1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "sysemu/tcg.h" 31 #include "qemu/range.h" 32 #include "qapi/qapi-commands-machine-target.h" 33 #include "qapi/error.h" 34 #include "qemu/guest-random.h" 35 #ifdef CONFIG_TCG 36 #include "arm_ldst.h" 37 #include "exec/cpu_ldst.h" 38 #include "semihosting/common-semi.h" 39 #endif 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint64_t regidx; 218 const ARMCPRegInfo *ri; 219 220 regidx = *(uint32_t *)key; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 222 223 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 224 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 225 /* The value array need not be initialized at this point */ 226 cpu->cpreg_array_len++; 227 } 228 } 229 230 static void count_cpreg(gpointer key, gpointer opaque) 231 { 232 ARMCPU *cpu = opaque; 233 uint64_t regidx; 234 const ARMCPRegInfo *ri; 235 236 regidx = *(uint32_t *)key; 237 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 238 239 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 240 cpu->cpreg_array_len++; 241 } 242 } 243 244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 245 { 246 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 247 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 248 249 if (aidx > bidx) { 250 return 1; 251 } 252 if (aidx < bidx) { 253 return -1; 254 } 255 return 0; 256 } 257 258 void init_cpreg_list(ARMCPU *cpu) 259 { 260 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 261 * Note that we require cpreg_tuples[] to be sorted by key ID. 262 */ 263 GList *keys; 264 int arraylen; 265 266 keys = g_hash_table_get_keys(cpu->cp_regs); 267 keys = g_list_sort(keys, cpreg_key_compare); 268 269 cpu->cpreg_array_len = 0; 270 271 g_list_foreach(keys, count_cpreg, cpu); 272 273 arraylen = cpu->cpreg_array_len; 274 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 278 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 279 cpu->cpreg_array_len = 0; 280 281 g_list_foreach(keys, add_cpreg_to_list, cpu); 282 283 assert(cpu->cpreg_array_len == arraylen); 284 285 g_list_free(keys); 286 } 287 288 /* 289 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 290 */ 291 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 292 const ARMCPRegInfo *ri, 293 bool isread) 294 { 295 if (!is_a64(env) && arm_current_el(env) == 3 && 296 arm_is_secure_below_el3(env)) { 297 return CP_ACCESS_TRAP_UNCATEGORIZED; 298 } 299 return CP_ACCESS_OK; 300 } 301 302 /* Some secure-only AArch32 registers trap to EL3 if used from 303 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 304 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 305 * We assume that the .access field is set to PL1_RW. 306 */ 307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 308 const ARMCPRegInfo *ri, 309 bool isread) 310 { 311 if (arm_current_el(env) == 3) { 312 return CP_ACCESS_OK; 313 } 314 if (arm_is_secure_below_el3(env)) { 315 if (env->cp15.scr_el3 & SCR_EEL2) { 316 return CP_ACCESS_TRAP_EL2; 317 } 318 return CP_ACCESS_TRAP_EL3; 319 } 320 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 321 return CP_ACCESS_TRAP_UNCATEGORIZED; 322 } 323 324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 325 { 326 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 327 } 328 329 /* Check for traps to "powerdown debug" registers, which are controlled 330 * by MDCR.TDOSA 331 */ 332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 333 bool isread) 334 { 335 int el = arm_current_el(env); 336 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 337 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 338 (arm_hcr_el2_eff(env) & HCR_TGE); 339 340 if (el < 2 && mdcr_el2_tdosa) { 341 return CP_ACCESS_TRAP_EL2; 342 } 343 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 344 return CP_ACCESS_TRAP_EL3; 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps to "debug ROM" registers, which are controlled 350 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 351 */ 352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 353 bool isread) 354 { 355 int el = arm_current_el(env); 356 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 357 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 358 (arm_hcr_el2_eff(env) & HCR_TGE); 359 360 if (el < 2 && mdcr_el2_tdra) { 361 return CP_ACCESS_TRAP_EL2; 362 } 363 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 364 return CP_ACCESS_TRAP_EL3; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 /* Check for traps to general debug registers, which are controlled 370 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 371 */ 372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 373 bool isread) 374 { 375 int el = arm_current_el(env); 376 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 377 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 378 (arm_hcr_el2_eff(env) & HCR_TGE); 379 380 if (el < 2 && mdcr_el2_tda) { 381 return CP_ACCESS_TRAP_EL2; 382 } 383 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 /* Check for traps to performance monitor registers, which are controlled 390 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 391 */ 392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 393 bool isread) 394 { 395 int el = arm_current_el(env); 396 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 397 398 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 399 return CP_ACCESS_TRAP_EL2; 400 } 401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 402 return CP_ACCESS_TRAP_EL3; 403 } 404 return CP_ACCESS_OK; 405 } 406 407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 409 bool isread) 410 { 411 if (arm_current_el(env) == 1) { 412 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 413 if (arm_hcr_el2_eff(env) & trap) { 414 return CP_ACCESS_TRAP_EL2; 415 } 416 } 417 return CP_ACCESS_OK; 418 } 419 420 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 422 bool isread) 423 { 424 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 return CP_ACCESS_OK; 428 } 429 430 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 435 return CP_ACCESS_TRAP_EL2; 436 } 437 return CP_ACCESS_OK; 438 } 439 440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 445 return CP_ACCESS_TRAP_EL2; 446 } 447 return CP_ACCESS_OK; 448 } 449 450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 451 { 452 ARMCPU *cpu = env_archcpu(env); 453 454 raw_write(env, ri, value); 455 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 456 } 457 458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 459 { 460 ARMCPU *cpu = env_archcpu(env); 461 462 if (raw_read(env, ri) != value) { 463 /* Unlike real hardware the qemu TLB uses virtual addresses, 464 * not modified virtual addresses, so this causes a TLB flush. 465 */ 466 tlb_flush(CPU(cpu)); 467 raw_write(env, ri, value); 468 } 469 } 470 471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 472 uint64_t value) 473 { 474 ARMCPU *cpu = env_archcpu(env); 475 476 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 477 && !extended_addresses_enabled(env)) { 478 /* For VMSA (when not using the LPAE long descriptor page table 479 * format) this register includes the ASID, so do a TLB flush. 480 * For PMSA it is purely a process ID and no action is needed. 481 */ 482 tlb_flush(CPU(cpu)); 483 } 484 raw_write(env, ri, value); 485 } 486 487 /* IS variants of TLB operations must affect all cores */ 488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 489 uint64_t value) 490 { 491 CPUState *cs = env_cpu(env); 492 493 tlb_flush_all_cpus_synced(cs); 494 } 495 496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 497 uint64_t value) 498 { 499 CPUState *cs = env_cpu(env); 500 501 tlb_flush_all_cpus_synced(cs); 502 } 503 504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 505 uint64_t value) 506 { 507 CPUState *cs = env_cpu(env); 508 509 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 510 } 511 512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 CPUState *cs = env_cpu(env); 516 517 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 518 } 519 520 /* 521 * Non-IS variants of TLB operations are upgraded to 522 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 523 * force broadcast of these operations. 524 */ 525 static bool tlb_force_broadcast(CPUARMState *env) 526 { 527 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 528 } 529 530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 /* Invalidate all (TLBIALL) */ 534 CPUState *cs = env_cpu(env); 535 536 if (tlb_force_broadcast(env)) { 537 tlb_flush_all_cpus_synced(cs); 538 } else { 539 tlb_flush(cs); 540 } 541 } 542 543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 547 CPUState *cs = env_cpu(env); 548 549 value &= TARGET_PAGE_MASK; 550 if (tlb_force_broadcast(env)) { 551 tlb_flush_page_all_cpus_synced(cs, value); 552 } else { 553 tlb_flush_page(cs, value); 554 } 555 } 556 557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 /* Invalidate by ASID (TLBIASID) */ 561 CPUState *cs = env_cpu(env); 562 563 if (tlb_force_broadcast(env)) { 564 tlb_flush_all_cpus_synced(cs); 565 } else { 566 tlb_flush(cs); 567 } 568 } 569 570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 574 CPUState *cs = env_cpu(env); 575 576 value &= TARGET_PAGE_MASK; 577 if (tlb_force_broadcast(env)) { 578 tlb_flush_page_all_cpus_synced(cs, value); 579 } else { 580 tlb_flush_page(cs, value); 581 } 582 } 583 584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = env_cpu(env); 588 589 tlb_flush_by_mmuidx(cs, 590 ARMMMUIdxBit_E10_1 | 591 ARMMMUIdxBit_E10_1_PAN | 592 ARMMMUIdxBit_E10_0); 593 } 594 595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_by_mmuidx_all_cpus_synced(cs, 601 ARMMMUIdxBit_E10_1 | 602 ARMMMUIdxBit_E10_1_PAN | 603 ARMMMUIdxBit_E10_0); 604 } 605 606 607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 CPUState *cs = env_cpu(env); 611 612 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 613 } 614 615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 CPUState *cs = env_cpu(env); 619 620 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 621 } 622 623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 624 uint64_t value) 625 { 626 CPUState *cs = env_cpu(env); 627 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 628 629 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 630 } 631 632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 633 uint64_t value) 634 { 635 CPUState *cs = env_cpu(env); 636 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 637 638 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 639 ARMMMUIdxBit_E2); 640 } 641 642 static const ARMCPRegInfo cp_reginfo[] = { 643 /* Define the secure and non-secure FCSE identifier CP registers 644 * separately because there is no secure bank in V8 (no _EL3). This allows 645 * the secure register to be properly reset and migrated. There is also no 646 * v8 EL1 version of the register so the non-secure instance stands alone. 647 */ 648 { .name = "FCSEIDR", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 { .name = "FCSEIDR_S", 654 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 655 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 656 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 657 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 658 /* Define the secure and non-secure context identifier CP registers 659 * separately because there is no secure bank in V8 (no _EL3). This allows 660 * the secure register to be properly reset and migrated. In the 661 * non-secure case, the 32-bit register will have reset and migration 662 * disabled during registration as it is handled by the 64-bit instance. 663 */ 664 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 665 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, 667 .secure = ARM_CP_SECSTATE_NS, 668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 670 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 671 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 672 .access = PL1_RW, .accessfn = access_tvm_trvm, 673 .secure = ARM_CP_SECSTATE_S, 674 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 675 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 676 REGINFO_SENTINEL 677 }; 678 679 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 680 /* NB: Some of these registers exist in v8 but with more precise 681 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 682 */ 683 /* MMU Domain access control / MPU write buffer control */ 684 { .name = "DACR", 685 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 686 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 687 .writefn = dacr_write, .raw_writefn = raw_write, 688 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 689 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 690 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 691 * For v6 and v5, these mappings are overly broad. 692 */ 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 696 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 697 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 699 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 700 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 701 /* Cache maintenance ops; some of this space may be overridden later. */ 702 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 703 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 704 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 705 REGINFO_SENTINEL 706 }; 707 708 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 709 /* Not all pre-v6 cores implemented this WFI, so this is slightly 710 * over-broad. 711 */ 712 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 713 .access = PL1_W, .type = ARM_CP_WFI }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 718 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 719 * is UNPREDICTABLE; we choose to NOP as most implementations do). 720 */ 721 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 722 .access = PL1_W, .type = ARM_CP_WFI }, 723 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 724 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 725 * OMAPCP will override this space. 726 */ 727 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 728 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 729 .resetvalue = 0 }, 730 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 731 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 732 .resetvalue = 0 }, 733 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 734 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 735 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 736 .resetvalue = 0 }, 737 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 738 * implementing it as RAZ means the "debug architecture version" bits 739 * will read as a reserved value, which should cause Linux to not try 740 * to use the debug hardware. 741 */ 742 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 743 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 744 /* MMU TLB control. Note that the wildcarding means we cover not just 745 * the unified TLB ops but also the dside/iside/inner-shareable variants. 746 */ 747 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 748 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 749 .type = ARM_CP_NO_RAW }, 750 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 751 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 752 .type = ARM_CP_NO_RAW }, 753 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 754 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 755 .type = ARM_CP_NO_RAW }, 756 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 757 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 758 .type = ARM_CP_NO_RAW }, 759 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 760 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 761 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 762 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 763 REGINFO_SENTINEL 764 }; 765 766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 767 uint64_t value) 768 { 769 uint32_t mask = 0; 770 771 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 772 if (!arm_feature(env, ARM_FEATURE_V8)) { 773 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 774 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 775 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 776 */ 777 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 778 /* VFP coprocessor: cp10 & cp11 [23:20] */ 779 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 780 781 if (!arm_feature(env, ARM_FEATURE_NEON)) { 782 /* ASEDIS [31] bit is RAO/WI */ 783 value |= (1 << 31); 784 } 785 786 /* VFPv3 and upwards with NEON implement 32 double precision 787 * registers (D0-D31). 788 */ 789 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 790 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 791 value |= (1 << 30); 792 } 793 } 794 value &= mask; 795 } 796 797 /* 798 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 799 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 800 */ 801 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 802 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 803 value &= ~(0xf << 20); 804 value |= env->cp15.cpacr_el1 & (0xf << 20); 805 } 806 807 env->cp15.cpacr_el1 = value; 808 } 809 810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 811 { 812 /* 813 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 814 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 815 */ 816 uint64_t value = env->cp15.cpacr_el1; 817 818 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 819 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 820 value &= ~(0xf << 20); 821 } 822 return value; 823 } 824 825 826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 827 { 828 /* Call cpacr_write() so that we reset with the correct RAO bits set 829 * for our CPU features. 830 */ 831 cpacr_write(env, ri, 0); 832 } 833 834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 835 bool isread) 836 { 837 if (arm_feature(env, ARM_FEATURE_V8)) { 838 /* Check if CPACR accesses are to be trapped to EL2 */ 839 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 840 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 841 return CP_ACCESS_TRAP_EL2; 842 /* Check if CPACR accesses are to be trapped to EL3 */ 843 } else if (arm_current_el(env) < 3 && 844 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 845 return CP_ACCESS_TRAP_EL3; 846 } 847 } 848 849 return CP_ACCESS_OK; 850 } 851 852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 853 bool isread) 854 { 855 /* Check if CPTR accesses are set to trap to EL3 */ 856 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 857 return CP_ACCESS_TRAP_EL3; 858 } 859 860 return CP_ACCESS_OK; 861 } 862 863 static const ARMCPRegInfo v6_cp_reginfo[] = { 864 /* prefetch by MVA in v6, NOP in v7 */ 865 { .name = "MVA_prefetch", 866 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 867 .access = PL1_W, .type = ARM_CP_NOP }, 868 /* We need to break the TB after ISB to execute self-modifying code 869 * correctly and also to take any pending interrupts immediately. 870 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 871 */ 872 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 874 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 877 .access = PL0_W, .type = ARM_CP_NOP }, 878 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 879 .access = PL1_RW, .accessfn = access_tvm_trvm, 880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 881 offsetof(CPUARMState, cp15.ifar_ns) }, 882 .resetvalue = 0, }, 883 /* Watchpoint Fault Address Register : should actually only be present 884 * for 1136, 1176, 11MPCore. 885 */ 886 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 887 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 888 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 889 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 890 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 891 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 892 REGINFO_SENTINEL 893 }; 894 895 typedef struct pm_event { 896 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 897 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 898 bool (*supported)(CPUARMState *); 899 /* 900 * Retrieve the current count of the underlying event. The programmed 901 * counters hold a difference from the return value from this function 902 */ 903 uint64_t (*get_count)(CPUARMState *); 904 /* 905 * Return how many nanoseconds it will take (at a minimum) for count events 906 * to occur. A negative value indicates the counter will never overflow, or 907 * that the counter has otherwise arranged for the overflow bit to be set 908 * and the PMU interrupt to be raised on overflow. 909 */ 910 int64_t (*ns_per_count)(uint64_t); 911 } pm_event; 912 913 static bool event_always_supported(CPUARMState *env) 914 { 915 return true; 916 } 917 918 static uint64_t swinc_get_count(CPUARMState *env) 919 { 920 /* 921 * SW_INCR events are written directly to the pmevcntr's by writes to 922 * PMSWINC, so there is no underlying count maintained by the PMU itself 923 */ 924 return 0; 925 } 926 927 static int64_t swinc_ns_per(uint64_t ignored) 928 { 929 return -1; 930 } 931 932 /* 933 * Return the underlying cycle count for the PMU cycle counters. If we're in 934 * usermode, simply return 0. 935 */ 936 static uint64_t cycles_get_count(CPUARMState *env) 937 { 938 #ifndef CONFIG_USER_ONLY 939 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 940 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 941 #else 942 return cpu_get_host_ticks(); 943 #endif 944 } 945 946 #ifndef CONFIG_USER_ONLY 947 static int64_t cycles_ns_per(uint64_t cycles) 948 { 949 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 950 } 951 952 static bool instructions_supported(CPUARMState *env) 953 { 954 return icount_enabled() == 1; /* Precise instruction counting */ 955 } 956 957 static uint64_t instructions_get_count(CPUARMState *env) 958 { 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 return icount_to_ns((int64_t)icount); 965 } 966 #endif 967 968 static bool pmu_8_1_events_supported(CPUARMState *env) 969 { 970 /* For events which are supported in any v8.1 PMU */ 971 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 972 } 973 974 static bool pmu_8_4_events_supported(CPUARMState *env) 975 { 976 /* For events which are supported in any v8.1 PMU */ 977 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 978 } 979 980 static uint64_t zero_event_get_count(CPUARMState *env) 981 { 982 /* For events which on QEMU never fire, so their count is always zero */ 983 return 0; 984 } 985 986 static int64_t zero_event_ns_per(uint64_t cycles) 987 { 988 /* An event which never fires can never overflow */ 989 return -1; 990 } 991 992 static const pm_event pm_events[] = { 993 { .number = 0x000, /* SW_INCR */ 994 .supported = event_always_supported, 995 .get_count = swinc_get_count, 996 .ns_per_count = swinc_ns_per, 997 }, 998 #ifndef CONFIG_USER_ONLY 999 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1000 .supported = instructions_supported, 1001 .get_count = instructions_get_count, 1002 .ns_per_count = instructions_ns_per, 1003 }, 1004 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1005 .supported = event_always_supported, 1006 .get_count = cycles_get_count, 1007 .ns_per_count = cycles_ns_per, 1008 }, 1009 #endif 1010 { .number = 0x023, /* STALL_FRONTEND */ 1011 .supported = pmu_8_1_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 { .number = 0x024, /* STALL_BACKEND */ 1016 .supported = pmu_8_1_events_supported, 1017 .get_count = zero_event_get_count, 1018 .ns_per_count = zero_event_ns_per, 1019 }, 1020 { .number = 0x03c, /* STALL */ 1021 .supported = pmu_8_4_events_supported, 1022 .get_count = zero_event_get_count, 1023 .ns_per_count = zero_event_ns_per, 1024 }, 1025 }; 1026 1027 /* 1028 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1029 * events (i.e. the statistical profiling extension), this implementation 1030 * should first be updated to something sparse instead of the current 1031 * supported_event_map[] array. 1032 */ 1033 #define MAX_EVENT_ID 0x3c 1034 #define UNSUPPORTED_EVENT UINT16_MAX 1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1036 1037 /* 1038 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1039 * of ARM event numbers to indices in our pm_events array. 1040 * 1041 * Note: Events in the 0x40XX range are not currently supported. 1042 */ 1043 void pmu_init(ARMCPU *cpu) 1044 { 1045 unsigned int i; 1046 1047 /* 1048 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1049 * events to them 1050 */ 1051 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1052 supported_event_map[i] = UNSUPPORTED_EVENT; 1053 } 1054 cpu->pmceid0 = 0; 1055 cpu->pmceid1 = 0; 1056 1057 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1058 const pm_event *cnt = &pm_events[i]; 1059 assert(cnt->number <= MAX_EVENT_ID); 1060 /* We do not currently support events in the 0x40xx range */ 1061 assert(cnt->number <= 0x3f); 1062 1063 if (cnt->supported(&cpu->env)) { 1064 supported_event_map[cnt->number] = i; 1065 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1066 if (cnt->number & 0x20) { 1067 cpu->pmceid1 |= event_mask; 1068 } else { 1069 cpu->pmceid0 |= event_mask; 1070 } 1071 } 1072 } 1073 } 1074 1075 /* 1076 * Check at runtime whether a PMU event is supported for the current machine 1077 */ 1078 static bool event_supported(uint16_t number) 1079 { 1080 if (number > MAX_EVENT_ID) { 1081 return false; 1082 } 1083 return supported_event_map[number] != UNSUPPORTED_EVENT; 1084 } 1085 1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1087 bool isread) 1088 { 1089 /* Performance monitor registers user accessibility is controlled 1090 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1091 * trapping to EL2 or EL3 for other accesses. 1092 */ 1093 int el = arm_current_el(env); 1094 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1095 1096 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1097 return CP_ACCESS_TRAP; 1098 } 1099 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1100 return CP_ACCESS_TRAP_EL2; 1101 } 1102 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1103 return CP_ACCESS_TRAP_EL3; 1104 } 1105 1106 return CP_ACCESS_OK; 1107 } 1108 1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1110 const ARMCPRegInfo *ri, 1111 bool isread) 1112 { 1113 /* ER: event counter read trap control */ 1114 if (arm_feature(env, ARM_FEATURE_V8) 1115 && arm_current_el(env) == 0 1116 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1117 && isread) { 1118 return CP_ACCESS_OK; 1119 } 1120 1121 return pmreg_access(env, ri, isread); 1122 } 1123 1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1125 const ARMCPRegInfo *ri, 1126 bool isread) 1127 { 1128 /* SW: software increment write trap control */ 1129 if (arm_feature(env, ARM_FEATURE_V8) 1130 && arm_current_el(env) == 0 1131 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1132 && !isread) { 1133 return CP_ACCESS_OK; 1134 } 1135 1136 return pmreg_access(env, ri, isread); 1137 } 1138 1139 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1140 const ARMCPRegInfo *ri, 1141 bool isread) 1142 { 1143 /* ER: event counter read trap control */ 1144 if (arm_feature(env, ARM_FEATURE_V8) 1145 && arm_current_el(env) == 0 1146 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1147 return CP_ACCESS_OK; 1148 } 1149 1150 return pmreg_access(env, ri, isread); 1151 } 1152 1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1154 const ARMCPRegInfo *ri, 1155 bool isread) 1156 { 1157 /* CR: cycle counter read trap control */ 1158 if (arm_feature(env, ARM_FEATURE_V8) 1159 && arm_current_el(env) == 0 1160 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1161 && isread) { 1162 return CP_ACCESS_OK; 1163 } 1164 1165 return pmreg_access(env, ri, isread); 1166 } 1167 1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1169 * the current EL, security state, and register configuration. 1170 */ 1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1172 { 1173 uint64_t filter; 1174 bool e, p, u, nsk, nsu, nsh, m; 1175 bool enabled, prohibited, filtered; 1176 bool secure = arm_is_secure(env); 1177 int el = arm_current_el(env); 1178 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1179 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1180 1181 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1182 return false; 1183 } 1184 1185 if (!arm_feature(env, ARM_FEATURE_EL2) || 1186 (counter < hpmn || counter == 31)) { 1187 e = env->cp15.c9_pmcr & PMCRE; 1188 } else { 1189 e = mdcr_el2 & MDCR_HPME; 1190 } 1191 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1192 1193 if (!secure) { 1194 if (el == 2 && (counter < hpmn || counter == 31)) { 1195 prohibited = mdcr_el2 & MDCR_HPMD; 1196 } else { 1197 prohibited = false; 1198 } 1199 } else { 1200 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1201 !(env->cp15.mdcr_el3 & MDCR_SPME); 1202 } 1203 1204 if (prohibited && counter == 31) { 1205 prohibited = env->cp15.c9_pmcr & PMCRDP; 1206 } 1207 1208 if (counter == 31) { 1209 filter = env->cp15.pmccfiltr_el0; 1210 } else { 1211 filter = env->cp15.c14_pmevtyper[counter]; 1212 } 1213 1214 p = filter & PMXEVTYPER_P; 1215 u = filter & PMXEVTYPER_U; 1216 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1217 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1218 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1219 m = arm_el_is_aa64(env, 1) && 1220 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1221 1222 if (el == 0) { 1223 filtered = secure ? u : u != nsu; 1224 } else if (el == 1) { 1225 filtered = secure ? p : p != nsk; 1226 } else if (el == 2) { 1227 filtered = !nsh; 1228 } else { /* EL3 */ 1229 filtered = m != p; 1230 } 1231 1232 if (counter != 31) { 1233 /* 1234 * If not checking PMCCNTR, ensure the counter is setup to an event we 1235 * support 1236 */ 1237 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1238 if (!event_supported(event)) { 1239 return false; 1240 } 1241 } 1242 1243 return enabled && !prohibited && !filtered; 1244 } 1245 1246 static void pmu_update_irq(CPUARMState *env) 1247 { 1248 ARMCPU *cpu = env_archcpu(env); 1249 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1250 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1251 } 1252 1253 /* 1254 * Ensure c15_ccnt is the guest-visible count so that operations such as 1255 * enabling/disabling the counter or filtering, modifying the count itself, 1256 * etc. can be done logically. This is essentially a no-op if the counter is 1257 * not enabled at the time of the call. 1258 */ 1259 static void pmccntr_op_start(CPUARMState *env) 1260 { 1261 uint64_t cycles = cycles_get_count(env); 1262 1263 if (pmu_counter_enabled(env, 31)) { 1264 uint64_t eff_cycles = cycles; 1265 if (env->cp15.c9_pmcr & PMCRD) { 1266 /* Increment once every 64 processor clock cycles */ 1267 eff_cycles /= 64; 1268 } 1269 1270 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1271 1272 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1273 1ull << 63 : 1ull << 31; 1274 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1275 env->cp15.c9_pmovsr |= (1 << 31); 1276 pmu_update_irq(env); 1277 } 1278 1279 env->cp15.c15_ccnt = new_pmccntr; 1280 } 1281 env->cp15.c15_ccnt_delta = cycles; 1282 } 1283 1284 /* 1285 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1286 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1287 * pmccntr_op_start. 1288 */ 1289 static void pmccntr_op_finish(CPUARMState *env) 1290 { 1291 if (pmu_counter_enabled(env, 31)) { 1292 #ifndef CONFIG_USER_ONLY 1293 /* Calculate when the counter will next overflow */ 1294 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1295 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1296 remaining_cycles = (uint32_t)remaining_cycles; 1297 } 1298 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1299 1300 if (overflow_in > 0) { 1301 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1302 overflow_in; 1303 ARMCPU *cpu = env_archcpu(env); 1304 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1305 } 1306 #endif 1307 1308 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1309 if (env->cp15.c9_pmcr & PMCRD) { 1310 /* Increment once every 64 processor clock cycles */ 1311 prev_cycles /= 64; 1312 } 1313 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1314 } 1315 } 1316 1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1318 { 1319 1320 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1321 uint64_t count = 0; 1322 if (event_supported(event)) { 1323 uint16_t event_idx = supported_event_map[event]; 1324 count = pm_events[event_idx].get_count(env); 1325 } 1326 1327 if (pmu_counter_enabled(env, counter)) { 1328 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1329 1330 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1331 env->cp15.c9_pmovsr |= (1 << counter); 1332 pmu_update_irq(env); 1333 } 1334 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1335 } 1336 env->cp15.c14_pmevcntr_delta[counter] = count; 1337 } 1338 1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1340 { 1341 if (pmu_counter_enabled(env, counter)) { 1342 #ifndef CONFIG_USER_ONLY 1343 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1344 uint16_t event_idx = supported_event_map[event]; 1345 uint64_t delta = UINT32_MAX - 1346 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1347 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1348 1349 if (overflow_in > 0) { 1350 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1351 overflow_in; 1352 ARMCPU *cpu = env_archcpu(env); 1353 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1354 } 1355 #endif 1356 1357 env->cp15.c14_pmevcntr_delta[counter] -= 1358 env->cp15.c14_pmevcntr[counter]; 1359 } 1360 } 1361 1362 void pmu_op_start(CPUARMState *env) 1363 { 1364 unsigned int i; 1365 pmccntr_op_start(env); 1366 for (i = 0; i < pmu_num_counters(env); i++) { 1367 pmevcntr_op_start(env, i); 1368 } 1369 } 1370 1371 void pmu_op_finish(CPUARMState *env) 1372 { 1373 unsigned int i; 1374 pmccntr_op_finish(env); 1375 for (i = 0; i < pmu_num_counters(env); i++) { 1376 pmevcntr_op_finish(env, i); 1377 } 1378 } 1379 1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1381 { 1382 pmu_op_start(&cpu->env); 1383 } 1384 1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1386 { 1387 pmu_op_finish(&cpu->env); 1388 } 1389 1390 void arm_pmu_timer_cb(void *opaque) 1391 { 1392 ARMCPU *cpu = opaque; 1393 1394 /* 1395 * Update all the counter values based on the current underlying counts, 1396 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1397 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1398 * counter may expire. 1399 */ 1400 pmu_op_start(&cpu->env); 1401 pmu_op_finish(&cpu->env); 1402 } 1403 1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1405 uint64_t value) 1406 { 1407 pmu_op_start(env); 1408 1409 if (value & PMCRC) { 1410 /* The counter has been reset */ 1411 env->cp15.c15_ccnt = 0; 1412 } 1413 1414 if (value & PMCRP) { 1415 unsigned int i; 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 env->cp15.c14_pmevcntr[i] = 0; 1418 } 1419 } 1420 1421 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1422 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1423 1424 pmu_op_finish(env); 1425 } 1426 1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1428 uint64_t value) 1429 { 1430 unsigned int i; 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 /* Increment a counter's count iff: */ 1433 if ((value & (1 << i)) && /* counter's bit is set */ 1434 /* counter is enabled and not filtered */ 1435 pmu_counter_enabled(env, i) && 1436 /* counter is SW_INCR */ 1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1438 pmevcntr_op_start(env, i); 1439 1440 /* 1441 * Detect if this write causes an overflow since we can't predict 1442 * PMSWINC overflows like we can for other events 1443 */ 1444 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1445 1446 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1447 env->cp15.c9_pmovsr |= (1 << i); 1448 pmu_update_irq(env); 1449 } 1450 1451 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1452 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 } 1457 1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1459 { 1460 uint64_t ret; 1461 pmccntr_op_start(env); 1462 ret = env->cp15.c15_ccnt; 1463 pmccntr_op_finish(env); 1464 return ret; 1465 } 1466 1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1468 uint64_t value) 1469 { 1470 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1471 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1472 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1473 * accessed. 1474 */ 1475 env->cp15.c9_pmselr = value & 0x1f; 1476 } 1477 1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 pmccntr_op_start(env); 1482 env->cp15.c15_ccnt = value; 1483 pmccntr_op_finish(env); 1484 } 1485 1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1487 uint64_t value) 1488 { 1489 uint64_t cur_val = pmccntr_read(env, NULL); 1490 1491 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1492 } 1493 1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1495 uint64_t value) 1496 { 1497 pmccntr_op_start(env); 1498 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1503 uint64_t value) 1504 { 1505 pmccntr_op_start(env); 1506 /* M is not accessible from AArch32 */ 1507 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1508 (value & PMCCFILTR); 1509 pmccntr_op_finish(env); 1510 } 1511 1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1513 { 1514 /* M is not visible in AArch32 */ 1515 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1516 } 1517 1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1519 uint64_t value) 1520 { 1521 value &= pmu_counter_mask(env); 1522 env->cp15.c9_pmcnten |= value; 1523 } 1524 1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 value &= pmu_counter_mask(env); 1529 env->cp15.c9_pmcnten &= ~value; 1530 } 1531 1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1533 uint64_t value) 1534 { 1535 value &= pmu_counter_mask(env); 1536 env->cp15.c9_pmovsr &= ~value; 1537 pmu_update_irq(env); 1538 } 1539 1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1541 uint64_t value) 1542 { 1543 value &= pmu_counter_mask(env); 1544 env->cp15.c9_pmovsr |= value; 1545 pmu_update_irq(env); 1546 } 1547 1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value, const uint8_t counter) 1550 { 1551 if (counter == 31) { 1552 pmccfiltr_write(env, ri, value); 1553 } else if (counter < pmu_num_counters(env)) { 1554 pmevcntr_op_start(env, counter); 1555 1556 /* 1557 * If this counter's event type is changing, store the current 1558 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1559 * pmevcntr_op_finish has the correct baseline when it converts back to 1560 * a delta. 1561 */ 1562 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1563 PMXEVTYPER_EVTCOUNT; 1564 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1565 if (old_event != new_event) { 1566 uint64_t count = 0; 1567 if (event_supported(new_event)) { 1568 uint16_t event_idx = supported_event_map[new_event]; 1569 count = pm_events[event_idx].get_count(env); 1570 } 1571 env->cp15.c14_pmevcntr_delta[counter] = count; 1572 } 1573 1574 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1575 pmevcntr_op_finish(env, counter); 1576 } 1577 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1578 * PMSELR value is equal to or greater than the number of implemented 1579 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1580 */ 1581 } 1582 1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1584 const uint8_t counter) 1585 { 1586 if (counter == 31) { 1587 return env->cp15.pmccfiltr_el0; 1588 } else if (counter < pmu_num_counters(env)) { 1589 return env->cp15.c14_pmevtyper[counter]; 1590 } else { 1591 /* 1592 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1593 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1594 */ 1595 return 0; 1596 } 1597 } 1598 1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1600 uint64_t value) 1601 { 1602 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1603 pmevtyper_write(env, ri, value, counter); 1604 } 1605 1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1607 uint64_t value) 1608 { 1609 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1610 env->cp15.c14_pmevtyper[counter] = value; 1611 1612 /* 1613 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1614 * pmu_op_finish calls when loading saved state for a migration. Because 1615 * we're potentially updating the type of event here, the value written to 1616 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1617 * different counter type. Therefore, we need to set this value to the 1618 * current count for the counter type we're writing so that pmu_op_finish 1619 * has the correct count for its calculation. 1620 */ 1621 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1622 if (event_supported(event)) { 1623 uint16_t event_idx = supported_event_map[event]; 1624 env->cp15.c14_pmevcntr_delta[counter] = 1625 pm_events[event_idx].get_count(env); 1626 } 1627 } 1628 1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1630 { 1631 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1632 return pmevtyper_read(env, ri, counter); 1633 } 1634 1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1639 } 1640 1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1642 { 1643 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1644 } 1645 1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value, uint8_t counter) 1648 { 1649 if (counter < pmu_num_counters(env)) { 1650 pmevcntr_op_start(env, counter); 1651 env->cp15.c14_pmevcntr[counter] = value; 1652 pmevcntr_op_finish(env, counter); 1653 } 1654 /* 1655 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1656 * are CONSTRAINED UNPREDICTABLE. 1657 */ 1658 } 1659 1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint8_t counter) 1662 { 1663 if (counter < pmu_num_counters(env)) { 1664 uint64_t ret; 1665 pmevcntr_op_start(env, counter); 1666 ret = env->cp15.c14_pmevcntr[counter]; 1667 pmevcntr_op_finish(env, counter); 1668 return ret; 1669 } else { 1670 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1671 * are CONSTRAINED UNPREDICTABLE. */ 1672 return 0; 1673 } 1674 } 1675 1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1677 uint64_t value) 1678 { 1679 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1680 pmevcntr_write(env, ri, value, counter); 1681 } 1682 1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1684 { 1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1686 return pmevcntr_read(env, ri, counter); 1687 } 1688 1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1690 uint64_t value) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 assert(counter < pmu_num_counters(env)); 1694 env->cp15.c14_pmevcntr[counter] = value; 1695 pmevcntr_write(env, ri, value, counter); 1696 } 1697 1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1699 { 1700 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1701 assert(counter < pmu_num_counters(env)); 1702 return env->cp15.c14_pmevcntr[counter]; 1703 } 1704 1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 uint64_t value) 1707 { 1708 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1709 } 1710 1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1712 { 1713 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1714 } 1715 1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 if (arm_feature(env, ARM_FEATURE_V8)) { 1720 env->cp15.c9_pmuserenr = value & 0xf; 1721 } else { 1722 env->cp15.c9_pmuserenr = value & 1; 1723 } 1724 } 1725 1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint64_t value) 1728 { 1729 /* We have no event counters so only the C bit can be changed */ 1730 value &= pmu_counter_mask(env); 1731 env->cp15.c9_pminten |= value; 1732 pmu_update_irq(env); 1733 } 1734 1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1736 uint64_t value) 1737 { 1738 value &= pmu_counter_mask(env); 1739 env->cp15.c9_pminten &= ~value; 1740 pmu_update_irq(env); 1741 } 1742 1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 uint64_t value) 1745 { 1746 /* Note that even though the AArch64 view of this register has bits 1747 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1748 * architectural requirements for bits which are RES0 only in some 1749 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1750 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1751 */ 1752 raw_write(env, ri, value & ~0x1FULL); 1753 } 1754 1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1756 { 1757 /* Begin with base v8.0 state. */ 1758 uint32_t valid_mask = 0x3fff; 1759 ARMCPU *cpu = env_archcpu(env); 1760 1761 if (ri->state == ARM_CP_STATE_AA64) { 1762 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1763 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1764 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1765 } 1766 valid_mask &= ~SCR_NET; 1767 1768 if (cpu_isar_feature(aa64_lor, cpu)) { 1769 valid_mask |= SCR_TLOR; 1770 } 1771 if (cpu_isar_feature(aa64_pauth, cpu)) { 1772 valid_mask |= SCR_API | SCR_APK; 1773 } 1774 if (cpu_isar_feature(aa64_sel2, cpu)) { 1775 valid_mask |= SCR_EEL2; 1776 } 1777 if (cpu_isar_feature(aa64_mte, cpu)) { 1778 valid_mask |= SCR_ATA; 1779 } 1780 } else { 1781 valid_mask &= ~(SCR_RW | SCR_ST); 1782 } 1783 1784 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1785 valid_mask &= ~SCR_HCE; 1786 1787 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1788 * supported if EL2 exists. The bit is UNK/SBZP when 1789 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1790 * when EL2 is unavailable. 1791 * On ARMv8, this bit is always available. 1792 */ 1793 if (arm_feature(env, ARM_FEATURE_V7) && 1794 !arm_feature(env, ARM_FEATURE_V8)) { 1795 valid_mask &= ~SCR_SMD; 1796 } 1797 } 1798 1799 /* Clear all-context RES0 bits. */ 1800 value &= valid_mask; 1801 raw_write(env, ri, value); 1802 } 1803 1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1805 { 1806 /* 1807 * scr_write will set the RES1 bits on an AArch64-only CPU. 1808 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1809 */ 1810 scr_write(env, ri, 0); 1811 } 1812 1813 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1814 const ARMCPRegInfo *ri, 1815 bool isread) 1816 { 1817 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1818 return CP_ACCESS_TRAP_EL2; 1819 } 1820 1821 return CP_ACCESS_OK; 1822 } 1823 1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1825 { 1826 ARMCPU *cpu = env_archcpu(env); 1827 1828 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1829 * bank 1830 */ 1831 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1832 ri->secure & ARM_CP_SECSTATE_S); 1833 1834 return cpu->ccsidr[index]; 1835 } 1836 1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1838 uint64_t value) 1839 { 1840 raw_write(env, ri, value & 0xf); 1841 } 1842 1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1844 { 1845 CPUState *cs = env_cpu(env); 1846 bool el1 = arm_current_el(env) == 1; 1847 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1848 uint64_t ret = 0; 1849 1850 if (hcr_el2 & HCR_IMO) { 1851 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1852 ret |= CPSR_I; 1853 } 1854 } else { 1855 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1856 ret |= CPSR_I; 1857 } 1858 } 1859 1860 if (hcr_el2 & HCR_FMO) { 1861 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1862 ret |= CPSR_F; 1863 } 1864 } else { 1865 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1866 ret |= CPSR_F; 1867 } 1868 } 1869 1870 /* External aborts are not possible in QEMU so A bit is always clear */ 1871 return ret; 1872 } 1873 1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1875 bool isread) 1876 { 1877 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1878 return CP_ACCESS_TRAP_EL2; 1879 } 1880 1881 return CP_ACCESS_OK; 1882 } 1883 1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1885 bool isread) 1886 { 1887 if (arm_feature(env, ARM_FEATURE_V8)) { 1888 return access_aa64_tid1(env, ri, isread); 1889 } 1890 1891 return CP_ACCESS_OK; 1892 } 1893 1894 static const ARMCPRegInfo v7_cp_reginfo[] = { 1895 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1896 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1897 .access = PL1_W, .type = ARM_CP_NOP }, 1898 /* Performance monitors are implementation defined in v7, 1899 * but with an ARM recommended set of registers, which we 1900 * follow. 1901 * 1902 * Performance registers fall into three categories: 1903 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1904 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1905 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1906 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1907 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1908 */ 1909 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1910 .access = PL0_RW, .type = ARM_CP_ALIAS, 1911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1912 .writefn = pmcntenset_write, 1913 .accessfn = pmreg_access, 1914 .raw_writefn = raw_write }, 1915 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1917 .access = PL0_RW, .accessfn = pmreg_access, 1918 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1919 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1920 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1921 .access = PL0_RW, 1922 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1923 .accessfn = pmreg_access, 1924 .writefn = pmcntenclr_write, 1925 .type = ARM_CP_ALIAS }, 1926 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1928 .access = PL0_RW, .accessfn = pmreg_access, 1929 .type = ARM_CP_ALIAS, 1930 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1931 .writefn = pmcntenclr_write }, 1932 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1933 .access = PL0_RW, .type = ARM_CP_IO, 1934 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1935 .accessfn = pmreg_access, 1936 .writefn = pmovsr_write, 1937 .raw_writefn = raw_write }, 1938 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1940 .access = PL0_RW, .accessfn = pmreg_access, 1941 .type = ARM_CP_ALIAS | ARM_CP_IO, 1942 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1943 .writefn = pmovsr_write, 1944 .raw_writefn = raw_write }, 1945 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1946 .access = PL0_W, .accessfn = pmreg_access_swinc, 1947 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1948 .writefn = pmswinc_write }, 1949 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1951 .access = PL0_W, .accessfn = pmreg_access_swinc, 1952 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1953 .writefn = pmswinc_write }, 1954 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1955 .access = PL0_RW, .type = ARM_CP_ALIAS, 1956 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1957 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1958 .raw_writefn = raw_write}, 1959 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1960 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1961 .access = PL0_RW, .accessfn = pmreg_access_selr, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1963 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1964 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1965 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1966 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1967 .accessfn = pmreg_access_ccntr }, 1968 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1969 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1970 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1971 .type = ARM_CP_IO, 1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1973 .readfn = pmccntr_read, .writefn = pmccntr_write, 1974 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1975 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1976 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1977 .access = PL0_RW, .accessfn = pmreg_access, 1978 .type = ARM_CP_ALIAS | ARM_CP_IO, 1979 .resetvalue = 0, }, 1980 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1982 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1983 .access = PL0_RW, .accessfn = pmreg_access, 1984 .type = ARM_CP_IO, 1985 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1986 .resetvalue = 0, }, 1987 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access, 1990 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1991 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1994 .accessfn = pmreg_access, 1995 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1996 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access_xevcntr, 1999 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2000 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2002 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2003 .accessfn = pmreg_access_xevcntr, 2004 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2005 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2006 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2007 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2008 .resetvalue = 0, 2009 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2010 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2012 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2013 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2014 .resetvalue = 0, 2015 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2016 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2017 .access = PL1_RW, .accessfn = access_tpm, 2018 .type = ARM_CP_ALIAS | ARM_CP_IO, 2019 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2020 .resetvalue = 0, 2021 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2022 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2023 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .type = ARM_CP_IO, 2026 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2027 .writefn = pmintenset_write, .raw_writefn = raw_write, 2028 .resetvalue = 0x0 }, 2029 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2030 .access = PL1_RW, .accessfn = access_tpm, 2031 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2033 .writefn = pmintenclr_write, }, 2034 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2036 .access = PL1_RW, .accessfn = access_tpm, 2037 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2039 .writefn = pmintenclr_write }, 2040 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2042 .access = PL1_R, 2043 .accessfn = access_aa64_tid2, 2044 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2045 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2046 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2047 .access = PL1_RW, 2048 .accessfn = access_aa64_tid2, 2049 .writefn = csselr_write, .resetvalue = 0, 2050 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2051 offsetof(CPUARMState, cp15.csselr_ns) } }, 2052 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2053 * just RAZ for all cores: 2054 */ 2055 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2057 .access = PL1_R, .type = ARM_CP_CONST, 2058 .accessfn = access_aa64_tid1, 2059 .resetvalue = 0 }, 2060 /* Auxiliary fault status registers: these also are IMPDEF, and we 2061 * choose to RAZ/WI for all cores. 2062 */ 2063 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2064 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2065 .access = PL1_RW, .accessfn = access_tvm_trvm, 2066 .type = ARM_CP_CONST, .resetvalue = 0 }, 2067 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 /* MAIR can just read-as-written because we don't implement caches 2072 * and so don't need to care about memory attributes. 2073 */ 2074 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2076 .access = PL1_RW, .accessfn = access_tvm_trvm, 2077 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2078 .resetvalue = 0 }, 2079 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2080 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2081 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2082 .resetvalue = 0 }, 2083 /* For non-long-descriptor page tables these are PRRR and NMRR; 2084 * regardless they still act as reads-as-written for QEMU. 2085 */ 2086 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2087 * allows them to assign the correct fieldoffset based on the endianness 2088 * handled in the field definitions. 2089 */ 2090 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2091 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2092 .access = PL1_RW, .accessfn = access_tvm_trvm, 2093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2094 offsetof(CPUARMState, cp15.mair0_ns) }, 2095 .resetfn = arm_cp_reset_ignore }, 2096 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2097 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2098 .access = PL1_RW, .accessfn = access_tvm_trvm, 2099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2100 offsetof(CPUARMState, cp15.mair1_ns) }, 2101 .resetfn = arm_cp_reset_ignore }, 2102 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2104 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2105 /* 32 bit ITLB invalidates */ 2106 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2108 .writefn = tlbiall_write }, 2109 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbimva_write }, 2112 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2113 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2114 .writefn = tlbiasid_write }, 2115 /* 32 bit DTLB invalidates */ 2116 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiall_write }, 2119 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbimva_write }, 2122 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2124 .writefn = tlbiasid_write }, 2125 /* 32 bit TLB invalidates */ 2126 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiall_write }, 2129 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbimva_write }, 2132 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiasid_write }, 2135 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2137 .writefn = tlbimvaa_write }, 2138 REGINFO_SENTINEL 2139 }; 2140 2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2142 /* 32 bit TLB invalidates, Inner Shareable */ 2143 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2145 .writefn = tlbiall_is_write }, 2146 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbimva_is_write }, 2149 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbiasid_is_write }, 2152 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbimvaa_is_write }, 2155 REGINFO_SENTINEL 2156 }; 2157 2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2159 /* PMOVSSET is not implemented in v7 before v7ve */ 2160 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2161 .access = PL0_RW, .accessfn = pmreg_access, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2164 .writefn = pmovsset_write, 2165 .raw_writefn = raw_write }, 2166 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2168 .access = PL0_RW, .accessfn = pmreg_access, 2169 .type = ARM_CP_ALIAS | ARM_CP_IO, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2171 .writefn = pmovsset_write, 2172 .raw_writefn = raw_write }, 2173 REGINFO_SENTINEL 2174 }; 2175 2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2177 uint64_t value) 2178 { 2179 value &= 1; 2180 env->teecr = value; 2181 } 2182 2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2184 bool isread) 2185 { 2186 /* 2187 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2188 * at all, so we don't need to check whether we're v8A. 2189 */ 2190 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2191 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2192 return CP_ACCESS_TRAP_EL2; 2193 } 2194 return CP_ACCESS_OK; 2195 } 2196 2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2198 bool isread) 2199 { 2200 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2201 return CP_ACCESS_TRAP; 2202 } 2203 return teecr_access(env, ri, isread); 2204 } 2205 2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2207 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2208 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2209 .resetvalue = 0, 2210 .writefn = teecr_write, .accessfn = teecr_access }, 2211 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2213 .accessfn = teehbr_access, .resetvalue = 0 }, 2214 REGINFO_SENTINEL 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 REGINFO_SENTINEL 2247 }; 2248 2249 #ifndef CONFIG_USER_ONLY 2250 2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2252 bool isread) 2253 { 2254 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2255 * Writable only at the highest implemented exception level. 2256 */ 2257 int el = arm_current_el(env); 2258 uint64_t hcr; 2259 uint32_t cntkctl; 2260 2261 switch (el) { 2262 case 0: 2263 hcr = arm_hcr_el2_eff(env); 2264 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2265 cntkctl = env->cp15.cnthctl_el2; 2266 } else { 2267 cntkctl = env->cp15.c14_cntkctl; 2268 } 2269 if (!extract32(cntkctl, 0, 2)) { 2270 return CP_ACCESS_TRAP; 2271 } 2272 break; 2273 case 1: 2274 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2275 arm_is_secure_below_el3(env)) { 2276 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2277 return CP_ACCESS_TRAP_UNCATEGORIZED; 2278 } 2279 break; 2280 case 2: 2281 case 3: 2282 break; 2283 } 2284 2285 if (!isread && el < arm_highest_el(env)) { 2286 return CP_ACCESS_TRAP_UNCATEGORIZED; 2287 } 2288 2289 return CP_ACCESS_OK; 2290 } 2291 2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2293 bool isread) 2294 { 2295 unsigned int cur_el = arm_current_el(env); 2296 bool has_el2 = arm_is_el2_enabled(env); 2297 uint64_t hcr = arm_hcr_el2_eff(env); 2298 2299 switch (cur_el) { 2300 case 0: 2301 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2302 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2303 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2304 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2305 } 2306 2307 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2308 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2309 return CP_ACCESS_TRAP; 2310 } 2311 2312 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2313 if (hcr & HCR_E2H) { 2314 if (timeridx == GTIMER_PHYS && 2315 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2316 return CP_ACCESS_TRAP_EL2; 2317 } 2318 } else { 2319 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2320 if (has_el2 && timeridx == GTIMER_PHYS && 2321 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2322 return CP_ACCESS_TRAP_EL2; 2323 } 2324 } 2325 break; 2326 2327 case 1: 2328 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2329 if (has_el2 && timeridx == GTIMER_PHYS && 2330 (hcr & HCR_E2H 2331 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2332 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2333 return CP_ACCESS_TRAP_EL2; 2334 } 2335 break; 2336 } 2337 return CP_ACCESS_OK; 2338 } 2339 2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2341 bool isread) 2342 { 2343 unsigned int cur_el = arm_current_el(env); 2344 bool has_el2 = arm_is_el2_enabled(env); 2345 uint64_t hcr = arm_hcr_el2_eff(env); 2346 2347 switch (cur_el) { 2348 case 0: 2349 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2350 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2351 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2352 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2353 } 2354 2355 /* 2356 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2357 * EL0 if EL0[PV]TEN is zero. 2358 */ 2359 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2360 return CP_ACCESS_TRAP; 2361 } 2362 /* fall through */ 2363 2364 case 1: 2365 if (has_el2 && timeridx == GTIMER_PHYS) { 2366 if (hcr & HCR_E2H) { 2367 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2368 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2369 return CP_ACCESS_TRAP_EL2; 2370 } 2371 } else { 2372 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2373 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2374 return CP_ACCESS_TRAP_EL2; 2375 } 2376 } 2377 } 2378 break; 2379 } 2380 return CP_ACCESS_OK; 2381 } 2382 2383 static CPAccessResult gt_pct_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 return gt_counter_access(env, GTIMER_PHYS, isread); 2388 } 2389 2390 static CPAccessResult gt_vct_access(CPUARMState *env, 2391 const ARMCPRegInfo *ri, 2392 bool isread) 2393 { 2394 return gt_counter_access(env, GTIMER_VIRT, isread); 2395 } 2396 2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2398 bool isread) 2399 { 2400 return gt_timer_access(env, GTIMER_PHYS, isread); 2401 } 2402 2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2404 bool isread) 2405 { 2406 return gt_timer_access(env, GTIMER_VIRT, isread); 2407 } 2408 2409 static CPAccessResult gt_stimer_access(CPUARMState *env, 2410 const ARMCPRegInfo *ri, 2411 bool isread) 2412 { 2413 /* The AArch64 register view of the secure physical timer is 2414 * always accessible from EL3, and configurably accessible from 2415 * Secure EL1. 2416 */ 2417 switch (arm_current_el(env)) { 2418 case 1: 2419 if (!arm_is_secure(env)) { 2420 return CP_ACCESS_TRAP; 2421 } 2422 if (!(env->cp15.scr_el3 & SCR_ST)) { 2423 return CP_ACCESS_TRAP_EL3; 2424 } 2425 return CP_ACCESS_OK; 2426 case 0: 2427 case 2: 2428 return CP_ACCESS_TRAP; 2429 case 3: 2430 return CP_ACCESS_OK; 2431 default: 2432 g_assert_not_reached(); 2433 } 2434 } 2435 2436 static uint64_t gt_get_countervalue(CPUARMState *env) 2437 { 2438 ARMCPU *cpu = env_archcpu(env); 2439 2440 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2441 } 2442 2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2444 { 2445 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2446 2447 if (gt->ctl & 1) { 2448 /* Timer enabled: calculate and set current ISTATUS, irq, and 2449 * reset timer to when ISTATUS next has to change 2450 */ 2451 uint64_t offset = timeridx == GTIMER_VIRT ? 2452 cpu->env.cp15.cntvoff_el2 : 0; 2453 uint64_t count = gt_get_countervalue(&cpu->env); 2454 /* Note that this must be unsigned 64 bit arithmetic: */ 2455 int istatus = count - offset >= gt->cval; 2456 uint64_t nexttick; 2457 int irqstate; 2458 2459 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2460 2461 irqstate = (istatus && !(gt->ctl & 2)); 2462 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2463 2464 if (istatus) { 2465 /* Next transition is when count rolls back over to zero */ 2466 nexttick = UINT64_MAX; 2467 } else { 2468 /* Next transition is when we hit cval */ 2469 nexttick = gt->cval + offset; 2470 } 2471 /* Note that the desired next expiry time might be beyond the 2472 * signed-64-bit range of a QEMUTimer -- in this case we just 2473 * set the timer for as far in the future as possible. When the 2474 * timer expires we will reset the timer for any remaining period. 2475 */ 2476 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2477 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2478 } else { 2479 timer_mod(cpu->gt_timer[timeridx], nexttick); 2480 } 2481 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2482 } else { 2483 /* Timer disabled: ISTATUS and timer output always clear */ 2484 gt->ctl &= ~4; 2485 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2486 timer_del(cpu->gt_timer[timeridx]); 2487 trace_arm_gt_recalc_disabled(timeridx); 2488 } 2489 } 2490 2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2492 int timeridx) 2493 { 2494 ARMCPU *cpu = env_archcpu(env); 2495 2496 timer_del(cpu->gt_timer[timeridx]); 2497 } 2498 2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2500 { 2501 return gt_get_countervalue(env); 2502 } 2503 2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2505 { 2506 uint64_t hcr; 2507 2508 switch (arm_current_el(env)) { 2509 case 2: 2510 hcr = arm_hcr_el2_eff(env); 2511 if (hcr & HCR_E2H) { 2512 return 0; 2513 } 2514 break; 2515 case 0: 2516 hcr = arm_hcr_el2_eff(env); 2517 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2518 return 0; 2519 } 2520 break; 2521 } 2522 2523 return env->cp15.cntvoff_el2; 2524 } 2525 2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2527 { 2528 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2529 } 2530 2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2532 int timeridx, 2533 uint64_t value) 2534 { 2535 trace_arm_gt_cval_write(timeridx, value); 2536 env->cp15.c14_timer[timeridx].cval = value; 2537 gt_recalc_timer(env_archcpu(env), timeridx); 2538 } 2539 2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2541 int timeridx) 2542 { 2543 uint64_t offset = 0; 2544 2545 switch (timeridx) { 2546 case GTIMER_VIRT: 2547 case GTIMER_HYPVIRT: 2548 offset = gt_virt_cnt_offset(env); 2549 break; 2550 } 2551 2552 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2553 (gt_get_countervalue(env) - offset)); 2554 } 2555 2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2557 int timeridx, 2558 uint64_t value) 2559 { 2560 uint64_t offset = 0; 2561 2562 switch (timeridx) { 2563 case GTIMER_VIRT: 2564 case GTIMER_HYPVIRT: 2565 offset = gt_virt_cnt_offset(env); 2566 break; 2567 } 2568 2569 trace_arm_gt_tval_write(timeridx, value); 2570 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2571 sextract64(value, 0, 32); 2572 gt_recalc_timer(env_archcpu(env), timeridx); 2573 } 2574 2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2576 int timeridx, 2577 uint64_t value) 2578 { 2579 ARMCPU *cpu = env_archcpu(env); 2580 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2581 2582 trace_arm_gt_ctl_write(timeridx, value); 2583 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2584 if ((oldval ^ value) & 1) { 2585 /* Enable toggled */ 2586 gt_recalc_timer(cpu, timeridx); 2587 } else if ((oldval ^ value) & 2) { 2588 /* IMASK toggled: don't need to recalculate, 2589 * just set the interrupt line based on ISTATUS 2590 */ 2591 int irqstate = (oldval & 4) && !(value & 2); 2592 2593 trace_arm_gt_imask_toggle(timeridx, irqstate); 2594 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2595 } 2596 } 2597 2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2599 { 2600 gt_timer_reset(env, ri, GTIMER_PHYS); 2601 } 2602 2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2604 uint64_t value) 2605 { 2606 gt_cval_write(env, ri, GTIMER_PHYS, value); 2607 } 2608 2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2610 { 2611 return gt_tval_read(env, ri, GTIMER_PHYS); 2612 } 2613 2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2615 uint64_t value) 2616 { 2617 gt_tval_write(env, ri, GTIMER_PHYS, value); 2618 } 2619 2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2624 } 2625 2626 static int gt_phys_redir_timeridx(CPUARMState *env) 2627 { 2628 switch (arm_mmu_idx(env)) { 2629 case ARMMMUIdx_E20_0: 2630 case ARMMMUIdx_E20_2: 2631 case ARMMMUIdx_E20_2_PAN: 2632 case ARMMMUIdx_SE20_0: 2633 case ARMMMUIdx_SE20_2: 2634 case ARMMMUIdx_SE20_2_PAN: 2635 return GTIMER_HYP; 2636 default: 2637 return GTIMER_PHYS; 2638 } 2639 } 2640 2641 static int gt_virt_redir_timeridx(CPUARMState *env) 2642 { 2643 switch (arm_mmu_idx(env)) { 2644 case ARMMMUIdx_E20_0: 2645 case ARMMMUIdx_E20_2: 2646 case ARMMMUIdx_E20_2_PAN: 2647 case ARMMMUIdx_SE20_0: 2648 case ARMMMUIdx_SE20_2: 2649 case ARMMMUIdx_SE20_2_PAN: 2650 return GTIMER_HYPVIRT; 2651 default: 2652 return GTIMER_VIRT; 2653 } 2654 } 2655 2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2657 const ARMCPRegInfo *ri) 2658 { 2659 int timeridx = gt_phys_redir_timeridx(env); 2660 return env->cp15.c14_timer[timeridx].cval; 2661 } 2662 2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2664 uint64_t value) 2665 { 2666 int timeridx = gt_phys_redir_timeridx(env); 2667 gt_cval_write(env, ri, timeridx, value); 2668 } 2669 2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2671 const ARMCPRegInfo *ri) 2672 { 2673 int timeridx = gt_phys_redir_timeridx(env); 2674 return gt_tval_read(env, ri, timeridx); 2675 } 2676 2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2678 uint64_t value) 2679 { 2680 int timeridx = gt_phys_redir_timeridx(env); 2681 gt_tval_write(env, ri, timeridx, value); 2682 } 2683 2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2685 const ARMCPRegInfo *ri) 2686 { 2687 int timeridx = gt_phys_redir_timeridx(env); 2688 return env->cp15.c14_timer[timeridx].ctl; 2689 } 2690 2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2692 uint64_t value) 2693 { 2694 int timeridx = gt_phys_redir_timeridx(env); 2695 gt_ctl_write(env, ri, timeridx, value); 2696 } 2697 2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2699 { 2700 gt_timer_reset(env, ri, GTIMER_VIRT); 2701 } 2702 2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2704 uint64_t value) 2705 { 2706 gt_cval_write(env, ri, GTIMER_VIRT, value); 2707 } 2708 2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2710 { 2711 return gt_tval_read(env, ri, GTIMER_VIRT); 2712 } 2713 2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2715 uint64_t value) 2716 { 2717 gt_tval_write(env, ri, GTIMER_VIRT, value); 2718 } 2719 2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 uint64_t value) 2722 { 2723 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2724 } 2725 2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 uint64_t value) 2728 { 2729 ARMCPU *cpu = env_archcpu(env); 2730 2731 trace_arm_gt_cntvoff_write(value); 2732 raw_write(env, ri, value); 2733 gt_recalc_timer(cpu, GTIMER_VIRT); 2734 } 2735 2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2737 const ARMCPRegInfo *ri) 2738 { 2739 int timeridx = gt_virt_redir_timeridx(env); 2740 return env->cp15.c14_timer[timeridx].cval; 2741 } 2742 2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2744 uint64_t value) 2745 { 2746 int timeridx = gt_virt_redir_timeridx(env); 2747 gt_cval_write(env, ri, timeridx, value); 2748 } 2749 2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2751 const ARMCPRegInfo *ri) 2752 { 2753 int timeridx = gt_virt_redir_timeridx(env); 2754 return gt_tval_read(env, ri, timeridx); 2755 } 2756 2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2758 uint64_t value) 2759 { 2760 int timeridx = gt_virt_redir_timeridx(env); 2761 gt_tval_write(env, ri, timeridx, value); 2762 } 2763 2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2765 const ARMCPRegInfo *ri) 2766 { 2767 int timeridx = gt_virt_redir_timeridx(env); 2768 return env->cp15.c14_timer[timeridx].ctl; 2769 } 2770 2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2772 uint64_t value) 2773 { 2774 int timeridx = gt_virt_redir_timeridx(env); 2775 gt_ctl_write(env, ri, timeridx, value); 2776 } 2777 2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 gt_timer_reset(env, ri, GTIMER_HYP); 2781 } 2782 2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 uint64_t value) 2785 { 2786 gt_cval_write(env, ri, GTIMER_HYP, value); 2787 } 2788 2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2790 { 2791 return gt_tval_read(env, ri, GTIMER_HYP); 2792 } 2793 2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 gt_tval_write(env, ri, GTIMER_HYP, value); 2798 } 2799 2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 uint64_t value) 2802 { 2803 gt_ctl_write(env, ri, GTIMER_HYP, value); 2804 } 2805 2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2807 { 2808 gt_timer_reset(env, ri, GTIMER_SEC); 2809 } 2810 2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2812 uint64_t value) 2813 { 2814 gt_cval_write(env, ri, GTIMER_SEC, value); 2815 } 2816 2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2818 { 2819 return gt_tval_read(env, ri, GTIMER_SEC); 2820 } 2821 2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 gt_tval_write(env, ri, GTIMER_SEC, value); 2826 } 2827 2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 gt_ctl_write(env, ri, GTIMER_SEC, value); 2832 } 2833 2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2837 } 2838 2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2843 } 2844 2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2846 { 2847 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2848 } 2849 2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2854 } 2855 2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2860 } 2861 2862 void arm_gt_ptimer_cb(void *opaque) 2863 { 2864 ARMCPU *cpu = opaque; 2865 2866 gt_recalc_timer(cpu, GTIMER_PHYS); 2867 } 2868 2869 void arm_gt_vtimer_cb(void *opaque) 2870 { 2871 ARMCPU *cpu = opaque; 2872 2873 gt_recalc_timer(cpu, GTIMER_VIRT); 2874 } 2875 2876 void arm_gt_htimer_cb(void *opaque) 2877 { 2878 ARMCPU *cpu = opaque; 2879 2880 gt_recalc_timer(cpu, GTIMER_HYP); 2881 } 2882 2883 void arm_gt_stimer_cb(void *opaque) 2884 { 2885 ARMCPU *cpu = opaque; 2886 2887 gt_recalc_timer(cpu, GTIMER_SEC); 2888 } 2889 2890 void arm_gt_hvtimer_cb(void *opaque) 2891 { 2892 ARMCPU *cpu = opaque; 2893 2894 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2895 } 2896 2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2898 { 2899 ARMCPU *cpu = env_archcpu(env); 2900 2901 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2902 } 2903 2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2905 /* Note that CNTFRQ is purely reads-as-written for the benefit 2906 * of software; writing it doesn't actually change the timer frequency. 2907 * Our reset value matches the fixed frequency we implement the timer at. 2908 */ 2909 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2910 .type = ARM_CP_ALIAS, 2911 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2913 }, 2914 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2915 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2916 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2917 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2918 .resetfn = arm_gt_cntfrq_reset, 2919 }, 2920 /* overall control: mostly access permissions */ 2921 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2922 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2923 .access = PL1_RW, 2924 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2925 .resetvalue = 0, 2926 }, 2927 /* per-timer control */ 2928 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2929 .secure = ARM_CP_SECSTATE_NS, 2930 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2931 .accessfn = gt_ptimer_access, 2932 .fieldoffset = offsetoflow32(CPUARMState, 2933 cp15.c14_timer[GTIMER_PHYS].ctl), 2934 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2935 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2936 }, 2937 { .name = "CNTP_CTL_S", 2938 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2939 .secure = ARM_CP_SECSTATE_S, 2940 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2941 .accessfn = gt_ptimer_access, 2942 .fieldoffset = offsetoflow32(CPUARMState, 2943 cp15.c14_timer[GTIMER_SEC].ctl), 2944 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2945 }, 2946 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2948 .type = ARM_CP_IO, .access = PL0_RW, 2949 .accessfn = gt_ptimer_access, 2950 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2951 .resetvalue = 0, 2952 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2953 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2954 }, 2955 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2956 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2957 .accessfn = gt_vtimer_access, 2958 .fieldoffset = offsetoflow32(CPUARMState, 2959 cp15.c14_timer[GTIMER_VIRT].ctl), 2960 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2961 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2962 }, 2963 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2964 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2965 .type = ARM_CP_IO, .access = PL0_RW, 2966 .accessfn = gt_vtimer_access, 2967 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2968 .resetvalue = 0, 2969 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2970 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2971 }, 2972 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2974 .secure = ARM_CP_SECSTATE_NS, 2975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2976 .accessfn = gt_ptimer_access, 2977 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2978 }, 2979 { .name = "CNTP_TVAL_S", 2980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2981 .secure = ARM_CP_SECSTATE_S, 2982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2983 .accessfn = gt_ptimer_access, 2984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2985 }, 2986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2990 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2991 }, 2992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2994 .accessfn = gt_vtimer_access, 2995 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2996 }, 2997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3001 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3002 }, 3003 /* The counter itself */ 3004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3006 .accessfn = gt_pct_access, 3007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3008 }, 3009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3012 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3013 }, 3014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3016 .accessfn = gt_vct_access, 3017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3018 }, 3019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3023 }, 3024 /* Comparison value, indicating when the timer goes off */ 3025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3026 .secure = ARM_CP_SECSTATE_NS, 3027 .access = PL0_RW, 3028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3030 .accessfn = gt_ptimer_access, 3031 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3032 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3033 }, 3034 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3035 .secure = ARM_CP_SECSTATE_S, 3036 .access = PL0_RW, 3037 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3038 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3039 .accessfn = gt_ptimer_access, 3040 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3041 }, 3042 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3044 .access = PL0_RW, 3045 .type = ARM_CP_IO, 3046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3047 .resetvalue = 0, .accessfn = gt_ptimer_access, 3048 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3049 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3050 }, 3051 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3052 .access = PL0_RW, 3053 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3054 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3055 .accessfn = gt_vtimer_access, 3056 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3057 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3058 }, 3059 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3060 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3061 .access = PL0_RW, 3062 .type = ARM_CP_IO, 3063 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3064 .resetvalue = 0, .accessfn = gt_vtimer_access, 3065 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3066 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3067 }, 3068 /* Secure timer -- this is actually restricted to only EL3 3069 * and configurably Secure-EL1 via the accessfn. 3070 */ 3071 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3072 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3073 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3074 .accessfn = gt_stimer_access, 3075 .readfn = gt_sec_tval_read, 3076 .writefn = gt_sec_tval_write, 3077 .resetfn = gt_sec_timer_reset, 3078 }, 3079 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3080 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3081 .type = ARM_CP_IO, .access = PL1_RW, 3082 .accessfn = gt_stimer_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3084 .resetvalue = 0, 3085 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3086 }, 3087 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3089 .type = ARM_CP_IO, .access = PL1_RW, 3090 .accessfn = gt_stimer_access, 3091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3092 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3093 }, 3094 REGINFO_SENTINEL 3095 }; 3096 3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3098 bool isread) 3099 { 3100 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3101 return CP_ACCESS_TRAP; 3102 } 3103 return CP_ACCESS_OK; 3104 } 3105 3106 #else 3107 3108 /* In user-mode most of the generic timer registers are inaccessible 3109 * however modern kernels (4.12+) allow access to cntvct_el0 3110 */ 3111 3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3113 { 3114 ARMCPU *cpu = env_archcpu(env); 3115 3116 /* Currently we have no support for QEMUTimer in linux-user so we 3117 * can't call gt_get_countervalue(env), instead we directly 3118 * call the lower level functions. 3119 */ 3120 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3121 } 3122 3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3124 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3126 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3128 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3129 }, 3130 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3132 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3133 .readfn = gt_virt_cnt_read, 3134 }, 3135 REGINFO_SENTINEL 3136 }; 3137 3138 #endif 3139 3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3141 { 3142 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3143 raw_write(env, ri, value); 3144 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3145 raw_write(env, ri, value & 0xfffff6ff); 3146 } else { 3147 raw_write(env, ri, value & 0xfffff1ff); 3148 } 3149 } 3150 3151 #ifndef CONFIG_USER_ONLY 3152 /* get_phys_addr() isn't present for user-mode-only targets */ 3153 3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3155 bool isread) 3156 { 3157 if (ri->opc2 & 4) { 3158 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3159 * Secure EL1 (which can only happen if EL3 is AArch64). 3160 * They are simply UNDEF if executed from NS EL1. 3161 * They function normally from EL2 or EL3. 3162 */ 3163 if (arm_current_el(env) == 1) { 3164 if (arm_is_secure_below_el3(env)) { 3165 if (env->cp15.scr_el3 & SCR_EEL2) { 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3169 } 3170 return CP_ACCESS_TRAP_UNCATEGORIZED; 3171 } 3172 } 3173 return CP_ACCESS_OK; 3174 } 3175 3176 #ifdef CONFIG_TCG 3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3178 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3179 { 3180 hwaddr phys_addr; 3181 target_ulong page_size; 3182 int prot; 3183 bool ret; 3184 uint64_t par64; 3185 bool format64 = false; 3186 MemTxAttrs attrs = {}; 3187 ARMMMUFaultInfo fi = {}; 3188 ARMCacheAttrs cacheattrs = {}; 3189 3190 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3191 &prot, &page_size, &fi, &cacheattrs); 3192 3193 if (ret) { 3194 /* 3195 * Some kinds of translation fault must cause exceptions rather 3196 * than being reported in the PAR. 3197 */ 3198 int current_el = arm_current_el(env); 3199 int target_el; 3200 uint32_t syn, fsr, fsc; 3201 bool take_exc = false; 3202 3203 if (fi.s1ptw && current_el == 1 3204 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3205 /* 3206 * Synchronous stage 2 fault on an access made as part of the 3207 * translation table walk for AT S1E0* or AT S1E1* insn 3208 * executed from NS EL1. If this is a synchronous external abort 3209 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3210 * to EL3. Otherwise the fault is taken as an exception to EL2, 3211 * and HPFAR_EL2 holds the faulting IPA. 3212 */ 3213 if (fi.type == ARMFault_SyncExternalOnWalk && 3214 (env->cp15.scr_el3 & SCR_EA)) { 3215 target_el = 3; 3216 } else { 3217 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3218 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3219 env->cp15.hpfar_el2 |= HPFAR_NS; 3220 } 3221 target_el = 2; 3222 } 3223 take_exc = true; 3224 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3225 /* 3226 * Synchronous external aborts during a translation table walk 3227 * are taken as Data Abort exceptions. 3228 */ 3229 if (fi.stage2) { 3230 if (current_el == 3) { 3231 target_el = 3; 3232 } else { 3233 target_el = 2; 3234 } 3235 } else { 3236 target_el = exception_target_el(env); 3237 } 3238 take_exc = true; 3239 } 3240 3241 if (take_exc) { 3242 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3243 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3244 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3245 fsr = arm_fi_to_lfsc(&fi); 3246 fsc = extract32(fsr, 0, 6); 3247 } else { 3248 fsr = arm_fi_to_sfsc(&fi); 3249 fsc = 0x3f; 3250 } 3251 /* 3252 * Report exception with ESR indicating a fault due to a 3253 * translation table walk for a cache maintenance instruction. 3254 */ 3255 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3256 fi.ea, 1, fi.s1ptw, 1, fsc); 3257 env->exception.vaddress = value; 3258 env->exception.fsr = fsr; 3259 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3260 } 3261 } 3262 3263 if (is_a64(env)) { 3264 format64 = true; 3265 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3266 /* 3267 * ATS1Cxx: 3268 * * TTBCR.EAE determines whether the result is returned using the 3269 * 32-bit or the 64-bit PAR format 3270 * * Instructions executed in Hyp mode always use the 64bit format 3271 * 3272 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3273 * * The Non-secure TTBCR.EAE bit is set to 1 3274 * * The implementation includes EL2, and the value of HCR.VM is 1 3275 * 3276 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3277 * 3278 * ATS1Hx always uses the 64bit format. 3279 */ 3280 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3281 3282 if (arm_feature(env, ARM_FEATURE_EL2)) { 3283 if (mmu_idx == ARMMMUIdx_E10_0 || 3284 mmu_idx == ARMMMUIdx_E10_1 || 3285 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3286 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3287 } else { 3288 format64 |= arm_current_el(env) == 2; 3289 } 3290 } 3291 } 3292 3293 if (format64) { 3294 /* Create a 64-bit PAR */ 3295 par64 = (1 << 11); /* LPAE bit always set */ 3296 if (!ret) { 3297 par64 |= phys_addr & ~0xfffULL; 3298 if (!attrs.secure) { 3299 par64 |= (1 << 9); /* NS */ 3300 } 3301 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3302 par64 |= cacheattrs.shareability << 7; /* SH */ 3303 } else { 3304 uint32_t fsr = arm_fi_to_lfsc(&fi); 3305 3306 par64 |= 1; /* F */ 3307 par64 |= (fsr & 0x3f) << 1; /* FS */ 3308 if (fi.stage2) { 3309 par64 |= (1 << 9); /* S */ 3310 } 3311 if (fi.s1ptw) { 3312 par64 |= (1 << 8); /* PTW */ 3313 } 3314 } 3315 } else { 3316 /* fsr is a DFSR/IFSR value for the short descriptor 3317 * translation table format (with WnR always clear). 3318 * Convert it to a 32-bit PAR. 3319 */ 3320 if (!ret) { 3321 /* We do not set any attribute bits in the PAR */ 3322 if (page_size == (1 << 24) 3323 && arm_feature(env, ARM_FEATURE_V7)) { 3324 par64 = (phys_addr & 0xff000000) | (1 << 1); 3325 } else { 3326 par64 = phys_addr & 0xfffff000; 3327 } 3328 if (!attrs.secure) { 3329 par64 |= (1 << 9); /* NS */ 3330 } 3331 } else { 3332 uint32_t fsr = arm_fi_to_sfsc(&fi); 3333 3334 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3335 ((fsr & 0xf) << 1) | 1; 3336 } 3337 } 3338 return par64; 3339 } 3340 #endif /* CONFIG_TCG */ 3341 3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3343 { 3344 #ifdef CONFIG_TCG 3345 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3346 uint64_t par64; 3347 ARMMMUIdx mmu_idx; 3348 int el = arm_current_el(env); 3349 bool secure = arm_is_secure_below_el3(env); 3350 3351 switch (ri->opc2 & 6) { 3352 case 0: 3353 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3354 switch (el) { 3355 case 3: 3356 mmu_idx = ARMMMUIdx_SE3; 3357 break; 3358 case 2: 3359 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3360 /* fall through */ 3361 case 1: 3362 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3363 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3364 : ARMMMUIdx_Stage1_E1_PAN); 3365 } else { 3366 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3367 } 3368 break; 3369 default: 3370 g_assert_not_reached(); 3371 } 3372 break; 3373 case 2: 3374 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3375 switch (el) { 3376 case 3: 3377 mmu_idx = ARMMMUIdx_SE10_0; 3378 break; 3379 case 2: 3380 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3381 mmu_idx = ARMMMUIdx_Stage1_E0; 3382 break; 3383 case 1: 3384 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3385 break; 3386 default: 3387 g_assert_not_reached(); 3388 } 3389 break; 3390 case 4: 3391 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3392 mmu_idx = ARMMMUIdx_E10_1; 3393 break; 3394 case 6: 3395 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3396 mmu_idx = ARMMMUIdx_E10_0; 3397 break; 3398 default: 3399 g_assert_not_reached(); 3400 } 3401 3402 par64 = do_ats_write(env, value, access_type, mmu_idx); 3403 3404 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3405 #else 3406 /* Handled by hardware accelerator. */ 3407 g_assert_not_reached(); 3408 #endif /* CONFIG_TCG */ 3409 } 3410 3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3412 uint64_t value) 3413 { 3414 #ifdef CONFIG_TCG 3415 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3416 uint64_t par64; 3417 3418 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3419 3420 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3421 #else 3422 /* Handled by hardware accelerator. */ 3423 g_assert_not_reached(); 3424 #endif /* CONFIG_TCG */ 3425 } 3426 3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3428 bool isread) 3429 { 3430 if (arm_current_el(env) == 3 && 3431 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3432 return CP_ACCESS_TRAP; 3433 } 3434 return CP_ACCESS_OK; 3435 } 3436 3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3438 uint64_t value) 3439 { 3440 #ifdef CONFIG_TCG 3441 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3442 ARMMMUIdx mmu_idx; 3443 int secure = arm_is_secure_below_el3(env); 3444 3445 switch (ri->opc2 & 6) { 3446 case 0: 3447 switch (ri->opc1) { 3448 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3449 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3450 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3451 : ARMMMUIdx_Stage1_E1_PAN); 3452 } else { 3453 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3454 } 3455 break; 3456 case 4: /* AT S1E2R, AT S1E2W */ 3457 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3458 break; 3459 case 6: /* AT S1E3R, AT S1E3W */ 3460 mmu_idx = ARMMMUIdx_SE3; 3461 break; 3462 default: 3463 g_assert_not_reached(); 3464 } 3465 break; 3466 case 2: /* AT S1E0R, AT S1E0W */ 3467 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3468 break; 3469 case 4: /* AT S12E1R, AT S12E1W */ 3470 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3471 break; 3472 case 6: /* AT S12E0R, AT S12E0W */ 3473 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3474 break; 3475 default: 3476 g_assert_not_reached(); 3477 } 3478 3479 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3480 #else 3481 /* Handled by hardware accelerator. */ 3482 g_assert_not_reached(); 3483 #endif /* CONFIG_TCG */ 3484 } 3485 #endif 3486 3487 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3488 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3489 .access = PL1_RW, .resetvalue = 0, 3490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3491 offsetoflow32(CPUARMState, cp15.par_ns) }, 3492 .writefn = par_write }, 3493 #ifndef CONFIG_USER_ONLY 3494 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3495 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3496 .access = PL1_W, .accessfn = ats_access, 3497 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3498 #endif 3499 REGINFO_SENTINEL 3500 }; 3501 3502 /* Return basic MPU access permission bits. */ 3503 static uint32_t simple_mpu_ap_bits(uint32_t val) 3504 { 3505 uint32_t ret; 3506 uint32_t mask; 3507 int i; 3508 ret = 0; 3509 mask = 3; 3510 for (i = 0; i < 16; i += 2) { 3511 ret |= (val >> i) & mask; 3512 mask <<= 2; 3513 } 3514 return ret; 3515 } 3516 3517 /* Pad basic MPU access permission bits to extended format. */ 3518 static uint32_t extended_mpu_ap_bits(uint32_t val) 3519 { 3520 uint32_t ret; 3521 uint32_t mask; 3522 int i; 3523 ret = 0; 3524 mask = 3; 3525 for (i = 0; i < 16; i += 2) { 3526 ret |= (val & mask) << i; 3527 mask <<= 2; 3528 } 3529 return ret; 3530 } 3531 3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3533 uint64_t value) 3534 { 3535 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3536 } 3537 3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3539 { 3540 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3541 } 3542 3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3544 uint64_t value) 3545 { 3546 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3547 } 3548 3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3550 { 3551 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3552 } 3553 3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3555 { 3556 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3557 3558 if (!u32p) { 3559 return 0; 3560 } 3561 3562 u32p += env->pmsav7.rnr[M_REG_NS]; 3563 return *u32p; 3564 } 3565 3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3567 uint64_t value) 3568 { 3569 ARMCPU *cpu = env_archcpu(env); 3570 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3571 3572 if (!u32p) { 3573 return; 3574 } 3575 3576 u32p += env->pmsav7.rnr[M_REG_NS]; 3577 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3578 *u32p = value; 3579 } 3580 3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3582 uint64_t value) 3583 { 3584 ARMCPU *cpu = env_archcpu(env); 3585 uint32_t nrgs = cpu->pmsav7_dregion; 3586 3587 if (value >= nrgs) { 3588 qemu_log_mask(LOG_GUEST_ERROR, 3589 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3590 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3591 return; 3592 } 3593 3594 raw_write(env, ri, value); 3595 } 3596 3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3598 /* Reset for all these registers is handled in arm_cpu_reset(), 3599 * because the PMSAv7 is also used by M-profile CPUs, which do 3600 * not register cpregs but still need the state to be reset. 3601 */ 3602 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3603 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3604 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3605 .readfn = pmsav7_read, .writefn = pmsav7_write, 3606 .resetfn = arm_cp_reset_ignore }, 3607 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3608 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3609 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3610 .readfn = pmsav7_read, .writefn = pmsav7_write, 3611 .resetfn = arm_cp_reset_ignore }, 3612 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3613 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3614 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3615 .readfn = pmsav7_read, .writefn = pmsav7_write, 3616 .resetfn = arm_cp_reset_ignore }, 3617 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3618 .access = PL1_RW, 3619 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3620 .writefn = pmsav7_rgnr_write, 3621 .resetfn = arm_cp_reset_ignore }, 3622 REGINFO_SENTINEL 3623 }; 3624 3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3627 .access = PL1_RW, .type = ARM_CP_ALIAS, 3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3631 .access = PL1_RW, .type = ARM_CP_ALIAS, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3635 .access = PL1_RW, 3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3637 .resetvalue = 0, }, 3638 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3639 .access = PL1_RW, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3641 .resetvalue = 0, }, 3642 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3643 .access = PL1_RW, 3644 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3645 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3646 .access = PL1_RW, 3647 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3648 /* Protection region base and size registers */ 3649 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3650 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3652 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3653 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3654 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3655 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3656 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3658 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3659 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3660 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3661 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3664 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3667 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3670 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3673 REGINFO_SENTINEL 3674 }; 3675 3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 TCR *tcr = raw_ptr(env, ri); 3680 int maskshift = extract32(value, 0, 3); 3681 3682 if (!arm_feature(env, ARM_FEATURE_V8)) { 3683 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3684 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3685 * using Long-desciptor translation table format */ 3686 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3687 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3688 /* In an implementation that includes the Security Extensions 3689 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3690 * Short-descriptor translation table format. 3691 */ 3692 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3693 } else { 3694 value &= TTBCR_N; 3695 } 3696 } 3697 3698 /* Update the masks corresponding to the TCR bank being written 3699 * Note that we always calculate mask and base_mask, but 3700 * they are only used for short-descriptor tables (ie if EAE is 0); 3701 * for long-descriptor tables the TCR fields are used differently 3702 * and the mask and base_mask values are meaningless. 3703 */ 3704 tcr->raw_tcr = value; 3705 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3706 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3707 } 3708 3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3710 uint64_t value) 3711 { 3712 ARMCPU *cpu = env_archcpu(env); 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3716 /* With LPAE the TTBCR could result in a change of ASID 3717 * via the TTBCR.A1 bit, so do a TLB flush. 3718 */ 3719 tlb_flush(CPU(cpu)); 3720 } 3721 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3722 value = deposit64(tcr->raw_tcr, 0, 32, value); 3723 vmsa_ttbcr_raw_write(env, ri, value); 3724 } 3725 3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3727 { 3728 TCR *tcr = raw_ptr(env, ri); 3729 3730 /* Reset both the TCR as well as the masks corresponding to the bank of 3731 * the TCR being reset. 3732 */ 3733 tcr->raw_tcr = 0; 3734 tcr->mask = 0; 3735 tcr->base_mask = 0xffffc000u; 3736 } 3737 3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3739 uint64_t value) 3740 { 3741 ARMCPU *cpu = env_archcpu(env); 3742 TCR *tcr = raw_ptr(env, ri); 3743 3744 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3745 tlb_flush(CPU(cpu)); 3746 tcr->raw_tcr = value; 3747 } 3748 3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3753 if (cpreg_field_is_64bit(ri) && 3754 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3755 ARMCPU *cpu = env_archcpu(env); 3756 tlb_flush(CPU(cpu)); 3757 } 3758 raw_write(env, ri, value); 3759 } 3760 3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 /* 3765 * If we are running with E2&0 regime, then an ASID is active. 3766 * Flush if that might be changing. Note we're not checking 3767 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3768 * holds the active ASID, only checking the field that might. 3769 */ 3770 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3771 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3772 uint16_t mask = ARMMMUIdxBit_E20_2 | 3773 ARMMMUIdxBit_E20_2_PAN | 3774 ARMMMUIdxBit_E20_0; 3775 3776 if (arm_is_secure_below_el3(env)) { 3777 mask >>= ARM_MMU_IDX_A_NS; 3778 } 3779 3780 tlb_flush_by_mmuidx(env_cpu(env), mask); 3781 } 3782 raw_write(env, ri, value); 3783 } 3784 3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 CPUState *cs = CPU(cpu); 3790 3791 /* 3792 * A change in VMID to the stage2 page table (Stage2) invalidates 3793 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3794 */ 3795 if (raw_read(env, ri) != value) { 3796 uint16_t mask = ARMMMUIdxBit_E10_1 | 3797 ARMMMUIdxBit_E10_1_PAN | 3798 ARMMMUIdxBit_E10_0; 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 mask >>= ARM_MMU_IDX_A_NS; 3802 } 3803 3804 tlb_flush_by_mmuidx(cs, mask); 3805 raw_write(env, ri, value); 3806 } 3807 } 3808 3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3811 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3812 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3813 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3814 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3816 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3817 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3818 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3819 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3820 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3821 offsetof(CPUARMState, cp15.dfar_ns) } }, 3822 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3824 .access = PL1_RW, .accessfn = access_tvm_trvm, 3825 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3826 .resetvalue = 0, }, 3827 REGINFO_SENTINEL 3828 }; 3829 3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3831 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3832 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3835 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3837 .access = PL1_RW, .accessfn = access_tvm_trvm, 3838 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3839 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3840 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3841 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3842 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3843 .access = PL1_RW, .accessfn = access_tvm_trvm, 3844 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3845 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3846 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3847 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3848 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3849 .access = PL1_RW, .accessfn = access_tvm_trvm, 3850 .writefn = vmsa_tcr_el12_write, 3851 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3852 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3853 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3854 .access = PL1_RW, .accessfn = access_tvm_trvm, 3855 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3856 .raw_writefn = vmsa_ttbcr_raw_write, 3857 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3858 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3859 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3860 REGINFO_SENTINEL 3861 }; 3862 3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3864 * qemu tlbs nor adjusting cached masks. 3865 */ 3866 static const ARMCPRegInfo ttbcr2_reginfo = { 3867 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3868 .access = PL1_RW, .accessfn = access_tvm_trvm, 3869 .type = ARM_CP_ALIAS, 3870 .bank_fieldoffsets = { 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3872 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3873 }, 3874 }; 3875 3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 env->cp15.c15_ticonfig = value & 0xe7; 3880 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3881 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3882 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3883 } 3884 3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3886 uint64_t value) 3887 { 3888 env->cp15.c15_threadid = value & 0xffff; 3889 } 3890 3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3892 uint64_t value) 3893 { 3894 /* Wait-for-interrupt (deprecated) */ 3895 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3896 } 3897 3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 /* On OMAP there are registers indicating the max/min index of dcache lines 3902 * containing a dirty line; cache flush operations have to reset these. 3903 */ 3904 env->cp15.c15_i_max = 0x000; 3905 env->cp15.c15_i_min = 0xff0; 3906 } 3907 3908 static const ARMCPRegInfo omap_cp_reginfo[] = { 3909 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3911 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3912 .resetvalue = 0, }, 3913 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, .type = ARM_CP_NOP }, 3915 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3916 .access = PL1_RW, 3917 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3918 .writefn = omap_ticonfig_write }, 3919 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3920 .access = PL1_RW, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3922 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3923 .access = PL1_RW, .resetvalue = 0xff0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3925 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3926 .access = PL1_RW, 3927 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3928 .writefn = omap_threadid_write }, 3929 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3930 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3931 .type = ARM_CP_NO_RAW, 3932 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3933 /* TODO: Peripheral port remap register: 3934 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3935 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3936 * when MMU is off. 3937 */ 3938 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3939 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3940 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3941 .writefn = omap_cachemaint_write }, 3942 { .name = "C9", .cp = 15, .crn = 9, 3943 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3944 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3945 REGINFO_SENTINEL 3946 }; 3947 3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 env->cp15.c15_cpar = value & 0x3fff; 3952 } 3953 3954 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3955 { .name = "XSCALE_CPAR", 3956 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3958 .writefn = xscale_cpar_write, }, 3959 { .name = "XSCALE_AUXCR", 3960 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3962 .resetvalue = 0, }, 3963 /* XScale specific cache-lockdown: since we have no cache we NOP these 3964 * and hope the guest does not really rely on cache behaviour. 3965 */ 3966 { .name = "XSCALE_LOCK_ICACHE_LINE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_UNLOCK_ICACHE", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3971 .access = PL1_W, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_DCACHE_LOCK", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3974 .access = PL1_RW, .type = ARM_CP_NOP }, 3975 { .name = "XSCALE_UNLOCK_DCACHE", 3976 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3977 .access = PL1_W, .type = ARM_CP_NOP }, 3978 REGINFO_SENTINEL 3979 }; 3980 3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3982 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3983 * implementation of this implementation-defined space. 3984 * Ideally this should eventually disappear in favour of actually 3985 * implementing the correct behaviour for all cores. 3986 */ 3987 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3988 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3989 .access = PL1_RW, 3990 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3991 .resetvalue = 0 }, 3992 REGINFO_SENTINEL 3993 }; 3994 3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3996 /* Cache status: RAZ because we have no cache so it's always clean */ 3997 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3999 .resetvalue = 0 }, 4000 REGINFO_SENTINEL 4001 }; 4002 4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4004 /* We never have a a block transfer operation in progress */ 4005 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4007 .resetvalue = 0 }, 4008 /* The cache ops themselves: these all NOP for QEMU */ 4009 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4012 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4017 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4018 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4019 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4020 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4021 REGINFO_SENTINEL 4022 }; 4023 4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4025 /* The cache test-and-clean instructions always return (1 << 30) 4026 * to indicate that there are no dirty cache lines. 4027 */ 4028 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4029 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4030 .resetvalue = (1 << 30) }, 4031 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4032 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4033 .resetvalue = (1 << 30) }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4038 /* Ignore ReadBuffer accesses */ 4039 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4040 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4041 .access = PL1_RW, .resetvalue = 0, 4042 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4043 REGINFO_SENTINEL 4044 }; 4045 4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4047 { 4048 unsigned int cur_el = arm_current_el(env); 4049 4050 if (arm_is_el2_enabled(env) && cur_el == 1) { 4051 return env->cp15.vpidr_el2; 4052 } 4053 return raw_read(env, ri); 4054 } 4055 4056 static uint64_t mpidr_read_val(CPUARMState *env) 4057 { 4058 ARMCPU *cpu = env_archcpu(env); 4059 uint64_t mpidr = cpu->mp_affinity; 4060 4061 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4062 mpidr |= (1U << 31); 4063 /* Cores which are uniprocessor (non-coherent) 4064 * but still implement the MP extensions set 4065 * bit 30. (For instance, Cortex-R5). 4066 */ 4067 if (cpu->mp_is_up) { 4068 mpidr |= (1u << 30); 4069 } 4070 } 4071 return mpidr; 4072 } 4073 4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4075 { 4076 unsigned int cur_el = arm_current_el(env); 4077 4078 if (arm_is_el2_enabled(env) && cur_el == 1) { 4079 return env->cp15.vmpidr_el2; 4080 } 4081 return mpidr_read_val(env); 4082 } 4083 4084 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4085 /* NOP AMAIR0/1 */ 4086 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4087 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .type = ARM_CP_CONST, .resetvalue = 0 }, 4090 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4091 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4092 .access = PL1_RW, .accessfn = access_tvm_trvm, 4093 .type = ARM_CP_CONST, .resetvalue = 0 }, 4094 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4095 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4097 offsetof(CPUARMState, cp15.par_ns)} }, 4098 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4099 .access = PL1_RW, .accessfn = access_tvm_trvm, 4100 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4102 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4103 .writefn = vmsa_ttbr_write, }, 4104 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4107 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4108 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4109 .writefn = vmsa_ttbr_write, }, 4110 REGINFO_SENTINEL 4111 }; 4112 4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4114 { 4115 return vfp_get_fpcr(env); 4116 } 4117 4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4119 uint64_t value) 4120 { 4121 vfp_set_fpcr(env, value); 4122 } 4123 4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4125 { 4126 return vfp_get_fpsr(env); 4127 } 4128 4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4130 uint64_t value) 4131 { 4132 vfp_set_fpsr(env, value); 4133 } 4134 4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4136 bool isread) 4137 { 4138 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4139 return CP_ACCESS_TRAP; 4140 } 4141 return CP_ACCESS_OK; 4142 } 4143 4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 env->daif = value & PSTATE_DAIF; 4148 } 4149 4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4151 { 4152 return env->pstate & PSTATE_PAN; 4153 } 4154 4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4156 uint64_t value) 4157 { 4158 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4159 } 4160 4161 static const ARMCPRegInfo pan_reginfo = { 4162 .name = "PAN", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4164 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4165 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4166 }; 4167 4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4169 { 4170 return env->pstate & PSTATE_UAO; 4171 } 4172 4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4174 uint64_t value) 4175 { 4176 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4177 } 4178 4179 static const ARMCPRegInfo uao_reginfo = { 4180 .name = "UAO", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4182 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4183 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4184 }; 4185 4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4187 { 4188 return env->pstate & PSTATE_DIT; 4189 } 4190 4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4192 uint64_t value) 4193 { 4194 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4195 } 4196 4197 static const ARMCPRegInfo dit_reginfo = { 4198 .name = "DIT", .state = ARM_CP_STATE_AA64, 4199 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4200 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4201 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4202 }; 4203 4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4205 { 4206 return env->pstate & PSTATE_SSBS; 4207 } 4208 4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4210 uint64_t value) 4211 { 4212 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4213 } 4214 4215 static const ARMCPRegInfo ssbs_reginfo = { 4216 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4218 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4219 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4220 }; 4221 4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4223 const ARMCPRegInfo *ri, 4224 bool isread) 4225 { 4226 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4227 switch (arm_current_el(env)) { 4228 case 0: 4229 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4230 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4231 return CP_ACCESS_TRAP; 4232 } 4233 /* fall through */ 4234 case 1: 4235 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4236 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4237 return CP_ACCESS_TRAP_EL2; 4238 } 4239 break; 4240 } 4241 return CP_ACCESS_OK; 4242 } 4243 4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4245 const ARMCPRegInfo *ri, 4246 bool isread) 4247 { 4248 /* Cache invalidate/clean to Point of Unification... */ 4249 switch (arm_current_el(env)) { 4250 case 0: 4251 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4252 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4253 return CP_ACCESS_TRAP; 4254 } 4255 /* fall through */ 4256 case 1: 4257 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4258 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4259 return CP_ACCESS_TRAP_EL2; 4260 } 4261 break; 4262 } 4263 return CP_ACCESS_OK; 4264 } 4265 4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4267 * Page D4-1736 (DDI0487A.b) 4268 */ 4269 4270 static int vae1_tlbmask(CPUARMState *env) 4271 { 4272 uint64_t hcr = arm_hcr_el2_eff(env); 4273 uint16_t mask; 4274 4275 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4276 mask = ARMMMUIdxBit_E20_2 | 4277 ARMMMUIdxBit_E20_2_PAN | 4278 ARMMMUIdxBit_E20_0; 4279 } else { 4280 mask = ARMMMUIdxBit_E10_1 | 4281 ARMMMUIdxBit_E10_1_PAN | 4282 ARMMMUIdxBit_E10_0; 4283 } 4284 4285 if (arm_is_secure_below_el3(env)) { 4286 mask >>= ARM_MMU_IDX_A_NS; 4287 } 4288 4289 return mask; 4290 } 4291 4292 /* Return 56 if TBI is enabled, 64 otherwise. */ 4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4294 uint64_t addr) 4295 { 4296 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4297 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4298 int select = extract64(addr, 55, 1); 4299 4300 return (tbi >> select) & 1 ? 56 : 64; 4301 } 4302 4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4304 { 4305 uint64_t hcr = arm_hcr_el2_eff(env); 4306 ARMMMUIdx mmu_idx; 4307 4308 /* Only the regime of the mmu_idx below is significant. */ 4309 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4310 mmu_idx = ARMMMUIdx_E20_0; 4311 } else { 4312 mmu_idx = ARMMMUIdx_E10_0; 4313 } 4314 4315 if (arm_is_secure_below_el3(env)) { 4316 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4317 } 4318 4319 return tlbbits_for_regime(env, mmu_idx, addr); 4320 } 4321 4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4323 uint64_t value) 4324 { 4325 CPUState *cs = env_cpu(env); 4326 int mask = vae1_tlbmask(env); 4327 4328 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4329 } 4330 4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4332 uint64_t value) 4333 { 4334 CPUState *cs = env_cpu(env); 4335 int mask = vae1_tlbmask(env); 4336 4337 if (tlb_force_broadcast(env)) { 4338 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4339 } else { 4340 tlb_flush_by_mmuidx(cs, mask); 4341 } 4342 } 4343 4344 static int alle1_tlbmask(CPUARMState *env) 4345 { 4346 /* 4347 * Note that the 'ALL' scope must invalidate both stage 1 and 4348 * stage 2 translations, whereas most other scopes only invalidate 4349 * stage 1 translations. 4350 */ 4351 if (arm_is_secure_below_el3(env)) { 4352 return ARMMMUIdxBit_SE10_1 | 4353 ARMMMUIdxBit_SE10_1_PAN | 4354 ARMMMUIdxBit_SE10_0; 4355 } else { 4356 return ARMMMUIdxBit_E10_1 | 4357 ARMMMUIdxBit_E10_1_PAN | 4358 ARMMMUIdxBit_E10_0; 4359 } 4360 } 4361 4362 static int e2_tlbmask(CPUARMState *env) 4363 { 4364 if (arm_is_secure_below_el3(env)) { 4365 return ARMMMUIdxBit_SE20_0 | 4366 ARMMMUIdxBit_SE20_2 | 4367 ARMMMUIdxBit_SE20_2_PAN | 4368 ARMMMUIdxBit_SE2; 4369 } else { 4370 return ARMMMUIdxBit_E20_0 | 4371 ARMMMUIdxBit_E20_2 | 4372 ARMMMUIdxBit_E20_2_PAN | 4373 ARMMMUIdxBit_E2; 4374 } 4375 } 4376 4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 CPUState *cs = env_cpu(env); 4381 int mask = alle1_tlbmask(env); 4382 4383 tlb_flush_by_mmuidx(cs, mask); 4384 } 4385 4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4387 uint64_t value) 4388 { 4389 CPUState *cs = env_cpu(env); 4390 int mask = e2_tlbmask(env); 4391 4392 tlb_flush_by_mmuidx(cs, mask); 4393 } 4394 4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4396 uint64_t value) 4397 { 4398 ARMCPU *cpu = env_archcpu(env); 4399 CPUState *cs = CPU(cpu); 4400 4401 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4402 } 4403 4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 CPUState *cs = env_cpu(env); 4408 int mask = alle1_tlbmask(env); 4409 4410 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4411 } 4412 4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 CPUState *cs = env_cpu(env); 4417 int mask = e2_tlbmask(env); 4418 4419 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4420 } 4421 4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 CPUState *cs = env_cpu(env); 4426 4427 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4428 } 4429 4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4431 uint64_t value) 4432 { 4433 /* Invalidate by VA, EL2 4434 * Currently handles both VAE2 and VALE2, since we don't support 4435 * flush-last-level-only. 4436 */ 4437 CPUState *cs = env_cpu(env); 4438 int mask = e2_tlbmask(env); 4439 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4440 4441 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4442 } 4443 4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4445 uint64_t value) 4446 { 4447 /* Invalidate by VA, EL3 4448 * Currently handles both VAE3 and VALE3, since we don't support 4449 * flush-last-level-only. 4450 */ 4451 ARMCPU *cpu = env_archcpu(env); 4452 CPUState *cs = CPU(cpu); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 4455 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4456 } 4457 4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 CPUState *cs = env_cpu(env); 4462 int mask = vae1_tlbmask(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 int bits = vae1_tlbbits(env, pageaddr); 4465 4466 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4467 } 4468 4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4470 uint64_t value) 4471 { 4472 /* Invalidate by VA, EL1&0 (AArch64 version). 4473 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4474 * since we don't support flush-for-specific-ASID-only or 4475 * flush-last-level-only. 4476 */ 4477 CPUState *cs = env_cpu(env); 4478 int mask = vae1_tlbmask(env); 4479 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4480 int bits = vae1_tlbbits(env, pageaddr); 4481 4482 if (tlb_force_broadcast(env)) { 4483 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4484 } else { 4485 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4486 } 4487 } 4488 4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4490 uint64_t value) 4491 { 4492 CPUState *cs = env_cpu(env); 4493 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4494 bool secure = arm_is_secure_below_el3(env); 4495 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4496 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4497 pageaddr); 4498 4499 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4500 } 4501 4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4503 uint64_t value) 4504 { 4505 CPUState *cs = env_cpu(env); 4506 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4507 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4508 4509 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4510 ARMMMUIdxBit_SE3, bits); 4511 } 4512 4513 #ifdef TARGET_AARCH64 4514 typedef struct { 4515 uint64_t base; 4516 uint64_t length; 4517 } TLBIRange; 4518 4519 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4520 uint64_t value) 4521 { 4522 unsigned int page_size_granule, page_shift, num, scale, exponent; 4523 /* Extract one bit to represent the va selector in use. */ 4524 uint64_t select = sextract64(value, 36, 1); 4525 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4526 TLBIRange ret = { }; 4527 4528 page_size_granule = extract64(value, 46, 2); 4529 4530 /* The granule encoded in value must match the granule in use. */ 4531 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4532 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4533 page_size_granule); 4534 return ret; 4535 } 4536 4537 page_shift = (page_size_granule - 1) * 2 + 12; 4538 num = extract64(value, 39, 5); 4539 scale = extract64(value, 44, 2); 4540 exponent = (5 * scale) + 1; 4541 4542 ret.length = (num + 1) << (exponent + page_shift); 4543 4544 if (param.select) { 4545 ret.base = sextract64(value, 0, 37); 4546 } else { 4547 ret.base = extract64(value, 0, 37); 4548 } 4549 if (param.ds) { 4550 /* 4551 * With DS=1, BaseADDR is always shifted 16 so that it is able 4552 * to address all 52 va bits. The input address is perforce 4553 * aligned on a 64k boundary regardless of translation granule. 4554 */ 4555 page_shift = 16; 4556 } 4557 ret.base <<= page_shift; 4558 4559 return ret; 4560 } 4561 4562 static void do_rvae_write(CPUARMState *env, uint64_t value, 4563 int idxmap, bool synced) 4564 { 4565 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4566 TLBIRange range; 4567 int bits; 4568 4569 range = tlbi_aa64_get_range(env, one_idx, value); 4570 bits = tlbbits_for_regime(env, one_idx, range.base); 4571 4572 if (synced) { 4573 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4574 range.base, 4575 range.length, 4576 idxmap, 4577 bits); 4578 } else { 4579 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4580 range.length, idxmap, bits); 4581 } 4582 } 4583 4584 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4585 const ARMCPRegInfo *ri, 4586 uint64_t value) 4587 { 4588 /* 4589 * Invalidate by VA range, EL1&0. 4590 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4591 * since we don't support flush-for-specific-ASID-only or 4592 * flush-last-level-only. 4593 */ 4594 4595 do_rvae_write(env, value, vae1_tlbmask(env), 4596 tlb_force_broadcast(env)); 4597 } 4598 4599 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4600 const ARMCPRegInfo *ri, 4601 uint64_t value) 4602 { 4603 /* 4604 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4605 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4606 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4607 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4608 * shareable specific flushes. 4609 */ 4610 4611 do_rvae_write(env, value, vae1_tlbmask(env), true); 4612 } 4613 4614 static int vae2_tlbmask(CPUARMState *env) 4615 { 4616 return (arm_is_secure_below_el3(env) 4617 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4618 } 4619 4620 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4621 const ARMCPRegInfo *ri, 4622 uint64_t value) 4623 { 4624 /* 4625 * Invalidate by VA range, EL2. 4626 * Currently handles all of RVAE2 and RVALE2, 4627 * since we don't support flush-for-specific-ASID-only or 4628 * flush-last-level-only. 4629 */ 4630 4631 do_rvae_write(env, value, vae2_tlbmask(env), 4632 tlb_force_broadcast(env)); 4633 4634 4635 } 4636 4637 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4638 const ARMCPRegInfo *ri, 4639 uint64_t value) 4640 { 4641 /* 4642 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4643 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4644 * since we don't support flush-for-specific-ASID-only, 4645 * flush-last-level-only or inner/outer shareable specific flushes. 4646 */ 4647 4648 do_rvae_write(env, value, vae2_tlbmask(env), true); 4649 4650 } 4651 4652 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4653 const ARMCPRegInfo *ri, 4654 uint64_t value) 4655 { 4656 /* 4657 * Invalidate by VA range, EL3. 4658 * Currently handles all of RVAE3 and RVALE3, 4659 * since we don't support flush-for-specific-ASID-only or 4660 * flush-last-level-only. 4661 */ 4662 4663 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4664 tlb_force_broadcast(env)); 4665 } 4666 4667 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4668 const ARMCPRegInfo *ri, 4669 uint64_t value) 4670 { 4671 /* 4672 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4673 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4674 * since we don't support flush-for-specific-ASID-only, 4675 * flush-last-level-only or inner/outer specific flushes. 4676 */ 4677 4678 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4679 } 4680 #endif 4681 4682 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4683 bool isread) 4684 { 4685 int cur_el = arm_current_el(env); 4686 4687 if (cur_el < 2) { 4688 uint64_t hcr = arm_hcr_el2_eff(env); 4689 4690 if (cur_el == 0) { 4691 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4692 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4693 return CP_ACCESS_TRAP_EL2; 4694 } 4695 } else { 4696 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4697 return CP_ACCESS_TRAP; 4698 } 4699 if (hcr & HCR_TDZ) { 4700 return CP_ACCESS_TRAP_EL2; 4701 } 4702 } 4703 } else if (hcr & HCR_TDZ) { 4704 return CP_ACCESS_TRAP_EL2; 4705 } 4706 } 4707 return CP_ACCESS_OK; 4708 } 4709 4710 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4711 { 4712 ARMCPU *cpu = env_archcpu(env); 4713 int dzp_bit = 1 << 4; 4714 4715 /* DZP indicates whether DC ZVA access is allowed */ 4716 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4717 dzp_bit = 0; 4718 } 4719 return cpu->dcz_blocksize | dzp_bit; 4720 } 4721 4722 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4723 bool isread) 4724 { 4725 if (!(env->pstate & PSTATE_SP)) { 4726 /* Access to SP_EL0 is undefined if it's being used as 4727 * the stack pointer. 4728 */ 4729 return CP_ACCESS_TRAP_UNCATEGORIZED; 4730 } 4731 return CP_ACCESS_OK; 4732 } 4733 4734 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4735 { 4736 return env->pstate & PSTATE_SP; 4737 } 4738 4739 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4740 { 4741 update_spsel(env, val); 4742 } 4743 4744 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4745 uint64_t value) 4746 { 4747 ARMCPU *cpu = env_archcpu(env); 4748 4749 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4750 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4751 value &= ~SCTLR_M; 4752 } 4753 4754 /* ??? Lots of these bits are not implemented. */ 4755 4756 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4757 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4758 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4759 } else { 4760 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4761 SCTLR_ATA0 | SCTLR_ATA); 4762 } 4763 } 4764 4765 if (raw_read(env, ri) == value) { 4766 /* Skip the TLB flush if nothing actually changed; Linux likes 4767 * to do a lot of pointless SCTLR writes. 4768 */ 4769 return; 4770 } 4771 4772 raw_write(env, ri, value); 4773 4774 /* This may enable/disable the MMU, so do a TLB flush. */ 4775 tlb_flush(CPU(cpu)); 4776 4777 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4778 /* 4779 * Normally we would always end the TB on an SCTLR write; see the 4780 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4781 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4782 * of hflags from the translator, so do it here. 4783 */ 4784 arm_rebuild_hflags(env); 4785 } 4786 } 4787 4788 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4789 bool isread) 4790 { 4791 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4792 return CP_ACCESS_TRAP_FP_EL2; 4793 } 4794 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4795 return CP_ACCESS_TRAP_FP_EL3; 4796 } 4797 return CP_ACCESS_OK; 4798 } 4799 4800 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4801 uint64_t value) 4802 { 4803 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4804 } 4805 4806 static const ARMCPRegInfo v8_cp_reginfo[] = { 4807 /* Minimal set of EL0-visible registers. This will need to be expanded 4808 * significantly for system emulation of AArch64 CPUs. 4809 */ 4810 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4812 .access = PL0_RW, .type = ARM_CP_NZCV }, 4813 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4814 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4815 .type = ARM_CP_NO_RAW, 4816 .access = PL0_RW, .accessfn = aa64_daif_access, 4817 .fieldoffset = offsetof(CPUARMState, daif), 4818 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4819 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4821 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4822 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4823 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4825 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4826 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4827 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4829 .access = PL0_R, .type = ARM_CP_NO_RAW, 4830 .readfn = aa64_dczid_read }, 4831 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4833 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4834 #ifndef CONFIG_USER_ONLY 4835 /* Avoid overhead of an access check that always passes in user-mode */ 4836 .accessfn = aa64_zva_access, 4837 #endif 4838 }, 4839 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4841 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4842 /* Cache ops: all NOPs since we don't emulate caches */ 4843 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4845 .access = PL1_W, .type = ARM_CP_NOP, 4846 .accessfn = aa64_cacheop_pou_access }, 4847 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4849 .access = PL1_W, .type = ARM_CP_NOP, 4850 .accessfn = aa64_cacheop_pou_access }, 4851 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4853 .access = PL0_W, .type = ARM_CP_NOP, 4854 .accessfn = aa64_cacheop_pou_access }, 4855 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4857 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4858 .type = ARM_CP_NOP }, 4859 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4861 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4862 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4864 .access = PL0_W, .type = ARM_CP_NOP, 4865 .accessfn = aa64_cacheop_poc_access }, 4866 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4868 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4869 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4871 .access = PL0_W, .type = ARM_CP_NOP, 4872 .accessfn = aa64_cacheop_pou_access }, 4873 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4875 .access = PL0_W, .type = ARM_CP_NOP, 4876 .accessfn = aa64_cacheop_poc_access }, 4877 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4879 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4880 /* TLBI operations */ 4881 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vmalle1is_write }, 4885 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4888 .writefn = tlbi_aa64_vae1is_write }, 4889 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vmalle1is_write }, 4893 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_vae1is_write }, 4897 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_vae1is_write }, 4901 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vae1is_write }, 4905 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_vmalle1_write }, 4909 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_vae1_write }, 4913 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_vmalle1_write }, 4917 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4919 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4920 .writefn = tlbi_aa64_vae1_write }, 4921 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4923 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4924 .writefn = tlbi_aa64_vae1_write }, 4925 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4927 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4928 .writefn = tlbi_aa64_vae1_write }, 4929 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4931 .access = PL2_W, .type = ARM_CP_NOP }, 4932 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4934 .access = PL2_W, .type = ARM_CP_NOP }, 4935 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4937 .access = PL2_W, .type = ARM_CP_NO_RAW, 4938 .writefn = tlbi_aa64_alle1is_write }, 4939 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4941 .access = PL2_W, .type = ARM_CP_NO_RAW, 4942 .writefn = tlbi_aa64_alle1is_write }, 4943 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4945 .access = PL2_W, .type = ARM_CP_NOP }, 4946 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4948 .access = PL2_W, .type = ARM_CP_NOP }, 4949 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4951 .access = PL2_W, .type = ARM_CP_NO_RAW, 4952 .writefn = tlbi_aa64_alle1_write }, 4953 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4955 .access = PL2_W, .type = ARM_CP_NO_RAW, 4956 .writefn = tlbi_aa64_alle1is_write }, 4957 #ifndef CONFIG_USER_ONLY 4958 /* 64 bit address translation operations */ 4959 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4961 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4965 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .writefn = ats_write64 }, 4967 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4969 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .writefn = ats_write64 }, 4971 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4973 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4974 .writefn = ats_write64 }, 4975 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4978 .writefn = ats_write64 }, 4979 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4981 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4982 .writefn = ats_write64 }, 4983 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4985 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4986 .writefn = ats_write64 }, 4987 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4989 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4990 .writefn = ats_write64 }, 4991 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4992 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4993 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4994 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4995 .writefn = ats_write64 }, 4996 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4997 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4998 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4999 .writefn = ats_write64 }, 5000 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5001 .type = ARM_CP_ALIAS, 5002 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5003 .access = PL1_RW, .resetvalue = 0, 5004 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5005 .writefn = par_write }, 5006 #endif 5007 /* TLB invalidate last level of translation table walk */ 5008 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5009 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5010 .writefn = tlbimva_is_write }, 5011 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5012 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5013 .writefn = tlbimvaa_is_write }, 5014 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5015 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5016 .writefn = tlbimva_write }, 5017 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5018 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5019 .writefn = tlbimvaa_write }, 5020 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5021 .type = ARM_CP_NO_RAW, .access = PL2_W, 5022 .writefn = tlbimva_hyp_write }, 5023 { .name = "TLBIMVALHIS", 5024 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5025 .type = ARM_CP_NO_RAW, .access = PL2_W, 5026 .writefn = tlbimva_hyp_is_write }, 5027 { .name = "TLBIIPAS2", 5028 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5029 .type = ARM_CP_NOP, .access = PL2_W }, 5030 { .name = "TLBIIPAS2IS", 5031 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5032 .type = ARM_CP_NOP, .access = PL2_W }, 5033 { .name = "TLBIIPAS2L", 5034 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5035 .type = ARM_CP_NOP, .access = PL2_W }, 5036 { .name = "TLBIIPAS2LIS", 5037 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5038 .type = ARM_CP_NOP, .access = PL2_W }, 5039 /* 32 bit cache operations */ 5040 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5042 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5043 .type = ARM_CP_NOP, .access = PL1_W }, 5044 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5045 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5046 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5047 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5048 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5049 .type = ARM_CP_NOP, .access = PL1_W }, 5050 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5051 .type = ARM_CP_NOP, .access = PL1_W }, 5052 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5053 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5054 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5055 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5056 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5057 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5058 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5059 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5060 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5061 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5062 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5063 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5064 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5065 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5066 /* MMU Domain access control / MPU write buffer control */ 5067 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5068 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5069 .writefn = dacr_write, .raw_writefn = raw_write, 5070 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5071 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5072 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_ALIAS, 5074 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5075 .access = PL1_RW, 5076 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5077 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5078 .type = ARM_CP_ALIAS, 5079 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5080 .access = PL1_RW, 5081 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5082 /* We rely on the access checks not allowing the guest to write to the 5083 * state field when SPSel indicates that it's being used as the stack 5084 * pointer. 5085 */ 5086 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5088 .access = PL1_RW, .accessfn = sp_el0_access, 5089 .type = ARM_CP_ALIAS, 5090 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5091 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5093 .access = PL2_RW, .type = ARM_CP_ALIAS, 5094 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5095 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5097 .type = ARM_CP_NO_RAW, 5098 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5099 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5101 .type = ARM_CP_ALIAS, 5102 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5103 .access = PL2_RW, .accessfn = fpexc32_access }, 5104 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5106 .access = PL2_RW, .resetvalue = 0, 5107 .writefn = dacr_write, .raw_writefn = raw_write, 5108 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5109 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5110 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5111 .access = PL2_RW, .resetvalue = 0, 5112 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5113 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5114 .type = ARM_CP_ALIAS, 5115 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5116 .access = PL2_RW, 5117 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5118 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5119 .type = ARM_CP_ALIAS, 5120 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5121 .access = PL2_RW, 5122 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5123 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5124 .type = ARM_CP_ALIAS, 5125 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5126 .access = PL2_RW, 5127 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5128 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5129 .type = ARM_CP_ALIAS, 5130 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5131 .access = PL2_RW, 5132 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5133 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5134 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5135 .resetvalue = 0, 5136 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5137 { .name = "SDCR", .type = ARM_CP_ALIAS, 5138 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5139 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5140 .writefn = sdcr_write, 5141 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5142 REGINFO_SENTINEL 5143 }; 5144 5145 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5146 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5147 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5148 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5149 .access = PL2_RW, 5150 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5151 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5153 .access = PL2_RW, 5154 .type = ARM_CP_CONST, .resetvalue = 0 }, 5155 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5156 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5158 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5159 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5160 .access = PL2_RW, 5161 .type = ARM_CP_CONST, .resetvalue = 0 }, 5162 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5163 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5164 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5165 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5166 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5167 .access = PL2_RW, .type = ARM_CP_CONST, 5168 .resetvalue = 0 }, 5169 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5170 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5171 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5172 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5173 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5174 .access = PL2_RW, .type = ARM_CP_CONST, 5175 .resetvalue = 0 }, 5176 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5177 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5178 .access = PL2_RW, .type = ARM_CP_CONST, 5179 .resetvalue = 0 }, 5180 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5181 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5182 .access = PL2_RW, .type = ARM_CP_CONST, 5183 .resetvalue = 0 }, 5184 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5185 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5186 .access = PL2_RW, .type = ARM_CP_CONST, 5187 .resetvalue = 0 }, 5188 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5189 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5192 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5193 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5194 .type = ARM_CP_CONST, .resetvalue = 0 }, 5195 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5196 .cp = 15, .opc1 = 6, .crm = 2, 5197 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5198 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5199 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5200 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5202 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5203 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5205 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5206 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5207 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5208 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5209 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5210 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5211 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5212 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5213 .resetvalue = 0 }, 5214 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5215 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5216 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5217 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5218 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5219 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5220 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5221 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5222 .resetvalue = 0 }, 5223 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5224 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5225 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5226 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5227 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5228 .resetvalue = 0 }, 5229 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5230 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5231 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5232 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5234 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5235 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5236 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5237 .access = PL2_RW, .accessfn = access_tda, 5238 .type = ARM_CP_CONST, .resetvalue = 0 }, 5239 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5240 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5241 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5242 .type = ARM_CP_CONST, .resetvalue = 0 }, 5243 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5244 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5245 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5246 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5247 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5248 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5249 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5250 .type = ARM_CP_CONST, 5251 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5252 .access = PL2_RW, .resetvalue = 0 }, 5253 REGINFO_SENTINEL 5254 }; 5255 5256 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5257 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5258 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5259 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5260 .access = PL2_RW, 5261 .type = ARM_CP_CONST, .resetvalue = 0 }, 5262 REGINFO_SENTINEL 5263 }; 5264 5265 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5266 { 5267 ARMCPU *cpu = env_archcpu(env); 5268 5269 if (arm_feature(env, ARM_FEATURE_V8)) { 5270 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5271 } else { 5272 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5273 } 5274 5275 if (arm_feature(env, ARM_FEATURE_EL3)) { 5276 valid_mask &= ~HCR_HCD; 5277 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5278 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5279 * However, if we're using the SMC PSCI conduit then QEMU is 5280 * effectively acting like EL3 firmware and so the guest at 5281 * EL2 should retain the ability to prevent EL1 from being 5282 * able to make SMC calls into the ersatz firmware, so in 5283 * that case HCR.TSC should be read/write. 5284 */ 5285 valid_mask &= ~HCR_TSC; 5286 } 5287 5288 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5289 if (cpu_isar_feature(aa64_vh, cpu)) { 5290 valid_mask |= HCR_E2H; 5291 } 5292 if (cpu_isar_feature(aa64_lor, cpu)) { 5293 valid_mask |= HCR_TLOR; 5294 } 5295 if (cpu_isar_feature(aa64_pauth, cpu)) { 5296 valid_mask |= HCR_API | HCR_APK; 5297 } 5298 if (cpu_isar_feature(aa64_mte, cpu)) { 5299 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5300 } 5301 } 5302 5303 /* Clear RES0 bits. */ 5304 value &= valid_mask; 5305 5306 /* 5307 * These bits change the MMU setup: 5308 * HCR_VM enables stage 2 translation 5309 * HCR_PTW forbids certain page-table setups 5310 * HCR_DC disables stage1 and enables stage2 translation 5311 * HCR_DCT enables tagging on (disabled) stage1 translation 5312 */ 5313 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5314 tlb_flush(CPU(cpu)); 5315 } 5316 env->cp15.hcr_el2 = value; 5317 5318 /* 5319 * Updates to VI and VF require us to update the status of 5320 * virtual interrupts, which are the logical OR of these bits 5321 * and the state of the input lines from the GIC. (This requires 5322 * that we have the iothread lock, which is done by marking the 5323 * reginfo structs as ARM_CP_IO.) 5324 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5325 * possible for it to be taken immediately, because VIRQ and 5326 * VFIQ are masked unless running at EL0 or EL1, and HCR 5327 * can only be written at EL2. 5328 */ 5329 g_assert(qemu_mutex_iothread_locked()); 5330 arm_cpu_update_virq(cpu); 5331 arm_cpu_update_vfiq(cpu); 5332 } 5333 5334 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5335 { 5336 do_hcr_write(env, value, 0); 5337 } 5338 5339 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5340 uint64_t value) 5341 { 5342 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5343 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5344 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5345 } 5346 5347 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5348 uint64_t value) 5349 { 5350 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5351 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5352 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5353 } 5354 5355 /* 5356 * Return the effective value of HCR_EL2. 5357 * Bits that are not included here: 5358 * RW (read from SCR_EL3.RW as needed) 5359 */ 5360 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5361 { 5362 uint64_t ret = env->cp15.hcr_el2; 5363 5364 if (!arm_is_el2_enabled(env)) { 5365 /* 5366 * "This register has no effect if EL2 is not enabled in the 5367 * current Security state". This is ARMv8.4-SecEL2 speak for 5368 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5369 * 5370 * Prior to that, the language was "In an implementation that 5371 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5372 * as if this field is 0 for all purposes other than a direct 5373 * read or write access of HCR_EL2". With lots of enumeration 5374 * on a per-field basis. In current QEMU, this is condition 5375 * is arm_is_secure_below_el3. 5376 * 5377 * Since the v8.4 language applies to the entire register, and 5378 * appears to be backward compatible, use that. 5379 */ 5380 return 0; 5381 } 5382 5383 /* 5384 * For a cpu that supports both aarch64 and aarch32, we can set bits 5385 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5386 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5387 */ 5388 if (!arm_el_is_aa64(env, 2)) { 5389 uint64_t aa32_valid; 5390 5391 /* 5392 * These bits are up-to-date as of ARMv8.6. 5393 * For HCR, it's easiest to list just the 2 bits that are invalid. 5394 * For HCR2, list those that are valid. 5395 */ 5396 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5397 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5398 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5399 ret &= aa32_valid; 5400 } 5401 5402 if (ret & HCR_TGE) { 5403 /* These bits are up-to-date as of ARMv8.6. */ 5404 if (ret & HCR_E2H) { 5405 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5406 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5407 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5408 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5409 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5410 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5411 } else { 5412 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5413 } 5414 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5415 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5416 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5417 HCR_TLOR); 5418 } 5419 5420 return ret; 5421 } 5422 5423 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5424 uint64_t value) 5425 { 5426 /* 5427 * For A-profile AArch32 EL3, if NSACR.CP10 5428 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5429 */ 5430 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5431 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5432 value &= ~(0x3 << 10); 5433 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5434 } 5435 env->cp15.cptr_el[2] = value; 5436 } 5437 5438 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5439 { 5440 /* 5441 * For A-profile AArch32 EL3, if NSACR.CP10 5442 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5443 */ 5444 uint64_t value = env->cp15.cptr_el[2]; 5445 5446 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5447 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5448 value |= 0x3 << 10; 5449 } 5450 return value; 5451 } 5452 5453 static const ARMCPRegInfo el2_cp_reginfo[] = { 5454 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5455 .type = ARM_CP_IO, 5456 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5457 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5458 .writefn = hcr_write }, 5459 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5460 .type = ARM_CP_ALIAS | ARM_CP_IO, 5461 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5462 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5463 .writefn = hcr_writelow }, 5464 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5465 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5466 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5467 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5468 .type = ARM_CP_ALIAS, 5469 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5470 .access = PL2_RW, 5471 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5472 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5473 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5474 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5475 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5476 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5477 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5478 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5479 .type = ARM_CP_ALIAS, 5480 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5481 .access = PL2_RW, 5482 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5483 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5484 .type = ARM_CP_ALIAS, 5485 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5486 .access = PL2_RW, 5487 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5488 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5489 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5490 .access = PL2_RW, .writefn = vbar_write, 5491 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5492 .resetvalue = 0 }, 5493 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5495 .access = PL3_RW, .type = ARM_CP_ALIAS, 5496 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5497 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5498 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5499 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5500 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5501 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5502 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5503 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5504 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5505 .resetvalue = 0 }, 5506 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5507 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5508 .access = PL2_RW, .type = ARM_CP_ALIAS, 5509 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5510 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5511 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5512 .access = PL2_RW, .type = ARM_CP_CONST, 5513 .resetvalue = 0 }, 5514 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5515 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5516 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5517 .access = PL2_RW, .type = ARM_CP_CONST, 5518 .resetvalue = 0 }, 5519 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5520 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5521 .access = PL2_RW, .type = ARM_CP_CONST, 5522 .resetvalue = 0 }, 5523 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5524 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5525 .access = PL2_RW, .type = ARM_CP_CONST, 5526 .resetvalue = 0 }, 5527 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5528 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5529 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5530 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5531 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5532 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5533 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5534 .type = ARM_CP_ALIAS, 5535 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5536 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5537 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5539 .access = PL2_RW, 5540 /* no .writefn needed as this can't cause an ASID change; 5541 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5542 */ 5543 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5544 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5545 .cp = 15, .opc1 = 6, .crm = 2, 5546 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5547 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5548 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5549 .writefn = vttbr_write }, 5550 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5552 .access = PL2_RW, .writefn = vttbr_write, 5553 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5554 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5555 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5556 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5557 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5558 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5559 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5560 .access = PL2_RW, .resetvalue = 0, 5561 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5562 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5564 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5565 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5566 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5567 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5568 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5569 { .name = "TLBIALLNSNH", 5570 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5571 .type = ARM_CP_NO_RAW, .access = PL2_W, 5572 .writefn = tlbiall_nsnh_write }, 5573 { .name = "TLBIALLNSNHIS", 5574 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5575 .type = ARM_CP_NO_RAW, .access = PL2_W, 5576 .writefn = tlbiall_nsnh_is_write }, 5577 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5578 .type = ARM_CP_NO_RAW, .access = PL2_W, 5579 .writefn = tlbiall_hyp_write }, 5580 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5581 .type = ARM_CP_NO_RAW, .access = PL2_W, 5582 .writefn = tlbiall_hyp_is_write }, 5583 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5584 .type = ARM_CP_NO_RAW, .access = PL2_W, 5585 .writefn = tlbimva_hyp_write }, 5586 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5587 .type = ARM_CP_NO_RAW, .access = PL2_W, 5588 .writefn = tlbimva_hyp_is_write }, 5589 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5591 .type = ARM_CP_NO_RAW, .access = PL2_W, 5592 .writefn = tlbi_aa64_alle2_write }, 5593 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5595 .type = ARM_CP_NO_RAW, .access = PL2_W, 5596 .writefn = tlbi_aa64_vae2_write }, 5597 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5599 .access = PL2_W, .type = ARM_CP_NO_RAW, 5600 .writefn = tlbi_aa64_vae2_write }, 5601 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5602 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5603 .access = PL2_W, .type = ARM_CP_NO_RAW, 5604 .writefn = tlbi_aa64_alle2is_write }, 5605 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5606 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5607 .type = ARM_CP_NO_RAW, .access = PL2_W, 5608 .writefn = tlbi_aa64_vae2is_write }, 5609 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5610 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5611 .access = PL2_W, .type = ARM_CP_NO_RAW, 5612 .writefn = tlbi_aa64_vae2is_write }, 5613 #ifndef CONFIG_USER_ONLY 5614 /* Unlike the other EL2-related AT operations, these must 5615 * UNDEF from EL3 if EL2 is not implemented, which is why we 5616 * define them here rather than with the rest of the AT ops. 5617 */ 5618 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5619 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5620 .access = PL2_W, .accessfn = at_s1e2_access, 5621 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5622 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5623 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5624 .access = PL2_W, .accessfn = at_s1e2_access, 5625 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5626 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5627 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5628 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5629 * to behave as if SCR.NS was 1. 5630 */ 5631 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5632 .access = PL2_W, 5633 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5634 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5635 .access = PL2_W, 5636 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5637 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5638 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5639 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5640 * reset values as IMPDEF. We choose to reset to 3 to comply with 5641 * both ARMv7 and ARMv8. 5642 */ 5643 .access = PL2_RW, .resetvalue = 3, 5644 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5645 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5646 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5647 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5648 .writefn = gt_cntvoff_write, 5649 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5650 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5651 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5652 .writefn = gt_cntvoff_write, 5653 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5654 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5655 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5656 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5657 .type = ARM_CP_IO, .access = PL2_RW, 5658 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5659 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5660 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5661 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5662 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5663 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5664 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5665 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5666 .resetfn = gt_hyp_timer_reset, 5667 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5668 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5669 .type = ARM_CP_IO, 5670 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5671 .access = PL2_RW, 5672 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5673 .resetvalue = 0, 5674 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5675 #endif 5676 /* The only field of MDCR_EL2 that has a defined architectural reset value 5677 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5678 */ 5679 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5680 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5681 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5682 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5683 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5684 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5685 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5686 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5687 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5689 .access = PL2_RW, 5690 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5691 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5692 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5693 .access = PL2_RW, 5694 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5695 REGINFO_SENTINEL 5696 }; 5697 5698 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5699 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5700 .type = ARM_CP_ALIAS | ARM_CP_IO, 5701 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5702 .access = PL2_RW, 5703 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5704 .writefn = hcr_writehigh }, 5705 REGINFO_SENTINEL 5706 }; 5707 5708 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5709 bool isread) 5710 { 5711 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5712 return CP_ACCESS_OK; 5713 } 5714 return CP_ACCESS_TRAP_UNCATEGORIZED; 5715 } 5716 5717 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5718 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5720 .access = PL2_RW, .accessfn = sel2_access, 5721 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5722 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5723 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5724 .access = PL2_RW, .accessfn = sel2_access, 5725 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5726 REGINFO_SENTINEL 5727 }; 5728 5729 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5730 bool isread) 5731 { 5732 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5733 * At Secure EL1 it traps to EL3 or EL2. 5734 */ 5735 if (arm_current_el(env) == 3) { 5736 return CP_ACCESS_OK; 5737 } 5738 if (arm_is_secure_below_el3(env)) { 5739 if (env->cp15.scr_el3 & SCR_EEL2) { 5740 return CP_ACCESS_TRAP_EL2; 5741 } 5742 return CP_ACCESS_TRAP_EL3; 5743 } 5744 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5745 if (isread) { 5746 return CP_ACCESS_OK; 5747 } 5748 return CP_ACCESS_TRAP_UNCATEGORIZED; 5749 } 5750 5751 static const ARMCPRegInfo el3_cp_reginfo[] = { 5752 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5753 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5754 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5755 .resetfn = scr_reset, .writefn = scr_write }, 5756 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5757 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5758 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5759 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5760 .writefn = scr_write }, 5761 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5762 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5763 .access = PL3_RW, .resetvalue = 0, 5764 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5765 { .name = "SDER", 5766 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5767 .access = PL3_RW, .resetvalue = 0, 5768 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5769 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5770 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5771 .writefn = vbar_write, .resetvalue = 0, 5772 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5773 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5775 .access = PL3_RW, .resetvalue = 0, 5776 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5777 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5778 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5779 .access = PL3_RW, 5780 /* no .writefn needed as this can't cause an ASID change; 5781 * we must provide a .raw_writefn and .resetfn because we handle 5782 * reset and migration for the AArch32 TTBCR(S), which might be 5783 * using mask and base_mask. 5784 */ 5785 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5786 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5787 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5788 .type = ARM_CP_ALIAS, 5789 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5790 .access = PL3_RW, 5791 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5792 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5794 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5795 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5796 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5797 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5798 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5799 .type = ARM_CP_ALIAS, 5800 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5801 .access = PL3_RW, 5802 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5803 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5804 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5805 .access = PL3_RW, .writefn = vbar_write, 5806 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5807 .resetvalue = 0 }, 5808 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5810 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5811 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5812 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5813 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5814 .access = PL3_RW, .resetvalue = 0, 5815 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5816 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5817 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5818 .access = PL3_RW, .type = ARM_CP_CONST, 5819 .resetvalue = 0 }, 5820 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5821 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5822 .access = PL3_RW, .type = ARM_CP_CONST, 5823 .resetvalue = 0 }, 5824 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5825 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5826 .access = PL3_RW, .type = ARM_CP_CONST, 5827 .resetvalue = 0 }, 5828 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5830 .access = PL3_W, .type = ARM_CP_NO_RAW, 5831 .writefn = tlbi_aa64_alle3is_write }, 5832 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5833 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5834 .access = PL3_W, .type = ARM_CP_NO_RAW, 5835 .writefn = tlbi_aa64_vae3is_write }, 5836 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5837 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5838 .access = PL3_W, .type = ARM_CP_NO_RAW, 5839 .writefn = tlbi_aa64_vae3is_write }, 5840 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5841 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5842 .access = PL3_W, .type = ARM_CP_NO_RAW, 5843 .writefn = tlbi_aa64_alle3_write }, 5844 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5845 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5846 .access = PL3_W, .type = ARM_CP_NO_RAW, 5847 .writefn = tlbi_aa64_vae3_write }, 5848 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5849 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5850 .access = PL3_W, .type = ARM_CP_NO_RAW, 5851 .writefn = tlbi_aa64_vae3_write }, 5852 REGINFO_SENTINEL 5853 }; 5854 5855 #ifndef CONFIG_USER_ONLY 5856 /* Test if system register redirection is to occur in the current state. */ 5857 static bool redirect_for_e2h(CPUARMState *env) 5858 { 5859 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5860 } 5861 5862 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5863 { 5864 CPReadFn *readfn; 5865 5866 if (redirect_for_e2h(env)) { 5867 /* Switch to the saved EL2 version of the register. */ 5868 ri = ri->opaque; 5869 readfn = ri->readfn; 5870 } else { 5871 readfn = ri->orig_readfn; 5872 } 5873 if (readfn == NULL) { 5874 readfn = raw_read; 5875 } 5876 return readfn(env, ri); 5877 } 5878 5879 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5880 uint64_t value) 5881 { 5882 CPWriteFn *writefn; 5883 5884 if (redirect_for_e2h(env)) { 5885 /* Switch to the saved EL2 version of the register. */ 5886 ri = ri->opaque; 5887 writefn = ri->writefn; 5888 } else { 5889 writefn = ri->orig_writefn; 5890 } 5891 if (writefn == NULL) { 5892 writefn = raw_write; 5893 } 5894 writefn(env, ri, value); 5895 } 5896 5897 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5898 { 5899 struct E2HAlias { 5900 uint32_t src_key, dst_key, new_key; 5901 const char *src_name, *dst_name, *new_name; 5902 bool (*feature)(const ARMISARegisters *id); 5903 }; 5904 5905 #define K(op0, op1, crn, crm, op2) \ 5906 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5907 5908 static const struct E2HAlias aliases[] = { 5909 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5910 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5911 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5912 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5913 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5914 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5915 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5916 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5917 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5918 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5919 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5920 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5921 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5922 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5923 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5924 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5925 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5926 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5927 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5928 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5929 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5930 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5931 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5932 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5933 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5934 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5935 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5936 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5937 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5938 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5939 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5940 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5941 5942 /* 5943 * Note that redirection of ZCR is mentioned in the description 5944 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5945 * not in the summary table. 5946 */ 5947 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5948 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5949 5950 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5951 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5952 5953 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5954 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5955 }; 5956 #undef K 5957 5958 size_t i; 5959 5960 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5961 const struct E2HAlias *a = &aliases[i]; 5962 ARMCPRegInfo *src_reg, *dst_reg; 5963 5964 if (a->feature && !a->feature(&cpu->isar)) { 5965 continue; 5966 } 5967 5968 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5969 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5970 g_assert(src_reg != NULL); 5971 g_assert(dst_reg != NULL); 5972 5973 /* Cross-compare names to detect typos in the keys. */ 5974 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5975 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5976 5977 /* None of the core system registers use opaque; we will. */ 5978 g_assert(src_reg->opaque == NULL); 5979 5980 /* Create alias before redirection so we dup the right data. */ 5981 if (a->new_key) { 5982 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5983 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5984 bool ok; 5985 5986 new_reg->name = a->new_name; 5987 new_reg->type |= ARM_CP_ALIAS; 5988 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5989 new_reg->access &= PL2_RW | PL3_RW; 5990 5991 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5992 g_assert(ok); 5993 } 5994 5995 src_reg->opaque = dst_reg; 5996 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5997 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5998 if (!src_reg->raw_readfn) { 5999 src_reg->raw_readfn = raw_read; 6000 } 6001 if (!src_reg->raw_writefn) { 6002 src_reg->raw_writefn = raw_write; 6003 } 6004 src_reg->readfn = el2_e2h_read; 6005 src_reg->writefn = el2_e2h_write; 6006 } 6007 } 6008 #endif 6009 6010 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6011 bool isread) 6012 { 6013 int cur_el = arm_current_el(env); 6014 6015 if (cur_el < 2) { 6016 uint64_t hcr = arm_hcr_el2_eff(env); 6017 6018 if (cur_el == 0) { 6019 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6020 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6021 return CP_ACCESS_TRAP_EL2; 6022 } 6023 } else { 6024 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6025 return CP_ACCESS_TRAP; 6026 } 6027 if (hcr & HCR_TID2) { 6028 return CP_ACCESS_TRAP_EL2; 6029 } 6030 } 6031 } else if (hcr & HCR_TID2) { 6032 return CP_ACCESS_TRAP_EL2; 6033 } 6034 } 6035 6036 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6037 return CP_ACCESS_TRAP_EL2; 6038 } 6039 6040 return CP_ACCESS_OK; 6041 } 6042 6043 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6044 uint64_t value) 6045 { 6046 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6047 * read via a bit in OSLSR_EL1. 6048 */ 6049 int oslock; 6050 6051 if (ri->state == ARM_CP_STATE_AA32) { 6052 oslock = (value == 0xC5ACCE55); 6053 } else { 6054 oslock = value & 1; 6055 } 6056 6057 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6058 } 6059 6060 static const ARMCPRegInfo debug_cp_reginfo[] = { 6061 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6062 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6063 * unlike DBGDRAR it is never accessible from EL0. 6064 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6065 * accessor. 6066 */ 6067 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6068 .access = PL0_R, .accessfn = access_tdra, 6069 .type = ARM_CP_CONST, .resetvalue = 0 }, 6070 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6071 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6072 .access = PL1_R, .accessfn = access_tdra, 6073 .type = ARM_CP_CONST, .resetvalue = 0 }, 6074 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6075 .access = PL0_R, .accessfn = access_tdra, 6076 .type = ARM_CP_CONST, .resetvalue = 0 }, 6077 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6078 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6079 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6080 .access = PL1_RW, .accessfn = access_tda, 6081 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6082 .resetvalue = 0 }, 6083 /* 6084 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6085 * Debug Communication Channel is not implemented. 6086 */ 6087 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6088 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6089 .access = PL0_R, .accessfn = access_tda, 6090 .type = ARM_CP_CONST, .resetvalue = 0 }, 6091 /* 6092 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6093 * it is unlikely a guest will care. 6094 * We don't implement the configurable EL0 access. 6095 */ 6096 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6097 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6098 .type = ARM_CP_ALIAS, 6099 .access = PL1_R, .accessfn = access_tda, 6100 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6101 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6103 .access = PL1_W, .type = ARM_CP_NO_RAW, 6104 .accessfn = access_tdosa, 6105 .writefn = oslar_write }, 6106 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6107 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6108 .access = PL1_R, .resetvalue = 10, 6109 .accessfn = access_tdosa, 6110 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6111 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6112 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6113 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6114 .access = PL1_RW, .accessfn = access_tdosa, 6115 .type = ARM_CP_NOP }, 6116 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6117 * implement vector catch debug events yet. 6118 */ 6119 { .name = "DBGVCR", 6120 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6121 .access = PL1_RW, .accessfn = access_tda, 6122 .type = ARM_CP_NOP }, 6123 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6124 * to save and restore a 32-bit guest's DBGVCR) 6125 */ 6126 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6127 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6128 .access = PL2_RW, .accessfn = access_tda, 6129 .type = ARM_CP_NOP }, 6130 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6131 * Channel but Linux may try to access this register. The 32-bit 6132 * alias is DBGDCCINT. 6133 */ 6134 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6135 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6136 .access = PL1_RW, .accessfn = access_tda, 6137 .type = ARM_CP_NOP }, 6138 REGINFO_SENTINEL 6139 }; 6140 6141 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6142 /* 64 bit access versions of the (dummy) debug registers */ 6143 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6144 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6145 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6146 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6147 REGINFO_SENTINEL 6148 }; 6149 6150 /* Return the exception level to which exceptions should be taken 6151 * via SVEAccessTrap. If an exception should be routed through 6152 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6153 * take care of raising that exception. 6154 * C.f. the ARM pseudocode function CheckSVEEnabled. 6155 */ 6156 int sve_exception_el(CPUARMState *env, int el) 6157 { 6158 #ifndef CONFIG_USER_ONLY 6159 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6160 6161 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6162 /* Check CPACR.ZEN. */ 6163 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6164 case 1: 6165 if (el != 0) { 6166 break; 6167 } 6168 /* fall through */ 6169 case 0: 6170 case 2: 6171 /* route_to_el2 */ 6172 return hcr_el2 & HCR_TGE ? 2 : 1; 6173 } 6174 6175 /* Check CPACR.FPEN. */ 6176 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6177 case 1: 6178 if (el != 0) { 6179 break; 6180 } 6181 /* fall through */ 6182 case 0: 6183 case 2: 6184 return 0; 6185 } 6186 } 6187 6188 /* 6189 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6190 */ 6191 if (el <= 2) { 6192 if (hcr_el2 & HCR_E2H) { 6193 /* Check CPTR_EL2.ZEN. */ 6194 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6195 case 1: 6196 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6197 break; 6198 } 6199 /* fall through */ 6200 case 0: 6201 case 2: 6202 return 2; 6203 } 6204 6205 /* Check CPTR_EL2.FPEN. */ 6206 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6207 case 1: 6208 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6209 break; 6210 } 6211 /* fall through */ 6212 case 0: 6213 case 2: 6214 return 0; 6215 } 6216 } else if (arm_is_el2_enabled(env)) { 6217 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6218 return 2; 6219 } 6220 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6221 return 0; 6222 } 6223 } 6224 } 6225 6226 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6227 if (arm_feature(env, ARM_FEATURE_EL3) 6228 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6229 return 3; 6230 } 6231 #endif 6232 return 0; 6233 } 6234 6235 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6236 { 6237 uint32_t end_len; 6238 6239 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6240 end_len = start_len; 6241 6242 if (!test_bit(start_len, cpu->sve_vq_map)) { 6243 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6244 assert(end_len < start_len); 6245 } 6246 return end_len; 6247 } 6248 6249 /* 6250 * Given that SVE is enabled, return the vector length for EL. 6251 */ 6252 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6253 { 6254 ARMCPU *cpu = env_archcpu(env); 6255 uint32_t zcr_len = cpu->sve_max_vq - 1; 6256 6257 if (el <= 1 && 6258 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6259 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6260 } 6261 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6262 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6263 } 6264 if (arm_feature(env, ARM_FEATURE_EL3)) { 6265 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6266 } 6267 6268 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6269 } 6270 6271 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6272 uint64_t value) 6273 { 6274 int cur_el = arm_current_el(env); 6275 int old_len = sve_zcr_len_for_el(env, cur_el); 6276 int new_len; 6277 6278 /* Bits other than [3:0] are RAZ/WI. */ 6279 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6280 raw_write(env, ri, value & 0xf); 6281 6282 /* 6283 * Because we arrived here, we know both FP and SVE are enabled; 6284 * otherwise we would have trapped access to the ZCR_ELn register. 6285 */ 6286 new_len = sve_zcr_len_for_el(env, cur_el); 6287 if (new_len < old_len) { 6288 aarch64_sve_narrow_vq(env, new_len + 1); 6289 } 6290 } 6291 6292 static const ARMCPRegInfo zcr_el1_reginfo = { 6293 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6294 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6295 .access = PL1_RW, .type = ARM_CP_SVE, 6296 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6297 .writefn = zcr_write, .raw_writefn = raw_write 6298 }; 6299 6300 static const ARMCPRegInfo zcr_el2_reginfo = { 6301 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6302 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6303 .access = PL2_RW, .type = ARM_CP_SVE, 6304 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6305 .writefn = zcr_write, .raw_writefn = raw_write 6306 }; 6307 6308 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6309 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6310 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6311 .access = PL2_RW, .type = ARM_CP_SVE, 6312 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6313 }; 6314 6315 static const ARMCPRegInfo zcr_el3_reginfo = { 6316 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6317 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6318 .access = PL3_RW, .type = ARM_CP_SVE, 6319 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6320 .writefn = zcr_write, .raw_writefn = raw_write 6321 }; 6322 6323 void hw_watchpoint_update(ARMCPU *cpu, int n) 6324 { 6325 CPUARMState *env = &cpu->env; 6326 vaddr len = 0; 6327 vaddr wvr = env->cp15.dbgwvr[n]; 6328 uint64_t wcr = env->cp15.dbgwcr[n]; 6329 int mask; 6330 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6331 6332 if (env->cpu_watchpoint[n]) { 6333 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6334 env->cpu_watchpoint[n] = NULL; 6335 } 6336 6337 if (!extract64(wcr, 0, 1)) { 6338 /* E bit clear : watchpoint disabled */ 6339 return; 6340 } 6341 6342 switch (extract64(wcr, 3, 2)) { 6343 case 0: 6344 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6345 return; 6346 case 1: 6347 flags |= BP_MEM_READ; 6348 break; 6349 case 2: 6350 flags |= BP_MEM_WRITE; 6351 break; 6352 case 3: 6353 flags |= BP_MEM_ACCESS; 6354 break; 6355 } 6356 6357 /* Attempts to use both MASK and BAS fields simultaneously are 6358 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6359 * thus generating a watchpoint for every byte in the masked region. 6360 */ 6361 mask = extract64(wcr, 24, 4); 6362 if (mask == 1 || mask == 2) { 6363 /* Reserved values of MASK; we must act as if the mask value was 6364 * some non-reserved value, or as if the watchpoint were disabled. 6365 * We choose the latter. 6366 */ 6367 return; 6368 } else if (mask) { 6369 /* Watchpoint covers an aligned area up to 2GB in size */ 6370 len = 1ULL << mask; 6371 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6372 * whether the watchpoint fires when the unmasked bits match; we opt 6373 * to generate the exceptions. 6374 */ 6375 wvr &= ~(len - 1); 6376 } else { 6377 /* Watchpoint covers bytes defined by the byte address select bits */ 6378 int bas = extract64(wcr, 5, 8); 6379 int basstart; 6380 6381 if (extract64(wvr, 2, 1)) { 6382 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6383 * ignored, and BAS[3:0] define which bytes to watch. 6384 */ 6385 bas &= 0xf; 6386 } 6387 6388 if (bas == 0) { 6389 /* This must act as if the watchpoint is disabled */ 6390 return; 6391 } 6392 6393 /* The BAS bits are supposed to be programmed to indicate a contiguous 6394 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6395 * we fire for each byte in the word/doubleword addressed by the WVR. 6396 * We choose to ignore any non-zero bits after the first range of 1s. 6397 */ 6398 basstart = ctz32(bas); 6399 len = cto32(bas >> basstart); 6400 wvr += basstart; 6401 } 6402 6403 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6404 &env->cpu_watchpoint[n]); 6405 } 6406 6407 void hw_watchpoint_update_all(ARMCPU *cpu) 6408 { 6409 int i; 6410 CPUARMState *env = &cpu->env; 6411 6412 /* Completely clear out existing QEMU watchpoints and our array, to 6413 * avoid possible stale entries following migration load. 6414 */ 6415 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6416 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6417 6418 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6419 hw_watchpoint_update(cpu, i); 6420 } 6421 } 6422 6423 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6424 uint64_t value) 6425 { 6426 ARMCPU *cpu = env_archcpu(env); 6427 int i = ri->crm; 6428 6429 /* 6430 * Bits [1:0] are RES0. 6431 * 6432 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6433 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6434 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6435 * whether the RESS bits are ignored when comparing an address. 6436 * 6437 * Therefore we are allowed to compare the entire register, which lets 6438 * us avoid considering whether or not FEAT_LVA is actually enabled. 6439 */ 6440 value &= ~3ULL; 6441 6442 raw_write(env, ri, value); 6443 hw_watchpoint_update(cpu, i); 6444 } 6445 6446 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6447 uint64_t value) 6448 { 6449 ARMCPU *cpu = env_archcpu(env); 6450 int i = ri->crm; 6451 6452 raw_write(env, ri, value); 6453 hw_watchpoint_update(cpu, i); 6454 } 6455 6456 void hw_breakpoint_update(ARMCPU *cpu, int n) 6457 { 6458 CPUARMState *env = &cpu->env; 6459 uint64_t bvr = env->cp15.dbgbvr[n]; 6460 uint64_t bcr = env->cp15.dbgbcr[n]; 6461 vaddr addr; 6462 int bt; 6463 int flags = BP_CPU; 6464 6465 if (env->cpu_breakpoint[n]) { 6466 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6467 env->cpu_breakpoint[n] = NULL; 6468 } 6469 6470 if (!extract64(bcr, 0, 1)) { 6471 /* E bit clear : watchpoint disabled */ 6472 return; 6473 } 6474 6475 bt = extract64(bcr, 20, 4); 6476 6477 switch (bt) { 6478 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6479 case 5: /* linked address mismatch (reserved if AArch64) */ 6480 qemu_log_mask(LOG_UNIMP, 6481 "arm: address mismatch breakpoint types not implemented\n"); 6482 return; 6483 case 0: /* unlinked address match */ 6484 case 1: /* linked address match */ 6485 { 6486 /* 6487 * Bits [1:0] are RES0. 6488 * 6489 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6490 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6491 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6492 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6493 * whether the RESS bits are ignored when comparing an address. 6494 * Therefore we are allowed to compare the entire register, which 6495 * lets us avoid considering whether FEAT_LVA is actually enabled. 6496 * 6497 * The BAS field is used to allow setting breakpoints on 16-bit 6498 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6499 * a bp will fire if the addresses covered by the bp and the addresses 6500 * covered by the insn overlap but the insn doesn't start at the 6501 * start of the bp address range. We choose to require the insn and 6502 * the bp to have the same address. The constraints on writing to 6503 * BAS enforced in dbgbcr_write mean we have only four cases: 6504 * 0b0000 => no breakpoint 6505 * 0b0011 => breakpoint on addr 6506 * 0b1100 => breakpoint on addr + 2 6507 * 0b1111 => breakpoint on addr 6508 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6509 */ 6510 int bas = extract64(bcr, 5, 4); 6511 addr = bvr & ~3ULL; 6512 if (bas == 0) { 6513 return; 6514 } 6515 if (bas == 0xc) { 6516 addr += 2; 6517 } 6518 break; 6519 } 6520 case 2: /* unlinked context ID match */ 6521 case 8: /* unlinked VMID match (reserved if no EL2) */ 6522 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6523 qemu_log_mask(LOG_UNIMP, 6524 "arm: unlinked context breakpoint types not implemented\n"); 6525 return; 6526 case 9: /* linked VMID match (reserved if no EL2) */ 6527 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6528 case 3: /* linked context ID match */ 6529 default: 6530 /* We must generate no events for Linked context matches (unless 6531 * they are linked to by some other bp/wp, which is handled in 6532 * updates for the linking bp/wp). We choose to also generate no events 6533 * for reserved values. 6534 */ 6535 return; 6536 } 6537 6538 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6539 } 6540 6541 void hw_breakpoint_update_all(ARMCPU *cpu) 6542 { 6543 int i; 6544 CPUARMState *env = &cpu->env; 6545 6546 /* Completely clear out existing QEMU breakpoints and our array, to 6547 * avoid possible stale entries following migration load. 6548 */ 6549 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6550 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6551 6552 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6553 hw_breakpoint_update(cpu, i); 6554 } 6555 } 6556 6557 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6558 uint64_t value) 6559 { 6560 ARMCPU *cpu = env_archcpu(env); 6561 int i = ri->crm; 6562 6563 raw_write(env, ri, value); 6564 hw_breakpoint_update(cpu, i); 6565 } 6566 6567 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6568 uint64_t value) 6569 { 6570 ARMCPU *cpu = env_archcpu(env); 6571 int i = ri->crm; 6572 6573 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6574 * copy of BAS[0]. 6575 */ 6576 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6577 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6578 6579 raw_write(env, ri, value); 6580 hw_breakpoint_update(cpu, i); 6581 } 6582 6583 static void define_debug_regs(ARMCPU *cpu) 6584 { 6585 /* Define v7 and v8 architectural debug registers. 6586 * These are just dummy implementations for now. 6587 */ 6588 int i; 6589 int wrps, brps, ctx_cmps; 6590 6591 /* 6592 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6593 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6594 * the register must not exist for this cpu. 6595 */ 6596 if (cpu->isar.dbgdidr != 0) { 6597 ARMCPRegInfo dbgdidr = { 6598 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6599 .opc1 = 0, .opc2 = 0, 6600 .access = PL0_R, .accessfn = access_tda, 6601 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6602 }; 6603 define_one_arm_cp_reg(cpu, &dbgdidr); 6604 } 6605 6606 /* Note that all these register fields hold "number of Xs minus 1". */ 6607 brps = arm_num_brps(cpu); 6608 wrps = arm_num_wrps(cpu); 6609 ctx_cmps = arm_num_ctx_cmps(cpu); 6610 6611 assert(ctx_cmps <= brps); 6612 6613 define_arm_cp_regs(cpu, debug_cp_reginfo); 6614 6615 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6616 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6617 } 6618 6619 for (i = 0; i < brps; i++) { 6620 ARMCPRegInfo dbgregs[] = { 6621 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6622 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6623 .access = PL1_RW, .accessfn = access_tda, 6624 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6625 .writefn = dbgbvr_write, .raw_writefn = raw_write 6626 }, 6627 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6628 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6629 .access = PL1_RW, .accessfn = access_tda, 6630 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6631 .writefn = dbgbcr_write, .raw_writefn = raw_write 6632 }, 6633 REGINFO_SENTINEL 6634 }; 6635 define_arm_cp_regs(cpu, dbgregs); 6636 } 6637 6638 for (i = 0; i < wrps; i++) { 6639 ARMCPRegInfo dbgregs[] = { 6640 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6641 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6642 .access = PL1_RW, .accessfn = access_tda, 6643 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6644 .writefn = dbgwvr_write, .raw_writefn = raw_write 6645 }, 6646 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6647 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6648 .access = PL1_RW, .accessfn = access_tda, 6649 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6650 .writefn = dbgwcr_write, .raw_writefn = raw_write 6651 }, 6652 REGINFO_SENTINEL 6653 }; 6654 define_arm_cp_regs(cpu, dbgregs); 6655 } 6656 } 6657 6658 static void define_pmu_regs(ARMCPU *cpu) 6659 { 6660 /* 6661 * v7 performance monitor control register: same implementor 6662 * field as main ID register, and we implement four counters in 6663 * addition to the cycle count register. 6664 */ 6665 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6666 ARMCPRegInfo pmcr = { 6667 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6668 .access = PL0_RW, 6669 .type = ARM_CP_IO | ARM_CP_ALIAS, 6670 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6671 .accessfn = pmreg_access, .writefn = pmcr_write, 6672 .raw_writefn = raw_write, 6673 }; 6674 ARMCPRegInfo pmcr64 = { 6675 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6677 .access = PL0_RW, .accessfn = pmreg_access, 6678 .type = ARM_CP_IO, 6679 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6680 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6681 PMCRLC, 6682 .writefn = pmcr_write, .raw_writefn = raw_write, 6683 }; 6684 define_one_arm_cp_reg(cpu, &pmcr); 6685 define_one_arm_cp_reg(cpu, &pmcr64); 6686 for (i = 0; i < pmcrn; i++) { 6687 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6688 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6689 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6690 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6691 ARMCPRegInfo pmev_regs[] = { 6692 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6693 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6694 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6695 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6696 .accessfn = pmreg_access }, 6697 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6698 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6699 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6700 .type = ARM_CP_IO, 6701 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6702 .raw_readfn = pmevcntr_rawread, 6703 .raw_writefn = pmevcntr_rawwrite }, 6704 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6705 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6706 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6707 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6708 .accessfn = pmreg_access }, 6709 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6710 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6711 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6712 .type = ARM_CP_IO, 6713 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6714 .raw_writefn = pmevtyper_rawwrite }, 6715 REGINFO_SENTINEL 6716 }; 6717 define_arm_cp_regs(cpu, pmev_regs); 6718 g_free(pmevcntr_name); 6719 g_free(pmevcntr_el0_name); 6720 g_free(pmevtyper_name); 6721 g_free(pmevtyper_el0_name); 6722 } 6723 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6724 ARMCPRegInfo v81_pmu_regs[] = { 6725 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6726 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6727 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6728 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6729 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6730 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6731 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6732 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6733 REGINFO_SENTINEL 6734 }; 6735 define_arm_cp_regs(cpu, v81_pmu_regs); 6736 } 6737 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6738 static const ARMCPRegInfo v84_pmmir = { 6739 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6740 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6741 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6742 .resetvalue = 0 6743 }; 6744 define_one_arm_cp_reg(cpu, &v84_pmmir); 6745 } 6746 } 6747 6748 /* We don't know until after realize whether there's a GICv3 6749 * attached, and that is what registers the gicv3 sysregs. 6750 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6751 * at runtime. 6752 */ 6753 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6754 { 6755 ARMCPU *cpu = env_archcpu(env); 6756 uint64_t pfr1 = cpu->isar.id_pfr1; 6757 6758 if (env->gicv3state) { 6759 pfr1 |= 1 << 28; 6760 } 6761 return pfr1; 6762 } 6763 6764 #ifndef CONFIG_USER_ONLY 6765 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6766 { 6767 ARMCPU *cpu = env_archcpu(env); 6768 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6769 6770 if (env->gicv3state) { 6771 pfr0 |= 1 << 24; 6772 } 6773 return pfr0; 6774 } 6775 #endif 6776 6777 /* Shared logic between LORID and the rest of the LOR* registers. 6778 * Secure state exclusion has already been dealt with. 6779 */ 6780 static CPAccessResult access_lor_ns(CPUARMState *env, 6781 const ARMCPRegInfo *ri, bool isread) 6782 { 6783 int el = arm_current_el(env); 6784 6785 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6786 return CP_ACCESS_TRAP_EL2; 6787 } 6788 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6789 return CP_ACCESS_TRAP_EL3; 6790 } 6791 return CP_ACCESS_OK; 6792 } 6793 6794 static CPAccessResult access_lor_other(CPUARMState *env, 6795 const ARMCPRegInfo *ri, bool isread) 6796 { 6797 if (arm_is_secure_below_el3(env)) { 6798 /* Access denied in secure mode. */ 6799 return CP_ACCESS_TRAP; 6800 } 6801 return access_lor_ns(env, ri, isread); 6802 } 6803 6804 /* 6805 * A trivial implementation of ARMv8.1-LOR leaves all of these 6806 * registers fixed at 0, which indicates that there are zero 6807 * supported Limited Ordering regions. 6808 */ 6809 static const ARMCPRegInfo lor_reginfo[] = { 6810 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6811 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6812 .access = PL1_RW, .accessfn = access_lor_other, 6813 .type = ARM_CP_CONST, .resetvalue = 0 }, 6814 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6816 .access = PL1_RW, .accessfn = access_lor_other, 6817 .type = ARM_CP_CONST, .resetvalue = 0 }, 6818 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6820 .access = PL1_RW, .accessfn = access_lor_other, 6821 .type = ARM_CP_CONST, .resetvalue = 0 }, 6822 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6824 .access = PL1_RW, .accessfn = access_lor_other, 6825 .type = ARM_CP_CONST, .resetvalue = 0 }, 6826 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6827 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6828 .access = PL1_R, .accessfn = access_lor_ns, 6829 .type = ARM_CP_CONST, .resetvalue = 0 }, 6830 REGINFO_SENTINEL 6831 }; 6832 6833 #ifdef TARGET_AARCH64 6834 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6835 bool isread) 6836 { 6837 int el = arm_current_el(env); 6838 6839 if (el < 2 && 6840 arm_feature(env, ARM_FEATURE_EL2) && 6841 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6842 return CP_ACCESS_TRAP_EL2; 6843 } 6844 if (el < 3 && 6845 arm_feature(env, ARM_FEATURE_EL3) && 6846 !(env->cp15.scr_el3 & SCR_APK)) { 6847 return CP_ACCESS_TRAP_EL3; 6848 } 6849 return CP_ACCESS_OK; 6850 } 6851 6852 static const ARMCPRegInfo pauth_reginfo[] = { 6853 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6855 .access = PL1_RW, .accessfn = access_pauth, 6856 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6857 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6858 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6859 .access = PL1_RW, .accessfn = access_pauth, 6860 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6861 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6863 .access = PL1_RW, .accessfn = access_pauth, 6864 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6865 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6867 .access = PL1_RW, .accessfn = access_pauth, 6868 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6869 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6871 .access = PL1_RW, .accessfn = access_pauth, 6872 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6873 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6874 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6875 .access = PL1_RW, .accessfn = access_pauth, 6876 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6877 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6878 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6879 .access = PL1_RW, .accessfn = access_pauth, 6880 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6881 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6883 .access = PL1_RW, .accessfn = access_pauth, 6884 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6885 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6887 .access = PL1_RW, .accessfn = access_pauth, 6888 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6889 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6891 .access = PL1_RW, .accessfn = access_pauth, 6892 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6893 REGINFO_SENTINEL 6894 }; 6895 6896 static const ARMCPRegInfo tlbirange_reginfo[] = { 6897 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6899 .access = PL1_W, .type = ARM_CP_NO_RAW, 6900 .writefn = tlbi_aa64_rvae1is_write }, 6901 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6903 .access = PL1_W, .type = ARM_CP_NO_RAW, 6904 .writefn = tlbi_aa64_rvae1is_write }, 6905 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6907 .access = PL1_W, .type = ARM_CP_NO_RAW, 6908 .writefn = tlbi_aa64_rvae1is_write }, 6909 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6911 .access = PL1_W, .type = ARM_CP_NO_RAW, 6912 .writefn = tlbi_aa64_rvae1is_write }, 6913 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6915 .access = PL1_W, .type = ARM_CP_NO_RAW, 6916 .writefn = tlbi_aa64_rvae1is_write }, 6917 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6919 .access = PL1_W, .type = ARM_CP_NO_RAW, 6920 .writefn = tlbi_aa64_rvae1is_write }, 6921 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6923 .access = PL1_W, .type = ARM_CP_NO_RAW, 6924 .writefn = tlbi_aa64_rvae1is_write }, 6925 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6926 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6927 .access = PL1_W, .type = ARM_CP_NO_RAW, 6928 .writefn = tlbi_aa64_rvae1is_write }, 6929 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6930 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6931 .access = PL1_W, .type = ARM_CP_NO_RAW, 6932 .writefn = tlbi_aa64_rvae1_write }, 6933 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6934 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6935 .access = PL1_W, .type = ARM_CP_NO_RAW, 6936 .writefn = tlbi_aa64_rvae1_write }, 6937 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6939 .access = PL1_W, .type = ARM_CP_NO_RAW, 6940 .writefn = tlbi_aa64_rvae1_write }, 6941 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6942 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6943 .access = PL1_W, .type = ARM_CP_NO_RAW, 6944 .writefn = tlbi_aa64_rvae1_write }, 6945 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6947 .access = PL2_W, .type = ARM_CP_NOP }, 6948 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6950 .access = PL2_W, .type = ARM_CP_NOP }, 6951 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6953 .access = PL2_W, .type = ARM_CP_NO_RAW, 6954 .writefn = tlbi_aa64_rvae2is_write }, 6955 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6957 .access = PL2_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_rvae2is_write }, 6959 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6961 .access = PL2_W, .type = ARM_CP_NOP }, 6962 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6964 .access = PL2_W, .type = ARM_CP_NOP }, 6965 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6966 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6967 .access = PL2_W, .type = ARM_CP_NO_RAW, 6968 .writefn = tlbi_aa64_rvae2is_write }, 6969 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6970 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6971 .access = PL2_W, .type = ARM_CP_NO_RAW, 6972 .writefn = tlbi_aa64_rvae2is_write }, 6973 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6975 .access = PL2_W, .type = ARM_CP_NO_RAW, 6976 .writefn = tlbi_aa64_rvae2_write }, 6977 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6978 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6979 .access = PL2_W, .type = ARM_CP_NO_RAW, 6980 .writefn = tlbi_aa64_rvae2_write }, 6981 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6983 .access = PL3_W, .type = ARM_CP_NO_RAW, 6984 .writefn = tlbi_aa64_rvae3is_write }, 6985 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6987 .access = PL3_W, .type = ARM_CP_NO_RAW, 6988 .writefn = tlbi_aa64_rvae3is_write }, 6989 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6991 .access = PL3_W, .type = ARM_CP_NO_RAW, 6992 .writefn = tlbi_aa64_rvae3is_write }, 6993 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6994 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6995 .access = PL3_W, .type = ARM_CP_NO_RAW, 6996 .writefn = tlbi_aa64_rvae3is_write }, 6997 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6999 .access = PL3_W, .type = ARM_CP_NO_RAW, 7000 .writefn = tlbi_aa64_rvae3_write }, 7001 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7003 .access = PL3_W, .type = ARM_CP_NO_RAW, 7004 .writefn = tlbi_aa64_rvae3_write }, 7005 REGINFO_SENTINEL 7006 }; 7007 7008 static const ARMCPRegInfo tlbios_reginfo[] = { 7009 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7011 .access = PL1_W, .type = ARM_CP_NO_RAW, 7012 .writefn = tlbi_aa64_vmalle1is_write }, 7013 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7015 .access = PL1_W, .type = ARM_CP_NO_RAW, 7016 .writefn = tlbi_aa64_vae1is_write }, 7017 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7019 .access = PL1_W, .type = ARM_CP_NO_RAW, 7020 .writefn = tlbi_aa64_vmalle1is_write }, 7021 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7023 .access = PL1_W, .type = ARM_CP_NO_RAW, 7024 .writefn = tlbi_aa64_vae1is_write }, 7025 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7026 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7027 .access = PL1_W, .type = ARM_CP_NO_RAW, 7028 .writefn = tlbi_aa64_vae1is_write }, 7029 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7031 .access = PL1_W, .type = ARM_CP_NO_RAW, 7032 .writefn = tlbi_aa64_vae1is_write }, 7033 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7035 .access = PL2_W, .type = ARM_CP_NO_RAW, 7036 .writefn = tlbi_aa64_alle2is_write }, 7037 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7039 .access = PL2_W, .type = ARM_CP_NO_RAW, 7040 .writefn = tlbi_aa64_vae2is_write }, 7041 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7043 .access = PL2_W, .type = ARM_CP_NO_RAW, 7044 .writefn = tlbi_aa64_alle1is_write }, 7045 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7047 .access = PL2_W, .type = ARM_CP_NO_RAW, 7048 .writefn = tlbi_aa64_vae2is_write }, 7049 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7051 .access = PL2_W, .type = ARM_CP_NO_RAW, 7052 .writefn = tlbi_aa64_alle1is_write }, 7053 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7055 .access = PL2_W, .type = ARM_CP_NOP }, 7056 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7058 .access = PL2_W, .type = ARM_CP_NOP }, 7059 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7061 .access = PL2_W, .type = ARM_CP_NOP }, 7062 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7063 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7064 .access = PL2_W, .type = ARM_CP_NOP }, 7065 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7067 .access = PL3_W, .type = ARM_CP_NO_RAW, 7068 .writefn = tlbi_aa64_alle3is_write }, 7069 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7071 .access = PL3_W, .type = ARM_CP_NO_RAW, 7072 .writefn = tlbi_aa64_vae3is_write }, 7073 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7075 .access = PL3_W, .type = ARM_CP_NO_RAW, 7076 .writefn = tlbi_aa64_vae3is_write }, 7077 REGINFO_SENTINEL 7078 }; 7079 7080 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7081 { 7082 Error *err = NULL; 7083 uint64_t ret; 7084 7085 /* Success sets NZCV = 0000. */ 7086 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7087 7088 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7089 /* 7090 * ??? Failed, for unknown reasons in the crypto subsystem. 7091 * The best we can do is log the reason and return the 7092 * timed-out indication to the guest. There is no reason 7093 * we know to expect this failure to be transitory, so the 7094 * guest may well hang retrying the operation. 7095 */ 7096 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7097 ri->name, error_get_pretty(err)); 7098 error_free(err); 7099 7100 env->ZF = 0; /* NZCF = 0100 */ 7101 return 0; 7102 } 7103 return ret; 7104 } 7105 7106 /* We do not support re-seeding, so the two registers operate the same. */ 7107 static const ARMCPRegInfo rndr_reginfo[] = { 7108 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7109 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7110 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7111 .access = PL0_R, .readfn = rndr_readfn }, 7112 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7113 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7114 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7115 .access = PL0_R, .readfn = rndr_readfn }, 7116 REGINFO_SENTINEL 7117 }; 7118 7119 #ifndef CONFIG_USER_ONLY 7120 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7121 uint64_t value) 7122 { 7123 ARMCPU *cpu = env_archcpu(env); 7124 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7125 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7126 uint64_t vaddr_in = (uint64_t) value; 7127 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7128 void *haddr; 7129 int mem_idx = cpu_mmu_index(env, false); 7130 7131 /* This won't be crossing page boundaries */ 7132 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7133 if (haddr) { 7134 7135 ram_addr_t offset; 7136 MemoryRegion *mr; 7137 7138 /* RCU lock is already being held */ 7139 mr = memory_region_from_host(haddr, &offset); 7140 7141 if (mr) { 7142 memory_region_writeback(mr, offset, dline_size); 7143 } 7144 } 7145 } 7146 7147 static const ARMCPRegInfo dcpop_reg[] = { 7148 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7150 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7151 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7152 REGINFO_SENTINEL 7153 }; 7154 7155 static const ARMCPRegInfo dcpodp_reg[] = { 7156 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7157 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7158 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7159 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7160 REGINFO_SENTINEL 7161 }; 7162 #endif /*CONFIG_USER_ONLY*/ 7163 7164 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7165 bool isread) 7166 { 7167 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7168 return CP_ACCESS_TRAP_EL2; 7169 } 7170 7171 return CP_ACCESS_OK; 7172 } 7173 7174 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7175 bool isread) 7176 { 7177 int el = arm_current_el(env); 7178 7179 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7180 uint64_t hcr = arm_hcr_el2_eff(env); 7181 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7182 return CP_ACCESS_TRAP_EL2; 7183 } 7184 } 7185 if (el < 3 && 7186 arm_feature(env, ARM_FEATURE_EL3) && 7187 !(env->cp15.scr_el3 & SCR_ATA)) { 7188 return CP_ACCESS_TRAP_EL3; 7189 } 7190 return CP_ACCESS_OK; 7191 } 7192 7193 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7194 { 7195 return env->pstate & PSTATE_TCO; 7196 } 7197 7198 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7199 { 7200 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7201 } 7202 7203 static const ARMCPRegInfo mte_reginfo[] = { 7204 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7206 .access = PL1_RW, .accessfn = access_mte, 7207 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7208 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7210 .access = PL1_RW, .accessfn = access_mte, 7211 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7212 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7214 .access = PL2_RW, .accessfn = access_mte, 7215 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7216 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7218 .access = PL3_RW, 7219 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7220 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7222 .access = PL1_RW, .accessfn = access_mte, 7223 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7224 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7226 .access = PL1_RW, .accessfn = access_mte, 7227 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7228 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7230 .access = PL1_R, .accessfn = access_aa64_tid5, 7231 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7232 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7233 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7234 .type = ARM_CP_NO_RAW, 7235 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7236 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7238 .type = ARM_CP_NOP, .access = PL1_W, 7239 .accessfn = aa64_cacheop_poc_access }, 7240 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7242 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7243 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7245 .type = ARM_CP_NOP, .access = PL1_W, 7246 .accessfn = aa64_cacheop_poc_access }, 7247 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7249 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7250 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7252 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7253 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7255 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7256 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7258 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7259 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7261 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7262 REGINFO_SENTINEL 7263 }; 7264 7265 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7266 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7268 .type = ARM_CP_CONST, .access = PL0_RW, }, 7269 REGINFO_SENTINEL 7270 }; 7271 7272 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7273 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7274 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7275 .type = ARM_CP_NOP, .access = PL0_W, 7276 .accessfn = aa64_cacheop_poc_access }, 7277 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7279 .type = ARM_CP_NOP, .access = PL0_W, 7280 .accessfn = aa64_cacheop_poc_access }, 7281 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7283 .type = ARM_CP_NOP, .access = PL0_W, 7284 .accessfn = aa64_cacheop_poc_access }, 7285 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7287 .type = ARM_CP_NOP, .access = PL0_W, 7288 .accessfn = aa64_cacheop_poc_access }, 7289 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7290 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7291 .type = ARM_CP_NOP, .access = PL0_W, 7292 .accessfn = aa64_cacheop_poc_access }, 7293 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7294 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7295 .type = ARM_CP_NOP, .access = PL0_W, 7296 .accessfn = aa64_cacheop_poc_access }, 7297 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7298 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7299 .type = ARM_CP_NOP, .access = PL0_W, 7300 .accessfn = aa64_cacheop_poc_access }, 7301 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7303 .type = ARM_CP_NOP, .access = PL0_W, 7304 .accessfn = aa64_cacheop_poc_access }, 7305 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7307 .access = PL0_W, .type = ARM_CP_DC_GVA, 7308 #ifndef CONFIG_USER_ONLY 7309 /* Avoid overhead of an access check that always passes in user-mode */ 7310 .accessfn = aa64_zva_access, 7311 #endif 7312 }, 7313 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7315 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7316 #ifndef CONFIG_USER_ONLY 7317 /* Avoid overhead of an access check that always passes in user-mode */ 7318 .accessfn = aa64_zva_access, 7319 #endif 7320 }, 7321 REGINFO_SENTINEL 7322 }; 7323 7324 #endif 7325 7326 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7327 bool isread) 7328 { 7329 int el = arm_current_el(env); 7330 7331 if (el == 0) { 7332 uint64_t sctlr = arm_sctlr(env, el); 7333 if (!(sctlr & SCTLR_EnRCTX)) { 7334 return CP_ACCESS_TRAP; 7335 } 7336 } else if (el == 1) { 7337 uint64_t hcr = arm_hcr_el2_eff(env); 7338 if (hcr & HCR_NV) { 7339 return CP_ACCESS_TRAP_EL2; 7340 } 7341 } 7342 return CP_ACCESS_OK; 7343 } 7344 7345 static const ARMCPRegInfo predinv_reginfo[] = { 7346 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7348 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7349 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7351 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7352 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7353 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7354 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7355 /* 7356 * Note the AArch32 opcodes have a different OPC1. 7357 */ 7358 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7359 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7360 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7361 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7362 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7363 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7364 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7365 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7366 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7367 REGINFO_SENTINEL 7368 }; 7369 7370 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7371 { 7372 /* Read the high 32 bits of the current CCSIDR */ 7373 return extract64(ccsidr_read(env, ri), 32, 32); 7374 } 7375 7376 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7377 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7378 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7379 .access = PL1_R, 7380 .accessfn = access_aa64_tid2, 7381 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7382 REGINFO_SENTINEL 7383 }; 7384 7385 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7386 bool isread) 7387 { 7388 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7389 return CP_ACCESS_TRAP_EL2; 7390 } 7391 7392 return CP_ACCESS_OK; 7393 } 7394 7395 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7396 bool isread) 7397 { 7398 if (arm_feature(env, ARM_FEATURE_V8)) { 7399 return access_aa64_tid3(env, ri, isread); 7400 } 7401 7402 return CP_ACCESS_OK; 7403 } 7404 7405 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7406 bool isread) 7407 { 7408 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7409 return CP_ACCESS_TRAP_EL2; 7410 } 7411 7412 return CP_ACCESS_OK; 7413 } 7414 7415 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7416 const ARMCPRegInfo *ri, bool isread) 7417 { 7418 /* 7419 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7420 * in v7A, not in v8A. 7421 */ 7422 if (!arm_feature(env, ARM_FEATURE_V8) && 7423 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7424 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7425 return CP_ACCESS_TRAP_EL2; 7426 } 7427 return CP_ACCESS_OK; 7428 } 7429 7430 static const ARMCPRegInfo jazelle_regs[] = { 7431 { .name = "JIDR", 7432 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7433 .access = PL1_R, .accessfn = access_jazelle, 7434 .type = ARM_CP_CONST, .resetvalue = 0 }, 7435 { .name = "JOSCR", 7436 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7437 .accessfn = access_joscr_jmcr, 7438 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7439 { .name = "JMCR", 7440 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7441 .accessfn = access_joscr_jmcr, 7442 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7443 REGINFO_SENTINEL 7444 }; 7445 7446 static const ARMCPRegInfo vhe_reginfo[] = { 7447 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7449 .access = PL2_RW, 7450 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7451 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7453 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7454 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7455 #ifndef CONFIG_USER_ONLY 7456 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7457 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7458 .fieldoffset = 7459 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7460 .type = ARM_CP_IO, .access = PL2_RW, 7461 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7462 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7463 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7464 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7465 .resetfn = gt_hv_timer_reset, 7466 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7467 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7468 .type = ARM_CP_IO, 7469 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7470 .access = PL2_RW, 7471 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7472 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7473 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7475 .type = ARM_CP_IO | ARM_CP_ALIAS, 7476 .access = PL2_RW, .accessfn = e2h_access, 7477 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7478 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7479 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7481 .type = ARM_CP_IO | ARM_CP_ALIAS, 7482 .access = PL2_RW, .accessfn = e2h_access, 7483 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7484 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7485 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7487 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7488 .access = PL2_RW, .accessfn = e2h_access, 7489 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7490 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7491 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7492 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7493 .access = PL2_RW, .accessfn = e2h_access, 7494 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7495 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7497 .type = ARM_CP_IO | ARM_CP_ALIAS, 7498 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7499 .access = PL2_RW, .accessfn = e2h_access, 7500 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7501 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7503 .type = ARM_CP_IO | ARM_CP_ALIAS, 7504 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7505 .access = PL2_RW, .accessfn = e2h_access, 7506 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7507 #endif 7508 REGINFO_SENTINEL 7509 }; 7510 7511 #ifndef CONFIG_USER_ONLY 7512 static const ARMCPRegInfo ats1e1_reginfo[] = { 7513 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7515 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7516 .writefn = ats_write64 }, 7517 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7519 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7520 .writefn = ats_write64 }, 7521 REGINFO_SENTINEL 7522 }; 7523 7524 static const ARMCPRegInfo ats1cp_reginfo[] = { 7525 { .name = "ATS1CPRP", 7526 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7527 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7528 .writefn = ats_write }, 7529 { .name = "ATS1CPWP", 7530 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7531 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7532 .writefn = ats_write }, 7533 REGINFO_SENTINEL 7534 }; 7535 #endif 7536 7537 /* 7538 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7539 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7540 * is non-zero, which is never for ARMv7, optionally in ARMv8 7541 * and mandatorily for ARMv8.2 and up. 7542 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7543 * implementation is RAZ/WI we can ignore this detail, as we 7544 * do for ACTLR. 7545 */ 7546 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7547 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7548 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7549 .access = PL1_RW, .accessfn = access_tacr, 7550 .type = ARM_CP_CONST, .resetvalue = 0 }, 7551 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7552 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7553 .access = PL2_RW, .type = ARM_CP_CONST, 7554 .resetvalue = 0 }, 7555 REGINFO_SENTINEL 7556 }; 7557 7558 void register_cp_regs_for_features(ARMCPU *cpu) 7559 { 7560 /* Register all the coprocessor registers based on feature bits */ 7561 CPUARMState *env = &cpu->env; 7562 if (arm_feature(env, ARM_FEATURE_M)) { 7563 /* M profile has no coprocessor registers */ 7564 return; 7565 } 7566 7567 define_arm_cp_regs(cpu, cp_reginfo); 7568 if (!arm_feature(env, ARM_FEATURE_V8)) { 7569 /* Must go early as it is full of wildcards that may be 7570 * overridden by later definitions. 7571 */ 7572 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7573 } 7574 7575 if (arm_feature(env, ARM_FEATURE_V6)) { 7576 /* The ID registers all have impdef reset values */ 7577 ARMCPRegInfo v6_idregs[] = { 7578 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa32_tid3, 7582 .resetvalue = cpu->isar.id_pfr0 }, 7583 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7584 * the value of the GIC field until after we define these regs. 7585 */ 7586 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7588 .access = PL1_R, .type = ARM_CP_NO_RAW, 7589 .accessfn = access_aa32_tid3, 7590 .readfn = id_pfr1_read, 7591 .writefn = arm_cp_write_ignore }, 7592 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7594 .access = PL1_R, .type = ARM_CP_CONST, 7595 .accessfn = access_aa32_tid3, 7596 .resetvalue = cpu->isar.id_dfr0 }, 7597 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7599 .access = PL1_R, .type = ARM_CP_CONST, 7600 .accessfn = access_aa32_tid3, 7601 .resetvalue = cpu->id_afr0 }, 7602 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7604 .access = PL1_R, .type = ARM_CP_CONST, 7605 .accessfn = access_aa32_tid3, 7606 .resetvalue = cpu->isar.id_mmfr0 }, 7607 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7609 .access = PL1_R, .type = ARM_CP_CONST, 7610 .accessfn = access_aa32_tid3, 7611 .resetvalue = cpu->isar.id_mmfr1 }, 7612 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7614 .access = PL1_R, .type = ARM_CP_CONST, 7615 .accessfn = access_aa32_tid3, 7616 .resetvalue = cpu->isar.id_mmfr2 }, 7617 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7619 .access = PL1_R, .type = ARM_CP_CONST, 7620 .accessfn = access_aa32_tid3, 7621 .resetvalue = cpu->isar.id_mmfr3 }, 7622 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7624 .access = PL1_R, .type = ARM_CP_CONST, 7625 .accessfn = access_aa32_tid3, 7626 .resetvalue = cpu->isar.id_isar0 }, 7627 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7629 .access = PL1_R, .type = ARM_CP_CONST, 7630 .accessfn = access_aa32_tid3, 7631 .resetvalue = cpu->isar.id_isar1 }, 7632 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7634 .access = PL1_R, .type = ARM_CP_CONST, 7635 .accessfn = access_aa32_tid3, 7636 .resetvalue = cpu->isar.id_isar2 }, 7637 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7639 .access = PL1_R, .type = ARM_CP_CONST, 7640 .accessfn = access_aa32_tid3, 7641 .resetvalue = cpu->isar.id_isar3 }, 7642 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7644 .access = PL1_R, .type = ARM_CP_CONST, 7645 .accessfn = access_aa32_tid3, 7646 .resetvalue = cpu->isar.id_isar4 }, 7647 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7649 .access = PL1_R, .type = ARM_CP_CONST, 7650 .accessfn = access_aa32_tid3, 7651 .resetvalue = cpu->isar.id_isar5 }, 7652 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7653 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7654 .access = PL1_R, .type = ARM_CP_CONST, 7655 .accessfn = access_aa32_tid3, 7656 .resetvalue = cpu->isar.id_mmfr4 }, 7657 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7658 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7659 .access = PL1_R, .type = ARM_CP_CONST, 7660 .accessfn = access_aa32_tid3, 7661 .resetvalue = cpu->isar.id_isar6 }, 7662 REGINFO_SENTINEL 7663 }; 7664 define_arm_cp_regs(cpu, v6_idregs); 7665 define_arm_cp_regs(cpu, v6_cp_reginfo); 7666 } else { 7667 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7668 } 7669 if (arm_feature(env, ARM_FEATURE_V6K)) { 7670 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7671 } 7672 if (arm_feature(env, ARM_FEATURE_V7MP) && 7673 !arm_feature(env, ARM_FEATURE_PMSA)) { 7674 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7675 } 7676 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7677 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7678 } 7679 if (arm_feature(env, ARM_FEATURE_V7)) { 7680 ARMCPRegInfo clidr = { 7681 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7682 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7683 .access = PL1_R, .type = ARM_CP_CONST, 7684 .accessfn = access_aa64_tid2, 7685 .resetvalue = cpu->clidr 7686 }; 7687 define_one_arm_cp_reg(cpu, &clidr); 7688 define_arm_cp_regs(cpu, v7_cp_reginfo); 7689 define_debug_regs(cpu); 7690 define_pmu_regs(cpu); 7691 } else { 7692 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7693 } 7694 if (arm_feature(env, ARM_FEATURE_V8)) { 7695 /* AArch64 ID registers, which all have impdef reset values. 7696 * Note that within the ID register ranges the unused slots 7697 * must all RAZ, not UNDEF; future architecture versions may 7698 * define new registers here. 7699 */ 7700 ARMCPRegInfo v8_idregs[] = { 7701 /* 7702 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7703 * emulation because we don't know the right value for the 7704 * GIC field until after we define these regs. 7705 */ 7706 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7708 .access = PL1_R, 7709 #ifdef CONFIG_USER_ONLY 7710 .type = ARM_CP_CONST, 7711 .resetvalue = cpu->isar.id_aa64pfr0 7712 #else 7713 .type = ARM_CP_NO_RAW, 7714 .accessfn = access_aa64_tid3, 7715 .readfn = id_aa64pfr0_read, 7716 .writefn = arm_cp_write_ignore 7717 #endif 7718 }, 7719 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7721 .access = PL1_R, .type = ARM_CP_CONST, 7722 .accessfn = access_aa64_tid3, 7723 .resetvalue = cpu->isar.id_aa64pfr1}, 7724 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7726 .access = PL1_R, .type = ARM_CP_CONST, 7727 .accessfn = access_aa64_tid3, 7728 .resetvalue = 0 }, 7729 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7731 .access = PL1_R, .type = ARM_CP_CONST, 7732 .accessfn = access_aa64_tid3, 7733 .resetvalue = 0 }, 7734 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7736 .access = PL1_R, .type = ARM_CP_CONST, 7737 .accessfn = access_aa64_tid3, 7738 .resetvalue = cpu->isar.id_aa64zfr0 }, 7739 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7741 .access = PL1_R, .type = ARM_CP_CONST, 7742 .accessfn = access_aa64_tid3, 7743 .resetvalue = 0 }, 7744 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7746 .access = PL1_R, .type = ARM_CP_CONST, 7747 .accessfn = access_aa64_tid3, 7748 .resetvalue = 0 }, 7749 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7751 .access = PL1_R, .type = ARM_CP_CONST, 7752 .accessfn = access_aa64_tid3, 7753 .resetvalue = 0 }, 7754 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7756 .access = PL1_R, .type = ARM_CP_CONST, 7757 .accessfn = access_aa64_tid3, 7758 .resetvalue = cpu->isar.id_aa64dfr0 }, 7759 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7761 .access = PL1_R, .type = ARM_CP_CONST, 7762 .accessfn = access_aa64_tid3, 7763 .resetvalue = cpu->isar.id_aa64dfr1 }, 7764 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7766 .access = PL1_R, .type = ARM_CP_CONST, 7767 .accessfn = access_aa64_tid3, 7768 .resetvalue = 0 }, 7769 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7771 .access = PL1_R, .type = ARM_CP_CONST, 7772 .accessfn = access_aa64_tid3, 7773 .resetvalue = 0 }, 7774 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7776 .access = PL1_R, .type = ARM_CP_CONST, 7777 .accessfn = access_aa64_tid3, 7778 .resetvalue = cpu->id_aa64afr0 }, 7779 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7781 .access = PL1_R, .type = ARM_CP_CONST, 7782 .accessfn = access_aa64_tid3, 7783 .resetvalue = cpu->id_aa64afr1 }, 7784 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7786 .access = PL1_R, .type = ARM_CP_CONST, 7787 .accessfn = access_aa64_tid3, 7788 .resetvalue = 0 }, 7789 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7791 .access = PL1_R, .type = ARM_CP_CONST, 7792 .accessfn = access_aa64_tid3, 7793 .resetvalue = 0 }, 7794 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7796 .access = PL1_R, .type = ARM_CP_CONST, 7797 .accessfn = access_aa64_tid3, 7798 .resetvalue = cpu->isar.id_aa64isar0 }, 7799 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7801 .access = PL1_R, .type = ARM_CP_CONST, 7802 .accessfn = access_aa64_tid3, 7803 .resetvalue = cpu->isar.id_aa64isar1 }, 7804 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7806 .access = PL1_R, .type = ARM_CP_CONST, 7807 .accessfn = access_aa64_tid3, 7808 .resetvalue = 0 }, 7809 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7811 .access = PL1_R, .type = ARM_CP_CONST, 7812 .accessfn = access_aa64_tid3, 7813 .resetvalue = 0 }, 7814 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7816 .access = PL1_R, .type = ARM_CP_CONST, 7817 .accessfn = access_aa64_tid3, 7818 .resetvalue = 0 }, 7819 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7821 .access = PL1_R, .type = ARM_CP_CONST, 7822 .accessfn = access_aa64_tid3, 7823 .resetvalue = 0 }, 7824 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7826 .access = PL1_R, .type = ARM_CP_CONST, 7827 .accessfn = access_aa64_tid3, 7828 .resetvalue = 0 }, 7829 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7831 .access = PL1_R, .type = ARM_CP_CONST, 7832 .accessfn = access_aa64_tid3, 7833 .resetvalue = 0 }, 7834 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7836 .access = PL1_R, .type = ARM_CP_CONST, 7837 .accessfn = access_aa64_tid3, 7838 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7839 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7841 .access = PL1_R, .type = ARM_CP_CONST, 7842 .accessfn = access_aa64_tid3, 7843 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7844 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7845 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7846 .access = PL1_R, .type = ARM_CP_CONST, 7847 .accessfn = access_aa64_tid3, 7848 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7849 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7850 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7851 .access = PL1_R, .type = ARM_CP_CONST, 7852 .accessfn = access_aa64_tid3, 7853 .resetvalue = 0 }, 7854 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7856 .access = PL1_R, .type = ARM_CP_CONST, 7857 .accessfn = access_aa64_tid3, 7858 .resetvalue = 0 }, 7859 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7861 .access = PL1_R, .type = ARM_CP_CONST, 7862 .accessfn = access_aa64_tid3, 7863 .resetvalue = 0 }, 7864 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7865 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7866 .access = PL1_R, .type = ARM_CP_CONST, 7867 .accessfn = access_aa64_tid3, 7868 .resetvalue = 0 }, 7869 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7870 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7871 .access = PL1_R, .type = ARM_CP_CONST, 7872 .accessfn = access_aa64_tid3, 7873 .resetvalue = 0 }, 7874 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7876 .access = PL1_R, .type = ARM_CP_CONST, 7877 .accessfn = access_aa64_tid3, 7878 .resetvalue = cpu->isar.mvfr0 }, 7879 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7881 .access = PL1_R, .type = ARM_CP_CONST, 7882 .accessfn = access_aa64_tid3, 7883 .resetvalue = cpu->isar.mvfr1 }, 7884 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7886 .access = PL1_R, .type = ARM_CP_CONST, 7887 .accessfn = access_aa64_tid3, 7888 .resetvalue = cpu->isar.mvfr2 }, 7889 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7891 .access = PL1_R, .type = ARM_CP_CONST, 7892 .accessfn = access_aa64_tid3, 7893 .resetvalue = 0 }, 7894 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7895 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7896 .access = PL1_R, .type = ARM_CP_CONST, 7897 .accessfn = access_aa64_tid3, 7898 .resetvalue = cpu->isar.id_pfr2 }, 7899 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7901 .access = PL1_R, .type = ARM_CP_CONST, 7902 .accessfn = access_aa64_tid3, 7903 .resetvalue = 0 }, 7904 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7906 .access = PL1_R, .type = ARM_CP_CONST, 7907 .accessfn = access_aa64_tid3, 7908 .resetvalue = 0 }, 7909 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7911 .access = PL1_R, .type = ARM_CP_CONST, 7912 .accessfn = access_aa64_tid3, 7913 .resetvalue = 0 }, 7914 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7915 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7916 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7917 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7918 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7920 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7921 .resetvalue = cpu->pmceid0 }, 7922 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7923 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7924 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7925 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7926 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7928 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7929 .resetvalue = cpu->pmceid1 }, 7930 REGINFO_SENTINEL 7931 }; 7932 #ifdef CONFIG_USER_ONLY 7933 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7934 { .name = "ID_AA64PFR0_EL1", 7935 .exported_bits = 0x000f000f00ff0000, 7936 .fixed_bits = 0x0000000000000011 }, 7937 { .name = "ID_AA64PFR1_EL1", 7938 .exported_bits = 0x00000000000000f0 }, 7939 { .name = "ID_AA64PFR*_EL1_RESERVED", 7940 .is_glob = true }, 7941 { .name = "ID_AA64ZFR0_EL1" }, 7942 { .name = "ID_AA64MMFR0_EL1", 7943 .fixed_bits = 0x00000000ff000000 }, 7944 { .name = "ID_AA64MMFR1_EL1" }, 7945 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7946 .is_glob = true }, 7947 { .name = "ID_AA64DFR0_EL1", 7948 .fixed_bits = 0x0000000000000006 }, 7949 { .name = "ID_AA64DFR1_EL1" }, 7950 { .name = "ID_AA64DFR*_EL1_RESERVED", 7951 .is_glob = true }, 7952 { .name = "ID_AA64AFR*", 7953 .is_glob = true }, 7954 { .name = "ID_AA64ISAR0_EL1", 7955 .exported_bits = 0x00fffffff0fffff0 }, 7956 { .name = "ID_AA64ISAR1_EL1", 7957 .exported_bits = 0x000000f0ffffffff }, 7958 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7959 .is_glob = true }, 7960 REGUSERINFO_SENTINEL 7961 }; 7962 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7963 #endif 7964 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7965 if (!arm_feature(env, ARM_FEATURE_EL3) && 7966 !arm_feature(env, ARM_FEATURE_EL2)) { 7967 ARMCPRegInfo rvbar = { 7968 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7970 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7971 }; 7972 define_one_arm_cp_reg(cpu, &rvbar); 7973 } 7974 define_arm_cp_regs(cpu, v8_idregs); 7975 define_arm_cp_regs(cpu, v8_cp_reginfo); 7976 } 7977 if (arm_feature(env, ARM_FEATURE_EL2)) { 7978 uint64_t vmpidr_def = mpidr_read_val(env); 7979 ARMCPRegInfo vpidr_regs[] = { 7980 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7981 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7982 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7983 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7984 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7985 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7986 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7987 .access = PL2_RW, .resetvalue = cpu->midr, 7988 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7989 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7990 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7991 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7992 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7993 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7994 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7995 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7996 .access = PL2_RW, 7997 .resetvalue = vmpidr_def, 7998 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7999 REGINFO_SENTINEL 8000 }; 8001 define_arm_cp_regs(cpu, vpidr_regs); 8002 define_arm_cp_regs(cpu, el2_cp_reginfo); 8003 if (arm_feature(env, ARM_FEATURE_V8)) { 8004 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8005 } 8006 if (cpu_isar_feature(aa64_sel2, cpu)) { 8007 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8008 } 8009 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8010 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8011 ARMCPRegInfo rvbar = { 8012 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8013 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8014 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 8015 }; 8016 define_one_arm_cp_reg(cpu, &rvbar); 8017 } 8018 } else { 8019 /* If EL2 is missing but higher ELs are enabled, we need to 8020 * register the no_el2 reginfos. 8021 */ 8022 if (arm_feature(env, ARM_FEATURE_EL3)) { 8023 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8024 * of MIDR_EL1 and MPIDR_EL1. 8025 */ 8026 ARMCPRegInfo vpidr_regs[] = { 8027 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8028 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8029 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8030 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8031 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8032 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8033 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8034 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8035 .type = ARM_CP_NO_RAW, 8036 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8037 REGINFO_SENTINEL 8038 }; 8039 define_arm_cp_regs(cpu, vpidr_regs); 8040 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8041 if (arm_feature(env, ARM_FEATURE_V8)) { 8042 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8043 } 8044 } 8045 } 8046 if (arm_feature(env, ARM_FEATURE_EL3)) { 8047 define_arm_cp_regs(cpu, el3_cp_reginfo); 8048 ARMCPRegInfo el3_regs[] = { 8049 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8050 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8051 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8052 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8053 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8054 .access = PL3_RW, 8055 .raw_writefn = raw_write, .writefn = sctlr_write, 8056 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8057 .resetvalue = cpu->reset_sctlr }, 8058 REGINFO_SENTINEL 8059 }; 8060 8061 define_arm_cp_regs(cpu, el3_regs); 8062 } 8063 /* The behaviour of NSACR is sufficiently various that we don't 8064 * try to describe it in a single reginfo: 8065 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8066 * reads as constant 0xc00 from NS EL1 and NS EL2 8067 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8068 * if v7 without EL3, register doesn't exist 8069 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8070 */ 8071 if (arm_feature(env, ARM_FEATURE_EL3)) { 8072 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8073 ARMCPRegInfo nsacr = { 8074 .name = "NSACR", .type = ARM_CP_CONST, 8075 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8076 .access = PL1_RW, .accessfn = nsacr_access, 8077 .resetvalue = 0xc00 8078 }; 8079 define_one_arm_cp_reg(cpu, &nsacr); 8080 } else { 8081 ARMCPRegInfo nsacr = { 8082 .name = "NSACR", 8083 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8084 .access = PL3_RW | PL1_R, 8085 .resetvalue = 0, 8086 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8087 }; 8088 define_one_arm_cp_reg(cpu, &nsacr); 8089 } 8090 } else { 8091 if (arm_feature(env, ARM_FEATURE_V8)) { 8092 ARMCPRegInfo nsacr = { 8093 .name = "NSACR", .type = ARM_CP_CONST, 8094 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8095 .access = PL1_R, 8096 .resetvalue = 0xc00 8097 }; 8098 define_one_arm_cp_reg(cpu, &nsacr); 8099 } 8100 } 8101 8102 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8103 if (arm_feature(env, ARM_FEATURE_V6)) { 8104 /* PMSAv6 not implemented */ 8105 assert(arm_feature(env, ARM_FEATURE_V7)); 8106 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8107 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8108 } else { 8109 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8110 } 8111 } else { 8112 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8113 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8114 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8115 if (cpu_isar_feature(aa32_hpd, cpu)) { 8116 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8117 } 8118 } 8119 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8120 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8121 } 8122 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8123 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8124 } 8125 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8126 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8127 } 8128 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8129 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8130 } 8131 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8132 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8133 } 8134 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8135 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8136 } 8137 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8138 define_arm_cp_regs(cpu, omap_cp_reginfo); 8139 } 8140 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8141 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8142 } 8143 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8144 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8145 } 8146 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8147 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8148 } 8149 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8150 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8151 } 8152 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8153 define_arm_cp_regs(cpu, jazelle_regs); 8154 } 8155 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8156 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8157 * be read-only (ie write causes UNDEF exception). 8158 */ 8159 { 8160 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8161 /* Pre-v8 MIDR space. 8162 * Note that the MIDR isn't a simple constant register because 8163 * of the TI925 behaviour where writes to another register can 8164 * cause the MIDR value to change. 8165 * 8166 * Unimplemented registers in the c15 0 0 0 space default to 8167 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8168 * and friends override accordingly. 8169 */ 8170 { .name = "MIDR", 8171 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8172 .access = PL1_R, .resetvalue = cpu->midr, 8173 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8174 .readfn = midr_read, 8175 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8176 .type = ARM_CP_OVERRIDE }, 8177 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8178 { .name = "DUMMY", 8179 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8180 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8181 { .name = "DUMMY", 8182 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8184 { .name = "DUMMY", 8185 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8187 { .name = "DUMMY", 8188 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8190 { .name = "DUMMY", 8191 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8192 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8193 REGINFO_SENTINEL 8194 }; 8195 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8196 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8197 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8198 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8199 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8200 .readfn = midr_read }, 8201 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8202 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8203 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8204 .access = PL1_R, .resetvalue = cpu->midr }, 8205 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8206 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8207 .access = PL1_R, .resetvalue = cpu->midr }, 8208 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8209 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8210 .access = PL1_R, 8211 .accessfn = access_aa64_tid1, 8212 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8213 REGINFO_SENTINEL 8214 }; 8215 ARMCPRegInfo id_cp_reginfo[] = { 8216 /* These are common to v8 and pre-v8 */ 8217 { .name = "CTR", 8218 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8219 .access = PL1_R, .accessfn = ctr_el0_access, 8220 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8221 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8222 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8223 .access = PL0_R, .accessfn = ctr_el0_access, 8224 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8225 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8226 { .name = "TCMTR", 8227 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8228 .access = PL1_R, 8229 .accessfn = access_aa32_tid1, 8230 .type = ARM_CP_CONST, .resetvalue = 0 }, 8231 REGINFO_SENTINEL 8232 }; 8233 /* TLBTR is specific to VMSA */ 8234 ARMCPRegInfo id_tlbtr_reginfo = { 8235 .name = "TLBTR", 8236 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8237 .access = PL1_R, 8238 .accessfn = access_aa32_tid1, 8239 .type = ARM_CP_CONST, .resetvalue = 0, 8240 }; 8241 /* MPUIR is specific to PMSA V6+ */ 8242 ARMCPRegInfo id_mpuir_reginfo = { 8243 .name = "MPUIR", 8244 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8245 .access = PL1_R, .type = ARM_CP_CONST, 8246 .resetvalue = cpu->pmsav7_dregion << 8 8247 }; 8248 ARMCPRegInfo crn0_wi_reginfo = { 8249 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8250 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8251 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8252 }; 8253 #ifdef CONFIG_USER_ONLY 8254 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8255 { .name = "MIDR_EL1", 8256 .exported_bits = 0x00000000ffffffff }, 8257 { .name = "REVIDR_EL1" }, 8258 REGUSERINFO_SENTINEL 8259 }; 8260 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8261 #endif 8262 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8263 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8264 ARMCPRegInfo *r; 8265 /* Register the blanket "writes ignored" value first to cover the 8266 * whole space. Then update the specific ID registers to allow write 8267 * access, so that they ignore writes rather than causing them to 8268 * UNDEF. 8269 */ 8270 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8271 for (r = id_pre_v8_midr_cp_reginfo; 8272 r->type != ARM_CP_SENTINEL; r++) { 8273 r->access = PL1_RW; 8274 } 8275 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8276 r->access = PL1_RW; 8277 } 8278 id_mpuir_reginfo.access = PL1_RW; 8279 id_tlbtr_reginfo.access = PL1_RW; 8280 } 8281 if (arm_feature(env, ARM_FEATURE_V8)) { 8282 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8283 } else { 8284 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8285 } 8286 define_arm_cp_regs(cpu, id_cp_reginfo); 8287 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8288 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8289 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8290 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8291 } 8292 } 8293 8294 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8295 ARMCPRegInfo mpidr_cp_reginfo[] = { 8296 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8297 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8298 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8299 REGINFO_SENTINEL 8300 }; 8301 #ifdef CONFIG_USER_ONLY 8302 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8303 { .name = "MPIDR_EL1", 8304 .fixed_bits = 0x0000000080000000 }, 8305 REGUSERINFO_SENTINEL 8306 }; 8307 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8308 #endif 8309 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8310 } 8311 8312 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8313 ARMCPRegInfo auxcr_reginfo[] = { 8314 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8315 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8316 .access = PL1_RW, .accessfn = access_tacr, 8317 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8318 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8319 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8320 .access = PL2_RW, .type = ARM_CP_CONST, 8321 .resetvalue = 0 }, 8322 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8323 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8324 .access = PL3_RW, .type = ARM_CP_CONST, 8325 .resetvalue = 0 }, 8326 REGINFO_SENTINEL 8327 }; 8328 define_arm_cp_regs(cpu, auxcr_reginfo); 8329 if (cpu_isar_feature(aa32_ac2, cpu)) { 8330 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8331 } 8332 } 8333 8334 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8335 /* 8336 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8337 * There are two flavours: 8338 * (1) older 32-bit only cores have a simple 32-bit CBAR 8339 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8340 * 32-bit register visible to AArch32 at a different encoding 8341 * to the "flavour 1" register and with the bits rearranged to 8342 * be able to squash a 64-bit address into the 32-bit view. 8343 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8344 * in future if we support AArch32-only configs of some of the 8345 * AArch64 cores we might need to add a specific feature flag 8346 * to indicate cores with "flavour 2" CBAR. 8347 */ 8348 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8349 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8350 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8351 | extract64(cpu->reset_cbar, 32, 12); 8352 ARMCPRegInfo cbar_reginfo[] = { 8353 { .name = "CBAR", 8354 .type = ARM_CP_CONST, 8355 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8356 .access = PL1_R, .resetvalue = cbar32 }, 8357 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8358 .type = ARM_CP_CONST, 8359 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8360 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8361 REGINFO_SENTINEL 8362 }; 8363 /* We don't implement a r/w 64 bit CBAR currently */ 8364 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8365 define_arm_cp_regs(cpu, cbar_reginfo); 8366 } else { 8367 ARMCPRegInfo cbar = { 8368 .name = "CBAR", 8369 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8370 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8371 .fieldoffset = offsetof(CPUARMState, 8372 cp15.c15_config_base_address) 8373 }; 8374 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8375 cbar.access = PL1_R; 8376 cbar.fieldoffset = 0; 8377 cbar.type = ARM_CP_CONST; 8378 } 8379 define_one_arm_cp_reg(cpu, &cbar); 8380 } 8381 } 8382 8383 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8384 ARMCPRegInfo vbar_cp_reginfo[] = { 8385 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8386 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8387 .access = PL1_RW, .writefn = vbar_write, 8388 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8389 offsetof(CPUARMState, cp15.vbar_ns) }, 8390 .resetvalue = 0 }, 8391 REGINFO_SENTINEL 8392 }; 8393 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8394 } 8395 8396 /* Generic registers whose values depend on the implementation */ 8397 { 8398 ARMCPRegInfo sctlr = { 8399 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8400 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8401 .access = PL1_RW, .accessfn = access_tvm_trvm, 8402 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8403 offsetof(CPUARMState, cp15.sctlr_ns) }, 8404 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8405 .raw_writefn = raw_write, 8406 }; 8407 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8408 /* Normally we would always end the TB on an SCTLR write, but Linux 8409 * arch/arm/mach-pxa/sleep.S expects two instructions following 8410 * an MMU enable to execute from cache. Imitate this behaviour. 8411 */ 8412 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8413 } 8414 define_one_arm_cp_reg(cpu, &sctlr); 8415 } 8416 8417 if (cpu_isar_feature(aa64_lor, cpu)) { 8418 define_arm_cp_regs(cpu, lor_reginfo); 8419 } 8420 if (cpu_isar_feature(aa64_pan, cpu)) { 8421 define_one_arm_cp_reg(cpu, &pan_reginfo); 8422 } 8423 #ifndef CONFIG_USER_ONLY 8424 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8425 define_arm_cp_regs(cpu, ats1e1_reginfo); 8426 } 8427 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8428 define_arm_cp_regs(cpu, ats1cp_reginfo); 8429 } 8430 #endif 8431 if (cpu_isar_feature(aa64_uao, cpu)) { 8432 define_one_arm_cp_reg(cpu, &uao_reginfo); 8433 } 8434 8435 if (cpu_isar_feature(aa64_dit, cpu)) { 8436 define_one_arm_cp_reg(cpu, &dit_reginfo); 8437 } 8438 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8439 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8440 } 8441 8442 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8443 define_arm_cp_regs(cpu, vhe_reginfo); 8444 } 8445 8446 if (cpu_isar_feature(aa64_sve, cpu)) { 8447 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8448 if (arm_feature(env, ARM_FEATURE_EL2)) { 8449 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8450 } else { 8451 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8452 } 8453 if (arm_feature(env, ARM_FEATURE_EL3)) { 8454 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8455 } 8456 } 8457 8458 #ifdef TARGET_AARCH64 8459 if (cpu_isar_feature(aa64_pauth, cpu)) { 8460 define_arm_cp_regs(cpu, pauth_reginfo); 8461 } 8462 if (cpu_isar_feature(aa64_rndr, cpu)) { 8463 define_arm_cp_regs(cpu, rndr_reginfo); 8464 } 8465 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8466 define_arm_cp_regs(cpu, tlbirange_reginfo); 8467 } 8468 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8469 define_arm_cp_regs(cpu, tlbios_reginfo); 8470 } 8471 #ifndef CONFIG_USER_ONLY 8472 /* Data Cache clean instructions up to PoP */ 8473 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8474 define_one_arm_cp_reg(cpu, dcpop_reg); 8475 8476 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8477 define_one_arm_cp_reg(cpu, dcpodp_reg); 8478 } 8479 } 8480 #endif /*CONFIG_USER_ONLY*/ 8481 8482 /* 8483 * If full MTE is enabled, add all of the system registers. 8484 * If only "instructions available at EL0" are enabled, 8485 * then define only a RAZ/WI version of PSTATE.TCO. 8486 */ 8487 if (cpu_isar_feature(aa64_mte, cpu)) { 8488 define_arm_cp_regs(cpu, mte_reginfo); 8489 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8490 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8491 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8492 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8493 } 8494 #endif 8495 8496 if (cpu_isar_feature(any_predinv, cpu)) { 8497 define_arm_cp_regs(cpu, predinv_reginfo); 8498 } 8499 8500 if (cpu_isar_feature(any_ccidx, cpu)) { 8501 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8502 } 8503 8504 #ifndef CONFIG_USER_ONLY 8505 /* 8506 * Register redirections and aliases must be done last, 8507 * after the registers from the other extensions have been defined. 8508 */ 8509 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8510 define_arm_vh_e2h_redirects_aliases(cpu); 8511 } 8512 #endif 8513 } 8514 8515 /* Sort alphabetically by type name, except for "any". */ 8516 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8517 { 8518 ObjectClass *class_a = (ObjectClass *)a; 8519 ObjectClass *class_b = (ObjectClass *)b; 8520 const char *name_a, *name_b; 8521 8522 name_a = object_class_get_name(class_a); 8523 name_b = object_class_get_name(class_b); 8524 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8525 return 1; 8526 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8527 return -1; 8528 } else { 8529 return strcmp(name_a, name_b); 8530 } 8531 } 8532 8533 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8534 { 8535 ObjectClass *oc = data; 8536 const char *typename; 8537 char *name; 8538 8539 typename = object_class_get_name(oc); 8540 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8541 qemu_printf(" %s\n", name); 8542 g_free(name); 8543 } 8544 8545 void arm_cpu_list(void) 8546 { 8547 GSList *list; 8548 8549 list = object_class_get_list(TYPE_ARM_CPU, false); 8550 list = g_slist_sort(list, arm_cpu_list_compare); 8551 qemu_printf("Available CPUs:\n"); 8552 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8553 g_slist_free(list); 8554 } 8555 8556 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8557 { 8558 ObjectClass *oc = data; 8559 CpuDefinitionInfoList **cpu_list = user_data; 8560 CpuDefinitionInfo *info; 8561 const char *typename; 8562 8563 typename = object_class_get_name(oc); 8564 info = g_malloc0(sizeof(*info)); 8565 info->name = g_strndup(typename, 8566 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8567 info->q_typename = g_strdup(typename); 8568 8569 QAPI_LIST_PREPEND(*cpu_list, info); 8570 } 8571 8572 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8573 { 8574 CpuDefinitionInfoList *cpu_list = NULL; 8575 GSList *list; 8576 8577 list = object_class_get_list(TYPE_ARM_CPU, false); 8578 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8579 g_slist_free(list); 8580 8581 return cpu_list; 8582 } 8583 8584 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8585 void *opaque, int state, int secstate, 8586 int crm, int opc1, int opc2, 8587 const char *name) 8588 { 8589 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8590 * add a single reginfo struct to the hash table. 8591 */ 8592 uint32_t *key = g_new(uint32_t, 1); 8593 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8594 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8595 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8596 8597 r2->name = g_strdup(name); 8598 /* Reset the secure state to the specific incoming state. This is 8599 * necessary as the register may have been defined with both states. 8600 */ 8601 r2->secure = secstate; 8602 8603 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8604 /* Register is banked (using both entries in array). 8605 * Overwriting fieldoffset as the array is only used to define 8606 * banked registers but later only fieldoffset is used. 8607 */ 8608 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8609 } 8610 8611 if (state == ARM_CP_STATE_AA32) { 8612 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8613 /* If the register is banked then we don't need to migrate or 8614 * reset the 32-bit instance in certain cases: 8615 * 8616 * 1) If the register has both 32-bit and 64-bit instances then we 8617 * can count on the 64-bit instance taking care of the 8618 * non-secure bank. 8619 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8620 * taking care of the secure bank. This requires that separate 8621 * 32 and 64-bit definitions are provided. 8622 */ 8623 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8624 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8625 r2->type |= ARM_CP_ALIAS; 8626 } 8627 } else if ((secstate != r->secure) && !ns) { 8628 /* The register is not banked so we only want to allow migration of 8629 * the non-secure instance. 8630 */ 8631 r2->type |= ARM_CP_ALIAS; 8632 } 8633 8634 if (r->state == ARM_CP_STATE_BOTH) { 8635 /* We assume it is a cp15 register if the .cp field is left unset. 8636 */ 8637 if (r2->cp == 0) { 8638 r2->cp = 15; 8639 } 8640 8641 #ifdef HOST_WORDS_BIGENDIAN 8642 if (r2->fieldoffset) { 8643 r2->fieldoffset += sizeof(uint32_t); 8644 } 8645 #endif 8646 } 8647 } 8648 if (state == ARM_CP_STATE_AA64) { 8649 /* To allow abbreviation of ARMCPRegInfo 8650 * definitions, we treat cp == 0 as equivalent to 8651 * the value for "standard guest-visible sysreg". 8652 * STATE_BOTH definitions are also always "standard 8653 * sysreg" in their AArch64 view (the .cp value may 8654 * be non-zero for the benefit of the AArch32 view). 8655 */ 8656 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8657 r2->cp = CP_REG_ARM64_SYSREG_CP; 8658 } 8659 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8660 r2->opc0, opc1, opc2); 8661 } else { 8662 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8663 } 8664 if (opaque) { 8665 r2->opaque = opaque; 8666 } 8667 /* reginfo passed to helpers is correct for the actual access, 8668 * and is never ARM_CP_STATE_BOTH: 8669 */ 8670 r2->state = state; 8671 /* Make sure reginfo passed to helpers for wildcarded regs 8672 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8673 */ 8674 r2->crm = crm; 8675 r2->opc1 = opc1; 8676 r2->opc2 = opc2; 8677 /* By convention, for wildcarded registers only the first 8678 * entry is used for migration; the others are marked as 8679 * ALIAS so we don't try to transfer the register 8680 * multiple times. Special registers (ie NOP/WFI) are 8681 * never migratable and not even raw-accessible. 8682 */ 8683 if ((r->type & ARM_CP_SPECIAL)) { 8684 r2->type |= ARM_CP_NO_RAW; 8685 } 8686 if (((r->crm == CP_ANY) && crm != 0) || 8687 ((r->opc1 == CP_ANY) && opc1 != 0) || 8688 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8689 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8690 } 8691 8692 /* Check that raw accesses are either forbidden or handled. Note that 8693 * we can't assert this earlier because the setup of fieldoffset for 8694 * banked registers has to be done first. 8695 */ 8696 if (!(r2->type & ARM_CP_NO_RAW)) { 8697 assert(!raw_accessors_invalid(r2)); 8698 } 8699 8700 /* Overriding of an existing definition must be explicitly 8701 * requested. 8702 */ 8703 if (!(r->type & ARM_CP_OVERRIDE)) { 8704 ARMCPRegInfo *oldreg; 8705 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8706 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8707 fprintf(stderr, "Register redefined: cp=%d %d bit " 8708 "crn=%d crm=%d opc1=%d opc2=%d, " 8709 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8710 r2->crn, r2->crm, r2->opc1, r2->opc2, 8711 oldreg->name, r2->name); 8712 g_assert_not_reached(); 8713 } 8714 } 8715 g_hash_table_insert(cpu->cp_regs, key, r2); 8716 } 8717 8718 8719 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8720 const ARMCPRegInfo *r, void *opaque) 8721 { 8722 /* Define implementations of coprocessor registers. 8723 * We store these in a hashtable because typically 8724 * there are less than 150 registers in a space which 8725 * is 16*16*16*8*8 = 262144 in size. 8726 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8727 * If a register is defined twice then the second definition is 8728 * used, so this can be used to define some generic registers and 8729 * then override them with implementation specific variations. 8730 * At least one of the original and the second definition should 8731 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8732 * against accidental use. 8733 * 8734 * The state field defines whether the register is to be 8735 * visible in the AArch32 or AArch64 execution state. If the 8736 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8737 * reginfo structure for the AArch32 view, which sees the lower 8738 * 32 bits of the 64 bit register. 8739 * 8740 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8741 * be wildcarded. AArch64 registers are always considered to be 64 8742 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8743 * the register, if any. 8744 */ 8745 int crm, opc1, opc2, state; 8746 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8747 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8748 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8749 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8750 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8751 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8752 /* 64 bit registers have only CRm and Opc1 fields */ 8753 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8754 /* op0 only exists in the AArch64 encodings */ 8755 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8756 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8757 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8758 /* 8759 * This API is only for Arm's system coprocessors (14 and 15) or 8760 * (M-profile or v7A-and-earlier only) for implementation defined 8761 * coprocessors in the range 0..7. Our decode assumes this, since 8762 * 8..13 can be used for other insns including VFP and Neon. See 8763 * valid_cp() in translate.c. Assert here that we haven't tried 8764 * to use an invalid coprocessor number. 8765 */ 8766 switch (r->state) { 8767 case ARM_CP_STATE_BOTH: 8768 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8769 if (r->cp == 0) { 8770 break; 8771 } 8772 /* fall through */ 8773 case ARM_CP_STATE_AA32: 8774 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8775 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8776 assert(r->cp >= 14 && r->cp <= 15); 8777 } else { 8778 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8779 } 8780 break; 8781 case ARM_CP_STATE_AA64: 8782 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8783 break; 8784 default: 8785 g_assert_not_reached(); 8786 } 8787 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8788 * encodes a minimum access level for the register. We roll this 8789 * runtime check into our general permission check code, so check 8790 * here that the reginfo's specified permissions are strict enough 8791 * to encompass the generic architectural permission check. 8792 */ 8793 if (r->state != ARM_CP_STATE_AA32) { 8794 int mask = 0; 8795 switch (r->opc1) { 8796 case 0: 8797 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8798 mask = PL0U_R | PL1_RW; 8799 break; 8800 case 1: case 2: 8801 /* min_EL EL1 */ 8802 mask = PL1_RW; 8803 break; 8804 case 3: 8805 /* min_EL EL0 */ 8806 mask = PL0_RW; 8807 break; 8808 case 4: 8809 case 5: 8810 /* min_EL EL2 */ 8811 mask = PL2_RW; 8812 break; 8813 case 6: 8814 /* min_EL EL3 */ 8815 mask = PL3_RW; 8816 break; 8817 case 7: 8818 /* min_EL EL1, secure mode only (we don't check the latter) */ 8819 mask = PL1_RW; 8820 break; 8821 default: 8822 /* broken reginfo with out-of-range opc1 */ 8823 assert(false); 8824 break; 8825 } 8826 /* assert our permissions are not too lax (stricter is fine) */ 8827 assert((r->access & ~mask) == 0); 8828 } 8829 8830 /* Check that the register definition has enough info to handle 8831 * reads and writes if they are permitted. 8832 */ 8833 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8834 if (r->access & PL3_R) { 8835 assert((r->fieldoffset || 8836 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8837 r->readfn); 8838 } 8839 if (r->access & PL3_W) { 8840 assert((r->fieldoffset || 8841 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8842 r->writefn); 8843 } 8844 } 8845 /* Bad type field probably means missing sentinel at end of reg list */ 8846 assert(cptype_valid(r->type)); 8847 for (crm = crmmin; crm <= crmmax; crm++) { 8848 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8849 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8850 for (state = ARM_CP_STATE_AA32; 8851 state <= ARM_CP_STATE_AA64; state++) { 8852 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8853 continue; 8854 } 8855 if (state == ARM_CP_STATE_AA32) { 8856 /* Under AArch32 CP registers can be common 8857 * (same for secure and non-secure world) or banked. 8858 */ 8859 char *name; 8860 8861 switch (r->secure) { 8862 case ARM_CP_SECSTATE_S: 8863 case ARM_CP_SECSTATE_NS: 8864 add_cpreg_to_hashtable(cpu, r, opaque, state, 8865 r->secure, crm, opc1, opc2, 8866 r->name); 8867 break; 8868 default: 8869 name = g_strdup_printf("%s_S", r->name); 8870 add_cpreg_to_hashtable(cpu, r, opaque, state, 8871 ARM_CP_SECSTATE_S, 8872 crm, opc1, opc2, name); 8873 g_free(name); 8874 add_cpreg_to_hashtable(cpu, r, opaque, state, 8875 ARM_CP_SECSTATE_NS, 8876 crm, opc1, opc2, r->name); 8877 break; 8878 } 8879 } else { 8880 /* AArch64 registers get mapped to non-secure instance 8881 * of AArch32 */ 8882 add_cpreg_to_hashtable(cpu, r, opaque, state, 8883 ARM_CP_SECSTATE_NS, 8884 crm, opc1, opc2, r->name); 8885 } 8886 } 8887 } 8888 } 8889 } 8890 } 8891 8892 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8893 const ARMCPRegInfo *regs, void *opaque) 8894 { 8895 /* Define a whole list of registers */ 8896 const ARMCPRegInfo *r; 8897 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8898 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8899 } 8900 } 8901 8902 /* 8903 * Modify ARMCPRegInfo for access from userspace. 8904 * 8905 * This is a data driven modification directed by 8906 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8907 * user-space cannot alter any values and dynamic values pertaining to 8908 * execution state are hidden from user space view anyway. 8909 */ 8910 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8911 { 8912 const ARMCPRegUserSpaceInfo *m; 8913 ARMCPRegInfo *r; 8914 8915 for (m = mods; m->name; m++) { 8916 GPatternSpec *pat = NULL; 8917 if (m->is_glob) { 8918 pat = g_pattern_spec_new(m->name); 8919 } 8920 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8921 if (pat && g_pattern_match_string(pat, r->name)) { 8922 r->type = ARM_CP_CONST; 8923 r->access = PL0U_R; 8924 r->resetvalue = 0; 8925 /* continue */ 8926 } else if (strcmp(r->name, m->name) == 0) { 8927 r->type = ARM_CP_CONST; 8928 r->access = PL0U_R; 8929 r->resetvalue &= m->exported_bits; 8930 r->resetvalue |= m->fixed_bits; 8931 break; 8932 } 8933 } 8934 if (pat) { 8935 g_pattern_spec_free(pat); 8936 } 8937 } 8938 } 8939 8940 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8941 { 8942 return g_hash_table_lookup(cpregs, &encoded_cp); 8943 } 8944 8945 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8946 uint64_t value) 8947 { 8948 /* Helper coprocessor write function for write-ignore registers */ 8949 } 8950 8951 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8952 { 8953 /* Helper coprocessor write function for read-as-zero registers */ 8954 return 0; 8955 } 8956 8957 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8958 { 8959 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8960 } 8961 8962 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8963 { 8964 /* Return true if it is not valid for us to switch to 8965 * this CPU mode (ie all the UNPREDICTABLE cases in 8966 * the ARM ARM CPSRWriteByInstr pseudocode). 8967 */ 8968 8969 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8970 if (write_type == CPSRWriteByInstr && 8971 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8972 mode == ARM_CPU_MODE_HYP)) { 8973 return 1; 8974 } 8975 8976 switch (mode) { 8977 case ARM_CPU_MODE_USR: 8978 return 0; 8979 case ARM_CPU_MODE_SYS: 8980 case ARM_CPU_MODE_SVC: 8981 case ARM_CPU_MODE_ABT: 8982 case ARM_CPU_MODE_UND: 8983 case ARM_CPU_MODE_IRQ: 8984 case ARM_CPU_MODE_FIQ: 8985 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8986 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8987 */ 8988 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8989 * and CPS are treated as illegal mode changes. 8990 */ 8991 if (write_type == CPSRWriteByInstr && 8992 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8993 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8994 return 1; 8995 } 8996 return 0; 8997 case ARM_CPU_MODE_HYP: 8998 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8999 case ARM_CPU_MODE_MON: 9000 return arm_current_el(env) < 3; 9001 default: 9002 return 1; 9003 } 9004 } 9005 9006 uint32_t cpsr_read(CPUARMState *env) 9007 { 9008 int ZF; 9009 ZF = (env->ZF == 0); 9010 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9011 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9012 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9013 | ((env->condexec_bits & 0xfc) << 8) 9014 | (env->GE << 16) | (env->daif & CPSR_AIF); 9015 } 9016 9017 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9018 CPSRWriteType write_type) 9019 { 9020 uint32_t changed_daif; 9021 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9022 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9023 9024 if (mask & CPSR_NZCV) { 9025 env->ZF = (~val) & CPSR_Z; 9026 env->NF = val; 9027 env->CF = (val >> 29) & 1; 9028 env->VF = (val << 3) & 0x80000000; 9029 } 9030 if (mask & CPSR_Q) 9031 env->QF = ((val & CPSR_Q) != 0); 9032 if (mask & CPSR_T) 9033 env->thumb = ((val & CPSR_T) != 0); 9034 if (mask & CPSR_IT_0_1) { 9035 env->condexec_bits &= ~3; 9036 env->condexec_bits |= (val >> 25) & 3; 9037 } 9038 if (mask & CPSR_IT_2_7) { 9039 env->condexec_bits &= 3; 9040 env->condexec_bits |= (val >> 8) & 0xfc; 9041 } 9042 if (mask & CPSR_GE) { 9043 env->GE = (val >> 16) & 0xf; 9044 } 9045 9046 /* In a V7 implementation that includes the security extensions but does 9047 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9048 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9049 * bits respectively. 9050 * 9051 * In a V8 implementation, it is permitted for privileged software to 9052 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9053 */ 9054 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9055 arm_feature(env, ARM_FEATURE_EL3) && 9056 !arm_feature(env, ARM_FEATURE_EL2) && 9057 !arm_is_secure(env)) { 9058 9059 changed_daif = (env->daif ^ val) & mask; 9060 9061 if (changed_daif & CPSR_A) { 9062 /* Check to see if we are allowed to change the masking of async 9063 * abort exceptions from a non-secure state. 9064 */ 9065 if (!(env->cp15.scr_el3 & SCR_AW)) { 9066 qemu_log_mask(LOG_GUEST_ERROR, 9067 "Ignoring attempt to switch CPSR_A flag from " 9068 "non-secure world with SCR.AW bit clear\n"); 9069 mask &= ~CPSR_A; 9070 } 9071 } 9072 9073 if (changed_daif & CPSR_F) { 9074 /* Check to see if we are allowed to change the masking of FIQ 9075 * exceptions from a non-secure state. 9076 */ 9077 if (!(env->cp15.scr_el3 & SCR_FW)) { 9078 qemu_log_mask(LOG_GUEST_ERROR, 9079 "Ignoring attempt to switch CPSR_F flag from " 9080 "non-secure world with SCR.FW bit clear\n"); 9081 mask &= ~CPSR_F; 9082 } 9083 9084 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9085 * If this bit is set software is not allowed to mask 9086 * FIQs, but is allowed to set CPSR_F to 0. 9087 */ 9088 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9089 (val & CPSR_F)) { 9090 qemu_log_mask(LOG_GUEST_ERROR, 9091 "Ignoring attempt to enable CPSR_F flag " 9092 "(non-maskable FIQ [NMFI] support enabled)\n"); 9093 mask &= ~CPSR_F; 9094 } 9095 } 9096 } 9097 9098 env->daif &= ~(CPSR_AIF & mask); 9099 env->daif |= val & CPSR_AIF & mask; 9100 9101 if (write_type != CPSRWriteRaw && 9102 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9103 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9104 /* Note that we can only get here in USR mode if this is a 9105 * gdb stub write; for this case we follow the architectural 9106 * behaviour for guest writes in USR mode of ignoring an attempt 9107 * to switch mode. (Those are caught by translate.c for writes 9108 * triggered by guest instructions.) 9109 */ 9110 mask &= ~CPSR_M; 9111 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9112 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9113 * v7, and has defined behaviour in v8: 9114 * + leave CPSR.M untouched 9115 * + allow changes to the other CPSR fields 9116 * + set PSTATE.IL 9117 * For user changes via the GDB stub, we don't set PSTATE.IL, 9118 * as this would be unnecessarily harsh for a user error. 9119 */ 9120 mask &= ~CPSR_M; 9121 if (write_type != CPSRWriteByGDBStub && 9122 arm_feature(env, ARM_FEATURE_V8)) { 9123 mask |= CPSR_IL; 9124 val |= CPSR_IL; 9125 } 9126 qemu_log_mask(LOG_GUEST_ERROR, 9127 "Illegal AArch32 mode switch attempt from %s to %s\n", 9128 aarch32_mode_name(env->uncached_cpsr), 9129 aarch32_mode_name(val)); 9130 } else { 9131 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9132 write_type == CPSRWriteExceptionReturn ? 9133 "Exception return from AArch32" : 9134 "AArch32 mode switch from", 9135 aarch32_mode_name(env->uncached_cpsr), 9136 aarch32_mode_name(val), env->regs[15]); 9137 switch_mode(env, val & CPSR_M); 9138 } 9139 } 9140 mask &= ~CACHED_CPSR_BITS; 9141 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9142 if (rebuild_hflags) { 9143 arm_rebuild_hflags(env); 9144 } 9145 } 9146 9147 /* Sign/zero extend */ 9148 uint32_t HELPER(sxtb16)(uint32_t x) 9149 { 9150 uint32_t res; 9151 res = (uint16_t)(int8_t)x; 9152 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9153 return res; 9154 } 9155 9156 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9157 { 9158 /* 9159 * Take a division-by-zero exception if necessary; otherwise return 9160 * to get the usual non-trapping division behaviour (result of 0) 9161 */ 9162 if (arm_feature(env, ARM_FEATURE_M) 9163 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9164 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9165 } 9166 } 9167 9168 uint32_t HELPER(uxtb16)(uint32_t x) 9169 { 9170 uint32_t res; 9171 res = (uint16_t)(uint8_t)x; 9172 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9173 return res; 9174 } 9175 9176 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9177 { 9178 if (den == 0) { 9179 handle_possible_div0_trap(env, GETPC()); 9180 return 0; 9181 } 9182 if (num == INT_MIN && den == -1) { 9183 return INT_MIN; 9184 } 9185 return num / den; 9186 } 9187 9188 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9189 { 9190 if (den == 0) { 9191 handle_possible_div0_trap(env, GETPC()); 9192 return 0; 9193 } 9194 return num / den; 9195 } 9196 9197 uint32_t HELPER(rbit)(uint32_t x) 9198 { 9199 return revbit32(x); 9200 } 9201 9202 #ifdef CONFIG_USER_ONLY 9203 9204 static void switch_mode(CPUARMState *env, int mode) 9205 { 9206 ARMCPU *cpu = env_archcpu(env); 9207 9208 if (mode != ARM_CPU_MODE_USR) { 9209 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9210 } 9211 } 9212 9213 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9214 uint32_t cur_el, bool secure) 9215 { 9216 return 1; 9217 } 9218 9219 void aarch64_sync_64_to_32(CPUARMState *env) 9220 { 9221 g_assert_not_reached(); 9222 } 9223 9224 #else 9225 9226 static void switch_mode(CPUARMState *env, int mode) 9227 { 9228 int old_mode; 9229 int i; 9230 9231 old_mode = env->uncached_cpsr & CPSR_M; 9232 if (mode == old_mode) 9233 return; 9234 9235 if (old_mode == ARM_CPU_MODE_FIQ) { 9236 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9237 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9238 } else if (mode == ARM_CPU_MODE_FIQ) { 9239 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9240 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9241 } 9242 9243 i = bank_number(old_mode); 9244 env->banked_r13[i] = env->regs[13]; 9245 env->banked_spsr[i] = env->spsr; 9246 9247 i = bank_number(mode); 9248 env->regs[13] = env->banked_r13[i]; 9249 env->spsr = env->banked_spsr[i]; 9250 9251 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9252 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9253 } 9254 9255 /* Physical Interrupt Target EL Lookup Table 9256 * 9257 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9258 * 9259 * The below multi-dimensional table is used for looking up the target 9260 * exception level given numerous condition criteria. Specifically, the 9261 * target EL is based on SCR and HCR routing controls as well as the 9262 * currently executing EL and secure state. 9263 * 9264 * Dimensions: 9265 * target_el_table[2][2][2][2][2][4] 9266 * | | | | | +--- Current EL 9267 * | | | | +------ Non-secure(0)/Secure(1) 9268 * | | | +--------- HCR mask override 9269 * | | +------------ SCR exec state control 9270 * | +--------------- SCR mask override 9271 * +------------------ 32-bit(0)/64-bit(1) EL3 9272 * 9273 * The table values are as such: 9274 * 0-3 = EL0-EL3 9275 * -1 = Cannot occur 9276 * 9277 * The ARM ARM target EL table includes entries indicating that an "exception 9278 * is not taken". The two cases where this is applicable are: 9279 * 1) An exception is taken from EL3 but the SCR does not have the exception 9280 * routed to EL3. 9281 * 2) An exception is taken from EL2 but the HCR does not have the exception 9282 * routed to EL2. 9283 * In these two cases, the below table contain a target of EL1. This value is 9284 * returned as it is expected that the consumer of the table data will check 9285 * for "target EL >= current EL" to ensure the exception is not taken. 9286 * 9287 * SCR HCR 9288 * 64 EA AMO From 9289 * BIT IRQ IMO Non-secure Secure 9290 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9291 */ 9292 static const int8_t target_el_table[2][2][2][2][2][4] = { 9293 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9294 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9295 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9296 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9297 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9298 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9299 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9300 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9301 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9302 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9303 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9304 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9305 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9306 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9307 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9308 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9309 }; 9310 9311 /* 9312 * Determine the target EL for physical exceptions 9313 */ 9314 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9315 uint32_t cur_el, bool secure) 9316 { 9317 CPUARMState *env = cs->env_ptr; 9318 bool rw; 9319 bool scr; 9320 bool hcr; 9321 int target_el; 9322 /* Is the highest EL AArch64? */ 9323 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9324 uint64_t hcr_el2; 9325 9326 if (arm_feature(env, ARM_FEATURE_EL3)) { 9327 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9328 } else { 9329 /* Either EL2 is the highest EL (and so the EL2 register width 9330 * is given by is64); or there is no EL2 or EL3, in which case 9331 * the value of 'rw' does not affect the table lookup anyway. 9332 */ 9333 rw = is64; 9334 } 9335 9336 hcr_el2 = arm_hcr_el2_eff(env); 9337 switch (excp_idx) { 9338 case EXCP_IRQ: 9339 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9340 hcr = hcr_el2 & HCR_IMO; 9341 break; 9342 case EXCP_FIQ: 9343 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9344 hcr = hcr_el2 & HCR_FMO; 9345 break; 9346 default: 9347 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9348 hcr = hcr_el2 & HCR_AMO; 9349 break; 9350 }; 9351 9352 /* 9353 * For these purposes, TGE and AMO/IMO/FMO both force the 9354 * interrupt to EL2. Fold TGE into the bit extracted above. 9355 */ 9356 hcr |= (hcr_el2 & HCR_TGE) != 0; 9357 9358 /* Perform a table-lookup for the target EL given the current state */ 9359 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9360 9361 assert(target_el > 0); 9362 9363 return target_el; 9364 } 9365 9366 void arm_log_exception(CPUState *cs) 9367 { 9368 int idx = cs->exception_index; 9369 9370 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9371 const char *exc = NULL; 9372 static const char * const excnames[] = { 9373 [EXCP_UDEF] = "Undefined Instruction", 9374 [EXCP_SWI] = "SVC", 9375 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9376 [EXCP_DATA_ABORT] = "Data Abort", 9377 [EXCP_IRQ] = "IRQ", 9378 [EXCP_FIQ] = "FIQ", 9379 [EXCP_BKPT] = "Breakpoint", 9380 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9381 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9382 [EXCP_HVC] = "Hypervisor Call", 9383 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9384 [EXCP_SMC] = "Secure Monitor Call", 9385 [EXCP_VIRQ] = "Virtual IRQ", 9386 [EXCP_VFIQ] = "Virtual FIQ", 9387 [EXCP_SEMIHOST] = "Semihosting call", 9388 [EXCP_NOCP] = "v7M NOCP UsageFault", 9389 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9390 [EXCP_STKOF] = "v8M STKOF UsageFault", 9391 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9392 [EXCP_LSERR] = "v8M LSERR UsageFault", 9393 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9394 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9395 }; 9396 9397 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9398 exc = excnames[idx]; 9399 } 9400 if (!exc) { 9401 exc = "unknown"; 9402 } 9403 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9404 idx, exc, cs->cpu_index); 9405 } 9406 } 9407 9408 /* 9409 * Function used to synchronize QEMU's AArch64 register set with AArch32 9410 * register set. This is necessary when switching between AArch32 and AArch64 9411 * execution state. 9412 */ 9413 void aarch64_sync_32_to_64(CPUARMState *env) 9414 { 9415 int i; 9416 uint32_t mode = env->uncached_cpsr & CPSR_M; 9417 9418 /* We can blanket copy R[0:7] to X[0:7] */ 9419 for (i = 0; i < 8; i++) { 9420 env->xregs[i] = env->regs[i]; 9421 } 9422 9423 /* 9424 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9425 * Otherwise, they come from the banked user regs. 9426 */ 9427 if (mode == ARM_CPU_MODE_FIQ) { 9428 for (i = 8; i < 13; i++) { 9429 env->xregs[i] = env->usr_regs[i - 8]; 9430 } 9431 } else { 9432 for (i = 8; i < 13; i++) { 9433 env->xregs[i] = env->regs[i]; 9434 } 9435 } 9436 9437 /* 9438 * Registers x13-x23 are the various mode SP and FP registers. Registers 9439 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9440 * from the mode banked register. 9441 */ 9442 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9443 env->xregs[13] = env->regs[13]; 9444 env->xregs[14] = env->regs[14]; 9445 } else { 9446 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9447 /* HYP is an exception in that it is copied from r14 */ 9448 if (mode == ARM_CPU_MODE_HYP) { 9449 env->xregs[14] = env->regs[14]; 9450 } else { 9451 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9452 } 9453 } 9454 9455 if (mode == ARM_CPU_MODE_HYP) { 9456 env->xregs[15] = env->regs[13]; 9457 } else { 9458 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9459 } 9460 9461 if (mode == ARM_CPU_MODE_IRQ) { 9462 env->xregs[16] = env->regs[14]; 9463 env->xregs[17] = env->regs[13]; 9464 } else { 9465 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9466 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9467 } 9468 9469 if (mode == ARM_CPU_MODE_SVC) { 9470 env->xregs[18] = env->regs[14]; 9471 env->xregs[19] = env->regs[13]; 9472 } else { 9473 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9474 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9475 } 9476 9477 if (mode == ARM_CPU_MODE_ABT) { 9478 env->xregs[20] = env->regs[14]; 9479 env->xregs[21] = env->regs[13]; 9480 } else { 9481 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9482 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9483 } 9484 9485 if (mode == ARM_CPU_MODE_UND) { 9486 env->xregs[22] = env->regs[14]; 9487 env->xregs[23] = env->regs[13]; 9488 } else { 9489 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9490 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9491 } 9492 9493 /* 9494 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9495 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9496 * FIQ bank for r8-r14. 9497 */ 9498 if (mode == ARM_CPU_MODE_FIQ) { 9499 for (i = 24; i < 31; i++) { 9500 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9501 } 9502 } else { 9503 for (i = 24; i < 29; i++) { 9504 env->xregs[i] = env->fiq_regs[i - 24]; 9505 } 9506 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9507 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9508 } 9509 9510 env->pc = env->regs[15]; 9511 } 9512 9513 /* 9514 * Function used to synchronize QEMU's AArch32 register set with AArch64 9515 * register set. This is necessary when switching between AArch32 and AArch64 9516 * execution state. 9517 */ 9518 void aarch64_sync_64_to_32(CPUARMState *env) 9519 { 9520 int i; 9521 uint32_t mode = env->uncached_cpsr & CPSR_M; 9522 9523 /* We can blanket copy X[0:7] to R[0:7] */ 9524 for (i = 0; i < 8; i++) { 9525 env->regs[i] = env->xregs[i]; 9526 } 9527 9528 /* 9529 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9530 * Otherwise, we copy x8-x12 into the banked user regs. 9531 */ 9532 if (mode == ARM_CPU_MODE_FIQ) { 9533 for (i = 8; i < 13; i++) { 9534 env->usr_regs[i - 8] = env->xregs[i]; 9535 } 9536 } else { 9537 for (i = 8; i < 13; i++) { 9538 env->regs[i] = env->xregs[i]; 9539 } 9540 } 9541 9542 /* 9543 * Registers r13 & r14 depend on the current mode. 9544 * If we are in a given mode, we copy the corresponding x registers to r13 9545 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9546 * for the mode. 9547 */ 9548 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9549 env->regs[13] = env->xregs[13]; 9550 env->regs[14] = env->xregs[14]; 9551 } else { 9552 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9553 9554 /* 9555 * HYP is an exception in that it does not have its own banked r14 but 9556 * shares the USR r14 9557 */ 9558 if (mode == ARM_CPU_MODE_HYP) { 9559 env->regs[14] = env->xregs[14]; 9560 } else { 9561 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9562 } 9563 } 9564 9565 if (mode == ARM_CPU_MODE_HYP) { 9566 env->regs[13] = env->xregs[15]; 9567 } else { 9568 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9569 } 9570 9571 if (mode == ARM_CPU_MODE_IRQ) { 9572 env->regs[14] = env->xregs[16]; 9573 env->regs[13] = env->xregs[17]; 9574 } else { 9575 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9576 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9577 } 9578 9579 if (mode == ARM_CPU_MODE_SVC) { 9580 env->regs[14] = env->xregs[18]; 9581 env->regs[13] = env->xregs[19]; 9582 } else { 9583 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9584 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9585 } 9586 9587 if (mode == ARM_CPU_MODE_ABT) { 9588 env->regs[14] = env->xregs[20]; 9589 env->regs[13] = env->xregs[21]; 9590 } else { 9591 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9592 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9593 } 9594 9595 if (mode == ARM_CPU_MODE_UND) { 9596 env->regs[14] = env->xregs[22]; 9597 env->regs[13] = env->xregs[23]; 9598 } else { 9599 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9600 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9601 } 9602 9603 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9604 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9605 * FIQ bank for r8-r14. 9606 */ 9607 if (mode == ARM_CPU_MODE_FIQ) { 9608 for (i = 24; i < 31; i++) { 9609 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9610 } 9611 } else { 9612 for (i = 24; i < 29; i++) { 9613 env->fiq_regs[i - 24] = env->xregs[i]; 9614 } 9615 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9616 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9617 } 9618 9619 env->regs[15] = env->pc; 9620 } 9621 9622 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9623 uint32_t mask, uint32_t offset, 9624 uint32_t newpc) 9625 { 9626 int new_el; 9627 9628 /* Change the CPU state so as to actually take the exception. */ 9629 switch_mode(env, new_mode); 9630 9631 /* 9632 * For exceptions taken to AArch32 we must clear the SS bit in both 9633 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9634 */ 9635 env->pstate &= ~PSTATE_SS; 9636 env->spsr = cpsr_read(env); 9637 /* Clear IT bits. */ 9638 env->condexec_bits = 0; 9639 /* Switch to the new mode, and to the correct instruction set. */ 9640 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9641 9642 /* This must be after mode switching. */ 9643 new_el = arm_current_el(env); 9644 9645 /* Set new mode endianness */ 9646 env->uncached_cpsr &= ~CPSR_E; 9647 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9648 env->uncached_cpsr |= CPSR_E; 9649 } 9650 /* J and IL must always be cleared for exception entry */ 9651 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9652 env->daif |= mask; 9653 9654 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9655 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9656 env->uncached_cpsr |= CPSR_SSBS; 9657 } else { 9658 env->uncached_cpsr &= ~CPSR_SSBS; 9659 } 9660 } 9661 9662 if (new_mode == ARM_CPU_MODE_HYP) { 9663 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9664 env->elr_el[2] = env->regs[15]; 9665 } else { 9666 /* CPSR.PAN is normally preserved preserved unless... */ 9667 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9668 switch (new_el) { 9669 case 3: 9670 if (!arm_is_secure_below_el3(env)) { 9671 /* ... the target is EL3, from non-secure state. */ 9672 env->uncached_cpsr &= ~CPSR_PAN; 9673 break; 9674 } 9675 /* ... the target is EL3, from secure state ... */ 9676 /* fall through */ 9677 case 1: 9678 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9679 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9680 env->uncached_cpsr |= CPSR_PAN; 9681 } 9682 break; 9683 } 9684 } 9685 /* 9686 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9687 * and we should just guard the thumb mode on V4 9688 */ 9689 if (arm_feature(env, ARM_FEATURE_V4T)) { 9690 env->thumb = 9691 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9692 } 9693 env->regs[14] = env->regs[15] + offset; 9694 } 9695 env->regs[15] = newpc; 9696 arm_rebuild_hflags(env); 9697 } 9698 9699 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9700 { 9701 /* 9702 * Handle exception entry to Hyp mode; this is sufficiently 9703 * different to entry to other AArch32 modes that we handle it 9704 * separately here. 9705 * 9706 * The vector table entry used is always the 0x14 Hyp mode entry point, 9707 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9708 * The offset applied to the preferred return address is always zero 9709 * (see DDI0487C.a section G1.12.3). 9710 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9711 */ 9712 uint32_t addr, mask; 9713 ARMCPU *cpu = ARM_CPU(cs); 9714 CPUARMState *env = &cpu->env; 9715 9716 switch (cs->exception_index) { 9717 case EXCP_UDEF: 9718 addr = 0x04; 9719 break; 9720 case EXCP_SWI: 9721 addr = 0x08; 9722 break; 9723 case EXCP_BKPT: 9724 /* Fall through to prefetch abort. */ 9725 case EXCP_PREFETCH_ABORT: 9726 env->cp15.ifar_s = env->exception.vaddress; 9727 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9728 (uint32_t)env->exception.vaddress); 9729 addr = 0x0c; 9730 break; 9731 case EXCP_DATA_ABORT: 9732 env->cp15.dfar_s = env->exception.vaddress; 9733 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9734 (uint32_t)env->exception.vaddress); 9735 addr = 0x10; 9736 break; 9737 case EXCP_IRQ: 9738 addr = 0x18; 9739 break; 9740 case EXCP_FIQ: 9741 addr = 0x1c; 9742 break; 9743 case EXCP_HVC: 9744 addr = 0x08; 9745 break; 9746 case EXCP_HYP_TRAP: 9747 addr = 0x14; 9748 break; 9749 default: 9750 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9751 } 9752 9753 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9754 if (!arm_feature(env, ARM_FEATURE_V8)) { 9755 /* 9756 * QEMU syndrome values are v8-style. v7 has the IL bit 9757 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9758 * If this is a v7 CPU, squash the IL bit in those cases. 9759 */ 9760 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9761 (cs->exception_index == EXCP_DATA_ABORT && 9762 !(env->exception.syndrome & ARM_EL_ISV)) || 9763 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9764 env->exception.syndrome &= ~ARM_EL_IL; 9765 } 9766 } 9767 env->cp15.esr_el[2] = env->exception.syndrome; 9768 } 9769 9770 if (arm_current_el(env) != 2 && addr < 0x14) { 9771 addr = 0x14; 9772 } 9773 9774 mask = 0; 9775 if (!(env->cp15.scr_el3 & SCR_EA)) { 9776 mask |= CPSR_A; 9777 } 9778 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9779 mask |= CPSR_I; 9780 } 9781 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9782 mask |= CPSR_F; 9783 } 9784 9785 addr += env->cp15.hvbar; 9786 9787 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9788 } 9789 9790 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9791 { 9792 ARMCPU *cpu = ARM_CPU(cs); 9793 CPUARMState *env = &cpu->env; 9794 uint32_t addr; 9795 uint32_t mask; 9796 int new_mode; 9797 uint32_t offset; 9798 uint32_t moe; 9799 9800 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9801 switch (syn_get_ec(env->exception.syndrome)) { 9802 case EC_BREAKPOINT: 9803 case EC_BREAKPOINT_SAME_EL: 9804 moe = 1; 9805 break; 9806 case EC_WATCHPOINT: 9807 case EC_WATCHPOINT_SAME_EL: 9808 moe = 10; 9809 break; 9810 case EC_AA32_BKPT: 9811 moe = 3; 9812 break; 9813 case EC_VECTORCATCH: 9814 moe = 5; 9815 break; 9816 default: 9817 moe = 0; 9818 break; 9819 } 9820 9821 if (moe) { 9822 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9823 } 9824 9825 if (env->exception.target_el == 2) { 9826 arm_cpu_do_interrupt_aarch32_hyp(cs); 9827 return; 9828 } 9829 9830 switch (cs->exception_index) { 9831 case EXCP_UDEF: 9832 new_mode = ARM_CPU_MODE_UND; 9833 addr = 0x04; 9834 mask = CPSR_I; 9835 if (env->thumb) 9836 offset = 2; 9837 else 9838 offset = 4; 9839 break; 9840 case EXCP_SWI: 9841 new_mode = ARM_CPU_MODE_SVC; 9842 addr = 0x08; 9843 mask = CPSR_I; 9844 /* The PC already points to the next instruction. */ 9845 offset = 0; 9846 break; 9847 case EXCP_BKPT: 9848 /* Fall through to prefetch abort. */ 9849 case EXCP_PREFETCH_ABORT: 9850 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9851 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9852 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9853 env->exception.fsr, (uint32_t)env->exception.vaddress); 9854 new_mode = ARM_CPU_MODE_ABT; 9855 addr = 0x0c; 9856 mask = CPSR_A | CPSR_I; 9857 offset = 4; 9858 break; 9859 case EXCP_DATA_ABORT: 9860 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9861 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9862 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9863 env->exception.fsr, 9864 (uint32_t)env->exception.vaddress); 9865 new_mode = ARM_CPU_MODE_ABT; 9866 addr = 0x10; 9867 mask = CPSR_A | CPSR_I; 9868 offset = 8; 9869 break; 9870 case EXCP_IRQ: 9871 new_mode = ARM_CPU_MODE_IRQ; 9872 addr = 0x18; 9873 /* Disable IRQ and imprecise data aborts. */ 9874 mask = CPSR_A | CPSR_I; 9875 offset = 4; 9876 if (env->cp15.scr_el3 & SCR_IRQ) { 9877 /* IRQ routed to monitor mode */ 9878 new_mode = ARM_CPU_MODE_MON; 9879 mask |= CPSR_F; 9880 } 9881 break; 9882 case EXCP_FIQ: 9883 new_mode = ARM_CPU_MODE_FIQ; 9884 addr = 0x1c; 9885 /* Disable FIQ, IRQ and imprecise data aborts. */ 9886 mask = CPSR_A | CPSR_I | CPSR_F; 9887 if (env->cp15.scr_el3 & SCR_FIQ) { 9888 /* FIQ routed to monitor mode */ 9889 new_mode = ARM_CPU_MODE_MON; 9890 } 9891 offset = 4; 9892 break; 9893 case EXCP_VIRQ: 9894 new_mode = ARM_CPU_MODE_IRQ; 9895 addr = 0x18; 9896 /* Disable IRQ and imprecise data aborts. */ 9897 mask = CPSR_A | CPSR_I; 9898 offset = 4; 9899 break; 9900 case EXCP_VFIQ: 9901 new_mode = ARM_CPU_MODE_FIQ; 9902 addr = 0x1c; 9903 /* Disable FIQ, IRQ and imprecise data aborts. */ 9904 mask = CPSR_A | CPSR_I | CPSR_F; 9905 offset = 4; 9906 break; 9907 case EXCP_SMC: 9908 new_mode = ARM_CPU_MODE_MON; 9909 addr = 0x08; 9910 mask = CPSR_A | CPSR_I | CPSR_F; 9911 offset = 0; 9912 break; 9913 default: 9914 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9915 return; /* Never happens. Keep compiler happy. */ 9916 } 9917 9918 if (new_mode == ARM_CPU_MODE_MON) { 9919 addr += env->cp15.mvbar; 9920 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9921 /* High vectors. When enabled, base address cannot be remapped. */ 9922 addr += 0xffff0000; 9923 } else { 9924 /* ARM v7 architectures provide a vector base address register to remap 9925 * the interrupt vector table. 9926 * This register is only followed in non-monitor mode, and is banked. 9927 * Note: only bits 31:5 are valid. 9928 */ 9929 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9930 } 9931 9932 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9933 env->cp15.scr_el3 &= ~SCR_NS; 9934 } 9935 9936 take_aarch32_exception(env, new_mode, mask, offset, addr); 9937 } 9938 9939 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9940 { 9941 /* 9942 * Return the register number of the AArch64 view of the AArch32 9943 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9944 * be that of the AArch32 mode the exception came from. 9945 */ 9946 int mode = env->uncached_cpsr & CPSR_M; 9947 9948 switch (aarch32_reg) { 9949 case 0 ... 7: 9950 return aarch32_reg; 9951 case 8 ... 12: 9952 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9953 case 13: 9954 switch (mode) { 9955 case ARM_CPU_MODE_USR: 9956 case ARM_CPU_MODE_SYS: 9957 return 13; 9958 case ARM_CPU_MODE_HYP: 9959 return 15; 9960 case ARM_CPU_MODE_IRQ: 9961 return 17; 9962 case ARM_CPU_MODE_SVC: 9963 return 19; 9964 case ARM_CPU_MODE_ABT: 9965 return 21; 9966 case ARM_CPU_MODE_UND: 9967 return 23; 9968 case ARM_CPU_MODE_FIQ: 9969 return 29; 9970 default: 9971 g_assert_not_reached(); 9972 } 9973 case 14: 9974 switch (mode) { 9975 case ARM_CPU_MODE_USR: 9976 case ARM_CPU_MODE_SYS: 9977 case ARM_CPU_MODE_HYP: 9978 return 14; 9979 case ARM_CPU_MODE_IRQ: 9980 return 16; 9981 case ARM_CPU_MODE_SVC: 9982 return 18; 9983 case ARM_CPU_MODE_ABT: 9984 return 20; 9985 case ARM_CPU_MODE_UND: 9986 return 22; 9987 case ARM_CPU_MODE_FIQ: 9988 return 30; 9989 default: 9990 g_assert_not_reached(); 9991 } 9992 case 15: 9993 return 31; 9994 default: 9995 g_assert_not_reached(); 9996 } 9997 } 9998 9999 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10000 { 10001 uint32_t ret = cpsr_read(env); 10002 10003 /* Move DIT to the correct location for SPSR_ELx */ 10004 if (ret & CPSR_DIT) { 10005 ret &= ~CPSR_DIT; 10006 ret |= PSTATE_DIT; 10007 } 10008 /* Merge PSTATE.SS into SPSR_ELx */ 10009 ret |= env->pstate & PSTATE_SS; 10010 10011 return ret; 10012 } 10013 10014 /* Handle exception entry to a target EL which is using AArch64 */ 10015 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10016 { 10017 ARMCPU *cpu = ARM_CPU(cs); 10018 CPUARMState *env = &cpu->env; 10019 unsigned int new_el = env->exception.target_el; 10020 target_ulong addr = env->cp15.vbar_el[new_el]; 10021 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10022 unsigned int old_mode; 10023 unsigned int cur_el = arm_current_el(env); 10024 int rt; 10025 10026 /* 10027 * Note that new_el can never be 0. If cur_el is 0, then 10028 * el0_a64 is is_a64(), else el0_a64 is ignored. 10029 */ 10030 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10031 10032 if (cur_el < new_el) { 10033 /* Entry vector offset depends on whether the implemented EL 10034 * immediately lower than the target level is using AArch32 or AArch64 10035 */ 10036 bool is_aa64; 10037 uint64_t hcr; 10038 10039 switch (new_el) { 10040 case 3: 10041 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10042 break; 10043 case 2: 10044 hcr = arm_hcr_el2_eff(env); 10045 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10046 is_aa64 = (hcr & HCR_RW) != 0; 10047 break; 10048 } 10049 /* fall through */ 10050 case 1: 10051 is_aa64 = is_a64(env); 10052 break; 10053 default: 10054 g_assert_not_reached(); 10055 } 10056 10057 if (is_aa64) { 10058 addr += 0x400; 10059 } else { 10060 addr += 0x600; 10061 } 10062 } else if (pstate_read(env) & PSTATE_SP) { 10063 addr += 0x200; 10064 } 10065 10066 switch (cs->exception_index) { 10067 case EXCP_PREFETCH_ABORT: 10068 case EXCP_DATA_ABORT: 10069 env->cp15.far_el[new_el] = env->exception.vaddress; 10070 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10071 env->cp15.far_el[new_el]); 10072 /* fall through */ 10073 case EXCP_BKPT: 10074 case EXCP_UDEF: 10075 case EXCP_SWI: 10076 case EXCP_HVC: 10077 case EXCP_HYP_TRAP: 10078 case EXCP_SMC: 10079 switch (syn_get_ec(env->exception.syndrome)) { 10080 case EC_ADVSIMDFPACCESSTRAP: 10081 /* 10082 * QEMU internal FP/SIMD syndromes from AArch32 include the 10083 * TA and coproc fields which are only exposed if the exception 10084 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10085 * AArch64 format syndrome. 10086 */ 10087 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10088 break; 10089 case EC_CP14RTTRAP: 10090 case EC_CP15RTTRAP: 10091 case EC_CP14DTTRAP: 10092 /* 10093 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10094 * the raw register field from the insn; when taking this to 10095 * AArch64 we must convert it to the AArch64 view of the register 10096 * number. Notice that we read a 4-bit AArch32 register number and 10097 * write back a 5-bit AArch64 one. 10098 */ 10099 rt = extract32(env->exception.syndrome, 5, 4); 10100 rt = aarch64_regnum(env, rt); 10101 env->exception.syndrome = deposit32(env->exception.syndrome, 10102 5, 5, rt); 10103 break; 10104 case EC_CP15RRTTRAP: 10105 case EC_CP14RRTTRAP: 10106 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10107 rt = extract32(env->exception.syndrome, 5, 4); 10108 rt = aarch64_regnum(env, rt); 10109 env->exception.syndrome = deposit32(env->exception.syndrome, 10110 5, 5, rt); 10111 rt = extract32(env->exception.syndrome, 10, 4); 10112 rt = aarch64_regnum(env, rt); 10113 env->exception.syndrome = deposit32(env->exception.syndrome, 10114 10, 5, rt); 10115 break; 10116 } 10117 env->cp15.esr_el[new_el] = env->exception.syndrome; 10118 break; 10119 case EXCP_IRQ: 10120 case EXCP_VIRQ: 10121 addr += 0x80; 10122 break; 10123 case EXCP_FIQ: 10124 case EXCP_VFIQ: 10125 addr += 0x100; 10126 break; 10127 default: 10128 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10129 } 10130 10131 if (is_a64(env)) { 10132 old_mode = pstate_read(env); 10133 aarch64_save_sp(env, arm_current_el(env)); 10134 env->elr_el[new_el] = env->pc; 10135 } else { 10136 old_mode = cpsr_read_for_spsr_elx(env); 10137 env->elr_el[new_el] = env->regs[15]; 10138 10139 aarch64_sync_32_to_64(env); 10140 10141 env->condexec_bits = 0; 10142 } 10143 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10144 10145 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10146 env->elr_el[new_el]); 10147 10148 if (cpu_isar_feature(aa64_pan, cpu)) { 10149 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10150 new_mode |= old_mode & PSTATE_PAN; 10151 switch (new_el) { 10152 case 2: 10153 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10154 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10155 != (HCR_E2H | HCR_TGE)) { 10156 break; 10157 } 10158 /* fall through */ 10159 case 1: 10160 /* ... the target is EL1 ... */ 10161 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10162 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10163 new_mode |= PSTATE_PAN; 10164 } 10165 break; 10166 } 10167 } 10168 if (cpu_isar_feature(aa64_mte, cpu)) { 10169 new_mode |= PSTATE_TCO; 10170 } 10171 10172 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10173 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10174 new_mode |= PSTATE_SSBS; 10175 } else { 10176 new_mode &= ~PSTATE_SSBS; 10177 } 10178 } 10179 10180 pstate_write(env, PSTATE_DAIF | new_mode); 10181 env->aarch64 = 1; 10182 aarch64_restore_sp(env, new_el); 10183 helper_rebuild_hflags_a64(env, new_el); 10184 10185 env->pc = addr; 10186 10187 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10188 new_el, env->pc, pstate_read(env)); 10189 } 10190 10191 /* 10192 * Do semihosting call and set the appropriate return value. All the 10193 * permission and validity checks have been done at translate time. 10194 * 10195 * We only see semihosting exceptions in TCG only as they are not 10196 * trapped to the hypervisor in KVM. 10197 */ 10198 #ifdef CONFIG_TCG 10199 static void handle_semihosting(CPUState *cs) 10200 { 10201 ARMCPU *cpu = ARM_CPU(cs); 10202 CPUARMState *env = &cpu->env; 10203 10204 if (is_a64(env)) { 10205 qemu_log_mask(CPU_LOG_INT, 10206 "...handling as semihosting call 0x%" PRIx64 "\n", 10207 env->xregs[0]); 10208 env->xregs[0] = do_common_semihosting(cs); 10209 env->pc += 4; 10210 } else { 10211 qemu_log_mask(CPU_LOG_INT, 10212 "...handling as semihosting call 0x%x\n", 10213 env->regs[0]); 10214 env->regs[0] = do_common_semihosting(cs); 10215 env->regs[15] += env->thumb ? 2 : 4; 10216 } 10217 } 10218 #endif 10219 10220 /* Handle a CPU exception for A and R profile CPUs. 10221 * Do any appropriate logging, handle PSCI calls, and then hand off 10222 * to the AArch64-entry or AArch32-entry function depending on the 10223 * target exception level's register width. 10224 * 10225 * Note: this is used for both TCG (as the do_interrupt tcg op), 10226 * and KVM to re-inject guest debug exceptions, and to 10227 * inject a Synchronous-External-Abort. 10228 */ 10229 void arm_cpu_do_interrupt(CPUState *cs) 10230 { 10231 ARMCPU *cpu = ARM_CPU(cs); 10232 CPUARMState *env = &cpu->env; 10233 unsigned int new_el = env->exception.target_el; 10234 10235 assert(!arm_feature(env, ARM_FEATURE_M)); 10236 10237 arm_log_exception(cs); 10238 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10239 new_el); 10240 if (qemu_loglevel_mask(CPU_LOG_INT) 10241 && !excp_is_internal(cs->exception_index)) { 10242 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10243 syn_get_ec(env->exception.syndrome), 10244 env->exception.syndrome); 10245 } 10246 10247 if (arm_is_psci_call(cpu, cs->exception_index)) { 10248 arm_handle_psci_call(cpu); 10249 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10250 return; 10251 } 10252 10253 /* 10254 * Semihosting semantics depend on the register width of the code 10255 * that caused the exception, not the target exception level, so 10256 * must be handled here. 10257 */ 10258 #ifdef CONFIG_TCG 10259 if (cs->exception_index == EXCP_SEMIHOST) { 10260 handle_semihosting(cs); 10261 return; 10262 } 10263 #endif 10264 10265 /* Hooks may change global state so BQL should be held, also the 10266 * BQL needs to be held for any modification of 10267 * cs->interrupt_request. 10268 */ 10269 g_assert(qemu_mutex_iothread_locked()); 10270 10271 arm_call_pre_el_change_hook(cpu); 10272 10273 assert(!excp_is_internal(cs->exception_index)); 10274 if (arm_el_is_aa64(env, new_el)) { 10275 arm_cpu_do_interrupt_aarch64(cs); 10276 } else { 10277 arm_cpu_do_interrupt_aarch32(cs); 10278 } 10279 10280 arm_call_el_change_hook(cpu); 10281 10282 if (!kvm_enabled()) { 10283 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10284 } 10285 } 10286 #endif /* !CONFIG_USER_ONLY */ 10287 10288 uint64_t arm_sctlr(CPUARMState *env, int el) 10289 { 10290 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10291 if (el == 0) { 10292 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10293 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10294 ? 2 : 1; 10295 } 10296 return env->cp15.sctlr_el[el]; 10297 } 10298 10299 /* Return the SCTLR value which controls this address translation regime */ 10300 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10301 { 10302 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10303 } 10304 10305 #ifndef CONFIG_USER_ONLY 10306 10307 /* Return true if the specified stage of address translation is disabled */ 10308 static inline bool regime_translation_disabled(CPUARMState *env, 10309 ARMMMUIdx mmu_idx) 10310 { 10311 uint64_t hcr_el2; 10312 10313 if (arm_feature(env, ARM_FEATURE_M)) { 10314 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10315 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10316 case R_V7M_MPU_CTRL_ENABLE_MASK: 10317 /* Enabled, but not for HardFault and NMI */ 10318 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10319 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10320 /* Enabled for all cases */ 10321 return false; 10322 case 0: 10323 default: 10324 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10325 * we warned about that in armv7m_nvic.c when the guest set it. 10326 */ 10327 return true; 10328 } 10329 } 10330 10331 hcr_el2 = arm_hcr_el2_eff(env); 10332 10333 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10334 /* HCR.DC means HCR.VM behaves as 1 */ 10335 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10336 } 10337 10338 if (hcr_el2 & HCR_TGE) { 10339 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10340 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10341 return true; 10342 } 10343 } 10344 10345 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10346 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10347 return true; 10348 } 10349 10350 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10351 } 10352 10353 static inline bool regime_translation_big_endian(CPUARMState *env, 10354 ARMMMUIdx mmu_idx) 10355 { 10356 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10357 } 10358 10359 /* Return the TTBR associated with this translation regime */ 10360 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10361 int ttbrn) 10362 { 10363 if (mmu_idx == ARMMMUIdx_Stage2) { 10364 return env->cp15.vttbr_el2; 10365 } 10366 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10367 return env->cp15.vsttbr_el2; 10368 } 10369 if (ttbrn == 0) { 10370 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10371 } else { 10372 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10373 } 10374 } 10375 10376 #endif /* !CONFIG_USER_ONLY */ 10377 10378 /* Convert a possible stage1+2 MMU index into the appropriate 10379 * stage 1 MMU index 10380 */ 10381 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10382 { 10383 switch (mmu_idx) { 10384 case ARMMMUIdx_SE10_0: 10385 return ARMMMUIdx_Stage1_SE0; 10386 case ARMMMUIdx_SE10_1: 10387 return ARMMMUIdx_Stage1_SE1; 10388 case ARMMMUIdx_SE10_1_PAN: 10389 return ARMMMUIdx_Stage1_SE1_PAN; 10390 case ARMMMUIdx_E10_0: 10391 return ARMMMUIdx_Stage1_E0; 10392 case ARMMMUIdx_E10_1: 10393 return ARMMMUIdx_Stage1_E1; 10394 case ARMMMUIdx_E10_1_PAN: 10395 return ARMMMUIdx_Stage1_E1_PAN; 10396 default: 10397 return mmu_idx; 10398 } 10399 } 10400 10401 /* Return true if the translation regime is using LPAE format page tables */ 10402 static inline bool regime_using_lpae_format(CPUARMState *env, 10403 ARMMMUIdx mmu_idx) 10404 { 10405 int el = regime_el(env, mmu_idx); 10406 if (el == 2 || arm_el_is_aa64(env, el)) { 10407 return true; 10408 } 10409 if (arm_feature(env, ARM_FEATURE_LPAE) 10410 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10411 return true; 10412 } 10413 return false; 10414 } 10415 10416 /* Returns true if the stage 1 translation regime is using LPAE format page 10417 * tables. Used when raising alignment exceptions, whose FSR changes depending 10418 * on whether the long or short descriptor format is in use. */ 10419 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10420 { 10421 mmu_idx = stage_1_mmu_idx(mmu_idx); 10422 10423 return regime_using_lpae_format(env, mmu_idx); 10424 } 10425 10426 #ifndef CONFIG_USER_ONLY 10427 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10428 { 10429 switch (mmu_idx) { 10430 case ARMMMUIdx_SE10_0: 10431 case ARMMMUIdx_E20_0: 10432 case ARMMMUIdx_SE20_0: 10433 case ARMMMUIdx_Stage1_E0: 10434 case ARMMMUIdx_Stage1_SE0: 10435 case ARMMMUIdx_MUser: 10436 case ARMMMUIdx_MSUser: 10437 case ARMMMUIdx_MUserNegPri: 10438 case ARMMMUIdx_MSUserNegPri: 10439 return true; 10440 default: 10441 return false; 10442 case ARMMMUIdx_E10_0: 10443 case ARMMMUIdx_E10_1: 10444 case ARMMMUIdx_E10_1_PAN: 10445 g_assert_not_reached(); 10446 } 10447 } 10448 10449 /* Translate section/page access permissions to page 10450 * R/W protection flags 10451 * 10452 * @env: CPUARMState 10453 * @mmu_idx: MMU index indicating required translation regime 10454 * @ap: The 3-bit access permissions (AP[2:0]) 10455 * @domain_prot: The 2-bit domain access permissions 10456 */ 10457 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10458 int ap, int domain_prot) 10459 { 10460 bool is_user = regime_is_user(env, mmu_idx); 10461 10462 if (domain_prot == 3) { 10463 return PAGE_READ | PAGE_WRITE; 10464 } 10465 10466 switch (ap) { 10467 case 0: 10468 if (arm_feature(env, ARM_FEATURE_V7)) { 10469 return 0; 10470 } 10471 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10472 case SCTLR_S: 10473 return is_user ? 0 : PAGE_READ; 10474 case SCTLR_R: 10475 return PAGE_READ; 10476 default: 10477 return 0; 10478 } 10479 case 1: 10480 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10481 case 2: 10482 if (is_user) { 10483 return PAGE_READ; 10484 } else { 10485 return PAGE_READ | PAGE_WRITE; 10486 } 10487 case 3: 10488 return PAGE_READ | PAGE_WRITE; 10489 case 4: /* Reserved. */ 10490 return 0; 10491 case 5: 10492 return is_user ? 0 : PAGE_READ; 10493 case 6: 10494 return PAGE_READ; 10495 case 7: 10496 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10497 return 0; 10498 } 10499 return PAGE_READ; 10500 default: 10501 g_assert_not_reached(); 10502 } 10503 } 10504 10505 /* Translate section/page access permissions to page 10506 * R/W protection flags. 10507 * 10508 * @ap: The 2-bit simple AP (AP[2:1]) 10509 * @is_user: TRUE if accessing from PL0 10510 */ 10511 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10512 { 10513 switch (ap) { 10514 case 0: 10515 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10516 case 1: 10517 return PAGE_READ | PAGE_WRITE; 10518 case 2: 10519 return is_user ? 0 : PAGE_READ; 10520 case 3: 10521 return PAGE_READ; 10522 default: 10523 g_assert_not_reached(); 10524 } 10525 } 10526 10527 static inline int 10528 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10529 { 10530 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10531 } 10532 10533 /* Translate S2 section/page access permissions to protection flags 10534 * 10535 * @env: CPUARMState 10536 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10537 * @xn: XN (execute-never) bits 10538 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10539 */ 10540 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10541 { 10542 int prot = 0; 10543 10544 if (s2ap & 1) { 10545 prot |= PAGE_READ; 10546 } 10547 if (s2ap & 2) { 10548 prot |= PAGE_WRITE; 10549 } 10550 10551 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10552 switch (xn) { 10553 case 0: 10554 prot |= PAGE_EXEC; 10555 break; 10556 case 1: 10557 if (s1_is_el0) { 10558 prot |= PAGE_EXEC; 10559 } 10560 break; 10561 case 2: 10562 break; 10563 case 3: 10564 if (!s1_is_el0) { 10565 prot |= PAGE_EXEC; 10566 } 10567 break; 10568 default: 10569 g_assert_not_reached(); 10570 } 10571 } else { 10572 if (!extract32(xn, 1, 1)) { 10573 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10574 prot |= PAGE_EXEC; 10575 } 10576 } 10577 } 10578 return prot; 10579 } 10580 10581 /* Translate section/page access permissions to protection flags 10582 * 10583 * @env: CPUARMState 10584 * @mmu_idx: MMU index indicating required translation regime 10585 * @is_aa64: TRUE if AArch64 10586 * @ap: The 2-bit simple AP (AP[2:1]) 10587 * @ns: NS (non-secure) bit 10588 * @xn: XN (execute-never) bit 10589 * @pxn: PXN (privileged execute-never) bit 10590 */ 10591 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10592 int ap, int ns, int xn, int pxn) 10593 { 10594 bool is_user = regime_is_user(env, mmu_idx); 10595 int prot_rw, user_rw; 10596 bool have_wxn; 10597 int wxn = 0; 10598 10599 assert(mmu_idx != ARMMMUIdx_Stage2); 10600 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10601 10602 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10603 if (is_user) { 10604 prot_rw = user_rw; 10605 } else { 10606 if (user_rw && regime_is_pan(env, mmu_idx)) { 10607 /* PAN forbids data accesses but doesn't affect insn fetch */ 10608 prot_rw = 0; 10609 } else { 10610 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10611 } 10612 } 10613 10614 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10615 return prot_rw; 10616 } 10617 10618 /* TODO have_wxn should be replaced with 10619 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10620 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10621 * compatible processors have EL2, which is required for [U]WXN. 10622 */ 10623 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10624 10625 if (have_wxn) { 10626 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10627 } 10628 10629 if (is_aa64) { 10630 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10631 xn = pxn || (user_rw & PAGE_WRITE); 10632 } 10633 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10634 switch (regime_el(env, mmu_idx)) { 10635 case 1: 10636 case 3: 10637 if (is_user) { 10638 xn = xn || !(user_rw & PAGE_READ); 10639 } else { 10640 int uwxn = 0; 10641 if (have_wxn) { 10642 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10643 } 10644 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10645 (uwxn && (user_rw & PAGE_WRITE)); 10646 } 10647 break; 10648 case 2: 10649 break; 10650 } 10651 } else { 10652 xn = wxn = 0; 10653 } 10654 10655 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10656 return prot_rw; 10657 } 10658 return prot_rw | PAGE_EXEC; 10659 } 10660 10661 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10662 uint32_t *table, uint32_t address) 10663 { 10664 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10665 TCR *tcr = regime_tcr(env, mmu_idx); 10666 10667 if (address & tcr->mask) { 10668 if (tcr->raw_tcr & TTBCR_PD1) { 10669 /* Translation table walk disabled for TTBR1 */ 10670 return false; 10671 } 10672 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10673 } else { 10674 if (tcr->raw_tcr & TTBCR_PD0) { 10675 /* Translation table walk disabled for TTBR0 */ 10676 return false; 10677 } 10678 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10679 } 10680 *table |= (address >> 18) & 0x3ffc; 10681 return true; 10682 } 10683 10684 /* Translate a S1 pagetable walk through S2 if needed. */ 10685 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10686 hwaddr addr, bool *is_secure, 10687 ARMMMUFaultInfo *fi) 10688 { 10689 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10690 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10691 target_ulong s2size; 10692 hwaddr s2pa; 10693 int s2prot; 10694 int ret; 10695 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10696 : ARMMMUIdx_Stage2; 10697 ARMCacheAttrs cacheattrs = {}; 10698 MemTxAttrs txattrs = {}; 10699 10700 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10701 &s2pa, &txattrs, &s2prot, &s2size, fi, 10702 &cacheattrs); 10703 if (ret) { 10704 assert(fi->type != ARMFault_None); 10705 fi->s2addr = addr; 10706 fi->stage2 = true; 10707 fi->s1ptw = true; 10708 fi->s1ns = !*is_secure; 10709 return ~0; 10710 } 10711 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10712 (cacheattrs.attrs & 0xf0) == 0) { 10713 /* 10714 * PTW set and S1 walk touched S2 Device memory: 10715 * generate Permission fault. 10716 */ 10717 fi->type = ARMFault_Permission; 10718 fi->s2addr = addr; 10719 fi->stage2 = true; 10720 fi->s1ptw = true; 10721 fi->s1ns = !*is_secure; 10722 return ~0; 10723 } 10724 10725 if (arm_is_secure_below_el3(env)) { 10726 /* Check if page table walk is to secure or non-secure PA space. */ 10727 if (*is_secure) { 10728 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10729 } else { 10730 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10731 } 10732 } else { 10733 assert(!*is_secure); 10734 } 10735 10736 addr = s2pa; 10737 } 10738 return addr; 10739 } 10740 10741 /* All loads done in the course of a page table walk go through here. */ 10742 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10743 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10744 { 10745 ARMCPU *cpu = ARM_CPU(cs); 10746 CPUARMState *env = &cpu->env; 10747 MemTxAttrs attrs = {}; 10748 MemTxResult result = MEMTX_OK; 10749 AddressSpace *as; 10750 uint32_t data; 10751 10752 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10753 attrs.secure = is_secure; 10754 as = arm_addressspace(cs, attrs); 10755 if (fi->s1ptw) { 10756 return 0; 10757 } 10758 if (regime_translation_big_endian(env, mmu_idx)) { 10759 data = address_space_ldl_be(as, addr, attrs, &result); 10760 } else { 10761 data = address_space_ldl_le(as, addr, attrs, &result); 10762 } 10763 if (result == MEMTX_OK) { 10764 return data; 10765 } 10766 fi->type = ARMFault_SyncExternalOnWalk; 10767 fi->ea = arm_extabort_type(result); 10768 return 0; 10769 } 10770 10771 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10772 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10773 { 10774 ARMCPU *cpu = ARM_CPU(cs); 10775 CPUARMState *env = &cpu->env; 10776 MemTxAttrs attrs = {}; 10777 MemTxResult result = MEMTX_OK; 10778 AddressSpace *as; 10779 uint64_t data; 10780 10781 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10782 attrs.secure = is_secure; 10783 as = arm_addressspace(cs, attrs); 10784 if (fi->s1ptw) { 10785 return 0; 10786 } 10787 if (regime_translation_big_endian(env, mmu_idx)) { 10788 data = address_space_ldq_be(as, addr, attrs, &result); 10789 } else { 10790 data = address_space_ldq_le(as, addr, attrs, &result); 10791 } 10792 if (result == MEMTX_OK) { 10793 return data; 10794 } 10795 fi->type = ARMFault_SyncExternalOnWalk; 10796 fi->ea = arm_extabort_type(result); 10797 return 0; 10798 } 10799 10800 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10801 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10802 hwaddr *phys_ptr, int *prot, 10803 target_ulong *page_size, 10804 ARMMMUFaultInfo *fi) 10805 { 10806 CPUState *cs = env_cpu(env); 10807 int level = 1; 10808 uint32_t table; 10809 uint32_t desc; 10810 int type; 10811 int ap; 10812 int domain = 0; 10813 int domain_prot; 10814 hwaddr phys_addr; 10815 uint32_t dacr; 10816 10817 /* Pagetable walk. */ 10818 /* Lookup l1 descriptor. */ 10819 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10820 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10821 fi->type = ARMFault_Translation; 10822 goto do_fault; 10823 } 10824 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10825 mmu_idx, fi); 10826 if (fi->type != ARMFault_None) { 10827 goto do_fault; 10828 } 10829 type = (desc & 3); 10830 domain = (desc >> 5) & 0x0f; 10831 if (regime_el(env, mmu_idx) == 1) { 10832 dacr = env->cp15.dacr_ns; 10833 } else { 10834 dacr = env->cp15.dacr_s; 10835 } 10836 domain_prot = (dacr >> (domain * 2)) & 3; 10837 if (type == 0) { 10838 /* Section translation fault. */ 10839 fi->type = ARMFault_Translation; 10840 goto do_fault; 10841 } 10842 if (type != 2) { 10843 level = 2; 10844 } 10845 if (domain_prot == 0 || domain_prot == 2) { 10846 fi->type = ARMFault_Domain; 10847 goto do_fault; 10848 } 10849 if (type == 2) { 10850 /* 1Mb section. */ 10851 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10852 ap = (desc >> 10) & 3; 10853 *page_size = 1024 * 1024; 10854 } else { 10855 /* Lookup l2 entry. */ 10856 if (type == 1) { 10857 /* Coarse pagetable. */ 10858 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10859 } else { 10860 /* Fine pagetable. */ 10861 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10862 } 10863 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10864 mmu_idx, fi); 10865 if (fi->type != ARMFault_None) { 10866 goto do_fault; 10867 } 10868 switch (desc & 3) { 10869 case 0: /* Page translation fault. */ 10870 fi->type = ARMFault_Translation; 10871 goto do_fault; 10872 case 1: /* 64k page. */ 10873 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10874 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10875 *page_size = 0x10000; 10876 break; 10877 case 2: /* 4k page. */ 10878 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10879 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10880 *page_size = 0x1000; 10881 break; 10882 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10883 if (type == 1) { 10884 /* ARMv6/XScale extended small page format */ 10885 if (arm_feature(env, ARM_FEATURE_XSCALE) 10886 || arm_feature(env, ARM_FEATURE_V6)) { 10887 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10888 *page_size = 0x1000; 10889 } else { 10890 /* UNPREDICTABLE in ARMv5; we choose to take a 10891 * page translation fault. 10892 */ 10893 fi->type = ARMFault_Translation; 10894 goto do_fault; 10895 } 10896 } else { 10897 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10898 *page_size = 0x400; 10899 } 10900 ap = (desc >> 4) & 3; 10901 break; 10902 default: 10903 /* Never happens, but compiler isn't smart enough to tell. */ 10904 abort(); 10905 } 10906 } 10907 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10908 *prot |= *prot ? PAGE_EXEC : 0; 10909 if (!(*prot & (1 << access_type))) { 10910 /* Access permission fault. */ 10911 fi->type = ARMFault_Permission; 10912 goto do_fault; 10913 } 10914 *phys_ptr = phys_addr; 10915 return false; 10916 do_fault: 10917 fi->domain = domain; 10918 fi->level = level; 10919 return true; 10920 } 10921 10922 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10923 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10924 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10925 target_ulong *page_size, ARMMMUFaultInfo *fi) 10926 { 10927 CPUState *cs = env_cpu(env); 10928 ARMCPU *cpu = env_archcpu(env); 10929 int level = 1; 10930 uint32_t table; 10931 uint32_t desc; 10932 uint32_t xn; 10933 uint32_t pxn = 0; 10934 int type; 10935 int ap; 10936 int domain = 0; 10937 int domain_prot; 10938 hwaddr phys_addr; 10939 uint32_t dacr; 10940 bool ns; 10941 10942 /* Pagetable walk. */ 10943 /* Lookup l1 descriptor. */ 10944 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10945 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10946 fi->type = ARMFault_Translation; 10947 goto do_fault; 10948 } 10949 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10950 mmu_idx, fi); 10951 if (fi->type != ARMFault_None) { 10952 goto do_fault; 10953 } 10954 type = (desc & 3); 10955 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10956 /* Section translation fault, or attempt to use the encoding 10957 * which is Reserved on implementations without PXN. 10958 */ 10959 fi->type = ARMFault_Translation; 10960 goto do_fault; 10961 } 10962 if ((type == 1) || !(desc & (1 << 18))) { 10963 /* Page or Section. */ 10964 domain = (desc >> 5) & 0x0f; 10965 } 10966 if (regime_el(env, mmu_idx) == 1) { 10967 dacr = env->cp15.dacr_ns; 10968 } else { 10969 dacr = env->cp15.dacr_s; 10970 } 10971 if (type == 1) { 10972 level = 2; 10973 } 10974 domain_prot = (dacr >> (domain * 2)) & 3; 10975 if (domain_prot == 0 || domain_prot == 2) { 10976 /* Section or Page domain fault */ 10977 fi->type = ARMFault_Domain; 10978 goto do_fault; 10979 } 10980 if (type != 1) { 10981 if (desc & (1 << 18)) { 10982 /* Supersection. */ 10983 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10984 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10985 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10986 *page_size = 0x1000000; 10987 } else { 10988 /* Section. */ 10989 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10990 *page_size = 0x100000; 10991 } 10992 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10993 xn = desc & (1 << 4); 10994 pxn = desc & 1; 10995 ns = extract32(desc, 19, 1); 10996 } else { 10997 if (cpu_isar_feature(aa32_pxn, cpu)) { 10998 pxn = (desc >> 2) & 1; 10999 } 11000 ns = extract32(desc, 3, 1); 11001 /* Lookup l2 entry. */ 11002 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11003 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11004 mmu_idx, fi); 11005 if (fi->type != ARMFault_None) { 11006 goto do_fault; 11007 } 11008 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11009 switch (desc & 3) { 11010 case 0: /* Page translation fault. */ 11011 fi->type = ARMFault_Translation; 11012 goto do_fault; 11013 case 1: /* 64k page. */ 11014 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11015 xn = desc & (1 << 15); 11016 *page_size = 0x10000; 11017 break; 11018 case 2: case 3: /* 4k page. */ 11019 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11020 xn = desc & 1; 11021 *page_size = 0x1000; 11022 break; 11023 default: 11024 /* Never happens, but compiler isn't smart enough to tell. */ 11025 abort(); 11026 } 11027 } 11028 if (domain_prot == 3) { 11029 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11030 } else { 11031 if (pxn && !regime_is_user(env, mmu_idx)) { 11032 xn = 1; 11033 } 11034 if (xn && access_type == MMU_INST_FETCH) { 11035 fi->type = ARMFault_Permission; 11036 goto do_fault; 11037 } 11038 11039 if (arm_feature(env, ARM_FEATURE_V6K) && 11040 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11041 /* The simplified model uses AP[0] as an access control bit. */ 11042 if ((ap & 1) == 0) { 11043 /* Access flag fault. */ 11044 fi->type = ARMFault_AccessFlag; 11045 goto do_fault; 11046 } 11047 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11048 } else { 11049 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11050 } 11051 if (*prot && !xn) { 11052 *prot |= PAGE_EXEC; 11053 } 11054 if (!(*prot & (1 << access_type))) { 11055 /* Access permission fault. */ 11056 fi->type = ARMFault_Permission; 11057 goto do_fault; 11058 } 11059 } 11060 if (ns) { 11061 /* The NS bit will (as required by the architecture) have no effect if 11062 * the CPU doesn't support TZ or this is a non-secure translation 11063 * regime, because the attribute will already be non-secure. 11064 */ 11065 attrs->secure = false; 11066 } 11067 *phys_ptr = phys_addr; 11068 return false; 11069 do_fault: 11070 fi->domain = domain; 11071 fi->level = level; 11072 return true; 11073 } 11074 11075 /* 11076 * check_s2_mmu_setup 11077 * @cpu: ARMCPU 11078 * @is_aa64: True if the translation regime is in AArch64 state 11079 * @startlevel: Suggested starting level 11080 * @inputsize: Bitsize of IPAs 11081 * @stride: Page-table stride (See the ARM ARM) 11082 * 11083 * Returns true if the suggested S2 translation parameters are OK and 11084 * false otherwise. 11085 */ 11086 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11087 int inputsize, int stride, int outputsize) 11088 { 11089 const int grainsize = stride + 3; 11090 int startsizecheck; 11091 11092 /* 11093 * Negative levels are usually not allowed... 11094 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11095 * begins with level -1. Note that previous feature tests will have 11096 * eliminated this combination if it is not enabled. 11097 */ 11098 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11099 return false; 11100 } 11101 11102 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11103 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11104 return false; 11105 } 11106 11107 if (is_aa64) { 11108 switch (stride) { 11109 case 13: /* 64KB Pages. */ 11110 if (level == 0 || (level == 1 && outputsize <= 42)) { 11111 return false; 11112 } 11113 break; 11114 case 11: /* 16KB Pages. */ 11115 if (level == 0 || (level == 1 && outputsize <= 40)) { 11116 return false; 11117 } 11118 break; 11119 case 9: /* 4KB Pages. */ 11120 if (level == 0 && outputsize <= 42) { 11121 return false; 11122 } 11123 break; 11124 default: 11125 g_assert_not_reached(); 11126 } 11127 11128 /* Inputsize checks. */ 11129 if (inputsize > outputsize && 11130 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11131 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11132 return false; 11133 } 11134 } else { 11135 /* AArch32 only supports 4KB pages. Assert on that. */ 11136 assert(stride == 9); 11137 11138 if (level == 0) { 11139 return false; 11140 } 11141 } 11142 return true; 11143 } 11144 11145 /* Translate from the 4-bit stage 2 representation of 11146 * memory attributes (without cache-allocation hints) to 11147 * the 8-bit representation of the stage 1 MAIR registers 11148 * (which includes allocation hints). 11149 * 11150 * ref: shared/translation/attrs/S2AttrDecode() 11151 * .../S2ConvertAttrsHints() 11152 */ 11153 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11154 { 11155 uint8_t hiattr = extract32(s2attrs, 2, 2); 11156 uint8_t loattr = extract32(s2attrs, 0, 2); 11157 uint8_t hihint = 0, lohint = 0; 11158 11159 if (hiattr != 0) { /* normal memory */ 11160 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11161 hiattr = loattr = 1; /* non-cacheable */ 11162 } else { 11163 if (hiattr != 1) { /* Write-through or write-back */ 11164 hihint = 3; /* RW allocate */ 11165 } 11166 if (loattr != 1) { /* Write-through or write-back */ 11167 lohint = 3; /* RW allocate */ 11168 } 11169 } 11170 } 11171 11172 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11173 } 11174 #endif /* !CONFIG_USER_ONLY */ 11175 11176 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11177 static const uint8_t pamax_map[] = { 11178 [0] = 32, 11179 [1] = 36, 11180 [2] = 40, 11181 [3] = 42, 11182 [4] = 44, 11183 [5] = 48, 11184 [6] = 52, 11185 }; 11186 11187 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11188 unsigned int arm_pamax(ARMCPU *cpu) 11189 { 11190 unsigned int parange = 11191 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11192 11193 /* 11194 * id_aa64mmfr0 is a read-only register so values outside of the 11195 * supported mappings can be considered an implementation error. 11196 */ 11197 assert(parange < ARRAY_SIZE(pamax_map)); 11198 return pamax_map[parange]; 11199 } 11200 11201 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11202 { 11203 if (regime_has_2_ranges(mmu_idx)) { 11204 return extract64(tcr, 37, 2); 11205 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11206 return 0; /* VTCR_EL2 */ 11207 } else { 11208 /* Replicate the single TBI bit so we always have 2 bits. */ 11209 return extract32(tcr, 20, 1) * 3; 11210 } 11211 } 11212 11213 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11214 { 11215 if (regime_has_2_ranges(mmu_idx)) { 11216 return extract64(tcr, 51, 2); 11217 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11218 return 0; /* VTCR_EL2 */ 11219 } else { 11220 /* Replicate the single TBID bit so we always have 2 bits. */ 11221 return extract32(tcr, 29, 1) * 3; 11222 } 11223 } 11224 11225 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11226 { 11227 if (regime_has_2_ranges(mmu_idx)) { 11228 return extract64(tcr, 57, 2); 11229 } else { 11230 /* Replicate the single TCMA bit so we always have 2 bits. */ 11231 return extract32(tcr, 30, 1) * 3; 11232 } 11233 } 11234 11235 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11236 ARMMMUIdx mmu_idx, bool data) 11237 { 11238 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11239 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11240 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11241 ARMCPU *cpu = env_archcpu(env); 11242 11243 if (!regime_has_2_ranges(mmu_idx)) { 11244 select = 0; 11245 tsz = extract32(tcr, 0, 6); 11246 using64k = extract32(tcr, 14, 1); 11247 using16k = extract32(tcr, 15, 1); 11248 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11249 /* VTCR_EL2 */ 11250 hpd = false; 11251 } else { 11252 hpd = extract32(tcr, 24, 1); 11253 } 11254 epd = false; 11255 sh = extract32(tcr, 12, 2); 11256 ps = extract32(tcr, 16, 3); 11257 ds = extract64(tcr, 32, 1); 11258 } else { 11259 /* 11260 * Bit 55 is always between the two regions, and is canonical for 11261 * determining if address tagging is enabled. 11262 */ 11263 select = extract64(va, 55, 1); 11264 if (!select) { 11265 tsz = extract32(tcr, 0, 6); 11266 epd = extract32(tcr, 7, 1); 11267 sh = extract32(tcr, 12, 2); 11268 using64k = extract32(tcr, 14, 1); 11269 using16k = extract32(tcr, 15, 1); 11270 hpd = extract64(tcr, 41, 1); 11271 } else { 11272 int tg = extract32(tcr, 30, 2); 11273 using16k = tg == 1; 11274 using64k = tg == 3; 11275 tsz = extract32(tcr, 16, 6); 11276 epd = extract32(tcr, 23, 1); 11277 sh = extract32(tcr, 28, 2); 11278 hpd = extract64(tcr, 42, 1); 11279 } 11280 ps = extract64(tcr, 32, 3); 11281 ds = extract64(tcr, 59, 1); 11282 } 11283 11284 if (cpu_isar_feature(aa64_st, cpu)) { 11285 max_tsz = 48 - using64k; 11286 } else { 11287 max_tsz = 39; 11288 } 11289 11290 /* 11291 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11292 * adjust the effective value of DS, as documented. 11293 */ 11294 min_tsz = 16; 11295 if (using64k) { 11296 if (cpu_isar_feature(aa64_lva, cpu)) { 11297 min_tsz = 12; 11298 } 11299 ds = false; 11300 } else if (ds) { 11301 switch (mmu_idx) { 11302 case ARMMMUIdx_Stage2: 11303 case ARMMMUIdx_Stage2_S: 11304 if (using16k) { 11305 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11306 } else { 11307 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11308 } 11309 break; 11310 default: 11311 if (using16k) { 11312 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11313 } else { 11314 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11315 } 11316 break; 11317 } 11318 if (ds) { 11319 min_tsz = 12; 11320 } 11321 } 11322 11323 if (tsz > max_tsz) { 11324 tsz = max_tsz; 11325 tsz_oob = true; 11326 } else if (tsz < min_tsz) { 11327 tsz = min_tsz; 11328 tsz_oob = true; 11329 } else { 11330 tsz_oob = false; 11331 } 11332 11333 /* Present TBI as a composite with TBID. */ 11334 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11335 if (!data) { 11336 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11337 } 11338 tbi = (tbi >> select) & 1; 11339 11340 return (ARMVAParameters) { 11341 .tsz = tsz, 11342 .ps = ps, 11343 .sh = sh, 11344 .select = select, 11345 .tbi = tbi, 11346 .epd = epd, 11347 .hpd = hpd, 11348 .using16k = using16k, 11349 .using64k = using64k, 11350 .tsz_oob = tsz_oob, 11351 .ds = ds, 11352 }; 11353 } 11354 11355 #ifndef CONFIG_USER_ONLY 11356 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11357 ARMMMUIdx mmu_idx) 11358 { 11359 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11360 uint32_t el = regime_el(env, mmu_idx); 11361 int select, tsz; 11362 bool epd, hpd; 11363 11364 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11365 11366 if (mmu_idx == ARMMMUIdx_Stage2) { 11367 /* VTCR */ 11368 bool sext = extract32(tcr, 4, 1); 11369 bool sign = extract32(tcr, 3, 1); 11370 11371 /* 11372 * If the sign-extend bit is not the same as t0sz[3], the result 11373 * is unpredictable. Flag this as a guest error. 11374 */ 11375 if (sign != sext) { 11376 qemu_log_mask(LOG_GUEST_ERROR, 11377 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11378 } 11379 tsz = sextract32(tcr, 0, 4) + 8; 11380 select = 0; 11381 hpd = false; 11382 epd = false; 11383 } else if (el == 2) { 11384 /* HTCR */ 11385 tsz = extract32(tcr, 0, 3); 11386 select = 0; 11387 hpd = extract64(tcr, 24, 1); 11388 epd = false; 11389 } else { 11390 int t0sz = extract32(tcr, 0, 3); 11391 int t1sz = extract32(tcr, 16, 3); 11392 11393 if (t1sz == 0) { 11394 select = va > (0xffffffffu >> t0sz); 11395 } else { 11396 /* Note that we will detect errors later. */ 11397 select = va >= ~(0xffffffffu >> t1sz); 11398 } 11399 if (!select) { 11400 tsz = t0sz; 11401 epd = extract32(tcr, 7, 1); 11402 hpd = extract64(tcr, 41, 1); 11403 } else { 11404 tsz = t1sz; 11405 epd = extract32(tcr, 23, 1); 11406 hpd = extract64(tcr, 42, 1); 11407 } 11408 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11409 hpd &= extract32(tcr, 6, 1); 11410 } 11411 11412 return (ARMVAParameters) { 11413 .tsz = tsz, 11414 .select = select, 11415 .epd = epd, 11416 .hpd = hpd, 11417 }; 11418 } 11419 11420 /** 11421 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11422 * 11423 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11424 * prot and page_size may not be filled in, and the populated fsr value provides 11425 * information on why the translation aborted, in the format of a long-format 11426 * DFSR/IFSR fault register, with the following caveats: 11427 * * the WnR bit is never set (the caller must do this). 11428 * 11429 * @env: CPUARMState 11430 * @address: virtual address to get physical address for 11431 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11432 * @mmu_idx: MMU index indicating required translation regime 11433 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11434 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11435 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11436 * @phys_ptr: set to the physical address corresponding to the virtual address 11437 * @attrs: set to the memory transaction attributes to use 11438 * @prot: set to the permissions for the page containing phys_ptr 11439 * @page_size_ptr: set to the size of the page containing phys_ptr 11440 * @fi: set to fault info if the translation fails 11441 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11442 */ 11443 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11444 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11445 bool s1_is_el0, 11446 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11447 target_ulong *page_size_ptr, 11448 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11449 { 11450 ARMCPU *cpu = env_archcpu(env); 11451 CPUState *cs = CPU(cpu); 11452 /* Read an LPAE long-descriptor translation table. */ 11453 ARMFaultType fault_type = ARMFault_Translation; 11454 uint32_t level; 11455 ARMVAParameters param; 11456 uint64_t ttbr; 11457 hwaddr descaddr, indexmask, indexmask_grainsize; 11458 uint32_t tableattrs; 11459 target_ulong page_size; 11460 uint32_t attrs; 11461 int32_t stride; 11462 int addrsize, inputsize, outputsize; 11463 TCR *tcr = regime_tcr(env, mmu_idx); 11464 int ap, ns, xn, pxn; 11465 uint32_t el = regime_el(env, mmu_idx); 11466 uint64_t descaddrmask; 11467 bool aarch64 = arm_el_is_aa64(env, el); 11468 bool guarded = false; 11469 11470 /* TODO: This code does not support shareability levels. */ 11471 if (aarch64) { 11472 int ps; 11473 11474 param = aa64_va_parameters(env, address, mmu_idx, 11475 access_type != MMU_INST_FETCH); 11476 level = 0; 11477 11478 /* 11479 * If TxSZ is programmed to a value larger than the maximum, 11480 * or smaller than the effective minimum, it is IMPLEMENTATION 11481 * DEFINED whether we behave as if the field were programmed 11482 * within bounds, or if a level 0 Translation fault is generated. 11483 * 11484 * With FEAT_LVA, fault on less than minimum becomes required, 11485 * so our choice is to always raise the fault. 11486 */ 11487 if (param.tsz_oob) { 11488 fault_type = ARMFault_Translation; 11489 goto do_fault; 11490 } 11491 11492 addrsize = 64 - 8 * param.tbi; 11493 inputsize = 64 - param.tsz; 11494 11495 /* 11496 * Bound PS by PARANGE to find the effective output address size. 11497 * ID_AA64MMFR0 is a read-only register so values outside of the 11498 * supported mappings can be considered an implementation error. 11499 */ 11500 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11501 ps = MIN(ps, param.ps); 11502 assert(ps < ARRAY_SIZE(pamax_map)); 11503 outputsize = pamax_map[ps]; 11504 } else { 11505 param = aa32_va_parameters(env, address, mmu_idx); 11506 level = 1; 11507 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11508 inputsize = addrsize - param.tsz; 11509 outputsize = 40; 11510 } 11511 11512 /* 11513 * We determined the region when collecting the parameters, but we 11514 * have not yet validated that the address is valid for the region. 11515 * Extract the top bits and verify that they all match select. 11516 * 11517 * For aa32, if inputsize == addrsize, then we have selected the 11518 * region by exclusion in aa32_va_parameters and there is no more 11519 * validation to do here. 11520 */ 11521 if (inputsize < addrsize) { 11522 target_ulong top_bits = sextract64(address, inputsize, 11523 addrsize - inputsize); 11524 if (-top_bits != param.select) { 11525 /* The gap between the two regions is a Translation fault */ 11526 fault_type = ARMFault_Translation; 11527 goto do_fault; 11528 } 11529 } 11530 11531 if (param.using64k) { 11532 stride = 13; 11533 } else if (param.using16k) { 11534 stride = 11; 11535 } else { 11536 stride = 9; 11537 } 11538 11539 /* Note that QEMU ignores shareability and cacheability attributes, 11540 * so we don't need to do anything with the SH, ORGN, IRGN fields 11541 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11542 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11543 * implement any ASID-like capability so we can ignore it (instead 11544 * we will always flush the TLB any time the ASID is changed). 11545 */ 11546 ttbr = regime_ttbr(env, mmu_idx, param.select); 11547 11548 /* Here we should have set up all the parameters for the translation: 11549 * inputsize, ttbr, epd, stride, tbi 11550 */ 11551 11552 if (param.epd) { 11553 /* Translation table walk disabled => Translation fault on TLB miss 11554 * Note: This is always 0 on 64-bit EL2 and EL3. 11555 */ 11556 goto do_fault; 11557 } 11558 11559 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11560 /* The starting level depends on the virtual address size (which can 11561 * be up to 48 bits) and the translation granule size. It indicates 11562 * the number of strides (stride bits at a time) needed to 11563 * consume the bits of the input address. In the pseudocode this is: 11564 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11565 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11566 * our 'stride + 3' and 'stride' is our 'stride'. 11567 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11568 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11569 * = 4 - (inputsize - 4) / stride; 11570 */ 11571 level = 4 - (inputsize - 4) / stride; 11572 } else { 11573 /* For stage 2 translations the starting level is specified by the 11574 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11575 */ 11576 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11577 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11578 uint32_t startlevel; 11579 bool ok; 11580 11581 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11582 if (param.ds && stride == 9 && sl2) { 11583 if (sl0 != 0) { 11584 level = 0; 11585 fault_type = ARMFault_Translation; 11586 goto do_fault; 11587 } 11588 startlevel = -1; 11589 } else if (!aarch64 || stride == 9) { 11590 /* AArch32 or 4KB pages */ 11591 startlevel = 2 - sl0; 11592 11593 if (cpu_isar_feature(aa64_st, cpu)) { 11594 startlevel &= 3; 11595 } 11596 } else { 11597 /* 16KB or 64KB pages */ 11598 startlevel = 3 - sl0; 11599 } 11600 11601 /* Check that the starting level is valid. */ 11602 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11603 inputsize, stride, outputsize); 11604 if (!ok) { 11605 fault_type = ARMFault_Translation; 11606 goto do_fault; 11607 } 11608 level = startlevel; 11609 } 11610 11611 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11612 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11613 11614 /* Now we can extract the actual base address from the TTBR */ 11615 descaddr = extract64(ttbr, 0, 48); 11616 11617 /* 11618 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11619 * 11620 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11621 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11622 * but we've just cleared the bits above 47, so simplify the test. 11623 */ 11624 if (outputsize > 48) { 11625 descaddr |= extract64(ttbr, 2, 4) << 48; 11626 } else if (descaddr >> outputsize) { 11627 level = 0; 11628 fault_type = ARMFault_AddressSize; 11629 goto do_fault; 11630 } 11631 11632 /* 11633 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11634 * and also to mask out CnP (bit 0) which could validly be non-zero. 11635 */ 11636 descaddr &= ~indexmask; 11637 11638 /* 11639 * For AArch32, the address field in the descriptor goes up to bit 39 11640 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11641 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11642 * bits as part of the address, which will be checked via outputsize. 11643 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11644 * the highest bits of a 52-bit output are placed elsewhere. 11645 */ 11646 if (param.ds) { 11647 descaddrmask = MAKE_64BIT_MASK(0, 50); 11648 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11649 descaddrmask = MAKE_64BIT_MASK(0, 48); 11650 } else { 11651 descaddrmask = MAKE_64BIT_MASK(0, 40); 11652 } 11653 descaddrmask &= ~indexmask_grainsize; 11654 11655 /* Secure accesses start with the page table in secure memory and 11656 * can be downgraded to non-secure at any step. Non-secure accesses 11657 * remain non-secure. We implement this by just ORing in the NSTable/NS 11658 * bits at each step. 11659 */ 11660 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11661 for (;;) { 11662 uint64_t descriptor; 11663 bool nstable; 11664 11665 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11666 descaddr &= ~7ULL; 11667 nstable = extract32(tableattrs, 4, 1); 11668 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11669 if (fi->type != ARMFault_None) { 11670 goto do_fault; 11671 } 11672 11673 if (!(descriptor & 1) || 11674 (!(descriptor & 2) && (level == 3))) { 11675 /* Invalid, or the Reserved level 3 encoding */ 11676 goto do_fault; 11677 } 11678 11679 descaddr = descriptor & descaddrmask; 11680 11681 /* 11682 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11683 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11684 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11685 * raise AddressSizeFault. 11686 */ 11687 if (outputsize > 48) { 11688 if (param.ds) { 11689 descaddr |= extract64(descriptor, 8, 2) << 50; 11690 } else { 11691 descaddr |= extract64(descriptor, 12, 4) << 48; 11692 } 11693 } else if (descaddr >> outputsize) { 11694 fault_type = ARMFault_AddressSize; 11695 goto do_fault; 11696 } 11697 11698 if ((descriptor & 2) && (level < 3)) { 11699 /* Table entry. The top five bits are attributes which may 11700 * propagate down through lower levels of the table (and 11701 * which are all arranged so that 0 means "no effect", so 11702 * we can gather them up by ORing in the bits at each level). 11703 */ 11704 tableattrs |= extract64(descriptor, 59, 5); 11705 level++; 11706 indexmask = indexmask_grainsize; 11707 continue; 11708 } 11709 /* Block entry at level 1 or 2, or page entry at level 3. 11710 * These are basically the same thing, although the number 11711 * of bits we pull in from the vaddr varies. 11712 */ 11713 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11714 descaddr |= (address & (page_size - 1)); 11715 /* Extract attributes from the descriptor */ 11716 attrs = extract64(descriptor, 2, 10) 11717 | (extract64(descriptor, 52, 12) << 10); 11718 11719 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11720 /* Stage 2 table descriptors do not include any attribute fields */ 11721 break; 11722 } 11723 /* Merge in attributes from table descriptors */ 11724 attrs |= nstable << 3; /* NS */ 11725 guarded = extract64(descriptor, 50, 1); /* GP */ 11726 if (param.hpd) { 11727 /* HPD disables all the table attributes except NSTable. */ 11728 break; 11729 } 11730 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11731 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11732 * means "force PL1 access only", which means forcing AP[1] to 0. 11733 */ 11734 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11735 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11736 break; 11737 } 11738 /* Here descaddr is the final physical address, and attributes 11739 * are all in attrs. 11740 */ 11741 fault_type = ARMFault_AccessFlag; 11742 if ((attrs & (1 << 8)) == 0) { 11743 /* Access flag */ 11744 goto do_fault; 11745 } 11746 11747 ap = extract32(attrs, 4, 2); 11748 11749 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11750 ns = mmu_idx == ARMMMUIdx_Stage2; 11751 xn = extract32(attrs, 11, 2); 11752 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11753 } else { 11754 ns = extract32(attrs, 3, 1); 11755 xn = extract32(attrs, 12, 1); 11756 pxn = extract32(attrs, 11, 1); 11757 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11758 } 11759 11760 fault_type = ARMFault_Permission; 11761 if (!(*prot & (1 << access_type))) { 11762 goto do_fault; 11763 } 11764 11765 if (ns) { 11766 /* The NS bit will (as required by the architecture) have no effect if 11767 * the CPU doesn't support TZ or this is a non-secure translation 11768 * regime, because the attribute will already be non-secure. 11769 */ 11770 txattrs->secure = false; 11771 } 11772 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11773 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11774 arm_tlb_bti_gp(txattrs) = true; 11775 } 11776 11777 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11778 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11779 } else { 11780 /* Index into MAIR registers for cache attributes */ 11781 uint8_t attrindx = extract32(attrs, 0, 3); 11782 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11783 assert(attrindx <= 7); 11784 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11785 } 11786 11787 /* 11788 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11789 * was re-purposed for output address bits. The SH attribute in 11790 * that case comes from TCR_ELx, which we extracted earlier. 11791 */ 11792 if (param.ds) { 11793 cacheattrs->shareability = param.sh; 11794 } else { 11795 cacheattrs->shareability = extract32(attrs, 6, 2); 11796 } 11797 11798 *phys_ptr = descaddr; 11799 *page_size_ptr = page_size; 11800 return false; 11801 11802 do_fault: 11803 fi->type = fault_type; 11804 fi->level = level; 11805 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11806 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11807 mmu_idx == ARMMMUIdx_Stage2_S); 11808 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11809 return true; 11810 } 11811 11812 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11813 ARMMMUIdx mmu_idx, 11814 int32_t address, int *prot) 11815 { 11816 if (!arm_feature(env, ARM_FEATURE_M)) { 11817 *prot = PAGE_READ | PAGE_WRITE; 11818 switch (address) { 11819 case 0xF0000000 ... 0xFFFFFFFF: 11820 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11821 /* hivecs execing is ok */ 11822 *prot |= PAGE_EXEC; 11823 } 11824 break; 11825 case 0x00000000 ... 0x7FFFFFFF: 11826 *prot |= PAGE_EXEC; 11827 break; 11828 } 11829 } else { 11830 /* Default system address map for M profile cores. 11831 * The architecture specifies which regions are execute-never; 11832 * at the MPU level no other checks are defined. 11833 */ 11834 switch (address) { 11835 case 0x00000000 ... 0x1fffffff: /* ROM */ 11836 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11837 case 0x60000000 ... 0x7fffffff: /* RAM */ 11838 case 0x80000000 ... 0x9fffffff: /* RAM */ 11839 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11840 break; 11841 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11842 case 0xa0000000 ... 0xbfffffff: /* Device */ 11843 case 0xc0000000 ... 0xdfffffff: /* Device */ 11844 case 0xe0000000 ... 0xffffffff: /* System */ 11845 *prot = PAGE_READ | PAGE_WRITE; 11846 break; 11847 default: 11848 g_assert_not_reached(); 11849 } 11850 } 11851 } 11852 11853 static bool pmsav7_use_background_region(ARMCPU *cpu, 11854 ARMMMUIdx mmu_idx, bool is_user) 11855 { 11856 /* Return true if we should use the default memory map as a 11857 * "background" region if there are no hits against any MPU regions. 11858 */ 11859 CPUARMState *env = &cpu->env; 11860 11861 if (is_user) { 11862 return false; 11863 } 11864 11865 if (arm_feature(env, ARM_FEATURE_M)) { 11866 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11867 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11868 } else { 11869 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11870 } 11871 } 11872 11873 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11874 { 11875 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11876 return arm_feature(env, ARM_FEATURE_M) && 11877 extract32(address, 20, 12) == 0xe00; 11878 } 11879 11880 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11881 { 11882 /* True if address is in the M profile system region 11883 * 0xe0000000 - 0xffffffff 11884 */ 11885 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11886 } 11887 11888 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11889 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11890 hwaddr *phys_ptr, int *prot, 11891 target_ulong *page_size, 11892 ARMMMUFaultInfo *fi) 11893 { 11894 ARMCPU *cpu = env_archcpu(env); 11895 int n; 11896 bool is_user = regime_is_user(env, mmu_idx); 11897 11898 *phys_ptr = address; 11899 *page_size = TARGET_PAGE_SIZE; 11900 *prot = 0; 11901 11902 if (regime_translation_disabled(env, mmu_idx) || 11903 m_is_ppb_region(env, address)) { 11904 /* MPU disabled or M profile PPB access: use default memory map. 11905 * The other case which uses the default memory map in the 11906 * v7M ARM ARM pseudocode is exception vector reads from the vector 11907 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11908 * which always does a direct read using address_space_ldl(), rather 11909 * than going via this function, so we don't need to check that here. 11910 */ 11911 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11912 } else { /* MPU enabled */ 11913 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11914 /* region search */ 11915 uint32_t base = env->pmsav7.drbar[n]; 11916 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11917 uint32_t rmask; 11918 bool srdis = false; 11919 11920 if (!(env->pmsav7.drsr[n] & 0x1)) { 11921 continue; 11922 } 11923 11924 if (!rsize) { 11925 qemu_log_mask(LOG_GUEST_ERROR, 11926 "DRSR[%d]: Rsize field cannot be 0\n", n); 11927 continue; 11928 } 11929 rsize++; 11930 rmask = (1ull << rsize) - 1; 11931 11932 if (base & rmask) { 11933 qemu_log_mask(LOG_GUEST_ERROR, 11934 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11935 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11936 n, base, rmask); 11937 continue; 11938 } 11939 11940 if (address < base || address > base + rmask) { 11941 /* 11942 * Address not in this region. We must check whether the 11943 * region covers addresses in the same page as our address. 11944 * In that case we must not report a size that covers the 11945 * whole page for a subsequent hit against a different MPU 11946 * region or the background region, because it would result in 11947 * incorrect TLB hits for subsequent accesses to addresses that 11948 * are in this MPU region. 11949 */ 11950 if (ranges_overlap(base, rmask, 11951 address & TARGET_PAGE_MASK, 11952 TARGET_PAGE_SIZE)) { 11953 *page_size = 1; 11954 } 11955 continue; 11956 } 11957 11958 /* Region matched */ 11959 11960 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11961 int i, snd; 11962 uint32_t srdis_mask; 11963 11964 rsize -= 3; /* sub region size (power of 2) */ 11965 snd = ((address - base) >> rsize) & 0x7; 11966 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11967 11968 srdis_mask = srdis ? 0x3 : 0x0; 11969 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11970 /* This will check in groups of 2, 4 and then 8, whether 11971 * the subregion bits are consistent. rsize is incremented 11972 * back up to give the region size, considering consistent 11973 * adjacent subregions as one region. Stop testing if rsize 11974 * is already big enough for an entire QEMU page. 11975 */ 11976 int snd_rounded = snd & ~(i - 1); 11977 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11978 snd_rounded + 8, i); 11979 if (srdis_mask ^ srdis_multi) { 11980 break; 11981 } 11982 srdis_mask = (srdis_mask << i) | srdis_mask; 11983 rsize++; 11984 } 11985 } 11986 if (srdis) { 11987 continue; 11988 } 11989 if (rsize < TARGET_PAGE_BITS) { 11990 *page_size = 1 << rsize; 11991 } 11992 break; 11993 } 11994 11995 if (n == -1) { /* no hits */ 11996 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11997 /* background fault */ 11998 fi->type = ARMFault_Background; 11999 return true; 12000 } 12001 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12002 } else { /* a MPU hit! */ 12003 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12004 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12005 12006 if (m_is_system_region(env, address)) { 12007 /* System space is always execute never */ 12008 xn = 1; 12009 } 12010 12011 if (is_user) { /* User mode AP bit decoding */ 12012 switch (ap) { 12013 case 0: 12014 case 1: 12015 case 5: 12016 break; /* no access */ 12017 case 3: 12018 *prot |= PAGE_WRITE; 12019 /* fall through */ 12020 case 2: 12021 case 6: 12022 *prot |= PAGE_READ | PAGE_EXEC; 12023 break; 12024 case 7: 12025 /* for v7M, same as 6; for R profile a reserved value */ 12026 if (arm_feature(env, ARM_FEATURE_M)) { 12027 *prot |= PAGE_READ | PAGE_EXEC; 12028 break; 12029 } 12030 /* fall through */ 12031 default: 12032 qemu_log_mask(LOG_GUEST_ERROR, 12033 "DRACR[%d]: Bad value for AP bits: 0x%" 12034 PRIx32 "\n", n, ap); 12035 } 12036 } else { /* Priv. mode AP bits decoding */ 12037 switch (ap) { 12038 case 0: 12039 break; /* no access */ 12040 case 1: 12041 case 2: 12042 case 3: 12043 *prot |= PAGE_WRITE; 12044 /* fall through */ 12045 case 5: 12046 case 6: 12047 *prot |= PAGE_READ | PAGE_EXEC; 12048 break; 12049 case 7: 12050 /* for v7M, same as 6; for R profile a reserved value */ 12051 if (arm_feature(env, ARM_FEATURE_M)) { 12052 *prot |= PAGE_READ | PAGE_EXEC; 12053 break; 12054 } 12055 /* fall through */ 12056 default: 12057 qemu_log_mask(LOG_GUEST_ERROR, 12058 "DRACR[%d]: Bad value for AP bits: 0x%" 12059 PRIx32 "\n", n, ap); 12060 } 12061 } 12062 12063 /* execute never */ 12064 if (xn) { 12065 *prot &= ~PAGE_EXEC; 12066 } 12067 } 12068 } 12069 12070 fi->type = ARMFault_Permission; 12071 fi->level = 1; 12072 return !(*prot & (1 << access_type)); 12073 } 12074 12075 static bool v8m_is_sau_exempt(CPUARMState *env, 12076 uint32_t address, MMUAccessType access_type) 12077 { 12078 /* The architecture specifies that certain address ranges are 12079 * exempt from v8M SAU/IDAU checks. 12080 */ 12081 return 12082 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12083 (address >= 0xe0000000 && address <= 0xe0002fff) || 12084 (address >= 0xe000e000 && address <= 0xe000efff) || 12085 (address >= 0xe002e000 && address <= 0xe002efff) || 12086 (address >= 0xe0040000 && address <= 0xe0041fff) || 12087 (address >= 0xe00ff000 && address <= 0xe00fffff); 12088 } 12089 12090 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12091 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12092 V8M_SAttributes *sattrs) 12093 { 12094 /* Look up the security attributes for this address. Compare the 12095 * pseudocode SecurityCheck() function. 12096 * We assume the caller has zero-initialized *sattrs. 12097 */ 12098 ARMCPU *cpu = env_archcpu(env); 12099 int r; 12100 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12101 int idau_region = IREGION_NOTVALID; 12102 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12103 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12104 12105 if (cpu->idau) { 12106 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12107 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12108 12109 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12110 &idau_nsc); 12111 } 12112 12113 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12114 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12115 return; 12116 } 12117 12118 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12119 sattrs->ns = !regime_is_secure(env, mmu_idx); 12120 return; 12121 } 12122 12123 if (idau_region != IREGION_NOTVALID) { 12124 sattrs->irvalid = true; 12125 sattrs->iregion = idau_region; 12126 } 12127 12128 switch (env->sau.ctrl & 3) { 12129 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12130 break; 12131 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12132 sattrs->ns = true; 12133 break; 12134 default: /* SAU.ENABLE == 1 */ 12135 for (r = 0; r < cpu->sau_sregion; r++) { 12136 if (env->sau.rlar[r] & 1) { 12137 uint32_t base = env->sau.rbar[r] & ~0x1f; 12138 uint32_t limit = env->sau.rlar[r] | 0x1f; 12139 12140 if (base <= address && limit >= address) { 12141 if (base > addr_page_base || limit < addr_page_limit) { 12142 sattrs->subpage = true; 12143 } 12144 if (sattrs->srvalid) { 12145 /* If we hit in more than one region then we must report 12146 * as Secure, not NS-Callable, with no valid region 12147 * number info. 12148 */ 12149 sattrs->ns = false; 12150 sattrs->nsc = false; 12151 sattrs->sregion = 0; 12152 sattrs->srvalid = false; 12153 break; 12154 } else { 12155 if (env->sau.rlar[r] & 2) { 12156 sattrs->nsc = true; 12157 } else { 12158 sattrs->ns = true; 12159 } 12160 sattrs->srvalid = true; 12161 sattrs->sregion = r; 12162 } 12163 } else { 12164 /* 12165 * Address not in this region. We must check whether the 12166 * region covers addresses in the same page as our address. 12167 * In that case we must not report a size that covers the 12168 * whole page for a subsequent hit against a different MPU 12169 * region or the background region, because it would result 12170 * in incorrect TLB hits for subsequent accesses to 12171 * addresses that are in this MPU region. 12172 */ 12173 if (limit >= base && 12174 ranges_overlap(base, limit - base + 1, 12175 addr_page_base, 12176 TARGET_PAGE_SIZE)) { 12177 sattrs->subpage = true; 12178 } 12179 } 12180 } 12181 } 12182 break; 12183 } 12184 12185 /* 12186 * The IDAU will override the SAU lookup results if it specifies 12187 * higher security than the SAU does. 12188 */ 12189 if (!idau_ns) { 12190 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12191 sattrs->ns = false; 12192 sattrs->nsc = idau_nsc; 12193 } 12194 } 12195 } 12196 12197 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12198 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12199 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12200 int *prot, bool *is_subpage, 12201 ARMMMUFaultInfo *fi, uint32_t *mregion) 12202 { 12203 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12204 * that a full phys-to-virt translation does). 12205 * mregion is (if not NULL) set to the region number which matched, 12206 * or -1 if no region number is returned (MPU off, address did not 12207 * hit a region, address hit in multiple regions). 12208 * We set is_subpage to true if the region hit doesn't cover the 12209 * entire TARGET_PAGE the address is within. 12210 */ 12211 ARMCPU *cpu = env_archcpu(env); 12212 bool is_user = regime_is_user(env, mmu_idx); 12213 uint32_t secure = regime_is_secure(env, mmu_idx); 12214 int n; 12215 int matchregion = -1; 12216 bool hit = false; 12217 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12218 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12219 12220 *is_subpage = false; 12221 *phys_ptr = address; 12222 *prot = 0; 12223 if (mregion) { 12224 *mregion = -1; 12225 } 12226 12227 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12228 * was an exception vector read from the vector table (which is always 12229 * done using the default system address map), because those accesses 12230 * are done in arm_v7m_load_vector(), which always does a direct 12231 * read using address_space_ldl(), rather than going via this function. 12232 */ 12233 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12234 hit = true; 12235 } else if (m_is_ppb_region(env, address)) { 12236 hit = true; 12237 } else { 12238 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12239 hit = true; 12240 } 12241 12242 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12243 /* region search */ 12244 /* Note that the base address is bits [31:5] from the register 12245 * with bits [4:0] all zeroes, but the limit address is bits 12246 * [31:5] from the register with bits [4:0] all ones. 12247 */ 12248 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12249 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12250 12251 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12252 /* Region disabled */ 12253 continue; 12254 } 12255 12256 if (address < base || address > limit) { 12257 /* 12258 * Address not in this region. We must check whether the 12259 * region covers addresses in the same page as our address. 12260 * In that case we must not report a size that covers the 12261 * whole page for a subsequent hit against a different MPU 12262 * region or the background region, because it would result in 12263 * incorrect TLB hits for subsequent accesses to addresses that 12264 * are in this MPU region. 12265 */ 12266 if (limit >= base && 12267 ranges_overlap(base, limit - base + 1, 12268 addr_page_base, 12269 TARGET_PAGE_SIZE)) { 12270 *is_subpage = true; 12271 } 12272 continue; 12273 } 12274 12275 if (base > addr_page_base || limit < addr_page_limit) { 12276 *is_subpage = true; 12277 } 12278 12279 if (matchregion != -1) { 12280 /* Multiple regions match -- always a failure (unlike 12281 * PMSAv7 where highest-numbered-region wins) 12282 */ 12283 fi->type = ARMFault_Permission; 12284 fi->level = 1; 12285 return true; 12286 } 12287 12288 matchregion = n; 12289 hit = true; 12290 } 12291 } 12292 12293 if (!hit) { 12294 /* background fault */ 12295 fi->type = ARMFault_Background; 12296 return true; 12297 } 12298 12299 if (matchregion == -1) { 12300 /* hit using the background region */ 12301 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12302 } else { 12303 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12304 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12305 bool pxn = false; 12306 12307 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12308 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12309 } 12310 12311 if (m_is_system_region(env, address)) { 12312 /* System space is always execute never */ 12313 xn = 1; 12314 } 12315 12316 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12317 if (*prot && !xn && !(pxn && !is_user)) { 12318 *prot |= PAGE_EXEC; 12319 } 12320 /* We don't need to look the attribute up in the MAIR0/MAIR1 12321 * registers because that only tells us about cacheability. 12322 */ 12323 if (mregion) { 12324 *mregion = matchregion; 12325 } 12326 } 12327 12328 fi->type = ARMFault_Permission; 12329 fi->level = 1; 12330 return !(*prot & (1 << access_type)); 12331 } 12332 12333 12334 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12335 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12336 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12337 int *prot, target_ulong *page_size, 12338 ARMMMUFaultInfo *fi) 12339 { 12340 uint32_t secure = regime_is_secure(env, mmu_idx); 12341 V8M_SAttributes sattrs = {}; 12342 bool ret; 12343 bool mpu_is_subpage; 12344 12345 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12346 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12347 if (access_type == MMU_INST_FETCH) { 12348 /* Instruction fetches always use the MMU bank and the 12349 * transaction attribute determined by the fetch address, 12350 * regardless of CPU state. This is painful for QEMU 12351 * to handle, because it would mean we need to encode 12352 * into the mmu_idx not just the (user, negpri) information 12353 * for the current security state but also that for the 12354 * other security state, which would balloon the number 12355 * of mmu_idx values needed alarmingly. 12356 * Fortunately we can avoid this because it's not actually 12357 * possible to arbitrarily execute code from memory with 12358 * the wrong security attribute: it will always generate 12359 * an exception of some kind or another, apart from the 12360 * special case of an NS CPU executing an SG instruction 12361 * in S&NSC memory. So we always just fail the translation 12362 * here and sort things out in the exception handler 12363 * (including possibly emulating an SG instruction). 12364 */ 12365 if (sattrs.ns != !secure) { 12366 if (sattrs.nsc) { 12367 fi->type = ARMFault_QEMU_NSCExec; 12368 } else { 12369 fi->type = ARMFault_QEMU_SFault; 12370 } 12371 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12372 *phys_ptr = address; 12373 *prot = 0; 12374 return true; 12375 } 12376 } else { 12377 /* For data accesses we always use the MMU bank indicated 12378 * by the current CPU state, but the security attributes 12379 * might downgrade a secure access to nonsecure. 12380 */ 12381 if (sattrs.ns) { 12382 txattrs->secure = false; 12383 } else if (!secure) { 12384 /* NS access to S memory must fault. 12385 * Architecturally we should first check whether the 12386 * MPU information for this address indicates that we 12387 * are doing an unaligned access to Device memory, which 12388 * should generate a UsageFault instead. QEMU does not 12389 * currently check for that kind of unaligned access though. 12390 * If we added it we would need to do so as a special case 12391 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12392 */ 12393 fi->type = ARMFault_QEMU_SFault; 12394 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12395 *phys_ptr = address; 12396 *prot = 0; 12397 return true; 12398 } 12399 } 12400 } 12401 12402 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12403 txattrs, prot, &mpu_is_subpage, fi, NULL); 12404 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12405 return ret; 12406 } 12407 12408 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12409 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12410 hwaddr *phys_ptr, int *prot, 12411 ARMMMUFaultInfo *fi) 12412 { 12413 int n; 12414 uint32_t mask; 12415 uint32_t base; 12416 bool is_user = regime_is_user(env, mmu_idx); 12417 12418 if (regime_translation_disabled(env, mmu_idx)) { 12419 /* MPU disabled. */ 12420 *phys_ptr = address; 12421 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12422 return false; 12423 } 12424 12425 *phys_ptr = address; 12426 for (n = 7; n >= 0; n--) { 12427 base = env->cp15.c6_region[n]; 12428 if ((base & 1) == 0) { 12429 continue; 12430 } 12431 mask = 1 << ((base >> 1) & 0x1f); 12432 /* Keep this shift separate from the above to avoid an 12433 (undefined) << 32. */ 12434 mask = (mask << 1) - 1; 12435 if (((base ^ address) & ~mask) == 0) { 12436 break; 12437 } 12438 } 12439 if (n < 0) { 12440 fi->type = ARMFault_Background; 12441 return true; 12442 } 12443 12444 if (access_type == MMU_INST_FETCH) { 12445 mask = env->cp15.pmsav5_insn_ap; 12446 } else { 12447 mask = env->cp15.pmsav5_data_ap; 12448 } 12449 mask = (mask >> (n * 4)) & 0xf; 12450 switch (mask) { 12451 case 0: 12452 fi->type = ARMFault_Permission; 12453 fi->level = 1; 12454 return true; 12455 case 1: 12456 if (is_user) { 12457 fi->type = ARMFault_Permission; 12458 fi->level = 1; 12459 return true; 12460 } 12461 *prot = PAGE_READ | PAGE_WRITE; 12462 break; 12463 case 2: 12464 *prot = PAGE_READ; 12465 if (!is_user) { 12466 *prot |= PAGE_WRITE; 12467 } 12468 break; 12469 case 3: 12470 *prot = PAGE_READ | PAGE_WRITE; 12471 break; 12472 case 5: 12473 if (is_user) { 12474 fi->type = ARMFault_Permission; 12475 fi->level = 1; 12476 return true; 12477 } 12478 *prot = PAGE_READ; 12479 break; 12480 case 6: 12481 *prot = PAGE_READ; 12482 break; 12483 default: 12484 /* Bad permission. */ 12485 fi->type = ARMFault_Permission; 12486 fi->level = 1; 12487 return true; 12488 } 12489 *prot |= PAGE_EXEC; 12490 return false; 12491 } 12492 12493 /* Combine either inner or outer cacheability attributes for normal 12494 * memory, according to table D4-42 and pseudocode procedure 12495 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12496 * 12497 * NB: only stage 1 includes allocation hints (RW bits), leading to 12498 * some asymmetry. 12499 */ 12500 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12501 { 12502 if (s1 == 4 || s2 == 4) { 12503 /* non-cacheable has precedence */ 12504 return 4; 12505 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12506 /* stage 1 write-through takes precedence */ 12507 return s1; 12508 } else if (extract32(s2, 2, 2) == 2) { 12509 /* stage 2 write-through takes precedence, but the allocation hint 12510 * is still taken from stage 1 12511 */ 12512 return (2 << 2) | extract32(s1, 0, 2); 12513 } else { /* write-back */ 12514 return s1; 12515 } 12516 } 12517 12518 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12519 * and CombineS1S2Desc() 12520 * 12521 * @s1: Attributes from stage 1 walk 12522 * @s2: Attributes from stage 2 walk 12523 */ 12524 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12525 { 12526 uint8_t s1lo, s2lo, s1hi, s2hi; 12527 ARMCacheAttrs ret; 12528 bool tagged = false; 12529 12530 if (s1.attrs == 0xf0) { 12531 tagged = true; 12532 s1.attrs = 0xff; 12533 } 12534 12535 s1lo = extract32(s1.attrs, 0, 4); 12536 s2lo = extract32(s2.attrs, 0, 4); 12537 s1hi = extract32(s1.attrs, 4, 4); 12538 s2hi = extract32(s2.attrs, 4, 4); 12539 12540 /* Combine shareability attributes (table D4-43) */ 12541 if (s1.shareability == 2 || s2.shareability == 2) { 12542 /* if either are outer-shareable, the result is outer-shareable */ 12543 ret.shareability = 2; 12544 } else if (s1.shareability == 3 || s2.shareability == 3) { 12545 /* if either are inner-shareable, the result is inner-shareable */ 12546 ret.shareability = 3; 12547 } else { 12548 /* both non-shareable */ 12549 ret.shareability = 0; 12550 } 12551 12552 /* Combine memory type and cacheability attributes */ 12553 if (s1hi == 0 || s2hi == 0) { 12554 /* Device has precedence over normal */ 12555 if (s1lo == 0 || s2lo == 0) { 12556 /* nGnRnE has precedence over anything */ 12557 ret.attrs = 0; 12558 } else if (s1lo == 4 || s2lo == 4) { 12559 /* non-Reordering has precedence over Reordering */ 12560 ret.attrs = 4; /* nGnRE */ 12561 } else if (s1lo == 8 || s2lo == 8) { 12562 /* non-Gathering has precedence over Gathering */ 12563 ret.attrs = 8; /* nGRE */ 12564 } else { 12565 ret.attrs = 0xc; /* GRE */ 12566 } 12567 12568 /* Any location for which the resultant memory type is any 12569 * type of Device memory is always treated as Outer Shareable. 12570 */ 12571 ret.shareability = 2; 12572 } else { /* Normal memory */ 12573 /* Outer/inner cacheability combine independently */ 12574 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12575 | combine_cacheattr_nibble(s1lo, s2lo); 12576 12577 if (ret.attrs == 0x44) { 12578 /* Any location for which the resultant memory type is Normal 12579 * Inner Non-cacheable, Outer Non-cacheable is always treated 12580 * as Outer Shareable. 12581 */ 12582 ret.shareability = 2; 12583 } 12584 } 12585 12586 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12587 if (tagged && ret.attrs == 0xff) { 12588 ret.attrs = 0xf0; 12589 } 12590 12591 return ret; 12592 } 12593 12594 12595 /* get_phys_addr - get the physical address for this virtual address 12596 * 12597 * Find the physical address corresponding to the given virtual address, 12598 * by doing a translation table walk on MMU based systems or using the 12599 * MPU state on MPU based systems. 12600 * 12601 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12602 * prot and page_size may not be filled in, and the populated fsr value provides 12603 * information on why the translation aborted, in the format of a 12604 * DFSR/IFSR fault register, with the following caveats: 12605 * * we honour the short vs long DFSR format differences. 12606 * * the WnR bit is never set (the caller must do this). 12607 * * for PSMAv5 based systems we don't bother to return a full FSR format 12608 * value. 12609 * 12610 * @env: CPUARMState 12611 * @address: virtual address to get physical address for 12612 * @access_type: 0 for read, 1 for write, 2 for execute 12613 * @mmu_idx: MMU index indicating required translation regime 12614 * @phys_ptr: set to the physical address corresponding to the virtual address 12615 * @attrs: set to the memory transaction attributes to use 12616 * @prot: set to the permissions for the page containing phys_ptr 12617 * @page_size: set to the size of the page containing phys_ptr 12618 * @fi: set to fault info if the translation fails 12619 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12620 */ 12621 bool get_phys_addr(CPUARMState *env, target_ulong address, 12622 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12623 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12624 target_ulong *page_size, 12625 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12626 { 12627 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12628 12629 if (mmu_idx != s1_mmu_idx) { 12630 /* Call ourselves recursively to do the stage 1 and then stage 2 12631 * translations if mmu_idx is a two-stage regime. 12632 */ 12633 if (arm_feature(env, ARM_FEATURE_EL2)) { 12634 hwaddr ipa; 12635 int s2_prot; 12636 int ret; 12637 ARMCacheAttrs cacheattrs2 = {}; 12638 ARMMMUIdx s2_mmu_idx; 12639 bool is_el0; 12640 12641 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12642 attrs, prot, page_size, fi, cacheattrs); 12643 12644 /* If S1 fails or S2 is disabled, return early. */ 12645 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12646 *phys_ptr = ipa; 12647 return ret; 12648 } 12649 12650 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12651 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12652 12653 /* S1 is done. Now do S2 translation. */ 12654 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12655 phys_ptr, attrs, &s2_prot, 12656 page_size, fi, &cacheattrs2); 12657 fi->s2addr = ipa; 12658 /* Combine the S1 and S2 perms. */ 12659 *prot &= s2_prot; 12660 12661 /* If S2 fails, return early. */ 12662 if (ret) { 12663 return ret; 12664 } 12665 12666 /* Combine the S1 and S2 cache attributes. */ 12667 if (arm_hcr_el2_eff(env) & HCR_DC) { 12668 /* 12669 * HCR.DC forces the first stage attributes to 12670 * Normal Non-Shareable, 12671 * Inner Write-Back Read-Allocate Write-Allocate, 12672 * Outer Write-Back Read-Allocate Write-Allocate. 12673 * Do not overwrite Tagged within attrs. 12674 */ 12675 if (cacheattrs->attrs != 0xf0) { 12676 cacheattrs->attrs = 0xff; 12677 } 12678 cacheattrs->shareability = 0; 12679 } 12680 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12681 12682 /* Check if IPA translates to secure or non-secure PA space. */ 12683 if (arm_is_secure_below_el3(env)) { 12684 if (attrs->secure) { 12685 attrs->secure = 12686 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12687 } else { 12688 attrs->secure = 12689 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12690 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12691 } 12692 } 12693 return 0; 12694 } else { 12695 /* 12696 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12697 */ 12698 mmu_idx = stage_1_mmu_idx(mmu_idx); 12699 } 12700 } 12701 12702 /* The page table entries may downgrade secure to non-secure, but 12703 * cannot upgrade an non-secure translation regime's attributes 12704 * to secure. 12705 */ 12706 attrs->secure = regime_is_secure(env, mmu_idx); 12707 attrs->user = regime_is_user(env, mmu_idx); 12708 12709 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12710 * In v7 and earlier it affects all stage 1 translations. 12711 */ 12712 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12713 && !arm_feature(env, ARM_FEATURE_V8)) { 12714 if (regime_el(env, mmu_idx) == 3) { 12715 address += env->cp15.fcseidr_s; 12716 } else { 12717 address += env->cp15.fcseidr_ns; 12718 } 12719 } 12720 12721 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12722 bool ret; 12723 *page_size = TARGET_PAGE_SIZE; 12724 12725 if (arm_feature(env, ARM_FEATURE_V8)) { 12726 /* PMSAv8 */ 12727 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12728 phys_ptr, attrs, prot, page_size, fi); 12729 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12730 /* PMSAv7 */ 12731 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12732 phys_ptr, prot, page_size, fi); 12733 } else { 12734 /* Pre-v7 MPU */ 12735 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12736 phys_ptr, prot, fi); 12737 } 12738 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12739 " mmu_idx %u -> %s (prot %c%c%c)\n", 12740 access_type == MMU_DATA_LOAD ? "reading" : 12741 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12742 (uint32_t)address, mmu_idx, 12743 ret ? "Miss" : "Hit", 12744 *prot & PAGE_READ ? 'r' : '-', 12745 *prot & PAGE_WRITE ? 'w' : '-', 12746 *prot & PAGE_EXEC ? 'x' : '-'); 12747 12748 return ret; 12749 } 12750 12751 /* Definitely a real MMU, not an MPU */ 12752 12753 if (regime_translation_disabled(env, mmu_idx)) { 12754 uint64_t hcr; 12755 uint8_t memattr; 12756 12757 /* 12758 * MMU disabled. S1 addresses within aa64 translation regimes are 12759 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12760 */ 12761 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12762 int r_el = regime_el(env, mmu_idx); 12763 if (arm_el_is_aa64(env, r_el)) { 12764 int pamax = arm_pamax(env_archcpu(env)); 12765 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12766 int addrtop, tbi; 12767 12768 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12769 if (access_type == MMU_INST_FETCH) { 12770 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12771 } 12772 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12773 addrtop = (tbi ? 55 : 63); 12774 12775 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12776 fi->type = ARMFault_AddressSize; 12777 fi->level = 0; 12778 fi->stage2 = false; 12779 return 1; 12780 } 12781 12782 /* 12783 * When TBI is disabled, we've just validated that all of the 12784 * bits above PAMax are zero, so logically we only need to 12785 * clear the top byte for TBI. But it's clearer to follow 12786 * the pseudocode set of addrdesc.paddress. 12787 */ 12788 address = extract64(address, 0, 52); 12789 } 12790 } 12791 *phys_ptr = address; 12792 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12793 *page_size = TARGET_PAGE_SIZE; 12794 12795 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12796 hcr = arm_hcr_el2_eff(env); 12797 cacheattrs->shareability = 0; 12798 if (hcr & HCR_DC) { 12799 if (hcr & HCR_DCT) { 12800 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12801 } else { 12802 memattr = 0xff; /* Normal, WB, RWA */ 12803 } 12804 } else if (access_type == MMU_INST_FETCH) { 12805 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12806 memattr = 0xee; /* Normal, WT, RA, NT */ 12807 } else { 12808 memattr = 0x44; /* Normal, NC, No */ 12809 } 12810 cacheattrs->shareability = 2; /* outer sharable */ 12811 } else { 12812 memattr = 0x00; /* Device, nGnRnE */ 12813 } 12814 cacheattrs->attrs = memattr; 12815 return 0; 12816 } 12817 12818 if (regime_using_lpae_format(env, mmu_idx)) { 12819 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12820 phys_ptr, attrs, prot, page_size, 12821 fi, cacheattrs); 12822 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12823 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12824 phys_ptr, attrs, prot, page_size, fi); 12825 } else { 12826 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12827 phys_ptr, prot, page_size, fi); 12828 } 12829 } 12830 12831 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12832 MemTxAttrs *attrs) 12833 { 12834 ARMCPU *cpu = ARM_CPU(cs); 12835 CPUARMState *env = &cpu->env; 12836 hwaddr phys_addr; 12837 target_ulong page_size; 12838 int prot; 12839 bool ret; 12840 ARMMMUFaultInfo fi = {}; 12841 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12842 ARMCacheAttrs cacheattrs = {}; 12843 12844 *attrs = (MemTxAttrs) {}; 12845 12846 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12847 attrs, &prot, &page_size, &fi, &cacheattrs); 12848 12849 if (ret) { 12850 return -1; 12851 } 12852 return phys_addr; 12853 } 12854 12855 #endif 12856 12857 /* Note that signed overflow is undefined in C. The following routines are 12858 careful to use unsigned types where modulo arithmetic is required. 12859 Failure to do so _will_ break on newer gcc. */ 12860 12861 /* Signed saturating arithmetic. */ 12862 12863 /* Perform 16-bit signed saturating addition. */ 12864 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12865 { 12866 uint16_t res; 12867 12868 res = a + b; 12869 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12870 if (a & 0x8000) 12871 res = 0x8000; 12872 else 12873 res = 0x7fff; 12874 } 12875 return res; 12876 } 12877 12878 /* Perform 8-bit signed saturating addition. */ 12879 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12880 { 12881 uint8_t res; 12882 12883 res = a + b; 12884 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12885 if (a & 0x80) 12886 res = 0x80; 12887 else 12888 res = 0x7f; 12889 } 12890 return res; 12891 } 12892 12893 /* Perform 16-bit signed saturating subtraction. */ 12894 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12895 { 12896 uint16_t res; 12897 12898 res = a - b; 12899 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12900 if (a & 0x8000) 12901 res = 0x8000; 12902 else 12903 res = 0x7fff; 12904 } 12905 return res; 12906 } 12907 12908 /* Perform 8-bit signed saturating subtraction. */ 12909 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12910 { 12911 uint8_t res; 12912 12913 res = a - b; 12914 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12915 if (a & 0x80) 12916 res = 0x80; 12917 else 12918 res = 0x7f; 12919 } 12920 return res; 12921 } 12922 12923 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12924 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12925 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12926 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12927 #define PFX q 12928 12929 #include "op_addsub.h" 12930 12931 /* Unsigned saturating arithmetic. */ 12932 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12933 { 12934 uint16_t res; 12935 res = a + b; 12936 if (res < a) 12937 res = 0xffff; 12938 return res; 12939 } 12940 12941 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12942 { 12943 if (a > b) 12944 return a - b; 12945 else 12946 return 0; 12947 } 12948 12949 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12950 { 12951 uint8_t res; 12952 res = a + b; 12953 if (res < a) 12954 res = 0xff; 12955 return res; 12956 } 12957 12958 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12959 { 12960 if (a > b) 12961 return a - b; 12962 else 12963 return 0; 12964 } 12965 12966 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12967 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12968 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12969 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12970 #define PFX uq 12971 12972 #include "op_addsub.h" 12973 12974 /* Signed modulo arithmetic. */ 12975 #define SARITH16(a, b, n, op) do { \ 12976 int32_t sum; \ 12977 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12978 RESULT(sum, n, 16); \ 12979 if (sum >= 0) \ 12980 ge |= 3 << (n * 2); \ 12981 } while(0) 12982 12983 #define SARITH8(a, b, n, op) do { \ 12984 int32_t sum; \ 12985 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12986 RESULT(sum, n, 8); \ 12987 if (sum >= 0) \ 12988 ge |= 1 << n; \ 12989 } while(0) 12990 12991 12992 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12993 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12994 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12995 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12996 #define PFX s 12997 #define ARITH_GE 12998 12999 #include "op_addsub.h" 13000 13001 /* Unsigned modulo arithmetic. */ 13002 #define ADD16(a, b, n) do { \ 13003 uint32_t sum; \ 13004 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13005 RESULT(sum, n, 16); \ 13006 if ((sum >> 16) == 1) \ 13007 ge |= 3 << (n * 2); \ 13008 } while(0) 13009 13010 #define ADD8(a, b, n) do { \ 13011 uint32_t sum; \ 13012 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13013 RESULT(sum, n, 8); \ 13014 if ((sum >> 8) == 1) \ 13015 ge |= 1 << n; \ 13016 } while(0) 13017 13018 #define SUB16(a, b, n) do { \ 13019 uint32_t sum; \ 13020 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13021 RESULT(sum, n, 16); \ 13022 if ((sum >> 16) == 0) \ 13023 ge |= 3 << (n * 2); \ 13024 } while(0) 13025 13026 #define SUB8(a, b, n) do { \ 13027 uint32_t sum; \ 13028 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13029 RESULT(sum, n, 8); \ 13030 if ((sum >> 8) == 0) \ 13031 ge |= 1 << n; \ 13032 } while(0) 13033 13034 #define PFX u 13035 #define ARITH_GE 13036 13037 #include "op_addsub.h" 13038 13039 /* Halved signed arithmetic. */ 13040 #define ADD16(a, b, n) \ 13041 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13042 #define SUB16(a, b, n) \ 13043 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13044 #define ADD8(a, b, n) \ 13045 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13046 #define SUB8(a, b, n) \ 13047 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13048 #define PFX sh 13049 13050 #include "op_addsub.h" 13051 13052 /* Halved unsigned arithmetic. */ 13053 #define ADD16(a, b, n) \ 13054 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13055 #define SUB16(a, b, n) \ 13056 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13057 #define ADD8(a, b, n) \ 13058 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13059 #define SUB8(a, b, n) \ 13060 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13061 #define PFX uh 13062 13063 #include "op_addsub.h" 13064 13065 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13066 { 13067 if (a > b) 13068 return a - b; 13069 else 13070 return b - a; 13071 } 13072 13073 /* Unsigned sum of absolute byte differences. */ 13074 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13075 { 13076 uint32_t sum; 13077 sum = do_usad(a, b); 13078 sum += do_usad(a >> 8, b >> 8); 13079 sum += do_usad(a >> 16, b >> 16); 13080 sum += do_usad(a >> 24, b >> 24); 13081 return sum; 13082 } 13083 13084 /* For ARMv6 SEL instruction. */ 13085 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13086 { 13087 uint32_t mask; 13088 13089 mask = 0; 13090 if (flags & 1) 13091 mask |= 0xff; 13092 if (flags & 2) 13093 mask |= 0xff00; 13094 if (flags & 4) 13095 mask |= 0xff0000; 13096 if (flags & 8) 13097 mask |= 0xff000000; 13098 return (a & mask) | (b & ~mask); 13099 } 13100 13101 /* CRC helpers. 13102 * The upper bytes of val (above the number specified by 'bytes') must have 13103 * been zeroed out by the caller. 13104 */ 13105 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13106 { 13107 uint8_t buf[4]; 13108 13109 stl_le_p(buf, val); 13110 13111 /* zlib crc32 converts the accumulator and output to one's complement. */ 13112 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13113 } 13114 13115 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13116 { 13117 uint8_t buf[4]; 13118 13119 stl_le_p(buf, val); 13120 13121 /* Linux crc32c converts the output to one's complement. */ 13122 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13123 } 13124 13125 /* Return the exception level to which FP-disabled exceptions should 13126 * be taken, or 0 if FP is enabled. 13127 */ 13128 int fp_exception_el(CPUARMState *env, int cur_el) 13129 { 13130 #ifndef CONFIG_USER_ONLY 13131 uint64_t hcr_el2; 13132 13133 /* CPACR and the CPTR registers don't exist before v6, so FP is 13134 * always accessible 13135 */ 13136 if (!arm_feature(env, ARM_FEATURE_V6)) { 13137 return 0; 13138 } 13139 13140 if (arm_feature(env, ARM_FEATURE_M)) { 13141 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13142 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13143 return 1; 13144 } 13145 13146 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13147 if (!extract32(env->v7m.nsacr, 10, 1)) { 13148 /* FP insns cause a NOCP UsageFault taken to Secure */ 13149 return 3; 13150 } 13151 } 13152 13153 return 0; 13154 } 13155 13156 hcr_el2 = arm_hcr_el2_eff(env); 13157 13158 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13159 * 0, 2 : trap EL0 and EL1/PL1 accesses 13160 * 1 : trap only EL0 accesses 13161 * 3 : trap no accesses 13162 * This register is ignored if E2H+TGE are both set. 13163 */ 13164 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13165 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13166 13167 switch (fpen) { 13168 case 0: 13169 case 2: 13170 if (cur_el == 0 || cur_el == 1) { 13171 /* Trap to PL1, which might be EL1 or EL3 */ 13172 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13173 return 3; 13174 } 13175 return 1; 13176 } 13177 if (cur_el == 3 && !is_a64(env)) { 13178 /* Secure PL1 running at EL3 */ 13179 return 3; 13180 } 13181 break; 13182 case 1: 13183 if (cur_el == 0) { 13184 return 1; 13185 } 13186 break; 13187 case 3: 13188 break; 13189 } 13190 } 13191 13192 /* 13193 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13194 * to control non-secure access to the FPU. It doesn't have any 13195 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13196 */ 13197 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13198 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13199 if (!extract32(env->cp15.nsacr, 10, 1)) { 13200 /* FP insns act as UNDEF */ 13201 return cur_el == 2 ? 2 : 1; 13202 } 13203 } 13204 13205 /* 13206 * CPTR_EL2 is present in v7VE or v8, and changes format 13207 * with HCR_EL2.E2H (regardless of TGE). 13208 */ 13209 if (cur_el <= 2) { 13210 if (hcr_el2 & HCR_E2H) { 13211 /* Check CPTR_EL2.FPEN. */ 13212 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13213 case 1: 13214 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13215 break; 13216 } 13217 /* fall through */ 13218 case 0: 13219 case 2: 13220 return 2; 13221 } 13222 } else if (arm_is_el2_enabled(env)) { 13223 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13224 return 2; 13225 } 13226 } 13227 } 13228 13229 /* CPTR_EL3 : present in v8 */ 13230 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13231 /* Trap all FP ops to EL3 */ 13232 return 3; 13233 } 13234 #endif 13235 return 0; 13236 } 13237 13238 /* Return the exception level we're running at if this is our mmu_idx */ 13239 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13240 { 13241 if (mmu_idx & ARM_MMU_IDX_M) { 13242 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13243 } 13244 13245 switch (mmu_idx) { 13246 case ARMMMUIdx_E10_0: 13247 case ARMMMUIdx_E20_0: 13248 case ARMMMUIdx_SE10_0: 13249 case ARMMMUIdx_SE20_0: 13250 return 0; 13251 case ARMMMUIdx_E10_1: 13252 case ARMMMUIdx_E10_1_PAN: 13253 case ARMMMUIdx_SE10_1: 13254 case ARMMMUIdx_SE10_1_PAN: 13255 return 1; 13256 case ARMMMUIdx_E2: 13257 case ARMMMUIdx_E20_2: 13258 case ARMMMUIdx_E20_2_PAN: 13259 case ARMMMUIdx_SE2: 13260 case ARMMMUIdx_SE20_2: 13261 case ARMMMUIdx_SE20_2_PAN: 13262 return 2; 13263 case ARMMMUIdx_SE3: 13264 return 3; 13265 default: 13266 g_assert_not_reached(); 13267 } 13268 } 13269 13270 #ifndef CONFIG_TCG 13271 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13272 { 13273 g_assert_not_reached(); 13274 } 13275 #endif 13276 13277 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13278 { 13279 ARMMMUIdx idx; 13280 uint64_t hcr; 13281 13282 if (arm_feature(env, ARM_FEATURE_M)) { 13283 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13284 } 13285 13286 /* See ARM pseudo-function ELIsInHost. */ 13287 switch (el) { 13288 case 0: 13289 hcr = arm_hcr_el2_eff(env); 13290 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13291 idx = ARMMMUIdx_E20_0; 13292 } else { 13293 idx = ARMMMUIdx_E10_0; 13294 } 13295 break; 13296 case 1: 13297 if (env->pstate & PSTATE_PAN) { 13298 idx = ARMMMUIdx_E10_1_PAN; 13299 } else { 13300 idx = ARMMMUIdx_E10_1; 13301 } 13302 break; 13303 case 2: 13304 /* Note that TGE does not apply at EL2. */ 13305 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13306 if (env->pstate & PSTATE_PAN) { 13307 idx = ARMMMUIdx_E20_2_PAN; 13308 } else { 13309 idx = ARMMMUIdx_E20_2; 13310 } 13311 } else { 13312 idx = ARMMMUIdx_E2; 13313 } 13314 break; 13315 case 3: 13316 return ARMMMUIdx_SE3; 13317 default: 13318 g_assert_not_reached(); 13319 } 13320 13321 if (arm_is_secure_below_el3(env)) { 13322 idx &= ~ARM_MMU_IDX_A_NS; 13323 } 13324 13325 return idx; 13326 } 13327 13328 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13329 { 13330 return arm_mmu_idx_el(env, arm_current_el(env)); 13331 } 13332 13333 #ifndef CONFIG_USER_ONLY 13334 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13335 { 13336 return stage_1_mmu_idx(arm_mmu_idx(env)); 13337 } 13338 #endif 13339 13340 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13341 ARMMMUIdx mmu_idx, 13342 CPUARMTBFlags flags) 13343 { 13344 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13345 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13346 13347 if (arm_singlestep_active(env)) { 13348 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13349 } 13350 return flags; 13351 } 13352 13353 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13354 ARMMMUIdx mmu_idx, 13355 CPUARMTBFlags flags) 13356 { 13357 bool sctlr_b = arm_sctlr_b(env); 13358 13359 if (sctlr_b) { 13360 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13361 } 13362 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13363 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13364 } 13365 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13366 13367 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13368 } 13369 13370 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13371 ARMMMUIdx mmu_idx) 13372 { 13373 CPUARMTBFlags flags = {}; 13374 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13375 13376 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13377 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13378 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13379 } 13380 13381 if (arm_v7m_is_handler_mode(env)) { 13382 DP_TBFLAG_M32(flags, HANDLER, 1); 13383 } 13384 13385 /* 13386 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13387 * is suppressing them because the requested execution priority 13388 * is less than 0. 13389 */ 13390 if (arm_feature(env, ARM_FEATURE_V8) && 13391 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13392 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13393 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13394 } 13395 13396 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13397 } 13398 13399 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13400 { 13401 CPUARMTBFlags flags = {}; 13402 13403 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13404 return flags; 13405 } 13406 13407 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13408 ARMMMUIdx mmu_idx) 13409 { 13410 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13411 int el = arm_current_el(env); 13412 13413 if (arm_sctlr(env, el) & SCTLR_A) { 13414 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13415 } 13416 13417 if (arm_el_is_aa64(env, 1)) { 13418 DP_TBFLAG_A32(flags, VFPEN, 1); 13419 } 13420 13421 if (el < 2 && env->cp15.hstr_el2 && 13422 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13423 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13424 } 13425 13426 if (env->uncached_cpsr & CPSR_IL) { 13427 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13428 } 13429 13430 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13431 } 13432 13433 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13434 ARMMMUIdx mmu_idx) 13435 { 13436 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13437 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13438 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13439 uint64_t sctlr; 13440 int tbii, tbid; 13441 13442 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13443 13444 /* Get control bits for tagged addresses. */ 13445 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13446 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13447 13448 DP_TBFLAG_A64(flags, TBII, tbii); 13449 DP_TBFLAG_A64(flags, TBID, tbid); 13450 13451 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13452 int sve_el = sve_exception_el(env, el); 13453 uint32_t zcr_len; 13454 13455 /* 13456 * If SVE is disabled, but FP is enabled, 13457 * then the effective len is 0. 13458 */ 13459 if (sve_el != 0 && fp_el == 0) { 13460 zcr_len = 0; 13461 } else { 13462 zcr_len = sve_zcr_len_for_el(env, el); 13463 } 13464 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13465 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13466 } 13467 13468 sctlr = regime_sctlr(env, stage1); 13469 13470 if (sctlr & SCTLR_A) { 13471 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13472 } 13473 13474 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13475 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13476 } 13477 13478 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13479 /* 13480 * In order to save space in flags, we record only whether 13481 * pauth is "inactive", meaning all insns are implemented as 13482 * a nop, or "active" when some action must be performed. 13483 * The decision of which action to take is left to a helper. 13484 */ 13485 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13486 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13487 } 13488 } 13489 13490 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13491 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13492 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13493 DP_TBFLAG_A64(flags, BT, 1); 13494 } 13495 } 13496 13497 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13498 if (!(env->pstate & PSTATE_UAO)) { 13499 switch (mmu_idx) { 13500 case ARMMMUIdx_E10_1: 13501 case ARMMMUIdx_E10_1_PAN: 13502 case ARMMMUIdx_SE10_1: 13503 case ARMMMUIdx_SE10_1_PAN: 13504 /* TODO: ARMv8.3-NV */ 13505 DP_TBFLAG_A64(flags, UNPRIV, 1); 13506 break; 13507 case ARMMMUIdx_E20_2: 13508 case ARMMMUIdx_E20_2_PAN: 13509 case ARMMMUIdx_SE20_2: 13510 case ARMMMUIdx_SE20_2_PAN: 13511 /* 13512 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13513 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13514 */ 13515 if (env->cp15.hcr_el2 & HCR_TGE) { 13516 DP_TBFLAG_A64(flags, UNPRIV, 1); 13517 } 13518 break; 13519 default: 13520 break; 13521 } 13522 } 13523 13524 if (env->pstate & PSTATE_IL) { 13525 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13526 } 13527 13528 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13529 /* 13530 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13531 * if all accesses must be Unchecked: 13532 * 1) If no TBI, then there are no tags in the address to check, 13533 * 2) If Tag Check Override, then all accesses are Unchecked, 13534 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13535 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13536 */ 13537 if (allocation_tag_access_enabled(env, el, sctlr)) { 13538 DP_TBFLAG_A64(flags, ATA, 1); 13539 if (tbid 13540 && !(env->pstate & PSTATE_TCO) 13541 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13542 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13543 } 13544 } 13545 /* And again for unprivileged accesses, if required. */ 13546 if (EX_TBFLAG_A64(flags, UNPRIV) 13547 && tbid 13548 && !(env->pstate & PSTATE_TCO) 13549 && (sctlr & SCTLR_TCF0) 13550 && allocation_tag_access_enabled(env, 0, sctlr)) { 13551 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13552 } 13553 /* Cache TCMA as well as TBI. */ 13554 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13555 } 13556 13557 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13558 } 13559 13560 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13561 { 13562 int el = arm_current_el(env); 13563 int fp_el = fp_exception_el(env, el); 13564 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13565 13566 if (is_a64(env)) { 13567 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13568 } else if (arm_feature(env, ARM_FEATURE_M)) { 13569 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13570 } else { 13571 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13572 } 13573 } 13574 13575 void arm_rebuild_hflags(CPUARMState *env) 13576 { 13577 env->hflags = rebuild_hflags_internal(env); 13578 } 13579 13580 /* 13581 * If we have triggered a EL state change we can't rely on the 13582 * translator having passed it to us, we need to recompute. 13583 */ 13584 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13585 { 13586 int el = arm_current_el(env); 13587 int fp_el = fp_exception_el(env, el); 13588 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13589 13590 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13591 } 13592 13593 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13594 { 13595 int fp_el = fp_exception_el(env, el); 13596 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13597 13598 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13599 } 13600 13601 /* 13602 * If we have triggered a EL state change we can't rely on the 13603 * translator having passed it to us, we need to recompute. 13604 */ 13605 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13606 { 13607 int el = arm_current_el(env); 13608 int fp_el = fp_exception_el(env, el); 13609 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13610 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13611 } 13612 13613 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13614 { 13615 int fp_el = fp_exception_el(env, el); 13616 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13617 13618 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13619 } 13620 13621 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13622 { 13623 int fp_el = fp_exception_el(env, el); 13624 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13625 13626 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13627 } 13628 13629 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13630 { 13631 #ifdef CONFIG_DEBUG_TCG 13632 CPUARMTBFlags c = env->hflags; 13633 CPUARMTBFlags r = rebuild_hflags_internal(env); 13634 13635 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13636 fprintf(stderr, "TCG hflags mismatch " 13637 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13638 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13639 c.flags, c.flags2, r.flags, r.flags2); 13640 abort(); 13641 } 13642 #endif 13643 } 13644 13645 static bool mve_no_pred(CPUARMState *env) 13646 { 13647 /* 13648 * Return true if there is definitely no predication of MVE 13649 * instructions by VPR or LTPSIZE. (Returning false even if there 13650 * isn't any predication is OK; generated code will just be 13651 * a little worse.) 13652 * If the CPU does not implement MVE then this TB flag is always 0. 13653 * 13654 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13655 * logic in gen_update_fp_context() needs to be updated to match. 13656 * 13657 * We do not include the effect of the ECI bits here -- they are 13658 * tracked in other TB flags. This simplifies the logic for 13659 * "when did we emit code that changes the MVE_NO_PRED TB flag 13660 * and thus need to end the TB?". 13661 */ 13662 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13663 return false; 13664 } 13665 if (env->v7m.vpr) { 13666 return false; 13667 } 13668 if (env->v7m.ltpsize < 4) { 13669 return false; 13670 } 13671 return true; 13672 } 13673 13674 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13675 target_ulong *cs_base, uint32_t *pflags) 13676 { 13677 CPUARMTBFlags flags; 13678 13679 assert_hflags_rebuild_correctly(env); 13680 flags = env->hflags; 13681 13682 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13683 *pc = env->pc; 13684 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13685 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13686 } 13687 } else { 13688 *pc = env->regs[15]; 13689 13690 if (arm_feature(env, ARM_FEATURE_M)) { 13691 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13692 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13693 != env->v7m.secure) { 13694 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13695 } 13696 13697 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13698 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13699 (env->v7m.secure && 13700 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13701 /* 13702 * ASPEN is set, but FPCA/SFPA indicate that there is no 13703 * active FP context; we must create a new FP context before 13704 * executing any FP insn. 13705 */ 13706 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13707 } 13708 13709 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13710 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13711 DP_TBFLAG_M32(flags, LSPACT, 1); 13712 } 13713 13714 if (mve_no_pred(env)) { 13715 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13716 } 13717 } else { 13718 /* 13719 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13720 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13721 */ 13722 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13723 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13724 } else { 13725 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13726 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13727 } 13728 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13729 DP_TBFLAG_A32(flags, VFPEN, 1); 13730 } 13731 } 13732 13733 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13734 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13735 } 13736 13737 /* 13738 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13739 * states defined in the ARM ARM for software singlestep: 13740 * SS_ACTIVE PSTATE.SS State 13741 * 0 x Inactive (the TB flag for SS is always 0) 13742 * 1 0 Active-pending 13743 * 1 1 Active-not-pending 13744 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13745 */ 13746 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13747 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13748 } 13749 13750 *pflags = flags.flags; 13751 *cs_base = flags.flags2; 13752 } 13753 13754 #ifdef TARGET_AARCH64 13755 /* 13756 * The manual says that when SVE is enabled and VQ is widened the 13757 * implementation is allowed to zero the previously inaccessible 13758 * portion of the registers. The corollary to that is that when 13759 * SVE is enabled and VQ is narrowed we are also allowed to zero 13760 * the now inaccessible portion of the registers. 13761 * 13762 * The intent of this is that no predicate bit beyond VQ is ever set. 13763 * Which means that some operations on predicate registers themselves 13764 * may operate on full uint64_t or even unrolled across the maximum 13765 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13766 * may well be cheaper than conditionals to restrict the operation 13767 * to the relevant portion of a uint16_t[16]. 13768 */ 13769 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13770 { 13771 int i, j; 13772 uint64_t pmask; 13773 13774 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13775 assert(vq <= env_archcpu(env)->sve_max_vq); 13776 13777 /* Zap the high bits of the zregs. */ 13778 for (i = 0; i < 32; i++) { 13779 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13780 } 13781 13782 /* Zap the high bits of the pregs and ffr. */ 13783 pmask = 0; 13784 if (vq & 3) { 13785 pmask = ~(-1ULL << (16 * (vq & 3))); 13786 } 13787 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13788 for (i = 0; i < 17; ++i) { 13789 env->vfp.pregs[i].p[j] &= pmask; 13790 } 13791 pmask = 0; 13792 } 13793 } 13794 13795 /* 13796 * Notice a change in SVE vector size when changing EL. 13797 */ 13798 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13799 int new_el, bool el0_a64) 13800 { 13801 ARMCPU *cpu = env_archcpu(env); 13802 int old_len, new_len; 13803 bool old_a64, new_a64; 13804 13805 /* Nothing to do if no SVE. */ 13806 if (!cpu_isar_feature(aa64_sve, cpu)) { 13807 return; 13808 } 13809 13810 /* Nothing to do if FP is disabled in either EL. */ 13811 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13812 return; 13813 } 13814 13815 /* 13816 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13817 * at ELx, or not available because the EL is in AArch32 state, then 13818 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13819 * has an effective value of 0". 13820 * 13821 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13822 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13823 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13824 * we already have the correct register contents when encountering the 13825 * vq0->vq0 transition between EL0->EL1. 13826 */ 13827 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13828 old_len = (old_a64 && !sve_exception_el(env, old_el) 13829 ? sve_zcr_len_for_el(env, old_el) : 0); 13830 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13831 new_len = (new_a64 && !sve_exception_el(env, new_el) 13832 ? sve_zcr_len_for_el(env, new_el) : 0); 13833 13834 /* When changing vector length, clear inaccessible state. */ 13835 if (new_len < old_len) { 13836 aarch64_sve_narrow_vq(env, new_len + 1); 13837 } 13838 } 13839 #endif 13840