15.c9_pmselr == 0x1f) { 1140 pmccfiltr_write(env, ri, value); 1141 } 1142 } 1143 1144 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1145 { 1146 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1147 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1148 */ 1149 if (env->cp15.c9_pmselr == 0x1f) { 1150 return env->cp15.pmccfiltr_el0; 1151 } else { 1152 return 0; 1153 } 1154 } 1155 1156 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1157 uint64_t value) 1158 { 1159 if (arm_feature(env, ARM_FEATURE_V8)) { 1160 env->cp15.c9_pmuserenr = value & 0xf; 1161 } else { 1162 env->cp15.c9_pmuserenr = value & 1; 1163 } 1164 } 1165 1166 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1167 uint64_t value) 1168 { 1169 /* We have no event counters so only the C bit can be changed */ 1170 value &= (1 << 31); 1171 env->cp15.c9_pminten |= value; 1172 } 1173 1174 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1175 uint64_t value) 1176 { 1177 value &= (1 << 31); 1178 env->cp15.c9_pminten &= ~value; 1179 } 1180 1181 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1182 uint64_t value) 1183 { 1184 /* Note that even though the AArch64 view of this register has bits 1185 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1186 * architectural requirements for bits which are RES0 only in some 1187 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1188 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1189 */ 1190 raw_write(env, ri, value & ~0x1FULL); 1191 } 1192 1193 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1194 { 1195 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1196 * For bits that vary between AArch32/64, code needs to check the 1197 * current execution mode before directly using the feature bit. 1198 */ 1199 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1200 1201 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1202 valid_mask &= ~SCR_HCE; 1203 1204 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1205 * supported if EL2 exists. The bit is UNK/SBZP when 1206 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1207 * when EL2 is unavailable. 1208 * On ARMv8, this bit is always available. 1209 */ 1210 if (arm_feature(env, ARM_FEATURE_V7) && 1211 !arm_feature(env, ARM_FEATURE_V8)) { 1212 valid_mask &= ~SCR_SMD; 1213 } 1214 } 1215 1216 /* Clear all-context RES0 bits. */ 1217 value &= valid_mask; 1218 raw_write(env, ri, value); 1219 } 1220 1221 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1222 { 1223 ARMCPU *cpu = arm_env_get_cpu(env); 1224 1225 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1226 * bank 1227 */ 1228 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1229 ri->secure & ARM_CP_SECSTATE_S); 1230 1231 return cpu->ccsidr[index]; 1232 } 1233 1234 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1235 uint64_t value) 1236 { 1237 raw_write(env, ri, value & 0xf); 1238 } 1239 1240 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1241 { 1242 CPUState *cs = ENV_GET_CPU(env); 1243 uint64_t ret = 0; 1244 1245 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1246 ret |= CPSR_I; 1247 } 1248 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1249 ret |= CPSR_F; 1250 } 1251 /* External aborts are not possible in QEMU so A bit is always clear */ 1252 return ret; 1253 } 1254 1255 static const ARMCPRegInfo v7_cp_reginfo[] = { 1256 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1257 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1258 .access = PL1_W, .type = ARM_CP_NOP }, 1259 /* Performance monitors are implementation defined in v7, 1260 * but with an ARM recommended set of registers, which we 1261 * follow (although we don't actually implement any counters) 1262 * 1263 * Performance registers fall into three categories: 1264 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1265 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1266 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1267 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1268 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1269 */ 1270 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1271 .access = PL0_RW, .type = ARM_CP_ALIAS, 1272 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1273 .writefn = pmcntenset_write, 1274 .accessfn = pmreg_access, 1275 .raw_writefn = raw_write }, 1276 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1278 .access = PL0_RW, .accessfn = pmreg_access, 1279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1280 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1281 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1282 .access = PL0_RW, 1283 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1284 .accessfn = pmreg_access, 1285 .writefn = pmcntenclr_write, 1286 .type = ARM_CP_ALIAS }, 1287 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1288 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1289 .access = PL0_RW, .accessfn = pmreg_access, 1290 .type = ARM_CP_ALIAS, 1291 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1292 .writefn = pmcntenclr_write }, 1293 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1294 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1295 .accessfn = pmreg_access, 1296 .writefn = pmovsr_write, 1297 .raw_writefn = raw_write }, 1298 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1299 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1300 .access = PL0_RW, .accessfn = pmreg_access, 1301 .type = ARM_CP_ALIAS, 1302 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1303 .writefn = pmovsr_write, 1304 .raw_writefn = raw_write }, 1305 /* Unimplemented so WI. */ 1306 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1307 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1308 #ifndef CONFIG_USER_ONLY 1309 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1310 .access = PL0_RW, .type = ARM_CP_ALIAS, 1311 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1312 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1313 .raw_writefn = raw_write}, 1314 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1316 .access = PL0_RW, .accessfn = pmreg_access_selr, 1317 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1318 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1319 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1320 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1321 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1322 .accessfn = pmreg_access_ccntr }, 1323 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1325 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1326 .type = ARM_CP_IO, 1327 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1328 #endif 1329 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1330 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1331 .writefn = pmccfiltr_write, 1332 .access = PL0_RW, .accessfn = pmreg_access, 1333 .type = ARM_CP_IO, 1334 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1335 .resetvalue = 0, }, 1336 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1337 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1338 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1339 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1340 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1341 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1342 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1343 /* Unimplemented, RAZ/WI. */ 1344 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1345 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1346 .accessfn = pmreg_access_xevcntr }, 1347 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1348 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1350 .resetvalue = 0, 1351 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1352 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1354 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1355 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1356 .resetvalue = 0, 1357 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1358 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1359 .access = PL1_RW, .accessfn = access_tpm, 1360 .type = ARM_CP_ALIAS, 1361 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1362 .resetvalue = 0, 1363 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1364 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1365 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1366 .access = PL1_RW, .accessfn = access_tpm, 1367 .type = ARM_CP_IO, 1368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1369 .writefn = pmintenset_write, .raw_writefn = raw_write, 1370 .resetvalue = 0x0 }, 1371 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1372 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1373 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1374 .writefn = pmintenclr_write, }, 1375 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1376 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1377 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1378 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1379 .writefn = pmintenclr_write }, 1380 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1381 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1382 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1383 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1384 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1385 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1386 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1387 offsetof(CPUARMState, cp15.csselr_ns) } }, 1388 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1389 * just RAZ for all cores: 1390 */ 1391 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1392 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1393 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1394 /* Auxiliary fault status registers: these also are IMPDEF, and we 1395 * choose to RAZ/WI for all cores. 1396 */ 1397 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1398 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1399 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1400 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1401 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1402 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1403 /* MAIR can just read-as-written because we don't implement caches 1404 * and so don't need to care about memory attributes. 1405 */ 1406 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1407 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1408 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1409 .resetvalue = 0 }, 1410 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1411 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1412 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1413 .resetvalue = 0 }, 1414 /* For non-long-descriptor page tables these are PRRR and NMRR; 1415 * regardless they still act as reads-as-written for QEMU. 1416 */ 1417 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1418 * allows them to assign the correct fieldoffset based on the endianness 1419 * handled in the field definitions. 1420 */ 1421 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1422 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1423 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1424 offsetof(CPUARMState, cp15.mair0_ns) }, 1425 .resetfn = arm_cp_reset_ignore }, 1426 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1427 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1428 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1429 offsetof(CPUARMState, cp15.mair1_ns) }, 1430 .resetfn = arm_cp_reset_ignore }, 1431 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1432 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1433 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1434 /* 32 bit ITLB invalidates */ 1435 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1437 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1439 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1440 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1441 /* 32 bit DTLB invalidates */ 1442 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1444 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1446 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1448 /* 32 bit TLB invalidates */ 1449 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1450 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1451 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1452 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1453 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1455 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1457 REGINFO_SENTINEL 1458 }; 1459 1460 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1461 /* 32 bit TLB invalidates, Inner Shareable */ 1462 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1463 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1464 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1465 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1466 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1467 .type = ARM_CP_NO_RAW, .access = PL1_W, 1468 .writefn = tlbiasid_is_write }, 1469 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1470 .type = ARM_CP_NO_RAW, .access = PL1_W, 1471 .writefn = tlbimvaa_is_write }, 1472 REGINFO_SENTINEL 1473 }; 1474 1475 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1476 uint64_t value) 1477 { 1478 value &= 1; 1479 env->teecr = value; 1480 } 1481 1482 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1483 bool isread) 1484 { 1485 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1486 return CP_ACCESS_TRAP; 1487 } 1488 return CP_ACCESS_OK; 1489 } 1490 1491 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1492 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1493 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1494 .resetvalue = 0, 1495 .writefn = teecr_write }, 1496 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1497 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1498 .accessfn = teehbr_access, .resetvalue = 0 }, 1499 REGINFO_SENTINEL 1500 }; 1501 1502 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1503 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1504 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1505 .access = PL0_RW, 1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1507 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1508 .access = PL0_RW, 1509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1510 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1511 .resetfn = arm_cp_reset_ignore }, 1512 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1513 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1514 .access = PL0_R|PL1_W, 1515 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1516 .resetvalue = 0}, 1517 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1518 .access = PL0_R|PL1_W, 1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1520 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1521 .resetfn = arm_cp_reset_ignore }, 1522 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1523 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1524 .access = PL1_RW, 1525 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1526 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1527 .access = PL1_RW, 1528 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1529 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1530 .resetvalue = 0 }, 1531 REGINFO_SENTINEL 1532 }; 1533 1534 #ifndef CONFIG_USER_ONLY 1535 1536 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1537 bool isread) 1538 { 1539 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1540 * Writable only at the highest implemented exception level. 1541 */ 1542 int el = arm_current_el(env); 1543 1544 switch (el) { 1545 case 0: 1546 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1547 return CP_ACCESS_TRAP; 1548 } 1549 break; 1550 case 1: 1551 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1552 arm_is_secure_below_el3(env)) { 1553 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1554 return CP_ACCESS_TRAP_UNCATEGORIZED; 1555 } 1556 break; 1557 case 2: 1558 case 3: 1559 break; 1560 } 1561 1562 if (!isread && el < arm_highest_el(env)) { 1563 return CP_ACCESS_TRAP_UNCATEGORIZED; 1564 } 1565 1566 return CP_ACCESS_OK; 1567 } 1568 1569 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1570 bool isread) 1571 { 1572 unsigned int cur_el = arm_current_el(env); 1573 bool secure = arm_is_secure(env); 1574 1575 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1576 if (cur_el == 0 && 1577 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1578 return CP_ACCESS_TRAP; 1579 } 1580 1581 if (arm_feature(env, ARM_FEATURE_EL2) && 1582 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1583 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1584 return CP_ACCESS_TRAP_EL2; 1585 } 1586 return CP_ACCESS_OK; 1587 } 1588 1589 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1590 bool isread) 1591 { 1592 unsigned int cur_el = arm_current_el(env); 1593 bool secure = arm_is_secure(env); 1594 1595 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1596 * EL0[PV]TEN is zero. 1597 */ 1598 if (cur_el == 0 && 1599 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1600 return CP_ACCESS_TRAP; 1601 } 1602 1603 if (arm_feature(env, ARM_FEATURE_EL2) && 1604 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1605 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1606 return CP_ACCESS_TRAP_EL2; 1607 } 1608 return CP_ACCESS_OK; 1609 } 1610 1611 static CPAccessResult gt_pct_access(CPUARMState *env, 1612 const ARMCPRegInfo *ri, 1613 bool isread) 1614 { 1615 return gt_counter_access(env, GTIMER_PHYS, isread); 1616 } 1617 1618 static CPAccessResult gt_vct_access(CPUARMState *env, 1619 const ARMCPRegInfo *ri, 1620 bool isread) 1621 { 1622 return gt_counter_access(env, GTIMER_VIRT, isread); 1623 } 1624 1625 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1626 bool isread) 1627 { 1628 return gt_timer_access(env, GTIMER_PHYS, isread); 1629 } 1630 1631 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1632 bool isread) 1633 { 1634 return gt_timer_access(env, GTIMER_VIRT, isread); 1635 } 1636 1637 static CPAccessResult gt_stimer_access(CPUARMState *env, 1638 const ARMCPRegInfo *ri, 1639 bool isread) 1640 { 1641 /* The AArch64 register view of the secure physical timer is 1642 * always accessible from EL3, and configurably accessible from 1643 * Secure EL1. 1644 */ 1645 switch (arm_current_el(env)) { 1646 case 1: 1647 if (!arm_is_secure(env)) { 1648 return CP_ACCESS_TRAP; 1649 } 1650 if (!(env->cp15.scr_el3 & SCR_ST)) { 1651 return CP_ACCESS_TRAP_EL3; 1652 } 1653 return CP_ACCESS_OK; 1654 case 0: 1655 case 2: 1656 return CP_ACCESS_TRAP; 1657 case 3: 1658 return CP_ACCESS_OK; 1659 default: 1660 g_assert_not_reached(); 1661 } 1662 } 1663 1664 static uint64_t gt_get_countervalue(CPUARMState *env) 1665 { 1666 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1667 } 1668 1669 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1670 { 1671 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1672 1673 if (gt->ctl & 1) { 1674 /* Timer enabled: calculate and set current ISTATUS, irq, and 1675 * reset timer to when ISTATUS next has to change 1676 */ 1677 uint64_t offset = timeridx == GTIMER_VIRT ? 1678 cpu->env.cp15.cntvoff_el2 : 0; 1679 uint64_t count = gt_get_countervalue(&cpu->env); 1680 /* Note that this must be unsigned 64 bit arithmetic: */ 1681 int istatus = count - offset >= gt->cval; 1682 uint64_t nexttick; 1683 int irqstate; 1684 1685 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1686 1687 irqstate = (istatus && !(gt->ctl & 2)); 1688 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1689 1690 if (istatus) { 1691 /* Next transition is when count rolls back over to zero */ 1692 nexttick = UINT64_MAX; 1693 } else { 1694 /* Next transition is when we hit cval */ 1695 nexttick = gt->cval + offset; 1696 } 1697 /* Note that the desired next expiry time might be beyond the 1698 * signed-64-bit range of a QEMUTimer -- in this case we just 1699 * set the timer for as far in the future as possible. When the 1700 * timer expires we will reset the timer for any remaining period. 1701 */ 1702 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1703 nexttick = INT64_MAX / GTIMER_SCALE; 1704 } 1705 timer_mod(cpu->gt_timer[timeridx], nexttick); 1706 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1707 } else { 1708 /* Timer disabled: ISTATUS and timer output always clear */ 1709 gt->ctl &= ~4; 1710 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1711 timer_del(cpu->gt_timer[timeridx]); 1712 trace_arm_gt_recalc_disabled(timeridx); 1713 } 1714 } 1715 1716 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1717 int timeridx) 1718 { 1719 ARMCPU *cpu = arm_env_get_cpu(env); 1720 1721 timer_del(cpu->gt_timer[timeridx]); 1722 } 1723 1724 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1725 { 1726 return gt_get_countervalue(env); 1727 } 1728 1729 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1730 { 1731 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1732 } 1733 1734 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1735 int timeridx, 1736 uint64_t value) 1737 { 1738 trace_arm_gt_cval_write(timeridx, value); 1739 env->cp15.c14_timer[timeridx].cval = value; 1740 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1741 } 1742 1743 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1744 int timeridx) 1745 { 1746 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1747 1748 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1749 (gt_get_countervalue(env) - offset)); 1750 } 1751 1752 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1753 int timeridx, 1754 uint64_t value) 1755 { 1756 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1757 1758 trace_arm_gt_tval_write(timeridx, value); 1759 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1760 sextract64(value, 0, 32); 1761 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1762 } 1763 1764 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1765 int timeridx, 1766 uint64_t value) 1767 { 1768 ARMCPU *cpu = arm_env_get_cpu(env); 1769 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1770 1771 trace_arm_gt_ctl_write(timeridx, value); 1772 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1773 if ((oldval ^ value) & 1) { 1774 /* Enable toggled */ 1775 gt_recalc_timer(cpu, timeridx); 1776 } else if ((oldval ^ value) & 2) { 1777 /* IMASK toggled: don't need to recalculate, 1778 * just set the interrupt line based on ISTATUS 1779 */ 1780 int irqstate = (oldval & 4) && !(value & 2); 1781 1782 trace_arm_gt_imask_toggle(timeridx, irqstate); 1783 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1784 } 1785 } 1786 1787 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1788 { 1789 gt_timer_reset(env, ri, GTIMER_PHYS); 1790 } 1791 1792 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1793 uint64_t value) 1794 { 1795 gt_cval_write(env, ri, GTIMER_PHYS, value); 1796 } 1797 1798 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1799 { 1800 return gt_tval_read(env, ri, GTIMER_PHYS); 1801 } 1802 1803 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value) 1805 { 1806 gt_tval_write(env, ri, GTIMER_PHYS, value); 1807 } 1808 1809 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1810 uint64_t value) 1811 { 1812 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1813 } 1814 1815 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1816 { 1817 gt_timer_reset(env, ri, GTIMER_VIRT); 1818 } 1819 1820 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1821 uint64_t value) 1822 { 1823 gt_cval_write(env, ri, GTIMER_VIRT, value); 1824 } 1825 1826 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1827 { 1828 return gt_tval_read(env, ri, GTIMER_VIRT); 1829 } 1830 1831 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1832 uint64_t value) 1833 { 1834 gt_tval_write(env, ri, GTIMER_VIRT, value); 1835 } 1836 1837 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1838 uint64_t value) 1839 { 1840 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1841 } 1842 1843 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1844 uint64_t value) 1845 { 1846 ARMCPU *cpu = arm_env_get_cpu(env); 1847 1848 trace_arm_gt_cntvoff_write(value); 1849 raw_write(env, ri, value); 1850 gt_recalc_timer(cpu, GTIMER_VIRT); 1851 } 1852 1853 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1854 { 1855 gt_timer_reset(env, ri, GTIMER_HYP); 1856 } 1857 1858 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1859 uint64_t value) 1860 { 1861 gt_cval_write(env, ri, GTIMER_HYP, value); 1862 } 1863 1864 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1865 { 1866 return gt_tval_read(env, ri, GTIMER_HYP); 1867 } 1868 1869 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1870 uint64_t value) 1871 { 1872 gt_tval_write(env, ri, GTIMER_HYP, value); 1873 } 1874 1875 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1876 uint64_t value) 1877 { 1878 gt_ctl_write(env, ri, GTIMER_HYP, value); 1879 } 1880 1881 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1882 { 1883 gt_timer_reset(env, ri, GTIMER_SEC); 1884 } 1885 1886 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1887 uint64_t value) 1888 { 1889 gt_cval_write(env, ri, GTIMER_SEC, value); 1890 } 1891 1892 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1893 { 1894 return gt_tval_read(env, ri, GTIMER_SEC); 1895 } 1896 1897 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1898 uint64_t value) 1899 { 1900 gt_tval_write(env, ri, GTIMER_SEC, value); 1901 } 1902 1903 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1904 uint64_t value) 1905 { 1906 gt_ctl_write(env, ri, GTIMER_SEC, value); 1907 } 1908 1909 void arm_gt_ptimer_cb(void *opaque) 1910 { 1911 ARMCPU *cpu = opaque; 1912 1913 gt_recalc_timer(cpu, GTIMER_PHYS); 1914 } 1915 1916 void arm_gt_vtimer_cb(void *opaque) 1917 { 1918 ARMCPU *cpu = opaque; 1919 1920 gt_recalc_timer(cpu, GTIMER_VIRT); 1921 } 1922 1923 void arm_gt_htimer_cb(void *opaque) 1924 { 1925 ARMCPU *cpu = opaque; 1926 1927 gt_recalc_timer(cpu, GTIMER_HYP); 1928 } 1929 1930 void arm_gt_stimer_cb(void *opaque) 1931 { 1932 ARMCPU *cpu = opaque; 1933 1934 gt_recalc_timer(cpu, GTIMER_SEC); 1935 } 1936 1937 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1938 /* Note that CNTFRQ is purely reads-as-written for the benefit 1939 * of software; writing it doesn't actually change the timer frequency. 1940 * Our reset value matches the fixed frequency we implement the timer at. 1941 */ 1942 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1943 .type = ARM_CP_ALIAS, 1944 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1945 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1946 }, 1947 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1948 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1949 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1950 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1951 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1952 }, 1953 /* overall control: mostly access permissions */ 1954 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1955 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1956 .access = PL1_RW, 1957 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1958 .resetvalue = 0, 1959 }, 1960 /* per-timer control */ 1961 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1962 .secure = ARM_CP_SECSTATE_NS, 1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1964 .accessfn = gt_ptimer_access, 1965 .fieldoffset = offsetoflow32(CPUARMState, 1966 cp15.c14_timer[GTIMER_PHYS].ctl), 1967 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1968 }, 1969 { .name = "CNTP_CTL(S)", 1970 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1971 .secure = ARM_CP_SECSTATE_S, 1972 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1973 .accessfn = gt_ptimer_access, 1974 .fieldoffset = offsetoflow32(CPUARMState, 1975 cp15.c14_timer[GTIMER_SEC].ctl), 1976 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1977 }, 1978 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1980 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1981 .accessfn = gt_ptimer_access, 1982 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1983 .resetvalue = 0, 1984 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1985 }, 1986 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1987 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1988 .accessfn = gt_vtimer_access, 1989 .fieldoffset = offsetoflow32(CPUARMState, 1990 cp15.c14_timer[GTIMER_VIRT].ctl), 1991 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1992 }, 1993 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1994 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1995 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1996 .accessfn = gt_vtimer_access, 1997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1998 .resetvalue = 0, 1999 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2000 }, 2001 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2002 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2003 .secure = ARM_CP_SECSTATE_NS, 2004 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2005 .accessfn = gt_ptimer_access, 2006 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2007 }, 2008 { .name = "CNTP_TVAL(S)", 2009 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2010 .secure = ARM_CP_SECSTATE_S, 2011 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2012 .accessfn = gt_ptimer_access, 2013 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2014 }, 2015 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2016 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2017 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2018 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2019 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2020 }, 2021 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2022 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2023 .accessfn = gt_vtimer_access, 2024 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2025 }, 2026 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2027 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2028 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2029 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2030 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2031 }, 2032 /* The counter itself */ 2033 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2034 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2035 .accessfn = gt_pct_access, 2036 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2037 }, 2038 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2039 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2040 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2041 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2042 }, 2043 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2044 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2045 .accessfn = gt_vct_access, 2046 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2047 }, 2048 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2050 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2051 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2052 }, 2053 /* Comparison value, indicating when the timer goes off */ 2054 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2055 .secure = ARM_CP_SECSTATE_NS, 2056 .access = PL1_RW | PL0_R, 2057 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2058 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2059 .accessfn = gt_ptimer_access, 2060 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2061 }, 2062 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2063 .secure = ARM_CP_SECSTATE_S, 2064 .access = PL1_RW | PL0_R, 2065 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2066 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2067 .accessfn = gt_ptimer_access, 2068 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2069 }, 2070 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2071 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2072 .access = PL1_RW | PL0_R, 2073 .type = ARM_CP_IO, 2074 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2075 .resetvalue = 0, .accessfn = gt_ptimer_access, 2076 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2077 }, 2078 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2079 .access = PL1_RW | PL0_R, 2080 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2082 .accessfn = gt_vtimer_access, 2083 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2084 }, 2085 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2086 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2087 .access = PL1_RW | PL0_R, 2088 .type = ARM_CP_IO, 2089 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2090 .resetvalue = 0, .accessfn = gt_vtimer_access, 2091 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2092 }, 2093 /* Secure timer -- this is actually restricted to only EL3 2094 * and configurably Secure-EL1 via the accessfn. 2095 */ 2096 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2097 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2098 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2099 .accessfn = gt_stimer_access, 2100 .readfn = gt_sec_tval_read, 2101 .writefn = gt_sec_tval_write, 2102 .resetfn = gt_sec_timer_reset, 2103 }, 2104 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2105 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2106 .type = ARM_CP_IO, .access = PL1_RW, 2107 .accessfn = gt_stimer_access, 2108 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2109 .resetvalue = 0, 2110 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2111 }, 2112 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2113 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2114 .type = ARM_CP_IO, .access = PL1_RW, 2115 .accessfn = gt_stimer_access, 2116 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2117 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2118 }, 2119 REGINFO_SENTINEL 2120 }; 2121 2122 #else 2123 /* In user-mode none of the generic timer registers are accessible, 2124 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2125 * so instead just don't register any of them. 2126 */ 2127 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2128 REGINFO_SENTINEL 2129 }; 2130 2131 #endif 2132 2133 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2134 { 2135 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2136 raw_write(env, ri, value); 2137 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2138 raw_write(env, ri, value & 0xfffff6ff); 2139 } else { 2140 raw_write(env, ri, value & 0xfffff1ff); 2141 } 2142 } 2143 2144 #ifndef CONFIG_USER_ONLY 2145 /* get_phys_addr() isn't present for user-mode-only targets */ 2146 2147 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2148 bool isread) 2149 { 2150 if (ri->opc2 & 4) { 2151 /* The ATS12NSO* operations must trap to EL3 if executed in 2152 * Secure EL1 (which can only happen if EL3 is AArch64). 2153 * They are simply UNDEF if executed from NS EL1. 2154 * They function normally from EL2 or EL3. 2155 */ 2156 if (arm_current_el(env) == 1) { 2157 if (arm_is_secure_below_el3(env)) { 2158 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2159 } 2160 return CP_ACCESS_TRAP_UNCATEGORIZED; 2161 } 2162 } 2163 return CP_ACCESS_OK; 2164 } 2165 2166 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2167 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2168 { 2169 hwaddr phys_addr; 2170 target_ulong page_size; 2171 int prot; 2172 bool ret; 2173 uint64_t par64; 2174 bool format64 = false; 2175 MemTxAttrs attrs = {}; 2176 ARMMMUFaultInfo fi = {}; 2177 ARMCacheAttrs cacheattrs = {}; 2178 2179 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2180 &prot, &page_size, &fi, &cacheattrs); 2181 2182 if (is_a64(env)) { 2183 format64 = true; 2184 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2185 /* 2186 * ATS1Cxx: 2187 * * TTBCR.EAE determines whether the result is returned using the 2188 * 32-bit or the 64-bit PAR format 2189 * * Instructions executed in Hyp mode always use the 64bit format 2190 * 2191 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2192 * * The Non-secure TTBCR.EAE bit is set to 1 2193 * * The implementation includes EL2, and the value of HCR.VM is 1 2194 * 2195 * ATS1Hx always uses the 64bit format (not supported yet). 2196 */ 2197 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2198 2199 if (arm_feature(env, ARM_FEATURE_EL2)) { 2200 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2201 format64 |= env->cp15.hcr_el2 & HCR_VM; 2202 } else { 2203 format64 |= arm_current_el(env) == 2; 2204 } 2205 } 2206 } 2207 2208 if (format64) { 2209 /* Create a 64-bit PAR */ 2210 par64 = (1 << 11); /* LPAE bit always set */ 2211 if (!ret) { 2212 par64 |= phys_addr & ~0xfffULL; 2213 if (!attrs.secure) { 2214 par64 |= (1 << 9); /* NS */ 2215 } 2216 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2217 par64 |= cacheattrs.shareability << 7; /* SH */ 2218 } else { 2219 uint32_t fsr = arm_fi_to_lfsc(&fi); 2220 2221 par64 |= 1; /* F */ 2222 par64 |= (fsr & 0x3f) << 1; /* FS */ 2223 /* Note that S2WLK and FSTAGE are always zero, because we don't 2224 * implement virtualization and therefore there can't be a stage 2 2225 * fault. 2226 */ 2227 } 2228 } else { 2229 /* fsr is a DFSR/IFSR value for the short descriptor 2230 * translation table format (with WnR always clear). 2231 * Convert it to a 32-bit PAR. 2232 */ 2233 if (!ret) { 2234 /* We do not set any attribute bits in the PAR */ 2235 if (page_size == (1 << 24) 2236 && arm_feature(env, ARM_FEATURE_V7)) { 2237 par64 = (phys_addr & 0xff000000) | (1 << 1); 2238 } else { 2239 par64 = phys_addr & 0xfffff000; 2240 } 2241 if (!attrs.secure) { 2242 par64 |= (1 << 9); /* NS */ 2243 } 2244 } else { 2245 uint32_t fsr = arm_fi_to_sfsc(&fi); 2246 2247 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2248 ((fsr & 0xf) << 1) | 1; 2249 } 2250 } 2251 return par64; 2252 } 2253 2254 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2255 { 2256 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2257 uint64_t par64; 2258 ARMMMUIdx mmu_idx; 2259 int el = arm_current_el(env); 2260 bool secure = arm_is_secure_below_el3(env); 2261 2262 switch (ri->opc2 & 6) { 2263 case 0: 2264 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2265 switch (el) { 2266 case 3: 2267 mmu_idx = ARMMMUIdx_S1E3; 2268 break; 2269 case 2: 2270 mmu_idx = ARMMMUIdx_S1NSE1; 2271 break; 2272 case 1: 2273 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2274 break; 2275 default: 2276 g_assert_not_reached(); 2277 } 2278 break; 2279 case 2: 2280 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2281 switch (el) { 2282 case 3: 2283 mmu_idx = ARMMMUIdx_S1SE0; 2284 break; 2285 case 2: 2286 mmu_idx = ARMMMUIdx_S1NSE0; 2287 break; 2288 case 1: 2289 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2290 break; 2291 default: 2292 g_assert_not_reached(); 2293 } 2294 break; 2295 case 4: 2296 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2297 mmu_idx = ARMMMUIdx_S12NSE1; 2298 break; 2299 case 6: 2300 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2301 mmu_idx = ARMMMUIdx_S12NSE0; 2302 break; 2303 default: 2304 g_assert_not_reached(); 2305 } 2306 2307 par64 = do_ats_write(env, value, access_type, mmu_idx); 2308 2309 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2310 } 2311 2312 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2313 uint64_t value) 2314 { 2315 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2316 uint64_t par64; 2317 2318 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2319 2320 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2321 } 2322 2323 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2324 bool isread) 2325 { 2326 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2327 return CP_ACCESS_TRAP; 2328 } 2329 return CP_ACCESS_OK; 2330 } 2331 2332 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2333 uint64_t value) 2334 { 2335 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2336 ARMMMUIdx mmu_idx; 2337 int secure = arm_is_secure_below_el3(env); 2338 2339 switch (ri->opc2 & 6) { 2340 case 0: 2341 switch (ri->opc1) { 2342 case 0: /* AT S1E1R, AT S1E1W */ 2343 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2344 break; 2345 case 4: /* AT S1E2R, AT S1E2W */ 2346 mmu_idx = ARMMMUIdx_S1E2; 2347 break; 2348 case 6: /* AT S1E3R, AT S1E3W */ 2349 mmu_idx = ARMMMUIdx_S1E3; 2350 break; 2351 default: 2352 g_assert_not_reached(); 2353 } 2354 break; 2355 case 2: /* AT S1E0R, AT S1E0W */ 2356 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2357 break; 2358 case 4: /* AT S12E1R, AT S12E1W */ 2359 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2360 break; 2361 case 6: /* AT S12E0R, AT S12E0W */ 2362 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2363 break; 2364 default: 2365 g_assert_not_reached(); 2366 } 2367 2368 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2369 } 2370 #endif 2371 2372 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2373 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2374 .access = PL1_RW, .resetvalue = 0, 2375 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2376 offsetoflow32(CPUARMState, cp15.par_ns) }, 2377 .writefn = par_write }, 2378 #ifndef CONFIG_USER_ONLY 2379 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2380 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2381 .access = PL1_W, .accessfn = ats_access, 2382 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2383 #endif 2384 REGINFO_SENTINEL 2385 }; 2386 2387 /* Return basic MPU access permission bits. */ 2388 static uint32_t simple_mpu_ap_bits(uint32_t val) 2389 { 2390 uint32_t ret; 2391 uint32_t mask; 2392 int i; 2393 ret = 0; 2394 mask = 3; 2395 for (i = 0; i < 16; i += 2) { 2396 ret |= (val >> i) & mask; 2397 mask <<= 2; 2398 } 2399 return ret; 2400 } 2401 2402 /* Pad basic MPU access permission bits to extended format. */ 2403 static uint32_t extended_mpu_ap_bits(uint32_t val) 2404 { 2405 uint32_t ret; 2406 uint32_t mask; 2407 int i; 2408 ret = 0; 2409 mask = 3; 2410 for (i = 0; i < 16; i += 2) { 2411 ret |= (val & mask) << i; 2412 mask <<= 2; 2413 } 2414 return ret; 2415 } 2416 2417 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2418 uint64_t value) 2419 { 2420 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2421 } 2422 2423 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2424 { 2425 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2426 } 2427 2428 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2429 uint64_t value) 2430 { 2431 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2432 } 2433 2434 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2435 { 2436 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2437 } 2438 2439 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2440 { 2441 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2442 2443 if (!u32p) { 2444 return 0; 2445 } 2446 2447 u32p += env->pmsav7.rnr[M_REG_NS]; 2448 return *u32p; 2449 } 2450 2451 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2452 uint64_t value) 2453 { 2454 ARMCPU *cpu = arm_env_get_cpu(env); 2455 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2456 2457 if (!u32p) { 2458 return; 2459 } 2460 2461 u32p += env->pmsav7.rnr[M_REG_NS]; 2462 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2463 *u32p = value; 2464 } 2465 2466 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2467 uint64_t value) 2468 { 2469 ARMCPU *cpu = arm_env_get_cpu(env); 2470 uint32_t nrgs = cpu->pmsav7_dregion; 2471 2472 if (value >= nrgs) { 2473 qemu_log_mask(LOG_GUEST_ERROR, 2474 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2475 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2476 return; 2477 } 2478 2479 raw_write(env, ri, value); 2480 } 2481 2482 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2483 /* Reset for all these registers is handled in arm_cpu_reset(), 2484 * because the PMSAv7 is also used by M-profile CPUs, which do 2485 * not register cpregs but still need the state to be reset. 2486 */ 2487 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2488 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2489 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2490 .readfn = pmsav7_read, .writefn = pmsav7_write, 2491 .resetfn = arm_cp_reset_ignore }, 2492 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2493 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2494 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2495 .readfn = pmsav7_read, .writefn = pmsav7_write, 2496 .resetfn = arm_cp_reset_ignore }, 2497 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2498 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2499 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2500 .readfn = pmsav7_read, .writefn = pmsav7_write, 2501 .resetfn = arm_cp_reset_ignore }, 2502 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2503 .access = PL1_RW, 2504 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2505 .writefn = pmsav7_rgnr_write, 2506 .resetfn = arm_cp_reset_ignore }, 2507 REGINFO_SENTINEL 2508 }; 2509 2510 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2511 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2512 .access = PL1_RW, .type = ARM_CP_ALIAS, 2513 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2514 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2515 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2516 .access = PL1_RW, .type = ARM_CP_ALIAS, 2517 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2518 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2519 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2520 .access = PL1_RW, 2521 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2522 .resetvalue = 0, }, 2523 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2524 .access = PL1_RW, 2525 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2526 .resetvalue = 0, }, 2527 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2528 .access = PL1_RW, 2529 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2530 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2531 .access = PL1_RW, 2532 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2533 /* Protection region base and size registers */ 2534 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2535 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2536 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2537 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2538 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2539 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2540 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2541 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2542 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2543 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2544 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2545 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2546 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2547 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2548 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2549 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2550 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2551 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2552 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2553 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2554 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2555 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2556 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2557 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2558 REGINFO_SENTINEL 2559 }; 2560 2561 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2562 uint64_t value) 2563 { 2564 TCR *tcr = raw_ptr(env, ri); 2565 int maskshift = extract32(value, 0, 3); 2566 2567 if (!arm_feature(env, ARM_FEATURE_V8)) { 2568 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2569 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2570 * using Long-desciptor translation table format */ 2571 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2572 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2573 /* In an implementation that includes the Security Extensions 2574 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2575 * Short-descriptor translation table format. 2576 */ 2577 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2578 } else { 2579 value &= TTBCR_N; 2580 } 2581 } 2582 2583 /* Update the masks corresponding to the TCR bank being written 2584 * Note that we always calculate mask and base_mask, but 2585 * they are only used for short-descriptor tables (ie if EAE is 0); 2586 * for long-descriptor tables the TCR fields are used differently 2587 * and the mask and base_mask values are meaningless. 2588 */ 2589 tcr->raw_tcr = value; 2590 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2591 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2592 } 2593 2594 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 uint64_t value) 2596 { 2597 ARMCPU *cpu = arm_env_get_cpu(env); 2598 2599 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2600 /* With LPAE the TTBCR could result in a change of ASID 2601 * via the TTBCR.A1 bit, so do a TLB flush. 2602 */ 2603 tlb_flush(CPU(cpu)); 2604 } 2605 vmsa_ttbcr_raw_write(env, ri, value); 2606 } 2607 2608 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2609 { 2610 TCR *tcr = raw_ptr(env, ri); 2611 2612 /* Reset both the TCR as well as the masks corresponding to the bank of 2613 * the TCR being reset. 2614 */ 2615 tcr->raw_tcr = 0; 2616 tcr->mask = 0; 2617 tcr->base_mask = 0xffffc000u; 2618 } 2619 2620 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 ARMCPU *cpu = arm_env_get_cpu(env); 2624 TCR *tcr = raw_ptr(env, ri); 2625 2626 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2627 tlb_flush(CPU(cpu)); 2628 tcr->raw_tcr = value; 2629 } 2630 2631 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2632 uint64_t value) 2633 { 2634 /* 64 bit accesses to the TTBRs can change the ASID and so we 2635 * must flush the TLB. 2636 */ 2637 if (cpreg_field_is_64bit(ri)) { 2638 ARMCPU *cpu = arm_env_get_cpu(env); 2639 2640 tlb_flush(CPU(cpu)); 2641 } 2642 raw_write(env, ri, value); 2643 } 2644 2645 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2646 uint64_t value) 2647 { 2648 ARMCPU *cpu = arm_env_get_cpu(env); 2649 CPUState *cs = CPU(cpu); 2650 2651 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2652 if (raw_read(env, ri) != value) { 2653 tlb_flush_by_mmuidx(cs, 2654 ARMMMUIdxBit_S12NSE1 | 2655 ARMMMUIdxBit_S12NSE0 | 2656 ARMMMUIdxBit_S2NS); 2657 raw_write(env, ri, value); 2658 } 2659 } 2660 2661 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2662 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2663 .access = PL1_RW, .type = ARM_CP_ALIAS, 2664 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2665 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2666 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2667 .access = PL1_RW, .resetvalue = 0, 2668 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2669 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2670 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2671 .access = PL1_RW, .resetvalue = 0, 2672 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2673 offsetof(CPUARMState, cp15.dfar_ns) } }, 2674 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2675 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2676 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2677 .resetvalue = 0, }, 2678 REGINFO_SENTINEL 2679 }; 2680 2681 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2682 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2683 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2684 .access = PL1_RW, 2685 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2686 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2687 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2688 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2689 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2690 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2691 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2692 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2693 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2694 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2695 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2696 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2697 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2698 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2699 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2700 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2701 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2702 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2703 .raw_writefn = vmsa_ttbcr_raw_write, 2704 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2705 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2706 REGINFO_SENTINEL 2707 }; 2708 2709 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2710 uint64_t value) 2711 { 2712 env->cp15.c15_ticonfig = value & 0xe7; 2713 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2714 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2715 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2716 } 2717 2718 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 env->cp15.c15_threadid = value & 0xffff; 2722 } 2723 2724 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2725 uint64_t value) 2726 { 2727 /* Wait-for-interrupt (deprecated) */ 2728 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2729 } 2730 2731 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2732 uint64_t value) 2733 { 2734 /* On OMAP there are registers indicating the max/min index of dcache lines 2735 * containing a dirty line; cache flush operations have to reset these. 2736 */ 2737 env->cp15.c15_i_max = 0x000; 2738 env->cp15.c15_i_min = 0xff0; 2739 } 2740 2741 static const ARMCPRegInfo omap_cp_reginfo[] = { 2742 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2743 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2744 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2745 .resetvalue = 0, }, 2746 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2747 .access = PL1_RW, .type = ARM_CP_NOP }, 2748 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2749 .access = PL1_RW, 2750 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2751 .writefn = omap_ticonfig_write }, 2752 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2753 .access = PL1_RW, 2754 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2755 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2756 .access = PL1_RW, .resetvalue = 0xff0, 2757 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2758 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2759 .access = PL1_RW, 2760 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2761 .writefn = omap_threadid_write }, 2762 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2763 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2764 .type = ARM_CP_NO_RAW, 2765 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2766 /* TODO: Peripheral port remap register: 2767 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2768 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2769 * when MMU is off. 2770 */ 2771 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2772 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2773 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2774 .writefn = omap_cachemaint_write }, 2775 { .name = "C9", .cp = 15, .crn = 9, 2776 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2777 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2778 REGINFO_SENTINEL 2779 }; 2780 2781 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 env->cp15.c15_cpar = value & 0x3fff; 2785 } 2786 2787 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2788 { .name = "XSCALE_CPAR", 2789 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2790 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2791 .writefn = xscale_cpar_write, }, 2792 { .name = "XSCALE_AUXCR", 2793 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2794 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2795 .resetvalue = 0, }, 2796 /* XScale specific cache-lockdown: since we have no cache we NOP these 2797 * and hope the guest does not really rely on cache behaviour. 2798 */ 2799 { .name = "XSCALE_LOCK_ICACHE_LINE", 2800 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2801 .access = PL1_W, .type = ARM_CP_NOP }, 2802 { .name = "XSCALE_UNLOCK_ICACHE", 2803 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2804 .access = PL1_W, .type = ARM_CP_NOP }, 2805 { .name = "XSCALE_DCACHE_LOCK", 2806 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2807 .access = PL1_RW, .type = ARM_CP_NOP }, 2808 { .name = "XSCALE_UNLOCK_DCACHE", 2809 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2810 .access = PL1_W, .type = ARM_CP_NOP }, 2811 REGINFO_SENTINEL 2812 }; 2813 2814 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2815 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2816 * implementation of this implementation-defined space. 2817 * Ideally this should eventually disappear in favour of actually 2818 * implementing the correct behaviour for all cores. 2819 */ 2820 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2821 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2822 .access = PL1_RW, 2823 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2824 .resetvalue = 0 }, 2825 REGINFO_SENTINEL 2826 }; 2827 2828 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2829 /* Cache status: RAZ because we have no cache so it's always clean */ 2830 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2831 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2832 .resetvalue = 0 }, 2833 REGINFO_SENTINEL 2834 }; 2835 2836 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2837 /* We never have a a block transfer operation in progress */ 2838 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2839 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2840 .resetvalue = 0 }, 2841 /* The cache ops themselves: these all NOP for QEMU */ 2842 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2843 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2844 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2845 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2846 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2847 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2848 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2849 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2850 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2851 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2852 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2853 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2854 REGINFO_SENTINEL 2855 }; 2856 2857 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2858 /* The cache test-and-clean instructions always return (1 << 30) 2859 * to indicate that there are no dirty cache lines. 2860 */ 2861 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2862 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2863 .resetvalue = (1 << 30) }, 2864 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2865 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2866 .resetvalue = (1 << 30) }, 2867 REGINFO_SENTINEL 2868 }; 2869 2870 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2871 /* Ignore ReadBuffer accesses */ 2872 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2873 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2874 .access = PL1_RW, .resetvalue = 0, 2875 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2876 REGINFO_SENTINEL 2877 }; 2878 2879 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2880 { 2881 ARMCPU *cpu = arm_env_get_cpu(env); 2882 unsigned int cur_el = arm_current_el(env); 2883 bool secure = arm_is_secure(env); 2884 2885 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2886 return env->cp15.vpidr_el2; 2887 } 2888 return raw_read(env, ri); 2889 } 2890 2891 static uint64_t mpidr_read_val(CPUARMState *env) 2892 { 2893 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2894 uint64_t mpidr = cpu->mp_affinity; 2895 2896 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2897 mpidr |= (1U << 31); 2898 /* Cores which are uniprocessor (non-coherent) 2899 * but still implement the MP extensions set 2900 * bit 30. (For instance, Cortex-R5). 2901 */ 2902 if (cpu->mp_is_up) { 2903 mpidr |= (1u << 30); 2904 } 2905 } 2906 return mpidr; 2907 } 2908 2909 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2910 { 2911 unsigned int cur_el = arm_current_el(env); 2912 bool secure = arm_is_secure(env); 2913 2914 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2915 return env->cp15.vmpidr_el2; 2916 } 2917 return mpidr_read_val(env); 2918 } 2919 2920 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2921 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2922 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2923 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2924 REGINFO_SENTINEL 2925 }; 2926 2927 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2928 /* NOP AMAIR0/1 */ 2929 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2930 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2931 .access = PL1_RW, .type = ARM_CP_CONST, 2932 .resetvalue = 0 }, 2933 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2934 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2935 .access = PL1_RW, .type = ARM_CP_CONST, 2936 .resetvalue = 0 }, 2937 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2938 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2939 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2940 offsetof(CPUARMState, cp15.par_ns)} }, 2941 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2942 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2943 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2944 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2945 .writefn = vmsa_ttbr_write, }, 2946 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2947 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2948 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2949 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2950 .writefn = vmsa_ttbr_write, }, 2951 REGINFO_SENTINEL 2952 }; 2953 2954 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2955 { 2956 return vfp_get_fpcr(env); 2957 } 2958 2959 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2960 uint64_t value) 2961 { 2962 vfp_set_fpcr(env, value); 2963 } 2964 2965 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2966 { 2967 return vfp_get_fpsr(env); 2968 } 2969 2970 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2971 uint64_t value) 2972 { 2973 vfp_set_fpsr(env, value); 2974 } 2975 2976 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2977 bool isread) 2978 { 2979 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2980 return CP_ACCESS_TRAP; 2981 } 2982 return CP_ACCESS_OK; 2983 } 2984 2985 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2986 uint64_t value) 2987 { 2988 env->daif = value & PSTATE_DAIF; 2989 } 2990 2991 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2992 const ARMCPRegInfo *ri, 2993 bool isread) 2994 { 2995 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2996 * SCTLR_EL1.UCI is set. 2997 */ 2998 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2999 return CP_ACCESS_TRAP; 3000 } 3001 return CP_ACCESS_OK; 3002 } 3003 3004 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3005 * Page D4-1736 (DDI0487A.b) 3006 */ 3007 3008 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3009 uint64_t value) 3010 { 3011 CPUState *cs = ENV_GET_CPU(env); 3012 3013 if (arm_is_secure_below_el3(env)) { 3014 tlb_flush_by_mmuidx(cs, 3015 ARMMMUIdxBit_S1SE1 | 3016 ARMMMUIdxBit_S1SE0); 3017 } else { 3018 tlb_flush_by_mmuidx(cs, 3019 ARMMMUIdxBit_S12NSE1 | 3020 ARMMMUIdxBit_S12NSE0); 3021 } 3022 } 3023 3024 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 CPUState *cs = ENV_GET_CPU(env); 3028 bool sec = arm_is_secure_below_el3(env); 3029 3030 if (sec) { 3031 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3032 ARMMMUIdxBit_S1SE1 | 3033 ARMMMUIdxBit_S1SE0); 3034 } else { 3035 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3036 ARMMMUIdxBit_S12NSE1 | 3037 ARMMMUIdxBit_S12NSE0); 3038 } 3039 } 3040 3041 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3042 uint64_t value) 3043 { 3044 /* Note that the 'ALL' scope must invalidate both stage 1 and 3045 * stage 2 translations, whereas most other scopes only invalidate 3046 * stage 1 translations. 3047 */ 3048 ARMCPU *cpu = arm_env_get_cpu(env); 3049 CPUState *cs = CPU(cpu); 3050 3051 if (arm_is_secure_below_el3(env)) { 3052 tlb_flush_by_mmuidx(cs, 3053 ARMMMUIdxBit_S1SE1 | 3054 ARMMMUIdxBit_S1SE0); 3055 } else { 3056 if (arm_feature(env, ARM_FEATURE_EL2)) { 3057 tlb_flush_by_mmuidx(cs, 3058 ARMMMUIdxBit_S12NSE1 | 3059 ARMMMUIdxBit_S12NSE0 | 3060 ARMMMUIdxBit_S2NS); 3061 } else { 3062 tlb_flush_by_mmuidx(cs, 3063 ARMMMUIdxBit_S12NSE1 | 3064 ARMMMUIdxBit_S12NSE0); 3065 } 3066 } 3067 } 3068 3069 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3070 uint64_t value) 3071 { 3072 ARMCPU *cpu = arm_env_get_cpu(env); 3073 CPUState *cs = CPU(cpu); 3074 3075 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3076 } 3077 3078 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 ARMCPU *cpu = arm_env_get_cpu(env); 3082 CPUState *cs = CPU(cpu); 3083 3084 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3085 } 3086 3087 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3088 uint64_t value) 3089 { 3090 /* Note that the 'ALL' scope must invalidate both stage 1 and 3091 * stage 2 translations, whereas most other scopes only invalidate 3092 * stage 1 translations. 3093 */ 3094 CPUState *cs = ENV_GET_CPU(env); 3095 bool sec = arm_is_secure_below_el3(env); 3096 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3097 3098 if (sec) { 3099 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3100 ARMMMUIdxBit_S1SE1 | 3101 ARMMMUIdxBit_S1SE0); 3102 } else if (has_el2) { 3103 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3104 ARMMMUIdxBit_S12NSE1 | 3105 ARMMMUIdxBit_S12NSE0 | 3106 ARMMMUIdxBit_S2NS); 3107 } else { 3108 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3109 ARMMMUIdxBit_S12NSE1 | 3110 ARMMMUIdxBit_S12NSE0); 3111 } 3112 } 3113 3114 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3115 uint64_t value) 3116 { 3117 CPUState *cs = ENV_GET_CPU(env); 3118 3119 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3120 } 3121 3122 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3123 uint64_t value) 3124 { 3125 CPUState *cs = ENV_GET_CPU(env); 3126 3127 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3128 } 3129 3130 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3131 uint64_t value) 3132 { 3133 /* Invalidate by VA, EL1&0 (AArch64 version). 3134 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3135 * since we don't support flush-for-specific-ASID-only or 3136 * flush-last-level-only. 3137 */ 3138 ARMCPU *cpu = arm_env_get_cpu(env); 3139 CPUState *cs = CPU(cpu); 3140 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3141 3142 if (arm_is_secure_below_el3(env)) { 3143 tlb_flush_page_by_mmuidx(cs, pageaddr, 3144 ARMMMUIdxBit_S1SE1 | 3145 ARMMMUIdxBit_S1SE0); 3146 } else { 3147 tlb_flush_page_by_mmuidx(cs, pageaddr, 3148 ARMMMUIdxBit_S12NSE1 | 3149 ARMMMUIdxBit_S12NSE0); 3150 } 3151 } 3152 3153 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3154 uint64_t value) 3155 { 3156 /* Invalidate by VA, EL2 3157 * Currently handles both VAE2 and VALE2, since we don't support 3158 * flush-last-level-only. 3159 */ 3160 ARMCPU *cpu = arm_env_get_cpu(env); 3161 CPUState *cs = CPU(cpu); 3162 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3163 3164 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3165 } 3166 3167 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3168 uint64_t value) 3169 { 3170 /* Invalidate by VA, EL3 3171 * Currently handles both VAE3 and VALE3, since we don't support 3172 * flush-last-level-only. 3173 */ 3174 ARMCPU *cpu = arm_env_get_cpu(env); 3175 CPUState *cs = CPU(cpu); 3176 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3177 3178 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3179 } 3180 3181 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3182 uint64_t value) 3183 { 3184 ARMCPU *cpu = arm_env_get_cpu(env); 3185 CPUState *cs = CPU(cpu); 3186 bool sec = arm_is_secure_below_el3(env); 3187 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3188 3189 if (sec) { 3190 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3191 ARMMMUIdxBit_S1SE1 | 3192 ARMMMUIdxBit_S1SE0); 3193 } else { 3194 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3195 ARMMMUIdxBit_S12NSE1 | 3196 ARMMMUIdxBit_S12NSE0); 3197 } 3198 } 3199 3200 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3201 uint64_t value) 3202 { 3203 CPUState *cs = ENV_GET_CPU(env); 3204 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3205 3206 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3207 ARMMMUIdxBit_S1E2); 3208 } 3209 3210 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3211 uint64_t value) 3212 { 3213 CPUState *cs = ENV_GET_CPU(env); 3214 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3215 3216 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3217 ARMMMUIdxBit_S1E3); 3218 } 3219 3220 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3221 uint64_t value) 3222 { 3223 /* Invalidate by IPA. This has to invalidate any structures that 3224 * contain only stage 2 translation information, but does not need 3225 * to apply to structures that contain combined stage 1 and stage 2 3226 * translation information. 3227 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3228 */ 3229 ARMCPU *cpu = arm_env_get_cpu(env); 3230 CPUState *cs = CPU(cpu); 3231 uint64_t pageaddr; 3232 3233 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3234 return; 3235 } 3236 3237 pageaddr = sextract64(value << 12, 0, 48); 3238 3239 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3240 } 3241 3242 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3243 uint64_t value) 3244 { 3245 CPUState *cs = ENV_GET_CPU(env); 3246 uint64_t pageaddr; 3247 3248 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3249 return; 3250 } 3251 3252 pageaddr = sextract64(value << 12, 0, 48); 3253 3254 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3255 ARMMMUIdxBit_S2NS); 3256 } 3257 3258 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3259 bool isread) 3260 { 3261 /* We don't implement EL2, so the only control on DC ZVA is the 3262 * bit in the SCTLR which can prohibit access for EL0. 3263 */ 3264 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3265 return CP_ACCESS_TRAP; 3266 } 3267 return CP_ACCESS_OK; 3268 } 3269 3270 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3271 { 3272 ARMCPU *cpu = arm_env_get_cpu(env); 3273 int dzp_bit = 1 << 4; 3274 3275 /* DZP indicates whether DC ZVA access is allowed */ 3276 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3277 dzp_bit = 0; 3278 } 3279 return cpu->dcz_blocksize | dzp_bit; 3280 } 3281 3282 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3283 bool isread) 3284 { 3285 if (!(env->pstate & PSTATE_SP)) { 3286 /* Access to SP_EL0 is undefined if it's being used as 3287 * the stack pointer. 3288 */ 3289 return CP_ACCESS_TRAP_UNCATEGORIZED; 3290 } 3291 return CP_ACCESS_OK; 3292 } 3293 3294 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3295 { 3296 return env->pstate & PSTATE_SP; 3297 } 3298 3299 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3300 { 3301 update_spsel(env, val); 3302 } 3303 3304 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3305 uint64_t value) 3306 { 3307 ARMCPU *cpu = arm_env_get_cpu(env); 3308 3309 if (raw_read(env, ri) == value) { 3310 /* Skip the TLB flush if nothing actually changed; Linux likes 3311 * to do a lot of pointless SCTLR writes. 3312 */ 3313 return; 3314 } 3315 3316 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3317 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3318 value &= ~SCTLR_M; 3319 } 3320 3321 raw_write(env, ri, value); 3322 /* ??? Lots of these bits are not implemented. */ 3323 /* This may enable/disable the MMU, so do a TLB flush. */ 3324 tlb_flush(CPU(cpu)); 3325 } 3326 3327 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3328 bool isread) 3329 { 3330 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3331 return CP_ACCESS_TRAP_FP_EL2; 3332 } 3333 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3334 return CP_ACCESS_TRAP_FP_EL3; 3335 } 3336 return CP_ACCESS_OK; 3337 } 3338 3339 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3340 uint64_t value) 3341 { 3342 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3343 } 3344 3345 static const ARMCPRegInfo v8_cp_reginfo[] = { 3346 /* Minimal set of EL0-visible registers. This will need to be expanded 3347 * significantly for system emulation of AArch64 CPUs. 3348 */ 3349 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3351 .access = PL0_RW, .type = ARM_CP_NZCV }, 3352 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3353 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3354 .type = ARM_CP_NO_RAW, 3355 .access = PL0_RW, .accessfn = aa64_daif_access, 3356 .fieldoffset = offsetof(CPUARMState, daif), 3357 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3358 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3359 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3360 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3361 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3362 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3363 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3364 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3365 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3366 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3367 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3368 .access = PL0_R, .type = ARM_CP_NO_RAW, 3369 .readfn = aa64_dczid_read }, 3370 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3371 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3372 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3373 #ifndef CONFIG_USER_ONLY 3374 /* Avoid overhead of an access check that always passes in user-mode */ 3375 .accessfn = aa64_zva_access, 3376 #endif 3377 }, 3378 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3379 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3380 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3381 /* Cache ops: all NOPs since we don't emulate caches */ 3382 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3384 .access = PL1_W, .type = ARM_CP_NOP }, 3385 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3386 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3387 .access = PL1_W, .type = ARM_CP_NOP }, 3388 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3389 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3390 .access = PL0_W, .type = ARM_CP_NOP, 3391 .accessfn = aa64_cacheop_access }, 3392 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3393 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3394 .access = PL1_W, .type = ARM_CP_NOP }, 3395 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3396 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3397 .access = PL1_W, .type = ARM_CP_NOP }, 3398 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3400 .access = PL0_W, .type = ARM_CP_NOP, 3401 .accessfn = aa64_cacheop_access }, 3402 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3404 .access = PL1_W, .type = ARM_CP_NOP }, 3405 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3406 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3407 .access = PL0_W, .type = ARM_CP_NOP, 3408 .accessfn = aa64_cacheop_access }, 3409 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3410 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3411 .access = PL0_W, .type = ARM_CP_NOP, 3412 .accessfn = aa64_cacheop_access }, 3413 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3415 .access = PL1_W, .type = ARM_CP_NOP }, 3416 /* TLBI operations */ 3417 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3418 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3419 .access = PL1_W, .type = ARM_CP_NO_RAW, 3420 .writefn = tlbi_aa64_vmalle1is_write }, 3421 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3422 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3423 .access = PL1_W, .type = ARM_CP_NO_RAW, 3424 .writefn = tlbi_aa64_vae1is_write }, 3425 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3426 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3427 .access = PL1_W, .type = ARM_CP_NO_RAW, 3428 .writefn = tlbi_aa64_vmalle1is_write }, 3429 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3430 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3431 .access = PL1_W, .type = ARM_CP_NO_RAW, 3432 .writefn = tlbi_aa64_vae1is_write }, 3433 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3434 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3435 .access = PL1_W, .type = ARM_CP_NO_RAW, 3436 .writefn = tlbi_aa64_vae1is_write }, 3437 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3438 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3439 .access = PL1_W, .type = ARM_CP_NO_RAW, 3440 .writefn = tlbi_aa64_vae1is_write }, 3441 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3442 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3443 .access = PL1_W, .type = ARM_CP_NO_RAW, 3444 .writefn = tlbi_aa64_vmalle1_write }, 3445 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3446 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3447 .access = PL1_W, .type = ARM_CP_NO_RAW, 3448 .writefn = tlbi_aa64_vae1_write }, 3449 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3450 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3451 .access = PL1_W, .type = ARM_CP_NO_RAW, 3452 .writefn = tlbi_aa64_vmalle1_write }, 3453 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3454 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3455 .access = PL1_W, .type = ARM_CP_NO_RAW, 3456 .writefn = tlbi_aa64_vae1_write }, 3457 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3458 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3459 .access = PL1_W, .type = ARM_CP_NO_RAW, 3460 .writefn = tlbi_aa64_vae1_write }, 3461 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3462 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3463 .access = PL1_W, .type = ARM_CP_NO_RAW, 3464 .writefn = tlbi_aa64_vae1_write }, 3465 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3466 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3467 .access = PL2_W, .type = ARM_CP_NO_RAW, 3468 .writefn = tlbi_aa64_ipas2e1is_write }, 3469 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3470 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3471 .access = PL2_W, .type = ARM_CP_NO_RAW, 3472 .writefn = tlbi_aa64_ipas2e1is_write }, 3473 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3474 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3475 .access = PL2_W, .type = ARM_CP_NO_RAW, 3476 .writefn = tlbi_aa64_alle1is_write }, 3477 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3478 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3479 .access = PL2_W, .type = ARM_CP_NO_RAW, 3480 .writefn = tlbi_aa64_alle1is_write }, 3481 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3482 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3483 .access = PL2_W, .type = ARM_CP_NO_RAW, 3484 .writefn = tlbi_aa64_ipas2e1_write }, 3485 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3486 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3487 .access = PL2_W, .type = ARM_CP_NO_RAW, 3488 .writefn = tlbi_aa64_ipas2e1_write }, 3489 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3490 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3491 .access = PL2_W, .type = ARM_CP_NO_RAW, 3492 .writefn = tlbi_aa64_alle1_write }, 3493 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3494 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3495 .access = PL2_W, .type = ARM_CP_NO_RAW, 3496 .writefn = tlbi_aa64_alle1is_write }, 3497 #ifndef CONFIG_USER_ONLY 3498 /* 64 bit address translation operations */ 3499 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3500 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3501 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3502 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3503 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3504 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3505 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3506 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3507 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3508 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3509 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3510 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3511 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3512 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3513 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3514 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3515 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3516 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3517 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3518 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3519 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3520 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3521 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3522 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3523 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3524 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3525 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3526 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3527 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3528 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3529 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3530 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3531 .type = ARM_CP_ALIAS, 3532 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3533 .access = PL1_RW, .resetvalue = 0, 3534 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3535 .writefn = par_write }, 3536 #endif 3537 /* TLB invalidate last level of translation table walk */ 3538 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3539 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3540 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3541 .type = ARM_CP_NO_RAW, .access = PL1_W, 3542 .writefn = tlbimvaa_is_write }, 3543 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3544 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3545 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3546 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3547 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3548 .type = ARM_CP_NO_RAW, .access = PL2_W, 3549 .writefn = tlbimva_hyp_write }, 3550 { .name = "TLBIMVALHIS", 3551 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3552 .type = ARM_CP_NO_RAW, .access = PL2_W, 3553 .writefn = tlbimva_hyp_is_write }, 3554 { .name = "TLBIIPAS2", 3555 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3556 .type = ARM_CP_NO_RAW, .access = PL2_W, 3557 .writefn = tlbiipas2_write }, 3558 { .name = "TLBIIPAS2IS", 3559 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3560 .type = ARM_CP_NO_RAW, .access = PL2_W, 3561 .writefn = tlbiipas2_is_write }, 3562 { .name = "TLBIIPAS2L", 3563 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3564 .type = ARM_CP_NO_RAW, .access = PL2_W, 3565 .writefn = tlbiipas2_write }, 3566 { .name = "TLBIIPAS2LIS", 3567 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3568 .type = ARM_CP_NO_RAW, .access = PL2_W, 3569 .writefn = tlbiipas2_is_write }, 3570 /* 32 bit cache operations */ 3571 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3572 .type = ARM_CP_NOP, .access = PL1_W }, 3573 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3574 .type = ARM_CP_NOP, .access = PL1_W }, 3575 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3576 .type = ARM_CP_NOP, .access = PL1_W }, 3577 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3578 .type = ARM_CP_NOP, .access = PL1_W }, 3579 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3580 .type = ARM_CP_NOP, .access = PL1_W }, 3581 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3582 .type = ARM_CP_NOP, .access = PL1_W }, 3583 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3584 .type = ARM_CP_NOP, .access = PL1_W }, 3585 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3586 .type = ARM_CP_NOP, .access = PL1_W }, 3587 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3588 .type = ARM_CP_NOP, .access = PL1_W }, 3589 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3590 .type = ARM_CP_NOP, .access = PL1_W }, 3591 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3592 .type = ARM_CP_NOP, .access = PL1_W }, 3593 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3594 .type = ARM_CP_NOP, .access = PL1_W }, 3595 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3596 .type = ARM_CP_NOP, .access = PL1_W }, 3597 /* MMU Domain access control / MPU write buffer control */ 3598 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3599 .access = PL1_RW, .resetvalue = 0, 3600 .writefn = dacr_write, .raw_writefn = raw_write, 3601 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3602 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3603 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3604 .type = ARM_CP_ALIAS, 3605 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3606 .access = PL1_RW, 3607 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3608 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3609 .type = ARM_CP_ALIAS, 3610 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3611 .access = PL1_RW, 3612 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3613 /* We rely on the access checks not allowing the guest to write to the 3614 * state field when SPSel indicates that it's being used as the stack 3615 * pointer. 3616 */ 3617 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3618 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3619 .access = PL1_RW, .accessfn = sp_el0_access, 3620 .type = ARM_CP_ALIAS, 3621 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3622 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3623 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3624 .access = PL2_RW, .type = ARM_CP_ALIAS, 3625 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3626 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3627 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3628 .type = ARM_CP_NO_RAW, 3629 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3630 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3631 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3632 .type = ARM_CP_ALIAS, 3633 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3634 .access = PL2_RW, .accessfn = fpexc32_access }, 3635 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3636 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3637 .access = PL2_RW, .resetvalue = 0, 3638 .writefn = dacr_write, .raw_writefn = raw_write, 3639 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3640 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3641 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3642 .access = PL2_RW, .resetvalue = 0, 3643 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3644 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3645 .type = ARM_CP_ALIAS, 3646 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3647 .access = PL2_RW, 3648 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3649 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3650 .type = ARM_CP_ALIAS, 3651 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3652 .access = PL2_RW, 3653 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3654 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3655 .type = ARM_CP_ALIAS, 3656 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3657 .access = PL2_RW, 3658 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3659 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3660 .type = ARM_CP_ALIAS, 3661 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3662 .access = PL2_RW, 3663 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3664 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3665 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3666 .resetvalue = 0, 3667 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3668 { .name = "SDCR", .type = ARM_CP_ALIAS, 3669 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3670 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3671 .writefn = sdcr_write, 3672 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3673 REGINFO_SENTINEL 3674 }; 3675 3676 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3677 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3678 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3679 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3680 .access = PL2_RW, 3681 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3682 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3683 .type = ARM_CP_NO_RAW, 3684 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3685 .access = PL2_RW, 3686 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3687 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3688 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3689 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3690 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3691 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3692 .access = PL2_RW, .type = ARM_CP_CONST, 3693 .resetvalue = 0 }, 3694 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3695 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3696 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3697 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3698 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3699 .access = PL2_RW, .type = ARM_CP_CONST, 3700 .resetvalue = 0 }, 3701 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3702 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3703 .access = PL2_RW, .type = ARM_CP_CONST, 3704 .resetvalue = 0 }, 3705 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3707 .access = PL2_RW, .type = ARM_CP_CONST, 3708 .resetvalue = 0 }, 3709 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3710 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3711 .access = PL2_RW, .type = ARM_CP_CONST, 3712 .resetvalue = 0 }, 3713 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3714 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3715 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3716 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3717 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3718 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3719 .type = ARM_CP_CONST, .resetvalue = 0 }, 3720 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3721 .cp = 15, .opc1 = 6, .crm = 2, 3722 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3723 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3724 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3725 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3726 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3727 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3728 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3729 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3730 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3731 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3732 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3733 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3734 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3735 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3736 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3737 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3738 .resetvalue = 0 }, 3739 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3740 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3741 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3742 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3743 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3744 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3745 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3746 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3747 .resetvalue = 0 }, 3748 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3749 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3750 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3751 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3752 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3753 .resetvalue = 0 }, 3754 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3755 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3756 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3757 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3758 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3759 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3760 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3761 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3762 .access = PL2_RW, .accessfn = access_tda, 3763 .type = ARM_CP_CONST, .resetvalue = 0 }, 3764 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3765 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3766 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3767 .type = ARM_CP_CONST, .resetvalue = 0 }, 3768 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3770 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3771 REGINFO_SENTINEL 3772 }; 3773 3774 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3775 { 3776 ARMCPU *cpu = arm_env_get_cpu(env); 3777 uint64_t valid_mask = HCR_MASK; 3778 3779 if (arm_feature(env, ARM_FEATURE_EL3)) { 3780 valid_mask &= ~HCR_HCD; 3781 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3782 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3783 * However, if we're using the SMC PSCI conduit then QEMU is 3784 * effectively acting like EL3 firmware and so the guest at 3785 * EL2 should retain the ability to prevent EL1 from being 3786 * able to make SMC calls into the ersatz firmware, so in 3787 * that case HCR.TSC should be read/write. 3788 */ 3789 valid_mask &= ~HCR_TSC; 3790 } 3791 3792 /* Clear RES0 bits. */ 3793 value &= valid_mask; 3794 3795 /* These bits change the MMU setup: 3796 * HCR_VM enables stage 2 translation 3797 * HCR_PTW forbids certain page-table setups 3798 * HCR_DC Disables stage1 and enables stage2 translation 3799 */ 3800 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3801 tlb_flush(CPU(cpu)); 3802 } 3803 raw_write(env, ri, value); 3804 } 3805 3806 static const ARMCPRegInfo el2_cp_reginfo[] = { 3807 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3808 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3809 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3810 .writefn = hcr_write }, 3811 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3812 .type = ARM_CP_ALIAS, 3813 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3814 .access = PL2_RW, 3815 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3816 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3817 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3818 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3819 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3820 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3821 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3822 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3823 .type = ARM_CP_ALIAS, 3824 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3825 .access = PL2_RW, 3826 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3827 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3828 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3829 .access = PL2_RW, .writefn = vbar_write, 3830 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3831 .resetvalue = 0 }, 3832 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3833 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3834 .access = PL3_RW, .type = ARM_CP_ALIAS, 3835 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3836 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3837 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3838 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3839 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3840 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3841 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3842 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3843 .resetvalue = 0 }, 3844 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3845 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3846 .access = PL2_RW, .type = ARM_CP_ALIAS, 3847 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3848 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3849 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3850 .access = PL2_RW, .type = ARM_CP_CONST, 3851 .resetvalue = 0 }, 3852 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3853 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3854 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3855 .access = PL2_RW, .type = ARM_CP_CONST, 3856 .resetvalue = 0 }, 3857 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3858 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3859 .access = PL2_RW, .type = ARM_CP_CONST, 3860 .resetvalue = 0 }, 3861 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3862 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3863 .access = PL2_RW, .type = ARM_CP_CONST, 3864 .resetvalue = 0 }, 3865 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3866 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3867 .access = PL2_RW, 3868 /* no .writefn needed as this can't cause an ASID change; 3869 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3870 */ 3871 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3872 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3873 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3874 .type = ARM_CP_ALIAS, 3875 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3876 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3877 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3878 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3879 .access = PL2_RW, 3880 /* no .writefn needed as this can't cause an ASID change; 3881 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3882 */ 3883 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3884 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3885 .cp = 15, .opc1 = 6, .crm = 2, 3886 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3887 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3888 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3889 .writefn = vttbr_write }, 3890 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3891 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3892 .access = PL2_RW, .writefn = vttbr_write, 3893 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3894 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3895 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3896 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3897 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3898 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3899 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3900 .access = PL2_RW, .resetvalue = 0, 3901 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3902 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3903 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3904 .access = PL2_RW, .resetvalue = 0, 3905 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3906 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3907 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3908 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3909 { .name = "TLBIALLNSNH", 3910 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3911 .type = ARM_CP_NO_RAW, .access = PL2_W, 3912 .writefn = tlbiall_nsnh_write }, 3913 { .name = "TLBIALLNSNHIS", 3914 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3915 .type = ARM_CP_NO_RAW, .access = PL2_W, 3916 .writefn = tlbiall_nsnh_is_write }, 3917 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3918 .type = ARM_CP_NO_RAW, .access = PL2_W, 3919 .writefn = tlbiall_hyp_write }, 3920 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3921 .type = ARM_CP_NO_RAW, .access = PL2_W, 3922 .writefn = tlbiall_hyp_is_write }, 3923 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3924 .type = ARM_CP_NO_RAW, .access = PL2_W, 3925 .writefn = tlbimva_hyp_write }, 3926 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3927 .type = ARM_CP_NO_RAW, .access = PL2_W, 3928 .writefn = tlbimva_hyp_is_write }, 3929 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3931 .type = ARM_CP_NO_RAW, .access = PL2_W, 3932 .writefn = tlbi_aa64_alle2_write }, 3933 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3934 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3935 .type = ARM_CP_NO_RAW, .access = PL2_W, 3936 .writefn = tlbi_aa64_vae2_write }, 3937 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3939 .access = PL2_W, .type = ARM_CP_NO_RAW, 3940 .writefn = tlbi_aa64_vae2_write }, 3941 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3943 .access = PL2_W, .type = ARM_CP_NO_RAW, 3944 .writefn = tlbi_aa64_alle2is_write }, 3945 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3947 .type = ARM_CP_NO_RAW, .access = PL2_W, 3948 .writefn = tlbi_aa64_vae2is_write }, 3949 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3951 .access = PL2_W, .type = ARM_CP_NO_RAW, 3952 .writefn = tlbi_aa64_vae2is_write }, 3953 #ifndef CONFIG_USER_ONLY 3954 /* Unlike the other EL2-related AT operations, these must 3955 * UNDEF from EL3 if EL2 is not implemented, which is why we 3956 * define them here rather than with the rest of the AT ops. 3957 */ 3958 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3959 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3960 .access = PL2_W, .accessfn = at_s1e2_access, 3961 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3962 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3963 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3964 .access = PL2_W, .accessfn = at_s1e2_access, 3965 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3966 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3967 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3968 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3969 * to behave as if SCR.NS was 1. 3970 */ 3971 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3972 .access = PL2_W, 3973 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3974 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3975 .access = PL2_W, 3976 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3977 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3978 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3979 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3980 * reset values as IMPDEF. We choose to reset to 3 to comply with 3981 * both ARMv7 and ARMv8. 3982 */ 3983 .access = PL2_RW, .resetvalue = 3, 3984 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3985 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3986 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3987 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3988 .writefn = gt_cntvoff_write, 3989 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3990 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3991 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3992 .writefn = gt_cntvoff_write, 3993 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3994 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3995 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3996 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3997 .type = ARM_CP_IO, .access = PL2_RW, 3998 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3999 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4000 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4001 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4002 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4003 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4004 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4005 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4006 .resetfn = gt_hyp_timer_reset, 4007 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4008 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4009 .type = ARM_CP_IO, 4010 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4011 .access = PL2_RW, 4012 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4013 .resetvalue = 0, 4014 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4015 #endif 4016 /* The only field of MDCR_EL2 that has a defined architectural reset value 4017 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4018 * don't impelment any PMU event counters, so using zero as a reset 4019 * value for MDCR_EL2 is okay 4020 */ 4021 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4022 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4023 .access = PL2_RW, .resetvalue = 0, 4024 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4025 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4026 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4027 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4028 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4029 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4030 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4031 .access = PL2_RW, 4032 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4033 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4034 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4035 .access = PL2_RW, 4036 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4037 REGINFO_SENTINEL 4038 }; 4039 4040 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4041 bool isread) 4042 { 4043 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4044 * At Secure EL1 it traps to EL3. 4045 */ 4046 if (arm_current_el(env) == 3) { 4047 return CP_ACCESS_OK; 4048 } 4049 if (arm_is_secure_below_el3(env)) { 4050 return CP_ACCESS_TRAP_EL3; 4051 } 4052 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4053 if (isread) { 4054 return CP_ACCESS_OK; 4055 } 4056 return CP_ACCESS_TRAP_UNCATEGORIZED; 4057 } 4058 4059 static const ARMCPRegInfo el3_cp_reginfo[] = { 4060 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4061 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4062 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4063 .resetvalue = 0, .writefn = scr_write }, 4064 { .name = "SCR", .type = ARM_CP_ALIAS, 4065 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4066 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4067 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4068 .writefn = scr_write }, 4069 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4070 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4071 .access = PL3_RW, .resetvalue = 0, 4072 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4073 { .name = "SDER", 4074 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4075 .access = PL3_RW, .resetvalue = 0, 4076 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4077 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4078 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4079 .writefn = vbar_write, .resetvalue = 0, 4080 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4081 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4082 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4083 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4084 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4085 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4086 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4087 .access = PL3_RW, 4088 /* no .writefn needed as this can't cause an ASID change; 4089 * we must provide a .raw_writefn and .resetfn because we handle 4090 * reset and migration for the AArch32 TTBCR(S), which might be 4091 * using mask and base_mask. 4092 */ 4093 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4094 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4095 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4096 .type = ARM_CP_ALIAS, 4097 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4098 .access = PL3_RW, 4099 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4100 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4101 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4102 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4103 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4104 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4105 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4106 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4107 .type = ARM_CP_ALIAS, 4108 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4109 .access = PL3_RW, 4110 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4111 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4112 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4113 .access = PL3_RW, .writefn = vbar_write, 4114 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4115 .resetvalue = 0 }, 4116 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4117 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4118 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4119 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4120 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4121 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4122 .access = PL3_RW, .resetvalue = 0, 4123 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4124 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4125 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4126 .access = PL3_RW, .type = ARM_CP_CONST, 4127 .resetvalue = 0 }, 4128 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4129 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4130 .access = PL3_RW, .type = ARM_CP_CONST, 4131 .resetvalue = 0 }, 4132 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4133 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4134 .access = PL3_RW, .type = ARM_CP_CONST, 4135 .resetvalue = 0 }, 4136 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4137 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4138 .access = PL3_W, .type = ARM_CP_NO_RAW, 4139 .writefn = tlbi_aa64_alle3is_write }, 4140 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4141 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4142 .access = PL3_W, .type = ARM_CP_NO_RAW, 4143 .writefn = tlbi_aa64_vae3is_write }, 4144 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4145 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4146 .access = PL3_W, .type = ARM_CP_NO_RAW, 4147 .writefn = tlbi_aa64_vae3is_write }, 4148 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4149 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4150 .access = PL3_W, .type = ARM_CP_NO_RAW, 4151 .writefn = tlbi_aa64_alle3_write }, 4152 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4153 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4154 .access = PL3_W, .type = ARM_CP_NO_RAW, 4155 .writefn = tlbi_aa64_vae3_write }, 4156 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4157 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4158 .access = PL3_W, .type = ARM_CP_NO_RAW, 4159 .writefn = tlbi_aa64_vae3_write }, 4160 REGINFO_SENTINEL 4161 }; 4162 4163 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4164 bool isread) 4165 { 4166 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4167 * but the AArch32 CTR has its own reginfo struct) 4168 */ 4169 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4170 return CP_ACCESS_TRAP; 4171 } 4172 return CP_ACCESS_OK; 4173 } 4174 4175 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4176 uint64_t value) 4177 { 4178 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4179 * read via a bit in OSLSR_EL1. 4180 */ 4181 int oslock; 4182 4183 if (ri->state == ARM_CP_STATE_AA32) { 4184 oslock = (value == 0xC5ACCE55); 4185 } else { 4186 oslock = value & 1; 4187 } 4188 4189 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4190 } 4191 4192 static const ARMCPRegInfo debug_cp_reginfo[] = { 4193 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4194 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4195 * unlike DBGDRAR it is never accessible from EL0. 4196 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4197 * accessor. 4198 */ 4199 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4200 .access = PL0_R, .accessfn = access_tdra, 4201 .type = ARM_CP_CONST, .resetvalue = 0 }, 4202 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4203 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4204 .access = PL1_R, .accessfn = access_tdra, 4205 .type = ARM_CP_CONST, .resetvalue = 0 }, 4206 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4207 .access = PL0_R, .accessfn = access_tdra, 4208 .type = ARM_CP_CONST, .resetvalue = 0 }, 4209 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4210 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4211 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4212 .access = PL1_RW, .accessfn = access_tda, 4213 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4214 .resetvalue = 0 }, 4215 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4216 * We don't implement the configurable EL0 access. 4217 */ 4218 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4219 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4220 .type = ARM_CP_ALIAS, 4221 .access = PL1_R, .accessfn = access_tda, 4222 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4223 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4224 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4225 .access = PL1_W, .type = ARM_CP_NO_RAW, 4226 .accessfn = access_tdosa, 4227 .writefn = oslar_write }, 4228 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4229 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4230 .access = PL1_R, .resetvalue = 10, 4231 .accessfn = access_tdosa, 4232 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4233 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4234 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4235 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4236 .access = PL1_RW, .accessfn = access_tdosa, 4237 .type = ARM_CP_NOP }, 4238 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4239 * implement vector catch debug events yet. 4240 */ 4241 { .name = "DBGVCR", 4242 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4243 .access = PL1_RW, .accessfn = access_tda, 4244 .type = ARM_CP_NOP }, 4245 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4246 * to save and restore a 32-bit guest's DBGVCR) 4247 */ 4248 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4249 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4250 .access = PL2_RW, .accessfn = access_tda, 4251 .type = ARM_CP_NOP }, 4252 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4253 * Channel but Linux may try to access this register. The 32-bit 4254 * alias is DBGDCCINT. 4255 */ 4256 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4257 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4258 .access = PL1_RW, .accessfn = access_tda, 4259 .type = ARM_CP_NOP }, 4260 REGINFO_SENTINEL 4261 }; 4262 4263 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4264 /* 64 bit access versions of the (dummy) debug registers */ 4265 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4266 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4267 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4268 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4269 REGINFO_SENTINEL 4270 }; 4271 4272 /* Return the exception level to which SVE-disabled exceptions should 4273 * be taken, or 0 if SVE is enabled. 4274 */ 4275 static int sve_exception_el(CPUARMState *env) 4276 { 4277 #ifndef CONFIG_USER_ONLY 4278 unsigned current_el = arm_current_el(env); 4279 4280 /* The CPACR.ZEN controls traps to EL1: 4281 * 0, 2 : trap EL0 and EL1 accesses 4282 * 1 : trap only EL0 accesses 4283 * 3 : trap no accesses 4284 */ 4285 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 4286 default: 4287 if (current_el <= 1) { 4288 /* Trap to PL1, which might be EL1 or EL3 */ 4289 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4290 return 3; 4291 } 4292 return 1; 4293 } 4294 break; 4295 case 1: 4296 if (current_el == 0) { 4297 return 1; 4298 } 4299 break; 4300 case 3: 4301 break; 4302 } 4303 4304 /* Similarly for CPACR.FPEN, after having checked ZEN. */ 4305 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 4306 default: 4307 if (current_el <= 1) { 4308 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4309 return 3; 4310 } 4311 return 1; 4312 } 4313 break; 4314 case 1: 4315 if (current_el == 0) { 4316 return 1; 4317 } 4318 break; 4319 case 3: 4320 break; 4321 } 4322 4323 /* CPTR_EL2. Check both TZ and TFP. */ 4324 if (current_el <= 2 4325 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ)) 4326 && !arm_is_secure_below_el3(env)) { 4327 return 2; 4328 } 4329 4330 /* CPTR_EL3. Check both EZ and TFP. */ 4331 if (!(env->cp15.cptr_el[3] & CPTR_EZ) 4332 || (env->cp15.cptr_el[3] & CPTR_TFP)) { 4333 return 3; 4334 } 4335 #endif 4336 return 0; 4337 } 4338 4339 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4340 uint64_t value) 4341 { 4342 /* Bits other than [3:0] are RAZ/WI. */ 4343 raw_write(env, ri, value & 0xf); 4344 } 4345 4346 static const ARMCPRegInfo zcr_el1_reginfo = { 4347 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4348 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4349 .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4350 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4351 .writefn = zcr_write, .raw_writefn = raw_write 4352 }; 4353 4354 static const ARMCPRegInfo zcr_el2_reginfo = { 4355 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4356 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4357 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4358 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4359 .writefn = zcr_write, .raw_writefn = raw_write 4360 }; 4361 4362 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4363 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4364 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4365 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4366 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4367 }; 4368 4369 static const ARMCPRegInfo zcr_el3_reginfo = { 4370 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4371 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4372 .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4373 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4374 .writefn = zcr_write, .raw_writefn = raw_write 4375 }; 4376 4377 void hw_watchpoint_update(ARMCPU *cpu, int n) 4378 { 4379 CPUARMState *env = &cpu->env; 4380 vaddr len = 0; 4381 vaddr wvr = env->cp15.dbgwvr[n]; 4382 uint64_t wcr = env->cp15.dbgwcr[n]; 4383 int mask; 4384 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4385 4386 if (env->cpu_watchpoint[n]) { 4387 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4388 env->cpu_watchpoint[n] = NULL; 4389 } 4390 4391 if (!extract64(wcr, 0, 1)) { 4392 /* E bit clear : watchpoint disabled */ 4393 return; 4394 } 4395 4396 switch (extract64(wcr, 3, 2)) { 4397 case 0: 4398 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4399 return; 4400 case 1: 4401 flags |= BP_MEM_READ; 4402 break; 4403 case 2: 4404 flags |= BP_MEM_WRITE; 4405 break; 4406 case 3: 4407 flags |= BP_MEM_ACCESS; 4408 break; 4409 } 4410 4411 /* Attempts to use both MASK and BAS fields simultaneously are 4412 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4413 * thus generating a watchpoint for every byte in the masked region. 4414 */ 4415 mask = extract64(wcr, 24, 4); 4416 if (mask == 1 || mask == 2) { 4417 /* Reserved values of MASK; we must act as if the mask value was 4418 * some non-reserved value, or as if the watchpoint were disabled. 4419 * We choose the latter. 4420 */ 4421 return; 4422 } else if (mask) { 4423 /* Watchpoint covers an aligned area up to 2GB in size */ 4424 len = 1ULL << mask; 4425 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4426 * whether the watchpoint fires when the unmasked bits match; we opt 4427 * to generate the exceptions. 4428 */ 4429 wvr &= ~(len - 1); 4430 } else { 4431 /* Watchpoint covers bytes defined by the byte address select bits */ 4432 int bas = extract64(wcr, 5, 8); 4433 int basstart; 4434 4435 if (bas == 0) { 4436 /* This must act as if the watchpoint is disabled */ 4437 return; 4438 } 4439 4440 if (extract64(wvr, 2, 1)) { 4441 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4442 * ignored, and BAS[3:0] define which bytes to watch. 4443 */ 4444 bas &= 0xf; 4445 } 4446 /* The BAS bits are supposed to be programmed to indicate a contiguous 4447 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4448 * we fire for each byte in the word/doubleword addressed by the WVR. 4449 * We choose to ignore any non-zero bits after the first range of 1s. 4450 */ 4451 basstart = ctz32(bas); 4452 len = cto32(bas >> basstart); 4453 wvr += basstart; 4454 } 4455 4456 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4457 &env->cpu_watchpoint[n]); 4458 } 4459 4460 void hw_watchpoint_update_all(ARMCPU *cpu) 4461 { 4462 int i; 4463 CPUARMState *env = &cpu->env; 4464 4465 /* Completely clear out existing QEMU watchpoints and our array, to 4466 * avoid possible stale entries following migration load. 4467 */ 4468 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4469 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4470 4471 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4472 hw_watchpoint_update(cpu, i); 4473 } 4474 } 4475 4476 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4477 uint64_t value) 4478 { 4479 ARMCPU *cpu = arm_env_get_cpu(env); 4480 int i = ri->crm; 4481 4482 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4483 * register reads and behaves as if values written are sign extended. 4484 * Bits [1:0] are RES0. 4485 */ 4486 value = sextract64(value, 0, 49) & ~3ULL; 4487 4488 raw_write(env, ri, value); 4489 hw_watchpoint_update(cpu, i); 4490 } 4491 4492 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4493 uint64_t value) 4494 { 4495 ARMCPU *cpu = arm_env_get_cpu(env); 4496 int i = ri->crm; 4497 4498 raw_write(env, ri, value); 4499 hw_watchpoint_update(cpu, i); 4500 } 4501 4502 void hw_breakpoint_update(ARMCPU *cpu, int n) 4503 { 4504 CPUARMState *env = &cpu->env; 4505 uint64_t bvr = env->cp15.dbgbvr[n]; 4506 uint64_t bcr = env->cp15.dbgbcr[n]; 4507 vaddr addr; 4508 int bt; 4509 int flags = BP_CPU; 4510 4511 if (env->cpu_breakpoint[n]) { 4512 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4513 env->cpu_breakpoint[n] = NULL; 4514 } 4515 4516 if (!extract64(bcr, 0, 1)) { 4517 /* E bit clear : watchpoint disabled */ 4518 return; 4519 } 4520 4521 bt = extract64(bcr, 20, 4); 4522 4523 switch (bt) { 4524 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4525 case 5: /* linked address mismatch (reserved if AArch64) */ 4526 qemu_log_mask(LOG_UNIMP, 4527 "arm: address mismatch breakpoint types not implemented"); 4528 return; 4529 case 0: /* unlinked address match */ 4530 case 1: /* linked address match */ 4531 { 4532 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4533 * we behave as if the register was sign extended. Bits [1:0] are 4534 * RES0. The BAS field is used to allow setting breakpoints on 16 4535 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4536 * a bp will fire if the addresses covered by the bp and the addresses 4537 * covered by the insn overlap but the insn doesn't start at the 4538 * start of the bp address range. We choose to require the insn and 4539 * the bp to have the same address. The constraints on writing to 4540 * BAS enforced in dbgbcr_write mean we have only four cases: 4541 * 0b0000 => no breakpoint 4542 * 0b0011 => breakpoint on addr 4543 * 0b1100 => breakpoint on addr + 2 4544 * 0b1111 => breakpoint on addr 4545 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4546 */ 4547 int bas = extract64(bcr, 5, 4); 4548 addr = sextract64(bvr, 0, 49) & ~3ULL; 4549 if (bas == 0) { 4550 return; 4551 } 4552 if (bas == 0xc) { 4553 addr += 2; 4554 } 4555 break; 4556 } 4557 case 2: /* unlinked context ID match */ 4558 case 8: /* unlinked VMID match (reserved if no EL2) */ 4559 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4560 qemu_log_mask(LOG_UNIMP, 4561 "arm: unlinked context breakpoint types not implemented"); 4562 return; 4563 case 9: /* linked VMID match (reserved if no EL2) */ 4564 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4565 case 3: /* linked context ID match */ 4566 default: 4567 /* We must generate no events for Linked context matches (unless 4568 * they are linked to by some other bp/wp, which is handled in 4569 * updates for the linking bp/wp). We choose to also generate no events 4570 * for reserved values. 4571 */ 4572 return; 4573 } 4574 4575 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4576 } 4577 4578 void hw_breakpoint_update_all(ARMCPU *cpu) 4579 { 4580 int i; 4581 CPUARMState *env = &cpu->env; 4582 4583 /* Completely clear out existing QEMU breakpoints and our array, to 4584 * avoid possible stale entries following migration load. 4585 */ 4586 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4587 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4588 4589 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4590 hw_breakpoint_update(cpu, i); 4591 } 4592 } 4593 4594 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4595 uint64_t value) 4596 { 4597 ARMCPU *cpu = arm_env_get_cpu(env); 4598 int i = ri->crm; 4599 4600 raw_write(env, ri, value); 4601 hw_breakpoint_update(cpu, i); 4602 } 4603 4604 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4605 uint64_t value) 4606 { 4607 ARMCPU *cpu = arm_env_get_cpu(env); 4608 int i = ri->crm; 4609 4610 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4611 * copy of BAS[0]. 4612 */ 4613 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4614 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4615 4616 raw_write(env, ri, value); 4617 hw_breakpoint_update(cpu, i); 4618 } 4619 4620 static void define_debug_regs(ARMCPU *cpu) 4621 { 4622 /* Define v7 and v8 architectural debug registers. 4623 * These are just dummy implementations for now. 4624 */ 4625 int i; 4626 int wrps, brps, ctx_cmps; 4627 ARMCPRegInfo dbgdidr = { 4628 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4629 .access = PL0_R, .accessfn = access_tda, 4630 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4631 }; 4632 4633 /* Note that all these register fields hold "number of Xs minus 1". */ 4634 brps = extract32(cpu->dbgdidr, 24, 4); 4635 wrps = extract32(cpu->dbgdidr, 28, 4); 4636 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4637 4638 assert(ctx_cmps <= brps); 4639 4640 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4641 * of the debug registers such as number of breakpoints; 4642 * check that if they both exist then they agree. 4643 */ 4644 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4645 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4646 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4647 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4648 } 4649 4650 define_one_arm_cp_reg(cpu, &dbgdidr); 4651 define_arm_cp_regs(cpu, debug_cp_reginfo); 4652 4653 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4654 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4655 } 4656 4657 for (i = 0; i < brps + 1; i++) { 4658 ARMCPRegInfo dbgregs[] = { 4659 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4660 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4661 .access = PL1_RW, .accessfn = access_tda, 4662 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4663 .writefn = dbgbvr_write, .raw_writefn = raw_write 4664 }, 4665 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4666 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4667 .access = PL1_RW, .accessfn = access_tda, 4668 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4669 .writefn = dbgbcr_write, .raw_writefn = raw_write 4670 }, 4671 REGINFO_SENTINEL 4672 }; 4673 define_arm_cp_regs(cpu, dbgregs); 4674 } 4675 4676 for (i = 0; i < wrps + 1; i++) { 4677 ARMCPRegInfo dbgregs[] = { 4678 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4679 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4680 .access = PL1_RW, .accessfn = access_tda, 4681 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4682 .writefn = dbgwvr_write, .raw_writefn = raw_write 4683 }, 4684 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4685 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4686 .access = PL1_RW, .accessfn = access_tda, 4687 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4688 .writefn = dbgwcr_write, .raw_writefn = raw_write 4689 }, 4690 REGINFO_SENTINEL 4691 }; 4692 define_arm_cp_regs(cpu, dbgregs); 4693 } 4694 } 4695 4696 /* We don't know until after realize whether there's a GICv3 4697 * attached, and that is what registers the gicv3 sysregs. 4698 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4699 * at runtime. 4700 */ 4701 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4702 { 4703 ARMCPU *cpu = arm_env_get_cpu(env); 4704 uint64_t pfr1 = cpu->id_pfr1; 4705 4706 if (env->gicv3state) { 4707 pfr1 |= 1 << 28; 4708 } 4709 return pfr1; 4710 } 4711 4712 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4713 { 4714 ARMCPU *cpu = arm_env_get_cpu(env); 4715 uint64_t pfr0 = cpu->id_aa64pfr0; 4716 4717 if (env->gicv3state) { 4718 pfr0 |= 1 << 24; 4719 } 4720 return pfr0; 4721 } 4722 4723 void register_cp_regs_for_features(ARMCPU *cpu) 4724 { 4725 /* Register all the coprocessor registers based on feature bits */ 4726 CPUARMState *env = &cpu->env; 4727 if (arm_feature(env, ARM_FEATURE_M)) { 4728 /* M profile has no coprocessor registers */ 4729 return; 4730 } 4731 4732 define_arm_cp_regs(cpu, cp_reginfo); 4733 if (!arm_feature(env, ARM_FEATURE_V8)) { 4734 /* Must go early as it is full of wildcards that may be 4735 * overridden by later definitions. 4736 */ 4737 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4738 } 4739 4740 if (arm_feature(env, ARM_FEATURE_V6)) { 4741 /* The ID registers all have impdef reset values */ 4742 ARMCPRegInfo v6_idregs[] = { 4743 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4745 .access = PL1_R, .type = ARM_CP_CONST, 4746 .resetvalue = cpu->id_pfr0 }, 4747 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4748 * the value of the GIC field until after we define these regs. 4749 */ 4750 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4752 .access = PL1_R, .type = ARM_CP_NO_RAW, 4753 .readfn = id_pfr1_read, 4754 .writefn = arm_cp_write_ignore }, 4755 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4757 .access = PL1_R, .type = ARM_CP_CONST, 4758 .resetvalue = cpu->id_dfr0 }, 4759 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4761 .access = PL1_R, .type = ARM_CP_CONST, 4762 .resetvalue = cpu->id_afr0 }, 4763 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4765 .access = PL1_R, .type = ARM_CP_CONST, 4766 .resetvalue = cpu->id_mmfr0 }, 4767 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4769 .access = PL1_R, .type = ARM_CP_CONST, 4770 .resetvalue = cpu->id_mmfr1 }, 4771 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4773 .access = PL1_R, .type = ARM_CP_CONST, 4774 .resetvalue = cpu->id_mmfr2 }, 4775 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4777 .access = PL1_R, .type = ARM_CP_CONST, 4778 .resetvalue = cpu->id_mmfr3 }, 4779 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4781 .access = PL1_R, .type = ARM_CP_CONST, 4782 .resetvalue = cpu->id_isar0 }, 4783 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4785 .access = PL1_R, .type = ARM_CP_CONST, 4786 .resetvalue = cpu->id_isar1 }, 4787 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4789 .access = PL1_R, .type = ARM_CP_CONST, 4790 .resetvalue = cpu->id_isar2 }, 4791 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4793 .access = PL1_R, .type = ARM_CP_CONST, 4794 .resetvalue = cpu->id_isar3 }, 4795 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4797 .access = PL1_R, .type = ARM_CP_CONST, 4798 .resetvalue = cpu->id_isar4 }, 4799 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4801 .access = PL1_R, .type = ARM_CP_CONST, 4802 .resetvalue = cpu->id_isar5 }, 4803 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4805 .access = PL1_R, .type = ARM_CP_CONST, 4806 .resetvalue = cpu->id_mmfr4 }, 4807 /* 7 is as yet unallocated and must RAZ */ 4808 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4810 .access = PL1_R, .type = ARM_CP_CONST, 4811 .resetvalue = 0 }, 4812 REGINFO_SENTINEL 4813 }; 4814 define_arm_cp_regs(cpu, v6_idregs); 4815 define_arm_cp_regs(cpu, v6_cp_reginfo); 4816 } else { 4817 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4818 } 4819 if (arm_feature(env, ARM_FEATURE_V6K)) { 4820 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4821 } 4822 if (arm_feature(env, ARM_FEATURE_V7MP) && 4823 !arm_feature(env, ARM_FEATURE_PMSA)) { 4824 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4825 } 4826 if (arm_feature(env, ARM_FEATURE_V7)) { 4827 /* v7 performance monitor control register: same implementor 4828 * field as main ID register, and we implement only the cycle 4829 * count register. 4830 */ 4831 #ifndef CONFIG_USER_ONLY 4832 ARMCPRegInfo pmcr = { 4833 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4834 .access = PL0_RW, 4835 .type = ARM_CP_IO | ARM_CP_ALIAS, 4836 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4837 .accessfn = pmreg_access, .writefn = pmcr_write, 4838 .raw_writefn = raw_write, 4839 }; 4840 ARMCPRegInfo pmcr64 = { 4841 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4842 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4843 .access = PL0_RW, .accessfn = pmreg_access, 4844 .type = ARM_CP_IO, 4845 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4846 .resetvalue = cpu->midr & 0xff000000, 4847 .writefn = pmcr_write, .raw_writefn = raw_write, 4848 }; 4849 define_one_arm_cp_reg(cpu, &pmcr); 4850 define_one_arm_cp_reg(cpu, &pmcr64); 4851 #endif 4852 ARMCPRegInfo clidr = { 4853 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4854 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4855 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4856 }; 4857 define_one_arm_cp_reg(cpu, &clidr); 4858 define_arm_cp_regs(cpu, v7_cp_reginfo); 4859 define_debug_regs(cpu); 4860 } else { 4861 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4862 } 4863 if (arm_feature(env, ARM_FEATURE_V8)) { 4864 /* AArch64 ID registers, which all have impdef reset values. 4865 * Note that within the ID register ranges the unused slots 4866 * must all RAZ, not UNDEF; future architecture versions may 4867 * define new registers here. 4868 */ 4869 ARMCPRegInfo v8_idregs[] = { 4870 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4871 * know the right value for the GIC field until after we 4872 * define these regs. 4873 */ 4874 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4876 .access = PL1_R, .type = ARM_CP_NO_RAW, 4877 .readfn = id_aa64pfr0_read, 4878 .writefn = arm_cp_write_ignore }, 4879 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4881 .access = PL1_R, .type = ARM_CP_CONST, 4882 .resetvalue = cpu->id_aa64pfr1}, 4883 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4885 .access = PL1_R, .type = ARM_CP_CONST, 4886 .resetvalue = 0 }, 4887 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4889 .access = PL1_R, .type = ARM_CP_CONST, 4890 .resetvalue = 0 }, 4891 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4893 .access = PL1_R, .type = ARM_CP_CONST, 4894 .resetvalue = 0 }, 4895 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4897 .access = PL1_R, .type = ARM_CP_CONST, 4898 .resetvalue = 0 }, 4899 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4901 .access = PL1_R, .type = ARM_CP_CONST, 4902 .resetvalue = 0 }, 4903 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4905 .access = PL1_R, .type = ARM_CP_CONST, 4906 .resetvalue = 0 }, 4907 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4909 .access = PL1_R, .type = ARM_CP_CONST, 4910 .resetvalue = cpu->id_aa64dfr0 }, 4911 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4913 .access = PL1_R, .type = ARM_CP_CONST, 4914 .resetvalue = cpu->id_aa64dfr1 }, 4915 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4917 .access = PL1_R, .type = ARM_CP_CONST, 4918 .resetvalue = 0 }, 4919 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4921 .access = PL1_R, .type = ARM_CP_CONST, 4922 .resetvalue = 0 }, 4923 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4925 .access = PL1_R, .type = ARM_CP_CONST, 4926 .resetvalue = cpu->id_aa64afr0 }, 4927 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4929 .access = PL1_R, .type = ARM_CP_CONST, 4930 .resetvalue = cpu->id_aa64afr1 }, 4931 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4933 .access = PL1_R, .type = ARM_CP_CONST, 4934 .resetvalue = 0 }, 4935 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4937 .access = PL1_R, .type = ARM_CP_CONST, 4938 .resetvalue = 0 }, 4939 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4941 .access = PL1_R, .type = ARM_CP_CONST, 4942 .resetvalue = cpu->id_aa64isar0 }, 4943 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4945 .access = PL1_R, .type = ARM_CP_CONST, 4946 .resetvalue = cpu->id_aa64isar1 }, 4947 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4948 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4949 .access = PL1_R, .type = ARM_CP_CONST, 4950 .resetvalue = 0 }, 4951 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4953 .access = PL1_R, .type = ARM_CP_CONST, 4954 .resetvalue = 0 }, 4955 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4957 .access = PL1_R, .type = ARM_CP_CONST, 4958 .resetvalue = 0 }, 4959 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4961 .access = PL1_R, .type = ARM_CP_CONST, 4962 .resetvalue = 0 }, 4963 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4965 .access = PL1_R, .type = ARM_CP_CONST, 4966 .resetvalue = 0 }, 4967 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4969 .access = PL1_R, .type = ARM_CP_CONST, 4970 .resetvalue = 0 }, 4971 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4973 .access = PL1_R, .type = ARM_CP_CONST, 4974 .resetvalue = cpu->id_aa64mmfr0 }, 4975 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4977 .access = PL1_R, .type = ARM_CP_CONST, 4978 .resetvalue = cpu->id_aa64mmfr1 }, 4979 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4981 .access = PL1_R, .type = ARM_CP_CONST, 4982 .resetvalue = 0 }, 4983 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4985 .access = PL1_R, .type = ARM_CP_CONST, 4986 .resetvalue = 0 }, 4987 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4989 .access = PL1_R, .type = ARM_CP_CONST, 4990 .resetvalue = 0 }, 4991 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4993 .access = PL1_R, .type = ARM_CP_CONST, 4994 .resetvalue = 0 }, 4995 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4997 .access = PL1_R, .type = ARM_CP_CONST, 4998 .resetvalue = 0 }, 4999 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5001 .access = PL1_R, .type = ARM_CP_CONST, 5002 .resetvalue = 0 }, 5003 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5005 .access = PL1_R, .type = ARM_CP_CONST, 5006 .resetvalue = cpu->mvfr0 }, 5007 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5009 .access = PL1_R, .type = ARM_CP_CONST, 5010 .resetvalue = cpu->mvfr1 }, 5011 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5013 .access = PL1_R, .type = ARM_CP_CONST, 5014 .resetvalue = cpu->mvfr2 }, 5015 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5017 .access = PL1_R, .type = ARM_CP_CONST, 5018 .resetvalue = 0 }, 5019 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5021 .access = PL1_R, .type = ARM_CP_CONST, 5022 .resetvalue = 0 }, 5023 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5025 .access = PL1_R, .type = ARM_CP_CONST, 5026 .resetvalue = 0 }, 5027 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5029 .access = PL1_R, .type = ARM_CP_CONST, 5030 .resetvalue = 0 }, 5031 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5033 .access = PL1_R, .type = ARM_CP_CONST, 5034 .resetvalue = 0 }, 5035 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5036 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5037 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5038 .resetvalue = cpu->pmceid0 }, 5039 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5040 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5041 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5042 .resetvalue = cpu->pmceid0 }, 5043 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5044 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5045 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5046 .resetvalue = cpu->pmceid1 }, 5047 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5049 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5050 .resetvalue = cpu->pmceid1 }, 5051 REGINFO_SENTINEL 5052 }; 5053 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5054 if (!arm_feature(env, ARM_FEATURE_EL3) && 5055 !arm_feature(env, ARM_FEATURE_EL2)) { 5056 ARMCPRegInfo rvbar = { 5057 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5058 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5059 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5060 }; 5061 define_one_arm_cp_reg(cpu, &rvbar); 5062 } 5063 define_arm_cp_regs(cpu, v8_idregs); 5064 define_arm_cp_regs(cpu, v8_cp_reginfo); 5065 } 5066 if (arm_feature(env, ARM_FEATURE_EL2)) { 5067 uint64_t vmpidr_def = mpidr_read_val(env); 5068 ARMCPRegInfo vpidr_regs[] = { 5069 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5070 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5071 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5072 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5073 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5074 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5076 .access = PL2_RW, .resetvalue = cpu->midr, 5077 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5078 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5079 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5080 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5081 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5082 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5083 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5084 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5085 .access = PL2_RW, 5086 .resetvalue = vmpidr_def, 5087 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5088 REGINFO_SENTINEL 5089 }; 5090 define_arm_cp_regs(cpu, vpidr_regs); 5091 define_arm_cp_regs(cpu, el2_cp_reginfo); 5092 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5093 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5094 ARMCPRegInfo rvbar = { 5095 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5097 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5098 }; 5099 define_one_arm_cp_reg(cpu, &rvbar); 5100 } 5101 } else { 5102 /* If EL2 is missing but higher ELs are enabled, we need to 5103 * register the no_el2 reginfos. 5104 */ 5105 if (arm_feature(env, ARM_FEATURE_EL3)) { 5106 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5107 * of MIDR_EL1 and MPIDR_EL1. 5108 */ 5109 ARMCPRegInfo vpidr_regs[] = { 5110 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5111 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5112 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5113 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5114 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5115 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5116 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5117 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5118 .type = ARM_CP_NO_RAW, 5119 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5120 REGINFO_SENTINEL 5121 }; 5122 define_arm_cp_regs(cpu, vpidr_regs); 5123 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5124 } 5125 } 5126 if (arm_feature(env, ARM_FEATURE_EL3)) { 5127 define_arm_cp_regs(cpu, el3_cp_reginfo); 5128 ARMCPRegInfo el3_regs[] = { 5129 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5130 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5131 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5132 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5134 .access = PL3_RW, 5135 .raw_writefn = raw_write, .writefn = sctlr_write, 5136 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5137 .resetvalue = cpu->reset_sctlr }, 5138 REGINFO_SENTINEL 5139 }; 5140 5141 define_arm_cp_regs(cpu, el3_regs); 5142 } 5143 /* The behaviour of NSACR is sufficiently various that we don't 5144 * try to describe it in a single reginfo: 5145 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5146 * reads as constant 0xc00 from NS EL1 and NS EL2 5147 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5148 * if v7 without EL3, register doesn't exist 5149 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5150 */ 5151 if (arm_feature(env, ARM_FEATURE_EL3)) { 5152 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5153 ARMCPRegInfo nsacr = { 5154 .name = "NSACR", .type = ARM_CP_CONST, 5155 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5156 .access = PL1_RW, .accessfn = nsacr_access, 5157 .resetvalue = 0xc00 5158 }; 5159 define_one_arm_cp_reg(cpu, &nsacr); 5160 } else { 5161 ARMCPRegInfo nsacr = { 5162 .name = "NSACR", 5163 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5164 .access = PL3_RW | PL1_R, 5165 .resetvalue = 0, 5166 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5167 }; 5168 define_one_arm_cp_reg(cpu, &nsacr); 5169 } 5170 } else { 5171 if (arm_feature(env, ARM_FEATURE_V8)) { 5172 ARMCPRegInfo nsacr = { 5173 .name = "NSACR", .type = ARM_CP_CONST, 5174 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5175 .access = PL1_R, 5176 .resetvalue = 0xc00 5177 }; 5178 define_one_arm_cp_reg(cpu, &nsacr); 5179 } 5180 } 5181 5182 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5183 if (arm_feature(env, ARM_FEATURE_V6)) { 5184 /* PMSAv6 not implemented */ 5185 assert(arm_feature(env, ARM_FEATURE_V7)); 5186 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5187 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5188 } else { 5189 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5190 } 5191 } else { 5192 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5193 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5194 } 5195 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5196 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5197 } 5198 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5199 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5200 } 5201 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5202 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5203 } 5204 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5205 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5206 } 5207 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5208 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5209 } 5210 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5211 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5212 } 5213 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5214 define_arm_cp_regs(cpu, omap_cp_reginfo); 5215 } 5216 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5217 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5218 } 5219 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5220 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5221 } 5222 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5223 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5224 } 5225 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5226 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5227 } 5228 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5229 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5230 * be read-only (ie write causes UNDEF exception). 5231 */ 5232 { 5233 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5234 /* Pre-v8 MIDR space. 5235 * Note that the MIDR isn't a simple constant register because 5236 * of the TI925 behaviour where writes to another register can 5237 * cause the MIDR value to change. 5238 * 5239 * Unimplemented registers in the c15 0 0 0 space default to 5240 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5241 * and friends override accordingly. 5242 */ 5243 { .name = "MIDR", 5244 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5245 .access = PL1_R, .resetvalue = cpu->midr, 5246 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5247 .readfn = midr_read, 5248 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5249 .type = ARM_CP_OVERRIDE }, 5250 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5251 { .name = "DUMMY", 5252 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5253 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5254 { .name = "DUMMY", 5255 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5256 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5257 { .name = "DUMMY", 5258 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5259 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5260 { .name = "DUMMY", 5261 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5262 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5263 { .name = "DUMMY", 5264 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5265 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5266 REGINFO_SENTINEL 5267 }; 5268 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5269 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5270 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5271 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5272 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5273 .readfn = midr_read }, 5274 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5275 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5276 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5277 .access = PL1_R, .resetvalue = cpu->midr }, 5278 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5279 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5280 .access = PL1_R, .resetvalue = cpu->midr }, 5281 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5283 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5284 REGINFO_SENTINEL 5285 }; 5286 ARMCPRegInfo id_cp_reginfo[] = { 5287 /* These are common to v8 and pre-v8 */ 5288 { .name = "CTR", 5289 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5290 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5291 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5292 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5293 .access = PL0_R, .accessfn = ctr_el0_access, 5294 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5295 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5296 { .name = "TCMTR", 5297 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5298 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5299 REGINFO_SENTINEL 5300 }; 5301 /* TLBTR is specific to VMSA */ 5302 ARMCPRegInfo id_tlbtr_reginfo = { 5303 .name = "TLBTR", 5304 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5305 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5306 }; 5307 /* MPUIR is specific to PMSA V6+ */ 5308 ARMCPRegInfo id_mpuir_reginfo = { 5309 .name = "MPUIR", 5310 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5311 .access = PL1_R, .type = ARM_CP_CONST, 5312 .resetvalue = cpu->pmsav7_dregion << 8 5313 }; 5314 ARMCPRegInfo crn0_wi_reginfo = { 5315 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5316 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5317 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5318 }; 5319 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5320 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5321 ARMCPRegInfo *r; 5322 /* Register the blanket "writes ignored" value first to cover the 5323 * whole space. Then update the specific ID registers to allow write 5324 * access, so that they ignore writes rather than causing them to 5325 * UNDEF. 5326 */ 5327 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5328 for (r = id_pre_v8_midr_cp_reginfo; 5329 r->type != ARM_CP_SENTINEL; r++) { 5330 r->access = PL1_RW; 5331 } 5332 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5333 r->access = PL1_RW; 5334 } 5335 id_tlbtr_reginfo.access = PL1_RW; 5336 id_tlbtr_reginfo.access = PL1_RW; 5337 } 5338 if (arm_feature(env, ARM_FEATURE_V8)) { 5339 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5340 } else { 5341 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5342 } 5343 define_arm_cp_regs(cpu, id_cp_reginfo); 5344 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5345 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5346 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5347 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5348 } 5349 } 5350 5351 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5352 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5353 } 5354 5355 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5356 ARMCPRegInfo auxcr_reginfo[] = { 5357 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5358 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5359 .access = PL1_RW, .type = ARM_CP_CONST, 5360 .resetvalue = cpu->reset_auxcr }, 5361 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5362 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5363 .access = PL2_RW, .type = ARM_CP_CONST, 5364 .resetvalue = 0 }, 5365 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5366 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5367 .access = PL3_RW, .type = ARM_CP_CONST, 5368 .resetvalue = 0 }, 5369 REGINFO_SENTINEL 5370 }; 5371 define_arm_cp_regs(cpu, auxcr_reginfo); 5372 } 5373 5374 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5375 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5376 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5377 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5378 | extract64(cpu->reset_cbar, 32, 12); 5379 ARMCPRegInfo cbar_reginfo[] = { 5380 { .name = "CBAR", 5381 .type = ARM_CP_CONST, 5382 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5383 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5384 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5385 .type = ARM_CP_CONST, 5386 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5387 .access = PL1_R, .resetvalue = cbar32 }, 5388 REGINFO_SENTINEL 5389 }; 5390 /* We don't implement a r/w 64 bit CBAR currently */ 5391 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5392 define_arm_cp_regs(cpu, cbar_reginfo); 5393 } else { 5394 ARMCPRegInfo cbar = { 5395 .name = "CBAR", 5396 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5397 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5398 .fieldoffset = offsetof(CPUARMState, 5399 cp15.c15_config_base_address) 5400 }; 5401 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5402 cbar.access = PL1_R; 5403 cbar.fieldoffset = 0; 5404 cbar.type = ARM_CP_CONST; 5405 } 5406 define_one_arm_cp_reg(cpu, &cbar); 5407 } 5408 } 5409 5410 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5411 ARMCPRegInfo vbar_cp_reginfo[] = { 5412 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5413 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5414 .access = PL1_RW, .writefn = vbar_write, 5415 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5416 offsetof(CPUARMState, cp15.vbar_ns) }, 5417 .resetvalue = 0 }, 5418 REGINFO_SENTINEL 5419 }; 5420 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5421 } 5422 5423 /* Generic registers whose values depend on the implementation */ 5424 { 5425 ARMCPRegInfo sctlr = { 5426 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5427 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5428 .access = PL1_RW, 5429 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5430 offsetof(CPUARMState, cp15.sctlr_ns) }, 5431 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5432 .raw_writefn = raw_write, 5433 }; 5434 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5435 /* Normally we would always end the TB on an SCTLR write, but Linux 5436 * arch/arm/mach-pxa/sleep.S expects two instructions following 5437 * an MMU enable to execute from cache. Imitate this behaviour. 5438 */ 5439 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5440 } 5441 define_one_arm_cp_reg(cpu, &sctlr); 5442 } 5443 5444 if (arm_feature(env, ARM_FEATURE_SVE)) { 5445 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5446 if (arm_feature(env, ARM_FEATURE_EL2)) { 5447 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5448 } else { 5449 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5450 } 5451 if (arm_feature(env, ARM_FEATURE_EL3)) { 5452 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5453 } 5454 } 5455 } 5456 5457 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5458 { 5459 CPUState *cs = CPU(cpu); 5460 CPUARMState *env = &cpu->env; 5461 5462 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5463 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5464 aarch64_fpu_gdb_set_reg, 5465 34, "aarch64-fpu.xml", 0); 5466 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5467 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5468 51, "arm-neon.xml", 0); 5469 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5470 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5471 35, "arm-vfp3.xml", 0); 5472 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5473 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5474 19, "arm-vfp.xml", 0); 5475 } 5476 } 5477 5478 /* Sort alphabetically by type name, except for "any". */ 5479 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5480 { 5481 ObjectClass *class_a = (ObjectClass *)a; 5482 ObjectClass *class_b = (ObjectClass *)b; 5483 const char *name_a, *name_b; 5484 5485 name_a = object_class_get_name(class_a); 5486 name_b = object_class_get_name(class_b); 5487 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5488 return 1; 5489 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5490 return -1; 5491 } else { 5492 return strcmp(name_a, name_b); 5493 } 5494 } 5495 5496 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5497 { 5498 ObjectClass *oc = data; 5499 CPUListState *s = user_data; 5500 const char *typename; 5501 char *name; 5502 5503 typename = object_class_get_name(oc); 5504 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5505 (*s->cpu_fprintf)(s->file, " %s\n", 5506 name); 5507 g_free(name); 5508 } 5509 5510 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5511 { 5512 CPUListState s = { 5513 .file = f, 5514 .cpu_fprintf = cpu_fprintf, 5515 }; 5516 GSList *list; 5517 5518 list = object_class_get_list(TYPE_ARM_CPU, false); 5519 list = g_slist_sort(list, arm_cpu_list_compare); 5520 (*cpu_fprintf)(f, "Available CPUs:\n"); 5521 g_slist_foreach(list, arm_cpu_list_entry, &s); 5522 g_slist_free(list); 5523 #ifdef CONFIG_KVM 5524 /* The 'host' CPU type is dynamically registered only if KVM is 5525 * enabled, so we have to special-case it here: 5526 */ 5527 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5528 #endif 5529 } 5530 5531 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5532 { 5533 ObjectClass *oc = data; 5534 CpuDefinitionInfoList **cpu_list = user_data; 5535 CpuDefinitionInfoList *entry; 5536 CpuDefinitionInfo *info; 5537 const char *typename; 5538 5539 typename = object_class_get_name(oc); 5540 info = g_malloc0(sizeof(*info)); 5541 info->name = g_strndup(typename, 5542 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5543 info->q_typename = g_strdup(typename); 5544 5545 entry = g_malloc0(sizeof(*entry)); 5546 entry->value = info; 5547 entry->next = *cpu_list; 5548 *cpu_list = entry; 5549 } 5550 5551 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5552 { 5553 CpuDefinitionInfoList *cpu_list = NULL; 5554 GSList *list; 5555 5556 list = object_class_get_list(TYPE_ARM_CPU, false); 5557 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5558 g_slist_free(list); 5559 5560 return cpu_list; 5561 } 5562 5563 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5564 void *opaque, int state, int secstate, 5565 int crm, int opc1, int opc2) 5566 { 5567 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5568 * add a single reginfo struct to the hash table. 5569 */ 5570 uint32_t *key = g_new(uint32_t, 1); 5571 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5572 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5573 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5574 5575 /* Reset the secure state to the specific incoming state. This is 5576 * necessary as the register may have been defined with both states. 5577 */ 5578 r2->secure = secstate; 5579 5580 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5581 /* Register is banked (using both entries in array). 5582 * Overwriting fieldoffset as the array is only used to define 5583 * banked registers but later only fieldoffset is used. 5584 */ 5585 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5586 } 5587 5588 if (state == ARM_CP_STATE_AA32) { 5589 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5590 /* If the register is banked then we don't need to migrate or 5591 * reset the 32-bit instance in certain cases: 5592 * 5593 * 1) If the register has both 32-bit and 64-bit instances then we 5594 * can count on the 64-bit instance taking care of the 5595 * non-secure bank. 5596 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5597 * taking care of the secure bank. This requires that separate 5598 * 32 and 64-bit definitions are provided. 5599 */ 5600 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5601 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5602 r2->type |= ARM_CP_ALIAS; 5603 } 5604 } else if ((secstate != r->secure) && !ns) { 5605 /* The register is not banked so we only want to allow migration of 5606 * the non-secure instance. 5607 */ 5608 r2->type |= ARM_CP_ALIAS; 5609 } 5610 5611 if (r->state == ARM_CP_STATE_BOTH) { 5612 /* We assume it is a cp15 register if the .cp field is left unset. 5613 */ 5614 if (r2->cp == 0) { 5615 r2->cp = 15; 5616 } 5617 5618 #ifdef HOST_WORDS_BIGENDIAN 5619 if (r2->fieldoffset) { 5620 r2->fieldoffset += sizeof(uint32_t); 5621 } 5622 #endif 5623 } 5624 } 5625 if (state == ARM_CP_STATE_AA64) { 5626 /* To allow abbreviation of ARMCPRegInfo 5627 * definitions, we treat cp == 0 as equivalent to 5628 * the value for "standard guest-visible sysreg". 5629 * STATE_BOTH definitions are also always "standard 5630 * sysreg" in their AArch64 view (the .cp value may 5631 * be non-zero for the benefit of the AArch32 view). 5632 */ 5633 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5634 r2->cp = CP_REG_ARM64_SYSREG_CP; 5635 } 5636 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5637 r2->opc0, opc1, opc2); 5638 } else { 5639 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5640 } 5641 if (opaque) { 5642 r2->opaque = opaque; 5643 } 5644 /* reginfo passed to helpers is correct for the actual access, 5645 * and is never ARM_CP_STATE_BOTH: 5646 */ 5647 r2->state = state; 5648 /* Make sure reginfo passed to helpers for wildcarded regs 5649 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5650 */ 5651 r2->crm = crm; 5652 r2->opc1 = opc1; 5653 r2->opc2 = opc2; 5654 /* By convention, for wildcarded registers only the first 5655 * entry is used for migration; the others are marked as 5656 * ALIAS so we don't try to transfer the register 5657 * multiple times. Special registers (ie NOP/WFI) are 5658 * never migratable and not even raw-accessible. 5659 */ 5660 if ((r->type & ARM_CP_SPECIAL)) { 5661 r2->type |= ARM_CP_NO_RAW; 5662 } 5663 if (((r->crm == CP_ANY) && crm != 0) || 5664 ((r->opc1 == CP_ANY) && opc1 != 0) || 5665 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5666 r2->type |= ARM_CP_ALIAS; 5667 } 5668 5669 /* Check that raw accesses are either forbidden or handled. Note that 5670 * we can't assert this earlier because the setup of fieldoffset for 5671 * banked registers has to be done first. 5672 */ 5673 if (!(r2->type & ARM_CP_NO_RAW)) { 5674 assert(!raw_accessors_invalid(r2)); 5675 } 5676 5677 /* Overriding of an existing definition must be explicitly 5678 * requested. 5679 */ 5680 if (!(r->type & ARM_CP_OVERRIDE)) { 5681 ARMCPRegInfo *oldreg; 5682 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5683 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5684 fprintf(stderr, "Register redefined: cp=%d %d bit " 5685 "crn=%d crm=%d opc1=%d opc2=%d, " 5686 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5687 r2->crn, r2->crm, r2->opc1, r2->opc2, 5688 oldreg->name, r2->name); 5689 g_assert_not_reached(); 5690 } 5691 } 5692 g_hash_table_insert(cpu->cp_regs, key, r2); 5693 } 5694 5695 5696 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5697 const ARMCPRegInfo *r, void *opaque) 5698 { 5699 /* Define implementations of coprocessor registers. 5700 * We store these in a hashtable because typically 5701 * there are less than 150 registers in a space which 5702 * is 16*16*16*8*8 = 262144 in size. 5703 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5704 * If a register is defined twice then the second definition is 5705 * used, so this can be used to define some generic registers and 5706 * then override them with implementation specific variations. 5707 * At least one of the original and the second definition should 5708 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5709 * against accidental use. 5710 * 5711 * The state field defines whether the register is to be 5712 * visible in the AArch32 or AArch64 execution state. If the 5713 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5714 * reginfo structure for the AArch32 view, which sees the lower 5715 * 32 bits of the 64 bit register. 5716 * 5717 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5718 * be wildcarded. AArch64 registers are always considered to be 64 5719 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5720 * the register, if any. 5721 */ 5722 int crm, opc1, opc2, state; 5723 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5724 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5725 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5726 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5727 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5728 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5729 /* 64 bit registers have only CRm and Opc1 fields */ 5730 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5731 /* op0 only exists in the AArch64 encodings */ 5732 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5733 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5734 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5735 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5736 * encodes a minimum access level for the register. We roll this 5737 * runtime check into our general permission check code, so check 5738 * here that the reginfo's specified permissions are strict enough 5739 * to encompass the generic architectural permission check. 5740 */ 5741 if (r->state != ARM_CP_STATE_AA32) { 5742 int mask = 0; 5743 switch (r->opc1) { 5744 case 0: case 1: case 2: 5745 /* min_EL EL1 */ 5746 mask = PL1_RW; 5747 break; 5748 case 3: 5749 /* min_EL EL0 */ 5750 mask = PL0_RW; 5751 break; 5752 case 4: 5753 /* min_EL EL2 */ 5754 mask = PL2_RW; 5755 break; 5756 case 5: 5757 /* unallocated encoding, so not possible */ 5758 assert(false); 5759 break; 5760 case 6: 5761 /* min_EL EL3 */ 5762 mask = PL3_RW; 5763 break; 5764 case 7: 5765 /* min_EL EL1, secure mode only (we don't check the latter) */ 5766 mask = PL1_RW; 5767 break; 5768 default: 5769 /* broken reginfo with out-of-range opc1 */ 5770 assert(false); 5771 break; 5772 } 5773 /* assert our permissions are not too lax (stricter is fine) */ 5774 assert((r->access & ~mask) == 0); 5775 } 5776 5777 /* Check that the register definition has enough info to handle 5778 * reads and writes if they are permitted. 5779 */ 5780 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5781 if (r->access & PL3_R) { 5782 assert((r->fieldoffset || 5783 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5784 r->readfn); 5785 } 5786 if (r->access & PL3_W) { 5787 assert((r->fieldoffset || 5788 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5789 r->writefn); 5790 } 5791 } 5792 /* Bad type field probably means missing sentinel at end of reg list */ 5793 assert(cptype_valid(r->type)); 5794 for (crm = crmmin; crm <= crmmax; crm++) { 5795 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5796 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5797 for (state = ARM_CP_STATE_AA32; 5798 state <= ARM_CP_STATE_AA64; state++) { 5799 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5800 continue; 5801 } 5802 if (state == ARM_CP_STATE_AA32) { 5803 /* Under AArch32 CP registers can be common 5804 * (same for secure and non-secure world) or banked. 5805 */ 5806 switch (r->secure) { 5807 case ARM_CP_SECSTATE_S: 5808 case ARM_CP_SECSTATE_NS: 5809 add_cpreg_to_hashtable(cpu, r, opaque, state, 5810 r->secure, crm, opc1, opc2); 5811 break; 5812 default: 5813 add_cpreg_to_hashtable(cpu, r, opaque, state, 5814 ARM_CP_SECSTATE_S, 5815 crm, opc1, opc2); 5816 add_cpreg_to_hashtable(cpu, r, opaque, state, 5817 ARM_CP_SECSTATE_NS, 5818 crm, opc1, opc2); 5819 break; 5820 } 5821 } else { 5822 /* AArch64 registers get mapped to non-secure instance 5823 * of AArch32 */ 5824 add_cpreg_to_hashtable(cpu, r, opaque, state, 5825 ARM_CP_SECSTATE_NS, 5826 crm, opc1, opc2); 5827 } 5828 } 5829 } 5830 } 5831 } 5832 } 5833 5834 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5835 const ARMCPRegInfo *regs, void *opaque) 5836 { 5837 /* Define a whole list of registers */ 5838 const ARMCPRegInfo *r; 5839 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5840 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5841 } 5842 } 5843 5844 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5845 { 5846 return g_hash_table_lookup(cpregs, &encoded_cp); 5847 } 5848 5849 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5850 uint64_t value) 5851 { 5852 /* Helper coprocessor write function for write-ignore registers */ 5853 } 5854 5855 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5856 { 5857 /* Helper coprocessor write function for read-as-zero registers */ 5858 return 0; 5859 } 5860 5861 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5862 { 5863 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5864 } 5865 5866 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5867 { 5868 /* Return true if it is not valid for us to switch to 5869 * this CPU mode (ie all the UNPREDICTABLE cases in 5870 * the ARM ARM CPSRWriteByInstr pseudocode). 5871 */ 5872 5873 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5874 if (write_type == CPSRWriteByInstr && 5875 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5876 mode == ARM_CPU_MODE_HYP)) { 5877 return 1; 5878 } 5879 5880 switch (mode) { 5881 case ARM_CPU_MODE_USR: 5882 return 0; 5883 case ARM_CPU_MODE_SYS: 5884 case ARM_CPU_MODE_SVC: 5885 case ARM_CPU_MODE_ABT: 5886 case ARM_CPU_MODE_UND: 5887 case ARM_CPU_MODE_IRQ: 5888 case ARM_CPU_MODE_FIQ: 5889 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5890 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5891 */ 5892 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5893 * and CPS are treated as illegal mode changes. 5894 */ 5895 if (write_type == CPSRWriteByInstr && 5896 (env->cp15.hcr_el2 & HCR_TGE) && 5897 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5898 !arm_is_secure_below_el3(env)) { 5899 return 1; 5900 } 5901 return 0; 5902 case ARM_CPU_MODE_HYP: 5903 return !arm_feature(env, ARM_FEATURE_EL2) 5904 || arm_current_el(env) < 2 || arm_is_secure(env); 5905 case ARM_CPU_MODE_MON: 5906 return arm_current_el(env) < 3; 5907 default: 5908 return 1; 5909 } 5910 } 5911 5912 uint32_t cpsr_read(CPUARMState *env) 5913 { 5914 int ZF; 5915 ZF = (env->ZF == 0); 5916 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5917 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5918 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5919 | ((env->condexec_bits & 0xfc) << 8) 5920 | (env->GE << 16) | (env->daif & CPSR_AIF); 5921 } 5922 5923 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5924 CPSRWriteType write_type) 5925 { 5926 uint32_t changed_daif; 5927 5928 if (mask & CPSR_NZCV) { 5929 env->ZF = (~val) & CPSR_Z; 5930 env->NF = val; 5931 env->CF = (val >> 29) & 1; 5932 env->VF = (val << 3) & 0x80000000; 5933 } 5934 if (mask & CPSR_Q) 5935 env->QF = ((val & CPSR_Q) != 0); 5936 if (mask & CPSR_T) 5937 env->thumb = ((val & CPSR_T) != 0); 5938 if (mask & CPSR_IT_0_1) { 5939 env->condexec_bits &= ~3; 5940 env->condexec_bits |= (val >> 25) & 3; 5941 } 5942 if (mask & CPSR_IT_2_7) { 5943 env->condexec_bits &= 3; 5944 env->condexec_bits |= (val >> 8) & 0xfc; 5945 } 5946 if (mask & CPSR_GE) { 5947 env->GE = (val >> 16) & 0xf; 5948 } 5949 5950 /* In a V7 implementation that includes the security extensions but does 5951 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5952 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5953 * bits respectively. 5954 * 5955 * In a V8 implementation, it is permitted for privileged software to 5956 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5957 */ 5958 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5959 arm_feature(env, ARM_FEATURE_EL3) && 5960 !arm_feature(env, ARM_FEATURE_EL2) && 5961 !arm_is_secure(env)) { 5962 5963 changed_daif = (env->daif ^ val) & mask; 5964 5965 if (changed_daif & CPSR_A) { 5966 /* Check to see if we are allowed to change the masking of async 5967 * abort exceptions from a non-secure state. 5968 */ 5969 if (!(env->cp15.scr_el3 & SCR_AW)) { 5970 qemu_log_mask(LOG_GUEST_ERROR, 5971 "Ignoring attempt to switch CPSR_A flag from " 5972 "non-secure world with SCR.AW bit clear\n"); 5973 mask &= ~CPSR_A; 5974 } 5975 } 5976 5977 if (changed_daif & CPSR_F) { 5978 /* Check to see if we are allowed to change the masking of FIQ 5979 * exceptions from a non-secure state. 5980 */ 5981 if (!(env->cp15.scr_el3 & SCR_FW)) { 5982 qemu_log_mask(LOG_GUEST_ERROR, 5983 "Ignoring attempt to switch CPSR_F flag from " 5984 "non-secure world with SCR.FW bit clear\n"); 5985 mask &= ~CPSR_F; 5986 } 5987 5988 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5989 * If this bit is set software is not allowed to mask 5990 * FIQs, but is allowed to set CPSR_F to 0. 5991 */ 5992 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5993 (val & CPSR_F)) { 5994 qemu_log_mask(LOG_GUEST_ERROR, 5995 "Ignoring attempt to enable CPSR_F flag " 5996 "(non-maskable FIQ [NMFI] support enabled)\n"); 5997 mask &= ~CPSR_F; 5998 } 5999 } 6000 } 6001 6002 env->daif &= ~(CPSR_AIF & mask); 6003 env->daif |= val & CPSR_AIF & mask; 6004 6005 if (write_type != CPSRWriteRaw && 6006 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6007 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6008 /* Note that we can only get here in USR mode if this is a 6009 * gdb stub write; for this case we follow the architectural 6010 * behaviour for guest writes in USR mode of ignoring an attempt 6011 * to switch mode. (Those are caught by translate.c for writes 6012 * triggered by guest instructions.) 6013 */ 6014 mask &= ~CPSR_M; 6015 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6016 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6017 * v7, and has defined behaviour in v8: 6018 * + leave CPSR.M untouched 6019 * + allow changes to the other CPSR fields 6020 * + set PSTATE.IL 6021 * For user changes via the GDB stub, we don't set PSTATE.IL, 6022 * as this would be unnecessarily harsh for a user error. 6023 */ 6024 mask &= ~CPSR_M; 6025 if (write_type != CPSRWriteByGDBStub && 6026 arm_feature(env, ARM_FEATURE_V8)) { 6027 mask |= CPSR_IL; 6028 val |= CPSR_IL; 6029 } 6030 } else { 6031 switch_mode(env, val & CPSR_M); 6032 } 6033 } 6034 mask &= ~CACHED_CPSR_BITS; 6035 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6036 } 6037 6038 /* Sign/zero extend */ 6039 uint32_t HELPER(sxtb16)(uint32_t x) 6040 { 6041 uint32_t res; 6042 res = (uint16_t)(int8_t)x; 6043 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6044 return res; 6045 } 6046 6047 uint32_t HELPER(uxtb16)(uint32_t x) 6048 { 6049 uint32_t res; 6050 res = (uint16_t)(uint8_t)x; 6051 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6052 return res; 6053 } 6054 6055 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6056 { 6057 if (den == 0) 6058 return 0; 6059 if (num == INT_MIN && den == -1) 6060 return INT_MIN; 6061 return num / den; 6062 } 6063 6064 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6065 { 6066 if (den == 0) 6067 return 0; 6068 return num / den; 6069 } 6070 6071 uint32_t HELPER(rbit)(uint32_t x) 6072 { 6073 return revbit32(x); 6074 } 6075 6076 #if defined(CONFIG_USER_ONLY) 6077 6078 /* These should probably raise undefined insn exceptions. */ 6079 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6080 { 6081 ARMCPU *cpu = arm_env_get_cpu(env); 6082 6083 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6084 } 6085 6086 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6087 { 6088 ARMCPU *cpu = arm_env_get_cpu(env); 6089 6090 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6091 return 0; 6092 } 6093 6094 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6095 { 6096 /* translate.c should never generate calls here in user-only mode */ 6097 g_assert_not_reached(); 6098 } 6099 6100 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6101 { 6102 /* translate.c should never generate calls here in user-only mode */ 6103 g_assert_not_reached(); 6104 } 6105 6106 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6107 { 6108 /* The TT instructions can be used by unprivileged code, but in 6109 * user-only emulation we don't have the MPU. 6110 * Luckily since we know we are NonSecure unprivileged (and that in 6111 * turn means that the A flag wasn't specified), all the bits in the 6112 * register must be zero: 6113 * IREGION: 0 because IRVALID is 0 6114 * IRVALID: 0 because NS 6115 * S: 0 because NS 6116 * NSRW: 0 because NS 6117 * NSR: 0 because NS 6118 * RW: 0 because unpriv and A flag not set 6119 * R: 0 because unpriv and A flag not set 6120 * SRVALID: 0 because NS 6121 * MRVALID: 0 because unpriv and A flag not set 6122 * SREGION: 0 becaus SRVALID is 0 6123 * MREGION: 0 because MRVALID is 0 6124 */ 6125 return 0; 6126 } 6127 6128 void switch_mode(CPUARMState *env, int mode) 6129 { 6130 ARMCPU *cpu = arm_env_get_cpu(env); 6131 6132 if (mode != ARM_CPU_MODE_USR) { 6133 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6134 } 6135 } 6136 6137 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6138 uint32_t cur_el, bool secure) 6139 { 6140 return 1; 6141 } 6142 6143 void aarch64_sync_64_to_32(CPUARMState *env) 6144 { 6145 g_assert_not_reached(); 6146 } 6147 6148 #else 6149 6150 void switch_mode(CPUARMState *env, int mode) 6151 { 6152 int old_mode; 6153 int i; 6154 6155 old_mode = env->uncached_cpsr & CPSR_M; 6156 if (mode == old_mode) 6157 return; 6158 6159 if (old_mode == ARM_CPU_MODE_FIQ) { 6160 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6161 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6162 } else if (mode == ARM_CPU_MODE_FIQ) { 6163 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6164 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6165 } 6166 6167 i = bank_number(old_mode); 6168 env->banked_r13[i] = env->regs[13]; 6169 env->banked_r14[i] = env->regs[14]; 6170 env->banked_spsr[i] = env->spsr; 6171 6172 i = bank_number(mode); 6173 env->regs[13] = env->banked_r13[i]; 6174 env->regs[14] = env->banked_r14[i]; 6175 env->spsr = env->banked_spsr[i]; 6176 } 6177 6178 /* Physical Interrupt Target EL Lookup Table 6179 * 6180 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6181 * 6182 * The below multi-dimensional table is used for looking up the target 6183 * exception level given numerous condition criteria. Specifically, the 6184 * target EL is based on SCR and HCR routing controls as well as the 6185 * currently executing EL and secure state. 6186 * 6187 * Dimensions: 6188 * target_el_table[2][2][2][2][2][4] 6189 * | | | | | +--- Current EL 6190 * | | | | +------ Non-secure(0)/Secure(1) 6191 * | | | +--------- HCR mask override 6192 * | | +------------ SCR exec state control 6193 * | +--------------- SCR mask override 6194 * +------------------ 32-bit(0)/64-bit(1) EL3 6195 * 6196 * The table values are as such: 6197 * 0-3 = EL0-EL3 6198 * -1 = Cannot occur 6199 * 6200 * The ARM ARM target EL table includes entries indicating that an "exception 6201 * is not taken". The two cases where this is applicable are: 6202 * 1) An exception is taken from EL3 but the SCR does not have the exception 6203 * routed to EL3. 6204 * 2) An exception is taken from EL2 but the HCR does not have the exception 6205 * routed to EL2. 6206 * In these two cases, the below table contain a target of EL1. This value is 6207 * returned as it is expected that the consumer of the table data will check 6208 * for "target EL >= current EL" to ensure the exception is not taken. 6209 * 6210 * SCR HCR 6211 * 64 EA AMO From 6212 * BIT IRQ IMO Non-secure Secure 6213 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6214 */ 6215 static const int8_t target_el_table[2][2][2][2][2][4] = { 6216 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6217 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6218 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6219 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6220 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6221 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6222 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6223 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6224 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6225 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6226 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6227 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6228 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6229 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6230 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6231 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6232 }; 6233 6234 /* 6235 * Determine the target EL for physical exceptions 6236 */ 6237 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6238 uint32_t cur_el, bool secure) 6239 { 6240 CPUARMState *env = cs->env_ptr; 6241 int rw; 6242 int scr; 6243 int hcr; 6244 int target_el; 6245 /* Is the highest EL AArch64? */ 6246 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6247 6248 if (arm_feature(env, ARM_FEATURE_EL3)) { 6249 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6250 } else { 6251 /* Either EL2 is the highest EL (and so the EL2 register width 6252 * is given by is64); or there is no EL2 or EL3, in which case 6253 * the value of 'rw' does not affect the table lookup anyway. 6254 */ 6255 rw = is64; 6256 } 6257 6258 switch (excp_idx) { 6259 case EXCP_IRQ: 6260 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6261 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6262 break; 6263 case EXCP_FIQ: 6264 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6265 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6266 break; 6267 default: 6268 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6269 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6270 break; 6271 }; 6272 6273 /* If HCR.TGE is set then HCR is treated as being 1 */ 6274 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6275 6276 /* Perform a table-lookup for the target EL given the current state */ 6277 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6278 6279 assert(target_el > 0); 6280 6281 return target_el; 6282 } 6283 6284 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6285 ARMMMUIdx mmu_idx, bool ignfault) 6286 { 6287 CPUState *cs = CPU(cpu); 6288 CPUARMState *env = &cpu->env; 6289 MemTxAttrs attrs = {}; 6290 MemTxResult txres; 6291 target_ulong page_size; 6292 hwaddr physaddr; 6293 int prot; 6294 ARMMMUFaultInfo fi; 6295 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6296 int exc; 6297 bool exc_secure; 6298 6299 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6300 &attrs, &prot, &page_size, &fi, NULL)) { 6301 /* MPU/SAU lookup failed */ 6302 if (fi.type == ARMFault_QEMU_SFault) { 6303 qemu_log_mask(CPU_LOG_INT, 6304 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6305 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6306 env->v7m.sfar = addr; 6307 exc = ARMV7M_EXCP_SECURE; 6308 exc_secure = false; 6309 } else { 6310 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6311 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6312 exc = ARMV7M_EXCP_MEM; 6313 exc_secure = secure; 6314 } 6315 goto pend_fault; 6316 } 6317 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6318 attrs, &txres); 6319 if (txres != MEMTX_OK) { 6320 /* BusFault trying to write the data */ 6321 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6322 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6323 exc = ARMV7M_EXCP_BUS; 6324 exc_secure = false; 6325 goto pend_fault; 6326 } 6327 return true; 6328 6329 pend_fault: 6330 /* By pending the exception at this point we are making 6331 * the IMPDEF choice "overridden exceptions pended" (see the 6332 * MergeExcInfo() pseudocode). The other choice would be to not 6333 * pend them now and then make a choice about which to throw away 6334 * later if we have two derived exceptions. 6335 * The only case when we must not pend the exception but instead 6336 * throw it away is if we are doing the push of the callee registers 6337 * and we've already generated a derived exception. Even in this 6338 * case we will still update the fault status registers. 6339 */ 6340 if (!ignfault) { 6341 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6342 } 6343 return false; 6344 } 6345 6346 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6347 ARMMMUIdx mmu_idx) 6348 { 6349 CPUState *cs = CPU(cpu); 6350 CPUARMState *env = &cpu->env; 6351 MemTxAttrs attrs = {}; 6352 MemTxResult txres; 6353 target_ulong page_size; 6354 hwaddr physaddr; 6355 int prot; 6356 ARMMMUFaultInfo fi; 6357 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6358 int exc; 6359 bool exc_secure; 6360 uint32_t value; 6361 6362 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6363 &attrs, &prot, &page_size, &fi, NULL)) { 6364 /* MPU/SAU lookup failed */ 6365 if (fi.type == ARMFault_QEMU_SFault) { 6366 qemu_log_mask(CPU_LOG_INT, 6367 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6368 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6369 env->v7m.sfar = addr; 6370 exc = ARMV7M_EXCP_SECURE; 6371 exc_secure = false; 6372 } else { 6373 qemu_log_mask(CPU_LOG_INT, 6374 "...MemManageFault with CFSR.MUNSTKERR\n"); 6375 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6376 exc = ARMV7M_EXCP_MEM; 6377 exc_secure = secure; 6378 } 6379 goto pend_fault; 6380 } 6381 6382 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6383 attrs, &txres); 6384 if (txres != MEMTX_OK) { 6385 /* BusFault trying to read the data */ 6386 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6387 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6388 exc = ARMV7M_EXCP_BUS; 6389 exc_secure = false; 6390 goto pend_fault; 6391 } 6392 6393 *dest = value; 6394 return true; 6395 6396 pend_fault: 6397 /* By pending the exception at this point we are making 6398 * the IMPDEF choice "overridden exceptions pended" (see the 6399 * MergeExcInfo() pseudocode). The other choice would be to not 6400 * pend them now and then make a choice about which to throw away 6401 * later if we have two derived exceptions. 6402 */ 6403 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6404 return false; 6405 } 6406 6407 /* Return true if we're using the process stack pointer (not the MSP) */ 6408 static bool v7m_using_psp(CPUARMState *env) 6409 { 6410 /* Handler mode always uses the main stack; for thread mode 6411 * the CONTROL.SPSEL bit determines the answer. 6412 * Note that in v7M it is not possible to be in Handler mode with 6413 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6414 */ 6415 return !arm_v7m_is_handler_mode(env) && 6416 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6417 } 6418 6419 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6420 * This may change the current stack pointer between Main and Process 6421 * stack pointers if it is done for the CONTROL register for the current 6422 * security state. 6423 */ 6424 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6425 bool new_spsel, 6426 bool secstate) 6427 { 6428 bool old_is_psp = v7m_using_psp(env); 6429 6430 env->v7m.control[secstate] = 6431 deposit32(env->v7m.control[secstate], 6432 R_V7M_CONTROL_SPSEL_SHIFT, 6433 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6434 6435 if (secstate == env->v7m.secure) { 6436 bool new_is_psp = v7m_using_psp(env); 6437 uint32_t tmp; 6438 6439 if (old_is_psp != new_is_psp) { 6440 tmp = env->v7m.other_sp; 6441 env->v7m.other_sp = env->regs[13]; 6442 env->regs[13] = tmp; 6443 } 6444 } 6445 } 6446 6447 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6448 * stack pointer between Main and Process stack pointers. 6449 */ 6450 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6451 { 6452 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6453 } 6454 6455 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6456 { 6457 /* Write a new value to v7m.exception, thus transitioning into or out 6458 * of Handler mode; this may result in a change of active stack pointer. 6459 */ 6460 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6461 uint32_t tmp; 6462 6463 env->v7m.exception = new_exc; 6464 6465 new_is_psp = v7m_using_psp(env); 6466 6467 if (old_is_psp != new_is_psp) { 6468 tmp = env->v7m.other_sp; 6469 env->v7m.other_sp = env->regs[13]; 6470 env->regs[13] = tmp; 6471 } 6472 } 6473 6474 /* Switch M profile security state between NS and S */ 6475 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6476 { 6477 uint32_t new_ss_msp, new_ss_psp; 6478 6479 if (env->v7m.secure == new_secstate) { 6480 return; 6481 } 6482 6483 /* All the banked state is accessed by looking at env->v7m.secure 6484 * except for the stack pointer; rearrange the SP appropriately. 6485 */ 6486 new_ss_msp = env->v7m.other_ss_msp; 6487 new_ss_psp = env->v7m.other_ss_psp; 6488 6489 if (v7m_using_psp(env)) { 6490 env->v7m.other_ss_psp = env->regs[13]; 6491 env->v7m.other_ss_msp = env->v7m.other_sp; 6492 } else { 6493 env->v7m.other_ss_msp = env->regs[13]; 6494 env->v7m.other_ss_psp = env->v7m.other_sp; 6495 } 6496 6497 env->v7m.secure = new_secstate; 6498 6499 if (v7m_using_psp(env)) { 6500 env->regs[13] = new_ss_psp; 6501 env->v7m.other_sp = new_ss_msp; 6502 } else { 6503 env->regs[13] = new_ss_msp; 6504 env->v7m.other_sp = new_ss_psp; 6505 } 6506 } 6507 6508 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6509 { 6510 /* Handle v7M BXNS: 6511 * - if the return value is a magic value, do exception return (like BX) 6512 * - otherwise bit 0 of the return value is the target security state 6513 */ 6514 uint32_t min_magic; 6515 6516 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6517 /* Covers FNC_RETURN and EXC_RETURN magic */ 6518 min_magic = FNC_RETURN_MIN_MAGIC; 6519 } else { 6520 /* EXC_RETURN magic only */ 6521 min_magic = EXC_RETURN_MIN_MAGIC; 6522 } 6523 6524 if (dest >= min_magic) { 6525 /* This is an exception return magic value; put it where 6526 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6527 * Note that if we ever add gen_ss_advance() singlestep support to 6528 * M profile this should count as an "instruction execution complete" 6529 * event (compare gen_bx_excret_final_code()). 6530 */ 6531 env->regs[15] = dest & ~1; 6532 env->thumb = dest & 1; 6533 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6534 /* notreached */ 6535 } 6536 6537 /* translate.c should have made BXNS UNDEF unless we're secure */ 6538 assert(env->v7m.secure); 6539 6540 switch_v7m_security_state(env, dest & 1); 6541 env->thumb = 1; 6542 env->regs[15] = dest & ~1; 6543 } 6544 6545 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6546 { 6547 /* Handle v7M BLXNS: 6548 * - bit 0 of the destination address is the target security state 6549 */ 6550 6551 /* At this point regs[15] is the address just after the BLXNS */ 6552 uint32_t nextinst = env->regs[15] | 1; 6553 uint32_t sp = env->regs[13] - 8; 6554 uint32_t saved_psr; 6555 6556 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6557 assert(env->v7m.secure); 6558 6559 if (dest & 1) { 6560 /* target is Secure, so this is just a normal BLX, 6561 * except that the low bit doesn't indicate Thumb/not. 6562 */ 6563 env->regs[14] = nextinst; 6564 env->thumb = 1; 6565 env->regs[15] = dest & ~1; 6566 return; 6567 } 6568 6569 /* Target is non-secure: first push a stack frame */ 6570 if (!QEMU_IS_ALIGNED(sp, 8)) { 6571 qemu_log_mask(LOG_GUEST_ERROR, 6572 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6573 } 6574 6575 saved_psr = env->v7m.exception; 6576 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6577 saved_psr |= XPSR_SFPA; 6578 } 6579 6580 /* Note that these stores can throw exceptions on MPU faults */ 6581 cpu_stl_data(env, sp, nextinst); 6582 cpu_stl_data(env, sp + 4, saved_psr); 6583 6584 env->regs[13] = sp; 6585 env->regs[14] = 0xfeffffff; 6586 if (arm_v7m_is_handler_mode(env)) { 6587 /* Write a dummy value to IPSR, to avoid leaking the current secure 6588 * exception number to non-secure code. This is guaranteed not 6589 * to cause write_v7m_exception() to actually change stacks. 6590 */ 6591 write_v7m_exception(env, 1); 6592 } 6593 switch_v7m_security_state(env, 0); 6594 env->thumb = 1; 6595 env->regs[15] = dest; 6596 } 6597 6598 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6599 bool spsel) 6600 { 6601 /* Return a pointer to the location where we currently store the 6602 * stack pointer for the requested security state and thread mode. 6603 * This pointer will become invalid if the CPU state is updated 6604 * such that the stack pointers are switched around (eg changing 6605 * the SPSEL control bit). 6606 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6607 * Unlike that pseudocode, we require the caller to pass us in the 6608 * SPSEL control bit value; this is because we also use this 6609 * function in handling of pushing of the callee-saves registers 6610 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6611 * and in the tailchain codepath the SPSEL bit comes from the exception 6612 * return magic LR value from the previous exception. The pseudocode 6613 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6614 * to make this utility function generic enough to do the job. 6615 */ 6616 bool want_psp = threadmode && spsel; 6617 6618 if (secure == env->v7m.secure) { 6619 if (want_psp == v7m_using_psp(env)) { 6620 return &env->regs[13]; 6621 } else { 6622 return &env->v7m.other_sp; 6623 } 6624 } else { 6625 if (want_psp) { 6626 return &env->v7m.other_ss_psp; 6627 } else { 6628 return &env->v7m.other_ss_msp; 6629 } 6630 } 6631 } 6632 6633 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6634 uint32_t *pvec) 6635 { 6636 CPUState *cs = CPU(cpu); 6637 CPUARMState *env = &cpu->env; 6638 MemTxResult result; 6639 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6640 uint32_t vector_entry; 6641 MemTxAttrs attrs = {}; 6642 ARMMMUIdx mmu_idx; 6643 bool exc_secure; 6644 6645 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6646 6647 /* We don't do a get_phys_addr() here because the rules for vector 6648 * loads are special: they always use the default memory map, and 6649 * the default memory map permits reads from all addresses. 6650 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6651 * that we want this special case which would always say "yes", 6652 * we just do the SAU lookup here followed by a direct physical load. 6653 */ 6654 attrs.secure = targets_secure; 6655 attrs.user = false; 6656 6657 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6658 V8M_SAttributes sattrs = {}; 6659 6660 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6661 if (sattrs.ns) { 6662 attrs.secure = false; 6663 } else if (!targets_secure) { 6664 /* NS access to S memory */ 6665 goto load_fail; 6666 } 6667 } 6668 6669 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6670 attrs, &result); 6671 if (result != MEMTX_OK) { 6672 goto load_fail; 6673 } 6674 *pvec = vector_entry; 6675 return true; 6676 6677 load_fail: 6678 /* All vector table fetch fails are reported as HardFault, with 6679 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6680 * technically the underlying exception is a MemManage or BusFault 6681 * that is escalated to HardFault.) This is a terminal exception, 6682 * so we will either take the HardFault immediately or else enter 6683 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6684 */ 6685 exc_secure = targets_secure || 6686 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6687 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6688 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6689 return false; 6690 } 6691 6692 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6693 bool ignore_faults) 6694 { 6695 /* For v8M, push the callee-saves register part of the stack frame. 6696 * Compare the v8M pseudocode PushCalleeStack(). 6697 * In the tailchaining case this may not be the current stack. 6698 */ 6699 CPUARMState *env = &cpu->env; 6700 uint32_t *frame_sp_p; 6701 uint32_t frameptr; 6702 ARMMMUIdx mmu_idx; 6703 bool stacked_ok; 6704 6705 if (dotailchain) { 6706 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6707 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6708 !mode; 6709 6710 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6711 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6712 lr & R_V7M_EXCRET_SPSEL_MASK); 6713 } else { 6714 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6715 frame_sp_p = &env->regs[13]; 6716 } 6717 6718 frameptr = *frame_sp_p - 0x28; 6719 6720 /* Write as much of the stack frame as we can. A write failure may 6721 * cause us to pend a derived exception. 6722 */ 6723 stacked_ok = 6724 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6725 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6726 ignore_faults) && 6727 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6728 ignore_faults) && 6729 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6730 ignore_faults) && 6731 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6732 ignore_faults) && 6733 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6734 ignore_faults) && 6735 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6736 ignore_faults) && 6737 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6738 ignore_faults) && 6739 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6740 ignore_faults); 6741 6742 /* Update SP regardless of whether any of the stack accesses failed. 6743 * When we implement v8M stack limit checking then this attempt to 6744 * update SP might also fail and result in a derived exception. 6745 */ 6746 *frame_sp_p = frameptr; 6747 6748 return !stacked_ok; 6749 } 6750 6751 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6752 bool ignore_stackfaults) 6753 { 6754 /* Do the "take the exception" parts of exception entry, 6755 * but not the pushing of state to the stack. This is 6756 * similar to the pseudocode ExceptionTaken() function. 6757 */ 6758 CPUARMState *env = &cpu->env; 6759 uint32_t addr; 6760 bool targets_secure; 6761 int exc; 6762 bool push_failed = false; 6763 6764 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6765 6766 if (arm_feature(env, ARM_FEATURE_V8)) { 6767 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6768 (lr & R_V7M_EXCRET_S_MASK)) { 6769 /* The background code (the owner of the registers in the 6770 * exception frame) is Secure. This means it may either already 6771 * have or now needs to push callee-saves registers. 6772 */ 6773 if (targets_secure) { 6774 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6775 /* We took an exception from Secure to NonSecure 6776 * (which means the callee-saved registers got stacked) 6777 * and are now tailchaining to a Secure exception. 6778 * Clear DCRS so eventual return from this Secure 6779 * exception unstacks the callee-saved registers. 6780 */ 6781 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6782 } 6783 } else { 6784 /* We're going to a non-secure exception; push the 6785 * callee-saves registers to the stack now, if they're 6786 * not already saved. 6787 */ 6788 if (lr & R_V7M_EXCRET_DCRS_MASK && 6789 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6790 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6791 ignore_stackfaults); 6792 } 6793 lr |= R_V7M_EXCRET_DCRS_MASK; 6794 } 6795 } 6796 6797 lr &= ~R_V7M_EXCRET_ES_MASK; 6798 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6799 lr |= R_V7M_EXCRET_ES_MASK; 6800 } 6801 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6802 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6803 lr |= R_V7M_EXCRET_SPSEL_MASK; 6804 } 6805 6806 /* Clear registers if necessary to prevent non-secure exception 6807 * code being able to see register values from secure code. 6808 * Where register values become architecturally UNKNOWN we leave 6809 * them with their previous values. 6810 */ 6811 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6812 if (!targets_secure) { 6813 /* Always clear the caller-saved registers (they have been 6814 * pushed to the stack earlier in v7m_push_stack()). 6815 * Clear callee-saved registers if the background code is 6816 * Secure (in which case these regs were saved in 6817 * v7m_push_callee_stack()). 6818 */ 6819 int i; 6820 6821 for (i = 0; i < 13; i++) { 6822 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6823 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6824 env->regs[i] = 0; 6825 } 6826 } 6827 /* Clear EAPSR */ 6828 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6829 } 6830 } 6831 } 6832 6833 if (push_failed && !ignore_stackfaults) { 6834 /* Derived exception on callee-saves register stacking: 6835 * we might now want to take a different exception which 6836 * targets a different security state, so try again from the top. 6837 */ 6838 v7m_exception_taken(cpu, lr, true, true); 6839 return; 6840 } 6841 6842 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 6843 /* Vector load failed: derived exception */ 6844 v7m_exception_taken(cpu, lr, true, true); 6845 return; 6846 } 6847 6848 /* Now we've done everything that might cause a derived exception 6849 * we can go ahead and activate whichever exception we're going to 6850 * take (which might now be the derived exception). 6851 */ 6852 armv7m_nvic_acknowledge_irq(env->nvic); 6853 6854 /* Switch to target security state -- must do this before writing SPSEL */ 6855 switch_v7m_security_state(env, targets_secure); 6856 write_v7m_control_spsel(env, 0); 6857 arm_clear_exclusive(env); 6858 /* Clear IT bits */ 6859 env->condexec_bits = 0; 6860 env->regs[14] = lr; 6861 env->regs[15] = addr & 0xfffffffe; 6862 env->thumb = addr & 1; 6863 } 6864 6865 static bool v7m_push_stack(ARMCPU *cpu) 6866 { 6867 /* Do the "set up stack frame" part of exception entry, 6868 * similar to pseudocode PushStack(). 6869 * Return true if we generate a derived exception (and so 6870 * should ignore further stack faults trying to process 6871 * that derived exception.) 6872 */ 6873 bool stacked_ok; 6874 CPUARMState *env = &cpu->env; 6875 uint32_t xpsr = xpsr_read(env); 6876 uint32_t frameptr = env->regs[13]; 6877 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6878 6879 /* Align stack pointer if the guest wants that */ 6880 if ((frameptr & 4) && 6881 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6882 frameptr -= 4; 6883 xpsr |= XPSR_SPREALIGN; 6884 } 6885 6886 frameptr -= 0x20; 6887 6888 /* Write as much of the stack frame as we can. If we fail a stack 6889 * write this will result in a derived exception being pended 6890 * (which may be taken in preference to the one we started with 6891 * if it has higher priority). 6892 */ 6893 stacked_ok = 6894 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 6895 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 6896 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 6897 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 6898 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 6899 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 6900 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 6901 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 6902 6903 /* Update SP regardless of whether any of the stack accesses failed. 6904 * When we implement v8M stack limit checking then this attempt to 6905 * update SP might also fail and result in a derived exception. 6906 */ 6907 env->regs[13] = frameptr; 6908 6909 return !stacked_ok; 6910 } 6911 6912 static void do_v7m_exception_exit(ARMCPU *cpu) 6913 { 6914 CPUARMState *env = &cpu->env; 6915 CPUState *cs = CPU(cpu); 6916 uint32_t excret; 6917 uint32_t xpsr; 6918 bool ufault = false; 6919 bool sfault = false; 6920 bool return_to_sp_process; 6921 bool return_to_handler; 6922 bool rettobase = false; 6923 bool exc_secure = false; 6924 bool return_to_secure; 6925 6926 /* If we're not in Handler mode then jumps to magic exception-exit 6927 * addresses don't have magic behaviour. However for the v8M 6928 * security extensions the magic secure-function-return has to 6929 * work in thread mode too, so to avoid doing an extra check in 6930 * the generated code we allow exception-exit magic to also cause the 6931 * internal exception and bring us here in thread mode. Correct code 6932 * will never try to do this (the following insn fetch will always 6933 * fault) so we the overhead of having taken an unnecessary exception 6934 * doesn't matter. 6935 */ 6936 if (!arm_v7m_is_handler_mode(env)) { 6937 return; 6938 } 6939 6940 /* In the spec pseudocode ExceptionReturn() is called directly 6941 * from BXWritePC() and gets the full target PC value including 6942 * bit zero. In QEMU's implementation we treat it as a normal 6943 * jump-to-register (which is then caught later on), and so split 6944 * the target value up between env->regs[15] and env->thumb in 6945 * gen_bx(). Reconstitute it. 6946 */ 6947 excret = env->regs[15]; 6948 if (env->thumb) { 6949 excret |= 1; 6950 } 6951 6952 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6953 " previous exception %d\n", 6954 excret, env->v7m.exception); 6955 6956 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6957 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6958 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6959 excret); 6960 } 6961 6962 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6963 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6964 * we pick which FAULTMASK to clear. 6965 */ 6966 if (!env->v7m.secure && 6967 ((excret & R_V7M_EXCRET_ES_MASK) || 6968 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6969 sfault = 1; 6970 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6971 excret &= ~R_V7M_EXCRET_ES_MASK; 6972 } 6973 } 6974 6975 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6976 /* Auto-clear FAULTMASK on return from other than NMI. 6977 * If the security extension is implemented then this only 6978 * happens if the raw execution priority is >= 0; the 6979 * value of the ES bit in the exception return value indicates 6980 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6981 */ 6982 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6983 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6984 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6985 env->v7m.faultmask[exc_secure] = 0; 6986 } 6987 } else { 6988 env->v7m.faultmask[M_REG_NS] = 0; 6989 } 6990 } 6991 6992 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 6993 exc_secure)) { 6994 case -1: 6995 /* attempt to exit an exception that isn't active */ 6996 ufault = true; 6997 break; 6998 case 0: 6999 /* still an irq active now */ 7000 break; 7001 case 1: 7002 /* we returned to base exception level, no nesting. 7003 * (In the pseudocode this is written using "NestedActivation != 1" 7004 * where we have 'rettobase == false'.) 7005 */ 7006 rettobase = true; 7007 break; 7008 default: 7009 g_assert_not_reached(); 7010 } 7011 7012 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7013 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7014 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7015 (excret & R_V7M_EXCRET_S_MASK); 7016 7017 if (arm_feature(env, ARM_FEATURE_V8)) { 7018 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7019 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7020 * we choose to take the UsageFault. 7021 */ 7022 if ((excret & R_V7M_EXCRET_S_MASK) || 7023 (excret & R_V7M_EXCRET_ES_MASK) || 7024 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7025 ufault = true; 7026 } 7027 } 7028 if (excret & R_V7M_EXCRET_RES0_MASK) { 7029 ufault = true; 7030 } 7031 } else { 7032 /* For v7M we only recognize certain combinations of the low bits */ 7033 switch (excret & 0xf) { 7034 case 1: /* Return to Handler */ 7035 break; 7036 case 13: /* Return to Thread using Process stack */ 7037 case 9: /* Return to Thread using Main stack */ 7038 /* We only need to check NONBASETHRDENA for v7M, because in 7039 * v8M this bit does not exist (it is RES1). 7040 */ 7041 if (!rettobase && 7042 !(env->v7m.ccr[env->v7m.secure] & 7043 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7044 ufault = true; 7045 } 7046 break; 7047 default: 7048 ufault = true; 7049 } 7050 } 7051 7052 if (sfault) { 7053 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7054 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7055 v7m_exception_taken(cpu, excret, true, false); 7056 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7057 "stackframe: failed EXC_RETURN.ES validity check\n"); 7058 return; 7059 } 7060 7061 if (ufault) { 7062 /* Bad exception return: instead of popping the exception 7063 * stack, directly take a usage fault on the current stack. 7064 */ 7065 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7066 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7067 v7m_exception_taken(cpu, excret, true, false); 7068 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7069 "stackframe: failed exception return integrity check\n"); 7070 return; 7071 } 7072 7073 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7074 * Handler mode (and will be until we write the new XPSR.Interrupt 7075 * field) this does not switch around the current stack pointer. 7076 */ 7077 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7078 7079 switch_v7m_security_state(env, return_to_secure); 7080 7081 { 7082 /* The stack pointer we should be reading the exception frame from 7083 * depends on bits in the magic exception return type value (and 7084 * for v8M isn't necessarily the stack pointer we will eventually 7085 * end up resuming execution with). Get a pointer to the location 7086 * in the CPU state struct where the SP we need is currently being 7087 * stored; we will use and modify it in place. 7088 * We use this limited C variable scope so we don't accidentally 7089 * use 'frame_sp_p' after we do something that makes it invalid. 7090 */ 7091 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7092 return_to_secure, 7093 !return_to_handler, 7094 return_to_sp_process); 7095 uint32_t frameptr = *frame_sp_p; 7096 bool pop_ok = true; 7097 ARMMMUIdx mmu_idx; 7098 7099 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7100 !return_to_handler); 7101 7102 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7103 arm_feature(env, ARM_FEATURE_V8)) { 7104 qemu_log_mask(LOG_GUEST_ERROR, 7105 "M profile exception return with non-8-aligned SP " 7106 "for destination state is UNPREDICTABLE\n"); 7107 } 7108 7109 /* Do we need to pop callee-saved registers? */ 7110 if (return_to_secure && 7111 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7112 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7113 uint32_t expected_sig = 0xfefa125b; 7114 uint32_t actual_sig = ldl_phys(cs->as, frameptr); 7115 7116 if (expected_sig != actual_sig) { 7117 /* Take a SecureFault on the current stack */ 7118 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7119 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7120 v7m_exception_taken(cpu, excret, true, false); 7121 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7122 "stackframe: failed exception return integrity " 7123 "signature check\n"); 7124 return; 7125 } 7126 7127 pop_ok = 7128 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7129 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7130 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7131 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7132 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7133 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7134 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7135 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7136 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7137 7138 frameptr += 0x28; 7139 } 7140 7141 /* Pop registers */ 7142 pop_ok = pop_ok && 7143 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7144 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7145 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7146 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7147 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7148 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7149 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7150 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7151 7152 if (!pop_ok) { 7153 /* v7m_stack_read() pended a fault, so take it (as a tail 7154 * chained exception on the same stack frame) 7155 */ 7156 v7m_exception_taken(cpu, excret, true, false); 7157 return; 7158 } 7159 7160 /* Returning from an exception with a PC with bit 0 set is defined 7161 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7162 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7163 * the lsbit, and there are several RTOSes out there which incorrectly 7164 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7165 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7166 * complain about the badly behaved guest. 7167 */ 7168 if (env->regs[15] & 1) { 7169 env->regs[15] &= ~1U; 7170 if (!arm_feature(env, ARM_FEATURE_V8)) { 7171 qemu_log_mask(LOG_GUEST_ERROR, 7172 "M profile return from interrupt with misaligned " 7173 "PC is UNPREDICTABLE on v7M\n"); 7174 } 7175 } 7176 7177 if (arm_feature(env, ARM_FEATURE_V8)) { 7178 /* For v8M we have to check whether the xPSR exception field 7179 * matches the EXCRET value for return to handler/thread 7180 * before we commit to changing the SP and xPSR. 7181 */ 7182 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7183 if (return_to_handler != will_be_handler) { 7184 /* Take an INVPC UsageFault on the current stack. 7185 * By this point we will have switched to the security state 7186 * for the background state, so this UsageFault will target 7187 * that state. 7188 */ 7189 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7190 env->v7m.secure); 7191 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7192 v7m_exception_taken(cpu, excret, true, false); 7193 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7194 "stackframe: failed exception return integrity " 7195 "check\n"); 7196 return; 7197 } 7198 } 7199 7200 /* Commit to consuming the stack frame */ 7201 frameptr += 0x20; 7202 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7203 * pre-exception SP was not 8-aligned and we added a padding word to 7204 * align it, so we undo this by ORing in the bit that increases it 7205 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7206 * would work too but a logical OR is how the pseudocode specifies it.) 7207 */ 7208 if (xpsr & XPSR_SPREALIGN) { 7209 frameptr |= 4; 7210 } 7211 *frame_sp_p = frameptr; 7212 } 7213 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7214 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7215 7216 /* The restored xPSR exception field will be zero if we're 7217 * resuming in Thread mode. If that doesn't match what the 7218 * exception return excret specified then this is a UsageFault. 7219 * v7M requires we make this check here; v8M did it earlier. 7220 */ 7221 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7222 /* Take an INVPC UsageFault by pushing the stack again; 7223 * we know we're v7M so this is never a Secure UsageFault. 7224 */ 7225 bool ignore_stackfaults; 7226 7227 assert(!arm_feature(env, ARM_FEATURE_V8)); 7228 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7229 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7230 ignore_stackfaults = v7m_push_stack(cpu); 7231 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7232 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7233 "failed exception return integrity check\n"); 7234 return; 7235 } 7236 7237 /* Otherwise, we have a successful exception exit. */ 7238 arm_clear_exclusive(env); 7239 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7240 } 7241 7242 static bool do_v7m_function_return(ARMCPU *cpu) 7243 { 7244 /* v8M security extensions magic function return. 7245 * We may either: 7246 * (1) throw an exception (longjump) 7247 * (2) return true if we successfully handled the function return 7248 * (3) return false if we failed a consistency check and have 7249 * pended a UsageFault that needs to be taken now 7250 * 7251 * At this point the magic return value is split between env->regs[15] 7252 * and env->thumb. We don't bother to reconstitute it because we don't 7253 * need it (all values are handled the same way). 7254 */ 7255 CPUARMState *env = &cpu->env; 7256 uint32_t newpc, newpsr, newpsr_exc; 7257 7258 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7259 7260 { 7261 bool threadmode, spsel; 7262 TCGMemOpIdx oi; 7263 ARMMMUIdx mmu_idx; 7264 uint32_t *frame_sp_p; 7265 uint32_t frameptr; 7266 7267 /* Pull the return address and IPSR from the Secure stack */ 7268 threadmode = !arm_v7m_is_handler_mode(env); 7269 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7270 7271 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7272 frameptr = *frame_sp_p; 7273 7274 /* These loads may throw an exception (for MPU faults). We want to 7275 * do them as secure, so work out what MMU index that is. 7276 */ 7277 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7278 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7279 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7280 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7281 7282 /* Consistency checks on new IPSR */ 7283 newpsr_exc = newpsr & XPSR_EXCP; 7284 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7285 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7286 /* Pend the fault and tell our caller to take it */ 7287 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7288 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7289 env->v7m.secure); 7290 qemu_log_mask(CPU_LOG_INT, 7291 "...taking INVPC UsageFault: " 7292 "IPSR consistency check failed\n"); 7293 return false; 7294 } 7295 7296 *frame_sp_p = frameptr + 8; 7297 } 7298 7299 /* This invalidates frame_sp_p */ 7300 switch_v7m_security_state(env, true); 7301 env->v7m.exception = newpsr_exc; 7302 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7303 if (newpsr & XPSR_SFPA) { 7304 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7305 } 7306 xpsr_write(env, 0, XPSR_IT); 7307 env->thumb = newpc & 1; 7308 env->regs[15] = newpc & ~1; 7309 7310 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7311 return true; 7312 } 7313 7314 static void arm_log_exception(int idx) 7315 { 7316 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7317 const char *exc = NULL; 7318 static const char * const excnames[] = { 7319 [EXCP_UDEF] = "Undefined Instruction", 7320 [EXCP_SWI] = "SVC", 7321 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7322 [EXCP_DATA_ABORT] = "Data Abort", 7323 [EXCP_IRQ] = "IRQ", 7324 [EXCP_FIQ] = "FIQ", 7325 [EXCP_BKPT] = "Breakpoint", 7326 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7327 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7328 [EXCP_HVC] = "Hypervisor Call", 7329 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7330 [EXCP_SMC] = "Secure Monitor Call", 7331 [EXCP_VIRQ] = "Virtual IRQ", 7332 [EXCP_VFIQ] = "Virtual FIQ", 7333 [EXCP_SEMIHOST] = "Semihosting call", 7334 [EXCP_NOCP] = "v7M NOCP UsageFault", 7335 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7336 }; 7337 7338 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7339 exc = excnames[idx]; 7340 } 7341 if (!exc) { 7342 exc = "unknown"; 7343 } 7344 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7345 } 7346 } 7347 7348 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7349 uint32_t addr, uint16_t *insn) 7350 { 7351 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7352 * or false on failure (in which case we will have pended the appropriate 7353 * exception). 7354 * We need to do the instruction fetch's MPU and SAU checks 7355 * like this because there is no MMU index that would allow 7356 * doing the load with a single function call. Instead we must 7357 * first check that the security attributes permit the load 7358 * and that they don't mismatch on the two halves of the instruction, 7359 * and then we do the load as a secure load (ie using the security 7360 * attributes of the address, not the CPU, as architecturally required). 7361 */ 7362 CPUState *cs = CPU(cpu); 7363 CPUARMState *env = &cpu->env; 7364 V8M_SAttributes sattrs = {}; 7365 MemTxAttrs attrs = {}; 7366 ARMMMUFaultInfo fi = {}; 7367 MemTxResult txres; 7368 target_ulong page_size; 7369 hwaddr physaddr; 7370 int prot; 7371 7372 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7373 if (!sattrs.nsc || sattrs.ns) { 7374 /* This must be the second half of the insn, and it straddles a 7375 * region boundary with the second half not being S&NSC. 7376 */ 7377 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7378 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7379 qemu_log_mask(CPU_LOG_INT, 7380 "...really SecureFault with SFSR.INVEP\n"); 7381 return false; 7382 } 7383 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7384 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7385 /* the MPU lookup failed */ 7386 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7387 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7388 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7389 return false; 7390 } 7391 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7392 attrs, &txres); 7393 if (txres != MEMTX_OK) { 7394 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7395 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7396 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7397 return false; 7398 } 7399 return true; 7400 } 7401 7402 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7403 { 7404 /* Check whether this attempt to execute code in a Secure & NS-Callable 7405 * memory region is for an SG instruction; if so, then emulate the 7406 * effect of the SG instruction and return true. Otherwise pend 7407 * the correct kind of exception and return false. 7408 */ 7409 CPUARMState *env = &cpu->env; 7410 ARMMMUIdx mmu_idx; 7411 uint16_t insn; 7412 7413 /* We should never get here unless get_phys_addr_pmsav8() caused 7414 * an exception for NS executing in S&NSC memory. 7415 */ 7416 assert(!env->v7m.secure); 7417 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7418 7419 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7420 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7421 7422 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7423 return false; 7424 } 7425 7426 if (!env->thumb) { 7427 goto gen_invep; 7428 } 7429 7430 if (insn != 0xe97f) { 7431 /* Not an SG instruction first half (we choose the IMPDEF 7432 * early-SG-check option). 7433 */ 7434 goto gen_invep; 7435 } 7436 7437 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7438 return false; 7439 } 7440 7441 if (insn != 0xe97f) { 7442 /* Not an SG instruction second half (yes, both halves of the SG 7443 * insn have the same hex value) 7444 */ 7445 goto gen_invep; 7446 } 7447 7448 /* OK, we have confirmed that we really have an SG instruction. 7449 * We know we're NS in S memory so don't need to repeat those checks. 7450 */ 7451 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7452 ", executing it\n", env->regs[15]); 7453 env->regs[14] &= ~1; 7454 switch_v7m_security_state(env, true); 7455 xpsr_write(env, 0, XPSR_IT); 7456 env->regs[15] += 4; 7457 return true; 7458 7459 gen_invep: 7460 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7461 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7462 qemu_log_mask(CPU_LOG_INT, 7463 "...really SecureFault with SFSR.INVEP\n"); 7464 return false; 7465 } 7466 7467 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7468 { 7469 ARMCPU *cpu = ARM_CPU(cs); 7470 CPUARMState *env = &cpu->env; 7471 uint32_t lr; 7472 bool ignore_stackfaults; 7473 7474 arm_log_exception(cs->exception_index); 7475 7476 /* For exceptions we just mark as pending on the NVIC, and let that 7477 handle it. */ 7478 switch (cs->exception_index) { 7479 case EXCP_UDEF: 7480 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7481 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7482 break; 7483 case EXCP_NOCP: 7484 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7485 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7486 break; 7487 case EXCP_INVSTATE: 7488 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7489 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7490 break; 7491 case EXCP_SWI: 7492 /* The PC already points to the next instruction. */ 7493 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7494 break; 7495 case EXCP_PREFETCH_ABORT: 7496 case EXCP_DATA_ABORT: 7497 /* Note that for M profile we don't have a guest facing FSR, but 7498 * the env->exception.fsr will be populated by the code that 7499 * raises the fault, in the A profile short-descriptor format. 7500 */ 7501 switch (env->exception.fsr & 0xf) { 7502 case M_FAKE_FSR_NSC_EXEC: 7503 /* Exception generated when we try to execute code at an address 7504 * which is marked as Secure & Non-Secure Callable and the CPU 7505 * is in the Non-Secure state. The only instruction which can 7506 * be executed like this is SG (and that only if both halves of 7507 * the SG instruction have the same security attributes.) 7508 * Everything else must generate an INVEP SecureFault, so we 7509 * emulate the SG instruction here. 7510 */ 7511 if (v7m_handle_execute_nsc(cpu)) { 7512 return; 7513 } 7514 break; 7515 case M_FAKE_FSR_SFAULT: 7516 /* Various flavours of SecureFault for attempts to execute or 7517 * access data in the wrong security state. 7518 */ 7519 switch (cs->exception_index) { 7520 case EXCP_PREFETCH_ABORT: 7521 if (env->v7m.secure) { 7522 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7523 qemu_log_mask(CPU_LOG_INT, 7524 "...really SecureFault with SFSR.INVTRAN\n"); 7525 } else { 7526 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7527 qemu_log_mask(CPU_LOG_INT, 7528 "...really SecureFault with SFSR.INVEP\n"); 7529 } 7530 break; 7531 case EXCP_DATA_ABORT: 7532 /* This must be an NS access to S memory */ 7533 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7534 qemu_log_mask(CPU_LOG_INT, 7535 "...really SecureFault with SFSR.AUVIOL\n"); 7536 break; 7537 } 7538 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7539 break; 7540 case 0x8: /* External Abort */ 7541 switch (cs->exception_index) { 7542 case EXCP_PREFETCH_ABORT: 7543 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7544 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7545 break; 7546 case EXCP_DATA_ABORT: 7547 env->v7m.cfsr[M_REG_NS] |= 7548 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7549 env->v7m.bfar = env->exception.vaddress; 7550 qemu_log_mask(CPU_LOG_INT, 7551 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7552 env->v7m.bfar); 7553 break; 7554 } 7555 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7556 break; 7557 default: 7558 /* All other FSR values are either MPU faults or "can't happen 7559 * for M profile" cases. 7560 */ 7561 switch (cs->exception_index) { 7562 case EXCP_PREFETCH_ABORT: 7563 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7564 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7565 break; 7566 case EXCP_DATA_ABORT: 7567 env->v7m.cfsr[env->v7m.secure] |= 7568 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7569 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7570 qemu_log_mask(CPU_LOG_INT, 7571 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7572 env->v7m.mmfar[env->v7m.secure]); 7573 break; 7574 } 7575 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7576 env->v7m.secure); 7577 break; 7578 } 7579 break; 7580 case EXCP_BKPT: 7581 if (semihosting_enabled()) { 7582 int nr; 7583 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7584 if (nr == 0xab) { 7585 env->regs[15] += 2; 7586 qemu_log_mask(CPU_LOG_INT, 7587 "...handling as semihosting call 0x%x\n", 7588 env->regs[0]); 7589 env->regs[0] = do_arm_semihosting(env); 7590 return; 7591 } 7592 } 7593 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7594 break; 7595 case EXCP_IRQ: 7596 break; 7597 case EXCP_EXCEPTION_EXIT: 7598 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7599 /* Must be v8M security extension function return */ 7600 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7601 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7602 if (do_v7m_function_return(cpu)) { 7603 return; 7604 } 7605 } else { 7606 do_v7m_exception_exit(cpu); 7607 return; 7608 } 7609 break; 7610 default: 7611 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7612 return; /* Never happens. Keep compiler happy. */ 7613 } 7614 7615 if (arm_feature(env, ARM_FEATURE_V8)) { 7616 lr = R_V7M_EXCRET_RES1_MASK | 7617 R_V7M_EXCRET_DCRS_MASK | 7618 R_V7M_EXCRET_FTYPE_MASK; 7619 /* The S bit indicates whether we should return to Secure 7620 * or NonSecure (ie our current state). 7621 * The ES bit indicates whether we're taking this exception 7622 * to Secure or NonSecure (ie our target state). We set it 7623 * later, in v7m_exception_taken(). 7624 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7625 * This corresponds to the ARM ARM pseudocode for v8M setting 7626 * some LR bits in PushStack() and some in ExceptionTaken(); 7627 * the distinction matters for the tailchain cases where we 7628 * can take an exception without pushing the stack. 7629 */ 7630 if (env->v7m.secure) { 7631 lr |= R_V7M_EXCRET_S_MASK; 7632 } 7633 } else { 7634 lr = R_V7M_EXCRET_RES1_MASK | 7635 R_V7M_EXCRET_S_MASK | 7636 R_V7M_EXCRET_DCRS_MASK | 7637 R_V7M_EXCRET_FTYPE_MASK | 7638 R_V7M_EXCRET_ES_MASK; 7639 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7640 lr |= R_V7M_EXCRET_SPSEL_MASK; 7641 } 7642 } 7643 if (!arm_v7m_is_handler_mode(env)) { 7644 lr |= R_V7M_EXCRET_MODE_MASK; 7645 } 7646 7647 ignore_stackfaults = v7m_push_stack(cpu); 7648 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7649 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7650 } 7651 7652 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7653 * register set. This is necessary when switching between AArch32 and AArch64 7654 * execution state. 7655 */ 7656 void aarch64_sync_32_to_64(CPUARMState *env) 7657 { 7658 int i; 7659 uint32_t mode = env->uncached_cpsr & CPSR_M; 7660 7661 /* We can blanket copy R[0:7] to X[0:7] */ 7662 for (i = 0; i < 8; i++) { 7663 env->xregs[i] = env->regs[i]; 7664 } 7665 7666 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7667 * Otherwise, they come from the banked user regs. 7668 */ 7669 if (mode == ARM_CPU_MODE_FIQ) { 7670 for (i = 8; i < 13; i++) { 7671 env->xregs[i] = env->usr_regs[i - 8]; 7672 } 7673 } else { 7674 for (i = 8; i < 13; i++) { 7675 env->xregs[i] = env->regs[i]; 7676 } 7677 } 7678 7679 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7680 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7681 * from the mode banked register. 7682 */ 7683 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7684 env->xregs[13] = env->regs[13]; 7685 env->xregs[14] = env->regs[14]; 7686 } else { 7687 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7688 /* HYP is an exception in that it is copied from r14 */ 7689 if (mode == ARM_CPU_MODE_HYP) { 7690 env->xregs[14] = env->regs[14]; 7691 } else { 7692 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7693 } 7694 } 7695 7696 if (mode == ARM_CPU_MODE_HYP) { 7697 env->xregs[15] = env->regs[13]; 7698 } else { 7699 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7700 } 7701 7702 if (mode == ARM_CPU_MODE_IRQ) { 7703 env->xregs[16] = env->regs[14]; 7704 env->xregs[17] = env->regs[13]; 7705 } else { 7706 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7707 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7708 } 7709 7710 if (mode == ARM_CPU_MODE_SVC) { 7711 env->xregs[18] = env->regs[14]; 7712 env->xregs[19] = env->regs[13]; 7713 } else { 7714 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7715 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7716 } 7717 7718 if (mode == ARM_CPU_MODE_ABT) { 7719 env->xregs[20] = env->regs[14]; 7720 env->xregs[21] = env->regs[13]; 7721 } else { 7722 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7723 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7724 } 7725 7726 if (mode == ARM_CPU_MODE_UND) { 7727 env->xregs[22] = env->regs[14]; 7728 env->xregs[23] = env->regs[13]; 7729 } else { 7730 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7731 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7732 } 7733 7734 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7735 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7736 * FIQ bank for r8-r14. 7737 */ 7738 if (mode == ARM_CPU_MODE_FIQ) { 7739 for (i = 24; i < 31; i++) { 7740 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7741 } 7742 } else { 7743 for (i = 24; i < 29; i++) { 7744 env->xregs[i] = env->fiq_regs[i - 24]; 7745 } 7746 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7747 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7748 } 7749 7750 env->pc = env->regs[15]; 7751 } 7752 7753 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7754 * register set. This is necessary when switching between AArch32 and AArch64 7755 * execution state. 7756 */ 7757 void aarch64_sync_64_to_32(CPUARMState *env) 7758 { 7759 int i; 7760 uint32_t mode = env->uncached_cpsr & CPSR_M; 7761 7762 /* We can blanket copy X[0:7] to R[0:7] */ 7763 for (i = 0; i < 8; i++) { 7764 env->regs[i] = env->xregs[i]; 7765 } 7766 7767 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7768 * Otherwise, we copy x8-x12 into the banked user regs. 7769 */ 7770 if (mode == ARM_CPU_MODE_FIQ) { 7771 for (i = 8; i < 13; i++) { 7772 env->usr_regs[i - 8] = env->xregs[i]; 7773 } 7774 } else { 7775 for (i = 8; i < 13; i++) { 7776 env->regs[i] = env->xregs[i]; 7777 } 7778 } 7779 7780 /* Registers r13 & r14 depend on the current mode. 7781 * If we are in a given mode, we copy the corresponding x registers to r13 7782 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7783 * for the mode. 7784 */ 7785 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7786 env->regs[13] = env->xregs[13]; 7787 env->regs[14] = env->xregs[14]; 7788 } else { 7789 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7790 7791 /* HYP is an exception in that it does not have its own banked r14 but 7792 * shares the USR r14 7793 */ 7794 if (mode == ARM_CPU_MODE_HYP) { 7795 env->regs[14] = env->xregs[14]; 7796 } else { 7797 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7798 } 7799 } 7800 7801 if (mode == ARM_CPU_MODE_HYP) { 7802 env->regs[13] = env->xregs[15]; 7803 } else { 7804 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7805 } 7806 7807 if (mode == ARM_CPU_MODE_IRQ) { 7808 env->regs[14] = env->xregs[16]; 7809 env->regs[13] = env->xregs[17]; 7810 } else { 7811 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7812 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7813 } 7814 7815 if (mode == ARM_CPU_MODE_SVC) { 7816 env->regs[14] = env->xregs[18]; 7817 env->regs[13] = env->xregs[19]; 7818 } else { 7819 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7820 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7821 } 7822 7823 if (mode == ARM_CPU_MODE_ABT) { 7824 env->regs[14] = env->xregs[20]; 7825 env->regs[13] = env->xregs[21]; 7826 } else { 7827 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7828 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7829 } 7830 7831 if (mode == ARM_CPU_MODE_UND) { 7832 env->regs[14] = env->xregs[22]; 7833 env->regs[13] = env->xregs[23]; 7834 } else { 7835 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7836 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7837 } 7838 7839 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7840 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7841 * FIQ bank for r8-r14. 7842 */ 7843 if (mode == ARM_CPU_MODE_FIQ) { 7844 for (i = 24; i < 31; i++) { 7845 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7846 } 7847 } else { 7848 for (i = 24; i < 29; i++) { 7849 env->fiq_regs[i - 24] = env->xregs[i]; 7850 } 7851 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7852 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7853 } 7854 7855 env->regs[15] = env->pc; 7856 } 7857 7858 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7859 { 7860 ARMCPU *cpu = ARM_CPU(cs); 7861 CPUARMState *env = &cpu->env; 7862 uint32_t addr; 7863 uint32_t mask; 7864 int new_mode; 7865 uint32_t offset; 7866 uint32_t moe; 7867 7868 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7869 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7870 case EC_BREAKPOINT: 7871 case EC_BREAKPOINT_SAME_EL: 7872 moe = 1; 7873 break; 7874 case EC_WATCHPOINT: 7875 case EC_WATCHPOINT_SAME_EL: 7876 moe = 10; 7877 break; 7878 case EC_AA32_BKPT: 7879 moe = 3; 7880 break; 7881 case EC_VECTORCATCH: 7882 moe = 5; 7883 break; 7884 default: 7885 moe = 0; 7886 break; 7887 } 7888 7889 if (moe) { 7890 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7891 } 7892 7893 /* TODO: Vectored interrupt controller. */ 7894 switch (cs->exception_index) { 7895 case EXCP_UDEF: 7896 new_mode = ARM_CPU_MODE_UND; 7897 addr = 0x04; 7898 mask = CPSR_I; 7899 if (env->thumb) 7900 offset = 2; 7901 else 7902 offset = 4; 7903 break; 7904 case EXCP_SWI: 7905 new_mode = ARM_CPU_MODE_SVC; 7906 addr = 0x08; 7907 mask = CPSR_I; 7908 /* The PC already points to the next instruction. */ 7909 offset = 0; 7910 break; 7911 case EXCP_BKPT: 7912 env->exception.fsr = 2; 7913 /* Fall through to prefetch abort. */ 7914 case EXCP_PREFETCH_ABORT: 7915 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7916 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7917 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7918 env->exception.fsr, (uint32_t)env->exception.vaddress); 7919 new_mode = ARM_CPU_MODE_ABT; 7920 addr = 0x0c; 7921 mask = CPSR_A | CPSR_I; 7922 offset = 4; 7923 break; 7924 case EXCP_DATA_ABORT: 7925 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7926 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7927 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7928 env->exception.fsr, 7929 (uint32_t)env->exception.vaddress); 7930 new_mode = ARM_CPU_MODE_ABT; 7931 addr = 0x10; 7932 mask = CPSR_A | CPSR_I; 7933 offset = 8; 7934 break; 7935 case EXCP_IRQ: 7936 new_mode = ARM_CPU_MODE_IRQ; 7937 addr = 0x18; 7938 /* Disable IRQ and imprecise data aborts. */ 7939 mask = CPSR_A | CPSR_I; 7940 offset = 4; 7941 if (env->cp15.scr_el3 & SCR_IRQ) { 7942 /* IRQ routed to monitor mode */ 7943 new_mode = ARM_CPU_MODE_MON; 7944 mask |= CPSR_F; 7945 } 7946 break; 7947 case EXCP_FIQ: 7948 new_mode = ARM_CPU_MODE_FIQ; 7949 addr = 0x1c; 7950 /* Disable FIQ, IRQ and imprecise data aborts. */ 7951 mask = CPSR_A | CPSR_I | CPSR_F; 7952 if (env->cp15.scr_el3 & SCR_FIQ) { 7953 /* FIQ routed to monitor mode */ 7954 new_mode = ARM_CPU_MODE_MON; 7955 } 7956 offset = 4; 7957 break; 7958 case EXCP_VIRQ: 7959 new_mode = ARM_CPU_MODE_IRQ; 7960 addr = 0x18; 7961 /* Disable IRQ and imprecise data aborts. */ 7962 mask = CPSR_A | CPSR_I; 7963 offset = 4; 7964 break; 7965 case EXCP_VFIQ: 7966 new_mode = ARM_CPU_MODE_FIQ; 7967 addr = 0x1c; 7968 /* Disable FIQ, IRQ and imprecise data aborts. */ 7969 mask = CPSR_A | CPSR_I | CPSR_F; 7970 offset = 4; 7971 break; 7972 case EXCP_SMC: 7973 new_mode = ARM_CPU_MODE_MON; 7974 addr = 0x08; 7975 mask = CPSR_A | CPSR_I | CPSR_F; 7976 offset = 0; 7977 break; 7978 default: 7979 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7980 return; /* Never happens. Keep compiler happy. */ 7981 } 7982 7983 if (new_mode == ARM_CPU_MODE_MON) { 7984 addr += env->cp15.mvbar; 7985 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 7986 /* High vectors. When enabled, base address cannot be remapped. */ 7987 addr += 0xffff0000; 7988 } else { 7989 /* ARM v7 architectures provide a vector base address register to remap 7990 * the interrupt vector table. 7991 * This register is only followed in non-monitor mode, and is banked. 7992 * Note: only bits 31:5 are valid. 7993 */ 7994 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 7995 } 7996 7997 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 7998 env->cp15.scr_el3 &= ~SCR_NS; 7999 } 8000 8001 switch_mode (env, new_mode); 8002 /* For exceptions taken to AArch32 we must clear the SS bit in both 8003 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8004 */ 8005 env->uncached_cpsr &= ~PSTATE_SS; 8006 env->spsr = cpsr_read(env); 8007 /* Clear IT bits. */ 8008 env->condexec_bits = 0; 8009 /* Switch to the new mode, and to the correct instruction set. */ 8010 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8011 /* Set new mode endianness */ 8012 env->uncached_cpsr &= ~CPSR_E; 8013 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8014 env->uncached_cpsr |= CPSR_E; 8015 } 8016 env->daif |= mask; 8017 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 8018 * and we should just guard the thumb mode on V4 */ 8019 if (arm_feature(env, ARM_FEATURE_V4T)) { 8020 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8021 } 8022 env->regs[14] = env->regs[15] + offset; 8023 env->regs[15] = addr; 8024 } 8025 8026 /* Handle exception entry to a target EL which is using AArch64 */ 8027 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8028 { 8029 ARMCPU *cpu = ARM_CPU(cs); 8030 CPUARMState *env = &cpu->env; 8031 unsigned int new_el = env->exception.target_el; 8032 target_ulong addr = env->cp15.vbar_el[new_el]; 8033 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8034 8035 if (arm_current_el(env) < new_el) { 8036 /* Entry vector offset depends on whether the implemented EL 8037 * immediately lower than the target level is using AArch32 or AArch64 8038 */ 8039 bool is_aa64; 8040 8041 switch (new_el) { 8042 case 3: 8043 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8044 break; 8045 case 2: 8046 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8047 break; 8048 case 1: 8049 is_aa64 = is_a64(env); 8050 break; 8051 default: 8052 g_assert_not_reached(); 8053 } 8054 8055 if (is_aa64) { 8056 addr += 0x400; 8057 } else { 8058 addr += 0x600; 8059 } 8060 } else if (pstate_read(env) & PSTATE_SP) { 8061 addr += 0x200; 8062 } 8063 8064 switch (cs->exception_index) { 8065 case EXCP_PREFETCH_ABORT: 8066 case EXCP_DATA_ABORT: 8067 env->cp15.far_el[new_el] = env->exception.vaddress; 8068 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8069 env->cp15.far_el[new_el]); 8070 /* fall through */ 8071 case EXCP_BKPT: 8072 case EXCP_UDEF: 8073 case EXCP_SWI: 8074 case EXCP_HVC: 8075 case EXCP_HYP_TRAP: 8076 case EXCP_SMC: 8077 env->cp15.esr_el[new_el] = env->exception.syndrome; 8078 break; 8079 case EXCP_IRQ: 8080 case EXCP_VIRQ: 8081 addr += 0x80; 8082 break; 8083 case EXCP_FIQ: 8084 case EXCP_VFIQ: 8085 addr += 0x100; 8086 break; 8087 case EXCP_SEMIHOST: 8088 qemu_log_mask(CPU_LOG_INT, 8089 "...handling as semihosting call 0x%" PRIx64 "\n", 8090 env->xregs[0]); 8091 env->xregs[0] = do_arm_semihosting(env); 8092 return; 8093 default: 8094 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8095 } 8096 8097 if (is_a64(env)) { 8098 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8099 aarch64_save_sp(env, arm_current_el(env)); 8100 env->elr_el[new_el] = env->pc; 8101 } else { 8102 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8103 env->elr_el[new_el] = env->regs[15]; 8104 8105 aarch64_sync_32_to_64(env); 8106 8107 env->condexec_bits = 0; 8108 } 8109 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8110 env->elr_el[new_el]); 8111 8112 pstate_write(env, PSTATE_DAIF | new_mode); 8113 env->aarch64 = 1; 8114 aarch64_restore_sp(env, new_el); 8115 8116 env->pc = addr; 8117 8118 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8119 new_el, env->pc, pstate_read(env)); 8120 } 8121 8122 static inline bool check_for_semihosting(CPUState *cs) 8123 { 8124 /* Check whether this exception is a semihosting call; if so 8125 * then handle it and return true; otherwise return false. 8126 */ 8127 ARMCPU *cpu = ARM_CPU(cs); 8128 CPUARMState *env = &cpu->env; 8129 8130 if (is_a64(env)) { 8131 if (cs->exception_index == EXCP_SEMIHOST) { 8132 /* This is always the 64-bit semihosting exception. 8133 * The "is this usermode" and "is semihosting enabled" 8134 * checks have been done at translate time. 8135 */ 8136 qemu_log_mask(CPU_LOG_INT, 8137 "...handling as semihosting call 0x%" PRIx64 "\n", 8138 env->xregs[0]); 8139 env->xregs[0] = do_arm_semihosting(env); 8140 return true; 8141 } 8142 return false; 8143 } else { 8144 uint32_t imm; 8145 8146 /* Only intercept calls from privileged modes, to provide some 8147 * semblance of security. 8148 */ 8149 if (cs->exception_index != EXCP_SEMIHOST && 8150 (!semihosting_enabled() || 8151 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8152 return false; 8153 } 8154 8155 switch (cs->exception_index) { 8156 case EXCP_SEMIHOST: 8157 /* This is always a semihosting call; the "is this usermode" 8158 * and "is semihosting enabled" checks have been done at 8159 * translate time. 8160 */ 8161 break; 8162 case EXCP_SWI: 8163 /* Check for semihosting interrupt. */ 8164 if (env->thumb) { 8165 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8166 & 0xff; 8167 if (imm == 0xab) { 8168 break; 8169 } 8170 } else { 8171 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8172 & 0xffffff; 8173 if (imm == 0x123456) { 8174 break; 8175 } 8176 } 8177 return false; 8178 case EXCP_BKPT: 8179 /* See if this is a semihosting syscall. */ 8180 if (env->thumb) { 8181 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8182 & 0xff; 8183 if (imm == 0xab) { 8184 env->regs[15] += 2; 8185 break; 8186 } 8187 } 8188 return false; 8189 default: 8190 return false; 8191 } 8192 8193 qemu_log_mask(CPU_LOG_INT, 8194 "...handling as semihosting call 0x%x\n", 8195 env->regs[0]); 8196 env->regs[0] = do_arm_semihosting(env); 8197 return true; 8198 } 8199 } 8200 8201 /* Handle a CPU exception for A and R profile CPUs. 8202 * Do any appropriate logging, handle PSCI calls, and then hand off 8203 * to the AArch64-entry or AArch32-entry function depending on the 8204 * target exception level's register width. 8205 */ 8206 void arm_cpu_do_interrupt(CPUState *cs) 8207 { 8208 ARMCPU *cpu = ARM_CPU(cs); 8209 CPUARMState *env = &cpu->env; 8210 unsigned int new_el = env->exception.target_el; 8211 8212 assert(!arm_feature(env, ARM_FEATURE_M)); 8213 8214 arm_log_exception(cs->exception_index); 8215 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8216 new_el); 8217 if (qemu_loglevel_mask(CPU_LOG_INT) 8218 && !excp_is_internal(cs->exception_index)) { 8219 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8220 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8221 env->exception.syndrome); 8222 } 8223 8224 if (arm_is_psci_call(cpu, cs->exception_index)) { 8225 arm_handle_psci_call(cpu); 8226 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8227 return; 8228 } 8229 8230 /* Semihosting semantics depend on the register width of the 8231 * code that caused the exception, not the target exception level, 8232 * so must be handled here. 8233 */ 8234 if (check_for_semihosting(cs)) { 8235 return; 8236 } 8237 8238 assert(!excp_is_internal(cs->exception_index)); 8239 if (arm_el_is_aa64(env, new_el)) { 8240 arm_cpu_do_interrupt_aarch64(cs); 8241 } else { 8242 arm_cpu_do_interrupt_aarch32(cs); 8243 } 8244 8245 /* Hooks may change global state so BQL should be held, also the 8246 * BQL needs to be held for any modification of 8247 * cs->interrupt_request. 8248 */ 8249 g_assert(qemu_mutex_iothread_locked()); 8250 8251 arm_call_el_change_hook(cpu); 8252 8253 if (!kvm_enabled()) { 8254 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8255 } 8256 } 8257 8258 /* Return the exception level which controls this address translation regime */ 8259 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8260 { 8261 switch (mmu_idx) { 8262 case ARMMMUIdx_S2NS: 8263 case ARMMMUIdx_S1E2: 8264 return 2; 8265 case ARMMMUIdx_S1E3: 8266 return 3; 8267 case ARMMMUIdx_S1SE0: 8268 return arm_el_is_aa64(env, 3) ? 1 : 3; 8269 case ARMMMUIdx_S1SE1: 8270 case ARMMMUIdx_S1NSE0: 8271 case ARMMMUIdx_S1NSE1: 8272 case ARMMMUIdx_MPrivNegPri: 8273 case ARMMMUIdx_MUserNegPri: 8274 case ARMMMUIdx_MPriv: 8275 case ARMMMUIdx_MUser: 8276 case ARMMMUIdx_MSPrivNegPri: 8277 case ARMMMUIdx_MSUserNegPri: 8278 case ARMMMUIdx_MSPriv: 8279 case ARMMMUIdx_MSUser: 8280 return 1; 8281 default: 8282 g_assert_not_reached(); 8283 } 8284 } 8285 8286 /* Return the SCTLR value which controls this address translation regime */ 8287 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8288 { 8289 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8290 } 8291 8292 /* Return true if the specified stage of address translation is disabled */ 8293 static inline bool regime_translation_disabled(CPUARMState *env, 8294 ARMMMUIdx mmu_idx) 8295 { 8296 if (arm_feature(env, ARM_FEATURE_M)) { 8297 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8298 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8299 case R_V7M_MPU_CTRL_ENABLE_MASK: 8300 /* Enabled, but not for HardFault and NMI */ 8301 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8302 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8303 /* Enabled for all cases */ 8304 return false; 8305 case 0: 8306 default: 8307 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8308 * we warned about that in armv7m_nvic.c when the guest set it. 8309 */ 8310 return true; 8311 } 8312 } 8313 8314 if (mmu_idx == ARMMMUIdx_S2NS) { 8315 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8316 } 8317 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8318 } 8319 8320 static inline bool regime_translation_big_endian(CPUARMState *env, 8321 ARMMMUIdx mmu_idx) 8322 { 8323 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8324 } 8325 8326 /* Return the TCR controlling this translation regime */ 8327 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8328 { 8329 if (mmu_idx == ARMMMUIdx_S2NS) { 8330 return &env->cp15.vtcr_el2; 8331 } 8332 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8333 } 8334 8335 /* Convert a possible stage1+2 MMU index into the appropriate 8336 * stage 1 MMU index 8337 */ 8338 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8339 { 8340 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8341 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8342 } 8343 return mmu_idx; 8344 } 8345 8346 /* Returns TBI0 value for current regime el */ 8347 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8348 { 8349 TCR *tcr; 8350 uint32_t el; 8351 8352 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8353 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8354 */ 8355 mmu_idx = stage_1_mmu_idx(mmu_idx); 8356 8357 tcr = regime_tcr(env, mmu_idx); 8358 el = regime_el(env, mmu_idx); 8359 8360 if (el > 1) { 8361 return extract64(tcr->raw_tcr, 20, 1); 8362 } else { 8363 return extract64(tcr->raw_tcr, 37, 1); 8364 } 8365 } 8366 8367 /* Returns TBI1 value for current regime el */ 8368 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8369 { 8370 TCR *tcr; 8371 uint32_t el; 8372 8373 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8374 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8375 */ 8376 mmu_idx = stage_1_mmu_idx(mmu_idx); 8377 8378 tcr = regime_tcr(env, mmu_idx); 8379 el = regime_el(env, mmu_idx); 8380 8381 if (el > 1) { 8382 return 0; 8383 } else { 8384 return extract64(tcr->raw_tcr, 38, 1); 8385 } 8386 } 8387 8388 /* Return the TTBR associated with this translation regime */ 8389 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8390 int ttbrn) 8391 { 8392 if (mmu_idx == ARMMMUIdx_S2NS) { 8393 return env->cp15.vttbr_el2; 8394 } 8395 if (ttbrn == 0) { 8396 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8397 } else { 8398 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8399 } 8400 } 8401 8402 /* Return true if the translation regime is using LPAE format page tables */ 8403 static inline bool regime_using_lpae_format(CPUARMState *env, 8404 ARMMMUIdx mmu_idx) 8405 { 8406 int el = regime_el(env, mmu_idx); 8407 if (el == 2 || arm_el_is_aa64(env, el)) { 8408 return true; 8409 } 8410 if (arm_feature(env, ARM_FEATURE_LPAE) 8411 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8412 return true; 8413 } 8414 return false; 8415 } 8416 8417 /* Returns true if the stage 1 translation regime is using LPAE format page 8418 * tables. Used when raising alignment exceptions, whose FSR changes depending 8419 * on whether the long or short descriptor format is in use. */ 8420 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8421 { 8422 mmu_idx = stage_1_mmu_idx(mmu_idx); 8423 8424 return regime_using_lpae_format(env, mmu_idx); 8425 } 8426 8427 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8428 { 8429 switch (mmu_idx) { 8430 case ARMMMUIdx_S1SE0: 8431 case ARMMMUIdx_S1NSE0: 8432 case ARMMMUIdx_MUser: 8433 case ARMMMUIdx_MSUser: 8434 case ARMMMUIdx_MUserNegPri: 8435 case ARMMMUIdx_MSUserNegPri: 8436 return true; 8437 default: 8438 return false; 8439 case ARMMMUIdx_S12NSE0: 8440 case ARMMMUIdx_S12NSE1: 8441 g_assert_not_reached(); 8442 } 8443 } 8444 8445 /* Translate section/page access permissions to page 8446 * R/W protection flags 8447 * 8448 * @env: CPUARMState 8449 * @mmu_idx: MMU index indicating required translation regime 8450 * @ap: The 3-bit access permissions (AP[2:0]) 8451 * @domain_prot: The 2-bit domain access permissions 8452 */ 8453 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8454 int ap, int domain_prot) 8455 { 8456 bool is_user = regime_is_user(env, mmu_idx); 8457 8458 if (domain_prot == 3) { 8459 return PAGE_READ | PAGE_WRITE; 8460 } 8461 8462 switch (ap) { 8463 case 0: 8464 if (arm_feature(env, ARM_FEATURE_V7)) { 8465 return 0; 8466 } 8467 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8468 case SCTLR_S: 8469 return is_user ? 0 : PAGE_READ; 8470 case SCTLR_R: 8471 return PAGE_READ; 8472 default: 8473 return 0; 8474 } 8475 case 1: 8476 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8477 case 2: 8478 if (is_user) { 8479 return PAGE_READ; 8480 } else { 8481 return PAGE_READ | PAGE_WRITE; 8482 } 8483 case 3: 8484 return PAGE_READ | PAGE_WRITE; 8485 case 4: /* Reserved. */ 8486 return 0; 8487 case 5: 8488 return is_user ? 0 : PAGE_READ; 8489 case 6: 8490 return PAGE_READ; 8491 case 7: 8492 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8493 return 0; 8494 } 8495 return PAGE_READ; 8496 default: 8497 g_assert_not_reached(); 8498 } 8499 } 8500 8501 /* Translate section/page access permissions to page 8502 * R/W protection flags. 8503 * 8504 * @ap: The 2-bit simple AP (AP[2:1]) 8505 * @is_user: TRUE if accessing from PL0 8506 */ 8507 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8508 { 8509 switch (ap) { 8510 case 0: 8511 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8512 case 1: 8513 return PAGE_READ | PAGE_WRITE; 8514 case 2: 8515 return is_user ? 0 : PAGE_READ; 8516 case 3: 8517 return PAGE_READ; 8518 default: 8519 g_assert_not_reached(); 8520 } 8521 } 8522 8523 static inline int 8524 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8525 { 8526 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8527 } 8528 8529 /* Translate S2 section/page access permissions to protection flags 8530 * 8531 * @env: CPUARMState 8532 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8533 * @xn: XN (execute-never) bit 8534 */ 8535 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8536 { 8537 int prot = 0; 8538 8539 if (s2ap & 1) { 8540 prot |= PAGE_READ; 8541 } 8542 if (s2ap & 2) { 8543 prot |= PAGE_WRITE; 8544 } 8545 if (!xn) { 8546 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8547 prot |= PAGE_EXEC; 8548 } 8549 } 8550 return prot; 8551 } 8552 8553 /* Translate section/page access permissions to protection flags 8554 * 8555 * @env: CPUARMState 8556 * @mmu_idx: MMU index indicating required translation regime 8557 * @is_aa64: TRUE if AArch64 8558 * @ap: The 2-bit simple AP (AP[2:1]) 8559 * @ns: NS (non-secure) bit 8560 * @xn: XN (execute-never) bit 8561 * @pxn: PXN (privileged execute-never) bit 8562 */ 8563 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8564 int ap, int ns, int xn, int pxn) 8565 { 8566 bool is_user = regime_is_user(env, mmu_idx); 8567 int prot_rw, user_rw; 8568 bool have_wxn; 8569 int wxn = 0; 8570 8571 assert(mmu_idx != ARMMMUIdx_S2NS); 8572 8573 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8574 if (is_user) { 8575 prot_rw = user_rw; 8576 } else { 8577 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8578 } 8579 8580 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8581 return prot_rw; 8582 } 8583 8584 /* TODO have_wxn should be replaced with 8585 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8586 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8587 * compatible processors have EL2, which is required for [U]WXN. 8588 */ 8589 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8590 8591 if (have_wxn) { 8592 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8593 } 8594 8595 if (is_aa64) { 8596 switch (regime_el(env, mmu_idx)) { 8597 case 1: 8598 if (!is_user) { 8599 xn = pxn || (user_rw & PAGE_WRITE); 8600 } 8601 break; 8602 case 2: 8603 case 3: 8604 break; 8605 } 8606 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8607 switch (regime_el(env, mmu_idx)) { 8608 case 1: 8609 case 3: 8610 if (is_user) { 8611 xn = xn || !(user_rw & PAGE_READ); 8612 } else { 8613 int uwxn = 0; 8614 if (have_wxn) { 8615 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8616 } 8617 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8618 (uwxn && (user_rw & PAGE_WRITE)); 8619 } 8620 break; 8621 case 2: 8622 break; 8623 } 8624 } else { 8625 xn = wxn = 0; 8626 } 8627 8628 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8629 return prot_rw; 8630 } 8631 return prot_rw | PAGE_EXEC; 8632 } 8633 8634 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8635 uint32_t *table, uint32_t address) 8636 { 8637 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8638 TCR *tcr = regime_tcr(env, mmu_idx); 8639 8640 if (address & tcr->mask) { 8641 if (tcr->raw_tcr & TTBCR_PD1) { 8642 /* Translation table walk disabled for TTBR1 */ 8643 return false; 8644 } 8645 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8646 } else { 8647 if (tcr->raw_tcr & TTBCR_PD0) { 8648 /* Translation table walk disabled for TTBR0 */ 8649 return false; 8650 } 8651 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8652 } 8653 *table |= (address >> 18) & 0x3ffc; 8654 return true; 8655 } 8656 8657 /* Translate a S1 pagetable walk through S2 if needed. */ 8658 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8659 hwaddr addr, MemTxAttrs txattrs, 8660 ARMMMUFaultInfo *fi) 8661 { 8662 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8663 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8664 target_ulong s2size; 8665 hwaddr s2pa; 8666 int s2prot; 8667 int ret; 8668 8669 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8670 &txattrs, &s2prot, &s2size, fi, NULL); 8671 if (ret) { 8672 assert(fi->type != ARMFault_None); 8673 fi->s2addr = addr; 8674 fi->stage2 = true; 8675 fi->s1ptw = true; 8676 return ~0; 8677 } 8678 addr = s2pa; 8679 } 8680 return addr; 8681 } 8682 8683 /* All loads done in the course of a page table walk go through here. 8684 * TODO: rather than ignoring errors from physical memory reads (which 8685 * are external aborts in ARM terminology) we should propagate this 8686 * error out so that we can turn it into a Data Abort if this walk 8687 * was being done for a CPU load/store or an address translation instruction 8688 * (but not if it was for a debug access). 8689 */ 8690 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8691 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8692 { 8693 ARMCPU *cpu = ARM_CPU(cs); 8694 CPUARMState *env = &cpu->env; 8695 MemTxAttrs attrs = {}; 8696 MemTxResult result = MEMTX_OK; 8697 AddressSpace *as; 8698 uint32_t data; 8699 8700 attrs.secure = is_secure; 8701 as = arm_addressspace(cs, attrs); 8702 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8703 if (fi->s1ptw) { 8704 return 0; 8705 } 8706 if (regime_translation_big_endian(env, mmu_idx)) { 8707 data = address_space_ldl_be(as, addr, attrs, &result); 8708 } else { 8709 data = address_space_ldl_le(as, addr, attrs, &result); 8710 } 8711 if (result == MEMTX_OK) { 8712 return data; 8713 } 8714 fi->type = ARMFault_SyncExternalOnWalk; 8715 fi->ea = arm_extabort_type(result); 8716 return 0; 8717 } 8718 8719 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8720 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8721 { 8722 ARMCPU *cpu = ARM_CPU(cs); 8723 CPUARMState *env = &cpu->env; 8724 MemTxAttrs attrs = {}; 8725 MemTxResult result = MEMTX_OK; 8726 AddressSpace *as; 8727 uint64_t data; 8728 8729 attrs.secure = is_secure; 8730 as = arm_addressspace(cs, attrs); 8731 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8732 if (fi->s1ptw) { 8733 return 0; 8734 } 8735 if (regime_translation_big_endian(env, mmu_idx)) { 8736 data = address_space_ldq_be(as, addr, attrs, &result); 8737 } else { 8738 data = address_space_ldq_le(as, addr, attrs, &result); 8739 } 8740 if (result == MEMTX_OK) { 8741 return data; 8742 } 8743 fi->type = ARMFault_SyncExternalOnWalk; 8744 fi->ea = arm_extabort_type(result); 8745 return 0; 8746 } 8747 8748 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8749 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8750 hwaddr *phys_ptr, int *prot, 8751 target_ulong *page_size, 8752 ARMMMUFaultInfo *fi) 8753 { 8754 CPUState *cs = CPU(arm_env_get_cpu(env)); 8755 int level = 1; 8756 uint32_t table; 8757 uint32_t desc; 8758 int type; 8759 int ap; 8760 int domain = 0; 8761 int domain_prot; 8762 hwaddr phys_addr; 8763 uint32_t dacr; 8764 8765 /* Pagetable walk. */ 8766 /* Lookup l1 descriptor. */ 8767 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8768 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8769 fi->type = ARMFault_Translation; 8770 goto do_fault; 8771 } 8772 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8773 mmu_idx, fi); 8774 if (fi->type != ARMFault_None) { 8775 goto do_fault; 8776 } 8777 type = (desc & 3); 8778 domain = (desc >> 5) & 0x0f; 8779 if (regime_el(env, mmu_idx) == 1) { 8780 dacr = env->cp15.dacr_ns; 8781 } else { 8782 dacr = env->cp15.dacr_s; 8783 } 8784 domain_prot = (dacr >> (domain * 2)) & 3; 8785 if (type == 0) { 8786 /* Section translation fault. */ 8787 fi->type = ARMFault_Translation; 8788 goto do_fault; 8789 } 8790 if (type != 2) { 8791 level = 2; 8792 } 8793 if (domain_prot == 0 || domain_prot == 2) { 8794 fi->type = ARMFault_Domain; 8795 goto do_fault; 8796 } 8797 if (type == 2) { 8798 /* 1Mb section. */ 8799 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8800 ap = (desc >> 10) & 3; 8801 *page_size = 1024 * 1024; 8802 } else { 8803 /* Lookup l2 entry. */ 8804 if (type == 1) { 8805 /* Coarse pagetable. */ 8806 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8807 } else { 8808 /* Fine pagetable. */ 8809 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8810 } 8811 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8812 mmu_idx, fi); 8813 if (fi->type != ARMFault_None) { 8814 goto do_fault; 8815 } 8816 switch (desc & 3) { 8817 case 0: /* Page translation fault. */ 8818 fi->type = ARMFault_Translation; 8819 goto do_fault; 8820 case 1: /* 64k page. */ 8821 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8822 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8823 *page_size = 0x10000; 8824 break; 8825 case 2: /* 4k page. */ 8826 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8827 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8828 *page_size = 0x1000; 8829 break; 8830 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8831 if (type == 1) { 8832 /* ARMv6/XScale extended small page format */ 8833 if (arm_feature(env, ARM_FEATURE_XSCALE) 8834 || arm_feature(env, ARM_FEATURE_V6)) { 8835 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8836 *page_size = 0x1000; 8837 } else { 8838 /* UNPREDICTABLE in ARMv5; we choose to take a 8839 * page translation fault. 8840 */ 8841 fi->type = ARMFault_Translation; 8842 goto do_fault; 8843 } 8844 } else { 8845 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8846 *page_size = 0x400; 8847 } 8848 ap = (desc >> 4) & 3; 8849 break; 8850 default: 8851 /* Never happens, but compiler isn't smart enough to tell. */ 8852 abort(); 8853 } 8854 } 8855 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8856 *prot |= *prot ? PAGE_EXEC : 0; 8857 if (!(*prot & (1 << access_type))) { 8858 /* Access permission fault. */ 8859 fi->type = ARMFault_Permission; 8860 goto do_fault; 8861 } 8862 *phys_ptr = phys_addr; 8863 return false; 8864 do_fault: 8865 fi->domain = domain; 8866 fi->level = level; 8867 return true; 8868 } 8869 8870 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8871 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8872 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8873 target_ulong *page_size, ARMMMUFaultInfo *fi) 8874 { 8875 CPUState *cs = CPU(arm_env_get_cpu(env)); 8876 int level = 1; 8877 uint32_t table; 8878 uint32_t desc; 8879 uint32_t xn; 8880 uint32_t pxn = 0; 8881 int type; 8882 int ap; 8883 int domain = 0; 8884 int domain_prot; 8885 hwaddr phys_addr; 8886 uint32_t dacr; 8887 bool ns; 8888 8889 /* Pagetable walk. */ 8890 /* Lookup l1 descriptor. */ 8891 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8892 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8893 fi->type = ARMFault_Translation; 8894 goto do_fault; 8895 } 8896 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8897 mmu_idx, fi); 8898 if (fi->type != ARMFault_None) { 8899 goto do_fault; 8900 } 8901 type = (desc & 3); 8902 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8903 /* Section translation fault, or attempt to use the encoding 8904 * which is Reserved on implementations without PXN. 8905 */ 8906 fi->type = ARMFault_Translation; 8907 goto do_fault; 8908 } 8909 if ((type == 1) || !(desc & (1 << 18))) { 8910 /* Page or Section. */ 8911 domain = (desc >> 5) & 0x0f; 8912 } 8913 if (regime_el(env, mmu_idx) == 1) { 8914 dacr = env->cp15.dacr_ns; 8915 } else { 8916 dacr = env->cp15.dacr_s; 8917 } 8918 if (type == 1) { 8919 level = 2; 8920 } 8921 domain_prot = (dacr >> (domain * 2)) & 3; 8922 if (domain_prot == 0 || domain_prot == 2) { 8923 /* Section or Page domain fault */ 8924 fi->type = ARMFault_Domain; 8925 goto do_fault; 8926 } 8927 if (type != 1) { 8928 if (desc & (1 << 18)) { 8929 /* Supersection. */ 8930 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8931 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8932 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8933 *page_size = 0x1000000; 8934 } else { 8935 /* Section. */ 8936 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8937 *page_size = 0x100000; 8938 } 8939 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8940 xn = desc & (1 << 4); 8941 pxn = desc & 1; 8942 ns = extract32(desc, 19, 1); 8943 } else { 8944 if (arm_feature(env, ARM_FEATURE_PXN)) { 8945 pxn = (desc >> 2) & 1; 8946 } 8947 ns = extract32(desc, 3, 1); 8948 /* Lookup l2 entry. */ 8949 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8950 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8951 mmu_idx, fi); 8952 if (fi->type != ARMFault_None) { 8953 goto do_fault; 8954 } 8955 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8956 switch (desc & 3) { 8957 case 0: /* Page translation fault. */ 8958 fi->type = ARMFault_Translation; 8959 goto do_fault; 8960 case 1: /* 64k page. */ 8961 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8962 xn = desc & (1 << 15); 8963 *page_size = 0x10000; 8964 break; 8965 case 2: case 3: /* 4k page. */ 8966 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8967 xn = desc & 1; 8968 *page_size = 0x1000; 8969 break; 8970 default: 8971 /* Never happens, but compiler isn't smart enough to tell. */ 8972 abort(); 8973 } 8974 } 8975 if (domain_prot == 3) { 8976 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8977 } else { 8978 if (pxn && !regime_is_user(env, mmu_idx)) { 8979 xn = 1; 8980 } 8981 if (xn && access_type == MMU_INST_FETCH) { 8982 fi->type = ARMFault_Permission; 8983 goto do_fault; 8984 } 8985 8986 if (arm_feature(env, ARM_FEATURE_V6K) && 8987 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8988 /* The simplified model uses AP[0] as an access control bit. */ 8989 if ((ap & 1) == 0) { 8990 /* Access flag fault. */ 8991 fi->type = ARMFault_AccessFlag; 8992 goto do_fault; 8993 } 8994 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 8995 } else { 8996 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8997 } 8998 if (*prot && !xn) { 8999 *prot |= PAGE_EXEC; 9000 } 9001 if (!(*prot & (1 << access_type))) { 9002 /* Access permission fault. */ 9003 fi->type = ARMFault_Permission; 9004 goto do_fault; 9005 } 9006 } 9007 if (ns) { 9008 /* The NS bit will (as required by the architecture) have no effect if 9009 * the CPU doesn't support TZ or this is a non-secure translation 9010 * regime, because the attribute will already be non-secure. 9011 */ 9012 attrs->secure = false; 9013 } 9014 *phys_ptr = phys_addr; 9015 return false; 9016 do_fault: 9017 fi->domain = domain; 9018 fi->level = level; 9019 return true; 9020 } 9021 9022 /* 9023 * check_s2_mmu_setup 9024 * @cpu: ARMCPU 9025 * @is_aa64: True if the translation regime is in AArch64 state 9026 * @startlevel: Suggested starting level 9027 * @inputsize: Bitsize of IPAs 9028 * @stride: Page-table stride (See the ARM ARM) 9029 * 9030 * Returns true if the suggested S2 translation parameters are OK and 9031 * false otherwise. 9032 */ 9033 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9034 int inputsize, int stride) 9035 { 9036 const int grainsize = stride + 3; 9037 int startsizecheck; 9038 9039 /* Negative levels are never allowed. */ 9040 if (level < 0) { 9041 return false; 9042 } 9043 9044 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9045 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9046 return false; 9047 } 9048 9049 if (is_aa64) { 9050 CPUARMState *env = &cpu->env; 9051 unsigned int pamax = arm_pamax(cpu); 9052 9053 switch (stride) { 9054 case 13: /* 64KB Pages. */ 9055 if (level == 0 || (level == 1 && pamax <= 42)) { 9056 return false; 9057 } 9058 break; 9059 case 11: /* 16KB Pages. */ 9060 if (level == 0 || (level == 1 && pamax <= 40)) { 9061 return false; 9062 } 9063 break; 9064 case 9: /* 4KB Pages. */ 9065 if (level == 0 && pamax <= 42) { 9066 return false; 9067 } 9068 break; 9069 default: 9070 g_assert_not_reached(); 9071 } 9072 9073 /* Inputsize checks. */ 9074 if (inputsize > pamax && 9075 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9076 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9077 return false; 9078 } 9079 } else { 9080 /* AArch32 only supports 4KB pages. Assert on that. */ 9081 assert(stride == 9); 9082 9083 if (level == 0) { 9084 return false; 9085 } 9086 } 9087 return true; 9088 } 9089 9090 /* Translate from the 4-bit stage 2 representation of 9091 * memory attributes (without cache-allocation hints) to 9092 * the 8-bit representation of the stage 1 MAIR registers 9093 * (which includes allocation hints). 9094 * 9095 * ref: shared/translation/attrs/S2AttrDecode() 9096 * .../S2ConvertAttrsHints() 9097 */ 9098 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9099 { 9100 uint8_t hiattr = extract32(s2attrs, 2, 2); 9101 uint8_t loattr = extract32(s2attrs, 0, 2); 9102 uint8_t hihint = 0, lohint = 0; 9103 9104 if (hiattr != 0) { /* normal memory */ 9105 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9106 hiattr = loattr = 1; /* non-cacheable */ 9107 } else { 9108 if (hiattr != 1) { /* Write-through or write-back */ 9109 hihint = 3; /* RW allocate */ 9110 } 9111 if (loattr != 1) { /* Write-through or write-back */ 9112 lohint = 3; /* RW allocate */ 9113 } 9114 } 9115 } 9116 9117 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9118 } 9119 9120 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9121 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9122 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9123 target_ulong *page_size_ptr, 9124 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9125 { 9126 ARMCPU *cpu = arm_env_get_cpu(env); 9127 CPUState *cs = CPU(cpu); 9128 /* Read an LPAE long-descriptor translation table. */ 9129 ARMFaultType fault_type = ARMFault_Translation; 9130 uint32_t level; 9131 uint32_t epd = 0; 9132 int32_t t0sz, t1sz; 9133 uint32_t tg; 9134 uint64_t ttbr; 9135 int ttbr_select; 9136 hwaddr descaddr, indexmask, indexmask_grainsize; 9137 uint32_t tableattrs; 9138 target_ulong page_size; 9139 uint32_t attrs; 9140 int32_t stride = 9; 9141 int32_t addrsize; 9142 int inputsize; 9143 int32_t tbi = 0; 9144 TCR *tcr = regime_tcr(env, mmu_idx); 9145 int ap, ns, xn, pxn; 9146 uint32_t el = regime_el(env, mmu_idx); 9147 bool ttbr1_valid = true; 9148 uint64_t descaddrmask; 9149 bool aarch64 = arm_el_is_aa64(env, el); 9150 9151 /* TODO: 9152 * This code does not handle the different format TCR for VTCR_EL2. 9153 * This code also does not support shareability levels. 9154 * Attribute and permission bit handling should also be checked when adding 9155 * support for those page table walks. 9156 */ 9157 if (aarch64) { 9158 level = 0; 9159 addrsize = 64; 9160 if (el > 1) { 9161 if (mmu_idx != ARMMMUIdx_S2NS) { 9162 tbi = extract64(tcr->raw_tcr, 20, 1); 9163 } 9164 } else { 9165 if (extract64(address, 55, 1)) { 9166 tbi = extract64(tcr->raw_tcr, 38, 1); 9167 } else { 9168 tbi = extract64(tcr->raw_tcr, 37, 1); 9169 } 9170 } 9171 tbi *= 8; 9172 9173 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9174 * invalid. 9175 */ 9176 if (el > 1) { 9177 ttbr1_valid = false; 9178 } 9179 } else { 9180 level = 1; 9181 addrsize = 32; 9182 /* There is no TTBR1 for EL2 */ 9183 if (el == 2) { 9184 ttbr1_valid = false; 9185 } 9186 } 9187 9188 /* Determine whether this address is in the region controlled by 9189 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9190 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9191 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9192 */ 9193 if (aarch64) { 9194 /* AArch64 translation. */ 9195 t0sz = extract32(tcr->raw_tcr, 0, 6); 9196 t0sz = MIN(t0sz, 39); 9197 t0sz = MAX(t0sz, 16); 9198 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9199 /* AArch32 stage 1 translation. */ 9200 t0sz = extract32(tcr->raw_tcr, 0, 3); 9201 } else { 9202 /* AArch32 stage 2 translation. */ 9203 bool sext = extract32(tcr->raw_tcr, 4, 1); 9204 bool sign = extract32(tcr->raw_tcr, 3, 1); 9205 /* Address size is 40-bit for a stage 2 translation, 9206 * and t0sz can be negative (from -8 to 7), 9207 * so we need to adjust it to use the TTBR selecting logic below. 9208 */ 9209 addrsize = 40; 9210 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9211 9212 /* If the sign-extend bit is not the same as t0sz[3], the result 9213 * is unpredictable. Flag this as a guest error. */ 9214 if (sign != sext) { 9215 qemu_log_mask(LOG_GUEST_ERROR, 9216 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9217 } 9218 } 9219 t1sz = extract32(tcr->raw_tcr, 16, 6); 9220 if (aarch64) { 9221 t1sz = MIN(t1sz, 39); 9222 t1sz = MAX(t1sz, 16); 9223 } 9224 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9225 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9226 ttbr_select = 0; 9227 } else if (ttbr1_valid && t1sz && 9228 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9229 /* there is a ttbr1 region and we are in it (high bits all one) */ 9230 ttbr_select = 1; 9231 } else if (!t0sz) { 9232 /* ttbr0 region is "everything not in the ttbr1 region" */ 9233 ttbr_select = 0; 9234 } else if (!t1sz && ttbr1_valid) { 9235 /* ttbr1 region is "everything not in the ttbr0 region" */ 9236 ttbr_select = 1; 9237 } else { 9238 /* in the gap between the two regions, this is a Translation fault */ 9239 fault_type = ARMFault_Translation; 9240 goto do_fault; 9241 } 9242 9243 /* Note that QEMU ignores shareability and cacheability attributes, 9244 * so we don't need to do anything with the SH, ORGN, IRGN fields 9245 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9246 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9247 * implement any ASID-like capability so we can ignore it (instead 9248 * we will always flush the TLB any time the ASID is changed). 9249 */ 9250 if (ttbr_select == 0) { 9251 ttbr = regime_ttbr(env, mmu_idx, 0); 9252 if (el < 2) { 9253 epd = extract32(tcr->raw_tcr, 7, 1); 9254 } 9255 inputsize = addrsize - t0sz; 9256 9257 tg = extract32(tcr->raw_tcr, 14, 2); 9258 if (tg == 1) { /* 64KB pages */ 9259 stride = 13; 9260 } 9261 if (tg == 2) { /* 16KB pages */ 9262 stride = 11; 9263 } 9264 } else { 9265 /* We should only be here if TTBR1 is valid */ 9266 assert(ttbr1_valid); 9267 9268 ttbr = regime_ttbr(env, mmu_idx, 1); 9269 epd = extract32(tcr->raw_tcr, 23, 1); 9270 inputsize = addrsize - t1sz; 9271 9272 tg = extract32(tcr->raw_tcr, 30, 2); 9273 if (tg == 3) { /* 64KB pages */ 9274 stride = 13; 9275 } 9276 if (tg == 1) { /* 16KB pages */ 9277 stride = 11; 9278 } 9279 } 9280 9281 /* Here we should have set up all the parameters for the translation: 9282 * inputsize, ttbr, epd, stride, tbi 9283 */ 9284 9285 if (epd) { 9286 /* Translation table walk disabled => Translation fault on TLB miss 9287 * Note: This is always 0 on 64-bit EL2 and EL3. 9288 */ 9289 goto do_fault; 9290 } 9291 9292 if (mmu_idx != ARMMMUIdx_S2NS) { 9293 /* The starting level depends on the virtual address size (which can 9294 * be up to 48 bits) and the translation granule size. It indicates 9295 * the number of strides (stride bits at a time) needed to 9296 * consume the bits of the input address. In the pseudocode this is: 9297 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9298 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9299 * our 'stride + 3' and 'stride' is our 'stride'. 9300 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9301 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9302 * = 4 - (inputsize - 4) / stride; 9303 */ 9304 level = 4 - (inputsize - 4) / stride; 9305 } else { 9306 /* For stage 2 translations the starting level is specified by the 9307 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9308 */ 9309 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9310 uint32_t startlevel; 9311 bool ok; 9312 9313 if (!aarch64 || stride == 9) { 9314 /* AArch32 or 4KB pages */ 9315 startlevel = 2 - sl0; 9316 } else { 9317 /* 16KB or 64KB pages */ 9318 startlevel = 3 - sl0; 9319 } 9320 9321 /* Check that the starting level is valid. */ 9322 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9323 inputsize, stride); 9324 if (!ok) { 9325 fault_type = ARMFault_Translation; 9326 goto do_fault; 9327 } 9328 level = startlevel; 9329 } 9330 9331 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9332 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9333 9334 /* Now we can extract the actual base address from the TTBR */ 9335 descaddr = extract64(ttbr, 0, 48); 9336 descaddr &= ~indexmask; 9337 9338 /* The address field in the descriptor goes up to bit 39 for ARMv7 9339 * but up to bit 47 for ARMv8, but we use the descaddrmask 9340 * up to bit 39 for AArch32, because we don't need other bits in that case 9341 * to construct next descriptor address (anyway they should be all zeroes). 9342 */ 9343 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9344 ~indexmask_grainsize; 9345 9346 /* Secure accesses start with the page table in secure memory and 9347 * can be downgraded to non-secure at any step. Non-secure accesses 9348 * remain non-secure. We implement this by just ORing in the NSTable/NS 9349 * bits at each step. 9350 */ 9351 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9352 for (;;) { 9353 uint64_t descriptor; 9354 bool nstable; 9355 9356 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9357 descaddr &= ~7ULL; 9358 nstable = extract32(tableattrs, 4, 1); 9359 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9360 if (fi->type != ARMFault_None) { 9361 goto do_fault; 9362 } 9363 9364 if (!(descriptor & 1) || 9365 (!(descriptor & 2) && (level == 3))) { 9366 /* Invalid, or the Reserved level 3 encoding */ 9367 goto do_fault; 9368 } 9369 descaddr = descriptor & descaddrmask; 9370 9371 if ((descriptor & 2) && (level < 3)) { 9372 /* Table entry. The top five bits are attributes which may 9373 * propagate down through lower levels of the table (and 9374 * which are all arranged so that 0 means "no effect", so 9375 * we can gather them up by ORing in the bits at each level). 9376 */ 9377 tableattrs |= extract64(descriptor, 59, 5); 9378 level++; 9379 indexmask = indexmask_grainsize; 9380 continue; 9381 } 9382 /* Block entry at level 1 or 2, or page entry at level 3. 9383 * These are basically the same thing, although the number 9384 * of bits we pull in from the vaddr varies. 9385 */ 9386 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9387 descaddr |= (address & (page_size - 1)); 9388 /* Extract attributes from the descriptor */ 9389 attrs = extract64(descriptor, 2, 10) 9390 | (extract64(descriptor, 52, 12) << 10); 9391 9392 if (mmu_idx == ARMMMUIdx_S2NS) { 9393 /* Stage 2 table descriptors do not include any attribute fields */ 9394 break; 9395 } 9396 /* Merge in attributes from table descriptors */ 9397 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9398 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9399 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9400 * means "force PL1 access only", which means forcing AP[1] to 0. 9401 */ 9402 if (extract32(tableattrs, 2, 1)) { 9403 attrs &= ~(1 << 4); 9404 } 9405 attrs |= nstable << 3; /* NS */ 9406 break; 9407 } 9408 /* Here descaddr is the final physical address, and attributes 9409 * are all in attrs. 9410 */ 9411 fault_type = ARMFault_AccessFlag; 9412 if ((attrs & (1 << 8)) == 0) { 9413 /* Access flag */ 9414 goto do_fault; 9415 } 9416 9417 ap = extract32(attrs, 4, 2); 9418 xn = extract32(attrs, 12, 1); 9419 9420 if (mmu_idx == ARMMMUIdx_S2NS) { 9421 ns = true; 9422 *prot = get_S2prot(env, ap, xn); 9423 } else { 9424 ns = extract32(attrs, 3, 1); 9425 pxn = extract32(attrs, 11, 1); 9426 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9427 } 9428 9429 fault_type = ARMFault_Permission; 9430 if (!(*prot & (1 << access_type))) { 9431 goto do_fault; 9432 } 9433 9434 if (ns) { 9435 /* The NS bit will (as required by the architecture) have no effect if 9436 * the CPU doesn't support TZ or this is a non-secure translation 9437 * regime, because the attribute will already be non-secure. 9438 */ 9439 txattrs->secure = false; 9440 } 9441 9442 if (cacheattrs != NULL) { 9443 if (mmu_idx == ARMMMUIdx_S2NS) { 9444 cacheattrs->attrs = convert_stage2_attrs(env, 9445 extract32(attrs, 0, 4)); 9446 } else { 9447 /* Index into MAIR registers for cache attributes */ 9448 uint8_t attrindx = extract32(attrs, 0, 3); 9449 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9450 assert(attrindx <= 7); 9451 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9452 } 9453 cacheattrs->shareability = extract32(attrs, 6, 2); 9454 } 9455 9456 *phys_ptr = descaddr; 9457 *page_size_ptr = page_size; 9458 return false; 9459 9460 do_fault: 9461 fi->type = fault_type; 9462 fi->level = level; 9463 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9464 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9465 return true; 9466 } 9467 9468 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9469 ARMMMUIdx mmu_idx, 9470 int32_t address, int *prot) 9471 { 9472 if (!arm_feature(env, ARM_FEATURE_M)) { 9473 *prot = PAGE_READ | PAGE_WRITE; 9474 switch (address) { 9475 case 0xF0000000 ... 0xFFFFFFFF: 9476 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9477 /* hivecs execing is ok */ 9478 *prot |= PAGE_EXEC; 9479 } 9480 break; 9481 case 0x00000000 ... 0x7FFFFFFF: 9482 *prot |= PAGE_EXEC; 9483 break; 9484 } 9485 } else { 9486 /* Default system address map for M profile cores. 9487 * The architecture specifies which regions are execute-never; 9488 * at the MPU level no other checks are defined. 9489 */ 9490 switch (address) { 9491 case 0x00000000 ... 0x1fffffff: /* ROM */ 9492 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9493 case 0x60000000 ... 0x7fffffff: /* RAM */ 9494 case 0x80000000 ... 0x9fffffff: /* RAM */ 9495 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9496 break; 9497 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9498 case 0xa0000000 ... 0xbfffffff: /* Device */ 9499 case 0xc0000000 ... 0xdfffffff: /* Device */ 9500 case 0xe0000000 ... 0xffffffff: /* System */ 9501 *prot = PAGE_READ | PAGE_WRITE; 9502 break; 9503 default: 9504 g_assert_not_reached(); 9505 } 9506 } 9507 } 9508 9509 static bool pmsav7_use_background_region(ARMCPU *cpu, 9510 ARMMMUIdx mmu_idx, bool is_user) 9511 { 9512 /* Return true if we should use the default memory map as a 9513 * "background" region if there are no hits against any MPU regions. 9514 */ 9515 CPUARMState *env = &cpu->env; 9516 9517 if (is_user) { 9518 return false; 9519 } 9520 9521 if (arm_feature(env, ARM_FEATURE_M)) { 9522 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9523 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9524 } else { 9525 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9526 } 9527 } 9528 9529 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9530 { 9531 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9532 return arm_feature(env, ARM_FEATURE_M) && 9533 extract32(address, 20, 12) == 0xe00; 9534 } 9535 9536 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9537 { 9538 /* True if address is in the M profile system region 9539 * 0xe0000000 - 0xffffffff 9540 */ 9541 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9542 } 9543 9544 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9545 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9546 hwaddr *phys_ptr, int *prot, 9547 ARMMMUFaultInfo *fi) 9548 { 9549 ARMCPU *cpu = arm_env_get_cpu(env); 9550 int n; 9551 bool is_user = regime_is_user(env, mmu_idx); 9552 9553 *phys_ptr = address; 9554 *prot = 0; 9555 9556 if (regime_translation_disabled(env, mmu_idx) || 9557 m_is_ppb_region(env, address)) { 9558 /* MPU disabled or M profile PPB access: use default memory map. 9559 * The other case which uses the default memory map in the 9560 * v7M ARM ARM pseudocode is exception vector reads from the vector 9561 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9562 * which always does a direct read using address_space_ldl(), rather 9563 * than going via this function, so we don't need to check that here. 9564 */ 9565 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9566 } else { /* MPU enabled */ 9567 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9568 /* region search */ 9569 uint32_t base = env->pmsav7.drbar[n]; 9570 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9571 uint32_t rmask; 9572 bool srdis = false; 9573 9574 if (!(env->pmsav7.drsr[n] & 0x1)) { 9575 continue; 9576 } 9577 9578 if (!rsize) { 9579 qemu_log_mask(LOG_GUEST_ERROR, 9580 "DRSR[%d]: Rsize field cannot be 0\n", n); 9581 continue; 9582 } 9583 rsize++; 9584 rmask = (1ull << rsize) - 1; 9585 9586 if (base & rmask) { 9587 qemu_log_mask(LOG_GUEST_ERROR, 9588 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9589 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9590 n, base, rmask); 9591 continue; 9592 } 9593 9594 if (address < base || address > base + rmask) { 9595 continue; 9596 } 9597 9598 /* Region matched */ 9599 9600 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9601 int i, snd; 9602 uint32_t srdis_mask; 9603 9604 rsize -= 3; /* sub region size (power of 2) */ 9605 snd = ((address - base) >> rsize) & 0x7; 9606 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9607 9608 srdis_mask = srdis ? 0x3 : 0x0; 9609 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9610 /* This will check in groups of 2, 4 and then 8, whether 9611 * the subregion bits are consistent. rsize is incremented 9612 * back up to give the region size, considering consistent 9613 * adjacent subregions as one region. Stop testing if rsize 9614 * is already big enough for an entire QEMU page. 9615 */ 9616 int snd_rounded = snd & ~(i - 1); 9617 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9618 snd_rounded + 8, i); 9619 if (srdis_mask ^ srdis_multi) { 9620 break; 9621 } 9622 srdis_mask = (srdis_mask << i) | srdis_mask; 9623 rsize++; 9624 } 9625 } 9626 if (rsize < TARGET_PAGE_BITS) { 9627 qemu_log_mask(LOG_UNIMP, 9628 "DRSR[%d]: No support for MPU (sub)region " 9629 "alignment of %" PRIu32 " bits. Minimum is %d\n", 9630 n, rsize, TARGET_PAGE_BITS); 9631 continue; 9632 } 9633 if (srdis) { 9634 continue; 9635 } 9636 break; 9637 } 9638 9639 if (n == -1) { /* no hits */ 9640 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9641 /* background fault */ 9642 fi->type = ARMFault_Background; 9643 return true; 9644 } 9645 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9646 } else { /* a MPU hit! */ 9647 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9648 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9649 9650 if (m_is_system_region(env, address)) { 9651 /* System space is always execute never */ 9652 xn = 1; 9653 } 9654 9655 if (is_user) { /* User mode AP bit decoding */ 9656 switch (ap) { 9657 case 0: 9658 case 1: 9659 case 5: 9660 break; /* no access */ 9661 case 3: 9662 *prot |= PAGE_WRITE; 9663 /* fall through */ 9664 case 2: 9665 case 6: 9666 *prot |= PAGE_READ | PAGE_EXEC; 9667 break; 9668 case 7: 9669 /* for v7M, same as 6; for R profile a reserved value */ 9670 if (arm_feature(env, ARM_FEATURE_M)) { 9671 *prot |= PAGE_READ | PAGE_EXEC; 9672 break; 9673 } 9674 /* fall through */ 9675 default: 9676 qemu_log_mask(LOG_GUEST_ERROR, 9677 "DRACR[%d]: Bad value for AP bits: 0x%" 9678 PRIx32 "\n", n, ap); 9679 } 9680 } else { /* Priv. mode AP bits decoding */ 9681 switch (ap) { 9682 case 0: 9683 break; /* no access */ 9684 case 1: 9685 case 2: 9686 case 3: 9687 *prot |= PAGE_WRITE; 9688 /* fall through */ 9689 case 5: 9690 case 6: 9691 *prot |= PAGE_READ | PAGE_EXEC; 9692 break; 9693 case 7: 9694 /* for v7M, same as 6; for R profile a reserved value */ 9695 if (arm_feature(env, ARM_FEATURE_M)) { 9696 *prot |= PAGE_READ | PAGE_EXEC; 9697 break; 9698 } 9699 /* fall through */ 9700 default: 9701 qemu_log_mask(LOG_GUEST_ERROR, 9702 "DRACR[%d]: Bad value for AP bits: 0x%" 9703 PRIx32 "\n", n, ap); 9704 } 9705 } 9706 9707 /* execute never */ 9708 if (xn) { 9709 *prot &= ~PAGE_EXEC; 9710 } 9711 } 9712 } 9713 9714 fi->type = ARMFault_Permission; 9715 fi->level = 1; 9716 return !(*prot & (1 << access_type)); 9717 } 9718 9719 static bool v8m_is_sau_exempt(CPUARMState *env, 9720 uint32_t address, MMUAccessType access_type) 9721 { 9722 /* The architecture specifies that certain address ranges are 9723 * exempt from v8M SAU/IDAU checks. 9724 */ 9725 return 9726 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9727 (address >= 0xe0000000 && address <= 0xe0002fff) || 9728 (address >= 0xe000e000 && address <= 0xe000efff) || 9729 (address >= 0xe002e000 && address <= 0xe002efff) || 9730 (address >= 0xe0040000 && address <= 0xe0041fff) || 9731 (address >= 0xe00ff000 && address <= 0xe00fffff); 9732 } 9733 9734 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9735 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9736 V8M_SAttributes *sattrs) 9737 { 9738 /* Look up the security attributes for this address. Compare the 9739 * pseudocode SecurityCheck() function. 9740 * We assume the caller has zero-initialized *sattrs. 9741 */ 9742 ARMCPU *cpu = arm_env_get_cpu(env); 9743 int r; 9744 9745 /* TODO: implement IDAU */ 9746 9747 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9748 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9749 return; 9750 } 9751 9752 if (v8m_is_sau_exempt(env, address, access_type)) { 9753 sattrs->ns = !regime_is_secure(env, mmu_idx); 9754 return; 9755 } 9756 9757 switch (env->sau.ctrl & 3) { 9758 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9759 break; 9760 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9761 sattrs->ns = true; 9762 break; 9763 default: /* SAU.ENABLE == 1 */ 9764 for (r = 0; r < cpu->sau_sregion; r++) { 9765 if (env->sau.rlar[r] & 1) { 9766 uint32_t base = env->sau.rbar[r] & ~0x1f; 9767 uint32_t limit = env->sau.rlar[r] | 0x1f; 9768 9769 if (base <= address && limit >= address) { 9770 if (sattrs->srvalid) { 9771 /* If we hit in more than one region then we must report 9772 * as Secure, not NS-Callable, with no valid region 9773 * number info. 9774 */ 9775 sattrs->ns = false; 9776 sattrs->nsc = false; 9777 sattrs->sregion = 0; 9778 sattrs->srvalid = false; 9779 break; 9780 } else { 9781 if (env->sau.rlar[r] & 2) { 9782 sattrs->nsc = true; 9783 } else { 9784 sattrs->ns = true; 9785 } 9786 sattrs->srvalid = true; 9787 sattrs->sregion = r; 9788 } 9789 } 9790 } 9791 } 9792 9793 /* TODO when we support the IDAU then it may override the result here */ 9794 break; 9795 } 9796 } 9797 9798 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9799 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9800 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9801 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) 9802 { 9803 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9804 * that a full phys-to-virt translation does). 9805 * mregion is (if not NULL) set to the region number which matched, 9806 * or -1 if no region number is returned (MPU off, address did not 9807 * hit a region, address hit in multiple regions). 9808 */ 9809 ARMCPU *cpu = arm_env_get_cpu(env); 9810 bool is_user = regime_is_user(env, mmu_idx); 9811 uint32_t secure = regime_is_secure(env, mmu_idx); 9812 int n; 9813 int matchregion = -1; 9814 bool hit = false; 9815 9816 *phys_ptr = address; 9817 *prot = 0; 9818 if (mregion) { 9819 *mregion = -1; 9820 } 9821 9822 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9823 * was an exception vector read from the vector table (which is always 9824 * done using the default system address map), because those accesses 9825 * are done in arm_v7m_load_vector(), which always does a direct 9826 * read using address_space_ldl(), rather than going via this function. 9827 */ 9828 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9829 hit = true; 9830 } else if (m_is_ppb_region(env, address)) { 9831 hit = true; 9832 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9833 hit = true; 9834 } else { 9835 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9836 /* region search */ 9837 /* Note that the base address is bits [31:5] from the register 9838 * with bits [4:0] all zeroes, but the limit address is bits 9839 * [31:5] from the register with bits [4:0] all ones. 9840 */ 9841 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9842 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9843 9844 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9845 /* Region disabled */ 9846 continue; 9847 } 9848 9849 if (address < base || address > limit) { 9850 continue; 9851 } 9852 9853 if (hit) { 9854 /* Multiple regions match -- always a failure (unlike 9855 * PMSAv7 where highest-numbered-region wins) 9856 */ 9857 fi->type = ARMFault_Permission; 9858 fi->level = 1; 9859 return true; 9860 } 9861 9862 matchregion = n; 9863 hit = true; 9864 9865 if (base & ~TARGET_PAGE_MASK) { 9866 qemu_log_mask(LOG_UNIMP, 9867 "MPU_RBAR[%d]: No support for MPU region base" 9868 "address of 0x%" PRIx32 ". Minimum alignment is " 9869 "%d\n", 9870 n, base, TARGET_PAGE_BITS); 9871 continue; 9872 } 9873 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9874 qemu_log_mask(LOG_UNIMP, 9875 "MPU_RBAR[%d]: No support for MPU region limit" 9876 "address of 0x%" PRIx32 ". Minimum alignment is " 9877 "%d\n", 9878 n, limit, TARGET_PAGE_BITS); 9879 continue; 9880 } 9881 } 9882 } 9883 9884 if (!hit) { 9885 /* background fault */ 9886 fi->type = ARMFault_Background; 9887 return true; 9888 } 9889 9890 if (matchregion == -1) { 9891 /* hit using the background region */ 9892 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9893 } else { 9894 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9895 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9896 9897 if (m_is_system_region(env, address)) { 9898 /* System space is always execute never */ 9899 xn = 1; 9900 } 9901 9902 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9903 if (*prot && !xn) { 9904 *prot |= PAGE_EXEC; 9905 } 9906 /* We don't need to look the attribute up in the MAIR0/MAIR1 9907 * registers because that only tells us about cacheability. 9908 */ 9909 if (mregion) { 9910 *mregion = matchregion; 9911 } 9912 } 9913 9914 fi->type = ARMFault_Permission; 9915 fi->level = 1; 9916 return !(*prot & (1 << access_type)); 9917 } 9918 9919 9920 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9921 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9922 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9923 int *prot, ARMMMUFaultInfo *fi) 9924 { 9925 uint32_t secure = regime_is_secure(env, mmu_idx); 9926 V8M_SAttributes sattrs = {}; 9927 9928 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9929 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9930 if (access_type == MMU_INST_FETCH) { 9931 /* Instruction fetches always use the MMU bank and the 9932 * transaction attribute determined by the fetch address, 9933 * regardless of CPU state. This is painful for QEMU 9934 * to handle, because it would mean we need to encode 9935 * into the mmu_idx not just the (user, negpri) information 9936 * for the current security state but also that for the 9937 * other security state, which would balloon the number 9938 * of mmu_idx values needed alarmingly. 9939 * Fortunately we can avoid this because it's not actually 9940 * possible to arbitrarily execute code from memory with 9941 * the wrong security attribute: it will always generate 9942 * an exception of some kind or another, apart from the 9943 * special case of an NS CPU executing an SG instruction 9944 * in S&NSC memory. So we always just fail the translation 9945 * here and sort things out in the exception handler 9946 * (including possibly emulating an SG instruction). 9947 */ 9948 if (sattrs.ns != !secure) { 9949 if (sattrs.nsc) { 9950 fi->type = ARMFault_QEMU_NSCExec; 9951 } else { 9952 fi->type = ARMFault_QEMU_SFault; 9953 } 9954 *phys_ptr = address; 9955 *prot = 0; 9956 return true; 9957 } 9958 } else { 9959 /* For data accesses we always use the MMU bank indicated 9960 * by the current CPU state, but the security attributes 9961 * might downgrade a secure access to nonsecure. 9962 */ 9963 if (sattrs.ns) { 9964 txattrs->secure = false; 9965 } else if (!secure) { 9966 /* NS access to S memory must fault. 9967 * Architecturally we should first check whether the 9968 * MPU information for this address indicates that we 9969 * are doing an unaligned access to Device memory, which 9970 * should generate a UsageFault instead. QEMU does not 9971 * currently check for that kind of unaligned access though. 9972 * If we added it we would need to do so as a special case 9973 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 9974 */ 9975 fi->type = ARMFault_QEMU_SFault; 9976 *phys_ptr = address; 9977 *prot = 0; 9978 return true; 9979 } 9980 } 9981 } 9982 9983 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 9984 txattrs, prot, fi, NULL); 9985 } 9986 9987 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 9988 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9989 hwaddr *phys_ptr, int *prot, 9990 ARMMMUFaultInfo *fi) 9991 { 9992 int n; 9993 uint32_t mask; 9994 uint32_t base; 9995 bool is_user = regime_is_user(env, mmu_idx); 9996 9997 if (regime_translation_disabled(env, mmu_idx)) { 9998 /* MPU disabled. */ 9999 *phys_ptr = address; 10000 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10001 return false; 10002 } 10003 10004 *phys_ptr = address; 10005 for (n = 7; n >= 0; n--) { 10006 base = env->cp15.c6_region[n]; 10007 if ((base & 1) == 0) { 10008 continue; 10009 } 10010 mask = 1 << ((base >> 1) & 0x1f); 10011 /* Keep this shift separate from the above to avoid an 10012 (undefined) << 32. */ 10013 mask = (mask << 1) - 1; 10014 if (((base ^ address) & ~mask) == 0) { 10015 break; 10016 } 10017 } 10018 if (n < 0) { 10019 fi->type = ARMFault_Background; 10020 return true; 10021 } 10022 10023 if (access_type == MMU_INST_FETCH) { 10024 mask = env->cp15.pmsav5_insn_ap; 10025 } else { 10026 mask = env->cp15.pmsav5_data_ap; 10027 } 10028 mask = (mask >> (n * 4)) & 0xf; 10029 switch (mask) { 10030 case 0: 10031 fi->type = ARMFault_Permission; 10032 fi->level = 1; 10033 return true; 10034 case 1: 10035 if (is_user) { 10036 fi->type = ARMFault_Permission; 10037 fi->level = 1; 10038 return true; 10039 } 10040 *prot = PAGE_READ | PAGE_WRITE; 10041 break; 10042 case 2: 10043 *prot = PAGE_READ; 10044 if (!is_user) { 10045 *prot |= PAGE_WRITE; 10046 } 10047 break; 10048 case 3: 10049 *prot = PAGE_READ | PAGE_WRITE; 10050 break; 10051 case 5: 10052 if (is_user) { 10053 fi->type = ARMFault_Permission; 10054 fi->level = 1; 10055 return true; 10056 } 10057 *prot = PAGE_READ; 10058 break; 10059 case 6: 10060 *prot = PAGE_READ; 10061 break; 10062 default: 10063 /* Bad permission. */ 10064 fi->type = ARMFault_Permission; 10065 fi->level = 1; 10066 return true; 10067 } 10068 *prot |= PAGE_EXEC; 10069 return false; 10070 } 10071 10072 /* Combine either inner or outer cacheability attributes for normal 10073 * memory, according to table D4-42 and pseudocode procedure 10074 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10075 * 10076 * NB: only stage 1 includes allocation hints (RW bits), leading to 10077 * some asymmetry. 10078 */ 10079 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10080 { 10081 if (s1 == 4 || s2 == 4) { 10082 /* non-cacheable has precedence */ 10083 return 4; 10084 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10085 /* stage 1 write-through takes precedence */ 10086 return s1; 10087 } else if (extract32(s2, 2, 2) == 2) { 10088 /* stage 2 write-through takes precedence, but the allocation hint 10089 * is still taken from stage 1 10090 */ 10091 return (2 << 2) | extract32(s1, 0, 2); 10092 } else { /* write-back */ 10093 return s1; 10094 } 10095 } 10096 10097 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10098 * and CombineS1S2Desc() 10099 * 10100 * @s1: Attributes from stage 1 walk 10101 * @s2: Attributes from stage 2 walk 10102 */ 10103 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10104 { 10105 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10106 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10107 ARMCacheAttrs ret; 10108 10109 /* Combine shareability attributes (table D4-43) */ 10110 if (s1.shareability == 2 || s2.shareability == 2) { 10111 /* if either are outer-shareable, the result is outer-shareable */ 10112 ret.shareability = 2; 10113 } else if (s1.shareability == 3 || s2.shareability == 3) { 10114 /* if either are inner-shareable, the result is inner-shareable */ 10115 ret.shareability = 3; 10116 } else { 10117 /* both non-shareable */ 10118 ret.shareability = 0; 10119 } 10120 10121 /* Combine memory type and cacheability attributes */ 10122 if (s1hi == 0 || s2hi == 0) { 10123 /* Device has precedence over normal */ 10124 if (s1lo == 0 || s2lo == 0) { 10125 /* nGnRnE has precedence over anything */ 10126 ret.attrs = 0; 10127 } else if (s1lo == 4 || s2lo == 4) { 10128 /* non-Reordering has precedence over Reordering */ 10129 ret.attrs = 4; /* nGnRE */ 10130 } else if (s1lo == 8 || s2lo == 8) { 10131 /* non-Gathering has precedence over Gathering */ 10132 ret.attrs = 8; /* nGRE */ 10133 } else { 10134 ret.attrs = 0xc; /* GRE */ 10135 } 10136 10137 /* Any location for which the resultant memory type is any 10138 * type of Device memory is always treated as Outer Shareable. 10139 */ 10140 ret.shareability = 2; 10141 } else { /* Normal memory */ 10142 /* Outer/inner cacheability combine independently */ 10143 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10144 | combine_cacheattr_nibble(s1lo, s2lo); 10145 10146 if (ret.attrs == 0x44) { 10147 /* Any location for which the resultant memory type is Normal 10148 * Inner Non-cacheable, Outer Non-cacheable is always treated 10149 * as Outer Shareable. 10150 */ 10151 ret.shareability = 2; 10152 } 10153 } 10154 10155 return ret; 10156 } 10157 10158 10159 /* get_phys_addr - get the physical address for this virtual address 10160 * 10161 * Find the physical address corresponding to the given virtual address, 10162 * by doing a translation table walk on MMU based systems or using the 10163 * MPU state on MPU based systems. 10164 * 10165 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10166 * prot and page_size may not be filled in, and the populated fsr value provides 10167 * information on why the translation aborted, in the format of a 10168 * DFSR/IFSR fault register, with the following caveats: 10169 * * we honour the short vs long DFSR format differences. 10170 * * the WnR bit is never set (the caller must do this). 10171 * * for PSMAv5 based systems we don't bother to return a full FSR format 10172 * value. 10173 * 10174 * @env: CPUARMState 10175 * @address: virtual address to get physical address for 10176 * @access_type: 0 for read, 1 for write, 2 for execute 10177 * @mmu_idx: MMU index indicating required translation regime 10178 * @phys_ptr: set to the physical address corresponding to the virtual address 10179 * @attrs: set to the memory transaction attributes to use 10180 * @prot: set to the permissions for the page containing phys_ptr 10181 * @page_size: set to the size of the page containing phys_ptr 10182 * @fi: set to fault info if the translation fails 10183 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10184 */ 10185 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10186 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10187 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10188 target_ulong *page_size, 10189 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10190 { 10191 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10192 /* Call ourselves recursively to do the stage 1 and then stage 2 10193 * translations. 10194 */ 10195 if (arm_feature(env, ARM_FEATURE_EL2)) { 10196 hwaddr ipa; 10197 int s2_prot; 10198 int ret; 10199 ARMCacheAttrs cacheattrs2 = {}; 10200 10201 ret = get_phys_addr(env, address, access_type, 10202 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10203 prot, page_size, fi, cacheattrs); 10204 10205 /* If S1 fails or S2 is disabled, return early. */ 10206 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10207 *phys_ptr = ipa; 10208 return ret; 10209 } 10210 10211 /* S1 is done. Now do S2 translation. */ 10212 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10213 phys_ptr, attrs, &s2_prot, 10214 page_size, fi, 10215 cacheattrs != NULL ? &cacheattrs2 : NULL); 10216 fi->s2addr = ipa; 10217 /* Combine the S1 and S2 perms. */ 10218 *prot &= s2_prot; 10219 10220 /* Combine the S1 and S2 cache attributes, if needed */ 10221 if (!ret && cacheattrs != NULL) { 10222 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10223 } 10224 10225 return ret; 10226 } else { 10227 /* 10228 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10229 */ 10230 mmu_idx = stage_1_mmu_idx(mmu_idx); 10231 } 10232 } 10233 10234 /* The page table entries may downgrade secure to non-secure, but 10235 * cannot upgrade an non-secure translation regime's attributes 10236 * to secure. 10237 */ 10238 attrs->secure = regime_is_secure(env, mmu_idx); 10239 attrs->user = regime_is_user(env, mmu_idx); 10240 10241 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10242 * In v7 and earlier it affects all stage 1 translations. 10243 */ 10244 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10245 && !arm_feature(env, ARM_FEATURE_V8)) { 10246 if (regime_el(env, mmu_idx) == 3) { 10247 address += env->cp15.fcseidr_s; 10248 } else { 10249 address += env->cp15.fcseidr_ns; 10250 } 10251 } 10252 10253 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10254 bool ret; 10255 *page_size = TARGET_PAGE_SIZE; 10256 10257 if (arm_feature(env, ARM_FEATURE_V8)) { 10258 /* PMSAv8 */ 10259 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10260 phys_ptr, attrs, prot, fi); 10261 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10262 /* PMSAv7 */ 10263 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10264 phys_ptr, prot, fi); 10265 } else { 10266 /* Pre-v7 MPU */ 10267 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10268 phys_ptr, prot, fi); 10269 } 10270 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10271 " mmu_idx %u -> %s (prot %c%c%c)\n", 10272 access_type == MMU_DATA_LOAD ? "reading" : 10273 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10274 (uint32_t)address, mmu_idx, 10275 ret ? "Miss" : "Hit", 10276 *prot & PAGE_READ ? 'r' : '-', 10277 *prot & PAGE_WRITE ? 'w' : '-', 10278 *prot & PAGE_EXEC ? 'x' : '-'); 10279 10280 return ret; 10281 } 10282 10283 /* Definitely a real MMU, not an MPU */ 10284 10285 if (regime_translation_disabled(env, mmu_idx)) { 10286 /* MMU disabled. */ 10287 *phys_ptr = address; 10288 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10289 *page_size = TARGET_PAGE_SIZE; 10290 return 0; 10291 } 10292 10293 if (regime_using_lpae_format(env, mmu_idx)) { 10294 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10295 phys_ptr, attrs, prot, page_size, 10296 fi, cacheattrs); 10297 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10298 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10299 phys_ptr, attrs, prot, page_size, fi); 10300 } else { 10301 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10302 phys_ptr, prot, page_size, fi); 10303 } 10304 } 10305 10306 /* Walk the page table and (if the mapping exists) add the page 10307 * to the TLB. Return false on success, or true on failure. Populate 10308 * fsr with ARM DFSR/IFSR fault register format value on failure. 10309 */ 10310 bool arm_tlb_fill(CPUState *cs, vaddr address, 10311 MMUAccessType access_type, int mmu_idx, 10312 ARMMMUFaultInfo *fi) 10313 { 10314 ARMCPU *cpu = ARM_CPU(cs); 10315 CPUARMState *env = &cpu->env; 10316 hwaddr phys_addr; 10317 target_ulong page_size; 10318 int prot; 10319 int ret; 10320 MemTxAttrs attrs = {}; 10321 10322 ret = get_phys_addr(env, address, access_type, 10323 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10324 &attrs, &prot, &page_size, fi, NULL); 10325 if (!ret) { 10326 /* Map a single [sub]page. */ 10327 phys_addr &= TARGET_PAGE_MASK; 10328 address &= TARGET_PAGE_MASK; 10329 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10330 prot, mmu_idx, page_size); 10331 return 0; 10332 } 10333 10334 return ret; 10335 } 10336 10337 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10338 MemTxAttrs *attrs) 10339 { 10340 ARMCPU *cpu = ARM_CPU(cs); 10341 CPUARMState *env = &cpu->env; 10342 hwaddr phys_addr; 10343 target_ulong page_size; 10344 int prot; 10345 bool ret; 10346 ARMMMUFaultInfo fi = {}; 10347 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10348 10349 *attrs = (MemTxAttrs) {}; 10350 10351 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10352 attrs, &prot, &page_size, &fi, NULL); 10353 10354 if (ret) { 10355 return -1; 10356 } 10357 return phys_addr; 10358 } 10359 10360 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10361 { 10362 uint32_t mask; 10363 unsigned el = arm_current_el(env); 10364 10365 /* First handle registers which unprivileged can read */ 10366 10367 switch (reg) { 10368 case 0 ... 7: /* xPSR sub-fields */ 10369 mask = 0; 10370 if ((reg & 1) && el) { 10371 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10372 } 10373 if (!(reg & 4)) { 10374 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10375 } 10376 /* EPSR reads as zero */ 10377 return xpsr_read(env) & mask; 10378 break; 10379 case 20: /* CONTROL */ 10380 return env->v7m.control[env->v7m.secure]; 10381 case 0x94: /* CONTROL_NS */ 10382 /* We have to handle this here because unprivileged Secure code 10383 * can read the NS CONTROL register. 10384 */ 10385 if (!env->v7m.secure) { 10386 return 0; 10387 } 10388 return env->v7m.control[M_REG_NS]; 10389 } 10390 10391 if (el == 0) { 10392 return 0; /* unprivileged reads others as zero */ 10393 } 10394 10395 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10396 switch (reg) { 10397 case 0x88: /* MSP_NS */ 10398 if (!env->v7m.secure) { 10399 return 0; 10400 } 10401 return env->v7m.other_ss_msp; 10402 case 0x89: /* PSP_NS */ 10403 if (!env->v7m.secure) { 10404 return 0; 10405 } 10406 return env->v7m.other_ss_psp; 10407 case 0x8a: /* MSPLIM_NS */ 10408 if (!env->v7m.secure) { 10409 return 0; 10410 } 10411 return env->v7m.msplim[M_REG_NS]; 10412 case 0x8b: /* PSPLIM_NS */ 10413 if (!env->v7m.secure) { 10414 return 0; 10415 } 10416 return env->v7m.psplim[M_REG_NS]; 10417 case 0x90: /* PRIMASK_NS */ 10418 if (!env->v7m.secure) { 10419 return 0; 10420 } 10421 return env->v7m.primask[M_REG_NS]; 10422 case 0x91: /* BASEPRI_NS */ 10423 if (!env->v7m.secure) { 10424 return 0; 10425 } 10426 return env->v7m.basepri[M_REG_NS]; 10427 case 0x93: /* FAULTMASK_NS */ 10428 if (!env->v7m.secure) { 10429 return 0; 10430 } 10431 return env->v7m.faultmask[M_REG_NS]; 10432 case 0x98: /* SP_NS */ 10433 { 10434 /* This gives the non-secure SP selected based on whether we're 10435 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10436 */ 10437 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10438 10439 if (!env->v7m.secure) { 10440 return 0; 10441 } 10442 if (!arm_v7m_is_handler_mode(env) && spsel) { 10443 return env->v7m.other_ss_psp; 10444 } else { 10445 return env->v7m.other_ss_msp; 10446 } 10447 } 10448 default: 10449 break; 10450 } 10451 } 10452 10453 switch (reg) { 10454 case 8: /* MSP */ 10455 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10456 case 9: /* PSP */ 10457 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10458 case 10: /* MSPLIM */ 10459 if (!arm_feature(env, ARM_FEATURE_V8)) { 10460 goto bad_reg; 10461 } 10462 return env->v7m.msplim[env->v7m.secure]; 10463 case 11: /* PSPLIM */ 10464 if (!arm_feature(env, ARM_FEATURE_V8)) { 10465 goto bad_reg; 10466 } 10467 return env->v7m.psplim[env->v7m.secure]; 10468 case 16: /* PRIMASK */ 10469 return env->v7m.primask[env->v7m.secure]; 10470 case 17: /* BASEPRI */ 10471 case 18: /* BASEPRI_MAX */ 10472 return env->v7m.basepri[env->v7m.secure]; 10473 case 19: /* FAULTMASK */ 10474 return env->v7m.faultmask[env->v7m.secure]; 10475 default: 10476 bad_reg: 10477 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10478 " register %d\n", reg); 10479 return 0; 10480 } 10481 } 10482 10483 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10484 { 10485 /* We're passed bits [11..0] of the instruction; extract 10486 * SYSm and the mask bits. 10487 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10488 * we choose to treat them as if the mask bits were valid. 10489 * NB that the pseudocode 'mask' variable is bits [11..10], 10490 * whereas ours is [11..8]. 10491 */ 10492 uint32_t mask = extract32(maskreg, 8, 4); 10493 uint32_t reg = extract32(maskreg, 0, 8); 10494 10495 if (arm_current_el(env) == 0 && reg > 7) { 10496 /* only xPSR sub-fields may be written by unprivileged */ 10497 return; 10498 } 10499 10500 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10501 switch (reg) { 10502 case 0x88: /* MSP_NS */ 10503 if (!env->v7m.secure) { 10504 return; 10505 } 10506 env->v7m.other_ss_msp = val; 10507 return; 10508 case 0x89: /* PSP_NS */ 10509 if (!env->v7m.secure) { 10510 return; 10511 } 10512 env->v7m.other_ss_psp = val; 10513 return; 10514 case 0x8a: /* MSPLIM_NS */ 10515 if (!env->v7m.secure) { 10516 return; 10517 } 10518 env->v7m.msplim[M_REG_NS] = val & ~7; 10519 return; 10520 case 0x8b: /* PSPLIM_NS */ 10521 if (!env->v7m.secure) { 10522 return; 10523 } 10524 env->v7m.psplim[M_REG_NS] = val & ~7; 10525 return; 10526 case 0x90: /* PRIMASK_NS */ 10527 if (!env->v7m.secure) { 10528 return; 10529 } 10530 env->v7m.primask[M_REG_NS] = val & 1; 10531 return; 10532 case 0x91: /* BASEPRI_NS */ 10533 if (!env->v7m.secure) { 10534 return; 10535 } 10536 env->v7m.basepri[M_REG_NS] = val & 0xff; 10537 return; 10538 case 0x93: /* FAULTMASK_NS */ 10539 if (!env->v7m.secure) { 10540 return; 10541 } 10542 env->v7m.faultmask[M_REG_NS] = val & 1; 10543 return; 10544 case 0x94: /* CONTROL_NS */ 10545 if (!env->v7m.secure) { 10546 return; 10547 } 10548 write_v7m_control_spsel_for_secstate(env, 10549 val & R_V7M_CONTROL_SPSEL_MASK, 10550 M_REG_NS); 10551 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10552 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10553 return; 10554 case 0x98: /* SP_NS */ 10555 { 10556 /* This gives the non-secure SP selected based on whether we're 10557 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10558 */ 10559 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10560 10561 if (!env->v7m.secure) { 10562 return; 10563 } 10564 if (!arm_v7m_is_handler_mode(env) && spsel) { 10565 env->v7m.other_ss_psp = val; 10566 } else { 10567 env->v7m.other_ss_msp = val; 10568 } 10569 return; 10570 } 10571 default: 10572 break; 10573 } 10574 } 10575 10576 switch (reg) { 10577 case 0 ... 7: /* xPSR sub-fields */ 10578 /* only APSR is actually writable */ 10579 if (!(reg & 4)) { 10580 uint32_t apsrmask = 0; 10581 10582 if (mask & 8) { 10583 apsrmask |= XPSR_NZCV | XPSR_Q; 10584 } 10585 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10586 apsrmask |= XPSR_GE; 10587 } 10588 xpsr_write(env, val, apsrmask); 10589 } 10590 break; 10591 case 8: /* MSP */ 10592 if (v7m_using_psp(env)) { 10593 env->v7m.other_sp = val; 10594 } else { 10595 env->regs[13] = val; 10596 } 10597 break; 10598 case 9: /* PSP */ 10599 if (v7m_using_psp(env)) { 10600 env->regs[13] = val; 10601 } else { 10602 env->v7m.other_sp = val; 10603 } 10604 break; 10605 case 10: /* MSPLIM */ 10606 if (!arm_feature(env, ARM_FEATURE_V8)) { 10607 goto bad_reg; 10608 } 10609 env->v7m.msplim[env->v7m.secure] = val & ~7; 10610 break; 10611 case 11: /* PSPLIM */ 10612 if (!arm_feature(env, ARM_FEATURE_V8)) { 10613 goto bad_reg; 10614 } 10615 env->v7m.psplim[env->v7m.secure] = val & ~7; 10616 break; 10617 case 16: /* PRIMASK */ 10618 env->v7m.primask[env->v7m.secure] = val & 1; 10619 break; 10620 case 17: /* BASEPRI */ 10621 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10622 break; 10623 case 18: /* BASEPRI_MAX */ 10624 val &= 0xff; 10625 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10626 || env->v7m.basepri[env->v7m.secure] == 0)) { 10627 env->v7m.basepri[env->v7m.secure] = val; 10628 } 10629 break; 10630 case 19: /* FAULTMASK */ 10631 env->v7m.faultmask[env->v7m.secure] = val & 1; 10632 break; 10633 case 20: /* CONTROL */ 10634 /* Writing to the SPSEL bit only has an effect if we are in 10635 * thread mode; other bits can be updated by any privileged code. 10636 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10637 * env->v7m.control, so we only need update the others. 10638 * For v7M, we must just ignore explicit writes to SPSEL in handler 10639 * mode; for v8M the write is permitted but will have no effect. 10640 */ 10641 if (arm_feature(env, ARM_FEATURE_V8) || 10642 !arm_v7m_is_handler_mode(env)) { 10643 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10644 } 10645 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10646 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10647 break; 10648 default: 10649 bad_reg: 10650 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10651 " register %d\n", reg); 10652 return; 10653 } 10654 } 10655 10656 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10657 { 10658 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10659 bool forceunpriv = op & 1; 10660 bool alt = op & 2; 10661 V8M_SAttributes sattrs = {}; 10662 uint32_t tt_resp; 10663 bool r, rw, nsr, nsrw, mrvalid; 10664 int prot; 10665 ARMMMUFaultInfo fi = {}; 10666 MemTxAttrs attrs = {}; 10667 hwaddr phys_addr; 10668 ARMMMUIdx mmu_idx; 10669 uint32_t mregion; 10670 bool targetpriv; 10671 bool targetsec = env->v7m.secure; 10672 10673 /* Work out what the security state and privilege level we're 10674 * interested in is... 10675 */ 10676 if (alt) { 10677 targetsec = !targetsec; 10678 } 10679 10680 if (forceunpriv) { 10681 targetpriv = false; 10682 } else { 10683 targetpriv = arm_v7m_is_handler_mode(env) || 10684 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10685 } 10686 10687 /* ...and then figure out which MMU index this is */ 10688 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10689 10690 /* We know that the MPU and SAU don't care about the access type 10691 * for our purposes beyond that we don't want to claim to be 10692 * an insn fetch, so we arbitrarily call this a read. 10693 */ 10694 10695 /* MPU region info only available for privileged or if 10696 * inspecting the other MPU state. 10697 */ 10698 if (arm_current_el(env) != 0 || alt) { 10699 /* We can ignore the return value as prot is always set */ 10700 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10701 &phys_addr, &attrs, &prot, &fi, &mregion); 10702 if (mregion == -1) { 10703 mrvalid = false; 10704 mregion = 0; 10705 } else { 10706 mrvalid = true; 10707 } 10708 r = prot & PAGE_READ; 10709 rw = prot & PAGE_WRITE; 10710 } else { 10711 r = false; 10712 rw = false; 10713 mrvalid = false; 10714 mregion = 0; 10715 } 10716 10717 if (env->v7m.secure) { 10718 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10719 nsr = sattrs.ns && r; 10720 nsrw = sattrs.ns && rw; 10721 } else { 10722 sattrs.ns = true; 10723 nsr = false; 10724 nsrw = false; 10725 } 10726 10727 tt_resp = (sattrs.iregion << 24) | 10728 (sattrs.irvalid << 23) | 10729 ((!sattrs.ns) << 22) | 10730 (nsrw << 21) | 10731 (nsr << 20) | 10732 (rw << 19) | 10733 (r << 18) | 10734 (sattrs.srvalid << 17) | 10735 (mrvalid << 16) | 10736 (sattrs.sregion << 8) | 10737 mregion; 10738 10739 return tt_resp; 10740 } 10741 10742 #endif 10743 10744 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10745 { 10746 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10747 * Note that we do not implement the (architecturally mandated) 10748 * alignment fault for attempts to use this on Device memory 10749 * (which matches the usual QEMU behaviour of not implementing either 10750 * alignment faults or any memory attribute handling). 10751 */ 10752 10753 ARMCPU *cpu = arm_env_get_cpu(env); 10754 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10755 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10756 10757 #ifndef CONFIG_USER_ONLY 10758 { 10759 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10760 * the block size so we might have to do more than one TLB lookup. 10761 * We know that in fact for any v8 CPU the page size is at least 4K 10762 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10763 * 1K as an artefact of legacy v5 subpage support being present in the 10764 * same QEMU executable. 10765 */ 10766 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10767 void *hostaddr[maxidx]; 10768 int try, i; 10769 unsigned mmu_idx = cpu_mmu_index(env, false); 10770 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10771 10772 for (try = 0; try < 2; try++) { 10773 10774 for (i = 0; i < maxidx; i++) { 10775 hostaddr[i] = tlb_vaddr_to_host(env, 10776 vaddr + TARGET_PAGE_SIZE * i, 10777 1, mmu_idx); 10778 if (!hostaddr[i]) { 10779 break; 10780 } 10781 } 10782 if (i == maxidx) { 10783 /* If it's all in the TLB it's fair game for just writing to; 10784 * we know we don't need to update dirty status, etc. 10785 */ 10786 for (i = 0; i < maxidx - 1; i++) { 10787 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10788 } 10789 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10790 return; 10791 } 10792 /* OK, try a store and see if we can populate the tlb. This 10793 * might cause an exception if the memory isn't writable, 10794 * in which case we will longjmp out of here. We must for 10795 * this purpose use the actual register value passed to us 10796 * so that we get the fault address right. 10797 */ 10798 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10799 /* Now we can populate the other TLB entries, if any */ 10800 for (i = 0; i < maxidx; i++) { 10801 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10802 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10803 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10804 } 10805 } 10806 } 10807 10808 /* Slow path (probably attempt to do this to an I/O device or 10809 * similar, or clearing of a block of code we have translations 10810 * cached for). Just do a series of byte writes as the architecture 10811 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10812 * memset(), unmap() sequence here because: 10813 * + we'd need to account for the blocksize being larger than a page 10814 * + the direct-RAM access case is almost always going to be dealt 10815 * with in the fastpath code above, so there's no speed benefit 10816 * + we would have to deal with the map returning NULL because the 10817 * bounce buffer was in use 10818 */ 10819 for (i = 0; i < blocklen; i++) { 10820 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10821 } 10822 } 10823 #else 10824 memset(g2h(vaddr), 0, blocklen); 10825 #endif 10826 } 10827 10828 /* Note that signed overflow is undefined in C. The following routines are 10829 careful to use unsigned types where modulo arithmetic is required. 10830 Failure to do so _will_ break on newer gcc. */ 10831 10832 /* Signed saturating arithmetic. */ 10833 10834 /* Perform 16-bit signed saturating addition. */ 10835 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10836 { 10837 uint16_t res; 10838 10839 res = a + b; 10840 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10841 if (a & 0x8000) 10842 res = 0x8000; 10843 else 10844 res = 0x7fff; 10845 } 10846 return res; 10847 } 10848 10849 /* Perform 8-bit signed saturating addition. */ 10850 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10851 { 10852 uint8_t res; 10853 10854 res = a + b; 10855 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10856 if (a & 0x80) 10857 res = 0x80; 10858 else 10859 res = 0x7f; 10860 } 10861 return res; 10862 } 10863 10864 /* Perform 16-bit signed saturating subtraction. */ 10865 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10866 { 10867 uint16_t res; 10868 10869 res = a - b; 10870 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10871 if (a & 0x8000) 10872 res = 0x8000; 10873 else 10874 res = 0x7fff; 10875 } 10876 return res; 10877 } 10878 10879 /* Perform 8-bit signed saturating subtraction. */ 10880 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10881 { 10882 uint8_t res; 10883 10884 res = a - b; 10885 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10886 if (a & 0x80) 10887 res = 0x80; 10888 else 10889 res = 0x7f; 10890 } 10891 return res; 10892 } 10893 10894 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10895 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10896 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10897 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10898 #define PFX q 10899 10900 #include "op_addsub.h" 10901 10902 /* Unsigned saturating arithmetic. */ 10903 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10904 { 10905 uint16_t res; 10906 res = a + b; 10907 if (res < a) 10908 res = 0xffff; 10909 return res; 10910 } 10911 10912 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10913 { 10914 if (a > b) 10915 return a - b; 10916 else 10917 return 0; 10918 } 10919 10920 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10921 { 10922 uint8_t res; 10923 res = a + b; 10924 if (res < a) 10925 res = 0xff; 10926 return res; 10927 } 10928 10929 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10930 { 10931 if (a > b) 10932 return a - b; 10933 else 10934 return 0; 10935 } 10936 10937 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10938 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10939 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10940 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10941 #define PFX uq 10942 10943 #include "op_addsub.h" 10944 10945 /* Signed modulo arithmetic. */ 10946 #define SARITH16(a, b, n, op) do { \ 10947 int32_t sum; \ 10948 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10949 RESULT(sum, n, 16); \ 10950 if (sum >= 0) \ 10951 ge |= 3 << (n * 2); \ 10952 } while(0) 10953 10954 #define SARITH8(a, b, n, op) do { \ 10955 int32_t sum; \ 10956 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10957 RESULT(sum, n, 8); \ 10958 if (sum >= 0) \ 10959 ge |= 1 << n; \ 10960 } while(0) 10961 10962 10963 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10964 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10965 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10966 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10967 #define PFX s 10968 #define ARITH_GE 10969 10970 #include "op_addsub.h" 10971 10972 /* Unsigned modulo arithmetic. */ 10973 #define ADD16(a, b, n) do { \ 10974 uint32_t sum; \ 10975 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10976 RESULT(sum, n, 16); \ 10977 if ((sum >> 16) == 1) \ 10978 ge |= 3 << (n * 2); \ 10979 } while(0) 10980 10981 #define ADD8(a, b, n) do { \ 10982 uint32_t sum; \ 10983 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10984 RESULT(sum, n, 8); \ 10985 if ((sum >> 8) == 1) \ 10986 ge |= 1 << n; \ 10987 } while(0) 10988 10989 #define SUB16(a, b, n) do { \ 10990 uint32_t sum; \ 10991 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10992 RESULT(sum, n, 16); \ 10993 if ((sum >> 16) == 0) \ 10994 ge |= 3 << (n * 2); \ 10995 } while(0) 10996 10997 #define SUB8(a, b, n) do { \ 10998 uint32_t sum; \ 10999 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11000 RESULT(sum, n, 8); \ 11001 if ((sum >> 8) == 0) \ 11002 ge |= 1 << n; \ 11003 } while(0) 11004 11005 #define PFX u 11006 #define ARITH_GE 11007 11008 #include "op_addsub.h" 11009 11010 /* Halved signed arithmetic. */ 11011 #define ADD16(a, b, n) \ 11012 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11013 #define SUB16(a, b, n) \ 11014 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11015 #define ADD8(a, b, n) \ 11016 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11017 #define SUB8(a, b, n) \ 11018 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11019 #define PFX sh 11020 11021 #include "op_addsub.h" 11022 11023 /* Halved unsigned arithmetic. */ 11024 #define ADD16(a, b, n) \ 11025 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11026 #define SUB16(a, b, n) \ 11027 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11028 #define ADD8(a, b, n) \ 11029 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11030 #define SUB8(a, b, n) \ 11031 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11032 #define PFX uh 11033 11034 #include "op_addsub.h" 11035 11036 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11037 { 11038 if (a > b) 11039 return a - b; 11040 else 11041 return b - a; 11042 } 11043 11044 /* Unsigned sum of absolute byte differences. */ 11045 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11046 { 11047 uint32_t sum; 11048 sum = do_usad(a, b); 11049 sum += do_usad(a >> 8, b >> 8); 11050 sum += do_usad(a >> 16, b >>16); 11051 sum += do_usad(a >> 24, b >> 24); 11052 return sum; 11053 } 11054 11055 /* For ARMv6 SEL instruction. */ 11056 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11057 { 11058 uint32_t mask; 11059 11060 mask = 0; 11061 if (flags & 1) 11062 mask |= 0xff; 11063 if (flags & 2) 11064 mask |= 0xff00; 11065 if (flags & 4) 11066 mask |= 0xff0000; 11067 if (flags & 8) 11068 mask |= 0xff000000; 11069 return (a & mask) | (b & ~mask); 11070 } 11071 11072 /* VFP support. We follow the convention used for VFP instructions: 11073 Single precision routines have a "s" suffix, double precision a 11074 "d" suffix. */ 11075 11076 /* Convert host exception flags to vfp form. */ 11077 static inline int vfp_exceptbits_from_host(int host_bits) 11078 { 11079 int target_bits = 0; 11080 11081 if (host_bits & float_flag_invalid) 11082 target_bits |= 1; 11083 if (host_bits & float_flag_divbyzero) 11084 target_bits |= 2; 11085 if (host_bits & float_flag_overflow) 11086 target_bits |= 4; 11087 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11088 target_bits |= 8; 11089 if (host_bits & float_flag_inexact) 11090 target_bits |= 0x10; 11091 if (host_bits & float_flag_input_denormal) 11092 target_bits |= 0x80; 11093 return target_bits; 11094 } 11095 11096 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11097 { 11098 int i; 11099 uint32_t fpscr; 11100 11101 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11102 | (env->vfp.vec_len << 16) 11103 | (env->vfp.vec_stride << 20); 11104 i = get_float_exception_flags(&env->vfp.fp_status); 11105 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11106 fpscr |= vfp_exceptbits_from_host(i); 11107 return fpscr; 11108 } 11109 11110 uint32_t vfp_get_fpscr(CPUARMState *env) 11111 { 11112 return HELPER(vfp_get_fpscr)(env); 11113 } 11114 11115 /* Convert vfp exception flags to target form. */ 11116 static inline int vfp_exceptbits_to_host(int target_bits) 11117 { 11118 int host_bits = 0; 11119 11120 if (target_bits & 1) 11121 host_bits |= float_flag_invalid; 11122 if (target_bits & 2) 11123 host_bits |= float_flag_divbyzero; 11124 if (target_bits & 4) 11125 host_bits |= float_flag_overflow; 11126 if (target_bits & 8) 11127 host_bits |= float_flag_underflow; 11128 if (target_bits & 0x10) 11129 host_bits |= float_flag_inexact; 11130 if (target_bits & 0x80) 11131 host_bits |= float_flag_input_denormal; 11132 return host_bits; 11133 } 11134 11135 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11136 { 11137 int i; 11138 uint32_t changed; 11139 11140 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11141 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11142 env->vfp.vec_len = (val >> 16) & 7; 11143 env->vfp.vec_stride = (val >> 20) & 3; 11144 11145 changed ^= val; 11146 if (changed & (3 << 22)) { 11147 i = (val >> 22) & 3; 11148 switch (i) { 11149 case FPROUNDING_TIEEVEN: 11150 i = float_round_nearest_even; 11151 break; 11152 case FPROUNDING_POSINF: 11153 i = float_round_up; 11154 break; 11155 case FPROUNDING_NEGINF: 11156 i = float_round_down; 11157 break; 11158 case FPROUNDING_ZERO: 11159 i = float_round_to_zero; 11160 break; 11161 } 11162 set_float_rounding_mode(i, &env->vfp.fp_status); 11163 } 11164 if (changed & (1 << 24)) { 11165 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 11166 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 11167 } 11168 if (changed & (1 << 25)) 11169 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 11170 11171 i = vfp_exceptbits_to_host(val); 11172 set_float_exception_flags(i, &env->vfp.fp_status); 11173 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11174 } 11175 11176 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11177 { 11178 HELPER(vfp_set_fpscr)(env, val); 11179 } 11180 11181 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11182 11183 #define VFP_BINOP(name) \ 11184 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11185 { \ 11186 float_status *fpst = fpstp; \ 11187 return float32_ ## name(a, b, fpst); \ 11188 } \ 11189 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11190 { \ 11191 float_status *fpst = fpstp; \ 11192 return float64_ ## name(a, b, fpst); \ 11193 } 11194 VFP_BINOP(add) 11195 VFP_BINOP(sub) 11196 VFP_BINOP(mul) 11197 VFP_BINOP(div) 11198 VFP_BINOP(min) 11199 VFP_BINOP(max) 11200 VFP_BINOP(minnum) 11201 VFP_BINOP(maxnum) 11202 #undef VFP_BINOP 11203 11204 float32 VFP_HELPER(neg, s)(float32 a) 11205 { 11206 return float32_chs(a); 11207 } 11208 11209 float64 VFP_HELPER(neg, d)(float64 a) 11210 { 11211 return float64_chs(a); 11212 } 11213 11214 float32 VFP_HELPER(abs, s)(float32 a) 11215 { 11216 return float32_abs(a); 11217 } 11218 11219 float64 VFP_HELPER(abs, d)(float64 a) 11220 { 11221 return float64_abs(a); 11222 } 11223 11224 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11225 { 11226 return float32_sqrt(a, &env->vfp.fp_status); 11227 } 11228 11229 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11230 { 11231 return float64_sqrt(a, &env->vfp.fp_status); 11232 } 11233 11234 /* XXX: check quiet/signaling case */ 11235 #define DO_VFP_cmp(p, type) \ 11236 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11237 { \ 11238 uint32_t flags; \ 11239 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11240 case 0: flags = 0x6; break; \ 11241 case -1: flags = 0x8; break; \ 11242 case 1: flags = 0x2; break; \ 11243 default: case 2: flags = 0x3; break; \ 11244 } \ 11245 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11246 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11247 } \ 11248 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11249 { \ 11250 uint32_t flags; \ 11251 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11252 case 0: flags = 0x6; break; \ 11253 case -1: flags = 0x8; break; \ 11254 case 1: flags = 0x2; break; \ 11255 default: case 2: flags = 0x3; break; \ 11256 } \ 11257 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11258 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11259 } 11260 DO_VFP_cmp(s, float32) 11261 DO_VFP_cmp(d, float64) 11262 #undef DO_VFP_cmp 11263 11264 /* Integer to float and float to integer conversions */ 11265 11266 #define CONV_ITOF(name, fsz, sign) \ 11267 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 11268 { \ 11269 float_status *fpst = fpstp; \ 11270 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11271 } 11272 11273 #define CONV_FTOI(name, fsz, sign, round) \ 11274 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 11275 { \ 11276 float_status *fpst = fpstp; \ 11277 if (float##fsz##_is_any_nan(x)) { \ 11278 float_raise(float_flag_invalid, fpst); \ 11279 return 0; \ 11280 } \ 11281 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11282 } 11283 11284 #define FLOAT_CONVS(name, p, fsz, sign) \ 11285 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 11286 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 11287 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 11288 11289 FLOAT_CONVS(si, s, 32, ) 11290 FLOAT_CONVS(si, d, 64, ) 11291 FLOAT_CONVS(ui, s, 32, u) 11292 FLOAT_CONVS(ui, d, 64, u) 11293 11294 #undef CONV_ITOF 11295 #undef CONV_FTOI 11296 #undef FLOAT_CONVS 11297 11298 /* floating point conversion */ 11299 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11300 { 11301 float64 r = float32_to_float64(x, &env->vfp.fp_status); 11302 /* ARM requires that S<->D conversion of any kind of NaN generates 11303 * a quiet NaN by forcing the most significant frac bit to 1. 11304 */ 11305 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11306 } 11307 11308 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11309 { 11310 float32 r = float64_to_float32(x, &env->vfp.fp_status); 11311 /* ARM requires that S<->D conversion of any kind of NaN generates 11312 * a quiet NaN by forcing the most significant frac bit to 1. 11313 */ 11314 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 11315 } 11316 11317 /* VFP3 fixed point conversion. */ 11318 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11319 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11320 void *fpstp) \ 11321 { \ 11322 float_status *fpst = fpstp; \ 11323 float##fsz tmp; \ 11324 tmp = itype##_to_##float##fsz(x, fpst); \ 11325 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 11326 } 11327 11328 /* Notice that we want only input-denormal exception flags from the 11329 * scalbn operation: the other possible flags (overflow+inexact if 11330 * we overflow to infinity, output-denormal) aren't correct for the 11331 * complete scale-and-convert operation. 11332 */ 11333 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 11334 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 11335 uint32_t shift, \ 11336 void *fpstp) \ 11337 { \ 11338 float_status *fpst = fpstp; \ 11339 int old_exc_flags = get_float_exception_flags(fpst); \ 11340 float##fsz tmp; \ 11341 if (float##fsz##_is_any_nan(x)) { \ 11342 float_raise(float_flag_invalid, fpst); \ 11343 return 0; \ 11344 } \ 11345 tmp = float##fsz##_scalbn(x, shift, fpst); \ 11346 old_exc_flags |= get_float_exception_flags(fpst) \ 11347 & float_flag_input_denormal; \ 11348 set_float_exception_flags(old_exc_flags, fpst); \ 11349 return float##fsz##_to_##itype##round(tmp, fpst); \ 11350 } 11351 11352 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11353 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11354 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 11355 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11356 11357 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11358 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11359 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11360 11361 VFP_CONV_FIX(sh, d, 64, 64, int16) 11362 VFP_CONV_FIX(sl, d, 64, 64, int32) 11363 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11364 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11365 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11366 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11367 VFP_CONV_FIX(sh, s, 32, 32, int16) 11368 VFP_CONV_FIX(sl, s, 32, 32, int32) 11369 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11370 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11371 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11372 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11373 #undef VFP_CONV_FIX 11374 #undef VFP_CONV_FIX_FLOAT 11375 #undef VFP_CONV_FLOAT_FIX_ROUND 11376 11377 /* Set the current fp rounding mode and return the old one. 11378 * The argument is a softfloat float_round_ value. 11379 */ 11380 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 11381 { 11382 float_status *fp_status = &env->vfp.fp_status; 11383 11384 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11385 set_float_rounding_mode(rmode, fp_status); 11386 11387 return prev_rmode; 11388 } 11389 11390 /* Set the current fp rounding mode in the standard fp status and return 11391 * the old one. This is for NEON instructions that need to change the 11392 * rounding mode but wish to use the standard FPSCR values for everything 11393 * else. Always set the rounding mode back to the correct value after 11394 * modifying it. 11395 * The argument is a softfloat float_round_ value. 11396 */ 11397 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11398 { 11399 float_status *fp_status = &env->vfp.standard_fp_status; 11400 11401 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11402 set_float_rounding_mode(rmode, fp_status); 11403 11404 return prev_rmode; 11405 } 11406 11407 /* Half precision conversions. */ 11408 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 11409 { 11410 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11411 float32 r = float16_to_float32(make_float16(a), ieee, s); 11412 if (ieee) { 11413 return float32_maybe_silence_nan(r, s); 11414 } 11415 return r; 11416 } 11417 11418 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 11419 { 11420 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11421 float16 r = float32_to_float16(a, ieee, s); 11422 if (ieee) { 11423 r = float16_maybe_silence_nan(r, s); 11424 } 11425 return float16_val(r); 11426 } 11427 11428 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11429 { 11430 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 11431 } 11432 11433 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11434 { 11435 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 11436 } 11437 11438 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11439 { 11440 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 11441 } 11442 11443 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11444 { 11445 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 11446 } 11447 11448 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 11449 { 11450 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11451 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 11452 if (ieee) { 11453 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11454 } 11455 return r; 11456 } 11457 11458 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 11459 { 11460 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11461 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 11462 if (ieee) { 11463 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 11464 } 11465 return float16_val(r); 11466 } 11467 11468 #define float32_two make_float32(0x40000000) 11469 #define float32_three make_float32(0x40400000) 11470 #define float32_one_point_five make_float32(0x3fc00000) 11471 11472 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11473 { 11474 float_status *s = &env->vfp.standard_fp_status; 11475 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11476 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11477 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11478 float_raise(float_flag_input_denormal, s); 11479 } 11480 return float32_two; 11481 } 11482 return float32_sub(float32_two, float32_mul(a, b, s), s); 11483 } 11484 11485 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11486 { 11487 float_status *s = &env->vfp.standard_fp_status; 11488 float32 product; 11489 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11490 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11491 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11492 float_raise(float_flag_input_denormal, s); 11493 } 11494 return float32_one_point_five; 11495 } 11496 product = float32_mul(a, b, s); 11497 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11498 } 11499 11500 /* NEON helpers. */ 11501 11502 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11503 * int->float conversions at run-time. */ 11504 #define float64_256 make_float64(0x4070000000000000LL) 11505 #define float64_512 make_float64(0x4080000000000000LL) 11506 #define float32_maxnorm make_float32(0x7f7fffff) 11507 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11508 11509 /* Reciprocal functions 11510 * 11511 * The algorithm that must be used to calculate the estimate 11512 * is specified by the ARM ARM, see FPRecipEstimate() 11513 */ 11514 11515 static float64 recip_estimate(float64 a, float_status *real_fp_status) 11516 { 11517 /* These calculations mustn't set any fp exception flags, 11518 * so we use a local copy of the fp_status. 11519 */ 11520 float_status dummy_status = *real_fp_status; 11521 float_status *s = &dummy_status; 11522 /* q = (int)(a * 512.0) */ 11523 float64 q = float64_mul(float64_512, a, s); 11524 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11525 11526 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 11527 q = int64_to_float64(q_int, s); 11528 q = float64_add(q, float64_half, s); 11529 q = float64_div(q, float64_512, s); 11530 q = float64_div(float64_one, q, s); 11531 11532 /* s = (int)(256.0 * r + 0.5) */ 11533 q = float64_mul(q, float64_256, s); 11534 q = float64_add(q, float64_half, s); 11535 q_int = float64_to_int64_round_to_zero(q, s); 11536 11537 /* return (double)s / 256.0 */ 11538 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11539 } 11540 11541 /* Common wrapper to call recip_estimate */ 11542 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 11543 { 11544 uint64_t val64 = float64_val(num); 11545 uint64_t frac = extract64(val64, 0, 52); 11546 int64_t exp = extract64(val64, 52, 11); 11547 uint64_t sbit; 11548 float64 scaled, estimate; 11549 11550 /* Generate the scaled number for the estimate function */ 11551 if (exp == 0) { 11552 if (extract64(frac, 51, 1) == 0) { 11553 exp = -1; 11554 frac = extract64(frac, 0, 50) << 2; 11555 } else { 11556 frac = extract64(frac, 0, 51) << 1; 11557 } 11558 } 11559 11560 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 11561 scaled = make_float64((0x3feULL << 52) 11562 | extract64(frac, 44, 8) << 44); 11563 11564 estimate = recip_estimate(scaled, fpst); 11565 11566 /* Build new result */ 11567 val64 = float64_val(estimate); 11568 sbit = 0x8000000000000000ULL & val64; 11569 exp = off - exp; 11570 frac = extract64(val64, 0, 52); 11571 11572 if (exp == 0) { 11573 frac = 1ULL << 51 | extract64(frac, 1, 51); 11574 } else if (exp == -1) { 11575 frac = 1ULL << 50 | extract64(frac, 2, 50); 11576 exp = 0; 11577 } 11578 11579 return make_float64(sbit | (exp << 52) | frac); 11580 } 11581 11582 static bool round_to_inf(float_status *fpst, bool sign_bit) 11583 { 11584 switch (fpst->float_rounding_mode) { 11585 case float_round_nearest_even: /* Round to Nearest */ 11586 return true; 11587 case float_round_up: /* Round to +Inf */ 11588 return !sign_bit; 11589 case float_round_down: /* Round to -Inf */ 11590 return sign_bit; 11591 case float_round_to_zero: /* Round to Zero */ 11592 return false; 11593 } 11594 11595 g_assert_not_reached(); 11596 } 11597 11598 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11599 { 11600 float_status *fpst = fpstp; 11601 float32 f32 = float32_squash_input_denormal(input, fpst); 11602 uint32_t f32_val = float32_val(f32); 11603 uint32_t f32_sbit = 0x80000000ULL & f32_val; 11604 int32_t f32_exp = extract32(f32_val, 23, 8); 11605 uint32_t f32_frac = extract32(f32_val, 0, 23); 11606 float64 f64, r64; 11607 uint64_t r64_val; 11608 int64_t r64_exp; 11609 uint64_t r64_frac; 11610 11611 if (float32_is_any_nan(f32)) { 11612 float32 nan = f32; 11613 if (float32_is_signaling_nan(f32, fpst)) { 11614 float_raise(float_flag_invalid, fpst); 11615 nan = float32_maybe_silence_nan(f32, fpst); 11616 } 11617 if (fpst->default_nan_mode) { 11618 nan = float32_default_nan(fpst); 11619 } 11620 return nan; 11621 } else if (float32_is_infinity(f32)) { 11622 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11623 } else if (float32_is_zero(f32)) { 11624 float_raise(float_flag_divbyzero, fpst); 11625 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11626 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 11627 /* Abs(value) < 2.0^-128 */ 11628 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11629 if (round_to_inf(fpst, f32_sbit)) { 11630 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11631 } else { 11632 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 11633 } 11634 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11635 float_raise(float_flag_underflow, fpst); 11636 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11637 } 11638 11639 11640 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 11641 r64 = call_recip_estimate(f64, 253, fpst); 11642 r64_val = float64_val(r64); 11643 r64_exp = extract64(r64_val, 52, 11); 11644 r64_frac = extract64(r64_val, 0, 52); 11645 11646 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 11647 return make_float32(f32_sbit | 11648 (r64_exp & 0xff) << 23 | 11649 extract64(r64_frac, 29, 24)); 11650 } 11651 11652 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11653 { 11654 float_status *fpst = fpstp; 11655 float64 f64 = float64_squash_input_denormal(input, fpst); 11656 uint64_t f64_val = float64_val(f64); 11657 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 11658 int64_t f64_exp = extract64(f64_val, 52, 11); 11659 float64 r64; 11660 uint64_t r64_val; 11661 int64_t r64_exp; 11662 uint64_t r64_frac; 11663 11664 /* Deal with any special cases */ 11665 if (float64_is_any_nan(f64)) { 11666 float64 nan = f64; 11667 if (float64_is_signaling_nan(f64, fpst)) { 11668 float_raise(float_flag_invalid, fpst); 11669 nan = float64_maybe_silence_nan(f64, fpst); 11670 } 11671 if (fpst->default_nan_mode) { 11672 nan = float64_default_nan(fpst); 11673 } 11674 return nan; 11675 } else if (float64_is_infinity(f64)) { 11676 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11677 } else if (float64_is_zero(f64)) { 11678 float_raise(float_flag_divbyzero, fpst); 11679 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11680 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11681 /* Abs(value) < 2.0^-1024 */ 11682 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11683 if (round_to_inf(fpst, f64_sbit)) { 11684 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11685 } else { 11686 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 11687 } 11688 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11689 float_raise(float_flag_underflow, fpst); 11690 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11691 } 11692 11693 r64 = call_recip_estimate(f64, 2045, fpst); 11694 r64_val = float64_val(r64); 11695 r64_exp = extract64(r64_val, 52, 11); 11696 r64_frac = extract64(r64_val, 0, 52); 11697 11698 /* result = sign : result_exp<10:0> : fraction<51:0> */ 11699 return make_float64(f64_sbit | 11700 ((r64_exp & 0x7ff) << 52) | 11701 r64_frac); 11702 } 11703 11704 /* The algorithm that must be used to calculate the estimate 11705 * is specified by the ARM ARM. 11706 */ 11707 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 11708 { 11709 /* These calculations mustn't set any fp exception flags, 11710 * so we use a local copy of the fp_status. 11711 */ 11712 float_status dummy_status = *real_fp_status; 11713 float_status *s = &dummy_status; 11714 float64 q; 11715 int64_t q_int; 11716 11717 if (float64_lt(a, float64_half, s)) { 11718 /* range 0.25 <= a < 0.5 */ 11719 11720 /* a in units of 1/512 rounded down */ 11721 /* q0 = (int)(a * 512.0); */ 11722 q = float64_mul(float64_512, a, s); 11723 q_int = float64_to_int64_round_to_zero(q, s); 11724 11725 /* reciprocal root r */ 11726 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 11727 q = int64_to_float64(q_int, s); 11728 q = float64_add(q, float64_half, s); 11729 q = float64_div(q, float64_512, s); 11730 q = float64_sqrt(q, s); 11731 q = float64_div(float64_one, q, s); 11732 } else { 11733 /* range 0.5 <= a < 1.0 */ 11734 11735 /* a in units of 1/256 rounded down */ 11736 /* q1 = (int)(a * 256.0); */ 11737 q = float64_mul(float64_256, a, s); 11738 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11739 11740 /* reciprocal root r */ 11741 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 11742 q = int64_to_float64(q_int, s); 11743 q = float64_add(q, float64_half, s); 11744 q = float64_div(q, float64_256, s); 11745 q = float64_sqrt(q, s); 11746 q = float64_div(float64_one, q, s); 11747 } 11748 /* r in units of 1/256 rounded to nearest */ 11749 /* s = (int)(256.0 * r + 0.5); */ 11750 11751 q = float64_mul(q, float64_256,s ); 11752 q = float64_add(q, float64_half, s); 11753 q_int = float64_to_int64_round_to_zero(q, s); 11754 11755 /* return (double)s / 256.0;*/ 11756 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11757 } 11758 11759 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11760 { 11761 float_status *s = fpstp; 11762 float32 f32 = float32_squash_input_denormal(input, s); 11763 uint32_t val = float32_val(f32); 11764 uint32_t f32_sbit = 0x80000000 & val; 11765 int32_t f32_exp = extract32(val, 23, 8); 11766 uint32_t f32_frac = extract32(val, 0, 23); 11767 uint64_t f64_frac; 11768 uint64_t val64; 11769 int result_exp; 11770 float64 f64; 11771 11772 if (float32_is_any_nan(f32)) { 11773 float32 nan = f32; 11774 if (float32_is_signaling_nan(f32, s)) { 11775 float_raise(float_flag_invalid, s); 11776 nan = float32_maybe_silence_nan(f32, s); 11777 } 11778 if (s->default_nan_mode) { 11779 nan = float32_default_nan(s); 11780 } 11781 return nan; 11782 } else if (float32_is_zero(f32)) { 11783 float_raise(float_flag_divbyzero, s); 11784 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11785 } else if (float32_is_neg(f32)) { 11786 float_raise(float_flag_invalid, s); 11787 return float32_default_nan(s); 11788 } else if (float32_is_infinity(f32)) { 11789 return float32_zero; 11790 } 11791 11792 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11793 * preserving the parity of the exponent. */ 11794 11795 f64_frac = ((uint64_t) f32_frac) << 29; 11796 if (f32_exp == 0) { 11797 while (extract64(f64_frac, 51, 1) == 0) { 11798 f64_frac = f64_frac << 1; 11799 f32_exp = f32_exp-1; 11800 } 11801 f64_frac = extract64(f64_frac, 0, 51) << 1; 11802 } 11803 11804 if (extract64(f32_exp, 0, 1) == 0) { 11805 f64 = make_float64(((uint64_t) f32_sbit) << 32 11806 | (0x3feULL << 52) 11807 | f64_frac); 11808 } else { 11809 f64 = make_float64(((uint64_t) f32_sbit) << 32 11810 | (0x3fdULL << 52) 11811 | f64_frac); 11812 } 11813 11814 result_exp = (380 - f32_exp) / 2; 11815 11816 f64 = recip_sqrt_estimate(f64, s); 11817 11818 val64 = float64_val(f64); 11819 11820 val = ((result_exp & 0xff) << 23) 11821 | ((val64 >> 29) & 0x7fffff); 11822 return make_float32(val); 11823 } 11824 11825 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11826 { 11827 float_status *s = fpstp; 11828 float64 f64 = float64_squash_input_denormal(input, s); 11829 uint64_t val = float64_val(f64); 11830 uint64_t f64_sbit = 0x8000000000000000ULL & val; 11831 int64_t f64_exp = extract64(val, 52, 11); 11832 uint64_t f64_frac = extract64(val, 0, 52); 11833 int64_t result_exp; 11834 uint64_t result_frac; 11835 11836 if (float64_is_any_nan(f64)) { 11837 float64 nan = f64; 11838 if (float64_is_signaling_nan(f64, s)) { 11839 float_raise(float_flag_invalid, s); 11840 nan = float64_maybe_silence_nan(f64, s); 11841 } 11842 if (s->default_nan_mode) { 11843 nan = float64_default_nan(s); 11844 } 11845 return nan; 11846 } else if (float64_is_zero(f64)) { 11847 float_raise(float_flag_divbyzero, s); 11848 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11849 } else if (float64_is_neg(f64)) { 11850 float_raise(float_flag_invalid, s); 11851 return float64_default_nan(s); 11852 } else if (float64_is_infinity(f64)) { 11853 return float64_zero; 11854 } 11855 11856 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11857 * preserving the parity of the exponent. */ 11858 11859 if (f64_exp == 0) { 11860 while (extract64(f64_frac, 51, 1) == 0) { 11861 f64_frac = f64_frac << 1; 11862 f64_exp = f64_exp - 1; 11863 } 11864 f64_frac = extract64(f64_frac, 0, 51) << 1; 11865 } 11866 11867 if (extract64(f64_exp, 0, 1) == 0) { 11868 f64 = make_float64(f64_sbit 11869 | (0x3feULL << 52) 11870 | f64_frac); 11871 } else { 11872 f64 = make_float64(f64_sbit 11873 | (0x3fdULL << 52) 11874 | f64_frac); 11875 } 11876 11877 result_exp = (3068 - f64_exp) / 2; 11878 11879 f64 = recip_sqrt_estimate(f64, s); 11880 11881 result_frac = extract64(float64_val(f64), 0, 52); 11882 11883 return make_float64(f64_sbit | 11884 ((result_exp & 0x7ff) << 52) | 11885 result_frac); 11886 } 11887 11888 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11889 { 11890 float_status *s = fpstp; 11891 float64 f64; 11892 11893 if ((a & 0x80000000) == 0) { 11894 return 0xffffffff; 11895 } 11896 11897 f64 = make_float64((0x3feULL << 52) 11898 | ((int64_t)(a & 0x7fffffff) << 21)); 11899 11900 f64 = recip_estimate(f64, s); 11901 11902 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11903 } 11904 11905 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11906 { 11907 float_status *fpst = fpstp; 11908 float64 f64; 11909 11910 if ((a & 0xc0000000) == 0) { 11911 return 0xffffffff; 11912 } 11913 11914 if (a & 0x80000000) { 11915 f64 = make_float64((0x3feULL << 52) 11916 | ((uint64_t)(a & 0x7fffffff) << 21)); 11917 } else { /* bits 31-30 == '01' */ 11918 f64 = make_float64((0x3fdULL << 52) 11919 | ((uint64_t)(a & 0x3fffffff) << 22)); 11920 } 11921 11922 f64 = recip_sqrt_estimate(f64, fpst); 11923 11924 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11925 } 11926 11927 /* VFPv4 fused multiply-accumulate */ 11928 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11929 { 11930 float_status *fpst = fpstp; 11931 return float32_muladd(a, b, c, 0, fpst); 11932 } 11933 11934 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11935 { 11936 float_status *fpst = fpstp; 11937 return float64_muladd(a, b, c, 0, fpst); 11938 } 11939 11940 /* ARMv8 round to integral */ 11941 float32 HELPER(rints_exact)(float32 x, void *fp_status) 11942 { 11943 return float32_round_to_int(x, fp_status); 11944 } 11945 11946 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 11947 { 11948 return float64_round_to_int(x, fp_status); 11949 } 11950 11951 float32 HELPER(rints)(float32 x, void *fp_status) 11952 { 11953 int old_flags = get_float_exception_flags(fp_status), new_flags; 11954 float32 ret; 11955 11956 ret = float32_round_to_int(x, fp_status); 11957 11958 /* Suppress any inexact exceptions the conversion produced */ 11959 if (!(old_flags & float_flag_inexact)) { 11960 new_flags = get_float_exception_flags(fp_status); 11961 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11962 } 11963 11964 return ret; 11965 } 11966 11967 float64 HELPER(rintd)(float64 x, void *fp_status) 11968 { 11969 int old_flags = get_float_exception_flags(fp_status), new_flags; 11970 float64 ret; 11971 11972 ret = float64_round_to_int(x, fp_status); 11973 11974 new_flags = get_float_exception_flags(fp_status); 11975 11976 /* Suppress any inexact exceptions the conversion produced */ 11977 if (!(old_flags & float_flag_inexact)) { 11978 new_flags = get_float_exception_flags(fp_status); 11979 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11980 } 11981 11982 return ret; 11983 } 11984 11985 /* Convert ARM rounding mode to softfloat */ 11986 int arm_rmode_to_sf(int rmode) 11987 { 11988 switch (rmode) { 11989 case FPROUNDING_TIEAWAY: 11990 rmode = float_round_ties_away; 11991 break; 11992 case FPROUNDING_ODD: 11993 /* FIXME: add support for TIEAWAY and ODD */ 11994 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 11995 rmode); 11996 case FPROUNDING_TIEEVEN: 11997 default: 11998 rmode = float_round_nearest_even; 11999 break; 12000 case FPROUNDING_POSINF: 12001 rmode = float_round_up; 12002 break; 12003 case FPROUNDING_NEGINF: 12004 rmode = float_round_down; 12005 break; 12006 case FPROUNDING_ZERO: 12007 rmode = float_round_to_zero; 12008 break; 12009 } 12010 return rmode; 12011 } 12012 12013 /* CRC helpers. 12014 * The upper bytes of val (above the number specified by 'bytes') must have 12015 * been zeroed out by the caller. 12016 */ 12017 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12018 { 12019 uint8_t buf[4]; 12020 12021 stl_le_p(buf, val); 12022 12023 /* zlib crc32 converts the accumulator and output to one's complement. */ 12024 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12025 } 12026 12027 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12028 { 12029 uint8_t buf[4]; 12030 12031 stl_le_p(buf, val); 12032 12033 /* Linux crc32c converts the output to one's complement. */ 12034 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12035 } 12036 12037 /* Return the exception level to which FP-disabled exceptions should 12038 * be taken, or 0 if FP is enabled. 12039 */ 12040 static inline int fp_exception_el(CPUARMState *env) 12041 { 12042 #ifndef CONFIG_USER_ONLY 12043 int fpen; 12044 int cur_el = arm_current_el(env); 12045 12046 /* CPACR and the CPTR registers don't exist before v6, so FP is 12047 * always accessible 12048 */ 12049 if (!arm_feature(env, ARM_FEATURE_V6)) { 12050 return 0; 12051 } 12052 12053 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12054 * 0, 2 : trap EL0 and EL1/PL1 accesses 12055 * 1 : trap only EL0 accesses 12056 * 3 : trap no accesses 12057 */ 12058 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12059 switch (fpen) { 12060 case 0: 12061 case 2: 12062 if (cur_el == 0 || cur_el == 1) { 12063 /* Trap to PL1, which might be EL1 or EL3 */ 12064 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12065 return 3; 12066 } 12067 return 1; 12068 } 12069 if (cur_el == 3 && !is_a64(env)) { 12070 /* Secure PL1 running at EL3 */ 12071 return 3; 12072 } 12073 break; 12074 case 1: 12075 if (cur_el == 0) { 12076 return 1; 12077 } 12078 break; 12079 case 3: 12080 break; 12081 } 12082 12083 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12084 * check because zero bits in the registers mean "don't trap". 12085 */ 12086 12087 /* CPTR_EL2 : present in v7VE or v8 */ 12088 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12089 && !arm_is_secure_below_el3(env)) { 12090 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12091 return 2; 12092 } 12093 12094 /* CPTR_EL3 : present in v8 */ 12095 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12096 /* Trap all FP ops to EL3 */ 12097 return 3; 12098 } 12099 #endif 12100 return 0; 12101 } 12102 12103 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12104 target_ulong *cs_base, uint32_t *pflags) 12105 { 12106 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12107 int fp_el = fp_exception_el(env); 12108 uint32_t flags; 12109 12110 if (is_a64(env)) { 12111 int sve_el = sve_exception_el(env); 12112 uint32_t zcr_len; 12113 12114 *pc = env->pc; 12115 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12116 /* Get control bits for tagged addresses */ 12117 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12118 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12119 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12120 12121 /* If SVE is disabled, but FP is enabled, 12122 then the effective len is 0. */ 12123 if (sve_el != 0 && fp_el == 0) { 12124 zcr_len = 0; 12125 } else { 12126 int current_el = arm_current_el(env); 12127 12128 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el]; 12129 zcr_len &= 0xf; 12130 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 12131 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 12132 } 12133 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 12134 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 12135 } 12136 } 12137 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12138 } else { 12139 *pc = env->regs[15]; 12140 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12141 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12142 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12143 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12144 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12145 if (!(access_secure_reg(env))) { 12146 flags |= ARM_TBFLAG_NS_MASK; 12147 } 12148 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12149 || arm_el_is_aa64(env, 1)) { 12150 flags |= ARM_TBFLAG_VFPEN_MASK; 12151 } 12152 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12153 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12154 } 12155 12156 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12157 12158 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12159 * states defined in the ARM ARM for software singlestep: 12160 * SS_ACTIVE PSTATE.SS State 12161 * 0 x Inactive (the TB flag for SS is always 0) 12162 * 1 0 Active-pending 12163 * 1 1 Active-not-pending 12164 */ 12165 if (arm_singlestep_active(env)) { 12166 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12167 if (is_a64(env)) { 12168 if (env->pstate & PSTATE_SS) { 12169 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12170 } 12171 } else { 12172 if (env->uncached_cpsr & PSTATE_SS) { 12173 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12174 } 12175 } 12176 } 12177 if (arm_cpu_data_is_big_endian(env)) { 12178 flags |= ARM_TBFLAG_BE_DATA_MASK; 12179 } 12180 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12181 12182 if (arm_v7m_is_handler_mode(env)) { 12183 flags |= ARM_TBFLAG_HANDLER_MASK; 12184 } 12185 12186 *pflags = flags; 12187 *cs_base = 0; 12188 } 12189