1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint32_t regidx = (uintptr_t)key; 218 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 219 220 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 221 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 222 /* The value array need not be initialized at this point */ 223 cpu->cpreg_array_len++; 224 } 225 } 226 227 static void count_cpreg(gpointer key, gpointer opaque) 228 { 229 ARMCPU *cpu = opaque; 230 const ARMCPRegInfo *ri; 231 232 ri = g_hash_table_lookup(cpu->cp_regs, key); 233 234 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 235 cpu->cpreg_array_len++; 236 } 237 } 238 239 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 240 { 241 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 242 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 243 244 if (aidx > bidx) { 245 return 1; 246 } 247 if (aidx < bidx) { 248 return -1; 249 } 250 return 0; 251 } 252 253 void init_cpreg_list(ARMCPU *cpu) 254 { 255 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 256 * Note that we require cpreg_tuples[] to be sorted by key ID. 257 */ 258 GList *keys; 259 int arraylen; 260 261 keys = g_hash_table_get_keys(cpu->cp_regs); 262 keys = g_list_sort(keys, cpreg_key_compare); 263 264 cpu->cpreg_array_len = 0; 265 266 g_list_foreach(keys, count_cpreg, cpu); 267 268 arraylen = cpu->cpreg_array_len; 269 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 270 cpu->cpreg_values = g_new(uint64_t, arraylen); 271 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 272 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 273 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 274 cpu->cpreg_array_len = 0; 275 276 g_list_foreach(keys, add_cpreg_to_list, cpu); 277 278 assert(cpu->cpreg_array_len == arraylen); 279 280 g_list_free(keys); 281 } 282 283 /* 284 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 285 */ 286 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (!is_a64(env) && arm_current_el(env) == 3 && 291 arm_is_secure_below_el3(env)) { 292 return CP_ACCESS_TRAP_UNCATEGORIZED; 293 } 294 return CP_ACCESS_OK; 295 } 296 297 /* Some secure-only AArch32 registers trap to EL3 if used from 298 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 299 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 300 * We assume that the .access field is set to PL1_RW. 301 */ 302 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 303 const ARMCPRegInfo *ri, 304 bool isread) 305 { 306 if (arm_current_el(env) == 3) { 307 return CP_ACCESS_OK; 308 } 309 if (arm_is_secure_below_el3(env)) { 310 if (env->cp15.scr_el3 & SCR_EEL2) { 311 return CP_ACCESS_TRAP_EL2; 312 } 313 return CP_ACCESS_TRAP_EL3; 314 } 315 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 316 return CP_ACCESS_TRAP_UNCATEGORIZED; 317 } 318 319 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 320 { 321 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 322 } 323 324 /* Check for traps to "powerdown debug" registers, which are controlled 325 * by MDCR.TDOSA 326 */ 327 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 328 bool isread) 329 { 330 int el = arm_current_el(env); 331 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 332 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 333 (arm_hcr_el2_eff(env) & HCR_TGE); 334 335 if (el < 2 && mdcr_el2_tdosa) { 336 return CP_ACCESS_TRAP_EL2; 337 } 338 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 339 return CP_ACCESS_TRAP_EL3; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps to "debug ROM" registers, which are controlled 345 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 346 */ 347 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 348 bool isread) 349 { 350 int el = arm_current_el(env); 351 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 352 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 353 (arm_hcr_el2_eff(env) & HCR_TGE); 354 355 if (el < 2 && mdcr_el2_tdra) { 356 return CP_ACCESS_TRAP_EL2; 357 } 358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 359 return CP_ACCESS_TRAP_EL3; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps to general debug registers, which are controlled 365 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 366 */ 367 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 368 bool isread) 369 { 370 int el = arm_current_el(env); 371 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 372 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 373 (arm_hcr_el2_eff(env) & HCR_TGE); 374 375 if (el < 2 && mdcr_el2_tda) { 376 return CP_ACCESS_TRAP_EL2; 377 } 378 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 379 return CP_ACCESS_TRAP_EL3; 380 } 381 return CP_ACCESS_OK; 382 } 383 384 /* Check for traps to performance monitor registers, which are controlled 385 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 386 */ 387 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 388 bool isread) 389 { 390 int el = arm_current_el(env); 391 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 392 393 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 394 return CP_ACCESS_TRAP_EL2; 395 } 396 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 397 return CP_ACCESS_TRAP_EL3; 398 } 399 return CP_ACCESS_OK; 400 } 401 402 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 403 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 404 bool isread) 405 { 406 if (arm_current_el(env) == 1) { 407 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 408 if (arm_hcr_el2_eff(env) & trap) { 409 return CP_ACCESS_TRAP_EL2; 410 } 411 } 412 return CP_ACCESS_OK; 413 } 414 415 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 416 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 417 bool isread) 418 { 419 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 426 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 430 return CP_ACCESS_TRAP_EL2; 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 436 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 437 bool isread) 438 { 439 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 440 return CP_ACCESS_TRAP_EL2; 441 } 442 return CP_ACCESS_OK; 443 } 444 445 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 446 { 447 ARMCPU *cpu = env_archcpu(env); 448 449 raw_write(env, ri, value); 450 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 451 } 452 453 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 454 { 455 ARMCPU *cpu = env_archcpu(env); 456 457 if (raw_read(env, ri) != value) { 458 /* Unlike real hardware the qemu TLB uses virtual addresses, 459 * not modified virtual addresses, so this causes a TLB flush. 460 */ 461 tlb_flush(CPU(cpu)); 462 raw_write(env, ri, value); 463 } 464 } 465 466 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 467 uint64_t value) 468 { 469 ARMCPU *cpu = env_archcpu(env); 470 471 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 472 && !extended_addresses_enabled(env)) { 473 /* For VMSA (when not using the LPAE long descriptor page table 474 * format) this register includes the ASID, so do a TLB flush. 475 * For PMSA it is purely a process ID and no action is needed. 476 */ 477 tlb_flush(CPU(cpu)); 478 } 479 raw_write(env, ri, value); 480 } 481 482 /* IS variants of TLB operations must affect all cores */ 483 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 CPUState *cs = env_cpu(env); 487 488 tlb_flush_all_cpus_synced(cs); 489 } 490 491 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 492 uint64_t value) 493 { 494 CPUState *cs = env_cpu(env); 495 496 tlb_flush_all_cpus_synced(cs); 497 } 498 499 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 505 } 506 507 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 508 uint64_t value) 509 { 510 CPUState *cs = env_cpu(env); 511 512 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 513 } 514 515 /* 516 * Non-IS variants of TLB operations are upgraded to 517 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 518 * force broadcast of these operations. 519 */ 520 static bool tlb_force_broadcast(CPUARMState *env) 521 { 522 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 523 } 524 525 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate all (TLBIALL) */ 529 CPUState *cs = env_cpu(env); 530 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_all_cpus_synced(cs); 533 } else { 534 tlb_flush(cs); 535 } 536 } 537 538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 542 CPUState *cs = env_cpu(env); 543 544 value &= TARGET_PAGE_MASK; 545 if (tlb_force_broadcast(env)) { 546 tlb_flush_page_all_cpus_synced(cs, value); 547 } else { 548 tlb_flush_page(cs, value); 549 } 550 } 551 552 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 /* Invalidate by ASID (TLBIASID) */ 556 CPUState *cs = env_cpu(env); 557 558 if (tlb_force_broadcast(env)) { 559 tlb_flush_all_cpus_synced(cs); 560 } else { 561 tlb_flush(cs); 562 } 563 } 564 565 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 569 CPUState *cs = env_cpu(env); 570 571 value &= TARGET_PAGE_MASK; 572 if (tlb_force_broadcast(env)) { 573 tlb_flush_page_all_cpus_synced(cs, value); 574 } else { 575 tlb_flush_page(cs, value); 576 } 577 } 578 579 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 CPUState *cs = env_cpu(env); 583 584 tlb_flush_by_mmuidx(cs, 585 ARMMMUIdxBit_E10_1 | 586 ARMMMUIdxBit_E10_1_PAN | 587 ARMMMUIdxBit_E10_0); 588 } 589 590 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 CPUState *cs = env_cpu(env); 594 595 tlb_flush_by_mmuidx_all_cpus_synced(cs, 596 ARMMMUIdxBit_E10_1 | 597 ARMMMUIdxBit_E10_1_PAN | 598 ARMMMUIdxBit_E10_0); 599 } 600 601 602 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 603 uint64_t value) 604 { 605 CPUState *cs = env_cpu(env); 606 607 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 608 } 609 610 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 CPUState *cs = env_cpu(env); 614 615 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 616 } 617 618 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 619 uint64_t value) 620 { 621 CPUState *cs = env_cpu(env); 622 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 623 624 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 625 } 626 627 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 CPUState *cs = env_cpu(env); 631 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 632 633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 634 ARMMMUIdxBit_E2); 635 } 636 637 static const ARMCPRegInfo cp_reginfo[] = { 638 /* Define the secure and non-secure FCSE identifier CP registers 639 * separately because there is no secure bank in V8 (no _EL3). This allows 640 * the secure register to be properly reset and migrated. There is also no 641 * v8 EL1 version of the register so the non-secure instance stands alone. 642 */ 643 { .name = "FCSEIDR", 644 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 645 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 646 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 647 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 648 { .name = "FCSEIDR_S", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 /* Define the secure and non-secure context identifier CP registers 654 * separately because there is no secure bank in V8 (no _EL3). This allows 655 * the secure register to be properly reset and migrated. In the 656 * non-secure case, the 32-bit register will have reset and migration 657 * disabled during registration as it is handled by the 64-bit instance. 658 */ 659 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 660 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 661 .access = PL1_RW, .accessfn = access_tvm_trvm, 662 .secure = ARM_CP_SECSTATE_NS, 663 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 664 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 665 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 666 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 667 .access = PL1_RW, .accessfn = access_tvm_trvm, 668 .secure = ARM_CP_SECSTATE_S, 669 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 670 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 671 }; 672 673 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 674 /* NB: Some of these registers exist in v8 but with more precise 675 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 676 */ 677 /* MMU Domain access control / MPU write buffer control */ 678 { .name = "DACR", 679 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 680 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 681 .writefn = dacr_write, .raw_writefn = raw_write, 682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 683 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 684 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 685 * For v6 and v5, these mappings are overly broad. 686 */ 687 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 689 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 690 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 691 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 692 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 /* Cache maintenance ops; some of this space may be overridden later. */ 696 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 697 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 698 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 699 }; 700 701 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 702 /* Not all pre-v6 cores implemented this WFI, so this is slightly 703 * over-broad. 704 */ 705 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 706 .access = PL1_W, .type = ARM_CP_WFI }, 707 }; 708 709 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 710 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 711 * is UNPREDICTABLE; we choose to NOP as most implementations do). 712 */ 713 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 714 .access = PL1_W, .type = ARM_CP_WFI }, 715 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 716 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 717 * OMAPCP will override this space. 718 */ 719 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 720 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 721 .resetvalue = 0 }, 722 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 723 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 724 .resetvalue = 0 }, 725 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 726 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 727 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 728 .resetvalue = 0 }, 729 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 730 * implementing it as RAZ means the "debug architecture version" bits 731 * will read as a reserved value, which should cause Linux to not try 732 * to use the debug hardware. 733 */ 734 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 735 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 736 /* MMU TLB control. Note that the wildcarding means we cover not just 737 * the unified TLB ops but also the dside/iside/inner-shareable variants. 738 */ 739 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 752 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 753 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 754 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 755 }; 756 757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 758 uint64_t value) 759 { 760 uint32_t mask = 0; 761 762 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 763 if (!arm_feature(env, ARM_FEATURE_V8)) { 764 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 765 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 766 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 767 */ 768 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 769 /* VFP coprocessor: cp10 & cp11 [23:20] */ 770 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 771 772 if (!arm_feature(env, ARM_FEATURE_NEON)) { 773 /* ASEDIS [31] bit is RAO/WI */ 774 value |= (1 << 31); 775 } 776 777 /* VFPv3 and upwards with NEON implement 32 double precision 778 * registers (D0-D31). 779 */ 780 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 781 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 782 value |= (1 << 30); 783 } 784 } 785 value &= mask; 786 } 787 788 /* 789 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 790 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 791 */ 792 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 793 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 794 value &= ~(0xf << 20); 795 value |= env->cp15.cpacr_el1 & (0xf << 20); 796 } 797 798 env->cp15.cpacr_el1 = value; 799 } 800 801 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 802 { 803 /* 804 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 805 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 806 */ 807 uint64_t value = env->cp15.cpacr_el1; 808 809 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 810 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 811 value &= ~(0xf << 20); 812 } 813 return value; 814 } 815 816 817 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 818 { 819 /* Call cpacr_write() so that we reset with the correct RAO bits set 820 * for our CPU features. 821 */ 822 cpacr_write(env, ri, 0); 823 } 824 825 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 826 bool isread) 827 { 828 if (arm_feature(env, ARM_FEATURE_V8)) { 829 /* Check if CPACR accesses are to be trapped to EL2 */ 830 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 831 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 832 return CP_ACCESS_TRAP_EL2; 833 /* Check if CPACR accesses are to be trapped to EL3 */ 834 } else if (arm_current_el(env) < 3 && 835 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 836 return CP_ACCESS_TRAP_EL3; 837 } 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 844 bool isread) 845 { 846 /* Check if CPTR accesses are set to trap to EL3 */ 847 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 848 return CP_ACCESS_TRAP_EL3; 849 } 850 851 return CP_ACCESS_OK; 852 } 853 854 static const ARMCPRegInfo v6_cp_reginfo[] = { 855 /* prefetch by MVA in v6, NOP in v7 */ 856 { .name = "MVA_prefetch", 857 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 858 .access = PL1_W, .type = ARM_CP_NOP }, 859 /* We need to break the TB after ISB to execute self-modifying code 860 * correctly and also to take any pending interrupts immediately. 861 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 862 */ 863 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 864 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 865 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 866 .access = PL0_W, .type = ARM_CP_NOP }, 867 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 868 .access = PL0_W, .type = ARM_CP_NOP }, 869 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 870 .access = PL1_RW, .accessfn = access_tvm_trvm, 871 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 872 offsetof(CPUARMState, cp15.ifar_ns) }, 873 .resetvalue = 0, }, 874 /* Watchpoint Fault Address Register : should actually only be present 875 * for 1136, 1176, 11MPCore. 876 */ 877 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 878 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 879 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 880 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 881 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 882 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 883 }; 884 885 typedef struct pm_event { 886 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 887 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 888 bool (*supported)(CPUARMState *); 889 /* 890 * Retrieve the current count of the underlying event. The programmed 891 * counters hold a difference from the return value from this function 892 */ 893 uint64_t (*get_count)(CPUARMState *); 894 /* 895 * Return how many nanoseconds it will take (at a minimum) for count events 896 * to occur. A negative value indicates the counter will never overflow, or 897 * that the counter has otherwise arranged for the overflow bit to be set 898 * and the PMU interrupt to be raised on overflow. 899 */ 900 int64_t (*ns_per_count)(uint64_t); 901 } pm_event; 902 903 static bool event_always_supported(CPUARMState *env) 904 { 905 return true; 906 } 907 908 static uint64_t swinc_get_count(CPUARMState *env) 909 { 910 /* 911 * SW_INCR events are written directly to the pmevcntr's by writes to 912 * PMSWINC, so there is no underlying count maintained by the PMU itself 913 */ 914 return 0; 915 } 916 917 static int64_t swinc_ns_per(uint64_t ignored) 918 { 919 return -1; 920 } 921 922 /* 923 * Return the underlying cycle count for the PMU cycle counters. If we're in 924 * usermode, simply return 0. 925 */ 926 static uint64_t cycles_get_count(CPUARMState *env) 927 { 928 #ifndef CONFIG_USER_ONLY 929 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 #else 932 return cpu_get_host_ticks(); 933 #endif 934 } 935 936 #ifndef CONFIG_USER_ONLY 937 static int64_t cycles_ns_per(uint64_t cycles) 938 { 939 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 940 } 941 942 static bool instructions_supported(CPUARMState *env) 943 { 944 return icount_enabled() == 1; /* Precise instruction counting */ 945 } 946 947 static uint64_t instructions_get_count(CPUARMState *env) 948 { 949 return (uint64_t)icount_get_raw(); 950 } 951 952 static int64_t instructions_ns_per(uint64_t icount) 953 { 954 return icount_to_ns((int64_t)icount); 955 } 956 #endif 957 958 static bool pmu_8_1_events_supported(CPUARMState *env) 959 { 960 /* For events which are supported in any v8.1 PMU */ 961 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 962 } 963 964 static bool pmu_8_4_events_supported(CPUARMState *env) 965 { 966 /* For events which are supported in any v8.1 PMU */ 967 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 968 } 969 970 static uint64_t zero_event_get_count(CPUARMState *env) 971 { 972 /* For events which on QEMU never fire, so their count is always zero */ 973 return 0; 974 } 975 976 static int64_t zero_event_ns_per(uint64_t cycles) 977 { 978 /* An event which never fires can never overflow */ 979 return -1; 980 } 981 982 static const pm_event pm_events[] = { 983 { .number = 0x000, /* SW_INCR */ 984 .supported = event_always_supported, 985 .get_count = swinc_get_count, 986 .ns_per_count = swinc_ns_per, 987 }, 988 #ifndef CONFIG_USER_ONLY 989 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 990 .supported = instructions_supported, 991 .get_count = instructions_get_count, 992 .ns_per_count = instructions_ns_per, 993 }, 994 { .number = 0x011, /* CPU_CYCLES, Cycle */ 995 .supported = event_always_supported, 996 .get_count = cycles_get_count, 997 .ns_per_count = cycles_ns_per, 998 }, 999 #endif 1000 { .number = 0x023, /* STALL_FRONTEND */ 1001 .supported = pmu_8_1_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 { .number = 0x024, /* STALL_BACKEND */ 1006 .supported = pmu_8_1_events_supported, 1007 .get_count = zero_event_get_count, 1008 .ns_per_count = zero_event_ns_per, 1009 }, 1010 { .number = 0x03c, /* STALL */ 1011 .supported = pmu_8_4_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 }; 1016 1017 /* 1018 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1019 * events (i.e. the statistical profiling extension), this implementation 1020 * should first be updated to something sparse instead of the current 1021 * supported_event_map[] array. 1022 */ 1023 #define MAX_EVENT_ID 0x3c 1024 #define UNSUPPORTED_EVENT UINT16_MAX 1025 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1026 1027 /* 1028 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1029 * of ARM event numbers to indices in our pm_events array. 1030 * 1031 * Note: Events in the 0x40XX range are not currently supported. 1032 */ 1033 void pmu_init(ARMCPU *cpu) 1034 { 1035 unsigned int i; 1036 1037 /* 1038 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1039 * events to them 1040 */ 1041 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1042 supported_event_map[i] = UNSUPPORTED_EVENT; 1043 } 1044 cpu->pmceid0 = 0; 1045 cpu->pmceid1 = 0; 1046 1047 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1048 const pm_event *cnt = &pm_events[i]; 1049 assert(cnt->number <= MAX_EVENT_ID); 1050 /* We do not currently support events in the 0x40xx range */ 1051 assert(cnt->number <= 0x3f); 1052 1053 if (cnt->supported(&cpu->env)) { 1054 supported_event_map[cnt->number] = i; 1055 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1056 if (cnt->number & 0x20) { 1057 cpu->pmceid1 |= event_mask; 1058 } else { 1059 cpu->pmceid0 |= event_mask; 1060 } 1061 } 1062 } 1063 } 1064 1065 /* 1066 * Check at runtime whether a PMU event is supported for the current machine 1067 */ 1068 static bool event_supported(uint16_t number) 1069 { 1070 if (number > MAX_EVENT_ID) { 1071 return false; 1072 } 1073 return supported_event_map[number] != UNSUPPORTED_EVENT; 1074 } 1075 1076 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1077 bool isread) 1078 { 1079 /* Performance monitor registers user accessibility is controlled 1080 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1081 * trapping to EL2 or EL3 for other accesses. 1082 */ 1083 int el = arm_current_el(env); 1084 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1085 1086 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1087 return CP_ACCESS_TRAP; 1088 } 1089 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1090 return CP_ACCESS_TRAP_EL2; 1091 } 1092 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1093 return CP_ACCESS_TRAP_EL3; 1094 } 1095 1096 return CP_ACCESS_OK; 1097 } 1098 1099 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1100 const ARMCPRegInfo *ri, 1101 bool isread) 1102 { 1103 /* ER: event counter read trap control */ 1104 if (arm_feature(env, ARM_FEATURE_V8) 1105 && arm_current_el(env) == 0 1106 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1107 && isread) { 1108 return CP_ACCESS_OK; 1109 } 1110 1111 return pmreg_access(env, ri, isread); 1112 } 1113 1114 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1115 const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* SW: software increment write trap control */ 1119 if (arm_feature(env, ARM_FEATURE_V8) 1120 && arm_current_el(env) == 0 1121 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1122 && !isread) { 1123 return CP_ACCESS_OK; 1124 } 1125 1126 return pmreg_access(env, ri, isread); 1127 } 1128 1129 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1130 const ARMCPRegInfo *ri, 1131 bool isread) 1132 { 1133 /* ER: event counter read trap control */ 1134 if (arm_feature(env, ARM_FEATURE_V8) 1135 && arm_current_el(env) == 0 1136 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1137 return CP_ACCESS_OK; 1138 } 1139 1140 return pmreg_access(env, ri, isread); 1141 } 1142 1143 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1144 const ARMCPRegInfo *ri, 1145 bool isread) 1146 { 1147 /* CR: cycle counter read trap control */ 1148 if (arm_feature(env, ARM_FEATURE_V8) 1149 && arm_current_el(env) == 0 1150 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1151 && isread) { 1152 return CP_ACCESS_OK; 1153 } 1154 1155 return pmreg_access(env, ri, isread); 1156 } 1157 1158 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1159 * the current EL, security state, and register configuration. 1160 */ 1161 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1162 { 1163 uint64_t filter; 1164 bool e, p, u, nsk, nsu, nsh, m; 1165 bool enabled, prohibited, filtered; 1166 bool secure = arm_is_secure(env); 1167 int el = arm_current_el(env); 1168 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1169 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1170 1171 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1172 return false; 1173 } 1174 1175 if (!arm_feature(env, ARM_FEATURE_EL2) || 1176 (counter < hpmn || counter == 31)) { 1177 e = env->cp15.c9_pmcr & PMCRE; 1178 } else { 1179 e = mdcr_el2 & MDCR_HPME; 1180 } 1181 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1182 1183 if (!secure) { 1184 if (el == 2 && (counter < hpmn || counter == 31)) { 1185 prohibited = mdcr_el2 & MDCR_HPMD; 1186 } else { 1187 prohibited = false; 1188 } 1189 } else { 1190 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1191 !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (prohibited && counter == 31) { 1195 prohibited = env->cp15.c9_pmcr & PMCRDP; 1196 } 1197 1198 if (counter == 31) { 1199 filter = env->cp15.pmccfiltr_el0; 1200 } else { 1201 filter = env->cp15.c14_pmevtyper[counter]; 1202 } 1203 1204 p = filter & PMXEVTYPER_P; 1205 u = filter & PMXEVTYPER_U; 1206 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1207 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1208 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1209 m = arm_el_is_aa64(env, 1) && 1210 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1211 1212 if (el == 0) { 1213 filtered = secure ? u : u != nsu; 1214 } else if (el == 1) { 1215 filtered = secure ? p : p != nsk; 1216 } else if (el == 2) { 1217 filtered = !nsh; 1218 } else { /* EL3 */ 1219 filtered = m != p; 1220 } 1221 1222 if (counter != 31) { 1223 /* 1224 * If not checking PMCCNTR, ensure the counter is setup to an event we 1225 * support 1226 */ 1227 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1228 if (!event_supported(event)) { 1229 return false; 1230 } 1231 } 1232 1233 return enabled && !prohibited && !filtered; 1234 } 1235 1236 static void pmu_update_irq(CPUARMState *env) 1237 { 1238 ARMCPU *cpu = env_archcpu(env); 1239 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1240 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1241 } 1242 1243 /* 1244 * Ensure c15_ccnt is the guest-visible count so that operations such as 1245 * enabling/disabling the counter or filtering, modifying the count itself, 1246 * etc. can be done logically. This is essentially a no-op if the counter is 1247 * not enabled at the time of the call. 1248 */ 1249 static void pmccntr_op_start(CPUARMState *env) 1250 { 1251 uint64_t cycles = cycles_get_count(env); 1252 1253 if (pmu_counter_enabled(env, 31)) { 1254 uint64_t eff_cycles = cycles; 1255 if (env->cp15.c9_pmcr & PMCRD) { 1256 /* Increment once every 64 processor clock cycles */ 1257 eff_cycles /= 64; 1258 } 1259 1260 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1261 1262 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1263 1ull << 63 : 1ull << 31; 1264 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1265 env->cp15.c9_pmovsr |= (1 << 31); 1266 pmu_update_irq(env); 1267 } 1268 1269 env->cp15.c15_ccnt = new_pmccntr; 1270 } 1271 env->cp15.c15_ccnt_delta = cycles; 1272 } 1273 1274 /* 1275 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1276 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1277 * pmccntr_op_start. 1278 */ 1279 static void pmccntr_op_finish(CPUARMState *env) 1280 { 1281 if (pmu_counter_enabled(env, 31)) { 1282 #ifndef CONFIG_USER_ONLY 1283 /* Calculate when the counter will next overflow */ 1284 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1285 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1286 remaining_cycles = (uint32_t)remaining_cycles; 1287 } 1288 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1289 1290 if (overflow_in > 0) { 1291 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1292 overflow_in; 1293 ARMCPU *cpu = env_archcpu(env); 1294 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1295 } 1296 #endif 1297 1298 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1299 if (env->cp15.c9_pmcr & PMCRD) { 1300 /* Increment once every 64 processor clock cycles */ 1301 prev_cycles /= 64; 1302 } 1303 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1304 } 1305 } 1306 1307 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1308 { 1309 1310 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1311 uint64_t count = 0; 1312 if (event_supported(event)) { 1313 uint16_t event_idx = supported_event_map[event]; 1314 count = pm_events[event_idx].get_count(env); 1315 } 1316 1317 if (pmu_counter_enabled(env, counter)) { 1318 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1319 1320 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1321 env->cp15.c9_pmovsr |= (1 << counter); 1322 pmu_update_irq(env); 1323 } 1324 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1325 } 1326 env->cp15.c14_pmevcntr_delta[counter] = count; 1327 } 1328 1329 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1330 { 1331 if (pmu_counter_enabled(env, counter)) { 1332 #ifndef CONFIG_USER_ONLY 1333 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1334 uint16_t event_idx = supported_event_map[event]; 1335 uint64_t delta = UINT32_MAX - 1336 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1337 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1341 overflow_in; 1342 ARMCPU *cpu = env_archcpu(env); 1343 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1344 } 1345 #endif 1346 1347 env->cp15.c14_pmevcntr_delta[counter] -= 1348 env->cp15.c14_pmevcntr[counter]; 1349 } 1350 } 1351 1352 void pmu_op_start(CPUARMState *env) 1353 { 1354 unsigned int i; 1355 pmccntr_op_start(env); 1356 for (i = 0; i < pmu_num_counters(env); i++) { 1357 pmevcntr_op_start(env, i); 1358 } 1359 } 1360 1361 void pmu_op_finish(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_finish(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_finish(env, i); 1367 } 1368 } 1369 1370 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1371 { 1372 pmu_op_start(&cpu->env); 1373 } 1374 1375 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1376 { 1377 pmu_op_finish(&cpu->env); 1378 } 1379 1380 void arm_pmu_timer_cb(void *opaque) 1381 { 1382 ARMCPU *cpu = opaque; 1383 1384 /* 1385 * Update all the counter values based on the current underlying counts, 1386 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1387 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1388 * counter may expire. 1389 */ 1390 pmu_op_start(&cpu->env); 1391 pmu_op_finish(&cpu->env); 1392 } 1393 1394 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1395 uint64_t value) 1396 { 1397 pmu_op_start(env); 1398 1399 if (value & PMCRC) { 1400 /* The counter has been reset */ 1401 env->cp15.c15_ccnt = 0; 1402 } 1403 1404 if (value & PMCRP) { 1405 unsigned int i; 1406 for (i = 0; i < pmu_num_counters(env); i++) { 1407 env->cp15.c14_pmevcntr[i] = 0; 1408 } 1409 } 1410 1411 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1412 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1413 1414 pmu_op_finish(env); 1415 } 1416 1417 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1418 uint64_t value) 1419 { 1420 unsigned int i; 1421 for (i = 0; i < pmu_num_counters(env); i++) { 1422 /* Increment a counter's count iff: */ 1423 if ((value & (1 << i)) && /* counter's bit is set */ 1424 /* counter is enabled and not filtered */ 1425 pmu_counter_enabled(env, i) && 1426 /* counter is SW_INCR */ 1427 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1428 pmevcntr_op_start(env, i); 1429 1430 /* 1431 * Detect if this write causes an overflow since we can't predict 1432 * PMSWINC overflows like we can for other events 1433 */ 1434 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1435 1436 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1437 env->cp15.c9_pmovsr |= (1 << i); 1438 pmu_update_irq(env); 1439 } 1440 1441 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1442 1443 pmevcntr_op_finish(env, i); 1444 } 1445 } 1446 } 1447 1448 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1449 { 1450 uint64_t ret; 1451 pmccntr_op_start(env); 1452 ret = env->cp15.c15_ccnt; 1453 pmccntr_op_finish(env); 1454 return ret; 1455 } 1456 1457 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1458 uint64_t value) 1459 { 1460 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1461 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1462 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1463 * accessed. 1464 */ 1465 env->cp15.c9_pmselr = value & 0x1f; 1466 } 1467 1468 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1469 uint64_t value) 1470 { 1471 pmccntr_op_start(env); 1472 env->cp15.c15_ccnt = value; 1473 pmccntr_op_finish(env); 1474 } 1475 1476 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 uint64_t cur_val = pmccntr_read(env, NULL); 1480 1481 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1482 } 1483 1484 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 pmccntr_op_start(env); 1488 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1489 pmccntr_op_finish(env); 1490 } 1491 1492 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 pmccntr_op_start(env); 1496 /* M is not accessible from AArch32 */ 1497 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1498 (value & PMCCFILTR); 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1503 { 1504 /* M is not visible in AArch32 */ 1505 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1506 } 1507 1508 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1509 uint64_t value) 1510 { 1511 value &= pmu_counter_mask(env); 1512 env->cp15.c9_pmcnten |= value; 1513 } 1514 1515 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1516 uint64_t value) 1517 { 1518 value &= pmu_counter_mask(env); 1519 env->cp15.c9_pmcnten &= ~value; 1520 } 1521 1522 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 value &= pmu_counter_mask(env); 1526 env->cp15.c9_pmovsr &= ~value; 1527 pmu_update_irq(env); 1528 } 1529 1530 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 value &= pmu_counter_mask(env); 1534 env->cp15.c9_pmovsr |= value; 1535 pmu_update_irq(env); 1536 } 1537 1538 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value, const uint8_t counter) 1540 { 1541 if (counter == 31) { 1542 pmccfiltr_write(env, ri, value); 1543 } else if (counter < pmu_num_counters(env)) { 1544 pmevcntr_op_start(env, counter); 1545 1546 /* 1547 * If this counter's event type is changing, store the current 1548 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1549 * pmevcntr_op_finish has the correct baseline when it converts back to 1550 * a delta. 1551 */ 1552 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1553 PMXEVTYPER_EVTCOUNT; 1554 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1555 if (old_event != new_event) { 1556 uint64_t count = 0; 1557 if (event_supported(new_event)) { 1558 uint16_t event_idx = supported_event_map[new_event]; 1559 count = pm_events[event_idx].get_count(env); 1560 } 1561 env->cp15.c14_pmevcntr_delta[counter] = count; 1562 } 1563 1564 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1565 pmevcntr_op_finish(env, counter); 1566 } 1567 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1568 * PMSELR value is equal to or greater than the number of implemented 1569 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1570 */ 1571 } 1572 1573 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1574 const uint8_t counter) 1575 { 1576 if (counter == 31) { 1577 return env->cp15.pmccfiltr_el0; 1578 } else if (counter < pmu_num_counters(env)) { 1579 return env->cp15.c14_pmevtyper[counter]; 1580 } else { 1581 /* 1582 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1583 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1584 */ 1585 return 0; 1586 } 1587 } 1588 1589 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1593 pmevtyper_write(env, ri, value, counter); 1594 } 1595 1596 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1597 uint64_t value) 1598 { 1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1600 env->cp15.c14_pmevtyper[counter] = value; 1601 1602 /* 1603 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1604 * pmu_op_finish calls when loading saved state for a migration. Because 1605 * we're potentially updating the type of event here, the value written to 1606 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1607 * different counter type. Therefore, we need to set this value to the 1608 * current count for the counter type we're writing so that pmu_op_finish 1609 * has the correct count for its calculation. 1610 */ 1611 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1612 if (event_supported(event)) { 1613 uint16_t event_idx = supported_event_map[event]; 1614 env->cp15.c14_pmevcntr_delta[counter] = 1615 pm_events[event_idx].get_count(env); 1616 } 1617 } 1618 1619 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1620 { 1621 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1622 return pmevtyper_read(env, ri, counter); 1623 } 1624 1625 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value) 1627 { 1628 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1629 } 1630 1631 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1634 } 1635 1636 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1637 uint64_t value, uint8_t counter) 1638 { 1639 if (counter < pmu_num_counters(env)) { 1640 pmevcntr_op_start(env, counter); 1641 env->cp15.c14_pmevcntr[counter] = value; 1642 pmevcntr_op_finish(env, counter); 1643 } 1644 /* 1645 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1646 * are CONSTRAINED UNPREDICTABLE. 1647 */ 1648 } 1649 1650 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1651 uint8_t counter) 1652 { 1653 if (counter < pmu_num_counters(env)) { 1654 uint64_t ret; 1655 pmevcntr_op_start(env, counter); 1656 ret = env->cp15.c14_pmevcntr[counter]; 1657 pmevcntr_op_finish(env, counter); 1658 return ret; 1659 } else { 1660 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1661 * are CONSTRAINED UNPREDICTABLE. */ 1662 return 0; 1663 } 1664 } 1665 1666 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1667 uint64_t value) 1668 { 1669 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1670 pmevcntr_write(env, ri, value, counter); 1671 } 1672 1673 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1674 { 1675 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1676 return pmevcntr_read(env, ri, counter); 1677 } 1678 1679 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1680 uint64_t value) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 assert(counter < pmu_num_counters(env)); 1684 env->cp15.c14_pmevcntr[counter] = value; 1685 pmevcntr_write(env, ri, value, counter); 1686 } 1687 1688 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 assert(counter < pmu_num_counters(env)); 1692 return env->cp15.c14_pmevcntr[counter]; 1693 } 1694 1695 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1696 uint64_t value) 1697 { 1698 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1699 } 1700 1701 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1702 { 1703 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1704 } 1705 1706 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 if (arm_feature(env, ARM_FEATURE_V8)) { 1710 env->cp15.c9_pmuserenr = value & 0xf; 1711 } else { 1712 env->cp15.c9_pmuserenr = value & 1; 1713 } 1714 } 1715 1716 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 /* We have no event counters so only the C bit can be changed */ 1720 value &= pmu_counter_mask(env); 1721 env->cp15.c9_pminten |= value; 1722 pmu_update_irq(env); 1723 } 1724 1725 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 value &= pmu_counter_mask(env); 1729 env->cp15.c9_pminten &= ~value; 1730 pmu_update_irq(env); 1731 } 1732 1733 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* Note that even though the AArch64 view of this register has bits 1737 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1738 * architectural requirements for bits which are RES0 only in some 1739 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1740 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1741 */ 1742 raw_write(env, ri, value & ~0x1FULL); 1743 } 1744 1745 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1746 { 1747 /* Begin with base v8.0 state. */ 1748 uint32_t valid_mask = 0x3fff; 1749 ARMCPU *cpu = env_archcpu(env); 1750 1751 if (ri->state == ARM_CP_STATE_AA64) { 1752 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1753 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1754 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1755 } 1756 valid_mask &= ~SCR_NET; 1757 1758 if (cpu_isar_feature(aa64_lor, cpu)) { 1759 valid_mask |= SCR_TLOR; 1760 } 1761 if (cpu_isar_feature(aa64_pauth, cpu)) { 1762 valid_mask |= SCR_API | SCR_APK; 1763 } 1764 if (cpu_isar_feature(aa64_sel2, cpu)) { 1765 valid_mask |= SCR_EEL2; 1766 } 1767 if (cpu_isar_feature(aa64_mte, cpu)) { 1768 valid_mask |= SCR_ATA; 1769 } 1770 } else { 1771 valid_mask &= ~(SCR_RW | SCR_ST); 1772 } 1773 1774 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1775 valid_mask &= ~SCR_HCE; 1776 1777 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1778 * supported if EL2 exists. The bit is UNK/SBZP when 1779 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1780 * when EL2 is unavailable. 1781 * On ARMv8, this bit is always available. 1782 */ 1783 if (arm_feature(env, ARM_FEATURE_V7) && 1784 !arm_feature(env, ARM_FEATURE_V8)) { 1785 valid_mask &= ~SCR_SMD; 1786 } 1787 } 1788 1789 /* Clear all-context RES0 bits. */ 1790 value &= valid_mask; 1791 raw_write(env, ri, value); 1792 } 1793 1794 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1795 { 1796 /* 1797 * scr_write will set the RES1 bits on an AArch64-only CPU. 1798 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1799 */ 1800 scr_write(env, ri, 0); 1801 } 1802 1803 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1804 const ARMCPRegInfo *ri, 1805 bool isread) 1806 { 1807 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1808 return CP_ACCESS_TRAP_EL2; 1809 } 1810 1811 return CP_ACCESS_OK; 1812 } 1813 1814 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1815 { 1816 ARMCPU *cpu = env_archcpu(env); 1817 1818 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1819 * bank 1820 */ 1821 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1822 ri->secure & ARM_CP_SECSTATE_S); 1823 1824 return cpu->ccsidr[index]; 1825 } 1826 1827 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1828 uint64_t value) 1829 { 1830 raw_write(env, ri, value & 0xf); 1831 } 1832 1833 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1834 { 1835 CPUState *cs = env_cpu(env); 1836 bool el1 = arm_current_el(env) == 1; 1837 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1838 uint64_t ret = 0; 1839 1840 if (hcr_el2 & HCR_IMO) { 1841 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1842 ret |= CPSR_I; 1843 } 1844 } else { 1845 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1846 ret |= CPSR_I; 1847 } 1848 } 1849 1850 if (hcr_el2 & HCR_FMO) { 1851 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1852 ret |= CPSR_F; 1853 } 1854 } else { 1855 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1856 ret |= CPSR_F; 1857 } 1858 } 1859 1860 /* External aborts are not possible in QEMU so A bit is always clear */ 1861 return ret; 1862 } 1863 1864 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1865 bool isread) 1866 { 1867 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1868 return CP_ACCESS_TRAP_EL2; 1869 } 1870 1871 return CP_ACCESS_OK; 1872 } 1873 1874 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1875 bool isread) 1876 { 1877 if (arm_feature(env, ARM_FEATURE_V8)) { 1878 return access_aa64_tid1(env, ri, isread); 1879 } 1880 1881 return CP_ACCESS_OK; 1882 } 1883 1884 static const ARMCPRegInfo v7_cp_reginfo[] = { 1885 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1886 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1887 .access = PL1_W, .type = ARM_CP_NOP }, 1888 /* Performance monitors are implementation defined in v7, 1889 * but with an ARM recommended set of registers, which we 1890 * follow. 1891 * 1892 * Performance registers fall into three categories: 1893 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1894 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1895 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1896 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1897 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1898 */ 1899 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1900 .access = PL0_RW, .type = ARM_CP_ALIAS, 1901 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1902 .writefn = pmcntenset_write, 1903 .accessfn = pmreg_access, 1904 .raw_writefn = raw_write }, 1905 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1906 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1907 .access = PL0_RW, .accessfn = pmreg_access, 1908 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1909 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1910 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1911 .access = PL0_RW, 1912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1913 .accessfn = pmreg_access, 1914 .writefn = pmcntenclr_write, 1915 .type = ARM_CP_ALIAS }, 1916 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1917 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1918 .access = PL0_RW, .accessfn = pmreg_access, 1919 .type = ARM_CP_ALIAS, 1920 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1921 .writefn = pmcntenclr_write }, 1922 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1923 .access = PL0_RW, .type = ARM_CP_IO, 1924 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1925 .accessfn = pmreg_access, 1926 .writefn = pmovsr_write, 1927 .raw_writefn = raw_write }, 1928 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1929 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1930 .access = PL0_RW, .accessfn = pmreg_access, 1931 .type = ARM_CP_ALIAS | ARM_CP_IO, 1932 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1933 .writefn = pmovsr_write, 1934 .raw_writefn = raw_write }, 1935 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1936 .access = PL0_W, .accessfn = pmreg_access_swinc, 1937 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1938 .writefn = pmswinc_write }, 1939 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1940 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1941 .access = PL0_W, .accessfn = pmreg_access_swinc, 1942 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1943 .writefn = pmswinc_write }, 1944 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1945 .access = PL0_RW, .type = ARM_CP_ALIAS, 1946 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1947 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1948 .raw_writefn = raw_write}, 1949 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1951 .access = PL0_RW, .accessfn = pmreg_access_selr, 1952 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1953 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1954 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1955 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1956 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1957 .accessfn = pmreg_access_ccntr }, 1958 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1960 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1961 .type = ARM_CP_IO, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1963 .readfn = pmccntr_read, .writefn = pmccntr_write, 1964 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1965 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1966 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1967 .access = PL0_RW, .accessfn = pmreg_access, 1968 .type = ARM_CP_ALIAS | ARM_CP_IO, 1969 .resetvalue = 0, }, 1970 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1971 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1972 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1973 .access = PL0_RW, .accessfn = pmreg_access, 1974 .type = ARM_CP_IO, 1975 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1976 .resetvalue = 0, }, 1977 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1978 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1979 .accessfn = pmreg_access, 1980 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1981 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1983 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1984 .accessfn = pmreg_access, 1985 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1986 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1988 .accessfn = pmreg_access_xevcntr, 1989 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1990 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1991 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access_xevcntr, 1994 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1995 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1996 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1997 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1998 .resetvalue = 0, 1999 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2000 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2002 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2003 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2004 .resetvalue = 0, 2005 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2006 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2007 .access = PL1_RW, .accessfn = access_tpm, 2008 .type = ARM_CP_ALIAS | ARM_CP_IO, 2009 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2010 .resetvalue = 0, 2011 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2012 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2013 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2014 .access = PL1_RW, .accessfn = access_tpm, 2015 .type = ARM_CP_IO, 2016 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2017 .writefn = pmintenset_write, .raw_writefn = raw_write, 2018 .resetvalue = 0x0 }, 2019 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2020 .access = PL1_RW, .accessfn = access_tpm, 2021 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2022 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2023 .writefn = pmintenclr_write, }, 2024 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2025 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2026 .access = PL1_RW, .accessfn = access_tpm, 2027 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2029 .writefn = pmintenclr_write }, 2030 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2031 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2032 .access = PL1_R, 2033 .accessfn = access_aa64_tid2, 2034 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2035 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2036 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2037 .access = PL1_RW, 2038 .accessfn = access_aa64_tid2, 2039 .writefn = csselr_write, .resetvalue = 0, 2040 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2041 offsetof(CPUARMState, cp15.csselr_ns) } }, 2042 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2043 * just RAZ for all cores: 2044 */ 2045 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2046 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2047 .access = PL1_R, .type = ARM_CP_CONST, 2048 .accessfn = access_aa64_tid1, 2049 .resetvalue = 0 }, 2050 /* Auxiliary fault status registers: these also are IMPDEF, and we 2051 * choose to RAZ/WI for all cores. 2052 */ 2053 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2054 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2055 .access = PL1_RW, .accessfn = access_tvm_trvm, 2056 .type = ARM_CP_CONST, .resetvalue = 0 }, 2057 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2058 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2059 .access = PL1_RW, .accessfn = access_tvm_trvm, 2060 .type = ARM_CP_CONST, .resetvalue = 0 }, 2061 /* MAIR can just read-as-written because we don't implement caches 2062 * and so don't need to care about memory attributes. 2063 */ 2064 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2065 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2066 .access = PL1_RW, .accessfn = access_tvm_trvm, 2067 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2068 .resetvalue = 0 }, 2069 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2070 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2071 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2072 .resetvalue = 0 }, 2073 /* For non-long-descriptor page tables these are PRRR and NMRR; 2074 * regardless they still act as reads-as-written for QEMU. 2075 */ 2076 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2077 * allows them to assign the correct fieldoffset based on the endianness 2078 * handled in the field definitions. 2079 */ 2080 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2081 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2082 .access = PL1_RW, .accessfn = access_tvm_trvm, 2083 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2084 offsetof(CPUARMState, cp15.mair0_ns) }, 2085 .resetfn = arm_cp_reset_ignore }, 2086 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2087 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2088 .access = PL1_RW, .accessfn = access_tvm_trvm, 2089 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2090 offsetof(CPUARMState, cp15.mair1_ns) }, 2091 .resetfn = arm_cp_reset_ignore }, 2092 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2093 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2094 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2095 /* 32 bit ITLB invalidates */ 2096 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2097 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2098 .writefn = tlbiall_write }, 2099 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2100 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2101 .writefn = tlbimva_write }, 2102 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2103 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2104 .writefn = tlbiasid_write }, 2105 /* 32 bit DTLB invalidates */ 2106 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2108 .writefn = tlbiall_write }, 2109 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbimva_write }, 2112 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2113 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2114 .writefn = tlbiasid_write }, 2115 /* 32 bit TLB invalidates */ 2116 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiall_write }, 2119 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbimva_write }, 2122 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2124 .writefn = tlbiasid_write }, 2125 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2127 .writefn = tlbimvaa_write }, 2128 }; 2129 2130 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2131 /* 32 bit TLB invalidates, Inner Shareable */ 2132 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiall_is_write }, 2135 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2137 .writefn = tlbimva_is_write }, 2138 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2139 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2140 .writefn = tlbiasid_is_write }, 2141 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2142 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2143 .writefn = tlbimvaa_is_write }, 2144 }; 2145 2146 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2147 /* PMOVSSET is not implemented in v7 before v7ve */ 2148 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2149 .access = PL0_RW, .accessfn = pmreg_access, 2150 .type = ARM_CP_ALIAS | ARM_CP_IO, 2151 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2152 .writefn = pmovsset_write, 2153 .raw_writefn = raw_write }, 2154 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2155 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2156 .access = PL0_RW, .accessfn = pmreg_access, 2157 .type = ARM_CP_ALIAS | ARM_CP_IO, 2158 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2159 .writefn = pmovsset_write, 2160 .raw_writefn = raw_write }, 2161 }; 2162 2163 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2164 uint64_t value) 2165 { 2166 value &= 1; 2167 env->teecr = value; 2168 } 2169 2170 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2171 bool isread) 2172 { 2173 /* 2174 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2175 * at all, so we don't need to check whether we're v8A. 2176 */ 2177 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2178 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2179 return CP_ACCESS_TRAP_EL2; 2180 } 2181 return CP_ACCESS_OK; 2182 } 2183 2184 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2185 bool isread) 2186 { 2187 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2188 return CP_ACCESS_TRAP; 2189 } 2190 return teecr_access(env, ri, isread); 2191 } 2192 2193 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2194 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2195 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2196 .resetvalue = 0, 2197 .writefn = teecr_write, .accessfn = teecr_access }, 2198 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2199 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2200 .accessfn = teehbr_access, .resetvalue = 0 }, 2201 }; 2202 2203 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2204 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2206 .access = PL0_RW, 2207 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2208 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2209 .access = PL0_RW, 2210 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2211 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2212 .resetfn = arm_cp_reset_ignore }, 2213 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2214 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2215 .access = PL0_R|PL1_W, 2216 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2217 .resetvalue = 0}, 2218 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2219 .access = PL0_R|PL1_W, 2220 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2221 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2222 .resetfn = arm_cp_reset_ignore }, 2223 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2224 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2225 .access = PL1_RW, 2226 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2227 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2228 .access = PL1_RW, 2229 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2230 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2231 .resetvalue = 0 }, 2232 }; 2233 2234 #ifndef CONFIG_USER_ONLY 2235 2236 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2237 bool isread) 2238 { 2239 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2240 * Writable only at the highest implemented exception level. 2241 */ 2242 int el = arm_current_el(env); 2243 uint64_t hcr; 2244 uint32_t cntkctl; 2245 2246 switch (el) { 2247 case 0: 2248 hcr = arm_hcr_el2_eff(env); 2249 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2250 cntkctl = env->cp15.cnthctl_el2; 2251 } else { 2252 cntkctl = env->cp15.c14_cntkctl; 2253 } 2254 if (!extract32(cntkctl, 0, 2)) { 2255 return CP_ACCESS_TRAP; 2256 } 2257 break; 2258 case 1: 2259 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2260 arm_is_secure_below_el3(env)) { 2261 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2262 return CP_ACCESS_TRAP_UNCATEGORIZED; 2263 } 2264 break; 2265 case 2: 2266 case 3: 2267 break; 2268 } 2269 2270 if (!isread && el < arm_highest_el(env)) { 2271 return CP_ACCESS_TRAP_UNCATEGORIZED; 2272 } 2273 2274 return CP_ACCESS_OK; 2275 } 2276 2277 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2278 bool isread) 2279 { 2280 unsigned int cur_el = arm_current_el(env); 2281 bool has_el2 = arm_is_el2_enabled(env); 2282 uint64_t hcr = arm_hcr_el2_eff(env); 2283 2284 switch (cur_el) { 2285 case 0: 2286 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2287 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2288 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2289 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2290 } 2291 2292 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2293 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2294 return CP_ACCESS_TRAP; 2295 } 2296 2297 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2298 if (hcr & HCR_E2H) { 2299 if (timeridx == GTIMER_PHYS && 2300 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2301 return CP_ACCESS_TRAP_EL2; 2302 } 2303 } else { 2304 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2305 if (has_el2 && timeridx == GTIMER_PHYS && 2306 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2307 return CP_ACCESS_TRAP_EL2; 2308 } 2309 } 2310 break; 2311 2312 case 1: 2313 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2314 if (has_el2 && timeridx == GTIMER_PHYS && 2315 (hcr & HCR_E2H 2316 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2317 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2318 return CP_ACCESS_TRAP_EL2; 2319 } 2320 break; 2321 } 2322 return CP_ACCESS_OK; 2323 } 2324 2325 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2326 bool isread) 2327 { 2328 unsigned int cur_el = arm_current_el(env); 2329 bool has_el2 = arm_is_el2_enabled(env); 2330 uint64_t hcr = arm_hcr_el2_eff(env); 2331 2332 switch (cur_el) { 2333 case 0: 2334 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2335 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2336 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2337 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2338 } 2339 2340 /* 2341 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2342 * EL0 if EL0[PV]TEN is zero. 2343 */ 2344 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2345 return CP_ACCESS_TRAP; 2346 } 2347 /* fall through */ 2348 2349 case 1: 2350 if (has_el2 && timeridx == GTIMER_PHYS) { 2351 if (hcr & HCR_E2H) { 2352 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2353 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2354 return CP_ACCESS_TRAP_EL2; 2355 } 2356 } else { 2357 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2358 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2359 return CP_ACCESS_TRAP_EL2; 2360 } 2361 } 2362 } 2363 break; 2364 } 2365 return CP_ACCESS_OK; 2366 } 2367 2368 static CPAccessResult gt_pct_access(CPUARMState *env, 2369 const ARMCPRegInfo *ri, 2370 bool isread) 2371 { 2372 return gt_counter_access(env, GTIMER_PHYS, isread); 2373 } 2374 2375 static CPAccessResult gt_vct_access(CPUARMState *env, 2376 const ARMCPRegInfo *ri, 2377 bool isread) 2378 { 2379 return gt_counter_access(env, GTIMER_VIRT, isread); 2380 } 2381 2382 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2383 bool isread) 2384 { 2385 return gt_timer_access(env, GTIMER_PHYS, isread); 2386 } 2387 2388 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2389 bool isread) 2390 { 2391 return gt_timer_access(env, GTIMER_VIRT, isread); 2392 } 2393 2394 static CPAccessResult gt_stimer_access(CPUARMState *env, 2395 const ARMCPRegInfo *ri, 2396 bool isread) 2397 { 2398 /* The AArch64 register view of the secure physical timer is 2399 * always accessible from EL3, and configurably accessible from 2400 * Secure EL1. 2401 */ 2402 switch (arm_current_el(env)) { 2403 case 1: 2404 if (!arm_is_secure(env)) { 2405 return CP_ACCESS_TRAP; 2406 } 2407 if (!(env->cp15.scr_el3 & SCR_ST)) { 2408 return CP_ACCESS_TRAP_EL3; 2409 } 2410 return CP_ACCESS_OK; 2411 case 0: 2412 case 2: 2413 return CP_ACCESS_TRAP; 2414 case 3: 2415 return CP_ACCESS_OK; 2416 default: 2417 g_assert_not_reached(); 2418 } 2419 } 2420 2421 static uint64_t gt_get_countervalue(CPUARMState *env) 2422 { 2423 ARMCPU *cpu = env_archcpu(env); 2424 2425 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2426 } 2427 2428 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2429 { 2430 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2431 2432 if (gt->ctl & 1) { 2433 /* Timer enabled: calculate and set current ISTATUS, irq, and 2434 * reset timer to when ISTATUS next has to change 2435 */ 2436 uint64_t offset = timeridx == GTIMER_VIRT ? 2437 cpu->env.cp15.cntvoff_el2 : 0; 2438 uint64_t count = gt_get_countervalue(&cpu->env); 2439 /* Note that this must be unsigned 64 bit arithmetic: */ 2440 int istatus = count - offset >= gt->cval; 2441 uint64_t nexttick; 2442 int irqstate; 2443 2444 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2445 2446 irqstate = (istatus && !(gt->ctl & 2)); 2447 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2448 2449 if (istatus) { 2450 /* Next transition is when count rolls back over to zero */ 2451 nexttick = UINT64_MAX; 2452 } else { 2453 /* Next transition is when we hit cval */ 2454 nexttick = gt->cval + offset; 2455 } 2456 /* Note that the desired next expiry time might be beyond the 2457 * signed-64-bit range of a QEMUTimer -- in this case we just 2458 * set the timer for as far in the future as possible. When the 2459 * timer expires we will reset the timer for any remaining period. 2460 */ 2461 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2462 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2463 } else { 2464 timer_mod(cpu->gt_timer[timeridx], nexttick); 2465 } 2466 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2467 } else { 2468 /* Timer disabled: ISTATUS and timer output always clear */ 2469 gt->ctl &= ~4; 2470 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2471 timer_del(cpu->gt_timer[timeridx]); 2472 trace_arm_gt_recalc_disabled(timeridx); 2473 } 2474 } 2475 2476 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2477 int timeridx) 2478 { 2479 ARMCPU *cpu = env_archcpu(env); 2480 2481 timer_del(cpu->gt_timer[timeridx]); 2482 } 2483 2484 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2485 { 2486 return gt_get_countervalue(env); 2487 } 2488 2489 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2490 { 2491 uint64_t hcr; 2492 2493 switch (arm_current_el(env)) { 2494 case 2: 2495 hcr = arm_hcr_el2_eff(env); 2496 if (hcr & HCR_E2H) { 2497 return 0; 2498 } 2499 break; 2500 case 0: 2501 hcr = arm_hcr_el2_eff(env); 2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2503 return 0; 2504 } 2505 break; 2506 } 2507 2508 return env->cp15.cntvoff_el2; 2509 } 2510 2511 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2512 { 2513 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2514 } 2515 2516 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2517 int timeridx, 2518 uint64_t value) 2519 { 2520 trace_arm_gt_cval_write(timeridx, value); 2521 env->cp15.c14_timer[timeridx].cval = value; 2522 gt_recalc_timer(env_archcpu(env), timeridx); 2523 } 2524 2525 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2526 int timeridx) 2527 { 2528 uint64_t offset = 0; 2529 2530 switch (timeridx) { 2531 case GTIMER_VIRT: 2532 case GTIMER_HYPVIRT: 2533 offset = gt_virt_cnt_offset(env); 2534 break; 2535 } 2536 2537 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2538 (gt_get_countervalue(env) - offset)); 2539 } 2540 2541 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2542 int timeridx, 2543 uint64_t value) 2544 { 2545 uint64_t offset = 0; 2546 2547 switch (timeridx) { 2548 case GTIMER_VIRT: 2549 case GTIMER_HYPVIRT: 2550 offset = gt_virt_cnt_offset(env); 2551 break; 2552 } 2553 2554 trace_arm_gt_tval_write(timeridx, value); 2555 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2556 sextract64(value, 0, 32); 2557 gt_recalc_timer(env_archcpu(env), timeridx); 2558 } 2559 2560 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2561 int timeridx, 2562 uint64_t value) 2563 { 2564 ARMCPU *cpu = env_archcpu(env); 2565 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2566 2567 trace_arm_gt_ctl_write(timeridx, value); 2568 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2569 if ((oldval ^ value) & 1) { 2570 /* Enable toggled */ 2571 gt_recalc_timer(cpu, timeridx); 2572 } else if ((oldval ^ value) & 2) { 2573 /* IMASK toggled: don't need to recalculate, 2574 * just set the interrupt line based on ISTATUS 2575 */ 2576 int irqstate = (oldval & 4) && !(value & 2); 2577 2578 trace_arm_gt_imask_toggle(timeridx, irqstate); 2579 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2580 } 2581 } 2582 2583 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2584 { 2585 gt_timer_reset(env, ri, GTIMER_PHYS); 2586 } 2587 2588 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2589 uint64_t value) 2590 { 2591 gt_cval_write(env, ri, GTIMER_PHYS, value); 2592 } 2593 2594 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2595 { 2596 return gt_tval_read(env, ri, GTIMER_PHYS); 2597 } 2598 2599 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2600 uint64_t value) 2601 { 2602 gt_tval_write(env, ri, GTIMER_PHYS, value); 2603 } 2604 2605 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2606 uint64_t value) 2607 { 2608 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2609 } 2610 2611 static int gt_phys_redir_timeridx(CPUARMState *env) 2612 { 2613 switch (arm_mmu_idx(env)) { 2614 case ARMMMUIdx_E20_0: 2615 case ARMMMUIdx_E20_2: 2616 case ARMMMUIdx_E20_2_PAN: 2617 case ARMMMUIdx_SE20_0: 2618 case ARMMMUIdx_SE20_2: 2619 case ARMMMUIdx_SE20_2_PAN: 2620 return GTIMER_HYP; 2621 default: 2622 return GTIMER_PHYS; 2623 } 2624 } 2625 2626 static int gt_virt_redir_timeridx(CPUARMState *env) 2627 { 2628 switch (arm_mmu_idx(env)) { 2629 case ARMMMUIdx_E20_0: 2630 case ARMMMUIdx_E20_2: 2631 case ARMMMUIdx_E20_2_PAN: 2632 case ARMMMUIdx_SE20_0: 2633 case ARMMMUIdx_SE20_2: 2634 case ARMMMUIdx_SE20_2_PAN: 2635 return GTIMER_HYPVIRT; 2636 default: 2637 return GTIMER_VIRT; 2638 } 2639 } 2640 2641 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2642 const ARMCPRegInfo *ri) 2643 { 2644 int timeridx = gt_phys_redir_timeridx(env); 2645 return env->cp15.c14_timer[timeridx].cval; 2646 } 2647 2648 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2649 uint64_t value) 2650 { 2651 int timeridx = gt_phys_redir_timeridx(env); 2652 gt_cval_write(env, ri, timeridx, value); 2653 } 2654 2655 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2656 const ARMCPRegInfo *ri) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 return gt_tval_read(env, ri, timeridx); 2660 } 2661 2662 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 gt_tval_write(env, ri, timeridx, value); 2667 } 2668 2669 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2670 const ARMCPRegInfo *ri) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 return env->cp15.c14_timer[timeridx].ctl; 2674 } 2675 2676 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 gt_ctl_write(env, ri, timeridx, value); 2681 } 2682 2683 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2684 { 2685 gt_timer_reset(env, ri, GTIMER_VIRT); 2686 } 2687 2688 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2689 uint64_t value) 2690 { 2691 gt_cval_write(env, ri, GTIMER_VIRT, value); 2692 } 2693 2694 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2695 { 2696 return gt_tval_read(env, ri, GTIMER_VIRT); 2697 } 2698 2699 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2700 uint64_t value) 2701 { 2702 gt_tval_write(env, ri, GTIMER_VIRT, value); 2703 } 2704 2705 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2706 uint64_t value) 2707 { 2708 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2709 } 2710 2711 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2712 uint64_t value) 2713 { 2714 ARMCPU *cpu = env_archcpu(env); 2715 2716 trace_arm_gt_cntvoff_write(value); 2717 raw_write(env, ri, value); 2718 gt_recalc_timer(cpu, GTIMER_VIRT); 2719 } 2720 2721 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2722 const ARMCPRegInfo *ri) 2723 { 2724 int timeridx = gt_virt_redir_timeridx(env); 2725 return env->cp15.c14_timer[timeridx].cval; 2726 } 2727 2728 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2729 uint64_t value) 2730 { 2731 int timeridx = gt_virt_redir_timeridx(env); 2732 gt_cval_write(env, ri, timeridx, value); 2733 } 2734 2735 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2736 const ARMCPRegInfo *ri) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 return gt_tval_read(env, ri, timeridx); 2740 } 2741 2742 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 gt_tval_write(env, ri, timeridx, value); 2747 } 2748 2749 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2750 const ARMCPRegInfo *ri) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 return env->cp15.c14_timer[timeridx].ctl; 2754 } 2755 2756 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 gt_ctl_write(env, ri, timeridx, value); 2761 } 2762 2763 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2764 { 2765 gt_timer_reset(env, ri, GTIMER_HYP); 2766 } 2767 2768 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2769 uint64_t value) 2770 { 2771 gt_cval_write(env, ri, GTIMER_HYP, value); 2772 } 2773 2774 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2775 { 2776 return gt_tval_read(env, ri, GTIMER_HYP); 2777 } 2778 2779 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2780 uint64_t value) 2781 { 2782 gt_tval_write(env, ri, GTIMER_HYP, value); 2783 } 2784 2785 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value) 2787 { 2788 gt_ctl_write(env, ri, GTIMER_HYP, value); 2789 } 2790 2791 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2792 { 2793 gt_timer_reset(env, ri, GTIMER_SEC); 2794 } 2795 2796 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2797 uint64_t value) 2798 { 2799 gt_cval_write(env, ri, GTIMER_SEC, value); 2800 } 2801 2802 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2803 { 2804 return gt_tval_read(env, ri, GTIMER_SEC); 2805 } 2806 2807 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2808 uint64_t value) 2809 { 2810 gt_tval_write(env, ri, GTIMER_SEC, value); 2811 } 2812 2813 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2814 uint64_t value) 2815 { 2816 gt_ctl_write(env, ri, GTIMER_SEC, value); 2817 } 2818 2819 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2820 { 2821 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2822 } 2823 2824 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2825 uint64_t value) 2826 { 2827 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2828 } 2829 2830 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2831 { 2832 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2833 } 2834 2835 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2836 uint64_t value) 2837 { 2838 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2839 } 2840 2841 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2842 uint64_t value) 2843 { 2844 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2845 } 2846 2847 void arm_gt_ptimer_cb(void *opaque) 2848 { 2849 ARMCPU *cpu = opaque; 2850 2851 gt_recalc_timer(cpu, GTIMER_PHYS); 2852 } 2853 2854 void arm_gt_vtimer_cb(void *opaque) 2855 { 2856 ARMCPU *cpu = opaque; 2857 2858 gt_recalc_timer(cpu, GTIMER_VIRT); 2859 } 2860 2861 void arm_gt_htimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_HYP); 2866 } 2867 2868 void arm_gt_stimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_SEC); 2873 } 2874 2875 void arm_gt_hvtimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2880 } 2881 2882 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2883 { 2884 ARMCPU *cpu = env_archcpu(env); 2885 2886 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2887 } 2888 2889 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2890 /* Note that CNTFRQ is purely reads-as-written for the benefit 2891 * of software; writing it doesn't actually change the timer frequency. 2892 * Our reset value matches the fixed frequency we implement the timer at. 2893 */ 2894 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2895 .type = ARM_CP_ALIAS, 2896 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2897 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2898 }, 2899 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2900 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2901 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2902 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2903 .resetfn = arm_gt_cntfrq_reset, 2904 }, 2905 /* overall control: mostly access permissions */ 2906 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2907 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2908 .access = PL1_RW, 2909 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2910 .resetvalue = 0, 2911 }, 2912 /* per-timer control */ 2913 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2914 .secure = ARM_CP_SECSTATE_NS, 2915 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2916 .accessfn = gt_ptimer_access, 2917 .fieldoffset = offsetoflow32(CPUARMState, 2918 cp15.c14_timer[GTIMER_PHYS].ctl), 2919 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2920 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2921 }, 2922 { .name = "CNTP_CTL_S", 2923 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2924 .secure = ARM_CP_SECSTATE_S, 2925 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2926 .accessfn = gt_ptimer_access, 2927 .fieldoffset = offsetoflow32(CPUARMState, 2928 cp15.c14_timer[GTIMER_SEC].ctl), 2929 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2930 }, 2931 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2932 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2933 .type = ARM_CP_IO, .access = PL0_RW, 2934 .accessfn = gt_ptimer_access, 2935 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2936 .resetvalue = 0, 2937 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2938 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2939 }, 2940 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2941 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2942 .accessfn = gt_vtimer_access, 2943 .fieldoffset = offsetoflow32(CPUARMState, 2944 cp15.c14_timer[GTIMER_VIRT].ctl), 2945 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2946 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2947 }, 2948 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2949 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2950 .type = ARM_CP_IO, .access = PL0_RW, 2951 .accessfn = gt_vtimer_access, 2952 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2953 .resetvalue = 0, 2954 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2955 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2956 }, 2957 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2958 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2959 .secure = ARM_CP_SECSTATE_NS, 2960 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2961 .accessfn = gt_ptimer_access, 2962 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2963 }, 2964 { .name = "CNTP_TVAL_S", 2965 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2966 .secure = ARM_CP_SECSTATE_S, 2967 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2968 .accessfn = gt_ptimer_access, 2969 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2970 }, 2971 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2972 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2973 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2974 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2975 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2976 }, 2977 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2978 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2979 .accessfn = gt_vtimer_access, 2980 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2981 }, 2982 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2983 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2984 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2985 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2986 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2987 }, 2988 /* The counter itself */ 2989 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2990 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2991 .accessfn = gt_pct_access, 2992 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2993 }, 2994 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2995 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2996 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2997 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2998 }, 2999 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3000 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3001 .accessfn = gt_vct_access, 3002 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3003 }, 3004 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3005 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3006 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3007 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3008 }, 3009 /* Comparison value, indicating when the timer goes off */ 3010 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3011 .secure = ARM_CP_SECSTATE_NS, 3012 .access = PL0_RW, 3013 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3014 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3015 .accessfn = gt_ptimer_access, 3016 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3017 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3018 }, 3019 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3020 .secure = ARM_CP_SECSTATE_S, 3021 .access = PL0_RW, 3022 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3023 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3024 .accessfn = gt_ptimer_access, 3025 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3026 }, 3027 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3028 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3029 .access = PL0_RW, 3030 .type = ARM_CP_IO, 3031 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3032 .resetvalue = 0, .accessfn = gt_ptimer_access, 3033 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3034 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3035 }, 3036 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3037 .access = PL0_RW, 3038 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3039 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3040 .accessfn = gt_vtimer_access, 3041 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3042 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3043 }, 3044 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3045 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3046 .access = PL0_RW, 3047 .type = ARM_CP_IO, 3048 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3049 .resetvalue = 0, .accessfn = gt_vtimer_access, 3050 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3051 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3052 }, 3053 /* Secure timer -- this is actually restricted to only EL3 3054 * and configurably Secure-EL1 via the accessfn. 3055 */ 3056 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3057 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3058 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3059 .accessfn = gt_stimer_access, 3060 .readfn = gt_sec_tval_read, 3061 .writefn = gt_sec_tval_write, 3062 .resetfn = gt_sec_timer_reset, 3063 }, 3064 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3065 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3066 .type = ARM_CP_IO, .access = PL1_RW, 3067 .accessfn = gt_stimer_access, 3068 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3069 .resetvalue = 0, 3070 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3071 }, 3072 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3073 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3074 .type = ARM_CP_IO, .access = PL1_RW, 3075 .accessfn = gt_stimer_access, 3076 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3077 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3078 }, 3079 }; 3080 3081 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3082 bool isread) 3083 { 3084 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3085 return CP_ACCESS_TRAP; 3086 } 3087 return CP_ACCESS_OK; 3088 } 3089 3090 #else 3091 3092 /* In user-mode most of the generic timer registers are inaccessible 3093 * however modern kernels (4.12+) allow access to cntvct_el0 3094 */ 3095 3096 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3097 { 3098 ARMCPU *cpu = env_archcpu(env); 3099 3100 /* Currently we have no support for QEMUTimer in linux-user so we 3101 * can't call gt_get_countervalue(env), instead we directly 3102 * call the lower level functions. 3103 */ 3104 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3105 } 3106 3107 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3108 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3109 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3110 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3112 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3113 }, 3114 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3115 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3116 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3117 .readfn = gt_virt_cnt_read, 3118 }, 3119 }; 3120 3121 #endif 3122 3123 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3124 { 3125 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3126 raw_write(env, ri, value); 3127 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3128 raw_write(env, ri, value & 0xfffff6ff); 3129 } else { 3130 raw_write(env, ri, value & 0xfffff1ff); 3131 } 3132 } 3133 3134 #ifndef CONFIG_USER_ONLY 3135 /* get_phys_addr() isn't present for user-mode-only targets */ 3136 3137 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3138 bool isread) 3139 { 3140 if (ri->opc2 & 4) { 3141 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3142 * Secure EL1 (which can only happen if EL3 is AArch64). 3143 * They are simply UNDEF if executed from NS EL1. 3144 * They function normally from EL2 or EL3. 3145 */ 3146 if (arm_current_el(env) == 1) { 3147 if (arm_is_secure_below_el3(env)) { 3148 if (env->cp15.scr_el3 & SCR_EEL2) { 3149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3150 } 3151 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3152 } 3153 return CP_ACCESS_TRAP_UNCATEGORIZED; 3154 } 3155 } 3156 return CP_ACCESS_OK; 3157 } 3158 3159 #ifdef CONFIG_TCG 3160 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3161 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3162 { 3163 hwaddr phys_addr; 3164 target_ulong page_size; 3165 int prot; 3166 bool ret; 3167 uint64_t par64; 3168 bool format64 = false; 3169 MemTxAttrs attrs = {}; 3170 ARMMMUFaultInfo fi = {}; 3171 ARMCacheAttrs cacheattrs = {}; 3172 3173 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3174 &prot, &page_size, &fi, &cacheattrs); 3175 3176 if (ret) { 3177 /* 3178 * Some kinds of translation fault must cause exceptions rather 3179 * than being reported in the PAR. 3180 */ 3181 int current_el = arm_current_el(env); 3182 int target_el; 3183 uint32_t syn, fsr, fsc; 3184 bool take_exc = false; 3185 3186 if (fi.s1ptw && current_el == 1 3187 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3188 /* 3189 * Synchronous stage 2 fault on an access made as part of the 3190 * translation table walk for AT S1E0* or AT S1E1* insn 3191 * executed from NS EL1. If this is a synchronous external abort 3192 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3193 * to EL3. Otherwise the fault is taken as an exception to EL2, 3194 * and HPFAR_EL2 holds the faulting IPA. 3195 */ 3196 if (fi.type == ARMFault_SyncExternalOnWalk && 3197 (env->cp15.scr_el3 & SCR_EA)) { 3198 target_el = 3; 3199 } else { 3200 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3201 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3202 env->cp15.hpfar_el2 |= HPFAR_NS; 3203 } 3204 target_el = 2; 3205 } 3206 take_exc = true; 3207 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3208 /* 3209 * Synchronous external aborts during a translation table walk 3210 * are taken as Data Abort exceptions. 3211 */ 3212 if (fi.stage2) { 3213 if (current_el == 3) { 3214 target_el = 3; 3215 } else { 3216 target_el = 2; 3217 } 3218 } else { 3219 target_el = exception_target_el(env); 3220 } 3221 take_exc = true; 3222 } 3223 3224 if (take_exc) { 3225 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3226 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3227 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3228 fsr = arm_fi_to_lfsc(&fi); 3229 fsc = extract32(fsr, 0, 6); 3230 } else { 3231 fsr = arm_fi_to_sfsc(&fi); 3232 fsc = 0x3f; 3233 } 3234 /* 3235 * Report exception with ESR indicating a fault due to a 3236 * translation table walk for a cache maintenance instruction. 3237 */ 3238 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3239 fi.ea, 1, fi.s1ptw, 1, fsc); 3240 env->exception.vaddress = value; 3241 env->exception.fsr = fsr; 3242 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3243 } 3244 } 3245 3246 if (is_a64(env)) { 3247 format64 = true; 3248 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3249 /* 3250 * ATS1Cxx: 3251 * * TTBCR.EAE determines whether the result is returned using the 3252 * 32-bit or the 64-bit PAR format 3253 * * Instructions executed in Hyp mode always use the 64bit format 3254 * 3255 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3256 * * The Non-secure TTBCR.EAE bit is set to 1 3257 * * The implementation includes EL2, and the value of HCR.VM is 1 3258 * 3259 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3260 * 3261 * ATS1Hx always uses the 64bit format. 3262 */ 3263 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3264 3265 if (arm_feature(env, ARM_FEATURE_EL2)) { 3266 if (mmu_idx == ARMMMUIdx_E10_0 || 3267 mmu_idx == ARMMMUIdx_E10_1 || 3268 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3269 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3270 } else { 3271 format64 |= arm_current_el(env) == 2; 3272 } 3273 } 3274 } 3275 3276 if (format64) { 3277 /* Create a 64-bit PAR */ 3278 par64 = (1 << 11); /* LPAE bit always set */ 3279 if (!ret) { 3280 par64 |= phys_addr & ~0xfffULL; 3281 if (!attrs.secure) { 3282 par64 |= (1 << 9); /* NS */ 3283 } 3284 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3285 par64 |= cacheattrs.shareability << 7; /* SH */ 3286 } else { 3287 uint32_t fsr = arm_fi_to_lfsc(&fi); 3288 3289 par64 |= 1; /* F */ 3290 par64 |= (fsr & 0x3f) << 1; /* FS */ 3291 if (fi.stage2) { 3292 par64 |= (1 << 9); /* S */ 3293 } 3294 if (fi.s1ptw) { 3295 par64 |= (1 << 8); /* PTW */ 3296 } 3297 } 3298 } else { 3299 /* fsr is a DFSR/IFSR value for the short descriptor 3300 * translation table format (with WnR always clear). 3301 * Convert it to a 32-bit PAR. 3302 */ 3303 if (!ret) { 3304 /* We do not set any attribute bits in the PAR */ 3305 if (page_size == (1 << 24) 3306 && arm_feature(env, ARM_FEATURE_V7)) { 3307 par64 = (phys_addr & 0xff000000) | (1 << 1); 3308 } else { 3309 par64 = phys_addr & 0xfffff000; 3310 } 3311 if (!attrs.secure) { 3312 par64 |= (1 << 9); /* NS */ 3313 } 3314 } else { 3315 uint32_t fsr = arm_fi_to_sfsc(&fi); 3316 3317 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3318 ((fsr & 0xf) << 1) | 1; 3319 } 3320 } 3321 return par64; 3322 } 3323 #endif /* CONFIG_TCG */ 3324 3325 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3326 { 3327 #ifdef CONFIG_TCG 3328 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3329 uint64_t par64; 3330 ARMMMUIdx mmu_idx; 3331 int el = arm_current_el(env); 3332 bool secure = arm_is_secure_below_el3(env); 3333 3334 switch (ri->opc2 & 6) { 3335 case 0: 3336 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3337 switch (el) { 3338 case 3: 3339 mmu_idx = ARMMMUIdx_SE3; 3340 break; 3341 case 2: 3342 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3343 /* fall through */ 3344 case 1: 3345 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3346 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3347 : ARMMMUIdx_Stage1_E1_PAN); 3348 } else { 3349 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3350 } 3351 break; 3352 default: 3353 g_assert_not_reached(); 3354 } 3355 break; 3356 case 2: 3357 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3358 switch (el) { 3359 case 3: 3360 mmu_idx = ARMMMUIdx_SE10_0; 3361 break; 3362 case 2: 3363 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3364 mmu_idx = ARMMMUIdx_Stage1_E0; 3365 break; 3366 case 1: 3367 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3368 break; 3369 default: 3370 g_assert_not_reached(); 3371 } 3372 break; 3373 case 4: 3374 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3375 mmu_idx = ARMMMUIdx_E10_1; 3376 break; 3377 case 6: 3378 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3379 mmu_idx = ARMMMUIdx_E10_0; 3380 break; 3381 default: 3382 g_assert_not_reached(); 3383 } 3384 3385 par64 = do_ats_write(env, value, access_type, mmu_idx); 3386 3387 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3388 #else 3389 /* Handled by hardware accelerator. */ 3390 g_assert_not_reached(); 3391 #endif /* CONFIG_TCG */ 3392 } 3393 3394 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3395 uint64_t value) 3396 { 3397 #ifdef CONFIG_TCG 3398 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3399 uint64_t par64; 3400 3401 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3402 3403 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3404 #else 3405 /* Handled by hardware accelerator. */ 3406 g_assert_not_reached(); 3407 #endif /* CONFIG_TCG */ 3408 } 3409 3410 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3411 bool isread) 3412 { 3413 if (arm_current_el(env) == 3 && 3414 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3415 return CP_ACCESS_TRAP; 3416 } 3417 return CP_ACCESS_OK; 3418 } 3419 3420 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3421 uint64_t value) 3422 { 3423 #ifdef CONFIG_TCG 3424 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3425 ARMMMUIdx mmu_idx; 3426 int secure = arm_is_secure_below_el3(env); 3427 3428 switch (ri->opc2 & 6) { 3429 case 0: 3430 switch (ri->opc1) { 3431 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3432 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3433 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3434 : ARMMMUIdx_Stage1_E1_PAN); 3435 } else { 3436 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3437 } 3438 break; 3439 case 4: /* AT S1E2R, AT S1E2W */ 3440 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3441 break; 3442 case 6: /* AT S1E3R, AT S1E3W */ 3443 mmu_idx = ARMMMUIdx_SE3; 3444 break; 3445 default: 3446 g_assert_not_reached(); 3447 } 3448 break; 3449 case 2: /* AT S1E0R, AT S1E0W */ 3450 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3451 break; 3452 case 4: /* AT S12E1R, AT S12E1W */ 3453 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3454 break; 3455 case 6: /* AT S12E0R, AT S12E0W */ 3456 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3457 break; 3458 default: 3459 g_assert_not_reached(); 3460 } 3461 3462 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3463 #else 3464 /* Handled by hardware accelerator. */ 3465 g_assert_not_reached(); 3466 #endif /* CONFIG_TCG */ 3467 } 3468 #endif 3469 3470 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3471 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3472 .access = PL1_RW, .resetvalue = 0, 3473 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3474 offsetoflow32(CPUARMState, cp15.par_ns) }, 3475 .writefn = par_write }, 3476 #ifndef CONFIG_USER_ONLY 3477 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3478 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3479 .access = PL1_W, .accessfn = ats_access, 3480 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3481 #endif 3482 }; 3483 3484 /* Return basic MPU access permission bits. */ 3485 static uint32_t simple_mpu_ap_bits(uint32_t val) 3486 { 3487 uint32_t ret; 3488 uint32_t mask; 3489 int i; 3490 ret = 0; 3491 mask = 3; 3492 for (i = 0; i < 16; i += 2) { 3493 ret |= (val >> i) & mask; 3494 mask <<= 2; 3495 } 3496 return ret; 3497 } 3498 3499 /* Pad basic MPU access permission bits to extended format. */ 3500 static uint32_t extended_mpu_ap_bits(uint32_t val) 3501 { 3502 uint32_t ret; 3503 uint32_t mask; 3504 int i; 3505 ret = 0; 3506 mask = 3; 3507 for (i = 0; i < 16; i += 2) { 3508 ret |= (val & mask) << i; 3509 mask <<= 2; 3510 } 3511 return ret; 3512 } 3513 3514 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3515 uint64_t value) 3516 { 3517 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3518 } 3519 3520 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3521 { 3522 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3523 } 3524 3525 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3526 uint64_t value) 3527 { 3528 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3529 } 3530 3531 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3532 { 3533 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3534 } 3535 3536 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3537 { 3538 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3539 3540 if (!u32p) { 3541 return 0; 3542 } 3543 3544 u32p += env->pmsav7.rnr[M_REG_NS]; 3545 return *u32p; 3546 } 3547 3548 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3549 uint64_t value) 3550 { 3551 ARMCPU *cpu = env_archcpu(env); 3552 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3553 3554 if (!u32p) { 3555 return; 3556 } 3557 3558 u32p += env->pmsav7.rnr[M_REG_NS]; 3559 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3560 *u32p = value; 3561 } 3562 3563 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3564 uint64_t value) 3565 { 3566 ARMCPU *cpu = env_archcpu(env); 3567 uint32_t nrgs = cpu->pmsav7_dregion; 3568 3569 if (value >= nrgs) { 3570 qemu_log_mask(LOG_GUEST_ERROR, 3571 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3572 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3573 return; 3574 } 3575 3576 raw_write(env, ri, value); 3577 } 3578 3579 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3580 /* Reset for all these registers is handled in arm_cpu_reset(), 3581 * because the PMSAv7 is also used by M-profile CPUs, which do 3582 * not register cpregs but still need the state to be reset. 3583 */ 3584 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3585 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3586 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3587 .readfn = pmsav7_read, .writefn = pmsav7_write, 3588 .resetfn = arm_cp_reset_ignore }, 3589 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3590 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3591 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3592 .readfn = pmsav7_read, .writefn = pmsav7_write, 3593 .resetfn = arm_cp_reset_ignore }, 3594 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3595 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3596 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3597 .readfn = pmsav7_read, .writefn = pmsav7_write, 3598 .resetfn = arm_cp_reset_ignore }, 3599 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3600 .access = PL1_RW, 3601 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3602 .writefn = pmsav7_rgnr_write, 3603 .resetfn = arm_cp_reset_ignore }, 3604 }; 3605 3606 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3607 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3608 .access = PL1_RW, .type = ARM_CP_ALIAS, 3609 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3610 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3611 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3612 .access = PL1_RW, .type = ARM_CP_ALIAS, 3613 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3614 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3615 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3616 .access = PL1_RW, 3617 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3618 .resetvalue = 0, }, 3619 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3620 .access = PL1_RW, 3621 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3622 .resetvalue = 0, }, 3623 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3624 .access = PL1_RW, 3625 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3626 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3627 .access = PL1_RW, 3628 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3629 /* Protection region base and size registers */ 3630 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3631 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3632 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3633 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3634 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3635 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3636 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3637 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3638 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3639 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3640 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3641 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3642 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3643 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3644 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3645 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3646 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3647 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3648 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3649 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3650 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3651 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3652 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3653 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3654 }; 3655 3656 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3657 uint64_t value) 3658 { 3659 TCR *tcr = raw_ptr(env, ri); 3660 int maskshift = extract32(value, 0, 3); 3661 3662 if (!arm_feature(env, ARM_FEATURE_V8)) { 3663 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3664 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3665 * using Long-desciptor translation table format */ 3666 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3667 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3668 /* In an implementation that includes the Security Extensions 3669 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3670 * Short-descriptor translation table format. 3671 */ 3672 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3673 } else { 3674 value &= TTBCR_N; 3675 } 3676 } 3677 3678 /* Update the masks corresponding to the TCR bank being written 3679 * Note that we always calculate mask and base_mask, but 3680 * they are only used for short-descriptor tables (ie if EAE is 0); 3681 * for long-descriptor tables the TCR fields are used differently 3682 * and the mask and base_mask values are meaningless. 3683 */ 3684 tcr->raw_tcr = value; 3685 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3686 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3687 } 3688 3689 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3690 uint64_t value) 3691 { 3692 ARMCPU *cpu = env_archcpu(env); 3693 TCR *tcr = raw_ptr(env, ri); 3694 3695 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3696 /* With LPAE the TTBCR could result in a change of ASID 3697 * via the TTBCR.A1 bit, so do a TLB flush. 3698 */ 3699 tlb_flush(CPU(cpu)); 3700 } 3701 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3702 value = deposit64(tcr->raw_tcr, 0, 32, value); 3703 vmsa_ttbcr_raw_write(env, ri, value); 3704 } 3705 3706 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3707 { 3708 TCR *tcr = raw_ptr(env, ri); 3709 3710 /* Reset both the TCR as well as the masks corresponding to the bank of 3711 * the TCR being reset. 3712 */ 3713 tcr->raw_tcr = 0; 3714 tcr->mask = 0; 3715 tcr->base_mask = 0xffffc000u; 3716 } 3717 3718 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3719 uint64_t value) 3720 { 3721 ARMCPU *cpu = env_archcpu(env); 3722 TCR *tcr = raw_ptr(env, ri); 3723 3724 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3725 tlb_flush(CPU(cpu)); 3726 tcr->raw_tcr = value; 3727 } 3728 3729 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3730 uint64_t value) 3731 { 3732 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3733 if (cpreg_field_is_64bit(ri) && 3734 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3735 ARMCPU *cpu = env_archcpu(env); 3736 tlb_flush(CPU(cpu)); 3737 } 3738 raw_write(env, ri, value); 3739 } 3740 3741 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3742 uint64_t value) 3743 { 3744 /* 3745 * If we are running with E2&0 regime, then an ASID is active. 3746 * Flush if that might be changing. Note we're not checking 3747 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3748 * holds the active ASID, only checking the field that might. 3749 */ 3750 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3751 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3752 uint16_t mask = ARMMMUIdxBit_E20_2 | 3753 ARMMMUIdxBit_E20_2_PAN | 3754 ARMMMUIdxBit_E20_0; 3755 3756 if (arm_is_secure_below_el3(env)) { 3757 mask >>= ARM_MMU_IDX_A_NS; 3758 } 3759 3760 tlb_flush_by_mmuidx(env_cpu(env), mask); 3761 } 3762 raw_write(env, ri, value); 3763 } 3764 3765 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3766 uint64_t value) 3767 { 3768 ARMCPU *cpu = env_archcpu(env); 3769 CPUState *cs = CPU(cpu); 3770 3771 /* 3772 * A change in VMID to the stage2 page table (Stage2) invalidates 3773 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3774 */ 3775 if (raw_read(env, ri) != value) { 3776 uint16_t mask = ARMMMUIdxBit_E10_1 | 3777 ARMMMUIdxBit_E10_1_PAN | 3778 ARMMMUIdxBit_E10_0; 3779 3780 if (arm_is_secure_below_el3(env)) { 3781 mask >>= ARM_MMU_IDX_A_NS; 3782 } 3783 3784 tlb_flush_by_mmuidx(cs, mask); 3785 raw_write(env, ri, value); 3786 } 3787 } 3788 3789 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3790 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3791 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3792 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3793 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3794 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3795 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3796 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3797 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3798 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3799 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3800 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3801 offsetof(CPUARMState, cp15.dfar_ns) } }, 3802 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3803 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3804 .access = PL1_RW, .accessfn = access_tvm_trvm, 3805 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3806 .resetvalue = 0, }, 3807 }; 3808 3809 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3810 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3811 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3812 .access = PL1_RW, .accessfn = access_tvm_trvm, 3813 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3814 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3815 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3816 .access = PL1_RW, .accessfn = access_tvm_trvm, 3817 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3818 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3819 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3820 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3821 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3822 .access = PL1_RW, .accessfn = access_tvm_trvm, 3823 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3824 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3825 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3826 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3827 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3828 .access = PL1_RW, .accessfn = access_tvm_trvm, 3829 .writefn = vmsa_tcr_el12_write, 3830 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3831 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3832 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3835 .raw_writefn = vmsa_ttbcr_raw_write, 3836 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3838 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3839 }; 3840 3841 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3842 * qemu tlbs nor adjusting cached masks. 3843 */ 3844 static const ARMCPRegInfo ttbcr2_reginfo = { 3845 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3846 .access = PL1_RW, .accessfn = access_tvm_trvm, 3847 .type = ARM_CP_ALIAS, 3848 .bank_fieldoffsets = { 3849 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3850 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3851 }, 3852 }; 3853 3854 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3855 uint64_t value) 3856 { 3857 env->cp15.c15_ticonfig = value & 0xe7; 3858 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3859 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3860 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3861 } 3862 3863 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3864 uint64_t value) 3865 { 3866 env->cp15.c15_threadid = value & 0xffff; 3867 } 3868 3869 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3870 uint64_t value) 3871 { 3872 /* Wait-for-interrupt (deprecated) */ 3873 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3874 } 3875 3876 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 /* On OMAP there are registers indicating the max/min index of dcache lines 3880 * containing a dirty line; cache flush operations have to reset these. 3881 */ 3882 env->cp15.c15_i_max = 0x000; 3883 env->cp15.c15_i_min = 0xff0; 3884 } 3885 3886 static const ARMCPRegInfo omap_cp_reginfo[] = { 3887 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3888 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3889 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3890 .resetvalue = 0, }, 3891 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3892 .access = PL1_RW, .type = ARM_CP_NOP }, 3893 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3894 .access = PL1_RW, 3895 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3896 .writefn = omap_ticonfig_write }, 3897 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3898 .access = PL1_RW, 3899 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3900 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3901 .access = PL1_RW, .resetvalue = 0xff0, 3902 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3903 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3904 .access = PL1_RW, 3905 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3906 .writefn = omap_threadid_write }, 3907 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3908 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3909 .type = ARM_CP_NO_RAW, 3910 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3911 /* TODO: Peripheral port remap register: 3912 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3913 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3914 * when MMU is off. 3915 */ 3916 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3917 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3918 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3919 .writefn = omap_cachemaint_write }, 3920 { .name = "C9", .cp = 15, .crn = 9, 3921 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3922 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3923 }; 3924 3925 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3926 uint64_t value) 3927 { 3928 env->cp15.c15_cpar = value & 0x3fff; 3929 } 3930 3931 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3932 { .name = "XSCALE_CPAR", 3933 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3934 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3935 .writefn = xscale_cpar_write, }, 3936 { .name = "XSCALE_AUXCR", 3937 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3938 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3939 .resetvalue = 0, }, 3940 /* XScale specific cache-lockdown: since we have no cache we NOP these 3941 * and hope the guest does not really rely on cache behaviour. 3942 */ 3943 { .name = "XSCALE_LOCK_ICACHE_LINE", 3944 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3945 .access = PL1_W, .type = ARM_CP_NOP }, 3946 { .name = "XSCALE_UNLOCK_ICACHE", 3947 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3948 .access = PL1_W, .type = ARM_CP_NOP }, 3949 { .name = "XSCALE_DCACHE_LOCK", 3950 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3951 .access = PL1_RW, .type = ARM_CP_NOP }, 3952 { .name = "XSCALE_UNLOCK_DCACHE", 3953 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3954 .access = PL1_W, .type = ARM_CP_NOP }, 3955 }; 3956 3957 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3958 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3959 * implementation of this implementation-defined space. 3960 * Ideally this should eventually disappear in favour of actually 3961 * implementing the correct behaviour for all cores. 3962 */ 3963 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3964 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3965 .access = PL1_RW, 3966 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3967 .resetvalue = 0 }, 3968 }; 3969 3970 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3971 /* Cache status: RAZ because we have no cache so it's always clean */ 3972 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3973 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3974 .resetvalue = 0 }, 3975 }; 3976 3977 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3978 /* We never have a a block transfer operation in progress */ 3979 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3980 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3981 .resetvalue = 0 }, 3982 /* The cache ops themselves: these all NOP for QEMU */ 3983 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3984 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3985 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3986 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3987 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3988 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3989 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3990 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3991 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3992 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3993 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3994 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3995 }; 3996 3997 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3998 /* The cache test-and-clean instructions always return (1 << 30) 3999 * to indicate that there are no dirty cache lines. 4000 */ 4001 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4002 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4003 .resetvalue = (1 << 30) }, 4004 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4005 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4006 .resetvalue = (1 << 30) }, 4007 }; 4008 4009 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4010 /* Ignore ReadBuffer accesses */ 4011 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4012 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4013 .access = PL1_RW, .resetvalue = 0, 4014 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4015 }; 4016 4017 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4018 { 4019 unsigned int cur_el = arm_current_el(env); 4020 4021 if (arm_is_el2_enabled(env) && cur_el == 1) { 4022 return env->cp15.vpidr_el2; 4023 } 4024 return raw_read(env, ri); 4025 } 4026 4027 static uint64_t mpidr_read_val(CPUARMState *env) 4028 { 4029 ARMCPU *cpu = env_archcpu(env); 4030 uint64_t mpidr = cpu->mp_affinity; 4031 4032 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4033 mpidr |= (1U << 31); 4034 /* Cores which are uniprocessor (non-coherent) 4035 * but still implement the MP extensions set 4036 * bit 30. (For instance, Cortex-R5). 4037 */ 4038 if (cpu->mp_is_up) { 4039 mpidr |= (1u << 30); 4040 } 4041 } 4042 return mpidr; 4043 } 4044 4045 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4046 { 4047 unsigned int cur_el = arm_current_el(env); 4048 4049 if (arm_is_el2_enabled(env) && cur_el == 1) { 4050 return env->cp15.vmpidr_el2; 4051 } 4052 return mpidr_read_val(env); 4053 } 4054 4055 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4056 /* NOP AMAIR0/1 */ 4057 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4058 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4059 .access = PL1_RW, .accessfn = access_tvm_trvm, 4060 .type = ARM_CP_CONST, .resetvalue = 0 }, 4061 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4062 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4063 .access = PL1_RW, .accessfn = access_tvm_trvm, 4064 .type = ARM_CP_CONST, .resetvalue = 0 }, 4065 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4066 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4067 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4068 offsetof(CPUARMState, cp15.par_ns)} }, 4069 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4070 .access = PL1_RW, .accessfn = access_tvm_trvm, 4071 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4073 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4074 .writefn = vmsa_ttbr_write, }, 4075 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4076 .access = PL1_RW, .accessfn = access_tvm_trvm, 4077 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4078 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4079 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4080 .writefn = vmsa_ttbr_write, }, 4081 }; 4082 4083 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4084 { 4085 return vfp_get_fpcr(env); 4086 } 4087 4088 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4089 uint64_t value) 4090 { 4091 vfp_set_fpcr(env, value); 4092 } 4093 4094 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4095 { 4096 return vfp_get_fpsr(env); 4097 } 4098 4099 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4100 uint64_t value) 4101 { 4102 vfp_set_fpsr(env, value); 4103 } 4104 4105 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4106 bool isread) 4107 { 4108 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4109 return CP_ACCESS_TRAP; 4110 } 4111 return CP_ACCESS_OK; 4112 } 4113 4114 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4115 uint64_t value) 4116 { 4117 env->daif = value & PSTATE_DAIF; 4118 } 4119 4120 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4121 { 4122 return env->pstate & PSTATE_PAN; 4123 } 4124 4125 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4126 uint64_t value) 4127 { 4128 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4129 } 4130 4131 static const ARMCPRegInfo pan_reginfo = { 4132 .name = "PAN", .state = ARM_CP_STATE_AA64, 4133 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4134 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4135 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4136 }; 4137 4138 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4139 { 4140 return env->pstate & PSTATE_UAO; 4141 } 4142 4143 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4147 } 4148 4149 static const ARMCPRegInfo uao_reginfo = { 4150 .name = "UAO", .state = ARM_CP_STATE_AA64, 4151 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4152 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4153 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4154 }; 4155 4156 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4157 { 4158 return env->pstate & PSTATE_DIT; 4159 } 4160 4161 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4162 uint64_t value) 4163 { 4164 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4165 } 4166 4167 static const ARMCPRegInfo dit_reginfo = { 4168 .name = "DIT", .state = ARM_CP_STATE_AA64, 4169 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4170 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4171 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4172 }; 4173 4174 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4175 { 4176 return env->pstate & PSTATE_SSBS; 4177 } 4178 4179 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4180 uint64_t value) 4181 { 4182 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4183 } 4184 4185 static const ARMCPRegInfo ssbs_reginfo = { 4186 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4187 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4188 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4189 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4190 }; 4191 4192 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4193 const ARMCPRegInfo *ri, 4194 bool isread) 4195 { 4196 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4197 switch (arm_current_el(env)) { 4198 case 0: 4199 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4200 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4201 return CP_ACCESS_TRAP; 4202 } 4203 /* fall through */ 4204 case 1: 4205 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4206 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4207 return CP_ACCESS_TRAP_EL2; 4208 } 4209 break; 4210 } 4211 return CP_ACCESS_OK; 4212 } 4213 4214 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4215 const ARMCPRegInfo *ri, 4216 bool isread) 4217 { 4218 /* Cache invalidate/clean to Point of Unification... */ 4219 switch (arm_current_el(env)) { 4220 case 0: 4221 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4222 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4223 return CP_ACCESS_TRAP; 4224 } 4225 /* fall through */ 4226 case 1: 4227 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4228 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4229 return CP_ACCESS_TRAP_EL2; 4230 } 4231 break; 4232 } 4233 return CP_ACCESS_OK; 4234 } 4235 4236 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4237 * Page D4-1736 (DDI0487A.b) 4238 */ 4239 4240 static int vae1_tlbmask(CPUARMState *env) 4241 { 4242 uint64_t hcr = arm_hcr_el2_eff(env); 4243 uint16_t mask; 4244 4245 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4246 mask = ARMMMUIdxBit_E20_2 | 4247 ARMMMUIdxBit_E20_2_PAN | 4248 ARMMMUIdxBit_E20_0; 4249 } else { 4250 mask = ARMMMUIdxBit_E10_1 | 4251 ARMMMUIdxBit_E10_1_PAN | 4252 ARMMMUIdxBit_E10_0; 4253 } 4254 4255 if (arm_is_secure_below_el3(env)) { 4256 mask >>= ARM_MMU_IDX_A_NS; 4257 } 4258 4259 return mask; 4260 } 4261 4262 /* Return 56 if TBI is enabled, 64 otherwise. */ 4263 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4264 uint64_t addr) 4265 { 4266 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4267 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4268 int select = extract64(addr, 55, 1); 4269 4270 return (tbi >> select) & 1 ? 56 : 64; 4271 } 4272 4273 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4274 { 4275 uint64_t hcr = arm_hcr_el2_eff(env); 4276 ARMMMUIdx mmu_idx; 4277 4278 /* Only the regime of the mmu_idx below is significant. */ 4279 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4280 mmu_idx = ARMMMUIdx_E20_0; 4281 } else { 4282 mmu_idx = ARMMMUIdx_E10_0; 4283 } 4284 4285 if (arm_is_secure_below_el3(env)) { 4286 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4287 } 4288 4289 return tlbbits_for_regime(env, mmu_idx, addr); 4290 } 4291 4292 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4293 uint64_t value) 4294 { 4295 CPUState *cs = env_cpu(env); 4296 int mask = vae1_tlbmask(env); 4297 4298 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4299 } 4300 4301 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4302 uint64_t value) 4303 { 4304 CPUState *cs = env_cpu(env); 4305 int mask = vae1_tlbmask(env); 4306 4307 if (tlb_force_broadcast(env)) { 4308 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4309 } else { 4310 tlb_flush_by_mmuidx(cs, mask); 4311 } 4312 } 4313 4314 static int alle1_tlbmask(CPUARMState *env) 4315 { 4316 /* 4317 * Note that the 'ALL' scope must invalidate both stage 1 and 4318 * stage 2 translations, whereas most other scopes only invalidate 4319 * stage 1 translations. 4320 */ 4321 if (arm_is_secure_below_el3(env)) { 4322 return ARMMMUIdxBit_SE10_1 | 4323 ARMMMUIdxBit_SE10_1_PAN | 4324 ARMMMUIdxBit_SE10_0; 4325 } else { 4326 return ARMMMUIdxBit_E10_1 | 4327 ARMMMUIdxBit_E10_1_PAN | 4328 ARMMMUIdxBit_E10_0; 4329 } 4330 } 4331 4332 static int e2_tlbmask(CPUARMState *env) 4333 { 4334 if (arm_is_secure_below_el3(env)) { 4335 return ARMMMUIdxBit_SE20_0 | 4336 ARMMMUIdxBit_SE20_2 | 4337 ARMMMUIdxBit_SE20_2_PAN | 4338 ARMMMUIdxBit_SE2; 4339 } else { 4340 return ARMMMUIdxBit_E20_0 | 4341 ARMMMUIdxBit_E20_2 | 4342 ARMMMUIdxBit_E20_2_PAN | 4343 ARMMMUIdxBit_E2; 4344 } 4345 } 4346 4347 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4348 uint64_t value) 4349 { 4350 CPUState *cs = env_cpu(env); 4351 int mask = alle1_tlbmask(env); 4352 4353 tlb_flush_by_mmuidx(cs, mask); 4354 } 4355 4356 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4357 uint64_t value) 4358 { 4359 CPUState *cs = env_cpu(env); 4360 int mask = e2_tlbmask(env); 4361 4362 tlb_flush_by_mmuidx(cs, mask); 4363 } 4364 4365 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4366 uint64_t value) 4367 { 4368 ARMCPU *cpu = env_archcpu(env); 4369 CPUState *cs = CPU(cpu); 4370 4371 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4372 } 4373 4374 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4375 uint64_t value) 4376 { 4377 CPUState *cs = env_cpu(env); 4378 int mask = alle1_tlbmask(env); 4379 4380 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4381 } 4382 4383 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4384 uint64_t value) 4385 { 4386 CPUState *cs = env_cpu(env); 4387 int mask = e2_tlbmask(env); 4388 4389 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4390 } 4391 4392 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4393 uint64_t value) 4394 { 4395 CPUState *cs = env_cpu(env); 4396 4397 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4398 } 4399 4400 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4401 uint64_t value) 4402 { 4403 /* Invalidate by VA, EL2 4404 * Currently handles both VAE2 and VALE2, since we don't support 4405 * flush-last-level-only. 4406 */ 4407 CPUState *cs = env_cpu(env); 4408 int mask = e2_tlbmask(env); 4409 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4410 4411 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4412 } 4413 4414 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4415 uint64_t value) 4416 { 4417 /* Invalidate by VA, EL3 4418 * Currently handles both VAE3 and VALE3, since we don't support 4419 * flush-last-level-only. 4420 */ 4421 ARMCPU *cpu = env_archcpu(env); 4422 CPUState *cs = CPU(cpu); 4423 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4424 4425 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4426 } 4427 4428 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4429 uint64_t value) 4430 { 4431 CPUState *cs = env_cpu(env); 4432 int mask = vae1_tlbmask(env); 4433 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4434 int bits = vae1_tlbbits(env, pageaddr); 4435 4436 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4437 } 4438 4439 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4440 uint64_t value) 4441 { 4442 /* Invalidate by VA, EL1&0 (AArch64 version). 4443 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4444 * since we don't support flush-for-specific-ASID-only or 4445 * flush-last-level-only. 4446 */ 4447 CPUState *cs = env_cpu(env); 4448 int mask = vae1_tlbmask(env); 4449 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4450 int bits = vae1_tlbbits(env, pageaddr); 4451 4452 if (tlb_force_broadcast(env)) { 4453 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4454 } else { 4455 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4456 } 4457 } 4458 4459 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4460 uint64_t value) 4461 { 4462 CPUState *cs = env_cpu(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 bool secure = arm_is_secure_below_el3(env); 4465 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4466 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4467 pageaddr); 4468 4469 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4470 } 4471 4472 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4473 uint64_t value) 4474 { 4475 CPUState *cs = env_cpu(env); 4476 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4477 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4478 4479 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4480 ARMMMUIdxBit_SE3, bits); 4481 } 4482 4483 #ifdef TARGET_AARCH64 4484 typedef struct { 4485 uint64_t base; 4486 uint64_t length; 4487 } TLBIRange; 4488 4489 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4490 uint64_t value) 4491 { 4492 unsigned int page_size_granule, page_shift, num, scale, exponent; 4493 /* Extract one bit to represent the va selector in use. */ 4494 uint64_t select = sextract64(value, 36, 1); 4495 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4496 TLBIRange ret = { }; 4497 4498 page_size_granule = extract64(value, 46, 2); 4499 4500 /* The granule encoded in value must match the granule in use. */ 4501 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4502 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4503 page_size_granule); 4504 return ret; 4505 } 4506 4507 page_shift = (page_size_granule - 1) * 2 + 12; 4508 num = extract64(value, 39, 5); 4509 scale = extract64(value, 44, 2); 4510 exponent = (5 * scale) + 1; 4511 4512 ret.length = (num + 1) << (exponent + page_shift); 4513 4514 if (param.select) { 4515 ret.base = sextract64(value, 0, 37); 4516 } else { 4517 ret.base = extract64(value, 0, 37); 4518 } 4519 if (param.ds) { 4520 /* 4521 * With DS=1, BaseADDR is always shifted 16 so that it is able 4522 * to address all 52 va bits. The input address is perforce 4523 * aligned on a 64k boundary regardless of translation granule. 4524 */ 4525 page_shift = 16; 4526 } 4527 ret.base <<= page_shift; 4528 4529 return ret; 4530 } 4531 4532 static void do_rvae_write(CPUARMState *env, uint64_t value, 4533 int idxmap, bool synced) 4534 { 4535 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4536 TLBIRange range; 4537 int bits; 4538 4539 range = tlbi_aa64_get_range(env, one_idx, value); 4540 bits = tlbbits_for_regime(env, one_idx, range.base); 4541 4542 if (synced) { 4543 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4544 range.base, 4545 range.length, 4546 idxmap, 4547 bits); 4548 } else { 4549 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4550 range.length, idxmap, bits); 4551 } 4552 } 4553 4554 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4555 const ARMCPRegInfo *ri, 4556 uint64_t value) 4557 { 4558 /* 4559 * Invalidate by VA range, EL1&0. 4560 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4561 * since we don't support flush-for-specific-ASID-only or 4562 * flush-last-level-only. 4563 */ 4564 4565 do_rvae_write(env, value, vae1_tlbmask(env), 4566 tlb_force_broadcast(env)); 4567 } 4568 4569 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4570 const ARMCPRegInfo *ri, 4571 uint64_t value) 4572 { 4573 /* 4574 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4575 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4576 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4577 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4578 * shareable specific flushes. 4579 */ 4580 4581 do_rvae_write(env, value, vae1_tlbmask(env), true); 4582 } 4583 4584 static int vae2_tlbmask(CPUARMState *env) 4585 { 4586 return (arm_is_secure_below_el3(env) 4587 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4588 } 4589 4590 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4591 const ARMCPRegInfo *ri, 4592 uint64_t value) 4593 { 4594 /* 4595 * Invalidate by VA range, EL2. 4596 * Currently handles all of RVAE2 and RVALE2, 4597 * since we don't support flush-for-specific-ASID-only or 4598 * flush-last-level-only. 4599 */ 4600 4601 do_rvae_write(env, value, vae2_tlbmask(env), 4602 tlb_force_broadcast(env)); 4603 4604 4605 } 4606 4607 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4608 const ARMCPRegInfo *ri, 4609 uint64_t value) 4610 { 4611 /* 4612 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4613 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4614 * since we don't support flush-for-specific-ASID-only, 4615 * flush-last-level-only or inner/outer shareable specific flushes. 4616 */ 4617 4618 do_rvae_write(env, value, vae2_tlbmask(env), true); 4619 4620 } 4621 4622 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4623 const ARMCPRegInfo *ri, 4624 uint64_t value) 4625 { 4626 /* 4627 * Invalidate by VA range, EL3. 4628 * Currently handles all of RVAE3 and RVALE3, 4629 * since we don't support flush-for-specific-ASID-only or 4630 * flush-last-level-only. 4631 */ 4632 4633 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4634 tlb_force_broadcast(env)); 4635 } 4636 4637 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4638 const ARMCPRegInfo *ri, 4639 uint64_t value) 4640 { 4641 /* 4642 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4643 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4644 * since we don't support flush-for-specific-ASID-only, 4645 * flush-last-level-only or inner/outer specific flushes. 4646 */ 4647 4648 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4649 } 4650 #endif 4651 4652 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4653 bool isread) 4654 { 4655 int cur_el = arm_current_el(env); 4656 4657 if (cur_el < 2) { 4658 uint64_t hcr = arm_hcr_el2_eff(env); 4659 4660 if (cur_el == 0) { 4661 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4662 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4663 return CP_ACCESS_TRAP_EL2; 4664 } 4665 } else { 4666 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4667 return CP_ACCESS_TRAP; 4668 } 4669 if (hcr & HCR_TDZ) { 4670 return CP_ACCESS_TRAP_EL2; 4671 } 4672 } 4673 } else if (hcr & HCR_TDZ) { 4674 return CP_ACCESS_TRAP_EL2; 4675 } 4676 } 4677 return CP_ACCESS_OK; 4678 } 4679 4680 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4681 { 4682 ARMCPU *cpu = env_archcpu(env); 4683 int dzp_bit = 1 << 4; 4684 4685 /* DZP indicates whether DC ZVA access is allowed */ 4686 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4687 dzp_bit = 0; 4688 } 4689 return cpu->dcz_blocksize | dzp_bit; 4690 } 4691 4692 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4693 bool isread) 4694 { 4695 if (!(env->pstate & PSTATE_SP)) { 4696 /* Access to SP_EL0 is undefined if it's being used as 4697 * the stack pointer. 4698 */ 4699 return CP_ACCESS_TRAP_UNCATEGORIZED; 4700 } 4701 return CP_ACCESS_OK; 4702 } 4703 4704 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4705 { 4706 return env->pstate & PSTATE_SP; 4707 } 4708 4709 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4710 { 4711 update_spsel(env, val); 4712 } 4713 4714 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4715 uint64_t value) 4716 { 4717 ARMCPU *cpu = env_archcpu(env); 4718 4719 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4720 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4721 value &= ~SCTLR_M; 4722 } 4723 4724 /* ??? Lots of these bits are not implemented. */ 4725 4726 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4727 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4728 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4729 } else { 4730 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4731 SCTLR_ATA0 | SCTLR_ATA); 4732 } 4733 } 4734 4735 if (raw_read(env, ri) == value) { 4736 /* Skip the TLB flush if nothing actually changed; Linux likes 4737 * to do a lot of pointless SCTLR writes. 4738 */ 4739 return; 4740 } 4741 4742 raw_write(env, ri, value); 4743 4744 /* This may enable/disable the MMU, so do a TLB flush. */ 4745 tlb_flush(CPU(cpu)); 4746 4747 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4748 /* 4749 * Normally we would always end the TB on an SCTLR write; see the 4750 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4751 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4752 * of hflags from the translator, so do it here. 4753 */ 4754 arm_rebuild_hflags(env); 4755 } 4756 } 4757 4758 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4759 uint64_t value) 4760 { 4761 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4762 } 4763 4764 static const ARMCPRegInfo v8_cp_reginfo[] = { 4765 /* Minimal set of EL0-visible registers. This will need to be expanded 4766 * significantly for system emulation of AArch64 CPUs. 4767 */ 4768 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4769 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4770 .access = PL0_RW, .type = ARM_CP_NZCV }, 4771 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4773 .type = ARM_CP_NO_RAW, 4774 .access = PL0_RW, .accessfn = aa64_daif_access, 4775 .fieldoffset = offsetof(CPUARMState, daif), 4776 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4777 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4778 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4779 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4780 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4781 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4782 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4783 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4784 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4785 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4786 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4787 .access = PL0_R, .type = ARM_CP_NO_RAW, 4788 .readfn = aa64_dczid_read }, 4789 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4790 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4791 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4792 #ifndef CONFIG_USER_ONLY 4793 /* Avoid overhead of an access check that always passes in user-mode */ 4794 .accessfn = aa64_zva_access, 4795 #endif 4796 }, 4797 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4798 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4799 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4800 /* Cache ops: all NOPs since we don't emulate caches */ 4801 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4803 .access = PL1_W, .type = ARM_CP_NOP, 4804 .accessfn = aa64_cacheop_pou_access }, 4805 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4806 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4807 .access = PL1_W, .type = ARM_CP_NOP, 4808 .accessfn = aa64_cacheop_pou_access }, 4809 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4811 .access = PL0_W, .type = ARM_CP_NOP, 4812 .accessfn = aa64_cacheop_pou_access }, 4813 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4814 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4815 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4816 .type = ARM_CP_NOP }, 4817 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4818 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4819 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4820 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4822 .access = PL0_W, .type = ARM_CP_NOP, 4823 .accessfn = aa64_cacheop_poc_access }, 4824 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4825 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4826 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4827 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4829 .access = PL0_W, .type = ARM_CP_NOP, 4830 .accessfn = aa64_cacheop_pou_access }, 4831 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4833 .access = PL0_W, .type = ARM_CP_NOP, 4834 .accessfn = aa64_cacheop_poc_access }, 4835 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4837 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4838 /* TLBI operations */ 4839 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4841 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4842 .writefn = tlbi_aa64_vmalle1is_write }, 4843 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4845 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4846 .writefn = tlbi_aa64_vae1is_write }, 4847 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4849 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4850 .writefn = tlbi_aa64_vmalle1is_write }, 4851 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4853 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4854 .writefn = tlbi_aa64_vae1is_write }, 4855 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4857 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4858 .writefn = tlbi_aa64_vae1is_write }, 4859 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4861 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4862 .writefn = tlbi_aa64_vae1is_write }, 4863 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4865 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4866 .writefn = tlbi_aa64_vmalle1_write }, 4867 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4869 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4870 .writefn = tlbi_aa64_vae1_write }, 4871 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4873 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4874 .writefn = tlbi_aa64_vmalle1_write }, 4875 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4877 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4878 .writefn = tlbi_aa64_vae1_write }, 4879 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4881 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4882 .writefn = tlbi_aa64_vae1_write }, 4883 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4885 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4886 .writefn = tlbi_aa64_vae1_write }, 4887 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4889 .access = PL2_W, .type = ARM_CP_NOP }, 4890 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4892 .access = PL2_W, .type = ARM_CP_NOP }, 4893 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4895 .access = PL2_W, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_alle1is_write }, 4897 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4899 .access = PL2_W, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_alle1is_write }, 4901 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4903 .access = PL2_W, .type = ARM_CP_NOP }, 4904 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4906 .access = PL2_W, .type = ARM_CP_NOP }, 4907 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4909 .access = PL2_W, .type = ARM_CP_NO_RAW, 4910 .writefn = tlbi_aa64_alle1_write }, 4911 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4913 .access = PL2_W, .type = ARM_CP_NO_RAW, 4914 .writefn = tlbi_aa64_alle1is_write }, 4915 #ifndef CONFIG_USER_ONLY 4916 /* 64 bit address translation operations */ 4917 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4919 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4920 .writefn = ats_write64 }, 4921 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4923 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4924 .writefn = ats_write64 }, 4925 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4927 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4928 .writefn = ats_write64 }, 4929 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4931 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4932 .writefn = ats_write64 }, 4933 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4934 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4935 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4936 .writefn = ats_write64 }, 4937 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4939 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4940 .writefn = ats_write64 }, 4941 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4943 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4944 .writefn = ats_write64 }, 4945 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4947 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4948 .writefn = ats_write64 }, 4949 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4950 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4952 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4953 .writefn = ats_write64 }, 4954 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4956 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4957 .writefn = ats_write64 }, 4958 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4959 .type = ARM_CP_ALIAS, 4960 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4961 .access = PL1_RW, .resetvalue = 0, 4962 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4963 .writefn = par_write }, 4964 #endif 4965 /* TLB invalidate last level of translation table walk */ 4966 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4967 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4968 .writefn = tlbimva_is_write }, 4969 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4970 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4971 .writefn = tlbimvaa_is_write }, 4972 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4973 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4974 .writefn = tlbimva_write }, 4975 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4976 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4977 .writefn = tlbimvaa_write }, 4978 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4979 .type = ARM_CP_NO_RAW, .access = PL2_W, 4980 .writefn = tlbimva_hyp_write }, 4981 { .name = "TLBIMVALHIS", 4982 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4983 .type = ARM_CP_NO_RAW, .access = PL2_W, 4984 .writefn = tlbimva_hyp_is_write }, 4985 { .name = "TLBIIPAS2", 4986 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4987 .type = ARM_CP_NOP, .access = PL2_W }, 4988 { .name = "TLBIIPAS2IS", 4989 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4990 .type = ARM_CP_NOP, .access = PL2_W }, 4991 { .name = "TLBIIPAS2L", 4992 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4993 .type = ARM_CP_NOP, .access = PL2_W }, 4994 { .name = "TLBIIPAS2LIS", 4995 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4996 .type = ARM_CP_NOP, .access = PL2_W }, 4997 /* 32 bit cache operations */ 4998 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4999 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5000 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5001 .type = ARM_CP_NOP, .access = PL1_W }, 5002 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5004 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5005 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5006 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5007 .type = ARM_CP_NOP, .access = PL1_W }, 5008 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5009 .type = ARM_CP_NOP, .access = PL1_W }, 5010 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5011 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5012 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5014 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5015 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5016 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5017 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5018 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5019 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5020 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5021 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5022 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5023 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5024 /* MMU Domain access control / MPU write buffer control */ 5025 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5026 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5027 .writefn = dacr_write, .raw_writefn = raw_write, 5028 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5029 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5030 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5031 .type = ARM_CP_ALIAS, 5032 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5033 .access = PL1_RW, 5034 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5035 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5036 .type = ARM_CP_ALIAS, 5037 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5038 .access = PL1_RW, 5039 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5040 /* We rely on the access checks not allowing the guest to write to the 5041 * state field when SPSel indicates that it's being used as the stack 5042 * pointer. 5043 */ 5044 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5046 .access = PL1_RW, .accessfn = sp_el0_access, 5047 .type = ARM_CP_ALIAS, 5048 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5049 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5050 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5051 .access = PL2_RW, .type = ARM_CP_ALIAS, 5052 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5053 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5054 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5055 .type = ARM_CP_NO_RAW, 5056 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5057 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5058 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5059 .access = PL2_RW, 5060 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5061 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5062 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5064 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5065 .writefn = dacr_write, .raw_writefn = raw_write, 5066 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5067 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5068 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5069 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5070 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5071 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5072 .type = ARM_CP_ALIAS, 5073 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5074 .access = PL2_RW, 5075 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5076 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5077 .type = ARM_CP_ALIAS, 5078 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5079 .access = PL2_RW, 5080 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5081 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5082 .type = ARM_CP_ALIAS, 5083 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5084 .access = PL2_RW, 5085 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5086 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5087 .type = ARM_CP_ALIAS, 5088 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5089 .access = PL2_RW, 5090 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5091 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5093 .resetvalue = 0, 5094 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5095 { .name = "SDCR", .type = ARM_CP_ALIAS, 5096 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5097 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5098 .writefn = sdcr_write, 5099 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5100 }; 5101 5102 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5103 { 5104 ARMCPU *cpu = env_archcpu(env); 5105 5106 if (arm_feature(env, ARM_FEATURE_V8)) { 5107 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5108 } else { 5109 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5110 } 5111 5112 if (arm_feature(env, ARM_FEATURE_EL3)) { 5113 valid_mask &= ~HCR_HCD; 5114 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5115 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5116 * However, if we're using the SMC PSCI conduit then QEMU is 5117 * effectively acting like EL3 firmware and so the guest at 5118 * EL2 should retain the ability to prevent EL1 from being 5119 * able to make SMC calls into the ersatz firmware, so in 5120 * that case HCR.TSC should be read/write. 5121 */ 5122 valid_mask &= ~HCR_TSC; 5123 } 5124 5125 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5126 if (cpu_isar_feature(aa64_vh, cpu)) { 5127 valid_mask |= HCR_E2H; 5128 } 5129 if (cpu_isar_feature(aa64_lor, cpu)) { 5130 valid_mask |= HCR_TLOR; 5131 } 5132 if (cpu_isar_feature(aa64_pauth, cpu)) { 5133 valid_mask |= HCR_API | HCR_APK; 5134 } 5135 if (cpu_isar_feature(aa64_mte, cpu)) { 5136 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5137 } 5138 } 5139 5140 /* Clear RES0 bits. */ 5141 value &= valid_mask; 5142 5143 /* 5144 * These bits change the MMU setup: 5145 * HCR_VM enables stage 2 translation 5146 * HCR_PTW forbids certain page-table setups 5147 * HCR_DC disables stage1 and enables stage2 translation 5148 * HCR_DCT enables tagging on (disabled) stage1 translation 5149 */ 5150 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5151 tlb_flush(CPU(cpu)); 5152 } 5153 env->cp15.hcr_el2 = value; 5154 5155 /* 5156 * Updates to VI and VF require us to update the status of 5157 * virtual interrupts, which are the logical OR of these bits 5158 * and the state of the input lines from the GIC. (This requires 5159 * that we have the iothread lock, which is done by marking the 5160 * reginfo structs as ARM_CP_IO.) 5161 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5162 * possible for it to be taken immediately, because VIRQ and 5163 * VFIQ are masked unless running at EL0 or EL1, and HCR 5164 * can only be written at EL2. 5165 */ 5166 g_assert(qemu_mutex_iothread_locked()); 5167 arm_cpu_update_virq(cpu); 5168 arm_cpu_update_vfiq(cpu); 5169 } 5170 5171 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5172 { 5173 do_hcr_write(env, value, 0); 5174 } 5175 5176 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5177 uint64_t value) 5178 { 5179 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5180 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5181 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5182 } 5183 5184 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5185 uint64_t value) 5186 { 5187 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5188 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5189 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5190 } 5191 5192 /* 5193 * Return the effective value of HCR_EL2. 5194 * Bits that are not included here: 5195 * RW (read from SCR_EL3.RW as needed) 5196 */ 5197 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5198 { 5199 uint64_t ret = env->cp15.hcr_el2; 5200 5201 if (!arm_is_el2_enabled(env)) { 5202 /* 5203 * "This register has no effect if EL2 is not enabled in the 5204 * current Security state". This is ARMv8.4-SecEL2 speak for 5205 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5206 * 5207 * Prior to that, the language was "In an implementation that 5208 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5209 * as if this field is 0 for all purposes other than a direct 5210 * read or write access of HCR_EL2". With lots of enumeration 5211 * on a per-field basis. In current QEMU, this is condition 5212 * is arm_is_secure_below_el3. 5213 * 5214 * Since the v8.4 language applies to the entire register, and 5215 * appears to be backward compatible, use that. 5216 */ 5217 return 0; 5218 } 5219 5220 /* 5221 * For a cpu that supports both aarch64 and aarch32, we can set bits 5222 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5223 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5224 */ 5225 if (!arm_el_is_aa64(env, 2)) { 5226 uint64_t aa32_valid; 5227 5228 /* 5229 * These bits are up-to-date as of ARMv8.6. 5230 * For HCR, it's easiest to list just the 2 bits that are invalid. 5231 * For HCR2, list those that are valid. 5232 */ 5233 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5234 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5235 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5236 ret &= aa32_valid; 5237 } 5238 5239 if (ret & HCR_TGE) { 5240 /* These bits are up-to-date as of ARMv8.6. */ 5241 if (ret & HCR_E2H) { 5242 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5243 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5244 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5245 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5246 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5247 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5248 } else { 5249 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5250 } 5251 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5252 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5253 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5254 HCR_TLOR); 5255 } 5256 5257 return ret; 5258 } 5259 5260 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5261 uint64_t value) 5262 { 5263 /* 5264 * For A-profile AArch32 EL3, if NSACR.CP10 5265 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5266 */ 5267 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5268 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5269 value &= ~(0x3 << 10); 5270 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5271 } 5272 env->cp15.cptr_el[2] = value; 5273 } 5274 5275 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5276 { 5277 /* 5278 * For A-profile AArch32 EL3, if NSACR.CP10 5279 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5280 */ 5281 uint64_t value = env->cp15.cptr_el[2]; 5282 5283 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5284 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5285 value |= 0x3 << 10; 5286 } 5287 return value; 5288 } 5289 5290 static const ARMCPRegInfo el2_cp_reginfo[] = { 5291 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5292 .type = ARM_CP_IO, 5293 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5294 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5295 .writefn = hcr_write }, 5296 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5297 .type = ARM_CP_ALIAS | ARM_CP_IO, 5298 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5299 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5300 .writefn = hcr_writelow }, 5301 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5302 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5303 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5304 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5305 .type = ARM_CP_ALIAS, 5306 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5307 .access = PL2_RW, 5308 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5309 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5310 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5311 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5312 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5313 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5314 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5315 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5316 .type = ARM_CP_ALIAS, 5317 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5318 .access = PL2_RW, 5319 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5320 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5321 .type = ARM_CP_ALIAS, 5322 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5323 .access = PL2_RW, 5324 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5325 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5326 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5327 .access = PL2_RW, .writefn = vbar_write, 5328 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5329 .resetvalue = 0 }, 5330 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5331 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5332 .access = PL3_RW, .type = ARM_CP_ALIAS, 5333 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5334 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5335 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5336 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5337 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5338 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5339 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5340 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5341 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5342 .resetvalue = 0 }, 5343 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5344 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5345 .access = PL2_RW, .type = ARM_CP_ALIAS, 5346 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5347 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5348 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5349 .access = PL2_RW, .type = ARM_CP_CONST, 5350 .resetvalue = 0 }, 5351 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5352 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5353 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5354 .access = PL2_RW, .type = ARM_CP_CONST, 5355 .resetvalue = 0 }, 5356 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5357 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5358 .access = PL2_RW, .type = ARM_CP_CONST, 5359 .resetvalue = 0 }, 5360 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5361 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5362 .access = PL2_RW, .type = ARM_CP_CONST, 5363 .resetvalue = 0 }, 5364 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5365 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5366 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5367 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5368 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5369 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5370 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5371 .type = ARM_CP_ALIAS, 5372 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5373 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5374 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5375 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5376 .access = PL2_RW, 5377 /* no .writefn needed as this can't cause an ASID change; 5378 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5379 */ 5380 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5381 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5382 .cp = 15, .opc1 = 6, .crm = 2, 5383 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5384 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5385 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5386 .writefn = vttbr_write }, 5387 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5388 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5389 .access = PL2_RW, .writefn = vttbr_write, 5390 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5391 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5392 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5393 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5394 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5395 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5396 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5397 .access = PL2_RW, .resetvalue = 0, 5398 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5399 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5400 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5401 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5402 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5403 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5404 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5405 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5406 { .name = "TLBIALLNSNH", 5407 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5408 .type = ARM_CP_NO_RAW, .access = PL2_W, 5409 .writefn = tlbiall_nsnh_write }, 5410 { .name = "TLBIALLNSNHIS", 5411 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5412 .type = ARM_CP_NO_RAW, .access = PL2_W, 5413 .writefn = tlbiall_nsnh_is_write }, 5414 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5415 .type = ARM_CP_NO_RAW, .access = PL2_W, 5416 .writefn = tlbiall_hyp_write }, 5417 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5418 .type = ARM_CP_NO_RAW, .access = PL2_W, 5419 .writefn = tlbiall_hyp_is_write }, 5420 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5421 .type = ARM_CP_NO_RAW, .access = PL2_W, 5422 .writefn = tlbimva_hyp_write }, 5423 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5424 .type = ARM_CP_NO_RAW, .access = PL2_W, 5425 .writefn = tlbimva_hyp_is_write }, 5426 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5428 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5429 .writefn = tlbi_aa64_alle2_write }, 5430 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5432 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5433 .writefn = tlbi_aa64_vae2_write }, 5434 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5436 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5437 .writefn = tlbi_aa64_vae2_write }, 5438 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5440 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5441 .writefn = tlbi_aa64_alle2is_write }, 5442 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5444 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5445 .writefn = tlbi_aa64_vae2is_write }, 5446 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5447 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5448 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5449 .writefn = tlbi_aa64_vae2is_write }, 5450 #ifndef CONFIG_USER_ONLY 5451 /* Unlike the other EL2-related AT operations, these must 5452 * UNDEF from EL3 if EL2 is not implemented, which is why we 5453 * define them here rather than with the rest of the AT ops. 5454 */ 5455 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5457 .access = PL2_W, .accessfn = at_s1e2_access, 5458 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5459 .writefn = ats_write64 }, 5460 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5461 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5462 .access = PL2_W, .accessfn = at_s1e2_access, 5463 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5464 .writefn = ats_write64 }, 5465 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5466 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5467 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5468 * to behave as if SCR.NS was 1. 5469 */ 5470 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5471 .access = PL2_W, 5472 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5473 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5474 .access = PL2_W, 5475 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5476 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5477 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5478 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5479 * reset values as IMPDEF. We choose to reset to 3 to comply with 5480 * both ARMv7 and ARMv8. 5481 */ 5482 .access = PL2_RW, .resetvalue = 3, 5483 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5484 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5485 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5486 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5487 .writefn = gt_cntvoff_write, 5488 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5489 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5490 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5491 .writefn = gt_cntvoff_write, 5492 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5493 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5495 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5496 .type = ARM_CP_IO, .access = PL2_RW, 5497 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5498 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5499 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5500 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5501 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5502 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5503 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5504 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5505 .resetfn = gt_hyp_timer_reset, 5506 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5507 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5508 .type = ARM_CP_IO, 5509 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5510 .access = PL2_RW, 5511 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5512 .resetvalue = 0, 5513 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5514 #endif 5515 /* The only field of MDCR_EL2 that has a defined architectural reset value 5516 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5517 */ 5518 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5519 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5520 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5521 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5522 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5523 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5524 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5525 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5526 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5527 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5528 .access = PL2_RW, 5529 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5530 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5531 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5532 .access = PL2_RW, 5533 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5534 }; 5535 5536 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5537 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5538 .type = ARM_CP_ALIAS | ARM_CP_IO, 5539 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5540 .access = PL2_RW, 5541 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5542 .writefn = hcr_writehigh }, 5543 }; 5544 5545 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5546 bool isread) 5547 { 5548 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5549 return CP_ACCESS_OK; 5550 } 5551 return CP_ACCESS_TRAP_UNCATEGORIZED; 5552 } 5553 5554 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5555 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5556 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5557 .access = PL2_RW, .accessfn = sel2_access, 5558 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5559 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5560 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5561 .access = PL2_RW, .accessfn = sel2_access, 5562 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5563 }; 5564 5565 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5566 bool isread) 5567 { 5568 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5569 * At Secure EL1 it traps to EL3 or EL2. 5570 */ 5571 if (arm_current_el(env) == 3) { 5572 return CP_ACCESS_OK; 5573 } 5574 if (arm_is_secure_below_el3(env)) { 5575 if (env->cp15.scr_el3 & SCR_EEL2) { 5576 return CP_ACCESS_TRAP_EL2; 5577 } 5578 return CP_ACCESS_TRAP_EL3; 5579 } 5580 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5581 if (isread) { 5582 return CP_ACCESS_OK; 5583 } 5584 return CP_ACCESS_TRAP_UNCATEGORIZED; 5585 } 5586 5587 static const ARMCPRegInfo el3_cp_reginfo[] = { 5588 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5590 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5591 .resetfn = scr_reset, .writefn = scr_write }, 5592 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5593 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5594 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5595 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5596 .writefn = scr_write }, 5597 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5599 .access = PL3_RW, .resetvalue = 0, 5600 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5601 { .name = "SDER", 5602 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5603 .access = PL3_RW, .resetvalue = 0, 5604 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5605 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5606 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5607 .writefn = vbar_write, .resetvalue = 0, 5608 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5609 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5610 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5611 .access = PL3_RW, .resetvalue = 0, 5612 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5613 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5615 .access = PL3_RW, 5616 /* no .writefn needed as this can't cause an ASID change; 5617 * we must provide a .raw_writefn and .resetfn because we handle 5618 * reset and migration for the AArch32 TTBCR(S), which might be 5619 * using mask and base_mask. 5620 */ 5621 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5622 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5623 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5624 .type = ARM_CP_ALIAS, 5625 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5626 .access = PL3_RW, 5627 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5628 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5629 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5630 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5631 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5632 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5633 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5634 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5635 .type = ARM_CP_ALIAS, 5636 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5637 .access = PL3_RW, 5638 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5639 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5640 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5641 .access = PL3_RW, .writefn = vbar_write, 5642 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5643 .resetvalue = 0 }, 5644 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5645 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5646 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5647 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5648 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5649 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5650 .access = PL3_RW, .resetvalue = 0, 5651 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5652 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5653 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5654 .access = PL3_RW, .type = ARM_CP_CONST, 5655 .resetvalue = 0 }, 5656 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5657 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5658 .access = PL3_RW, .type = ARM_CP_CONST, 5659 .resetvalue = 0 }, 5660 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5661 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5662 .access = PL3_RW, .type = ARM_CP_CONST, 5663 .resetvalue = 0 }, 5664 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5665 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5666 .access = PL3_W, .type = ARM_CP_NO_RAW, 5667 .writefn = tlbi_aa64_alle3is_write }, 5668 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5669 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5670 .access = PL3_W, .type = ARM_CP_NO_RAW, 5671 .writefn = tlbi_aa64_vae3is_write }, 5672 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5673 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5674 .access = PL3_W, .type = ARM_CP_NO_RAW, 5675 .writefn = tlbi_aa64_vae3is_write }, 5676 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5677 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5678 .access = PL3_W, .type = ARM_CP_NO_RAW, 5679 .writefn = tlbi_aa64_alle3_write }, 5680 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5682 .access = PL3_W, .type = ARM_CP_NO_RAW, 5683 .writefn = tlbi_aa64_vae3_write }, 5684 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5686 .access = PL3_W, .type = ARM_CP_NO_RAW, 5687 .writefn = tlbi_aa64_vae3_write }, 5688 }; 5689 5690 #ifndef CONFIG_USER_ONLY 5691 /* Test if system register redirection is to occur in the current state. */ 5692 static bool redirect_for_e2h(CPUARMState *env) 5693 { 5694 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5695 } 5696 5697 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5698 { 5699 CPReadFn *readfn; 5700 5701 if (redirect_for_e2h(env)) { 5702 /* Switch to the saved EL2 version of the register. */ 5703 ri = ri->opaque; 5704 readfn = ri->readfn; 5705 } else { 5706 readfn = ri->orig_readfn; 5707 } 5708 if (readfn == NULL) { 5709 readfn = raw_read; 5710 } 5711 return readfn(env, ri); 5712 } 5713 5714 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5715 uint64_t value) 5716 { 5717 CPWriteFn *writefn; 5718 5719 if (redirect_for_e2h(env)) { 5720 /* Switch to the saved EL2 version of the register. */ 5721 ri = ri->opaque; 5722 writefn = ri->writefn; 5723 } else { 5724 writefn = ri->orig_writefn; 5725 } 5726 if (writefn == NULL) { 5727 writefn = raw_write; 5728 } 5729 writefn(env, ri, value); 5730 } 5731 5732 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5733 { 5734 struct E2HAlias { 5735 uint32_t src_key, dst_key, new_key; 5736 const char *src_name, *dst_name, *new_name; 5737 bool (*feature)(const ARMISARegisters *id); 5738 }; 5739 5740 #define K(op0, op1, crn, crm, op2) \ 5741 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5742 5743 static const struct E2HAlias aliases[] = { 5744 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5745 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5746 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5747 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5748 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5749 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5750 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5751 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5752 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5753 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5754 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5755 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5756 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5757 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5758 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5759 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5760 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5761 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5762 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5763 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5764 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5765 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5766 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5767 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5768 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5769 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5770 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5771 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5772 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5773 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5774 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5775 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5776 5777 /* 5778 * Note that redirection of ZCR is mentioned in the description 5779 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5780 * not in the summary table. 5781 */ 5782 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5783 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5784 5785 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5786 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5787 5788 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5789 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5790 }; 5791 #undef K 5792 5793 size_t i; 5794 5795 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5796 const struct E2HAlias *a = &aliases[i]; 5797 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5798 bool ok; 5799 5800 if (a->feature && !a->feature(&cpu->isar)) { 5801 continue; 5802 } 5803 5804 src_reg = g_hash_table_lookup(cpu->cp_regs, 5805 (gpointer)(uintptr_t)a->src_key); 5806 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5807 (gpointer)(uintptr_t)a->dst_key); 5808 g_assert(src_reg != NULL); 5809 g_assert(dst_reg != NULL); 5810 5811 /* Cross-compare names to detect typos in the keys. */ 5812 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5813 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5814 5815 /* None of the core system registers use opaque; we will. */ 5816 g_assert(src_reg->opaque == NULL); 5817 5818 /* Create alias before redirection so we dup the right data. */ 5819 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5820 5821 new_reg->name = a->new_name; 5822 new_reg->type |= ARM_CP_ALIAS; 5823 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5824 new_reg->access &= PL2_RW | PL3_RW; 5825 5826 ok = g_hash_table_insert(cpu->cp_regs, 5827 (gpointer)(uintptr_t)a->new_key, new_reg); 5828 g_assert(ok); 5829 5830 src_reg->opaque = dst_reg; 5831 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5832 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5833 if (!src_reg->raw_readfn) { 5834 src_reg->raw_readfn = raw_read; 5835 } 5836 if (!src_reg->raw_writefn) { 5837 src_reg->raw_writefn = raw_write; 5838 } 5839 src_reg->readfn = el2_e2h_read; 5840 src_reg->writefn = el2_e2h_write; 5841 } 5842 } 5843 #endif 5844 5845 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5846 bool isread) 5847 { 5848 int cur_el = arm_current_el(env); 5849 5850 if (cur_el < 2) { 5851 uint64_t hcr = arm_hcr_el2_eff(env); 5852 5853 if (cur_el == 0) { 5854 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5855 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5856 return CP_ACCESS_TRAP_EL2; 5857 } 5858 } else { 5859 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5860 return CP_ACCESS_TRAP; 5861 } 5862 if (hcr & HCR_TID2) { 5863 return CP_ACCESS_TRAP_EL2; 5864 } 5865 } 5866 } else if (hcr & HCR_TID2) { 5867 return CP_ACCESS_TRAP_EL2; 5868 } 5869 } 5870 5871 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5872 return CP_ACCESS_TRAP_EL2; 5873 } 5874 5875 return CP_ACCESS_OK; 5876 } 5877 5878 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5879 uint64_t value) 5880 { 5881 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5882 * read via a bit in OSLSR_EL1. 5883 */ 5884 int oslock; 5885 5886 if (ri->state == ARM_CP_STATE_AA32) { 5887 oslock = (value == 0xC5ACCE55); 5888 } else { 5889 oslock = value & 1; 5890 } 5891 5892 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5893 } 5894 5895 static const ARMCPRegInfo debug_cp_reginfo[] = { 5896 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5897 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5898 * unlike DBGDRAR it is never accessible from EL0. 5899 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5900 * accessor. 5901 */ 5902 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5903 .access = PL0_R, .accessfn = access_tdra, 5904 .type = ARM_CP_CONST, .resetvalue = 0 }, 5905 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5906 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5907 .access = PL1_R, .accessfn = access_tdra, 5908 .type = ARM_CP_CONST, .resetvalue = 0 }, 5909 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5910 .access = PL0_R, .accessfn = access_tdra, 5911 .type = ARM_CP_CONST, .resetvalue = 0 }, 5912 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5913 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5914 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5915 .access = PL1_RW, .accessfn = access_tda, 5916 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5917 .resetvalue = 0 }, 5918 /* 5919 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 5920 * Debug Communication Channel is not implemented. 5921 */ 5922 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 5923 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 5924 .access = PL0_R, .accessfn = access_tda, 5925 .type = ARM_CP_CONST, .resetvalue = 0 }, 5926 /* 5927 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 5928 * it is unlikely a guest will care. 5929 * We don't implement the configurable EL0 access. 5930 */ 5931 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 5932 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5933 .type = ARM_CP_ALIAS, 5934 .access = PL1_R, .accessfn = access_tda, 5935 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5936 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5937 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5938 .access = PL1_W, .type = ARM_CP_NO_RAW, 5939 .accessfn = access_tdosa, 5940 .writefn = oslar_write }, 5941 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5942 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5943 .access = PL1_R, .resetvalue = 10, 5944 .accessfn = access_tdosa, 5945 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5946 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5947 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5948 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5949 .access = PL1_RW, .accessfn = access_tdosa, 5950 .type = ARM_CP_NOP }, 5951 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5952 * implement vector catch debug events yet. 5953 */ 5954 { .name = "DBGVCR", 5955 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5956 .access = PL1_RW, .accessfn = access_tda, 5957 .type = ARM_CP_NOP }, 5958 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5959 * to save and restore a 32-bit guest's DBGVCR) 5960 */ 5961 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5962 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5963 .access = PL2_RW, .accessfn = access_tda, 5964 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 5965 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5966 * Channel but Linux may try to access this register. The 32-bit 5967 * alias is DBGDCCINT. 5968 */ 5969 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5970 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5971 .access = PL1_RW, .accessfn = access_tda, 5972 .type = ARM_CP_NOP }, 5973 }; 5974 5975 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5976 /* 64 bit access versions of the (dummy) debug registers */ 5977 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5978 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5979 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5980 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5981 }; 5982 5983 /* Return the exception level to which exceptions should be taken 5984 * via SVEAccessTrap. If an exception should be routed through 5985 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5986 * take care of raising that exception. 5987 * C.f. the ARM pseudocode function CheckSVEEnabled. 5988 */ 5989 int sve_exception_el(CPUARMState *env, int el) 5990 { 5991 #ifndef CONFIG_USER_ONLY 5992 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 5993 5994 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 5995 /* Check CPACR.ZEN. */ 5996 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 5997 case 1: 5998 if (el != 0) { 5999 break; 6000 } 6001 /* fall through */ 6002 case 0: 6003 case 2: 6004 /* route_to_el2 */ 6005 return hcr_el2 & HCR_TGE ? 2 : 1; 6006 } 6007 6008 /* Check CPACR.FPEN. */ 6009 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6010 case 1: 6011 if (el != 0) { 6012 break; 6013 } 6014 /* fall through */ 6015 case 0: 6016 case 2: 6017 return 0; 6018 } 6019 } 6020 6021 /* 6022 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6023 */ 6024 if (el <= 2) { 6025 if (hcr_el2 & HCR_E2H) { 6026 /* Check CPTR_EL2.ZEN. */ 6027 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6028 case 1: 6029 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6030 break; 6031 } 6032 /* fall through */ 6033 case 0: 6034 case 2: 6035 return 2; 6036 } 6037 6038 /* Check CPTR_EL2.FPEN. */ 6039 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6040 case 1: 6041 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6042 break; 6043 } 6044 /* fall through */ 6045 case 0: 6046 case 2: 6047 return 0; 6048 } 6049 } else if (arm_is_el2_enabled(env)) { 6050 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6051 return 2; 6052 } 6053 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6054 return 0; 6055 } 6056 } 6057 } 6058 6059 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6060 if (arm_feature(env, ARM_FEATURE_EL3) 6061 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6062 return 3; 6063 } 6064 #endif 6065 return 0; 6066 } 6067 6068 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6069 { 6070 uint32_t end_len; 6071 6072 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6073 end_len = start_len; 6074 6075 if (!test_bit(start_len, cpu->sve_vq_map)) { 6076 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6077 assert(end_len < start_len); 6078 } 6079 return end_len; 6080 } 6081 6082 /* 6083 * Given that SVE is enabled, return the vector length for EL. 6084 */ 6085 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6086 { 6087 ARMCPU *cpu = env_archcpu(env); 6088 uint32_t zcr_len = cpu->sve_max_vq - 1; 6089 6090 if (el <= 1 && 6091 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6092 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6093 } 6094 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6095 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6096 } 6097 if (arm_feature(env, ARM_FEATURE_EL3)) { 6098 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6099 } 6100 6101 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6102 } 6103 6104 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6105 uint64_t value) 6106 { 6107 int cur_el = arm_current_el(env); 6108 int old_len = sve_zcr_len_for_el(env, cur_el); 6109 int new_len; 6110 6111 /* Bits other than [3:0] are RAZ/WI. */ 6112 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6113 raw_write(env, ri, value & 0xf); 6114 6115 /* 6116 * Because we arrived here, we know both FP and SVE are enabled; 6117 * otherwise we would have trapped access to the ZCR_ELn register. 6118 */ 6119 new_len = sve_zcr_len_for_el(env, cur_el); 6120 if (new_len < old_len) { 6121 aarch64_sve_narrow_vq(env, new_len + 1); 6122 } 6123 } 6124 6125 static const ARMCPRegInfo zcr_reginfo[] = { 6126 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6127 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6128 .access = PL1_RW, .type = ARM_CP_SVE, 6129 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6130 .writefn = zcr_write, .raw_writefn = raw_write }, 6131 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6132 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6133 .access = PL2_RW, .type = ARM_CP_SVE, 6134 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6135 .writefn = zcr_write, .raw_writefn = raw_write }, 6136 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6137 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6138 .access = PL3_RW, .type = ARM_CP_SVE, 6139 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6140 .writefn = zcr_write, .raw_writefn = raw_write }, 6141 }; 6142 6143 void hw_watchpoint_update(ARMCPU *cpu, int n) 6144 { 6145 CPUARMState *env = &cpu->env; 6146 vaddr len = 0; 6147 vaddr wvr = env->cp15.dbgwvr[n]; 6148 uint64_t wcr = env->cp15.dbgwcr[n]; 6149 int mask; 6150 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6151 6152 if (env->cpu_watchpoint[n]) { 6153 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6154 env->cpu_watchpoint[n] = NULL; 6155 } 6156 6157 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6158 /* E bit clear : watchpoint disabled */ 6159 return; 6160 } 6161 6162 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6163 case 0: 6164 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6165 return; 6166 case 1: 6167 flags |= BP_MEM_READ; 6168 break; 6169 case 2: 6170 flags |= BP_MEM_WRITE; 6171 break; 6172 case 3: 6173 flags |= BP_MEM_ACCESS; 6174 break; 6175 } 6176 6177 /* Attempts to use both MASK and BAS fields simultaneously are 6178 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6179 * thus generating a watchpoint for every byte in the masked region. 6180 */ 6181 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6182 if (mask == 1 || mask == 2) { 6183 /* Reserved values of MASK; we must act as if the mask value was 6184 * some non-reserved value, or as if the watchpoint were disabled. 6185 * We choose the latter. 6186 */ 6187 return; 6188 } else if (mask) { 6189 /* Watchpoint covers an aligned area up to 2GB in size */ 6190 len = 1ULL << mask; 6191 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6192 * whether the watchpoint fires when the unmasked bits match; we opt 6193 * to generate the exceptions. 6194 */ 6195 wvr &= ~(len - 1); 6196 } else { 6197 /* Watchpoint covers bytes defined by the byte address select bits */ 6198 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6199 int basstart; 6200 6201 if (extract64(wvr, 2, 1)) { 6202 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6203 * ignored, and BAS[3:0] define which bytes to watch. 6204 */ 6205 bas &= 0xf; 6206 } 6207 6208 if (bas == 0) { 6209 /* This must act as if the watchpoint is disabled */ 6210 return; 6211 } 6212 6213 /* The BAS bits are supposed to be programmed to indicate a contiguous 6214 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6215 * we fire for each byte in the word/doubleword addressed by the WVR. 6216 * We choose to ignore any non-zero bits after the first range of 1s. 6217 */ 6218 basstart = ctz32(bas); 6219 len = cto32(bas >> basstart); 6220 wvr += basstart; 6221 } 6222 6223 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6224 &env->cpu_watchpoint[n]); 6225 } 6226 6227 void hw_watchpoint_update_all(ARMCPU *cpu) 6228 { 6229 int i; 6230 CPUARMState *env = &cpu->env; 6231 6232 /* Completely clear out existing QEMU watchpoints and our array, to 6233 * avoid possible stale entries following migration load. 6234 */ 6235 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6236 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6237 6238 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6239 hw_watchpoint_update(cpu, i); 6240 } 6241 } 6242 6243 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6244 uint64_t value) 6245 { 6246 ARMCPU *cpu = env_archcpu(env); 6247 int i = ri->crm; 6248 6249 /* 6250 * Bits [1:0] are RES0. 6251 * 6252 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6253 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6254 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6255 * whether the RESS bits are ignored when comparing an address. 6256 * 6257 * Therefore we are allowed to compare the entire register, which lets 6258 * us avoid considering whether or not FEAT_LVA is actually enabled. 6259 */ 6260 value &= ~3ULL; 6261 6262 raw_write(env, ri, value); 6263 hw_watchpoint_update(cpu, i); 6264 } 6265 6266 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6267 uint64_t value) 6268 { 6269 ARMCPU *cpu = env_archcpu(env); 6270 int i = ri->crm; 6271 6272 raw_write(env, ri, value); 6273 hw_watchpoint_update(cpu, i); 6274 } 6275 6276 void hw_breakpoint_update(ARMCPU *cpu, int n) 6277 { 6278 CPUARMState *env = &cpu->env; 6279 uint64_t bvr = env->cp15.dbgbvr[n]; 6280 uint64_t bcr = env->cp15.dbgbcr[n]; 6281 vaddr addr; 6282 int bt; 6283 int flags = BP_CPU; 6284 6285 if (env->cpu_breakpoint[n]) { 6286 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6287 env->cpu_breakpoint[n] = NULL; 6288 } 6289 6290 if (!extract64(bcr, 0, 1)) { 6291 /* E bit clear : watchpoint disabled */ 6292 return; 6293 } 6294 6295 bt = extract64(bcr, 20, 4); 6296 6297 switch (bt) { 6298 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6299 case 5: /* linked address mismatch (reserved if AArch64) */ 6300 qemu_log_mask(LOG_UNIMP, 6301 "arm: address mismatch breakpoint types not implemented\n"); 6302 return; 6303 case 0: /* unlinked address match */ 6304 case 1: /* linked address match */ 6305 { 6306 /* 6307 * Bits [1:0] are RES0. 6308 * 6309 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6310 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6311 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6312 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6313 * whether the RESS bits are ignored when comparing an address. 6314 * Therefore we are allowed to compare the entire register, which 6315 * lets us avoid considering whether FEAT_LVA is actually enabled. 6316 * 6317 * The BAS field is used to allow setting breakpoints on 16-bit 6318 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6319 * a bp will fire if the addresses covered by the bp and the addresses 6320 * covered by the insn overlap but the insn doesn't start at the 6321 * start of the bp address range. We choose to require the insn and 6322 * the bp to have the same address. The constraints on writing to 6323 * BAS enforced in dbgbcr_write mean we have only four cases: 6324 * 0b0000 => no breakpoint 6325 * 0b0011 => breakpoint on addr 6326 * 0b1100 => breakpoint on addr + 2 6327 * 0b1111 => breakpoint on addr 6328 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6329 */ 6330 int bas = extract64(bcr, 5, 4); 6331 addr = bvr & ~3ULL; 6332 if (bas == 0) { 6333 return; 6334 } 6335 if (bas == 0xc) { 6336 addr += 2; 6337 } 6338 break; 6339 } 6340 case 2: /* unlinked context ID match */ 6341 case 8: /* unlinked VMID match (reserved if no EL2) */ 6342 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6343 qemu_log_mask(LOG_UNIMP, 6344 "arm: unlinked context breakpoint types not implemented\n"); 6345 return; 6346 case 9: /* linked VMID match (reserved if no EL2) */ 6347 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6348 case 3: /* linked context ID match */ 6349 default: 6350 /* We must generate no events for Linked context matches (unless 6351 * they are linked to by some other bp/wp, which is handled in 6352 * updates for the linking bp/wp). We choose to also generate no events 6353 * for reserved values. 6354 */ 6355 return; 6356 } 6357 6358 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6359 } 6360 6361 void hw_breakpoint_update_all(ARMCPU *cpu) 6362 { 6363 int i; 6364 CPUARMState *env = &cpu->env; 6365 6366 /* Completely clear out existing QEMU breakpoints and our array, to 6367 * avoid possible stale entries following migration load. 6368 */ 6369 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6370 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6371 6372 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6373 hw_breakpoint_update(cpu, i); 6374 } 6375 } 6376 6377 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6378 uint64_t value) 6379 { 6380 ARMCPU *cpu = env_archcpu(env); 6381 int i = ri->crm; 6382 6383 raw_write(env, ri, value); 6384 hw_breakpoint_update(cpu, i); 6385 } 6386 6387 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6388 uint64_t value) 6389 { 6390 ARMCPU *cpu = env_archcpu(env); 6391 int i = ri->crm; 6392 6393 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6394 * copy of BAS[0]. 6395 */ 6396 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6397 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6398 6399 raw_write(env, ri, value); 6400 hw_breakpoint_update(cpu, i); 6401 } 6402 6403 static void define_debug_regs(ARMCPU *cpu) 6404 { 6405 /* Define v7 and v8 architectural debug registers. 6406 * These are just dummy implementations for now. 6407 */ 6408 int i; 6409 int wrps, brps, ctx_cmps; 6410 6411 /* 6412 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6413 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6414 * the register must not exist for this cpu. 6415 */ 6416 if (cpu->isar.dbgdidr != 0) { 6417 ARMCPRegInfo dbgdidr = { 6418 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6419 .opc1 = 0, .opc2 = 0, 6420 .access = PL0_R, .accessfn = access_tda, 6421 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6422 }; 6423 define_one_arm_cp_reg(cpu, &dbgdidr); 6424 } 6425 6426 /* Note that all these register fields hold "number of Xs minus 1". */ 6427 brps = arm_num_brps(cpu); 6428 wrps = arm_num_wrps(cpu); 6429 ctx_cmps = arm_num_ctx_cmps(cpu); 6430 6431 assert(ctx_cmps <= brps); 6432 6433 define_arm_cp_regs(cpu, debug_cp_reginfo); 6434 6435 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6436 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6437 } 6438 6439 for (i = 0; i < brps; i++) { 6440 ARMCPRegInfo dbgregs[] = { 6441 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6442 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6443 .access = PL1_RW, .accessfn = access_tda, 6444 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6445 .writefn = dbgbvr_write, .raw_writefn = raw_write 6446 }, 6447 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6448 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6449 .access = PL1_RW, .accessfn = access_tda, 6450 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6451 .writefn = dbgbcr_write, .raw_writefn = raw_write 6452 }, 6453 }; 6454 define_arm_cp_regs(cpu, dbgregs); 6455 } 6456 6457 for (i = 0; i < wrps; i++) { 6458 ARMCPRegInfo dbgregs[] = { 6459 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6460 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6461 .access = PL1_RW, .accessfn = access_tda, 6462 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6463 .writefn = dbgwvr_write, .raw_writefn = raw_write 6464 }, 6465 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6466 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6467 .access = PL1_RW, .accessfn = access_tda, 6468 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6469 .writefn = dbgwcr_write, .raw_writefn = raw_write 6470 }, 6471 }; 6472 define_arm_cp_regs(cpu, dbgregs); 6473 } 6474 } 6475 6476 static void define_pmu_regs(ARMCPU *cpu) 6477 { 6478 /* 6479 * v7 performance monitor control register: same implementor 6480 * field as main ID register, and we implement four counters in 6481 * addition to the cycle count register. 6482 */ 6483 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6484 ARMCPRegInfo pmcr = { 6485 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6486 .access = PL0_RW, 6487 .type = ARM_CP_IO | ARM_CP_ALIAS, 6488 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6489 .accessfn = pmreg_access, .writefn = pmcr_write, 6490 .raw_writefn = raw_write, 6491 }; 6492 ARMCPRegInfo pmcr64 = { 6493 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6494 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6495 .access = PL0_RW, .accessfn = pmreg_access, 6496 .type = ARM_CP_IO, 6497 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6498 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6499 PMCRLC, 6500 .writefn = pmcr_write, .raw_writefn = raw_write, 6501 }; 6502 define_one_arm_cp_reg(cpu, &pmcr); 6503 define_one_arm_cp_reg(cpu, &pmcr64); 6504 for (i = 0; i < pmcrn; i++) { 6505 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6506 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6507 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6508 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6509 ARMCPRegInfo pmev_regs[] = { 6510 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6511 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6512 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6513 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6514 .accessfn = pmreg_access_xevcntr }, 6515 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6516 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6517 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6518 .type = ARM_CP_IO, 6519 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6520 .raw_readfn = pmevcntr_rawread, 6521 .raw_writefn = pmevcntr_rawwrite }, 6522 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6523 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6524 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6525 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6526 .accessfn = pmreg_access }, 6527 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6528 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6529 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6530 .type = ARM_CP_IO, 6531 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6532 .raw_writefn = pmevtyper_rawwrite }, 6533 }; 6534 define_arm_cp_regs(cpu, pmev_regs); 6535 g_free(pmevcntr_name); 6536 g_free(pmevcntr_el0_name); 6537 g_free(pmevtyper_name); 6538 g_free(pmevtyper_el0_name); 6539 } 6540 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6541 ARMCPRegInfo v81_pmu_regs[] = { 6542 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6543 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6544 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6545 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6546 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6547 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6548 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6549 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6550 }; 6551 define_arm_cp_regs(cpu, v81_pmu_regs); 6552 } 6553 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6554 static const ARMCPRegInfo v84_pmmir = { 6555 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6556 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6557 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6558 .resetvalue = 0 6559 }; 6560 define_one_arm_cp_reg(cpu, &v84_pmmir); 6561 } 6562 } 6563 6564 /* We don't know until after realize whether there's a GICv3 6565 * attached, and that is what registers the gicv3 sysregs. 6566 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6567 * at runtime. 6568 */ 6569 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6570 { 6571 ARMCPU *cpu = env_archcpu(env); 6572 uint64_t pfr1 = cpu->isar.id_pfr1; 6573 6574 if (env->gicv3state) { 6575 pfr1 |= 1 << 28; 6576 } 6577 return pfr1; 6578 } 6579 6580 #ifndef CONFIG_USER_ONLY 6581 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6582 { 6583 ARMCPU *cpu = env_archcpu(env); 6584 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6585 6586 if (env->gicv3state) { 6587 pfr0 |= 1 << 24; 6588 } 6589 return pfr0; 6590 } 6591 #endif 6592 6593 /* Shared logic between LORID and the rest of the LOR* registers. 6594 * Secure state exclusion has already been dealt with. 6595 */ 6596 static CPAccessResult access_lor_ns(CPUARMState *env, 6597 const ARMCPRegInfo *ri, bool isread) 6598 { 6599 int el = arm_current_el(env); 6600 6601 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6602 return CP_ACCESS_TRAP_EL2; 6603 } 6604 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6605 return CP_ACCESS_TRAP_EL3; 6606 } 6607 return CP_ACCESS_OK; 6608 } 6609 6610 static CPAccessResult access_lor_other(CPUARMState *env, 6611 const ARMCPRegInfo *ri, bool isread) 6612 { 6613 if (arm_is_secure_below_el3(env)) { 6614 /* Access denied in secure mode. */ 6615 return CP_ACCESS_TRAP; 6616 } 6617 return access_lor_ns(env, ri, isread); 6618 } 6619 6620 /* 6621 * A trivial implementation of ARMv8.1-LOR leaves all of these 6622 * registers fixed at 0, which indicates that there are zero 6623 * supported Limited Ordering regions. 6624 */ 6625 static const ARMCPRegInfo lor_reginfo[] = { 6626 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6627 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6628 .access = PL1_RW, .accessfn = access_lor_other, 6629 .type = ARM_CP_CONST, .resetvalue = 0 }, 6630 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6631 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6632 .access = PL1_RW, .accessfn = access_lor_other, 6633 .type = ARM_CP_CONST, .resetvalue = 0 }, 6634 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6635 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6636 .access = PL1_RW, .accessfn = access_lor_other, 6637 .type = ARM_CP_CONST, .resetvalue = 0 }, 6638 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6639 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6640 .access = PL1_RW, .accessfn = access_lor_other, 6641 .type = ARM_CP_CONST, .resetvalue = 0 }, 6642 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6643 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6644 .access = PL1_R, .accessfn = access_lor_ns, 6645 .type = ARM_CP_CONST, .resetvalue = 0 }, 6646 }; 6647 6648 #ifdef TARGET_AARCH64 6649 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6650 bool isread) 6651 { 6652 int el = arm_current_el(env); 6653 6654 if (el < 2 && 6655 arm_feature(env, ARM_FEATURE_EL2) && 6656 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6657 return CP_ACCESS_TRAP_EL2; 6658 } 6659 if (el < 3 && 6660 arm_feature(env, ARM_FEATURE_EL3) && 6661 !(env->cp15.scr_el3 & SCR_APK)) { 6662 return CP_ACCESS_TRAP_EL3; 6663 } 6664 return CP_ACCESS_OK; 6665 } 6666 6667 static const ARMCPRegInfo pauth_reginfo[] = { 6668 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6669 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6670 .access = PL1_RW, .accessfn = access_pauth, 6671 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6672 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6673 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6674 .access = PL1_RW, .accessfn = access_pauth, 6675 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6676 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6677 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6678 .access = PL1_RW, .accessfn = access_pauth, 6679 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6680 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6681 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6682 .access = PL1_RW, .accessfn = access_pauth, 6683 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6684 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6685 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6686 .access = PL1_RW, .accessfn = access_pauth, 6687 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6688 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6689 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6690 .access = PL1_RW, .accessfn = access_pauth, 6691 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6692 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6693 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6694 .access = PL1_RW, .accessfn = access_pauth, 6695 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6696 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6697 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6698 .access = PL1_RW, .accessfn = access_pauth, 6699 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6700 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6701 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6702 .access = PL1_RW, .accessfn = access_pauth, 6703 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6704 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6705 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6706 .access = PL1_RW, .accessfn = access_pauth, 6707 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6708 }; 6709 6710 static const ARMCPRegInfo tlbirange_reginfo[] = { 6711 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6712 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6713 .access = PL1_W, .type = ARM_CP_NO_RAW, 6714 .writefn = tlbi_aa64_rvae1is_write }, 6715 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6716 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6717 .access = PL1_W, .type = ARM_CP_NO_RAW, 6718 .writefn = tlbi_aa64_rvae1is_write }, 6719 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6720 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6721 .access = PL1_W, .type = ARM_CP_NO_RAW, 6722 .writefn = tlbi_aa64_rvae1is_write }, 6723 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6724 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6725 .access = PL1_W, .type = ARM_CP_NO_RAW, 6726 .writefn = tlbi_aa64_rvae1is_write }, 6727 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6728 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6729 .access = PL1_W, .type = ARM_CP_NO_RAW, 6730 .writefn = tlbi_aa64_rvae1is_write }, 6731 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6732 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6733 .access = PL1_W, .type = ARM_CP_NO_RAW, 6734 .writefn = tlbi_aa64_rvae1is_write }, 6735 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6736 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6737 .access = PL1_W, .type = ARM_CP_NO_RAW, 6738 .writefn = tlbi_aa64_rvae1is_write }, 6739 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6741 .access = PL1_W, .type = ARM_CP_NO_RAW, 6742 .writefn = tlbi_aa64_rvae1is_write }, 6743 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6745 .access = PL1_W, .type = ARM_CP_NO_RAW, 6746 .writefn = tlbi_aa64_rvae1_write }, 6747 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6749 .access = PL1_W, .type = ARM_CP_NO_RAW, 6750 .writefn = tlbi_aa64_rvae1_write }, 6751 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6753 .access = PL1_W, .type = ARM_CP_NO_RAW, 6754 .writefn = tlbi_aa64_rvae1_write }, 6755 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6757 .access = PL1_W, .type = ARM_CP_NO_RAW, 6758 .writefn = tlbi_aa64_rvae1_write }, 6759 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6761 .access = PL2_W, .type = ARM_CP_NOP }, 6762 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6763 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6764 .access = PL2_W, .type = ARM_CP_NOP }, 6765 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6766 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6767 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6768 .writefn = tlbi_aa64_rvae2is_write }, 6769 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6770 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6771 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6772 .writefn = tlbi_aa64_rvae2is_write }, 6773 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6774 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6775 .access = PL2_W, .type = ARM_CP_NOP }, 6776 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6777 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6778 .access = PL2_W, .type = ARM_CP_NOP }, 6779 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6780 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6781 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6782 .writefn = tlbi_aa64_rvae2is_write }, 6783 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6784 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6785 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6786 .writefn = tlbi_aa64_rvae2is_write }, 6787 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6788 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6789 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6790 .writefn = tlbi_aa64_rvae2_write }, 6791 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6792 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6793 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6794 .writefn = tlbi_aa64_rvae2_write }, 6795 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6796 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6797 .access = PL3_W, .type = ARM_CP_NO_RAW, 6798 .writefn = tlbi_aa64_rvae3is_write }, 6799 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6800 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6801 .access = PL3_W, .type = ARM_CP_NO_RAW, 6802 .writefn = tlbi_aa64_rvae3is_write }, 6803 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6804 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6805 .access = PL3_W, .type = ARM_CP_NO_RAW, 6806 .writefn = tlbi_aa64_rvae3is_write }, 6807 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6808 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6809 .access = PL3_W, .type = ARM_CP_NO_RAW, 6810 .writefn = tlbi_aa64_rvae3is_write }, 6811 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6812 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6813 .access = PL3_W, .type = ARM_CP_NO_RAW, 6814 .writefn = tlbi_aa64_rvae3_write }, 6815 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6816 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6817 .access = PL3_W, .type = ARM_CP_NO_RAW, 6818 .writefn = tlbi_aa64_rvae3_write }, 6819 }; 6820 6821 static const ARMCPRegInfo tlbios_reginfo[] = { 6822 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6824 .access = PL1_W, .type = ARM_CP_NO_RAW, 6825 .writefn = tlbi_aa64_vmalle1is_write }, 6826 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6827 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6828 .access = PL1_W, .type = ARM_CP_NO_RAW, 6829 .writefn = tlbi_aa64_vae1is_write }, 6830 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6831 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6832 .access = PL1_W, .type = ARM_CP_NO_RAW, 6833 .writefn = tlbi_aa64_vmalle1is_write }, 6834 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6835 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6836 .access = PL1_W, .type = ARM_CP_NO_RAW, 6837 .writefn = tlbi_aa64_vae1is_write }, 6838 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6839 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6840 .access = PL1_W, .type = ARM_CP_NO_RAW, 6841 .writefn = tlbi_aa64_vae1is_write }, 6842 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6843 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6844 .access = PL1_W, .type = ARM_CP_NO_RAW, 6845 .writefn = tlbi_aa64_vae1is_write }, 6846 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6848 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6849 .writefn = tlbi_aa64_alle2is_write }, 6850 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6852 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6853 .writefn = tlbi_aa64_vae2is_write }, 6854 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6856 .access = PL2_W, .type = ARM_CP_NO_RAW, 6857 .writefn = tlbi_aa64_alle1is_write }, 6858 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6859 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6860 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6861 .writefn = tlbi_aa64_vae2is_write }, 6862 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6863 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6864 .access = PL2_W, .type = ARM_CP_NO_RAW, 6865 .writefn = tlbi_aa64_alle1is_write }, 6866 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6867 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6868 .access = PL2_W, .type = ARM_CP_NOP }, 6869 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6871 .access = PL2_W, .type = ARM_CP_NOP }, 6872 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6874 .access = PL2_W, .type = ARM_CP_NOP }, 6875 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6877 .access = PL2_W, .type = ARM_CP_NOP }, 6878 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6879 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6880 .access = PL3_W, .type = ARM_CP_NO_RAW, 6881 .writefn = tlbi_aa64_alle3is_write }, 6882 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6884 .access = PL3_W, .type = ARM_CP_NO_RAW, 6885 .writefn = tlbi_aa64_vae3is_write }, 6886 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6888 .access = PL3_W, .type = ARM_CP_NO_RAW, 6889 .writefn = tlbi_aa64_vae3is_write }, 6890 }; 6891 6892 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6893 { 6894 Error *err = NULL; 6895 uint64_t ret; 6896 6897 /* Success sets NZCV = 0000. */ 6898 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6899 6900 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6901 /* 6902 * ??? Failed, for unknown reasons in the crypto subsystem. 6903 * The best we can do is log the reason and return the 6904 * timed-out indication to the guest. There is no reason 6905 * we know to expect this failure to be transitory, so the 6906 * guest may well hang retrying the operation. 6907 */ 6908 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6909 ri->name, error_get_pretty(err)); 6910 error_free(err); 6911 6912 env->ZF = 0; /* NZCF = 0100 */ 6913 return 0; 6914 } 6915 return ret; 6916 } 6917 6918 /* We do not support re-seeding, so the two registers operate the same. */ 6919 static const ARMCPRegInfo rndr_reginfo[] = { 6920 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6921 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6922 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6923 .access = PL0_R, .readfn = rndr_readfn }, 6924 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6925 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6926 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6927 .access = PL0_R, .readfn = rndr_readfn }, 6928 }; 6929 6930 #ifndef CONFIG_USER_ONLY 6931 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6932 uint64_t value) 6933 { 6934 ARMCPU *cpu = env_archcpu(env); 6935 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6936 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6937 uint64_t vaddr_in = (uint64_t) value; 6938 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6939 void *haddr; 6940 int mem_idx = cpu_mmu_index(env, false); 6941 6942 /* This won't be crossing page boundaries */ 6943 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6944 if (haddr) { 6945 6946 ram_addr_t offset; 6947 MemoryRegion *mr; 6948 6949 /* RCU lock is already being held */ 6950 mr = memory_region_from_host(haddr, &offset); 6951 6952 if (mr) { 6953 memory_region_writeback(mr, offset, dline_size); 6954 } 6955 } 6956 } 6957 6958 static const ARMCPRegInfo dcpop_reg[] = { 6959 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6961 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6962 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6963 }; 6964 6965 static const ARMCPRegInfo dcpodp_reg[] = { 6966 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6967 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6968 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6969 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6970 }; 6971 #endif /*CONFIG_USER_ONLY*/ 6972 6973 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6974 bool isread) 6975 { 6976 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6977 return CP_ACCESS_TRAP_EL2; 6978 } 6979 6980 return CP_ACCESS_OK; 6981 } 6982 6983 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6984 bool isread) 6985 { 6986 int el = arm_current_el(env); 6987 6988 if (el < 2 && arm_is_el2_enabled(env)) { 6989 uint64_t hcr = arm_hcr_el2_eff(env); 6990 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6991 return CP_ACCESS_TRAP_EL2; 6992 } 6993 } 6994 if (el < 3 && 6995 arm_feature(env, ARM_FEATURE_EL3) && 6996 !(env->cp15.scr_el3 & SCR_ATA)) { 6997 return CP_ACCESS_TRAP_EL3; 6998 } 6999 return CP_ACCESS_OK; 7000 } 7001 7002 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7003 { 7004 return env->pstate & PSTATE_TCO; 7005 } 7006 7007 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7008 { 7009 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7010 } 7011 7012 static const ARMCPRegInfo mte_reginfo[] = { 7013 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7015 .access = PL1_RW, .accessfn = access_mte, 7016 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7017 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7019 .access = PL1_RW, .accessfn = access_mte, 7020 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7021 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7023 .access = PL2_RW, .accessfn = access_mte, 7024 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7025 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7026 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7027 .access = PL3_RW, 7028 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7029 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7031 .access = PL1_RW, .accessfn = access_mte, 7032 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7033 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7035 .access = PL1_RW, .accessfn = access_mte, 7036 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7037 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7039 .access = PL1_R, .accessfn = access_aa64_tid5, 7040 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7041 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7043 .type = ARM_CP_NO_RAW, 7044 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7045 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7047 .type = ARM_CP_NOP, .access = PL1_W, 7048 .accessfn = aa64_cacheop_poc_access }, 7049 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7051 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7052 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7053 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7054 .type = ARM_CP_NOP, .access = PL1_W, 7055 .accessfn = aa64_cacheop_poc_access }, 7056 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7059 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7061 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7062 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7063 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7064 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7065 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7067 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7068 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7069 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7070 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7071 }; 7072 7073 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7074 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7075 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7076 .type = ARM_CP_CONST, .access = PL0_RW, }, 7077 }; 7078 7079 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7080 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7082 .type = ARM_CP_NOP, .access = PL0_W, 7083 .accessfn = aa64_cacheop_poc_access }, 7084 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7086 .type = ARM_CP_NOP, .access = PL0_W, 7087 .accessfn = aa64_cacheop_poc_access }, 7088 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7090 .type = ARM_CP_NOP, .access = PL0_W, 7091 .accessfn = aa64_cacheop_poc_access }, 7092 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7094 .type = ARM_CP_NOP, .access = PL0_W, 7095 .accessfn = aa64_cacheop_poc_access }, 7096 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7098 .type = ARM_CP_NOP, .access = PL0_W, 7099 .accessfn = aa64_cacheop_poc_access }, 7100 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7101 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7102 .type = ARM_CP_NOP, .access = PL0_W, 7103 .accessfn = aa64_cacheop_poc_access }, 7104 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7105 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7106 .type = ARM_CP_NOP, .access = PL0_W, 7107 .accessfn = aa64_cacheop_poc_access }, 7108 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7109 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7110 .type = ARM_CP_NOP, .access = PL0_W, 7111 .accessfn = aa64_cacheop_poc_access }, 7112 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7113 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7114 .access = PL0_W, .type = ARM_CP_DC_GVA, 7115 #ifndef CONFIG_USER_ONLY 7116 /* Avoid overhead of an access check that always passes in user-mode */ 7117 .accessfn = aa64_zva_access, 7118 #endif 7119 }, 7120 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7122 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7123 #ifndef CONFIG_USER_ONLY 7124 /* Avoid overhead of an access check that always passes in user-mode */ 7125 .accessfn = aa64_zva_access, 7126 #endif 7127 }, 7128 }; 7129 7130 #endif 7131 7132 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7133 bool isread) 7134 { 7135 int el = arm_current_el(env); 7136 7137 if (el == 0) { 7138 uint64_t sctlr = arm_sctlr(env, el); 7139 if (!(sctlr & SCTLR_EnRCTX)) { 7140 return CP_ACCESS_TRAP; 7141 } 7142 } else if (el == 1) { 7143 uint64_t hcr = arm_hcr_el2_eff(env); 7144 if (hcr & HCR_NV) { 7145 return CP_ACCESS_TRAP_EL2; 7146 } 7147 } 7148 return CP_ACCESS_OK; 7149 } 7150 7151 static const ARMCPRegInfo predinv_reginfo[] = { 7152 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7153 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7154 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7155 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7157 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7158 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7160 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7161 /* 7162 * Note the AArch32 opcodes have a different OPC1. 7163 */ 7164 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7165 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7166 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7167 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7168 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7169 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7170 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7171 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7172 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7173 }; 7174 7175 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7176 { 7177 /* Read the high 32 bits of the current CCSIDR */ 7178 return extract64(ccsidr_read(env, ri), 32, 32); 7179 } 7180 7181 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7182 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7183 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7184 .access = PL1_R, 7185 .accessfn = access_aa64_tid2, 7186 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7187 }; 7188 7189 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7190 bool isread) 7191 { 7192 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7193 return CP_ACCESS_TRAP_EL2; 7194 } 7195 7196 return CP_ACCESS_OK; 7197 } 7198 7199 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7200 bool isread) 7201 { 7202 if (arm_feature(env, ARM_FEATURE_V8)) { 7203 return access_aa64_tid3(env, ri, isread); 7204 } 7205 7206 return CP_ACCESS_OK; 7207 } 7208 7209 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7210 bool isread) 7211 { 7212 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7213 return CP_ACCESS_TRAP_EL2; 7214 } 7215 7216 return CP_ACCESS_OK; 7217 } 7218 7219 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7220 const ARMCPRegInfo *ri, bool isread) 7221 { 7222 /* 7223 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7224 * in v7A, not in v8A. 7225 */ 7226 if (!arm_feature(env, ARM_FEATURE_V8) && 7227 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7228 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7229 return CP_ACCESS_TRAP_EL2; 7230 } 7231 return CP_ACCESS_OK; 7232 } 7233 7234 static const ARMCPRegInfo jazelle_regs[] = { 7235 { .name = "JIDR", 7236 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7237 .access = PL1_R, .accessfn = access_jazelle, 7238 .type = ARM_CP_CONST, .resetvalue = 0 }, 7239 { .name = "JOSCR", 7240 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7241 .accessfn = access_joscr_jmcr, 7242 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7243 { .name = "JMCR", 7244 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7245 .accessfn = access_joscr_jmcr, 7246 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7247 }; 7248 7249 static const ARMCPRegInfo contextidr_el2 = { 7250 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7251 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7252 .access = PL2_RW, 7253 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7254 }; 7255 7256 static const ARMCPRegInfo vhe_reginfo[] = { 7257 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7258 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7259 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7260 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7261 #ifndef CONFIG_USER_ONLY 7262 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7263 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7264 .fieldoffset = 7265 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7266 .type = ARM_CP_IO, .access = PL2_RW, 7267 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7268 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7269 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7270 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7271 .resetfn = gt_hv_timer_reset, 7272 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7273 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7274 .type = ARM_CP_IO, 7275 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7276 .access = PL2_RW, 7277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7278 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7279 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7281 .type = ARM_CP_IO | ARM_CP_ALIAS, 7282 .access = PL2_RW, .accessfn = e2h_access, 7283 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7284 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7285 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7287 .type = ARM_CP_IO | ARM_CP_ALIAS, 7288 .access = PL2_RW, .accessfn = e2h_access, 7289 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7290 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7291 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7293 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7294 .access = PL2_RW, .accessfn = e2h_access, 7295 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7296 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7298 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7299 .access = PL2_RW, .accessfn = e2h_access, 7300 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7301 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7303 .type = ARM_CP_IO | ARM_CP_ALIAS, 7304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7305 .access = PL2_RW, .accessfn = e2h_access, 7306 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7307 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7309 .type = ARM_CP_IO | ARM_CP_ALIAS, 7310 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7311 .access = PL2_RW, .accessfn = e2h_access, 7312 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7313 #endif 7314 }; 7315 7316 #ifndef CONFIG_USER_ONLY 7317 static const ARMCPRegInfo ats1e1_reginfo[] = { 7318 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7319 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7320 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7321 .writefn = ats_write64 }, 7322 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7323 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7324 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7325 .writefn = ats_write64 }, 7326 }; 7327 7328 static const ARMCPRegInfo ats1cp_reginfo[] = { 7329 { .name = "ATS1CPRP", 7330 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7331 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7332 .writefn = ats_write }, 7333 { .name = "ATS1CPWP", 7334 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7335 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7336 .writefn = ats_write }, 7337 }; 7338 #endif 7339 7340 /* 7341 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7342 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7343 * is non-zero, which is never for ARMv7, optionally in ARMv8 7344 * and mandatorily for ARMv8.2 and up. 7345 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7346 * implementation is RAZ/WI we can ignore this detail, as we 7347 * do for ACTLR. 7348 */ 7349 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7350 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7351 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7352 .access = PL1_RW, .accessfn = access_tacr, 7353 .type = ARM_CP_CONST, .resetvalue = 0 }, 7354 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7355 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7356 .access = PL2_RW, .type = ARM_CP_CONST, 7357 .resetvalue = 0 }, 7358 }; 7359 7360 void register_cp_regs_for_features(ARMCPU *cpu) 7361 { 7362 /* Register all the coprocessor registers based on feature bits */ 7363 CPUARMState *env = &cpu->env; 7364 if (arm_feature(env, ARM_FEATURE_M)) { 7365 /* M profile has no coprocessor registers */ 7366 return; 7367 } 7368 7369 define_arm_cp_regs(cpu, cp_reginfo); 7370 if (!arm_feature(env, ARM_FEATURE_V8)) { 7371 /* Must go early as it is full of wildcards that may be 7372 * overridden by later definitions. 7373 */ 7374 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7375 } 7376 7377 if (arm_feature(env, ARM_FEATURE_V6)) { 7378 /* The ID registers all have impdef reset values */ 7379 ARMCPRegInfo v6_idregs[] = { 7380 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7382 .access = PL1_R, .type = ARM_CP_CONST, 7383 .accessfn = access_aa32_tid3, 7384 .resetvalue = cpu->isar.id_pfr0 }, 7385 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7386 * the value of the GIC field until after we define these regs. 7387 */ 7388 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7389 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7390 .access = PL1_R, .type = ARM_CP_NO_RAW, 7391 .accessfn = access_aa32_tid3, 7392 .readfn = id_pfr1_read, 7393 .writefn = arm_cp_write_ignore }, 7394 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7396 .access = PL1_R, .type = ARM_CP_CONST, 7397 .accessfn = access_aa32_tid3, 7398 .resetvalue = cpu->isar.id_dfr0 }, 7399 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7401 .access = PL1_R, .type = ARM_CP_CONST, 7402 .accessfn = access_aa32_tid3, 7403 .resetvalue = cpu->id_afr0 }, 7404 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7406 .access = PL1_R, .type = ARM_CP_CONST, 7407 .accessfn = access_aa32_tid3, 7408 .resetvalue = cpu->isar.id_mmfr0 }, 7409 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7411 .access = PL1_R, .type = ARM_CP_CONST, 7412 .accessfn = access_aa32_tid3, 7413 .resetvalue = cpu->isar.id_mmfr1 }, 7414 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7416 .access = PL1_R, .type = ARM_CP_CONST, 7417 .accessfn = access_aa32_tid3, 7418 .resetvalue = cpu->isar.id_mmfr2 }, 7419 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7421 .access = PL1_R, .type = ARM_CP_CONST, 7422 .accessfn = access_aa32_tid3, 7423 .resetvalue = cpu->isar.id_mmfr3 }, 7424 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7426 .access = PL1_R, .type = ARM_CP_CONST, 7427 .accessfn = access_aa32_tid3, 7428 .resetvalue = cpu->isar.id_isar0 }, 7429 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7431 .access = PL1_R, .type = ARM_CP_CONST, 7432 .accessfn = access_aa32_tid3, 7433 .resetvalue = cpu->isar.id_isar1 }, 7434 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7436 .access = PL1_R, .type = ARM_CP_CONST, 7437 .accessfn = access_aa32_tid3, 7438 .resetvalue = cpu->isar.id_isar2 }, 7439 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7441 .access = PL1_R, .type = ARM_CP_CONST, 7442 .accessfn = access_aa32_tid3, 7443 .resetvalue = cpu->isar.id_isar3 }, 7444 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7446 .access = PL1_R, .type = ARM_CP_CONST, 7447 .accessfn = access_aa32_tid3, 7448 .resetvalue = cpu->isar.id_isar4 }, 7449 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7451 .access = PL1_R, .type = ARM_CP_CONST, 7452 .accessfn = access_aa32_tid3, 7453 .resetvalue = cpu->isar.id_isar5 }, 7454 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7456 .access = PL1_R, .type = ARM_CP_CONST, 7457 .accessfn = access_aa32_tid3, 7458 .resetvalue = cpu->isar.id_mmfr4 }, 7459 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7461 .access = PL1_R, .type = ARM_CP_CONST, 7462 .accessfn = access_aa32_tid3, 7463 .resetvalue = cpu->isar.id_isar6 }, 7464 }; 7465 define_arm_cp_regs(cpu, v6_idregs); 7466 define_arm_cp_regs(cpu, v6_cp_reginfo); 7467 } else { 7468 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7469 } 7470 if (arm_feature(env, ARM_FEATURE_V6K)) { 7471 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7472 } 7473 if (arm_feature(env, ARM_FEATURE_V7MP) && 7474 !arm_feature(env, ARM_FEATURE_PMSA)) { 7475 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7476 } 7477 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7478 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7479 } 7480 if (arm_feature(env, ARM_FEATURE_V7)) { 7481 ARMCPRegInfo clidr = { 7482 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7483 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7484 .access = PL1_R, .type = ARM_CP_CONST, 7485 .accessfn = access_aa64_tid2, 7486 .resetvalue = cpu->clidr 7487 }; 7488 define_one_arm_cp_reg(cpu, &clidr); 7489 define_arm_cp_regs(cpu, v7_cp_reginfo); 7490 define_debug_regs(cpu); 7491 define_pmu_regs(cpu); 7492 } else { 7493 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7494 } 7495 if (arm_feature(env, ARM_FEATURE_V8)) { 7496 /* AArch64 ID registers, which all have impdef reset values. 7497 * Note that within the ID register ranges the unused slots 7498 * must all RAZ, not UNDEF; future architecture versions may 7499 * define new registers here. 7500 */ 7501 ARMCPRegInfo v8_idregs[] = { 7502 /* 7503 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7504 * emulation because we don't know the right value for the 7505 * GIC field until after we define these regs. 7506 */ 7507 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7509 .access = PL1_R, 7510 #ifdef CONFIG_USER_ONLY 7511 .type = ARM_CP_CONST, 7512 .resetvalue = cpu->isar.id_aa64pfr0 7513 #else 7514 .type = ARM_CP_NO_RAW, 7515 .accessfn = access_aa64_tid3, 7516 .readfn = id_aa64pfr0_read, 7517 .writefn = arm_cp_write_ignore 7518 #endif 7519 }, 7520 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7522 .access = PL1_R, .type = ARM_CP_CONST, 7523 .accessfn = access_aa64_tid3, 7524 .resetvalue = cpu->isar.id_aa64pfr1}, 7525 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7527 .access = PL1_R, .type = ARM_CP_CONST, 7528 .accessfn = access_aa64_tid3, 7529 .resetvalue = 0 }, 7530 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7532 .access = PL1_R, .type = ARM_CP_CONST, 7533 .accessfn = access_aa64_tid3, 7534 .resetvalue = 0 }, 7535 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7537 .access = PL1_R, .type = ARM_CP_CONST, 7538 .accessfn = access_aa64_tid3, 7539 .resetvalue = cpu->isar.id_aa64zfr0 }, 7540 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7542 .access = PL1_R, .type = ARM_CP_CONST, 7543 .accessfn = access_aa64_tid3, 7544 .resetvalue = 0 }, 7545 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7547 .access = PL1_R, .type = ARM_CP_CONST, 7548 .accessfn = access_aa64_tid3, 7549 .resetvalue = 0 }, 7550 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa64_tid3, 7554 .resetvalue = 0 }, 7555 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7557 .access = PL1_R, .type = ARM_CP_CONST, 7558 .accessfn = access_aa64_tid3, 7559 .resetvalue = cpu->isar.id_aa64dfr0 }, 7560 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .accessfn = access_aa64_tid3, 7564 .resetvalue = cpu->isar.id_aa64dfr1 }, 7565 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa64_tid3, 7569 .resetvalue = 0 }, 7570 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7572 .access = PL1_R, .type = ARM_CP_CONST, 7573 .accessfn = access_aa64_tid3, 7574 .resetvalue = 0 }, 7575 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7577 .access = PL1_R, .type = ARM_CP_CONST, 7578 .accessfn = access_aa64_tid3, 7579 .resetvalue = cpu->id_aa64afr0 }, 7580 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7582 .access = PL1_R, .type = ARM_CP_CONST, 7583 .accessfn = access_aa64_tid3, 7584 .resetvalue = cpu->id_aa64afr1 }, 7585 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7587 .access = PL1_R, .type = ARM_CP_CONST, 7588 .accessfn = access_aa64_tid3, 7589 .resetvalue = 0 }, 7590 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7592 .access = PL1_R, .type = ARM_CP_CONST, 7593 .accessfn = access_aa64_tid3, 7594 .resetvalue = 0 }, 7595 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7597 .access = PL1_R, .type = ARM_CP_CONST, 7598 .accessfn = access_aa64_tid3, 7599 .resetvalue = cpu->isar.id_aa64isar0 }, 7600 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7602 .access = PL1_R, .type = ARM_CP_CONST, 7603 .accessfn = access_aa64_tid3, 7604 .resetvalue = cpu->isar.id_aa64isar1 }, 7605 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7607 .access = PL1_R, .type = ARM_CP_CONST, 7608 .accessfn = access_aa64_tid3, 7609 .resetvalue = 0 }, 7610 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7612 .access = PL1_R, .type = ARM_CP_CONST, 7613 .accessfn = access_aa64_tid3, 7614 .resetvalue = 0 }, 7615 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7617 .access = PL1_R, .type = ARM_CP_CONST, 7618 .accessfn = access_aa64_tid3, 7619 .resetvalue = 0 }, 7620 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7622 .access = PL1_R, .type = ARM_CP_CONST, 7623 .accessfn = access_aa64_tid3, 7624 .resetvalue = 0 }, 7625 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7627 .access = PL1_R, .type = ARM_CP_CONST, 7628 .accessfn = access_aa64_tid3, 7629 .resetvalue = 0 }, 7630 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7632 .access = PL1_R, .type = ARM_CP_CONST, 7633 .accessfn = access_aa64_tid3, 7634 .resetvalue = 0 }, 7635 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7637 .access = PL1_R, .type = ARM_CP_CONST, 7638 .accessfn = access_aa64_tid3, 7639 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7640 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7642 .access = PL1_R, .type = ARM_CP_CONST, 7643 .accessfn = access_aa64_tid3, 7644 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7645 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7647 .access = PL1_R, .type = ARM_CP_CONST, 7648 .accessfn = access_aa64_tid3, 7649 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7650 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7652 .access = PL1_R, .type = ARM_CP_CONST, 7653 .accessfn = access_aa64_tid3, 7654 .resetvalue = 0 }, 7655 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7657 .access = PL1_R, .type = ARM_CP_CONST, 7658 .accessfn = access_aa64_tid3, 7659 .resetvalue = 0 }, 7660 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7662 .access = PL1_R, .type = ARM_CP_CONST, 7663 .accessfn = access_aa64_tid3, 7664 .resetvalue = 0 }, 7665 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7667 .access = PL1_R, .type = ARM_CP_CONST, 7668 .accessfn = access_aa64_tid3, 7669 .resetvalue = 0 }, 7670 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7672 .access = PL1_R, .type = ARM_CP_CONST, 7673 .accessfn = access_aa64_tid3, 7674 .resetvalue = 0 }, 7675 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7677 .access = PL1_R, .type = ARM_CP_CONST, 7678 .accessfn = access_aa64_tid3, 7679 .resetvalue = cpu->isar.mvfr0 }, 7680 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7682 .access = PL1_R, .type = ARM_CP_CONST, 7683 .accessfn = access_aa64_tid3, 7684 .resetvalue = cpu->isar.mvfr1 }, 7685 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7687 .access = PL1_R, .type = ARM_CP_CONST, 7688 .accessfn = access_aa64_tid3, 7689 .resetvalue = cpu->isar.mvfr2 }, 7690 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7692 .access = PL1_R, .type = ARM_CP_CONST, 7693 .accessfn = access_aa64_tid3, 7694 .resetvalue = 0 }, 7695 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7697 .access = PL1_R, .type = ARM_CP_CONST, 7698 .accessfn = access_aa64_tid3, 7699 .resetvalue = cpu->isar.id_pfr2 }, 7700 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7702 .access = PL1_R, .type = ARM_CP_CONST, 7703 .accessfn = access_aa64_tid3, 7704 .resetvalue = 0 }, 7705 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = 0 }, 7710 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = 0 }, 7715 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7716 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7717 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7718 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7719 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7721 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7722 .resetvalue = cpu->pmceid0 }, 7723 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7724 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7725 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7726 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7727 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7729 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7730 .resetvalue = cpu->pmceid1 }, 7731 }; 7732 #ifdef CONFIG_USER_ONLY 7733 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7734 { .name = "ID_AA64PFR0_EL1", 7735 .exported_bits = 0x000f000f00ff0000, 7736 .fixed_bits = 0x0000000000000011 }, 7737 { .name = "ID_AA64PFR1_EL1", 7738 .exported_bits = 0x00000000000000f0 }, 7739 { .name = "ID_AA64PFR*_EL1_RESERVED", 7740 .is_glob = true }, 7741 { .name = "ID_AA64ZFR0_EL1" }, 7742 { .name = "ID_AA64MMFR0_EL1", 7743 .fixed_bits = 0x00000000ff000000 }, 7744 { .name = "ID_AA64MMFR1_EL1" }, 7745 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7746 .is_glob = true }, 7747 { .name = "ID_AA64DFR0_EL1", 7748 .fixed_bits = 0x0000000000000006 }, 7749 { .name = "ID_AA64DFR1_EL1" }, 7750 { .name = "ID_AA64DFR*_EL1_RESERVED", 7751 .is_glob = true }, 7752 { .name = "ID_AA64AFR*", 7753 .is_glob = true }, 7754 { .name = "ID_AA64ISAR0_EL1", 7755 .exported_bits = 0x00fffffff0fffff0 }, 7756 { .name = "ID_AA64ISAR1_EL1", 7757 .exported_bits = 0x000000f0ffffffff }, 7758 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7759 .is_glob = true }, 7760 }; 7761 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7762 #endif 7763 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7764 if (!arm_feature(env, ARM_FEATURE_EL3) && 7765 !arm_feature(env, ARM_FEATURE_EL2)) { 7766 ARMCPRegInfo rvbar = { 7767 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7768 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7769 .access = PL1_R, 7770 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7771 }; 7772 define_one_arm_cp_reg(cpu, &rvbar); 7773 } 7774 define_arm_cp_regs(cpu, v8_idregs); 7775 define_arm_cp_regs(cpu, v8_cp_reginfo); 7776 } 7777 7778 /* 7779 * Register the base EL2 cpregs. 7780 * Pre v8, these registers are implemented only as part of the 7781 * Virtualization Extensions (EL2 present). Beginning with v8, 7782 * if EL2 is missing but EL3 is enabled, mostly these become 7783 * RES0 from EL3, with some specific exceptions. 7784 */ 7785 if (arm_feature(env, ARM_FEATURE_EL2) 7786 || (arm_feature(env, ARM_FEATURE_EL3) 7787 && arm_feature(env, ARM_FEATURE_V8))) { 7788 uint64_t vmpidr_def = mpidr_read_val(env); 7789 ARMCPRegInfo vpidr_regs[] = { 7790 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7791 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7792 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7793 .resetvalue = cpu->midr, 7794 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7795 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7796 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7798 .access = PL2_RW, .resetvalue = cpu->midr, 7799 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7800 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7801 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7802 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7803 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7804 .resetvalue = vmpidr_def, 7805 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7806 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7807 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7809 .access = PL2_RW, .resetvalue = vmpidr_def, 7810 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7811 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7812 }; 7813 define_arm_cp_regs(cpu, vpidr_regs); 7814 define_arm_cp_regs(cpu, el2_cp_reginfo); 7815 if (arm_feature(env, ARM_FEATURE_V8)) { 7816 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7817 } 7818 if (cpu_isar_feature(aa64_sel2, cpu)) { 7819 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7820 } 7821 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7822 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7823 ARMCPRegInfo rvbar = { 7824 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7826 .access = PL2_R, 7827 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7828 }; 7829 define_one_arm_cp_reg(cpu, &rvbar); 7830 } 7831 } 7832 7833 /* Register the base EL3 cpregs. */ 7834 if (arm_feature(env, ARM_FEATURE_EL3)) { 7835 define_arm_cp_regs(cpu, el3_cp_reginfo); 7836 ARMCPRegInfo el3_regs[] = { 7837 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7838 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7839 .access = PL3_R, 7840 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7841 }, 7842 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7844 .access = PL3_RW, 7845 .raw_writefn = raw_write, .writefn = sctlr_write, 7846 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7847 .resetvalue = cpu->reset_sctlr }, 7848 }; 7849 7850 define_arm_cp_regs(cpu, el3_regs); 7851 } 7852 /* The behaviour of NSACR is sufficiently various that we don't 7853 * try to describe it in a single reginfo: 7854 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7855 * reads as constant 0xc00 from NS EL1 and NS EL2 7856 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7857 * if v7 without EL3, register doesn't exist 7858 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7859 */ 7860 if (arm_feature(env, ARM_FEATURE_EL3)) { 7861 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7862 static const ARMCPRegInfo nsacr = { 7863 .name = "NSACR", .type = ARM_CP_CONST, 7864 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7865 .access = PL1_RW, .accessfn = nsacr_access, 7866 .resetvalue = 0xc00 7867 }; 7868 define_one_arm_cp_reg(cpu, &nsacr); 7869 } else { 7870 static const ARMCPRegInfo nsacr = { 7871 .name = "NSACR", 7872 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7873 .access = PL3_RW | PL1_R, 7874 .resetvalue = 0, 7875 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7876 }; 7877 define_one_arm_cp_reg(cpu, &nsacr); 7878 } 7879 } else { 7880 if (arm_feature(env, ARM_FEATURE_V8)) { 7881 static const ARMCPRegInfo nsacr = { 7882 .name = "NSACR", .type = ARM_CP_CONST, 7883 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7884 .access = PL1_R, 7885 .resetvalue = 0xc00 7886 }; 7887 define_one_arm_cp_reg(cpu, &nsacr); 7888 } 7889 } 7890 7891 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7892 if (arm_feature(env, ARM_FEATURE_V6)) { 7893 /* PMSAv6 not implemented */ 7894 assert(arm_feature(env, ARM_FEATURE_V7)); 7895 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7896 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7897 } else { 7898 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7899 } 7900 } else { 7901 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7902 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7903 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7904 if (cpu_isar_feature(aa32_hpd, cpu)) { 7905 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7906 } 7907 } 7908 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7909 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7910 } 7911 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7912 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7913 } 7914 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7915 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7916 } 7917 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7918 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7919 } 7920 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7921 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7922 } 7923 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7924 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7925 } 7926 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7927 define_arm_cp_regs(cpu, omap_cp_reginfo); 7928 } 7929 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7930 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7931 } 7932 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7933 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7934 } 7935 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7936 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7937 } 7938 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7939 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7940 } 7941 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7942 define_arm_cp_regs(cpu, jazelle_regs); 7943 } 7944 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7945 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7946 * be read-only (ie write causes UNDEF exception). 7947 */ 7948 { 7949 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7950 /* Pre-v8 MIDR space. 7951 * Note that the MIDR isn't a simple constant register because 7952 * of the TI925 behaviour where writes to another register can 7953 * cause the MIDR value to change. 7954 * 7955 * Unimplemented registers in the c15 0 0 0 space default to 7956 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7957 * and friends override accordingly. 7958 */ 7959 { .name = "MIDR", 7960 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7961 .access = PL1_R, .resetvalue = cpu->midr, 7962 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7963 .readfn = midr_read, 7964 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7965 .type = ARM_CP_OVERRIDE }, 7966 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7967 { .name = "DUMMY", 7968 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7969 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7970 { .name = "DUMMY", 7971 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7972 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7973 { .name = "DUMMY", 7974 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7975 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7976 { .name = "DUMMY", 7977 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7978 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7979 { .name = "DUMMY", 7980 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7981 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7982 }; 7983 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7984 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7986 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7987 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7988 .readfn = midr_read }, 7989 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7990 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7991 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7992 .access = PL1_R, .resetvalue = cpu->midr }, 7993 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7994 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7995 .access = PL1_R, .resetvalue = cpu->midr }, 7996 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7998 .access = PL1_R, 7999 .accessfn = access_aa64_tid1, 8000 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8001 }; 8002 ARMCPRegInfo id_cp_reginfo[] = { 8003 /* These are common to v8 and pre-v8 */ 8004 { .name = "CTR", 8005 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8006 .access = PL1_R, .accessfn = ctr_el0_access, 8007 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8008 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8009 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8010 .access = PL0_R, .accessfn = ctr_el0_access, 8011 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8012 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8013 { .name = "TCMTR", 8014 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8015 .access = PL1_R, 8016 .accessfn = access_aa32_tid1, 8017 .type = ARM_CP_CONST, .resetvalue = 0 }, 8018 }; 8019 /* TLBTR is specific to VMSA */ 8020 ARMCPRegInfo id_tlbtr_reginfo = { 8021 .name = "TLBTR", 8022 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8023 .access = PL1_R, 8024 .accessfn = access_aa32_tid1, 8025 .type = ARM_CP_CONST, .resetvalue = 0, 8026 }; 8027 /* MPUIR is specific to PMSA V6+ */ 8028 ARMCPRegInfo id_mpuir_reginfo = { 8029 .name = "MPUIR", 8030 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8031 .access = PL1_R, .type = ARM_CP_CONST, 8032 .resetvalue = cpu->pmsav7_dregion << 8 8033 }; 8034 static const ARMCPRegInfo crn0_wi_reginfo = { 8035 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8036 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8037 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8038 }; 8039 #ifdef CONFIG_USER_ONLY 8040 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8041 { .name = "MIDR_EL1", 8042 .exported_bits = 0x00000000ffffffff }, 8043 { .name = "REVIDR_EL1" }, 8044 }; 8045 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8046 #endif 8047 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8048 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8049 size_t i; 8050 /* Register the blanket "writes ignored" value first to cover the 8051 * whole space. Then update the specific ID registers to allow write 8052 * access, so that they ignore writes rather than causing them to 8053 * UNDEF. 8054 */ 8055 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8056 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8057 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8058 } 8059 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8060 id_cp_reginfo[i].access = PL1_RW; 8061 } 8062 id_mpuir_reginfo.access = PL1_RW; 8063 id_tlbtr_reginfo.access = PL1_RW; 8064 } 8065 if (arm_feature(env, ARM_FEATURE_V8)) { 8066 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8067 } else { 8068 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8069 } 8070 define_arm_cp_regs(cpu, id_cp_reginfo); 8071 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8072 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8073 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8074 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8075 } 8076 } 8077 8078 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8079 ARMCPRegInfo mpidr_cp_reginfo[] = { 8080 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8081 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8082 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8083 }; 8084 #ifdef CONFIG_USER_ONLY 8085 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8086 { .name = "MPIDR_EL1", 8087 .fixed_bits = 0x0000000080000000 }, 8088 }; 8089 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8090 #endif 8091 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8092 } 8093 8094 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8095 ARMCPRegInfo auxcr_reginfo[] = { 8096 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8097 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8098 .access = PL1_RW, .accessfn = access_tacr, 8099 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8100 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8101 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8102 .access = PL2_RW, .type = ARM_CP_CONST, 8103 .resetvalue = 0 }, 8104 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8105 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8106 .access = PL3_RW, .type = ARM_CP_CONST, 8107 .resetvalue = 0 }, 8108 }; 8109 define_arm_cp_regs(cpu, auxcr_reginfo); 8110 if (cpu_isar_feature(aa32_ac2, cpu)) { 8111 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8112 } 8113 } 8114 8115 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8116 /* 8117 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8118 * There are two flavours: 8119 * (1) older 32-bit only cores have a simple 32-bit CBAR 8120 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8121 * 32-bit register visible to AArch32 at a different encoding 8122 * to the "flavour 1" register and with the bits rearranged to 8123 * be able to squash a 64-bit address into the 32-bit view. 8124 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8125 * in future if we support AArch32-only configs of some of the 8126 * AArch64 cores we might need to add a specific feature flag 8127 * to indicate cores with "flavour 2" CBAR. 8128 */ 8129 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8130 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8131 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8132 | extract64(cpu->reset_cbar, 32, 12); 8133 ARMCPRegInfo cbar_reginfo[] = { 8134 { .name = "CBAR", 8135 .type = ARM_CP_CONST, 8136 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8137 .access = PL1_R, .resetvalue = cbar32 }, 8138 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8139 .type = ARM_CP_CONST, 8140 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8141 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8142 }; 8143 /* We don't implement a r/w 64 bit CBAR currently */ 8144 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8145 define_arm_cp_regs(cpu, cbar_reginfo); 8146 } else { 8147 ARMCPRegInfo cbar = { 8148 .name = "CBAR", 8149 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8150 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8151 .fieldoffset = offsetof(CPUARMState, 8152 cp15.c15_config_base_address) 8153 }; 8154 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8155 cbar.access = PL1_R; 8156 cbar.fieldoffset = 0; 8157 cbar.type = ARM_CP_CONST; 8158 } 8159 define_one_arm_cp_reg(cpu, &cbar); 8160 } 8161 } 8162 8163 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8164 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8165 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8166 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8167 .access = PL1_RW, .writefn = vbar_write, 8168 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8169 offsetof(CPUARMState, cp15.vbar_ns) }, 8170 .resetvalue = 0 }, 8171 }; 8172 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8173 } 8174 8175 /* Generic registers whose values depend on the implementation */ 8176 { 8177 ARMCPRegInfo sctlr = { 8178 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8179 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8180 .access = PL1_RW, .accessfn = access_tvm_trvm, 8181 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8182 offsetof(CPUARMState, cp15.sctlr_ns) }, 8183 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8184 .raw_writefn = raw_write, 8185 }; 8186 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8187 /* Normally we would always end the TB on an SCTLR write, but Linux 8188 * arch/arm/mach-pxa/sleep.S expects two instructions following 8189 * an MMU enable to execute from cache. Imitate this behaviour. 8190 */ 8191 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8192 } 8193 define_one_arm_cp_reg(cpu, &sctlr); 8194 } 8195 8196 if (cpu_isar_feature(aa64_lor, cpu)) { 8197 define_arm_cp_regs(cpu, lor_reginfo); 8198 } 8199 if (cpu_isar_feature(aa64_pan, cpu)) { 8200 define_one_arm_cp_reg(cpu, &pan_reginfo); 8201 } 8202 #ifndef CONFIG_USER_ONLY 8203 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8204 define_arm_cp_regs(cpu, ats1e1_reginfo); 8205 } 8206 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8207 define_arm_cp_regs(cpu, ats1cp_reginfo); 8208 } 8209 #endif 8210 if (cpu_isar_feature(aa64_uao, cpu)) { 8211 define_one_arm_cp_reg(cpu, &uao_reginfo); 8212 } 8213 8214 if (cpu_isar_feature(aa64_dit, cpu)) { 8215 define_one_arm_cp_reg(cpu, &dit_reginfo); 8216 } 8217 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8218 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8219 } 8220 8221 if (cpu_isar_feature(aa64_vh, cpu) || 8222 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8223 define_one_arm_cp_reg(cpu, &contextidr_el2); 8224 } 8225 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8226 define_arm_cp_regs(cpu, vhe_reginfo); 8227 } 8228 8229 if (cpu_isar_feature(aa64_sve, cpu)) { 8230 define_arm_cp_regs(cpu, zcr_reginfo); 8231 } 8232 8233 #ifdef TARGET_AARCH64 8234 if (cpu_isar_feature(aa64_pauth, cpu)) { 8235 define_arm_cp_regs(cpu, pauth_reginfo); 8236 } 8237 if (cpu_isar_feature(aa64_rndr, cpu)) { 8238 define_arm_cp_regs(cpu, rndr_reginfo); 8239 } 8240 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8241 define_arm_cp_regs(cpu, tlbirange_reginfo); 8242 } 8243 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8244 define_arm_cp_regs(cpu, tlbios_reginfo); 8245 } 8246 #ifndef CONFIG_USER_ONLY 8247 /* Data Cache clean instructions up to PoP */ 8248 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8249 define_one_arm_cp_reg(cpu, dcpop_reg); 8250 8251 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8252 define_one_arm_cp_reg(cpu, dcpodp_reg); 8253 } 8254 } 8255 #endif /*CONFIG_USER_ONLY*/ 8256 8257 /* 8258 * If full MTE is enabled, add all of the system registers. 8259 * If only "instructions available at EL0" are enabled, 8260 * then define only a RAZ/WI version of PSTATE.TCO. 8261 */ 8262 if (cpu_isar_feature(aa64_mte, cpu)) { 8263 define_arm_cp_regs(cpu, mte_reginfo); 8264 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8265 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8266 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8267 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8268 } 8269 #endif 8270 8271 if (cpu_isar_feature(any_predinv, cpu)) { 8272 define_arm_cp_regs(cpu, predinv_reginfo); 8273 } 8274 8275 if (cpu_isar_feature(any_ccidx, cpu)) { 8276 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8277 } 8278 8279 #ifndef CONFIG_USER_ONLY 8280 /* 8281 * Register redirections and aliases must be done last, 8282 * after the registers from the other extensions have been defined. 8283 */ 8284 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8285 define_arm_vh_e2h_redirects_aliases(cpu); 8286 } 8287 #endif 8288 } 8289 8290 /* Sort alphabetically by type name, except for "any". */ 8291 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8292 { 8293 ObjectClass *class_a = (ObjectClass *)a; 8294 ObjectClass *class_b = (ObjectClass *)b; 8295 const char *name_a, *name_b; 8296 8297 name_a = object_class_get_name(class_a); 8298 name_b = object_class_get_name(class_b); 8299 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8300 return 1; 8301 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8302 return -1; 8303 } else { 8304 return strcmp(name_a, name_b); 8305 } 8306 } 8307 8308 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8309 { 8310 ObjectClass *oc = data; 8311 const char *typename; 8312 char *name; 8313 8314 typename = object_class_get_name(oc); 8315 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8316 qemu_printf(" %s\n", name); 8317 g_free(name); 8318 } 8319 8320 void arm_cpu_list(void) 8321 { 8322 GSList *list; 8323 8324 list = object_class_get_list(TYPE_ARM_CPU, false); 8325 list = g_slist_sort(list, arm_cpu_list_compare); 8326 qemu_printf("Available CPUs:\n"); 8327 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8328 g_slist_free(list); 8329 } 8330 8331 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8332 { 8333 ObjectClass *oc = data; 8334 CpuDefinitionInfoList **cpu_list = user_data; 8335 CpuDefinitionInfo *info; 8336 const char *typename; 8337 8338 typename = object_class_get_name(oc); 8339 info = g_malloc0(sizeof(*info)); 8340 info->name = g_strndup(typename, 8341 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8342 info->q_typename = g_strdup(typename); 8343 8344 QAPI_LIST_PREPEND(*cpu_list, info); 8345 } 8346 8347 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8348 { 8349 CpuDefinitionInfoList *cpu_list = NULL; 8350 GSList *list; 8351 8352 list = object_class_get_list(TYPE_ARM_CPU, false); 8353 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8354 g_slist_free(list); 8355 8356 return cpu_list; 8357 } 8358 8359 /* 8360 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8361 * add a single reginfo struct to the hash table. 8362 */ 8363 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8364 void *opaque, CPState state, 8365 CPSecureState secstate, 8366 int crm, int opc1, int opc2, 8367 const char *name) 8368 { 8369 CPUARMState *env = &cpu->env; 8370 uint32_t key; 8371 ARMCPRegInfo *r2; 8372 bool is64 = r->type & ARM_CP_64BIT; 8373 bool ns = secstate & ARM_CP_SECSTATE_NS; 8374 int cp = r->cp; 8375 size_t name_len; 8376 bool make_const; 8377 8378 switch (state) { 8379 case ARM_CP_STATE_AA32: 8380 /* We assume it is a cp15 register if the .cp field is left unset. */ 8381 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8382 cp = 15; 8383 } 8384 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8385 break; 8386 case ARM_CP_STATE_AA64: 8387 /* 8388 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8389 * cp == 0 as equivalent to the value for "standard guest-visible 8390 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8391 * in their AArch64 view (the .cp value may be non-zero for the 8392 * benefit of the AArch32 view). 8393 */ 8394 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8395 cp = CP_REG_ARM64_SYSREG_CP; 8396 } 8397 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8398 break; 8399 default: 8400 g_assert_not_reached(); 8401 } 8402 8403 /* Overriding of an existing definition must be explicitly requested. */ 8404 if (!(r->type & ARM_CP_OVERRIDE)) { 8405 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8406 if (oldreg) { 8407 assert(oldreg->type & ARM_CP_OVERRIDE); 8408 } 8409 } 8410 8411 /* 8412 * Eliminate registers that are not present because the EL is missing. 8413 * Doing this here makes it easier to put all registers for a given 8414 * feature into the same ARMCPRegInfo array and define them all at once. 8415 */ 8416 make_const = false; 8417 if (arm_feature(env, ARM_FEATURE_EL3)) { 8418 /* 8419 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8420 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8421 */ 8422 int min_el = ctz32(r->access) / 2; 8423 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8424 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8425 return; 8426 } 8427 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8428 } 8429 } else { 8430 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8431 ? PL2_RW : PL1_RW); 8432 if ((r->access & max_el) == 0) { 8433 return; 8434 } 8435 } 8436 8437 /* Combine cpreg and name into one allocation. */ 8438 name_len = strlen(name) + 1; 8439 r2 = g_malloc(sizeof(*r2) + name_len); 8440 *r2 = *r; 8441 r2->name = memcpy(r2 + 1, name, name_len); 8442 8443 /* 8444 * Update fields to match the instantiation, overwiting wildcards 8445 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8446 */ 8447 r2->cp = cp; 8448 r2->crm = crm; 8449 r2->opc1 = opc1; 8450 r2->opc2 = opc2; 8451 r2->state = state; 8452 r2->secure = secstate; 8453 if (opaque) { 8454 r2->opaque = opaque; 8455 } 8456 8457 if (make_const) { 8458 /* This should not have been a very special register to begin. */ 8459 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8460 assert(old_special == 0 || old_special == ARM_CP_NOP); 8461 /* 8462 * Set the special function to CONST, retaining the other flags. 8463 * This is important for e.g. ARM_CP_SVE so that we still 8464 * take the SVE trap if CPTR_EL3.EZ == 0. 8465 */ 8466 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8467 /* 8468 * Usually, these registers become RES0, but there are a few 8469 * special cases like VPIDR_EL2 which have a constant non-zero 8470 * value with writes ignored. 8471 */ 8472 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8473 r2->resetvalue = 0; 8474 } 8475 /* 8476 * ARM_CP_CONST has precedence, so removing the callbacks and 8477 * offsets are not strictly necessary, but it is potentially 8478 * less confusing to debug later. 8479 */ 8480 r2->readfn = NULL; 8481 r2->writefn = NULL; 8482 r2->raw_readfn = NULL; 8483 r2->raw_writefn = NULL; 8484 r2->resetfn = NULL; 8485 r2->fieldoffset = 0; 8486 r2->bank_fieldoffsets[0] = 0; 8487 r2->bank_fieldoffsets[1] = 0; 8488 } else { 8489 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8490 8491 if (isbanked) { 8492 /* 8493 * Register is banked (using both entries in array). 8494 * Overwriting fieldoffset as the array is only used to define 8495 * banked registers but later only fieldoffset is used. 8496 */ 8497 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8498 } 8499 if (state == ARM_CP_STATE_AA32) { 8500 if (isbanked) { 8501 /* 8502 * If the register is banked then we don't need to migrate or 8503 * reset the 32-bit instance in certain cases: 8504 * 8505 * 1) If the register has both 32-bit and 64-bit instances 8506 * then we can count on the 64-bit instance taking care 8507 * of the non-secure bank. 8508 * 2) If ARMv8 is enabled then we can count on a 64-bit 8509 * version taking care of the secure bank. This requires 8510 * that separate 32 and 64-bit definitions are provided. 8511 */ 8512 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8513 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8514 r2->type |= ARM_CP_ALIAS; 8515 } 8516 } else if ((secstate != r->secure) && !ns) { 8517 /* 8518 * The register is not banked so we only want to allow 8519 * migration of the non-secure instance. 8520 */ 8521 r2->type |= ARM_CP_ALIAS; 8522 } 8523 8524 if (HOST_BIG_ENDIAN && 8525 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8526 r2->fieldoffset += sizeof(uint32_t); 8527 } 8528 } 8529 } 8530 8531 /* 8532 * By convention, for wildcarded registers only the first 8533 * entry is used for migration; the others are marked as 8534 * ALIAS so we don't try to transfer the register 8535 * multiple times. Special registers (ie NOP/WFI) are 8536 * never migratable and not even raw-accessible. 8537 */ 8538 if (r2->type & ARM_CP_SPECIAL_MASK) { 8539 r2->type |= ARM_CP_NO_RAW; 8540 } 8541 if (((r->crm == CP_ANY) && crm != 0) || 8542 ((r->opc1 == CP_ANY) && opc1 != 0) || 8543 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8544 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8545 } 8546 8547 /* 8548 * Check that raw accesses are either forbidden or handled. Note that 8549 * we can't assert this earlier because the setup of fieldoffset for 8550 * banked registers has to be done first. 8551 */ 8552 if (!(r2->type & ARM_CP_NO_RAW)) { 8553 assert(!raw_accessors_invalid(r2)); 8554 } 8555 8556 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8557 } 8558 8559 8560 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8561 const ARMCPRegInfo *r, void *opaque) 8562 { 8563 /* Define implementations of coprocessor registers. 8564 * We store these in a hashtable because typically 8565 * there are less than 150 registers in a space which 8566 * is 16*16*16*8*8 = 262144 in size. 8567 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8568 * If a register is defined twice then the second definition is 8569 * used, so this can be used to define some generic registers and 8570 * then override them with implementation specific variations. 8571 * At least one of the original and the second definition should 8572 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8573 * against accidental use. 8574 * 8575 * The state field defines whether the register is to be 8576 * visible in the AArch32 or AArch64 execution state. If the 8577 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8578 * reginfo structure for the AArch32 view, which sees the lower 8579 * 32 bits of the 64 bit register. 8580 * 8581 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8582 * be wildcarded. AArch64 registers are always considered to be 64 8583 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8584 * the register, if any. 8585 */ 8586 int crm, opc1, opc2; 8587 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8588 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8589 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8590 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8591 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8592 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8593 CPState state; 8594 8595 /* 64 bit registers have only CRm and Opc1 fields */ 8596 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8597 /* op0 only exists in the AArch64 encodings */ 8598 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8599 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8600 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8601 /* 8602 * This API is only for Arm's system coprocessors (14 and 15) or 8603 * (M-profile or v7A-and-earlier only) for implementation defined 8604 * coprocessors in the range 0..7. Our decode assumes this, since 8605 * 8..13 can be used for other insns including VFP and Neon. See 8606 * valid_cp() in translate.c. Assert here that we haven't tried 8607 * to use an invalid coprocessor number. 8608 */ 8609 switch (r->state) { 8610 case ARM_CP_STATE_BOTH: 8611 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8612 if (r->cp == 0) { 8613 break; 8614 } 8615 /* fall through */ 8616 case ARM_CP_STATE_AA32: 8617 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8618 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8619 assert(r->cp >= 14 && r->cp <= 15); 8620 } else { 8621 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8622 } 8623 break; 8624 case ARM_CP_STATE_AA64: 8625 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8626 break; 8627 default: 8628 g_assert_not_reached(); 8629 } 8630 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8631 * encodes a minimum access level for the register. We roll this 8632 * runtime check into our general permission check code, so check 8633 * here that the reginfo's specified permissions are strict enough 8634 * to encompass the generic architectural permission check. 8635 */ 8636 if (r->state != ARM_CP_STATE_AA32) { 8637 CPAccessRights mask; 8638 switch (r->opc1) { 8639 case 0: 8640 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8641 mask = PL0U_R | PL1_RW; 8642 break; 8643 case 1: case 2: 8644 /* min_EL EL1 */ 8645 mask = PL1_RW; 8646 break; 8647 case 3: 8648 /* min_EL EL0 */ 8649 mask = PL0_RW; 8650 break; 8651 case 4: 8652 case 5: 8653 /* min_EL EL2 */ 8654 mask = PL2_RW; 8655 break; 8656 case 6: 8657 /* min_EL EL3 */ 8658 mask = PL3_RW; 8659 break; 8660 case 7: 8661 /* min_EL EL1, secure mode only (we don't check the latter) */ 8662 mask = PL1_RW; 8663 break; 8664 default: 8665 /* broken reginfo with out-of-range opc1 */ 8666 g_assert_not_reached(); 8667 } 8668 /* assert our permissions are not too lax (stricter is fine) */ 8669 assert((r->access & ~mask) == 0); 8670 } 8671 8672 /* Check that the register definition has enough info to handle 8673 * reads and writes if they are permitted. 8674 */ 8675 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8676 if (r->access & PL3_R) { 8677 assert((r->fieldoffset || 8678 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8679 r->readfn); 8680 } 8681 if (r->access & PL3_W) { 8682 assert((r->fieldoffset || 8683 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8684 r->writefn); 8685 } 8686 } 8687 8688 for (crm = crmmin; crm <= crmmax; crm++) { 8689 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8690 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8691 for (state = ARM_CP_STATE_AA32; 8692 state <= ARM_CP_STATE_AA64; state++) { 8693 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8694 continue; 8695 } 8696 if (state == ARM_CP_STATE_AA32) { 8697 /* Under AArch32 CP registers can be common 8698 * (same for secure and non-secure world) or banked. 8699 */ 8700 char *name; 8701 8702 switch (r->secure) { 8703 case ARM_CP_SECSTATE_S: 8704 case ARM_CP_SECSTATE_NS: 8705 add_cpreg_to_hashtable(cpu, r, opaque, state, 8706 r->secure, crm, opc1, opc2, 8707 r->name); 8708 break; 8709 case ARM_CP_SECSTATE_BOTH: 8710 name = g_strdup_printf("%s_S", r->name); 8711 add_cpreg_to_hashtable(cpu, r, opaque, state, 8712 ARM_CP_SECSTATE_S, 8713 crm, opc1, opc2, name); 8714 g_free(name); 8715 add_cpreg_to_hashtable(cpu, r, opaque, state, 8716 ARM_CP_SECSTATE_NS, 8717 crm, opc1, opc2, r->name); 8718 break; 8719 default: 8720 g_assert_not_reached(); 8721 } 8722 } else { 8723 /* AArch64 registers get mapped to non-secure instance 8724 * of AArch32 */ 8725 add_cpreg_to_hashtable(cpu, r, opaque, state, 8726 ARM_CP_SECSTATE_NS, 8727 crm, opc1, opc2, r->name); 8728 } 8729 } 8730 } 8731 } 8732 } 8733 } 8734 8735 /* Define a whole list of registers */ 8736 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8737 void *opaque, size_t len) 8738 { 8739 size_t i; 8740 for (i = 0; i < len; ++i) { 8741 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8742 } 8743 } 8744 8745 /* 8746 * Modify ARMCPRegInfo for access from userspace. 8747 * 8748 * This is a data driven modification directed by 8749 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8750 * user-space cannot alter any values and dynamic values pertaining to 8751 * execution state are hidden from user space view anyway. 8752 */ 8753 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8754 const ARMCPRegUserSpaceInfo *mods, 8755 size_t mods_len) 8756 { 8757 for (size_t mi = 0; mi < mods_len; ++mi) { 8758 const ARMCPRegUserSpaceInfo *m = mods + mi; 8759 GPatternSpec *pat = NULL; 8760 8761 if (m->is_glob) { 8762 pat = g_pattern_spec_new(m->name); 8763 } 8764 for (size_t ri = 0; ri < regs_len; ++ri) { 8765 ARMCPRegInfo *r = regs + ri; 8766 8767 if (pat && g_pattern_match_string(pat, r->name)) { 8768 r->type = ARM_CP_CONST; 8769 r->access = PL0U_R; 8770 r->resetvalue = 0; 8771 /* continue */ 8772 } else if (strcmp(r->name, m->name) == 0) { 8773 r->type = ARM_CP_CONST; 8774 r->access = PL0U_R; 8775 r->resetvalue &= m->exported_bits; 8776 r->resetvalue |= m->fixed_bits; 8777 break; 8778 } 8779 } 8780 if (pat) { 8781 g_pattern_spec_free(pat); 8782 } 8783 } 8784 } 8785 8786 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8787 { 8788 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8789 } 8790 8791 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8792 uint64_t value) 8793 { 8794 /* Helper coprocessor write function for write-ignore registers */ 8795 } 8796 8797 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8798 { 8799 /* Helper coprocessor write function for read-as-zero registers */ 8800 return 0; 8801 } 8802 8803 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8804 { 8805 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8806 } 8807 8808 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8809 { 8810 /* Return true if it is not valid for us to switch to 8811 * this CPU mode (ie all the UNPREDICTABLE cases in 8812 * the ARM ARM CPSRWriteByInstr pseudocode). 8813 */ 8814 8815 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8816 if (write_type == CPSRWriteByInstr && 8817 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8818 mode == ARM_CPU_MODE_HYP)) { 8819 return 1; 8820 } 8821 8822 switch (mode) { 8823 case ARM_CPU_MODE_USR: 8824 return 0; 8825 case ARM_CPU_MODE_SYS: 8826 case ARM_CPU_MODE_SVC: 8827 case ARM_CPU_MODE_ABT: 8828 case ARM_CPU_MODE_UND: 8829 case ARM_CPU_MODE_IRQ: 8830 case ARM_CPU_MODE_FIQ: 8831 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8832 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8833 */ 8834 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8835 * and CPS are treated as illegal mode changes. 8836 */ 8837 if (write_type == CPSRWriteByInstr && 8838 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8839 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8840 return 1; 8841 } 8842 return 0; 8843 case ARM_CPU_MODE_HYP: 8844 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8845 case ARM_CPU_MODE_MON: 8846 return arm_current_el(env) < 3; 8847 default: 8848 return 1; 8849 } 8850 } 8851 8852 uint32_t cpsr_read(CPUARMState *env) 8853 { 8854 int ZF; 8855 ZF = (env->ZF == 0); 8856 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8857 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8858 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8859 | ((env->condexec_bits & 0xfc) << 8) 8860 | (env->GE << 16) | (env->daif & CPSR_AIF); 8861 } 8862 8863 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8864 CPSRWriteType write_type) 8865 { 8866 uint32_t changed_daif; 8867 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 8868 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 8869 8870 if (mask & CPSR_NZCV) { 8871 env->ZF = (~val) & CPSR_Z; 8872 env->NF = val; 8873 env->CF = (val >> 29) & 1; 8874 env->VF = (val << 3) & 0x80000000; 8875 } 8876 if (mask & CPSR_Q) 8877 env->QF = ((val & CPSR_Q) != 0); 8878 if (mask & CPSR_T) 8879 env->thumb = ((val & CPSR_T) != 0); 8880 if (mask & CPSR_IT_0_1) { 8881 env->condexec_bits &= ~3; 8882 env->condexec_bits |= (val >> 25) & 3; 8883 } 8884 if (mask & CPSR_IT_2_7) { 8885 env->condexec_bits &= 3; 8886 env->condexec_bits |= (val >> 8) & 0xfc; 8887 } 8888 if (mask & CPSR_GE) { 8889 env->GE = (val >> 16) & 0xf; 8890 } 8891 8892 /* In a V7 implementation that includes the security extensions but does 8893 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8894 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8895 * bits respectively. 8896 * 8897 * In a V8 implementation, it is permitted for privileged software to 8898 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8899 */ 8900 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8901 arm_feature(env, ARM_FEATURE_EL3) && 8902 !arm_feature(env, ARM_FEATURE_EL2) && 8903 !arm_is_secure(env)) { 8904 8905 changed_daif = (env->daif ^ val) & mask; 8906 8907 if (changed_daif & CPSR_A) { 8908 /* Check to see if we are allowed to change the masking of async 8909 * abort exceptions from a non-secure state. 8910 */ 8911 if (!(env->cp15.scr_el3 & SCR_AW)) { 8912 qemu_log_mask(LOG_GUEST_ERROR, 8913 "Ignoring attempt to switch CPSR_A flag from " 8914 "non-secure world with SCR.AW bit clear\n"); 8915 mask &= ~CPSR_A; 8916 } 8917 } 8918 8919 if (changed_daif & CPSR_F) { 8920 /* Check to see if we are allowed to change the masking of FIQ 8921 * exceptions from a non-secure state. 8922 */ 8923 if (!(env->cp15.scr_el3 & SCR_FW)) { 8924 qemu_log_mask(LOG_GUEST_ERROR, 8925 "Ignoring attempt to switch CPSR_F flag from " 8926 "non-secure world with SCR.FW bit clear\n"); 8927 mask &= ~CPSR_F; 8928 } 8929 8930 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8931 * If this bit is set software is not allowed to mask 8932 * FIQs, but is allowed to set CPSR_F to 0. 8933 */ 8934 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8935 (val & CPSR_F)) { 8936 qemu_log_mask(LOG_GUEST_ERROR, 8937 "Ignoring attempt to enable CPSR_F flag " 8938 "(non-maskable FIQ [NMFI] support enabled)\n"); 8939 mask &= ~CPSR_F; 8940 } 8941 } 8942 } 8943 8944 env->daif &= ~(CPSR_AIF & mask); 8945 env->daif |= val & CPSR_AIF & mask; 8946 8947 if (write_type != CPSRWriteRaw && 8948 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8949 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8950 /* Note that we can only get here in USR mode if this is a 8951 * gdb stub write; for this case we follow the architectural 8952 * behaviour for guest writes in USR mode of ignoring an attempt 8953 * to switch mode. (Those are caught by translate.c for writes 8954 * triggered by guest instructions.) 8955 */ 8956 mask &= ~CPSR_M; 8957 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8958 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8959 * v7, and has defined behaviour in v8: 8960 * + leave CPSR.M untouched 8961 * + allow changes to the other CPSR fields 8962 * + set PSTATE.IL 8963 * For user changes via the GDB stub, we don't set PSTATE.IL, 8964 * as this would be unnecessarily harsh for a user error. 8965 */ 8966 mask &= ~CPSR_M; 8967 if (write_type != CPSRWriteByGDBStub && 8968 arm_feature(env, ARM_FEATURE_V8)) { 8969 mask |= CPSR_IL; 8970 val |= CPSR_IL; 8971 } 8972 qemu_log_mask(LOG_GUEST_ERROR, 8973 "Illegal AArch32 mode switch attempt from %s to %s\n", 8974 aarch32_mode_name(env->uncached_cpsr), 8975 aarch32_mode_name(val)); 8976 } else { 8977 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8978 write_type == CPSRWriteExceptionReturn ? 8979 "Exception return from AArch32" : 8980 "AArch32 mode switch from", 8981 aarch32_mode_name(env->uncached_cpsr), 8982 aarch32_mode_name(val), env->regs[15]); 8983 switch_mode(env, val & CPSR_M); 8984 } 8985 } 8986 mask &= ~CACHED_CPSR_BITS; 8987 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8988 if (rebuild_hflags) { 8989 arm_rebuild_hflags(env); 8990 } 8991 } 8992 8993 /* Sign/zero extend */ 8994 uint32_t HELPER(sxtb16)(uint32_t x) 8995 { 8996 uint32_t res; 8997 res = (uint16_t)(int8_t)x; 8998 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8999 return res; 9000 } 9001 9002 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9003 { 9004 /* 9005 * Take a division-by-zero exception if necessary; otherwise return 9006 * to get the usual non-trapping division behaviour (result of 0) 9007 */ 9008 if (arm_feature(env, ARM_FEATURE_M) 9009 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9010 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9011 } 9012 } 9013 9014 uint32_t HELPER(uxtb16)(uint32_t x) 9015 { 9016 uint32_t res; 9017 res = (uint16_t)(uint8_t)x; 9018 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9019 return res; 9020 } 9021 9022 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9023 { 9024 if (den == 0) { 9025 handle_possible_div0_trap(env, GETPC()); 9026 return 0; 9027 } 9028 if (num == INT_MIN && den == -1) { 9029 return INT_MIN; 9030 } 9031 return num / den; 9032 } 9033 9034 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9035 { 9036 if (den == 0) { 9037 handle_possible_div0_trap(env, GETPC()); 9038 return 0; 9039 } 9040 return num / den; 9041 } 9042 9043 uint32_t HELPER(rbit)(uint32_t x) 9044 { 9045 return revbit32(x); 9046 } 9047 9048 #ifdef CONFIG_USER_ONLY 9049 9050 static void switch_mode(CPUARMState *env, int mode) 9051 { 9052 ARMCPU *cpu = env_archcpu(env); 9053 9054 if (mode != ARM_CPU_MODE_USR) { 9055 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9056 } 9057 } 9058 9059 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9060 uint32_t cur_el, bool secure) 9061 { 9062 return 1; 9063 } 9064 9065 void aarch64_sync_64_to_32(CPUARMState *env) 9066 { 9067 g_assert_not_reached(); 9068 } 9069 9070 #else 9071 9072 static void switch_mode(CPUARMState *env, int mode) 9073 { 9074 int old_mode; 9075 int i; 9076 9077 old_mode = env->uncached_cpsr & CPSR_M; 9078 if (mode == old_mode) 9079 return; 9080 9081 if (old_mode == ARM_CPU_MODE_FIQ) { 9082 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9083 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9084 } else if (mode == ARM_CPU_MODE_FIQ) { 9085 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9086 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9087 } 9088 9089 i = bank_number(old_mode); 9090 env->banked_r13[i] = env->regs[13]; 9091 env->banked_spsr[i] = env->spsr; 9092 9093 i = bank_number(mode); 9094 env->regs[13] = env->banked_r13[i]; 9095 env->spsr = env->banked_spsr[i]; 9096 9097 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9098 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9099 } 9100 9101 /* Physical Interrupt Target EL Lookup Table 9102 * 9103 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9104 * 9105 * The below multi-dimensional table is used for looking up the target 9106 * exception level given numerous condition criteria. Specifically, the 9107 * target EL is based on SCR and HCR routing controls as well as the 9108 * currently executing EL and secure state. 9109 * 9110 * Dimensions: 9111 * target_el_table[2][2][2][2][2][4] 9112 * | | | | | +--- Current EL 9113 * | | | | +------ Non-secure(0)/Secure(1) 9114 * | | | +--------- HCR mask override 9115 * | | +------------ SCR exec state control 9116 * | +--------------- SCR mask override 9117 * +------------------ 32-bit(0)/64-bit(1) EL3 9118 * 9119 * The table values are as such: 9120 * 0-3 = EL0-EL3 9121 * -1 = Cannot occur 9122 * 9123 * The ARM ARM target EL table includes entries indicating that an "exception 9124 * is not taken". The two cases where this is applicable are: 9125 * 1) An exception is taken from EL3 but the SCR does not have the exception 9126 * routed to EL3. 9127 * 2) An exception is taken from EL2 but the HCR does not have the exception 9128 * routed to EL2. 9129 * In these two cases, the below table contain a target of EL1. This value is 9130 * returned as it is expected that the consumer of the table data will check 9131 * for "target EL >= current EL" to ensure the exception is not taken. 9132 * 9133 * SCR HCR 9134 * 64 EA AMO From 9135 * BIT IRQ IMO Non-secure Secure 9136 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9137 */ 9138 static const int8_t target_el_table[2][2][2][2][2][4] = { 9139 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9140 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9141 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9142 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9143 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9144 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9145 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9146 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9147 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9148 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9149 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9150 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9151 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9152 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9153 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9154 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9155 }; 9156 9157 /* 9158 * Determine the target EL for physical exceptions 9159 */ 9160 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9161 uint32_t cur_el, bool secure) 9162 { 9163 CPUARMState *env = cs->env_ptr; 9164 bool rw; 9165 bool scr; 9166 bool hcr; 9167 int target_el; 9168 /* Is the highest EL AArch64? */ 9169 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9170 uint64_t hcr_el2; 9171 9172 if (arm_feature(env, ARM_FEATURE_EL3)) { 9173 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9174 } else { 9175 /* Either EL2 is the highest EL (and so the EL2 register width 9176 * is given by is64); or there is no EL2 or EL3, in which case 9177 * the value of 'rw' does not affect the table lookup anyway. 9178 */ 9179 rw = is64; 9180 } 9181 9182 hcr_el2 = arm_hcr_el2_eff(env); 9183 switch (excp_idx) { 9184 case EXCP_IRQ: 9185 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9186 hcr = hcr_el2 & HCR_IMO; 9187 break; 9188 case EXCP_FIQ: 9189 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9190 hcr = hcr_el2 & HCR_FMO; 9191 break; 9192 default: 9193 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9194 hcr = hcr_el2 & HCR_AMO; 9195 break; 9196 }; 9197 9198 /* 9199 * For these purposes, TGE and AMO/IMO/FMO both force the 9200 * interrupt to EL2. Fold TGE into the bit extracted above. 9201 */ 9202 hcr |= (hcr_el2 & HCR_TGE) != 0; 9203 9204 /* Perform a table-lookup for the target EL given the current state */ 9205 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9206 9207 assert(target_el > 0); 9208 9209 return target_el; 9210 } 9211 9212 void arm_log_exception(CPUState *cs) 9213 { 9214 int idx = cs->exception_index; 9215 9216 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9217 const char *exc = NULL; 9218 static const char * const excnames[] = { 9219 [EXCP_UDEF] = "Undefined Instruction", 9220 [EXCP_SWI] = "SVC", 9221 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9222 [EXCP_DATA_ABORT] = "Data Abort", 9223 [EXCP_IRQ] = "IRQ", 9224 [EXCP_FIQ] = "FIQ", 9225 [EXCP_BKPT] = "Breakpoint", 9226 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9227 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9228 [EXCP_HVC] = "Hypervisor Call", 9229 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9230 [EXCP_SMC] = "Secure Monitor Call", 9231 [EXCP_VIRQ] = "Virtual IRQ", 9232 [EXCP_VFIQ] = "Virtual FIQ", 9233 [EXCP_SEMIHOST] = "Semihosting call", 9234 [EXCP_NOCP] = "v7M NOCP UsageFault", 9235 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9236 [EXCP_STKOF] = "v8M STKOF UsageFault", 9237 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9238 [EXCP_LSERR] = "v8M LSERR UsageFault", 9239 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9240 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9241 }; 9242 9243 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9244 exc = excnames[idx]; 9245 } 9246 if (!exc) { 9247 exc = "unknown"; 9248 } 9249 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9250 idx, exc, cs->cpu_index); 9251 } 9252 } 9253 9254 /* 9255 * Function used to synchronize QEMU's AArch64 register set with AArch32 9256 * register set. This is necessary when switching between AArch32 and AArch64 9257 * execution state. 9258 */ 9259 void aarch64_sync_32_to_64(CPUARMState *env) 9260 { 9261 int i; 9262 uint32_t mode = env->uncached_cpsr & CPSR_M; 9263 9264 /* We can blanket copy R[0:7] to X[0:7] */ 9265 for (i = 0; i < 8; i++) { 9266 env->xregs[i] = env->regs[i]; 9267 } 9268 9269 /* 9270 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9271 * Otherwise, they come from the banked user regs. 9272 */ 9273 if (mode == ARM_CPU_MODE_FIQ) { 9274 for (i = 8; i < 13; i++) { 9275 env->xregs[i] = env->usr_regs[i - 8]; 9276 } 9277 } else { 9278 for (i = 8; i < 13; i++) { 9279 env->xregs[i] = env->regs[i]; 9280 } 9281 } 9282 9283 /* 9284 * Registers x13-x23 are the various mode SP and FP registers. Registers 9285 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9286 * from the mode banked register. 9287 */ 9288 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9289 env->xregs[13] = env->regs[13]; 9290 env->xregs[14] = env->regs[14]; 9291 } else { 9292 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9293 /* HYP is an exception in that it is copied from r14 */ 9294 if (mode == ARM_CPU_MODE_HYP) { 9295 env->xregs[14] = env->regs[14]; 9296 } else { 9297 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9298 } 9299 } 9300 9301 if (mode == ARM_CPU_MODE_HYP) { 9302 env->xregs[15] = env->regs[13]; 9303 } else { 9304 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9305 } 9306 9307 if (mode == ARM_CPU_MODE_IRQ) { 9308 env->xregs[16] = env->regs[14]; 9309 env->xregs[17] = env->regs[13]; 9310 } else { 9311 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9312 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9313 } 9314 9315 if (mode == ARM_CPU_MODE_SVC) { 9316 env->xregs[18] = env->regs[14]; 9317 env->xregs[19] = env->regs[13]; 9318 } else { 9319 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9320 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9321 } 9322 9323 if (mode == ARM_CPU_MODE_ABT) { 9324 env->xregs[20] = env->regs[14]; 9325 env->xregs[21] = env->regs[13]; 9326 } else { 9327 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9328 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9329 } 9330 9331 if (mode == ARM_CPU_MODE_UND) { 9332 env->xregs[22] = env->regs[14]; 9333 env->xregs[23] = env->regs[13]; 9334 } else { 9335 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9336 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9337 } 9338 9339 /* 9340 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9341 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9342 * FIQ bank for r8-r14. 9343 */ 9344 if (mode == ARM_CPU_MODE_FIQ) { 9345 for (i = 24; i < 31; i++) { 9346 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9347 } 9348 } else { 9349 for (i = 24; i < 29; i++) { 9350 env->xregs[i] = env->fiq_regs[i - 24]; 9351 } 9352 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9353 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9354 } 9355 9356 env->pc = env->regs[15]; 9357 } 9358 9359 /* 9360 * Function used to synchronize QEMU's AArch32 register set with AArch64 9361 * register set. This is necessary when switching between AArch32 and AArch64 9362 * execution state. 9363 */ 9364 void aarch64_sync_64_to_32(CPUARMState *env) 9365 { 9366 int i; 9367 uint32_t mode = env->uncached_cpsr & CPSR_M; 9368 9369 /* We can blanket copy X[0:7] to R[0:7] */ 9370 for (i = 0; i < 8; i++) { 9371 env->regs[i] = env->xregs[i]; 9372 } 9373 9374 /* 9375 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9376 * Otherwise, we copy x8-x12 into the banked user regs. 9377 */ 9378 if (mode == ARM_CPU_MODE_FIQ) { 9379 for (i = 8; i < 13; i++) { 9380 env->usr_regs[i - 8] = env->xregs[i]; 9381 } 9382 } else { 9383 for (i = 8; i < 13; i++) { 9384 env->regs[i] = env->xregs[i]; 9385 } 9386 } 9387 9388 /* 9389 * Registers r13 & r14 depend on the current mode. 9390 * If we are in a given mode, we copy the corresponding x registers to r13 9391 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9392 * for the mode. 9393 */ 9394 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9395 env->regs[13] = env->xregs[13]; 9396 env->regs[14] = env->xregs[14]; 9397 } else { 9398 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9399 9400 /* 9401 * HYP is an exception in that it does not have its own banked r14 but 9402 * shares the USR r14 9403 */ 9404 if (mode == ARM_CPU_MODE_HYP) { 9405 env->regs[14] = env->xregs[14]; 9406 } else { 9407 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9408 } 9409 } 9410 9411 if (mode == ARM_CPU_MODE_HYP) { 9412 env->regs[13] = env->xregs[15]; 9413 } else { 9414 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9415 } 9416 9417 if (mode == ARM_CPU_MODE_IRQ) { 9418 env->regs[14] = env->xregs[16]; 9419 env->regs[13] = env->xregs[17]; 9420 } else { 9421 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9422 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9423 } 9424 9425 if (mode == ARM_CPU_MODE_SVC) { 9426 env->regs[14] = env->xregs[18]; 9427 env->regs[13] = env->xregs[19]; 9428 } else { 9429 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9430 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9431 } 9432 9433 if (mode == ARM_CPU_MODE_ABT) { 9434 env->regs[14] = env->xregs[20]; 9435 env->regs[13] = env->xregs[21]; 9436 } else { 9437 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9438 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9439 } 9440 9441 if (mode == ARM_CPU_MODE_UND) { 9442 env->regs[14] = env->xregs[22]; 9443 env->regs[13] = env->xregs[23]; 9444 } else { 9445 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9446 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9447 } 9448 9449 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9450 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9451 * FIQ bank for r8-r14. 9452 */ 9453 if (mode == ARM_CPU_MODE_FIQ) { 9454 for (i = 24; i < 31; i++) { 9455 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9456 } 9457 } else { 9458 for (i = 24; i < 29; i++) { 9459 env->fiq_regs[i - 24] = env->xregs[i]; 9460 } 9461 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9462 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9463 } 9464 9465 env->regs[15] = env->pc; 9466 } 9467 9468 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9469 uint32_t mask, uint32_t offset, 9470 uint32_t newpc) 9471 { 9472 int new_el; 9473 9474 /* Change the CPU state so as to actually take the exception. */ 9475 switch_mode(env, new_mode); 9476 9477 /* 9478 * For exceptions taken to AArch32 we must clear the SS bit in both 9479 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9480 */ 9481 env->pstate &= ~PSTATE_SS; 9482 env->spsr = cpsr_read(env); 9483 /* Clear IT bits. */ 9484 env->condexec_bits = 0; 9485 /* Switch to the new mode, and to the correct instruction set. */ 9486 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9487 9488 /* This must be after mode switching. */ 9489 new_el = arm_current_el(env); 9490 9491 /* Set new mode endianness */ 9492 env->uncached_cpsr &= ~CPSR_E; 9493 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9494 env->uncached_cpsr |= CPSR_E; 9495 } 9496 /* J and IL must always be cleared for exception entry */ 9497 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9498 env->daif |= mask; 9499 9500 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9501 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9502 env->uncached_cpsr |= CPSR_SSBS; 9503 } else { 9504 env->uncached_cpsr &= ~CPSR_SSBS; 9505 } 9506 } 9507 9508 if (new_mode == ARM_CPU_MODE_HYP) { 9509 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9510 env->elr_el[2] = env->regs[15]; 9511 } else { 9512 /* CPSR.PAN is normally preserved preserved unless... */ 9513 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9514 switch (new_el) { 9515 case 3: 9516 if (!arm_is_secure_below_el3(env)) { 9517 /* ... the target is EL3, from non-secure state. */ 9518 env->uncached_cpsr &= ~CPSR_PAN; 9519 break; 9520 } 9521 /* ... the target is EL3, from secure state ... */ 9522 /* fall through */ 9523 case 1: 9524 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9525 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9526 env->uncached_cpsr |= CPSR_PAN; 9527 } 9528 break; 9529 } 9530 } 9531 /* 9532 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9533 * and we should just guard the thumb mode on V4 9534 */ 9535 if (arm_feature(env, ARM_FEATURE_V4T)) { 9536 env->thumb = 9537 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9538 } 9539 env->regs[14] = env->regs[15] + offset; 9540 } 9541 env->regs[15] = newpc; 9542 arm_rebuild_hflags(env); 9543 } 9544 9545 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9546 { 9547 /* 9548 * Handle exception entry to Hyp mode; this is sufficiently 9549 * different to entry to other AArch32 modes that we handle it 9550 * separately here. 9551 * 9552 * The vector table entry used is always the 0x14 Hyp mode entry point, 9553 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9554 * The offset applied to the preferred return address is always zero 9555 * (see DDI0487C.a section G1.12.3). 9556 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9557 */ 9558 uint32_t addr, mask; 9559 ARMCPU *cpu = ARM_CPU(cs); 9560 CPUARMState *env = &cpu->env; 9561 9562 switch (cs->exception_index) { 9563 case EXCP_UDEF: 9564 addr = 0x04; 9565 break; 9566 case EXCP_SWI: 9567 addr = 0x08; 9568 break; 9569 case EXCP_BKPT: 9570 /* Fall through to prefetch abort. */ 9571 case EXCP_PREFETCH_ABORT: 9572 env->cp15.ifar_s = env->exception.vaddress; 9573 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9574 (uint32_t)env->exception.vaddress); 9575 addr = 0x0c; 9576 break; 9577 case EXCP_DATA_ABORT: 9578 env->cp15.dfar_s = env->exception.vaddress; 9579 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9580 (uint32_t)env->exception.vaddress); 9581 addr = 0x10; 9582 break; 9583 case EXCP_IRQ: 9584 addr = 0x18; 9585 break; 9586 case EXCP_FIQ: 9587 addr = 0x1c; 9588 break; 9589 case EXCP_HVC: 9590 addr = 0x08; 9591 break; 9592 case EXCP_HYP_TRAP: 9593 addr = 0x14; 9594 break; 9595 default: 9596 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9597 } 9598 9599 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9600 if (!arm_feature(env, ARM_FEATURE_V8)) { 9601 /* 9602 * QEMU syndrome values are v8-style. v7 has the IL bit 9603 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9604 * If this is a v7 CPU, squash the IL bit in those cases. 9605 */ 9606 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9607 (cs->exception_index == EXCP_DATA_ABORT && 9608 !(env->exception.syndrome & ARM_EL_ISV)) || 9609 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9610 env->exception.syndrome &= ~ARM_EL_IL; 9611 } 9612 } 9613 env->cp15.esr_el[2] = env->exception.syndrome; 9614 } 9615 9616 if (arm_current_el(env) != 2 && addr < 0x14) { 9617 addr = 0x14; 9618 } 9619 9620 mask = 0; 9621 if (!(env->cp15.scr_el3 & SCR_EA)) { 9622 mask |= CPSR_A; 9623 } 9624 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9625 mask |= CPSR_I; 9626 } 9627 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9628 mask |= CPSR_F; 9629 } 9630 9631 addr += env->cp15.hvbar; 9632 9633 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9634 } 9635 9636 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9637 { 9638 ARMCPU *cpu = ARM_CPU(cs); 9639 CPUARMState *env = &cpu->env; 9640 uint32_t addr; 9641 uint32_t mask; 9642 int new_mode; 9643 uint32_t offset; 9644 uint32_t moe; 9645 9646 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9647 switch (syn_get_ec(env->exception.syndrome)) { 9648 case EC_BREAKPOINT: 9649 case EC_BREAKPOINT_SAME_EL: 9650 moe = 1; 9651 break; 9652 case EC_WATCHPOINT: 9653 case EC_WATCHPOINT_SAME_EL: 9654 moe = 10; 9655 break; 9656 case EC_AA32_BKPT: 9657 moe = 3; 9658 break; 9659 case EC_VECTORCATCH: 9660 moe = 5; 9661 break; 9662 default: 9663 moe = 0; 9664 break; 9665 } 9666 9667 if (moe) { 9668 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9669 } 9670 9671 if (env->exception.target_el == 2) { 9672 arm_cpu_do_interrupt_aarch32_hyp(cs); 9673 return; 9674 } 9675 9676 switch (cs->exception_index) { 9677 case EXCP_UDEF: 9678 new_mode = ARM_CPU_MODE_UND; 9679 addr = 0x04; 9680 mask = CPSR_I; 9681 if (env->thumb) 9682 offset = 2; 9683 else 9684 offset = 4; 9685 break; 9686 case EXCP_SWI: 9687 new_mode = ARM_CPU_MODE_SVC; 9688 addr = 0x08; 9689 mask = CPSR_I; 9690 /* The PC already points to the next instruction. */ 9691 offset = 0; 9692 break; 9693 case EXCP_BKPT: 9694 /* Fall through to prefetch abort. */ 9695 case EXCP_PREFETCH_ABORT: 9696 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9697 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9698 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9699 env->exception.fsr, (uint32_t)env->exception.vaddress); 9700 new_mode = ARM_CPU_MODE_ABT; 9701 addr = 0x0c; 9702 mask = CPSR_A | CPSR_I; 9703 offset = 4; 9704 break; 9705 case EXCP_DATA_ABORT: 9706 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9707 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9708 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9709 env->exception.fsr, 9710 (uint32_t)env->exception.vaddress); 9711 new_mode = ARM_CPU_MODE_ABT; 9712 addr = 0x10; 9713 mask = CPSR_A | CPSR_I; 9714 offset = 8; 9715 break; 9716 case EXCP_IRQ: 9717 new_mode = ARM_CPU_MODE_IRQ; 9718 addr = 0x18; 9719 /* Disable IRQ and imprecise data aborts. */ 9720 mask = CPSR_A | CPSR_I; 9721 offset = 4; 9722 if (env->cp15.scr_el3 & SCR_IRQ) { 9723 /* IRQ routed to monitor mode */ 9724 new_mode = ARM_CPU_MODE_MON; 9725 mask |= CPSR_F; 9726 } 9727 break; 9728 case EXCP_FIQ: 9729 new_mode = ARM_CPU_MODE_FIQ; 9730 addr = 0x1c; 9731 /* Disable FIQ, IRQ and imprecise data aborts. */ 9732 mask = CPSR_A | CPSR_I | CPSR_F; 9733 if (env->cp15.scr_el3 & SCR_FIQ) { 9734 /* FIQ routed to monitor mode */ 9735 new_mode = ARM_CPU_MODE_MON; 9736 } 9737 offset = 4; 9738 break; 9739 case EXCP_VIRQ: 9740 new_mode = ARM_CPU_MODE_IRQ; 9741 addr = 0x18; 9742 /* Disable IRQ and imprecise data aborts. */ 9743 mask = CPSR_A | CPSR_I; 9744 offset = 4; 9745 break; 9746 case EXCP_VFIQ: 9747 new_mode = ARM_CPU_MODE_FIQ; 9748 addr = 0x1c; 9749 /* Disable FIQ, IRQ and imprecise data aborts. */ 9750 mask = CPSR_A | CPSR_I | CPSR_F; 9751 offset = 4; 9752 break; 9753 case EXCP_SMC: 9754 new_mode = ARM_CPU_MODE_MON; 9755 addr = 0x08; 9756 mask = CPSR_A | CPSR_I | CPSR_F; 9757 offset = 0; 9758 break; 9759 default: 9760 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9761 return; /* Never happens. Keep compiler happy. */ 9762 } 9763 9764 if (new_mode == ARM_CPU_MODE_MON) { 9765 addr += env->cp15.mvbar; 9766 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9767 /* High vectors. When enabled, base address cannot be remapped. */ 9768 addr += 0xffff0000; 9769 } else { 9770 /* ARM v7 architectures provide a vector base address register to remap 9771 * the interrupt vector table. 9772 * This register is only followed in non-monitor mode, and is banked. 9773 * Note: only bits 31:5 are valid. 9774 */ 9775 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9776 } 9777 9778 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9779 env->cp15.scr_el3 &= ~SCR_NS; 9780 } 9781 9782 take_aarch32_exception(env, new_mode, mask, offset, addr); 9783 } 9784 9785 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9786 { 9787 /* 9788 * Return the register number of the AArch64 view of the AArch32 9789 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9790 * be that of the AArch32 mode the exception came from. 9791 */ 9792 int mode = env->uncached_cpsr & CPSR_M; 9793 9794 switch (aarch32_reg) { 9795 case 0 ... 7: 9796 return aarch32_reg; 9797 case 8 ... 12: 9798 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9799 case 13: 9800 switch (mode) { 9801 case ARM_CPU_MODE_USR: 9802 case ARM_CPU_MODE_SYS: 9803 return 13; 9804 case ARM_CPU_MODE_HYP: 9805 return 15; 9806 case ARM_CPU_MODE_IRQ: 9807 return 17; 9808 case ARM_CPU_MODE_SVC: 9809 return 19; 9810 case ARM_CPU_MODE_ABT: 9811 return 21; 9812 case ARM_CPU_MODE_UND: 9813 return 23; 9814 case ARM_CPU_MODE_FIQ: 9815 return 29; 9816 default: 9817 g_assert_not_reached(); 9818 } 9819 case 14: 9820 switch (mode) { 9821 case ARM_CPU_MODE_USR: 9822 case ARM_CPU_MODE_SYS: 9823 case ARM_CPU_MODE_HYP: 9824 return 14; 9825 case ARM_CPU_MODE_IRQ: 9826 return 16; 9827 case ARM_CPU_MODE_SVC: 9828 return 18; 9829 case ARM_CPU_MODE_ABT: 9830 return 20; 9831 case ARM_CPU_MODE_UND: 9832 return 22; 9833 case ARM_CPU_MODE_FIQ: 9834 return 30; 9835 default: 9836 g_assert_not_reached(); 9837 } 9838 case 15: 9839 return 31; 9840 default: 9841 g_assert_not_reached(); 9842 } 9843 } 9844 9845 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9846 { 9847 uint32_t ret = cpsr_read(env); 9848 9849 /* Move DIT to the correct location for SPSR_ELx */ 9850 if (ret & CPSR_DIT) { 9851 ret &= ~CPSR_DIT; 9852 ret |= PSTATE_DIT; 9853 } 9854 /* Merge PSTATE.SS into SPSR_ELx */ 9855 ret |= env->pstate & PSTATE_SS; 9856 9857 return ret; 9858 } 9859 9860 /* Handle exception entry to a target EL which is using AArch64 */ 9861 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9862 { 9863 ARMCPU *cpu = ARM_CPU(cs); 9864 CPUARMState *env = &cpu->env; 9865 unsigned int new_el = env->exception.target_el; 9866 target_ulong addr = env->cp15.vbar_el[new_el]; 9867 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9868 unsigned int old_mode; 9869 unsigned int cur_el = arm_current_el(env); 9870 int rt; 9871 9872 /* 9873 * Note that new_el can never be 0. If cur_el is 0, then 9874 * el0_a64 is is_a64(), else el0_a64 is ignored. 9875 */ 9876 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9877 9878 if (cur_el < new_el) { 9879 /* Entry vector offset depends on whether the implemented EL 9880 * immediately lower than the target level is using AArch32 or AArch64 9881 */ 9882 bool is_aa64; 9883 uint64_t hcr; 9884 9885 switch (new_el) { 9886 case 3: 9887 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9888 break; 9889 case 2: 9890 hcr = arm_hcr_el2_eff(env); 9891 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9892 is_aa64 = (hcr & HCR_RW) != 0; 9893 break; 9894 } 9895 /* fall through */ 9896 case 1: 9897 is_aa64 = is_a64(env); 9898 break; 9899 default: 9900 g_assert_not_reached(); 9901 } 9902 9903 if (is_aa64) { 9904 addr += 0x400; 9905 } else { 9906 addr += 0x600; 9907 } 9908 } else if (pstate_read(env) & PSTATE_SP) { 9909 addr += 0x200; 9910 } 9911 9912 switch (cs->exception_index) { 9913 case EXCP_PREFETCH_ABORT: 9914 case EXCP_DATA_ABORT: 9915 env->cp15.far_el[new_el] = env->exception.vaddress; 9916 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9917 env->cp15.far_el[new_el]); 9918 /* fall through */ 9919 case EXCP_BKPT: 9920 case EXCP_UDEF: 9921 case EXCP_SWI: 9922 case EXCP_HVC: 9923 case EXCP_HYP_TRAP: 9924 case EXCP_SMC: 9925 switch (syn_get_ec(env->exception.syndrome)) { 9926 case EC_ADVSIMDFPACCESSTRAP: 9927 /* 9928 * QEMU internal FP/SIMD syndromes from AArch32 include the 9929 * TA and coproc fields which are only exposed if the exception 9930 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9931 * AArch64 format syndrome. 9932 */ 9933 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9934 break; 9935 case EC_CP14RTTRAP: 9936 case EC_CP15RTTRAP: 9937 case EC_CP14DTTRAP: 9938 /* 9939 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9940 * the raw register field from the insn; when taking this to 9941 * AArch64 we must convert it to the AArch64 view of the register 9942 * number. Notice that we read a 4-bit AArch32 register number and 9943 * write back a 5-bit AArch64 one. 9944 */ 9945 rt = extract32(env->exception.syndrome, 5, 4); 9946 rt = aarch64_regnum(env, rt); 9947 env->exception.syndrome = deposit32(env->exception.syndrome, 9948 5, 5, rt); 9949 break; 9950 case EC_CP15RRTTRAP: 9951 case EC_CP14RRTTRAP: 9952 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9953 rt = extract32(env->exception.syndrome, 5, 4); 9954 rt = aarch64_regnum(env, rt); 9955 env->exception.syndrome = deposit32(env->exception.syndrome, 9956 5, 5, rt); 9957 rt = extract32(env->exception.syndrome, 10, 4); 9958 rt = aarch64_regnum(env, rt); 9959 env->exception.syndrome = deposit32(env->exception.syndrome, 9960 10, 5, rt); 9961 break; 9962 } 9963 env->cp15.esr_el[new_el] = env->exception.syndrome; 9964 break; 9965 case EXCP_IRQ: 9966 case EXCP_VIRQ: 9967 addr += 0x80; 9968 break; 9969 case EXCP_FIQ: 9970 case EXCP_VFIQ: 9971 addr += 0x100; 9972 break; 9973 default: 9974 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9975 } 9976 9977 if (is_a64(env)) { 9978 old_mode = pstate_read(env); 9979 aarch64_save_sp(env, arm_current_el(env)); 9980 env->elr_el[new_el] = env->pc; 9981 } else { 9982 old_mode = cpsr_read_for_spsr_elx(env); 9983 env->elr_el[new_el] = env->regs[15]; 9984 9985 aarch64_sync_32_to_64(env); 9986 9987 env->condexec_bits = 0; 9988 } 9989 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9990 9991 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9992 env->elr_el[new_el]); 9993 9994 if (cpu_isar_feature(aa64_pan, cpu)) { 9995 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9996 new_mode |= old_mode & PSTATE_PAN; 9997 switch (new_el) { 9998 case 2: 9999 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10000 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10001 != (HCR_E2H | HCR_TGE)) { 10002 break; 10003 } 10004 /* fall through */ 10005 case 1: 10006 /* ... the target is EL1 ... */ 10007 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10008 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10009 new_mode |= PSTATE_PAN; 10010 } 10011 break; 10012 } 10013 } 10014 if (cpu_isar_feature(aa64_mte, cpu)) { 10015 new_mode |= PSTATE_TCO; 10016 } 10017 10018 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10019 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10020 new_mode |= PSTATE_SSBS; 10021 } else { 10022 new_mode &= ~PSTATE_SSBS; 10023 } 10024 } 10025 10026 pstate_write(env, PSTATE_DAIF | new_mode); 10027 env->aarch64 = true; 10028 aarch64_restore_sp(env, new_el); 10029 helper_rebuild_hflags_a64(env, new_el); 10030 10031 env->pc = addr; 10032 10033 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10034 new_el, env->pc, pstate_read(env)); 10035 } 10036 10037 /* 10038 * Do semihosting call and set the appropriate return value. All the 10039 * permission and validity checks have been done at translate time. 10040 * 10041 * We only see semihosting exceptions in TCG only as they are not 10042 * trapped to the hypervisor in KVM. 10043 */ 10044 #ifdef CONFIG_TCG 10045 static void handle_semihosting(CPUState *cs) 10046 { 10047 ARMCPU *cpu = ARM_CPU(cs); 10048 CPUARMState *env = &cpu->env; 10049 10050 if (is_a64(env)) { 10051 qemu_log_mask(CPU_LOG_INT, 10052 "...handling as semihosting call 0x%" PRIx64 "\n", 10053 env->xregs[0]); 10054 env->xregs[0] = do_common_semihosting(cs); 10055 env->pc += 4; 10056 } else { 10057 qemu_log_mask(CPU_LOG_INT, 10058 "...handling as semihosting call 0x%x\n", 10059 env->regs[0]); 10060 env->regs[0] = do_common_semihosting(cs); 10061 env->regs[15] += env->thumb ? 2 : 4; 10062 } 10063 } 10064 #endif 10065 10066 /* Handle a CPU exception for A and R profile CPUs. 10067 * Do any appropriate logging, handle PSCI calls, and then hand off 10068 * to the AArch64-entry or AArch32-entry function depending on the 10069 * target exception level's register width. 10070 * 10071 * Note: this is used for both TCG (as the do_interrupt tcg op), 10072 * and KVM to re-inject guest debug exceptions, and to 10073 * inject a Synchronous-External-Abort. 10074 */ 10075 void arm_cpu_do_interrupt(CPUState *cs) 10076 { 10077 ARMCPU *cpu = ARM_CPU(cs); 10078 CPUARMState *env = &cpu->env; 10079 unsigned int new_el = env->exception.target_el; 10080 10081 assert(!arm_feature(env, ARM_FEATURE_M)); 10082 10083 arm_log_exception(cs); 10084 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10085 new_el); 10086 if (qemu_loglevel_mask(CPU_LOG_INT) 10087 && !excp_is_internal(cs->exception_index)) { 10088 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10089 syn_get_ec(env->exception.syndrome), 10090 env->exception.syndrome); 10091 } 10092 10093 if (arm_is_psci_call(cpu, cs->exception_index)) { 10094 arm_handle_psci_call(cpu); 10095 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10096 return; 10097 } 10098 10099 /* 10100 * Semihosting semantics depend on the register width of the code 10101 * that caused the exception, not the target exception level, so 10102 * must be handled here. 10103 */ 10104 #ifdef CONFIG_TCG 10105 if (cs->exception_index == EXCP_SEMIHOST) { 10106 handle_semihosting(cs); 10107 return; 10108 } 10109 #endif 10110 10111 /* Hooks may change global state so BQL should be held, also the 10112 * BQL needs to be held for any modification of 10113 * cs->interrupt_request. 10114 */ 10115 g_assert(qemu_mutex_iothread_locked()); 10116 10117 arm_call_pre_el_change_hook(cpu); 10118 10119 assert(!excp_is_internal(cs->exception_index)); 10120 if (arm_el_is_aa64(env, new_el)) { 10121 arm_cpu_do_interrupt_aarch64(cs); 10122 } else { 10123 arm_cpu_do_interrupt_aarch32(cs); 10124 } 10125 10126 arm_call_el_change_hook(cpu); 10127 10128 if (!kvm_enabled()) { 10129 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10130 } 10131 } 10132 #endif /* !CONFIG_USER_ONLY */ 10133 10134 uint64_t arm_sctlr(CPUARMState *env, int el) 10135 { 10136 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10137 if (el == 0) { 10138 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10139 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10140 ? 2 : 1; 10141 } 10142 return env->cp15.sctlr_el[el]; 10143 } 10144 10145 /* Return the SCTLR value which controls this address translation regime */ 10146 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10147 { 10148 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10149 } 10150 10151 #ifndef CONFIG_USER_ONLY 10152 10153 /* Return true if the specified stage of address translation is disabled */ 10154 static inline bool regime_translation_disabled(CPUARMState *env, 10155 ARMMMUIdx mmu_idx) 10156 { 10157 uint64_t hcr_el2; 10158 10159 if (arm_feature(env, ARM_FEATURE_M)) { 10160 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10161 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10162 case R_V7M_MPU_CTRL_ENABLE_MASK: 10163 /* Enabled, but not for HardFault and NMI */ 10164 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10165 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10166 /* Enabled for all cases */ 10167 return false; 10168 case 0: 10169 default: 10170 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10171 * we warned about that in armv7m_nvic.c when the guest set it. 10172 */ 10173 return true; 10174 } 10175 } 10176 10177 hcr_el2 = arm_hcr_el2_eff(env); 10178 10179 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10180 /* HCR.DC means HCR.VM behaves as 1 */ 10181 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10182 } 10183 10184 if (hcr_el2 & HCR_TGE) { 10185 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10186 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10187 return true; 10188 } 10189 } 10190 10191 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10192 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10193 return true; 10194 } 10195 10196 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10197 } 10198 10199 static inline bool regime_translation_big_endian(CPUARMState *env, 10200 ARMMMUIdx mmu_idx) 10201 { 10202 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10203 } 10204 10205 /* Return the TTBR associated with this translation regime */ 10206 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10207 int ttbrn) 10208 { 10209 if (mmu_idx == ARMMMUIdx_Stage2) { 10210 return env->cp15.vttbr_el2; 10211 } 10212 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10213 return env->cp15.vsttbr_el2; 10214 } 10215 if (ttbrn == 0) { 10216 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10217 } else { 10218 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10219 } 10220 } 10221 10222 #endif /* !CONFIG_USER_ONLY */ 10223 10224 /* Convert a possible stage1+2 MMU index into the appropriate 10225 * stage 1 MMU index 10226 */ 10227 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10228 { 10229 switch (mmu_idx) { 10230 case ARMMMUIdx_SE10_0: 10231 return ARMMMUIdx_Stage1_SE0; 10232 case ARMMMUIdx_SE10_1: 10233 return ARMMMUIdx_Stage1_SE1; 10234 case ARMMMUIdx_SE10_1_PAN: 10235 return ARMMMUIdx_Stage1_SE1_PAN; 10236 case ARMMMUIdx_E10_0: 10237 return ARMMMUIdx_Stage1_E0; 10238 case ARMMMUIdx_E10_1: 10239 return ARMMMUIdx_Stage1_E1; 10240 case ARMMMUIdx_E10_1_PAN: 10241 return ARMMMUIdx_Stage1_E1_PAN; 10242 default: 10243 return mmu_idx; 10244 } 10245 } 10246 10247 /* Return true if the translation regime is using LPAE format page tables */ 10248 static inline bool regime_using_lpae_format(CPUARMState *env, 10249 ARMMMUIdx mmu_idx) 10250 { 10251 int el = regime_el(env, mmu_idx); 10252 if (el == 2 || arm_el_is_aa64(env, el)) { 10253 return true; 10254 } 10255 if (arm_feature(env, ARM_FEATURE_LPAE) 10256 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10257 return true; 10258 } 10259 return false; 10260 } 10261 10262 /* Returns true if the stage 1 translation regime is using LPAE format page 10263 * tables. Used when raising alignment exceptions, whose FSR changes depending 10264 * on whether the long or short descriptor format is in use. */ 10265 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10266 { 10267 mmu_idx = stage_1_mmu_idx(mmu_idx); 10268 10269 return regime_using_lpae_format(env, mmu_idx); 10270 } 10271 10272 #ifndef CONFIG_USER_ONLY 10273 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10274 { 10275 switch (mmu_idx) { 10276 case ARMMMUIdx_SE10_0: 10277 case ARMMMUIdx_E20_0: 10278 case ARMMMUIdx_SE20_0: 10279 case ARMMMUIdx_Stage1_E0: 10280 case ARMMMUIdx_Stage1_SE0: 10281 case ARMMMUIdx_MUser: 10282 case ARMMMUIdx_MSUser: 10283 case ARMMMUIdx_MUserNegPri: 10284 case ARMMMUIdx_MSUserNegPri: 10285 return true; 10286 default: 10287 return false; 10288 case ARMMMUIdx_E10_0: 10289 case ARMMMUIdx_E10_1: 10290 case ARMMMUIdx_E10_1_PAN: 10291 g_assert_not_reached(); 10292 } 10293 } 10294 10295 /* Translate section/page access permissions to page 10296 * R/W protection flags 10297 * 10298 * @env: CPUARMState 10299 * @mmu_idx: MMU index indicating required translation regime 10300 * @ap: The 3-bit access permissions (AP[2:0]) 10301 * @domain_prot: The 2-bit domain access permissions 10302 */ 10303 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10304 int ap, int domain_prot) 10305 { 10306 bool is_user = regime_is_user(env, mmu_idx); 10307 10308 if (domain_prot == 3) { 10309 return PAGE_READ | PAGE_WRITE; 10310 } 10311 10312 switch (ap) { 10313 case 0: 10314 if (arm_feature(env, ARM_FEATURE_V7)) { 10315 return 0; 10316 } 10317 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10318 case SCTLR_S: 10319 return is_user ? 0 : PAGE_READ; 10320 case SCTLR_R: 10321 return PAGE_READ; 10322 default: 10323 return 0; 10324 } 10325 case 1: 10326 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10327 case 2: 10328 if (is_user) { 10329 return PAGE_READ; 10330 } else { 10331 return PAGE_READ | PAGE_WRITE; 10332 } 10333 case 3: 10334 return PAGE_READ | PAGE_WRITE; 10335 case 4: /* Reserved. */ 10336 return 0; 10337 case 5: 10338 return is_user ? 0 : PAGE_READ; 10339 case 6: 10340 return PAGE_READ; 10341 case 7: 10342 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10343 return 0; 10344 } 10345 return PAGE_READ; 10346 default: 10347 g_assert_not_reached(); 10348 } 10349 } 10350 10351 /* Translate section/page access permissions to page 10352 * R/W protection flags. 10353 * 10354 * @ap: The 2-bit simple AP (AP[2:1]) 10355 * @is_user: TRUE if accessing from PL0 10356 */ 10357 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10358 { 10359 switch (ap) { 10360 case 0: 10361 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10362 case 1: 10363 return PAGE_READ | PAGE_WRITE; 10364 case 2: 10365 return is_user ? 0 : PAGE_READ; 10366 case 3: 10367 return PAGE_READ; 10368 default: 10369 g_assert_not_reached(); 10370 } 10371 } 10372 10373 static inline int 10374 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10375 { 10376 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10377 } 10378 10379 /* Translate S2 section/page access permissions to protection flags 10380 * 10381 * @env: CPUARMState 10382 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10383 * @xn: XN (execute-never) bits 10384 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10385 */ 10386 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10387 { 10388 int prot = 0; 10389 10390 if (s2ap & 1) { 10391 prot |= PAGE_READ; 10392 } 10393 if (s2ap & 2) { 10394 prot |= PAGE_WRITE; 10395 } 10396 10397 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10398 switch (xn) { 10399 case 0: 10400 prot |= PAGE_EXEC; 10401 break; 10402 case 1: 10403 if (s1_is_el0) { 10404 prot |= PAGE_EXEC; 10405 } 10406 break; 10407 case 2: 10408 break; 10409 case 3: 10410 if (!s1_is_el0) { 10411 prot |= PAGE_EXEC; 10412 } 10413 break; 10414 default: 10415 g_assert_not_reached(); 10416 } 10417 } else { 10418 if (!extract32(xn, 1, 1)) { 10419 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10420 prot |= PAGE_EXEC; 10421 } 10422 } 10423 } 10424 return prot; 10425 } 10426 10427 /* Translate section/page access permissions to protection flags 10428 * 10429 * @env: CPUARMState 10430 * @mmu_idx: MMU index indicating required translation regime 10431 * @is_aa64: TRUE if AArch64 10432 * @ap: The 2-bit simple AP (AP[2:1]) 10433 * @ns: NS (non-secure) bit 10434 * @xn: XN (execute-never) bit 10435 * @pxn: PXN (privileged execute-never) bit 10436 */ 10437 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10438 int ap, int ns, int xn, int pxn) 10439 { 10440 bool is_user = regime_is_user(env, mmu_idx); 10441 int prot_rw, user_rw; 10442 bool have_wxn; 10443 int wxn = 0; 10444 10445 assert(mmu_idx != ARMMMUIdx_Stage2); 10446 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10447 10448 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10449 if (is_user) { 10450 prot_rw = user_rw; 10451 } else { 10452 if (user_rw && regime_is_pan(env, mmu_idx)) { 10453 /* PAN forbids data accesses but doesn't affect insn fetch */ 10454 prot_rw = 0; 10455 } else { 10456 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10457 } 10458 } 10459 10460 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10461 return prot_rw; 10462 } 10463 10464 /* TODO have_wxn should be replaced with 10465 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10466 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10467 * compatible processors have EL2, which is required for [U]WXN. 10468 */ 10469 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10470 10471 if (have_wxn) { 10472 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10473 } 10474 10475 if (is_aa64) { 10476 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10477 xn = pxn || (user_rw & PAGE_WRITE); 10478 } 10479 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10480 switch (regime_el(env, mmu_idx)) { 10481 case 1: 10482 case 3: 10483 if (is_user) { 10484 xn = xn || !(user_rw & PAGE_READ); 10485 } else { 10486 int uwxn = 0; 10487 if (have_wxn) { 10488 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10489 } 10490 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10491 (uwxn && (user_rw & PAGE_WRITE)); 10492 } 10493 break; 10494 case 2: 10495 break; 10496 } 10497 } else { 10498 xn = wxn = 0; 10499 } 10500 10501 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10502 return prot_rw; 10503 } 10504 return prot_rw | PAGE_EXEC; 10505 } 10506 10507 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10508 uint32_t *table, uint32_t address) 10509 { 10510 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10511 TCR *tcr = regime_tcr(env, mmu_idx); 10512 10513 if (address & tcr->mask) { 10514 if (tcr->raw_tcr & TTBCR_PD1) { 10515 /* Translation table walk disabled for TTBR1 */ 10516 return false; 10517 } 10518 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10519 } else { 10520 if (tcr->raw_tcr & TTBCR_PD0) { 10521 /* Translation table walk disabled for TTBR0 */ 10522 return false; 10523 } 10524 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10525 } 10526 *table |= (address >> 18) & 0x3ffc; 10527 return true; 10528 } 10529 10530 /* Translate a S1 pagetable walk through S2 if needed. */ 10531 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10532 hwaddr addr, bool *is_secure, 10533 ARMMMUFaultInfo *fi) 10534 { 10535 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10536 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10537 target_ulong s2size; 10538 hwaddr s2pa; 10539 int s2prot; 10540 int ret; 10541 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10542 : ARMMMUIdx_Stage2; 10543 ARMCacheAttrs cacheattrs = {}; 10544 MemTxAttrs txattrs = {}; 10545 10546 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10547 &s2pa, &txattrs, &s2prot, &s2size, fi, 10548 &cacheattrs); 10549 if (ret) { 10550 assert(fi->type != ARMFault_None); 10551 fi->s2addr = addr; 10552 fi->stage2 = true; 10553 fi->s1ptw = true; 10554 fi->s1ns = !*is_secure; 10555 return ~0; 10556 } 10557 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10558 (cacheattrs.attrs & 0xf0) == 0) { 10559 /* 10560 * PTW set and S1 walk touched S2 Device memory: 10561 * generate Permission fault. 10562 */ 10563 fi->type = ARMFault_Permission; 10564 fi->s2addr = addr; 10565 fi->stage2 = true; 10566 fi->s1ptw = true; 10567 fi->s1ns = !*is_secure; 10568 return ~0; 10569 } 10570 10571 if (arm_is_secure_below_el3(env)) { 10572 /* Check if page table walk is to secure or non-secure PA space. */ 10573 if (*is_secure) { 10574 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10575 } else { 10576 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10577 } 10578 } else { 10579 assert(!*is_secure); 10580 } 10581 10582 addr = s2pa; 10583 } 10584 return addr; 10585 } 10586 10587 /* All loads done in the course of a page table walk go through here. */ 10588 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10589 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10590 { 10591 ARMCPU *cpu = ARM_CPU(cs); 10592 CPUARMState *env = &cpu->env; 10593 MemTxAttrs attrs = {}; 10594 MemTxResult result = MEMTX_OK; 10595 AddressSpace *as; 10596 uint32_t data; 10597 10598 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10599 attrs.secure = is_secure; 10600 as = arm_addressspace(cs, attrs); 10601 if (fi->s1ptw) { 10602 return 0; 10603 } 10604 if (regime_translation_big_endian(env, mmu_idx)) { 10605 data = address_space_ldl_be(as, addr, attrs, &result); 10606 } else { 10607 data = address_space_ldl_le(as, addr, attrs, &result); 10608 } 10609 if (result == MEMTX_OK) { 10610 return data; 10611 } 10612 fi->type = ARMFault_SyncExternalOnWalk; 10613 fi->ea = arm_extabort_type(result); 10614 return 0; 10615 } 10616 10617 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10618 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10619 { 10620 ARMCPU *cpu = ARM_CPU(cs); 10621 CPUARMState *env = &cpu->env; 10622 MemTxAttrs attrs = {}; 10623 MemTxResult result = MEMTX_OK; 10624 AddressSpace *as; 10625 uint64_t data; 10626 10627 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10628 attrs.secure = is_secure; 10629 as = arm_addressspace(cs, attrs); 10630 if (fi->s1ptw) { 10631 return 0; 10632 } 10633 if (regime_translation_big_endian(env, mmu_idx)) { 10634 data = address_space_ldq_be(as, addr, attrs, &result); 10635 } else { 10636 data = address_space_ldq_le(as, addr, attrs, &result); 10637 } 10638 if (result == MEMTX_OK) { 10639 return data; 10640 } 10641 fi->type = ARMFault_SyncExternalOnWalk; 10642 fi->ea = arm_extabort_type(result); 10643 return 0; 10644 } 10645 10646 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10647 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10648 hwaddr *phys_ptr, int *prot, 10649 target_ulong *page_size, 10650 ARMMMUFaultInfo *fi) 10651 { 10652 CPUState *cs = env_cpu(env); 10653 int level = 1; 10654 uint32_t table; 10655 uint32_t desc; 10656 int type; 10657 int ap; 10658 int domain = 0; 10659 int domain_prot; 10660 hwaddr phys_addr; 10661 uint32_t dacr; 10662 10663 /* Pagetable walk. */ 10664 /* Lookup l1 descriptor. */ 10665 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10666 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10667 fi->type = ARMFault_Translation; 10668 goto do_fault; 10669 } 10670 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10671 mmu_idx, fi); 10672 if (fi->type != ARMFault_None) { 10673 goto do_fault; 10674 } 10675 type = (desc & 3); 10676 domain = (desc >> 5) & 0x0f; 10677 if (regime_el(env, mmu_idx) == 1) { 10678 dacr = env->cp15.dacr_ns; 10679 } else { 10680 dacr = env->cp15.dacr_s; 10681 } 10682 domain_prot = (dacr >> (domain * 2)) & 3; 10683 if (type == 0) { 10684 /* Section translation fault. */ 10685 fi->type = ARMFault_Translation; 10686 goto do_fault; 10687 } 10688 if (type != 2) { 10689 level = 2; 10690 } 10691 if (domain_prot == 0 || domain_prot == 2) { 10692 fi->type = ARMFault_Domain; 10693 goto do_fault; 10694 } 10695 if (type == 2) { 10696 /* 1Mb section. */ 10697 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10698 ap = (desc >> 10) & 3; 10699 *page_size = 1024 * 1024; 10700 } else { 10701 /* Lookup l2 entry. */ 10702 if (type == 1) { 10703 /* Coarse pagetable. */ 10704 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10705 } else { 10706 /* Fine pagetable. */ 10707 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10708 } 10709 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10710 mmu_idx, fi); 10711 if (fi->type != ARMFault_None) { 10712 goto do_fault; 10713 } 10714 switch (desc & 3) { 10715 case 0: /* Page translation fault. */ 10716 fi->type = ARMFault_Translation; 10717 goto do_fault; 10718 case 1: /* 64k page. */ 10719 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10720 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10721 *page_size = 0x10000; 10722 break; 10723 case 2: /* 4k page. */ 10724 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10725 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10726 *page_size = 0x1000; 10727 break; 10728 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10729 if (type == 1) { 10730 /* ARMv6/XScale extended small page format */ 10731 if (arm_feature(env, ARM_FEATURE_XSCALE) 10732 || arm_feature(env, ARM_FEATURE_V6)) { 10733 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10734 *page_size = 0x1000; 10735 } else { 10736 /* UNPREDICTABLE in ARMv5; we choose to take a 10737 * page translation fault. 10738 */ 10739 fi->type = ARMFault_Translation; 10740 goto do_fault; 10741 } 10742 } else { 10743 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10744 *page_size = 0x400; 10745 } 10746 ap = (desc >> 4) & 3; 10747 break; 10748 default: 10749 /* Never happens, but compiler isn't smart enough to tell. */ 10750 g_assert_not_reached(); 10751 } 10752 } 10753 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10754 *prot |= *prot ? PAGE_EXEC : 0; 10755 if (!(*prot & (1 << access_type))) { 10756 /* Access permission fault. */ 10757 fi->type = ARMFault_Permission; 10758 goto do_fault; 10759 } 10760 *phys_ptr = phys_addr; 10761 return false; 10762 do_fault: 10763 fi->domain = domain; 10764 fi->level = level; 10765 return true; 10766 } 10767 10768 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10769 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10770 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10771 target_ulong *page_size, ARMMMUFaultInfo *fi) 10772 { 10773 CPUState *cs = env_cpu(env); 10774 ARMCPU *cpu = env_archcpu(env); 10775 int level = 1; 10776 uint32_t table; 10777 uint32_t desc; 10778 uint32_t xn; 10779 uint32_t pxn = 0; 10780 int type; 10781 int ap; 10782 int domain = 0; 10783 int domain_prot; 10784 hwaddr phys_addr; 10785 uint32_t dacr; 10786 bool ns; 10787 10788 /* Pagetable walk. */ 10789 /* Lookup l1 descriptor. */ 10790 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10791 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10792 fi->type = ARMFault_Translation; 10793 goto do_fault; 10794 } 10795 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10796 mmu_idx, fi); 10797 if (fi->type != ARMFault_None) { 10798 goto do_fault; 10799 } 10800 type = (desc & 3); 10801 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10802 /* Section translation fault, or attempt to use the encoding 10803 * which is Reserved on implementations without PXN. 10804 */ 10805 fi->type = ARMFault_Translation; 10806 goto do_fault; 10807 } 10808 if ((type == 1) || !(desc & (1 << 18))) { 10809 /* Page or Section. */ 10810 domain = (desc >> 5) & 0x0f; 10811 } 10812 if (regime_el(env, mmu_idx) == 1) { 10813 dacr = env->cp15.dacr_ns; 10814 } else { 10815 dacr = env->cp15.dacr_s; 10816 } 10817 if (type == 1) { 10818 level = 2; 10819 } 10820 domain_prot = (dacr >> (domain * 2)) & 3; 10821 if (domain_prot == 0 || domain_prot == 2) { 10822 /* Section or Page domain fault */ 10823 fi->type = ARMFault_Domain; 10824 goto do_fault; 10825 } 10826 if (type != 1) { 10827 if (desc & (1 << 18)) { 10828 /* Supersection. */ 10829 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10830 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10831 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10832 *page_size = 0x1000000; 10833 } else { 10834 /* Section. */ 10835 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10836 *page_size = 0x100000; 10837 } 10838 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10839 xn = desc & (1 << 4); 10840 pxn = desc & 1; 10841 ns = extract32(desc, 19, 1); 10842 } else { 10843 if (cpu_isar_feature(aa32_pxn, cpu)) { 10844 pxn = (desc >> 2) & 1; 10845 } 10846 ns = extract32(desc, 3, 1); 10847 /* Lookup l2 entry. */ 10848 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10849 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10850 mmu_idx, fi); 10851 if (fi->type != ARMFault_None) { 10852 goto do_fault; 10853 } 10854 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10855 switch (desc & 3) { 10856 case 0: /* Page translation fault. */ 10857 fi->type = ARMFault_Translation; 10858 goto do_fault; 10859 case 1: /* 64k page. */ 10860 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10861 xn = desc & (1 << 15); 10862 *page_size = 0x10000; 10863 break; 10864 case 2: case 3: /* 4k page. */ 10865 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10866 xn = desc & 1; 10867 *page_size = 0x1000; 10868 break; 10869 default: 10870 /* Never happens, but compiler isn't smart enough to tell. */ 10871 g_assert_not_reached(); 10872 } 10873 } 10874 if (domain_prot == 3) { 10875 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10876 } else { 10877 if (pxn && !regime_is_user(env, mmu_idx)) { 10878 xn = 1; 10879 } 10880 if (xn && access_type == MMU_INST_FETCH) { 10881 fi->type = ARMFault_Permission; 10882 goto do_fault; 10883 } 10884 10885 if (arm_feature(env, ARM_FEATURE_V6K) && 10886 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10887 /* The simplified model uses AP[0] as an access control bit. */ 10888 if ((ap & 1) == 0) { 10889 /* Access flag fault. */ 10890 fi->type = ARMFault_AccessFlag; 10891 goto do_fault; 10892 } 10893 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10894 } else { 10895 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10896 } 10897 if (*prot && !xn) { 10898 *prot |= PAGE_EXEC; 10899 } 10900 if (!(*prot & (1 << access_type))) { 10901 /* Access permission fault. */ 10902 fi->type = ARMFault_Permission; 10903 goto do_fault; 10904 } 10905 } 10906 if (ns) { 10907 /* The NS bit will (as required by the architecture) have no effect if 10908 * the CPU doesn't support TZ or this is a non-secure translation 10909 * regime, because the attribute will already be non-secure. 10910 */ 10911 attrs->secure = false; 10912 } 10913 *phys_ptr = phys_addr; 10914 return false; 10915 do_fault: 10916 fi->domain = domain; 10917 fi->level = level; 10918 return true; 10919 } 10920 10921 /* 10922 * check_s2_mmu_setup 10923 * @cpu: ARMCPU 10924 * @is_aa64: True if the translation regime is in AArch64 state 10925 * @startlevel: Suggested starting level 10926 * @inputsize: Bitsize of IPAs 10927 * @stride: Page-table stride (See the ARM ARM) 10928 * 10929 * Returns true if the suggested S2 translation parameters are OK and 10930 * false otherwise. 10931 */ 10932 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10933 int inputsize, int stride, int outputsize) 10934 { 10935 const int grainsize = stride + 3; 10936 int startsizecheck; 10937 10938 /* 10939 * Negative levels are usually not allowed... 10940 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 10941 * begins with level -1. Note that previous feature tests will have 10942 * eliminated this combination if it is not enabled. 10943 */ 10944 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 10945 return false; 10946 } 10947 10948 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10949 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10950 return false; 10951 } 10952 10953 if (is_aa64) { 10954 switch (stride) { 10955 case 13: /* 64KB Pages. */ 10956 if (level == 0 || (level == 1 && outputsize <= 42)) { 10957 return false; 10958 } 10959 break; 10960 case 11: /* 16KB Pages. */ 10961 if (level == 0 || (level == 1 && outputsize <= 40)) { 10962 return false; 10963 } 10964 break; 10965 case 9: /* 4KB Pages. */ 10966 if (level == 0 && outputsize <= 42) { 10967 return false; 10968 } 10969 break; 10970 default: 10971 g_assert_not_reached(); 10972 } 10973 10974 /* Inputsize checks. */ 10975 if (inputsize > outputsize && 10976 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 10977 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10978 return false; 10979 } 10980 } else { 10981 /* AArch32 only supports 4KB pages. Assert on that. */ 10982 assert(stride == 9); 10983 10984 if (level == 0) { 10985 return false; 10986 } 10987 } 10988 return true; 10989 } 10990 10991 /* Translate from the 4-bit stage 2 representation of 10992 * memory attributes (without cache-allocation hints) to 10993 * the 8-bit representation of the stage 1 MAIR registers 10994 * (which includes allocation hints). 10995 * 10996 * ref: shared/translation/attrs/S2AttrDecode() 10997 * .../S2ConvertAttrsHints() 10998 */ 10999 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11000 { 11001 uint8_t hiattr = extract32(s2attrs, 2, 2); 11002 uint8_t loattr = extract32(s2attrs, 0, 2); 11003 uint8_t hihint = 0, lohint = 0; 11004 11005 if (hiattr != 0) { /* normal memory */ 11006 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11007 hiattr = loattr = 1; /* non-cacheable */ 11008 } else { 11009 if (hiattr != 1) { /* Write-through or write-back */ 11010 hihint = 3; /* RW allocate */ 11011 } 11012 if (loattr != 1) { /* Write-through or write-back */ 11013 lohint = 3; /* RW allocate */ 11014 } 11015 } 11016 } 11017 11018 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11019 } 11020 #endif /* !CONFIG_USER_ONLY */ 11021 11022 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11023 static const uint8_t pamax_map[] = { 11024 [0] = 32, 11025 [1] = 36, 11026 [2] = 40, 11027 [3] = 42, 11028 [4] = 44, 11029 [5] = 48, 11030 [6] = 52, 11031 }; 11032 11033 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11034 unsigned int arm_pamax(ARMCPU *cpu) 11035 { 11036 unsigned int parange = 11037 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11038 11039 /* 11040 * id_aa64mmfr0 is a read-only register so values outside of the 11041 * supported mappings can be considered an implementation error. 11042 */ 11043 assert(parange < ARRAY_SIZE(pamax_map)); 11044 return pamax_map[parange]; 11045 } 11046 11047 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11048 { 11049 if (regime_has_2_ranges(mmu_idx)) { 11050 return extract64(tcr, 37, 2); 11051 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11052 return 0; /* VTCR_EL2 */ 11053 } else { 11054 /* Replicate the single TBI bit so we always have 2 bits. */ 11055 return extract32(tcr, 20, 1) * 3; 11056 } 11057 } 11058 11059 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11060 { 11061 if (regime_has_2_ranges(mmu_idx)) { 11062 return extract64(tcr, 51, 2); 11063 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11064 return 0; /* VTCR_EL2 */ 11065 } else { 11066 /* Replicate the single TBID bit so we always have 2 bits. */ 11067 return extract32(tcr, 29, 1) * 3; 11068 } 11069 } 11070 11071 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11072 { 11073 if (regime_has_2_ranges(mmu_idx)) { 11074 return extract64(tcr, 57, 2); 11075 } else { 11076 /* Replicate the single TCMA bit so we always have 2 bits. */ 11077 return extract32(tcr, 30, 1) * 3; 11078 } 11079 } 11080 11081 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11082 ARMMMUIdx mmu_idx, bool data) 11083 { 11084 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11085 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11086 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11087 ARMCPU *cpu = env_archcpu(env); 11088 11089 if (!regime_has_2_ranges(mmu_idx)) { 11090 select = 0; 11091 tsz = extract32(tcr, 0, 6); 11092 using64k = extract32(tcr, 14, 1); 11093 using16k = extract32(tcr, 15, 1); 11094 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11095 /* VTCR_EL2 */ 11096 hpd = false; 11097 } else { 11098 hpd = extract32(tcr, 24, 1); 11099 } 11100 epd = false; 11101 sh = extract32(tcr, 12, 2); 11102 ps = extract32(tcr, 16, 3); 11103 ds = extract64(tcr, 32, 1); 11104 } else { 11105 /* 11106 * Bit 55 is always between the two regions, and is canonical for 11107 * determining if address tagging is enabled. 11108 */ 11109 select = extract64(va, 55, 1); 11110 if (!select) { 11111 tsz = extract32(tcr, 0, 6); 11112 epd = extract32(tcr, 7, 1); 11113 sh = extract32(tcr, 12, 2); 11114 using64k = extract32(tcr, 14, 1); 11115 using16k = extract32(tcr, 15, 1); 11116 hpd = extract64(tcr, 41, 1); 11117 } else { 11118 int tg = extract32(tcr, 30, 2); 11119 using16k = tg == 1; 11120 using64k = tg == 3; 11121 tsz = extract32(tcr, 16, 6); 11122 epd = extract32(tcr, 23, 1); 11123 sh = extract32(tcr, 28, 2); 11124 hpd = extract64(tcr, 42, 1); 11125 } 11126 ps = extract64(tcr, 32, 3); 11127 ds = extract64(tcr, 59, 1); 11128 } 11129 11130 if (cpu_isar_feature(aa64_st, cpu)) { 11131 max_tsz = 48 - using64k; 11132 } else { 11133 max_tsz = 39; 11134 } 11135 11136 /* 11137 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11138 * adjust the effective value of DS, as documented. 11139 */ 11140 min_tsz = 16; 11141 if (using64k) { 11142 if (cpu_isar_feature(aa64_lva, cpu)) { 11143 min_tsz = 12; 11144 } 11145 ds = false; 11146 } else if (ds) { 11147 switch (mmu_idx) { 11148 case ARMMMUIdx_Stage2: 11149 case ARMMMUIdx_Stage2_S: 11150 if (using16k) { 11151 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11152 } else { 11153 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11154 } 11155 break; 11156 default: 11157 if (using16k) { 11158 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11159 } else { 11160 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11161 } 11162 break; 11163 } 11164 if (ds) { 11165 min_tsz = 12; 11166 } 11167 } 11168 11169 if (tsz > max_tsz) { 11170 tsz = max_tsz; 11171 tsz_oob = true; 11172 } else if (tsz < min_tsz) { 11173 tsz = min_tsz; 11174 tsz_oob = true; 11175 } else { 11176 tsz_oob = false; 11177 } 11178 11179 /* Present TBI as a composite with TBID. */ 11180 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11181 if (!data) { 11182 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11183 } 11184 tbi = (tbi >> select) & 1; 11185 11186 return (ARMVAParameters) { 11187 .tsz = tsz, 11188 .ps = ps, 11189 .sh = sh, 11190 .select = select, 11191 .tbi = tbi, 11192 .epd = epd, 11193 .hpd = hpd, 11194 .using16k = using16k, 11195 .using64k = using64k, 11196 .tsz_oob = tsz_oob, 11197 .ds = ds, 11198 }; 11199 } 11200 11201 #ifndef CONFIG_USER_ONLY 11202 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11203 ARMMMUIdx mmu_idx) 11204 { 11205 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11206 uint32_t el = regime_el(env, mmu_idx); 11207 int select, tsz; 11208 bool epd, hpd; 11209 11210 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11211 11212 if (mmu_idx == ARMMMUIdx_Stage2) { 11213 /* VTCR */ 11214 bool sext = extract32(tcr, 4, 1); 11215 bool sign = extract32(tcr, 3, 1); 11216 11217 /* 11218 * If the sign-extend bit is not the same as t0sz[3], the result 11219 * is unpredictable. Flag this as a guest error. 11220 */ 11221 if (sign != sext) { 11222 qemu_log_mask(LOG_GUEST_ERROR, 11223 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11224 } 11225 tsz = sextract32(tcr, 0, 4) + 8; 11226 select = 0; 11227 hpd = false; 11228 epd = false; 11229 } else if (el == 2) { 11230 /* HTCR */ 11231 tsz = extract32(tcr, 0, 3); 11232 select = 0; 11233 hpd = extract64(tcr, 24, 1); 11234 epd = false; 11235 } else { 11236 int t0sz = extract32(tcr, 0, 3); 11237 int t1sz = extract32(tcr, 16, 3); 11238 11239 if (t1sz == 0) { 11240 select = va > (0xffffffffu >> t0sz); 11241 } else { 11242 /* Note that we will detect errors later. */ 11243 select = va >= ~(0xffffffffu >> t1sz); 11244 } 11245 if (!select) { 11246 tsz = t0sz; 11247 epd = extract32(tcr, 7, 1); 11248 hpd = extract64(tcr, 41, 1); 11249 } else { 11250 tsz = t1sz; 11251 epd = extract32(tcr, 23, 1); 11252 hpd = extract64(tcr, 42, 1); 11253 } 11254 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11255 hpd &= extract32(tcr, 6, 1); 11256 } 11257 11258 return (ARMVAParameters) { 11259 .tsz = tsz, 11260 .select = select, 11261 .epd = epd, 11262 .hpd = hpd, 11263 }; 11264 } 11265 11266 /** 11267 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11268 * 11269 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11270 * prot and page_size may not be filled in, and the populated fsr value provides 11271 * information on why the translation aborted, in the format of a long-format 11272 * DFSR/IFSR fault register, with the following caveats: 11273 * * the WnR bit is never set (the caller must do this). 11274 * 11275 * @env: CPUARMState 11276 * @address: virtual address to get physical address for 11277 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11278 * @mmu_idx: MMU index indicating required translation regime 11279 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11280 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11281 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11282 * @phys_ptr: set to the physical address corresponding to the virtual address 11283 * @attrs: set to the memory transaction attributes to use 11284 * @prot: set to the permissions for the page containing phys_ptr 11285 * @page_size_ptr: set to the size of the page containing phys_ptr 11286 * @fi: set to fault info if the translation fails 11287 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11288 */ 11289 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11290 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11291 bool s1_is_el0, 11292 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11293 target_ulong *page_size_ptr, 11294 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11295 { 11296 ARMCPU *cpu = env_archcpu(env); 11297 CPUState *cs = CPU(cpu); 11298 /* Read an LPAE long-descriptor translation table. */ 11299 ARMFaultType fault_type = ARMFault_Translation; 11300 uint32_t level; 11301 ARMVAParameters param; 11302 uint64_t ttbr; 11303 hwaddr descaddr, indexmask, indexmask_grainsize; 11304 uint32_t tableattrs; 11305 target_ulong page_size; 11306 uint32_t attrs; 11307 int32_t stride; 11308 int addrsize, inputsize, outputsize; 11309 TCR *tcr = regime_tcr(env, mmu_idx); 11310 int ap, ns, xn, pxn; 11311 uint32_t el = regime_el(env, mmu_idx); 11312 uint64_t descaddrmask; 11313 bool aarch64 = arm_el_is_aa64(env, el); 11314 bool guarded = false; 11315 11316 /* TODO: This code does not support shareability levels. */ 11317 if (aarch64) { 11318 int ps; 11319 11320 param = aa64_va_parameters(env, address, mmu_idx, 11321 access_type != MMU_INST_FETCH); 11322 level = 0; 11323 11324 /* 11325 * If TxSZ is programmed to a value larger than the maximum, 11326 * or smaller than the effective minimum, it is IMPLEMENTATION 11327 * DEFINED whether we behave as if the field were programmed 11328 * within bounds, or if a level 0 Translation fault is generated. 11329 * 11330 * With FEAT_LVA, fault on less than minimum becomes required, 11331 * so our choice is to always raise the fault. 11332 */ 11333 if (param.tsz_oob) { 11334 fault_type = ARMFault_Translation; 11335 goto do_fault; 11336 } 11337 11338 addrsize = 64 - 8 * param.tbi; 11339 inputsize = 64 - param.tsz; 11340 11341 /* 11342 * Bound PS by PARANGE to find the effective output address size. 11343 * ID_AA64MMFR0 is a read-only register so values outside of the 11344 * supported mappings can be considered an implementation error. 11345 */ 11346 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11347 ps = MIN(ps, param.ps); 11348 assert(ps < ARRAY_SIZE(pamax_map)); 11349 outputsize = pamax_map[ps]; 11350 } else { 11351 param = aa32_va_parameters(env, address, mmu_idx); 11352 level = 1; 11353 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11354 inputsize = addrsize - param.tsz; 11355 outputsize = 40; 11356 } 11357 11358 /* 11359 * We determined the region when collecting the parameters, but we 11360 * have not yet validated that the address is valid for the region. 11361 * Extract the top bits and verify that they all match select. 11362 * 11363 * For aa32, if inputsize == addrsize, then we have selected the 11364 * region by exclusion in aa32_va_parameters and there is no more 11365 * validation to do here. 11366 */ 11367 if (inputsize < addrsize) { 11368 target_ulong top_bits = sextract64(address, inputsize, 11369 addrsize - inputsize); 11370 if (-top_bits != param.select) { 11371 /* The gap between the two regions is a Translation fault */ 11372 fault_type = ARMFault_Translation; 11373 goto do_fault; 11374 } 11375 } 11376 11377 if (param.using64k) { 11378 stride = 13; 11379 } else if (param.using16k) { 11380 stride = 11; 11381 } else { 11382 stride = 9; 11383 } 11384 11385 /* Note that QEMU ignores shareability and cacheability attributes, 11386 * so we don't need to do anything with the SH, ORGN, IRGN fields 11387 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11388 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11389 * implement any ASID-like capability so we can ignore it (instead 11390 * we will always flush the TLB any time the ASID is changed). 11391 */ 11392 ttbr = regime_ttbr(env, mmu_idx, param.select); 11393 11394 /* Here we should have set up all the parameters for the translation: 11395 * inputsize, ttbr, epd, stride, tbi 11396 */ 11397 11398 if (param.epd) { 11399 /* Translation table walk disabled => Translation fault on TLB miss 11400 * Note: This is always 0 on 64-bit EL2 and EL3. 11401 */ 11402 goto do_fault; 11403 } 11404 11405 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11406 /* The starting level depends on the virtual address size (which can 11407 * be up to 48 bits) and the translation granule size. It indicates 11408 * the number of strides (stride bits at a time) needed to 11409 * consume the bits of the input address. In the pseudocode this is: 11410 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11411 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11412 * our 'stride + 3' and 'stride' is our 'stride'. 11413 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11414 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11415 * = 4 - (inputsize - 4) / stride; 11416 */ 11417 level = 4 - (inputsize - 4) / stride; 11418 } else { 11419 /* For stage 2 translations the starting level is specified by the 11420 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11421 */ 11422 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11423 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11424 uint32_t startlevel; 11425 bool ok; 11426 11427 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11428 if (param.ds && stride == 9 && sl2) { 11429 if (sl0 != 0) { 11430 level = 0; 11431 fault_type = ARMFault_Translation; 11432 goto do_fault; 11433 } 11434 startlevel = -1; 11435 } else if (!aarch64 || stride == 9) { 11436 /* AArch32 or 4KB pages */ 11437 startlevel = 2 - sl0; 11438 11439 if (cpu_isar_feature(aa64_st, cpu)) { 11440 startlevel &= 3; 11441 } 11442 } else { 11443 /* 16KB or 64KB pages */ 11444 startlevel = 3 - sl0; 11445 } 11446 11447 /* Check that the starting level is valid. */ 11448 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11449 inputsize, stride, outputsize); 11450 if (!ok) { 11451 fault_type = ARMFault_Translation; 11452 goto do_fault; 11453 } 11454 level = startlevel; 11455 } 11456 11457 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11458 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11459 11460 /* Now we can extract the actual base address from the TTBR */ 11461 descaddr = extract64(ttbr, 0, 48); 11462 11463 /* 11464 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11465 * 11466 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11467 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11468 * but we've just cleared the bits above 47, so simplify the test. 11469 */ 11470 if (outputsize > 48) { 11471 descaddr |= extract64(ttbr, 2, 4) << 48; 11472 } else if (descaddr >> outputsize) { 11473 level = 0; 11474 fault_type = ARMFault_AddressSize; 11475 goto do_fault; 11476 } 11477 11478 /* 11479 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11480 * and also to mask out CnP (bit 0) which could validly be non-zero. 11481 */ 11482 descaddr &= ~indexmask; 11483 11484 /* 11485 * For AArch32, the address field in the descriptor goes up to bit 39 11486 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11487 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11488 * bits as part of the address, which will be checked via outputsize. 11489 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11490 * the highest bits of a 52-bit output are placed elsewhere. 11491 */ 11492 if (param.ds) { 11493 descaddrmask = MAKE_64BIT_MASK(0, 50); 11494 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11495 descaddrmask = MAKE_64BIT_MASK(0, 48); 11496 } else { 11497 descaddrmask = MAKE_64BIT_MASK(0, 40); 11498 } 11499 descaddrmask &= ~indexmask_grainsize; 11500 11501 /* Secure accesses start with the page table in secure memory and 11502 * can be downgraded to non-secure at any step. Non-secure accesses 11503 * remain non-secure. We implement this by just ORing in the NSTable/NS 11504 * bits at each step. 11505 */ 11506 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11507 for (;;) { 11508 uint64_t descriptor; 11509 bool nstable; 11510 11511 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11512 descaddr &= ~7ULL; 11513 nstable = extract32(tableattrs, 4, 1); 11514 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11515 if (fi->type != ARMFault_None) { 11516 goto do_fault; 11517 } 11518 11519 if (!(descriptor & 1) || 11520 (!(descriptor & 2) && (level == 3))) { 11521 /* Invalid, or the Reserved level 3 encoding */ 11522 goto do_fault; 11523 } 11524 11525 descaddr = descriptor & descaddrmask; 11526 11527 /* 11528 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11529 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11530 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11531 * raise AddressSizeFault. 11532 */ 11533 if (outputsize > 48) { 11534 if (param.ds) { 11535 descaddr |= extract64(descriptor, 8, 2) << 50; 11536 } else { 11537 descaddr |= extract64(descriptor, 12, 4) << 48; 11538 } 11539 } else if (descaddr >> outputsize) { 11540 fault_type = ARMFault_AddressSize; 11541 goto do_fault; 11542 } 11543 11544 if ((descriptor & 2) && (level < 3)) { 11545 /* Table entry. The top five bits are attributes which may 11546 * propagate down through lower levels of the table (and 11547 * which are all arranged so that 0 means "no effect", so 11548 * we can gather them up by ORing in the bits at each level). 11549 */ 11550 tableattrs |= extract64(descriptor, 59, 5); 11551 level++; 11552 indexmask = indexmask_grainsize; 11553 continue; 11554 } 11555 /* 11556 * Block entry at level 1 or 2, or page entry at level 3. 11557 * These are basically the same thing, although the number 11558 * of bits we pull in from the vaddr varies. Note that although 11559 * descaddrmask masks enough of the low bits of the descriptor 11560 * to give a correct page or table address, the address field 11561 * in a block descriptor is smaller; so we need to explicitly 11562 * clear the lower bits here before ORing in the low vaddr bits. 11563 */ 11564 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11565 descaddr &= ~(page_size - 1); 11566 descaddr |= (address & (page_size - 1)); 11567 /* Extract attributes from the descriptor */ 11568 attrs = extract64(descriptor, 2, 10) 11569 | (extract64(descriptor, 52, 12) << 10); 11570 11571 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11572 /* Stage 2 table descriptors do not include any attribute fields */ 11573 break; 11574 } 11575 /* Merge in attributes from table descriptors */ 11576 attrs |= nstable << 3; /* NS */ 11577 guarded = extract64(descriptor, 50, 1); /* GP */ 11578 if (param.hpd) { 11579 /* HPD disables all the table attributes except NSTable. */ 11580 break; 11581 } 11582 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11583 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11584 * means "force PL1 access only", which means forcing AP[1] to 0. 11585 */ 11586 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11587 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11588 break; 11589 } 11590 /* Here descaddr is the final physical address, and attributes 11591 * are all in attrs. 11592 */ 11593 fault_type = ARMFault_AccessFlag; 11594 if ((attrs & (1 << 8)) == 0) { 11595 /* Access flag */ 11596 goto do_fault; 11597 } 11598 11599 ap = extract32(attrs, 4, 2); 11600 11601 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11602 ns = mmu_idx == ARMMMUIdx_Stage2; 11603 xn = extract32(attrs, 11, 2); 11604 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11605 } else { 11606 ns = extract32(attrs, 3, 1); 11607 xn = extract32(attrs, 12, 1); 11608 pxn = extract32(attrs, 11, 1); 11609 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11610 } 11611 11612 fault_type = ARMFault_Permission; 11613 if (!(*prot & (1 << access_type))) { 11614 goto do_fault; 11615 } 11616 11617 if (ns) { 11618 /* The NS bit will (as required by the architecture) have no effect if 11619 * the CPU doesn't support TZ or this is a non-secure translation 11620 * regime, because the attribute will already be non-secure. 11621 */ 11622 txattrs->secure = false; 11623 } 11624 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11625 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11626 arm_tlb_bti_gp(txattrs) = true; 11627 } 11628 11629 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11630 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11631 } else { 11632 /* Index into MAIR registers for cache attributes */ 11633 uint8_t attrindx = extract32(attrs, 0, 3); 11634 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11635 assert(attrindx <= 7); 11636 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11637 } 11638 11639 /* 11640 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11641 * was re-purposed for output address bits. The SH attribute in 11642 * that case comes from TCR_ELx, which we extracted earlier. 11643 */ 11644 if (param.ds) { 11645 cacheattrs->shareability = param.sh; 11646 } else { 11647 cacheattrs->shareability = extract32(attrs, 6, 2); 11648 } 11649 11650 *phys_ptr = descaddr; 11651 *page_size_ptr = page_size; 11652 return false; 11653 11654 do_fault: 11655 fi->type = fault_type; 11656 fi->level = level; 11657 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11658 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11659 mmu_idx == ARMMMUIdx_Stage2_S); 11660 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11661 return true; 11662 } 11663 11664 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11665 ARMMMUIdx mmu_idx, 11666 int32_t address, int *prot) 11667 { 11668 if (!arm_feature(env, ARM_FEATURE_M)) { 11669 *prot = PAGE_READ | PAGE_WRITE; 11670 switch (address) { 11671 case 0xF0000000 ... 0xFFFFFFFF: 11672 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11673 /* hivecs execing is ok */ 11674 *prot |= PAGE_EXEC; 11675 } 11676 break; 11677 case 0x00000000 ... 0x7FFFFFFF: 11678 *prot |= PAGE_EXEC; 11679 break; 11680 } 11681 } else { 11682 /* Default system address map for M profile cores. 11683 * The architecture specifies which regions are execute-never; 11684 * at the MPU level no other checks are defined. 11685 */ 11686 switch (address) { 11687 case 0x00000000 ... 0x1fffffff: /* ROM */ 11688 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11689 case 0x60000000 ... 0x7fffffff: /* RAM */ 11690 case 0x80000000 ... 0x9fffffff: /* RAM */ 11691 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11692 break; 11693 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11694 case 0xa0000000 ... 0xbfffffff: /* Device */ 11695 case 0xc0000000 ... 0xdfffffff: /* Device */ 11696 case 0xe0000000 ... 0xffffffff: /* System */ 11697 *prot = PAGE_READ | PAGE_WRITE; 11698 break; 11699 default: 11700 g_assert_not_reached(); 11701 } 11702 } 11703 } 11704 11705 static bool pmsav7_use_background_region(ARMCPU *cpu, 11706 ARMMMUIdx mmu_idx, bool is_user) 11707 { 11708 /* Return true if we should use the default memory map as a 11709 * "background" region if there are no hits against any MPU regions. 11710 */ 11711 CPUARMState *env = &cpu->env; 11712 11713 if (is_user) { 11714 return false; 11715 } 11716 11717 if (arm_feature(env, ARM_FEATURE_M)) { 11718 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11719 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11720 } else { 11721 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11722 } 11723 } 11724 11725 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11726 { 11727 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11728 return arm_feature(env, ARM_FEATURE_M) && 11729 extract32(address, 20, 12) == 0xe00; 11730 } 11731 11732 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11733 { 11734 /* True if address is in the M profile system region 11735 * 0xe0000000 - 0xffffffff 11736 */ 11737 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11738 } 11739 11740 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11741 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11742 hwaddr *phys_ptr, int *prot, 11743 target_ulong *page_size, 11744 ARMMMUFaultInfo *fi) 11745 { 11746 ARMCPU *cpu = env_archcpu(env); 11747 int n; 11748 bool is_user = regime_is_user(env, mmu_idx); 11749 11750 *phys_ptr = address; 11751 *page_size = TARGET_PAGE_SIZE; 11752 *prot = 0; 11753 11754 if (regime_translation_disabled(env, mmu_idx) || 11755 m_is_ppb_region(env, address)) { 11756 /* MPU disabled or M profile PPB access: use default memory map. 11757 * The other case which uses the default memory map in the 11758 * v7M ARM ARM pseudocode is exception vector reads from the vector 11759 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11760 * which always does a direct read using address_space_ldl(), rather 11761 * than going via this function, so we don't need to check that here. 11762 */ 11763 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11764 } else { /* MPU enabled */ 11765 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11766 /* region search */ 11767 uint32_t base = env->pmsav7.drbar[n]; 11768 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11769 uint32_t rmask; 11770 bool srdis = false; 11771 11772 if (!(env->pmsav7.drsr[n] & 0x1)) { 11773 continue; 11774 } 11775 11776 if (!rsize) { 11777 qemu_log_mask(LOG_GUEST_ERROR, 11778 "DRSR[%d]: Rsize field cannot be 0\n", n); 11779 continue; 11780 } 11781 rsize++; 11782 rmask = (1ull << rsize) - 1; 11783 11784 if (base & rmask) { 11785 qemu_log_mask(LOG_GUEST_ERROR, 11786 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11787 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11788 n, base, rmask); 11789 continue; 11790 } 11791 11792 if (address < base || address > base + rmask) { 11793 /* 11794 * Address not in this region. We must check whether the 11795 * region covers addresses in the same page as our address. 11796 * In that case we must not report a size that covers the 11797 * whole page for a subsequent hit against a different MPU 11798 * region or the background region, because it would result in 11799 * incorrect TLB hits for subsequent accesses to addresses that 11800 * are in this MPU region. 11801 */ 11802 if (ranges_overlap(base, rmask, 11803 address & TARGET_PAGE_MASK, 11804 TARGET_PAGE_SIZE)) { 11805 *page_size = 1; 11806 } 11807 continue; 11808 } 11809 11810 /* Region matched */ 11811 11812 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11813 int i, snd; 11814 uint32_t srdis_mask; 11815 11816 rsize -= 3; /* sub region size (power of 2) */ 11817 snd = ((address - base) >> rsize) & 0x7; 11818 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11819 11820 srdis_mask = srdis ? 0x3 : 0x0; 11821 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11822 /* This will check in groups of 2, 4 and then 8, whether 11823 * the subregion bits are consistent. rsize is incremented 11824 * back up to give the region size, considering consistent 11825 * adjacent subregions as one region. Stop testing if rsize 11826 * is already big enough for an entire QEMU page. 11827 */ 11828 int snd_rounded = snd & ~(i - 1); 11829 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11830 snd_rounded + 8, i); 11831 if (srdis_mask ^ srdis_multi) { 11832 break; 11833 } 11834 srdis_mask = (srdis_mask << i) | srdis_mask; 11835 rsize++; 11836 } 11837 } 11838 if (srdis) { 11839 continue; 11840 } 11841 if (rsize < TARGET_PAGE_BITS) { 11842 *page_size = 1 << rsize; 11843 } 11844 break; 11845 } 11846 11847 if (n == -1) { /* no hits */ 11848 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11849 /* background fault */ 11850 fi->type = ARMFault_Background; 11851 return true; 11852 } 11853 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11854 } else { /* a MPU hit! */ 11855 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11856 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11857 11858 if (m_is_system_region(env, address)) { 11859 /* System space is always execute never */ 11860 xn = 1; 11861 } 11862 11863 if (is_user) { /* User mode AP bit decoding */ 11864 switch (ap) { 11865 case 0: 11866 case 1: 11867 case 5: 11868 break; /* no access */ 11869 case 3: 11870 *prot |= PAGE_WRITE; 11871 /* fall through */ 11872 case 2: 11873 case 6: 11874 *prot |= PAGE_READ | PAGE_EXEC; 11875 break; 11876 case 7: 11877 /* for v7M, same as 6; for R profile a reserved value */ 11878 if (arm_feature(env, ARM_FEATURE_M)) { 11879 *prot |= PAGE_READ | PAGE_EXEC; 11880 break; 11881 } 11882 /* fall through */ 11883 default: 11884 qemu_log_mask(LOG_GUEST_ERROR, 11885 "DRACR[%d]: Bad value for AP bits: 0x%" 11886 PRIx32 "\n", n, ap); 11887 } 11888 } else { /* Priv. mode AP bits decoding */ 11889 switch (ap) { 11890 case 0: 11891 break; /* no access */ 11892 case 1: 11893 case 2: 11894 case 3: 11895 *prot |= PAGE_WRITE; 11896 /* fall through */ 11897 case 5: 11898 case 6: 11899 *prot |= PAGE_READ | PAGE_EXEC; 11900 break; 11901 case 7: 11902 /* for v7M, same as 6; for R profile a reserved value */ 11903 if (arm_feature(env, ARM_FEATURE_M)) { 11904 *prot |= PAGE_READ | PAGE_EXEC; 11905 break; 11906 } 11907 /* fall through */ 11908 default: 11909 qemu_log_mask(LOG_GUEST_ERROR, 11910 "DRACR[%d]: Bad value for AP bits: 0x%" 11911 PRIx32 "\n", n, ap); 11912 } 11913 } 11914 11915 /* execute never */ 11916 if (xn) { 11917 *prot &= ~PAGE_EXEC; 11918 } 11919 } 11920 } 11921 11922 fi->type = ARMFault_Permission; 11923 fi->level = 1; 11924 return !(*prot & (1 << access_type)); 11925 } 11926 11927 static bool v8m_is_sau_exempt(CPUARMState *env, 11928 uint32_t address, MMUAccessType access_type) 11929 { 11930 /* The architecture specifies that certain address ranges are 11931 * exempt from v8M SAU/IDAU checks. 11932 */ 11933 return 11934 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11935 (address >= 0xe0000000 && address <= 0xe0002fff) || 11936 (address >= 0xe000e000 && address <= 0xe000efff) || 11937 (address >= 0xe002e000 && address <= 0xe002efff) || 11938 (address >= 0xe0040000 && address <= 0xe0041fff) || 11939 (address >= 0xe00ff000 && address <= 0xe00fffff); 11940 } 11941 11942 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11943 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11944 V8M_SAttributes *sattrs) 11945 { 11946 /* Look up the security attributes for this address. Compare the 11947 * pseudocode SecurityCheck() function. 11948 * We assume the caller has zero-initialized *sattrs. 11949 */ 11950 ARMCPU *cpu = env_archcpu(env); 11951 int r; 11952 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11953 int idau_region = IREGION_NOTVALID; 11954 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11955 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11956 11957 if (cpu->idau) { 11958 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11959 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11960 11961 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11962 &idau_nsc); 11963 } 11964 11965 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11966 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11967 return; 11968 } 11969 11970 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11971 sattrs->ns = !regime_is_secure(env, mmu_idx); 11972 return; 11973 } 11974 11975 if (idau_region != IREGION_NOTVALID) { 11976 sattrs->irvalid = true; 11977 sattrs->iregion = idau_region; 11978 } 11979 11980 switch (env->sau.ctrl & 3) { 11981 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11982 break; 11983 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11984 sattrs->ns = true; 11985 break; 11986 default: /* SAU.ENABLE == 1 */ 11987 for (r = 0; r < cpu->sau_sregion; r++) { 11988 if (env->sau.rlar[r] & 1) { 11989 uint32_t base = env->sau.rbar[r] & ~0x1f; 11990 uint32_t limit = env->sau.rlar[r] | 0x1f; 11991 11992 if (base <= address && limit >= address) { 11993 if (base > addr_page_base || limit < addr_page_limit) { 11994 sattrs->subpage = true; 11995 } 11996 if (sattrs->srvalid) { 11997 /* If we hit in more than one region then we must report 11998 * as Secure, not NS-Callable, with no valid region 11999 * number info. 12000 */ 12001 sattrs->ns = false; 12002 sattrs->nsc = false; 12003 sattrs->sregion = 0; 12004 sattrs->srvalid = false; 12005 break; 12006 } else { 12007 if (env->sau.rlar[r] & 2) { 12008 sattrs->nsc = true; 12009 } else { 12010 sattrs->ns = true; 12011 } 12012 sattrs->srvalid = true; 12013 sattrs->sregion = r; 12014 } 12015 } else { 12016 /* 12017 * Address not in this region. We must check whether the 12018 * region covers addresses in the same page as our address. 12019 * In that case we must not report a size that covers the 12020 * whole page for a subsequent hit against a different MPU 12021 * region or the background region, because it would result 12022 * in incorrect TLB hits for subsequent accesses to 12023 * addresses that are in this MPU region. 12024 */ 12025 if (limit >= base && 12026 ranges_overlap(base, limit - base + 1, 12027 addr_page_base, 12028 TARGET_PAGE_SIZE)) { 12029 sattrs->subpage = true; 12030 } 12031 } 12032 } 12033 } 12034 break; 12035 } 12036 12037 /* 12038 * The IDAU will override the SAU lookup results if it specifies 12039 * higher security than the SAU does. 12040 */ 12041 if (!idau_ns) { 12042 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12043 sattrs->ns = false; 12044 sattrs->nsc = idau_nsc; 12045 } 12046 } 12047 } 12048 12049 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12050 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12051 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12052 int *prot, bool *is_subpage, 12053 ARMMMUFaultInfo *fi, uint32_t *mregion) 12054 { 12055 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12056 * that a full phys-to-virt translation does). 12057 * mregion is (if not NULL) set to the region number which matched, 12058 * or -1 if no region number is returned (MPU off, address did not 12059 * hit a region, address hit in multiple regions). 12060 * We set is_subpage to true if the region hit doesn't cover the 12061 * entire TARGET_PAGE the address is within. 12062 */ 12063 ARMCPU *cpu = env_archcpu(env); 12064 bool is_user = regime_is_user(env, mmu_idx); 12065 uint32_t secure = regime_is_secure(env, mmu_idx); 12066 int n; 12067 int matchregion = -1; 12068 bool hit = false; 12069 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12070 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12071 12072 *is_subpage = false; 12073 *phys_ptr = address; 12074 *prot = 0; 12075 if (mregion) { 12076 *mregion = -1; 12077 } 12078 12079 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12080 * was an exception vector read from the vector table (which is always 12081 * done using the default system address map), because those accesses 12082 * are done in arm_v7m_load_vector(), which always does a direct 12083 * read using address_space_ldl(), rather than going via this function. 12084 */ 12085 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12086 hit = true; 12087 } else if (m_is_ppb_region(env, address)) { 12088 hit = true; 12089 } else { 12090 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12091 hit = true; 12092 } 12093 12094 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12095 /* region search */ 12096 /* Note that the base address is bits [31:5] from the register 12097 * with bits [4:0] all zeroes, but the limit address is bits 12098 * [31:5] from the register with bits [4:0] all ones. 12099 */ 12100 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12101 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12102 12103 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12104 /* Region disabled */ 12105 continue; 12106 } 12107 12108 if (address < base || address > limit) { 12109 /* 12110 * Address not in this region. We must check whether the 12111 * region covers addresses in the same page as our address. 12112 * In that case we must not report a size that covers the 12113 * whole page for a subsequent hit against a different MPU 12114 * region or the background region, because it would result in 12115 * incorrect TLB hits for subsequent accesses to addresses that 12116 * are in this MPU region. 12117 */ 12118 if (limit >= base && 12119 ranges_overlap(base, limit - base + 1, 12120 addr_page_base, 12121 TARGET_PAGE_SIZE)) { 12122 *is_subpage = true; 12123 } 12124 continue; 12125 } 12126 12127 if (base > addr_page_base || limit < addr_page_limit) { 12128 *is_subpage = true; 12129 } 12130 12131 if (matchregion != -1) { 12132 /* Multiple regions match -- always a failure (unlike 12133 * PMSAv7 where highest-numbered-region wins) 12134 */ 12135 fi->type = ARMFault_Permission; 12136 fi->level = 1; 12137 return true; 12138 } 12139 12140 matchregion = n; 12141 hit = true; 12142 } 12143 } 12144 12145 if (!hit) { 12146 /* background fault */ 12147 fi->type = ARMFault_Background; 12148 return true; 12149 } 12150 12151 if (matchregion == -1) { 12152 /* hit using the background region */ 12153 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12154 } else { 12155 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12156 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12157 bool pxn = false; 12158 12159 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12160 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12161 } 12162 12163 if (m_is_system_region(env, address)) { 12164 /* System space is always execute never */ 12165 xn = 1; 12166 } 12167 12168 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12169 if (*prot && !xn && !(pxn && !is_user)) { 12170 *prot |= PAGE_EXEC; 12171 } 12172 /* We don't need to look the attribute up in the MAIR0/MAIR1 12173 * registers because that only tells us about cacheability. 12174 */ 12175 if (mregion) { 12176 *mregion = matchregion; 12177 } 12178 } 12179 12180 fi->type = ARMFault_Permission; 12181 fi->level = 1; 12182 return !(*prot & (1 << access_type)); 12183 } 12184 12185 12186 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12187 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12188 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12189 int *prot, target_ulong *page_size, 12190 ARMMMUFaultInfo *fi) 12191 { 12192 uint32_t secure = regime_is_secure(env, mmu_idx); 12193 V8M_SAttributes sattrs = {}; 12194 bool ret; 12195 bool mpu_is_subpage; 12196 12197 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12198 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12199 if (access_type == MMU_INST_FETCH) { 12200 /* Instruction fetches always use the MMU bank and the 12201 * transaction attribute determined by the fetch address, 12202 * regardless of CPU state. This is painful for QEMU 12203 * to handle, because it would mean we need to encode 12204 * into the mmu_idx not just the (user, negpri) information 12205 * for the current security state but also that for the 12206 * other security state, which would balloon the number 12207 * of mmu_idx values needed alarmingly. 12208 * Fortunately we can avoid this because it's not actually 12209 * possible to arbitrarily execute code from memory with 12210 * the wrong security attribute: it will always generate 12211 * an exception of some kind or another, apart from the 12212 * special case of an NS CPU executing an SG instruction 12213 * in S&NSC memory. So we always just fail the translation 12214 * here and sort things out in the exception handler 12215 * (including possibly emulating an SG instruction). 12216 */ 12217 if (sattrs.ns != !secure) { 12218 if (sattrs.nsc) { 12219 fi->type = ARMFault_QEMU_NSCExec; 12220 } else { 12221 fi->type = ARMFault_QEMU_SFault; 12222 } 12223 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12224 *phys_ptr = address; 12225 *prot = 0; 12226 return true; 12227 } 12228 } else { 12229 /* For data accesses we always use the MMU bank indicated 12230 * by the current CPU state, but the security attributes 12231 * might downgrade a secure access to nonsecure. 12232 */ 12233 if (sattrs.ns) { 12234 txattrs->secure = false; 12235 } else if (!secure) { 12236 /* NS access to S memory must fault. 12237 * Architecturally we should first check whether the 12238 * MPU information for this address indicates that we 12239 * are doing an unaligned access to Device memory, which 12240 * should generate a UsageFault instead. QEMU does not 12241 * currently check for that kind of unaligned access though. 12242 * If we added it we would need to do so as a special case 12243 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12244 */ 12245 fi->type = ARMFault_QEMU_SFault; 12246 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12247 *phys_ptr = address; 12248 *prot = 0; 12249 return true; 12250 } 12251 } 12252 } 12253 12254 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12255 txattrs, prot, &mpu_is_subpage, fi, NULL); 12256 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12257 return ret; 12258 } 12259 12260 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12261 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12262 hwaddr *phys_ptr, int *prot, 12263 ARMMMUFaultInfo *fi) 12264 { 12265 int n; 12266 uint32_t mask; 12267 uint32_t base; 12268 bool is_user = regime_is_user(env, mmu_idx); 12269 12270 if (regime_translation_disabled(env, mmu_idx)) { 12271 /* MPU disabled. */ 12272 *phys_ptr = address; 12273 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12274 return false; 12275 } 12276 12277 *phys_ptr = address; 12278 for (n = 7; n >= 0; n--) { 12279 base = env->cp15.c6_region[n]; 12280 if ((base & 1) == 0) { 12281 continue; 12282 } 12283 mask = 1 << ((base >> 1) & 0x1f); 12284 /* Keep this shift separate from the above to avoid an 12285 (undefined) << 32. */ 12286 mask = (mask << 1) - 1; 12287 if (((base ^ address) & ~mask) == 0) { 12288 break; 12289 } 12290 } 12291 if (n < 0) { 12292 fi->type = ARMFault_Background; 12293 return true; 12294 } 12295 12296 if (access_type == MMU_INST_FETCH) { 12297 mask = env->cp15.pmsav5_insn_ap; 12298 } else { 12299 mask = env->cp15.pmsav5_data_ap; 12300 } 12301 mask = (mask >> (n * 4)) & 0xf; 12302 switch (mask) { 12303 case 0: 12304 fi->type = ARMFault_Permission; 12305 fi->level = 1; 12306 return true; 12307 case 1: 12308 if (is_user) { 12309 fi->type = ARMFault_Permission; 12310 fi->level = 1; 12311 return true; 12312 } 12313 *prot = PAGE_READ | PAGE_WRITE; 12314 break; 12315 case 2: 12316 *prot = PAGE_READ; 12317 if (!is_user) { 12318 *prot |= PAGE_WRITE; 12319 } 12320 break; 12321 case 3: 12322 *prot = PAGE_READ | PAGE_WRITE; 12323 break; 12324 case 5: 12325 if (is_user) { 12326 fi->type = ARMFault_Permission; 12327 fi->level = 1; 12328 return true; 12329 } 12330 *prot = PAGE_READ; 12331 break; 12332 case 6: 12333 *prot = PAGE_READ; 12334 break; 12335 default: 12336 /* Bad permission. */ 12337 fi->type = ARMFault_Permission; 12338 fi->level = 1; 12339 return true; 12340 } 12341 *prot |= PAGE_EXEC; 12342 return false; 12343 } 12344 12345 /* Combine either inner or outer cacheability attributes for normal 12346 * memory, according to table D4-42 and pseudocode procedure 12347 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12348 * 12349 * NB: only stage 1 includes allocation hints (RW bits), leading to 12350 * some asymmetry. 12351 */ 12352 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12353 { 12354 if (s1 == 4 || s2 == 4) { 12355 /* non-cacheable has precedence */ 12356 return 4; 12357 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12358 /* stage 1 write-through takes precedence */ 12359 return s1; 12360 } else if (extract32(s2, 2, 2) == 2) { 12361 /* stage 2 write-through takes precedence, but the allocation hint 12362 * is still taken from stage 1 12363 */ 12364 return (2 << 2) | extract32(s1, 0, 2); 12365 } else { /* write-back */ 12366 return s1; 12367 } 12368 } 12369 12370 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12371 * and CombineS1S2Desc() 12372 * 12373 * @s1: Attributes from stage 1 walk 12374 * @s2: Attributes from stage 2 walk 12375 */ 12376 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12377 { 12378 uint8_t s1lo, s2lo, s1hi, s2hi; 12379 ARMCacheAttrs ret; 12380 bool tagged = false; 12381 12382 if (s1.attrs == 0xf0) { 12383 tagged = true; 12384 s1.attrs = 0xff; 12385 } 12386 12387 s1lo = extract32(s1.attrs, 0, 4); 12388 s2lo = extract32(s2.attrs, 0, 4); 12389 s1hi = extract32(s1.attrs, 4, 4); 12390 s2hi = extract32(s2.attrs, 4, 4); 12391 12392 /* Combine shareability attributes (table D4-43) */ 12393 if (s1.shareability == 2 || s2.shareability == 2) { 12394 /* if either are outer-shareable, the result is outer-shareable */ 12395 ret.shareability = 2; 12396 } else if (s1.shareability == 3 || s2.shareability == 3) { 12397 /* if either are inner-shareable, the result is inner-shareable */ 12398 ret.shareability = 3; 12399 } else { 12400 /* both non-shareable */ 12401 ret.shareability = 0; 12402 } 12403 12404 /* Combine memory type and cacheability attributes */ 12405 if (s1hi == 0 || s2hi == 0) { 12406 /* Device has precedence over normal */ 12407 if (s1lo == 0 || s2lo == 0) { 12408 /* nGnRnE has precedence over anything */ 12409 ret.attrs = 0; 12410 } else if (s1lo == 4 || s2lo == 4) { 12411 /* non-Reordering has precedence over Reordering */ 12412 ret.attrs = 4; /* nGnRE */ 12413 } else if (s1lo == 8 || s2lo == 8) { 12414 /* non-Gathering has precedence over Gathering */ 12415 ret.attrs = 8; /* nGRE */ 12416 } else { 12417 ret.attrs = 0xc; /* GRE */ 12418 } 12419 12420 /* Any location for which the resultant memory type is any 12421 * type of Device memory is always treated as Outer Shareable. 12422 */ 12423 ret.shareability = 2; 12424 } else { /* Normal memory */ 12425 /* Outer/inner cacheability combine independently */ 12426 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12427 | combine_cacheattr_nibble(s1lo, s2lo); 12428 12429 if (ret.attrs == 0x44) { 12430 /* Any location for which the resultant memory type is Normal 12431 * Inner Non-cacheable, Outer Non-cacheable is always treated 12432 * as Outer Shareable. 12433 */ 12434 ret.shareability = 2; 12435 } 12436 } 12437 12438 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12439 if (tagged && ret.attrs == 0xff) { 12440 ret.attrs = 0xf0; 12441 } 12442 12443 return ret; 12444 } 12445 12446 12447 /* get_phys_addr - get the physical address for this virtual address 12448 * 12449 * Find the physical address corresponding to the given virtual address, 12450 * by doing a translation table walk on MMU based systems or using the 12451 * MPU state on MPU based systems. 12452 * 12453 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12454 * prot and page_size may not be filled in, and the populated fsr value provides 12455 * information on why the translation aborted, in the format of a 12456 * DFSR/IFSR fault register, with the following caveats: 12457 * * we honour the short vs long DFSR format differences. 12458 * * the WnR bit is never set (the caller must do this). 12459 * * for PSMAv5 based systems we don't bother to return a full FSR format 12460 * value. 12461 * 12462 * @env: CPUARMState 12463 * @address: virtual address to get physical address for 12464 * @access_type: 0 for read, 1 for write, 2 for execute 12465 * @mmu_idx: MMU index indicating required translation regime 12466 * @phys_ptr: set to the physical address corresponding to the virtual address 12467 * @attrs: set to the memory transaction attributes to use 12468 * @prot: set to the permissions for the page containing phys_ptr 12469 * @page_size: set to the size of the page containing phys_ptr 12470 * @fi: set to fault info if the translation fails 12471 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12472 */ 12473 bool get_phys_addr(CPUARMState *env, target_ulong address, 12474 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12475 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12476 target_ulong *page_size, 12477 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12478 { 12479 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12480 12481 if (mmu_idx != s1_mmu_idx) { 12482 /* Call ourselves recursively to do the stage 1 and then stage 2 12483 * translations if mmu_idx is a two-stage regime. 12484 */ 12485 if (arm_feature(env, ARM_FEATURE_EL2)) { 12486 hwaddr ipa; 12487 int s2_prot; 12488 int ret; 12489 bool ipa_secure; 12490 ARMCacheAttrs cacheattrs2 = {}; 12491 ARMMMUIdx s2_mmu_idx; 12492 bool is_el0; 12493 12494 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12495 attrs, prot, page_size, fi, cacheattrs); 12496 12497 /* If S1 fails or S2 is disabled, return early. */ 12498 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12499 *phys_ptr = ipa; 12500 return ret; 12501 } 12502 12503 ipa_secure = attrs->secure; 12504 if (arm_is_secure_below_el3(env)) { 12505 if (ipa_secure) { 12506 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12507 } else { 12508 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12509 } 12510 } else { 12511 assert(!ipa_secure); 12512 } 12513 12514 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12515 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12516 12517 /* S1 is done. Now do S2 translation. */ 12518 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12519 phys_ptr, attrs, &s2_prot, 12520 page_size, fi, &cacheattrs2); 12521 fi->s2addr = ipa; 12522 /* Combine the S1 and S2 perms. */ 12523 *prot &= s2_prot; 12524 12525 /* If S2 fails, return early. */ 12526 if (ret) { 12527 return ret; 12528 } 12529 12530 /* Combine the S1 and S2 cache attributes. */ 12531 if (arm_hcr_el2_eff(env) & HCR_DC) { 12532 /* 12533 * HCR.DC forces the first stage attributes to 12534 * Normal Non-Shareable, 12535 * Inner Write-Back Read-Allocate Write-Allocate, 12536 * Outer Write-Back Read-Allocate Write-Allocate. 12537 * Do not overwrite Tagged within attrs. 12538 */ 12539 if (cacheattrs->attrs != 0xf0) { 12540 cacheattrs->attrs = 0xff; 12541 } 12542 cacheattrs->shareability = 0; 12543 } 12544 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12545 12546 /* Check if IPA translates to secure or non-secure PA space. */ 12547 if (arm_is_secure_below_el3(env)) { 12548 if (ipa_secure) { 12549 attrs->secure = 12550 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12551 } else { 12552 attrs->secure = 12553 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12554 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12555 } 12556 } 12557 return 0; 12558 } else { 12559 /* 12560 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12561 */ 12562 mmu_idx = stage_1_mmu_idx(mmu_idx); 12563 } 12564 } 12565 12566 /* The page table entries may downgrade secure to non-secure, but 12567 * cannot upgrade an non-secure translation regime's attributes 12568 * to secure. 12569 */ 12570 attrs->secure = regime_is_secure(env, mmu_idx); 12571 attrs->user = regime_is_user(env, mmu_idx); 12572 12573 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12574 * In v7 and earlier it affects all stage 1 translations. 12575 */ 12576 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12577 && !arm_feature(env, ARM_FEATURE_V8)) { 12578 if (regime_el(env, mmu_idx) == 3) { 12579 address += env->cp15.fcseidr_s; 12580 } else { 12581 address += env->cp15.fcseidr_ns; 12582 } 12583 } 12584 12585 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12586 bool ret; 12587 *page_size = TARGET_PAGE_SIZE; 12588 12589 if (arm_feature(env, ARM_FEATURE_V8)) { 12590 /* PMSAv8 */ 12591 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12592 phys_ptr, attrs, prot, page_size, fi); 12593 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12594 /* PMSAv7 */ 12595 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12596 phys_ptr, prot, page_size, fi); 12597 } else { 12598 /* Pre-v7 MPU */ 12599 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12600 phys_ptr, prot, fi); 12601 } 12602 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12603 " mmu_idx %u -> %s (prot %c%c%c)\n", 12604 access_type == MMU_DATA_LOAD ? "reading" : 12605 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12606 (uint32_t)address, mmu_idx, 12607 ret ? "Miss" : "Hit", 12608 *prot & PAGE_READ ? 'r' : '-', 12609 *prot & PAGE_WRITE ? 'w' : '-', 12610 *prot & PAGE_EXEC ? 'x' : '-'); 12611 12612 return ret; 12613 } 12614 12615 /* Definitely a real MMU, not an MPU */ 12616 12617 if (regime_translation_disabled(env, mmu_idx)) { 12618 uint64_t hcr; 12619 uint8_t memattr; 12620 12621 /* 12622 * MMU disabled. S1 addresses within aa64 translation regimes are 12623 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12624 */ 12625 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12626 int r_el = regime_el(env, mmu_idx); 12627 if (arm_el_is_aa64(env, r_el)) { 12628 int pamax = arm_pamax(env_archcpu(env)); 12629 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12630 int addrtop, tbi; 12631 12632 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12633 if (access_type == MMU_INST_FETCH) { 12634 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12635 } 12636 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12637 addrtop = (tbi ? 55 : 63); 12638 12639 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12640 fi->type = ARMFault_AddressSize; 12641 fi->level = 0; 12642 fi->stage2 = false; 12643 return 1; 12644 } 12645 12646 /* 12647 * When TBI is disabled, we've just validated that all of the 12648 * bits above PAMax are zero, so logically we only need to 12649 * clear the top byte for TBI. But it's clearer to follow 12650 * the pseudocode set of addrdesc.paddress. 12651 */ 12652 address = extract64(address, 0, 52); 12653 } 12654 } 12655 *phys_ptr = address; 12656 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12657 *page_size = TARGET_PAGE_SIZE; 12658 12659 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12660 hcr = arm_hcr_el2_eff(env); 12661 cacheattrs->shareability = 0; 12662 if (hcr & HCR_DC) { 12663 if (hcr & HCR_DCT) { 12664 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12665 } else { 12666 memattr = 0xff; /* Normal, WB, RWA */ 12667 } 12668 } else if (access_type == MMU_INST_FETCH) { 12669 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12670 memattr = 0xee; /* Normal, WT, RA, NT */ 12671 } else { 12672 memattr = 0x44; /* Normal, NC, No */ 12673 } 12674 cacheattrs->shareability = 2; /* outer sharable */ 12675 } else { 12676 memattr = 0x00; /* Device, nGnRnE */ 12677 } 12678 cacheattrs->attrs = memattr; 12679 return 0; 12680 } 12681 12682 if (regime_using_lpae_format(env, mmu_idx)) { 12683 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12684 phys_ptr, attrs, prot, page_size, 12685 fi, cacheattrs); 12686 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12687 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12688 phys_ptr, attrs, prot, page_size, fi); 12689 } else { 12690 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12691 phys_ptr, prot, page_size, fi); 12692 } 12693 } 12694 12695 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12696 MemTxAttrs *attrs) 12697 { 12698 ARMCPU *cpu = ARM_CPU(cs); 12699 CPUARMState *env = &cpu->env; 12700 hwaddr phys_addr; 12701 target_ulong page_size; 12702 int prot; 12703 bool ret; 12704 ARMMMUFaultInfo fi = {}; 12705 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12706 ARMCacheAttrs cacheattrs = {}; 12707 12708 *attrs = (MemTxAttrs) {}; 12709 12710 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12711 attrs, &prot, &page_size, &fi, &cacheattrs); 12712 12713 if (ret) { 12714 return -1; 12715 } 12716 return phys_addr; 12717 } 12718 12719 #endif 12720 12721 /* Note that signed overflow is undefined in C. The following routines are 12722 careful to use unsigned types where modulo arithmetic is required. 12723 Failure to do so _will_ break on newer gcc. */ 12724 12725 /* Signed saturating arithmetic. */ 12726 12727 /* Perform 16-bit signed saturating addition. */ 12728 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12729 { 12730 uint16_t res; 12731 12732 res = a + b; 12733 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12734 if (a & 0x8000) 12735 res = 0x8000; 12736 else 12737 res = 0x7fff; 12738 } 12739 return res; 12740 } 12741 12742 /* Perform 8-bit signed saturating addition. */ 12743 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12744 { 12745 uint8_t res; 12746 12747 res = a + b; 12748 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12749 if (a & 0x80) 12750 res = 0x80; 12751 else 12752 res = 0x7f; 12753 } 12754 return res; 12755 } 12756 12757 /* Perform 16-bit signed saturating subtraction. */ 12758 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12759 { 12760 uint16_t res; 12761 12762 res = a - b; 12763 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12764 if (a & 0x8000) 12765 res = 0x8000; 12766 else 12767 res = 0x7fff; 12768 } 12769 return res; 12770 } 12771 12772 /* Perform 8-bit signed saturating subtraction. */ 12773 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12774 { 12775 uint8_t res; 12776 12777 res = a - b; 12778 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12779 if (a & 0x80) 12780 res = 0x80; 12781 else 12782 res = 0x7f; 12783 } 12784 return res; 12785 } 12786 12787 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12788 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12789 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12790 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12791 #define PFX q 12792 12793 #include "op_addsub.h" 12794 12795 /* Unsigned saturating arithmetic. */ 12796 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12797 { 12798 uint16_t res; 12799 res = a + b; 12800 if (res < a) 12801 res = 0xffff; 12802 return res; 12803 } 12804 12805 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12806 { 12807 if (a > b) 12808 return a - b; 12809 else 12810 return 0; 12811 } 12812 12813 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12814 { 12815 uint8_t res; 12816 res = a + b; 12817 if (res < a) 12818 res = 0xff; 12819 return res; 12820 } 12821 12822 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12823 { 12824 if (a > b) 12825 return a - b; 12826 else 12827 return 0; 12828 } 12829 12830 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12831 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12832 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12833 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12834 #define PFX uq 12835 12836 #include "op_addsub.h" 12837 12838 /* Signed modulo arithmetic. */ 12839 #define SARITH16(a, b, n, op) do { \ 12840 int32_t sum; \ 12841 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12842 RESULT(sum, n, 16); \ 12843 if (sum >= 0) \ 12844 ge |= 3 << (n * 2); \ 12845 } while(0) 12846 12847 #define SARITH8(a, b, n, op) do { \ 12848 int32_t sum; \ 12849 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12850 RESULT(sum, n, 8); \ 12851 if (sum >= 0) \ 12852 ge |= 1 << n; \ 12853 } while(0) 12854 12855 12856 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12857 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12858 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12859 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12860 #define PFX s 12861 #define ARITH_GE 12862 12863 #include "op_addsub.h" 12864 12865 /* Unsigned modulo arithmetic. */ 12866 #define ADD16(a, b, n) do { \ 12867 uint32_t sum; \ 12868 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12869 RESULT(sum, n, 16); \ 12870 if ((sum >> 16) == 1) \ 12871 ge |= 3 << (n * 2); \ 12872 } while(0) 12873 12874 #define ADD8(a, b, n) do { \ 12875 uint32_t sum; \ 12876 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12877 RESULT(sum, n, 8); \ 12878 if ((sum >> 8) == 1) \ 12879 ge |= 1 << n; \ 12880 } while(0) 12881 12882 #define SUB16(a, b, n) do { \ 12883 uint32_t sum; \ 12884 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12885 RESULT(sum, n, 16); \ 12886 if ((sum >> 16) == 0) \ 12887 ge |= 3 << (n * 2); \ 12888 } while(0) 12889 12890 #define SUB8(a, b, n) do { \ 12891 uint32_t sum; \ 12892 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12893 RESULT(sum, n, 8); \ 12894 if ((sum >> 8) == 0) \ 12895 ge |= 1 << n; \ 12896 } while(0) 12897 12898 #define PFX u 12899 #define ARITH_GE 12900 12901 #include "op_addsub.h" 12902 12903 /* Halved signed arithmetic. */ 12904 #define ADD16(a, b, n) \ 12905 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12906 #define SUB16(a, b, n) \ 12907 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12908 #define ADD8(a, b, n) \ 12909 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12910 #define SUB8(a, b, n) \ 12911 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12912 #define PFX sh 12913 12914 #include "op_addsub.h" 12915 12916 /* Halved unsigned arithmetic. */ 12917 #define ADD16(a, b, n) \ 12918 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12919 #define SUB16(a, b, n) \ 12920 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12921 #define ADD8(a, b, n) \ 12922 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12923 #define SUB8(a, b, n) \ 12924 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12925 #define PFX uh 12926 12927 #include "op_addsub.h" 12928 12929 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12930 { 12931 if (a > b) 12932 return a - b; 12933 else 12934 return b - a; 12935 } 12936 12937 /* Unsigned sum of absolute byte differences. */ 12938 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12939 { 12940 uint32_t sum; 12941 sum = do_usad(a, b); 12942 sum += do_usad(a >> 8, b >> 8); 12943 sum += do_usad(a >> 16, b >> 16); 12944 sum += do_usad(a >> 24, b >> 24); 12945 return sum; 12946 } 12947 12948 /* For ARMv6 SEL instruction. */ 12949 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12950 { 12951 uint32_t mask; 12952 12953 mask = 0; 12954 if (flags & 1) 12955 mask |= 0xff; 12956 if (flags & 2) 12957 mask |= 0xff00; 12958 if (flags & 4) 12959 mask |= 0xff0000; 12960 if (flags & 8) 12961 mask |= 0xff000000; 12962 return (a & mask) | (b & ~mask); 12963 } 12964 12965 /* CRC helpers. 12966 * The upper bytes of val (above the number specified by 'bytes') must have 12967 * been zeroed out by the caller. 12968 */ 12969 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12970 { 12971 uint8_t buf[4]; 12972 12973 stl_le_p(buf, val); 12974 12975 /* zlib crc32 converts the accumulator and output to one's complement. */ 12976 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12977 } 12978 12979 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12980 { 12981 uint8_t buf[4]; 12982 12983 stl_le_p(buf, val); 12984 12985 /* Linux crc32c converts the output to one's complement. */ 12986 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12987 } 12988 12989 /* Return the exception level to which FP-disabled exceptions should 12990 * be taken, or 0 if FP is enabled. 12991 */ 12992 int fp_exception_el(CPUARMState *env, int cur_el) 12993 { 12994 #ifndef CONFIG_USER_ONLY 12995 uint64_t hcr_el2; 12996 12997 /* CPACR and the CPTR registers don't exist before v6, so FP is 12998 * always accessible 12999 */ 13000 if (!arm_feature(env, ARM_FEATURE_V6)) { 13001 return 0; 13002 } 13003 13004 if (arm_feature(env, ARM_FEATURE_M)) { 13005 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13006 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13007 return 1; 13008 } 13009 13010 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13011 if (!extract32(env->v7m.nsacr, 10, 1)) { 13012 /* FP insns cause a NOCP UsageFault taken to Secure */ 13013 return 3; 13014 } 13015 } 13016 13017 return 0; 13018 } 13019 13020 hcr_el2 = arm_hcr_el2_eff(env); 13021 13022 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13023 * 0, 2 : trap EL0 and EL1/PL1 accesses 13024 * 1 : trap only EL0 accesses 13025 * 3 : trap no accesses 13026 * This register is ignored if E2H+TGE are both set. 13027 */ 13028 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13029 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13030 13031 switch (fpen) { 13032 case 0: 13033 case 2: 13034 if (cur_el == 0 || cur_el == 1) { 13035 /* Trap to PL1, which might be EL1 or EL3 */ 13036 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13037 return 3; 13038 } 13039 return 1; 13040 } 13041 if (cur_el == 3 && !is_a64(env)) { 13042 /* Secure PL1 running at EL3 */ 13043 return 3; 13044 } 13045 break; 13046 case 1: 13047 if (cur_el == 0) { 13048 return 1; 13049 } 13050 break; 13051 case 3: 13052 break; 13053 } 13054 } 13055 13056 /* 13057 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13058 * to control non-secure access to the FPU. It doesn't have any 13059 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13060 */ 13061 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13062 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13063 if (!extract32(env->cp15.nsacr, 10, 1)) { 13064 /* FP insns act as UNDEF */ 13065 return cur_el == 2 ? 2 : 1; 13066 } 13067 } 13068 13069 /* 13070 * CPTR_EL2 is present in v7VE or v8, and changes format 13071 * with HCR_EL2.E2H (regardless of TGE). 13072 */ 13073 if (cur_el <= 2) { 13074 if (hcr_el2 & HCR_E2H) { 13075 /* Check CPTR_EL2.FPEN. */ 13076 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13077 case 1: 13078 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13079 break; 13080 } 13081 /* fall through */ 13082 case 0: 13083 case 2: 13084 return 2; 13085 } 13086 } else if (arm_is_el2_enabled(env)) { 13087 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13088 return 2; 13089 } 13090 } 13091 } 13092 13093 /* CPTR_EL3 : present in v8 */ 13094 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13095 /* Trap all FP ops to EL3 */ 13096 return 3; 13097 } 13098 #endif 13099 return 0; 13100 } 13101 13102 /* Return the exception level we're running at if this is our mmu_idx */ 13103 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13104 { 13105 if (mmu_idx & ARM_MMU_IDX_M) { 13106 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13107 } 13108 13109 switch (mmu_idx) { 13110 case ARMMMUIdx_E10_0: 13111 case ARMMMUIdx_E20_0: 13112 case ARMMMUIdx_SE10_0: 13113 case ARMMMUIdx_SE20_0: 13114 return 0; 13115 case ARMMMUIdx_E10_1: 13116 case ARMMMUIdx_E10_1_PAN: 13117 case ARMMMUIdx_SE10_1: 13118 case ARMMMUIdx_SE10_1_PAN: 13119 return 1; 13120 case ARMMMUIdx_E2: 13121 case ARMMMUIdx_E20_2: 13122 case ARMMMUIdx_E20_2_PAN: 13123 case ARMMMUIdx_SE2: 13124 case ARMMMUIdx_SE20_2: 13125 case ARMMMUIdx_SE20_2_PAN: 13126 return 2; 13127 case ARMMMUIdx_SE3: 13128 return 3; 13129 default: 13130 g_assert_not_reached(); 13131 } 13132 } 13133 13134 #ifndef CONFIG_TCG 13135 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13136 { 13137 g_assert_not_reached(); 13138 } 13139 #endif 13140 13141 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13142 { 13143 ARMMMUIdx idx; 13144 uint64_t hcr; 13145 13146 if (arm_feature(env, ARM_FEATURE_M)) { 13147 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13148 } 13149 13150 /* See ARM pseudo-function ELIsInHost. */ 13151 switch (el) { 13152 case 0: 13153 hcr = arm_hcr_el2_eff(env); 13154 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13155 idx = ARMMMUIdx_E20_0; 13156 } else { 13157 idx = ARMMMUIdx_E10_0; 13158 } 13159 break; 13160 case 1: 13161 if (env->pstate & PSTATE_PAN) { 13162 idx = ARMMMUIdx_E10_1_PAN; 13163 } else { 13164 idx = ARMMMUIdx_E10_1; 13165 } 13166 break; 13167 case 2: 13168 /* Note that TGE does not apply at EL2. */ 13169 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13170 if (env->pstate & PSTATE_PAN) { 13171 idx = ARMMMUIdx_E20_2_PAN; 13172 } else { 13173 idx = ARMMMUIdx_E20_2; 13174 } 13175 } else { 13176 idx = ARMMMUIdx_E2; 13177 } 13178 break; 13179 case 3: 13180 return ARMMMUIdx_SE3; 13181 default: 13182 g_assert_not_reached(); 13183 } 13184 13185 if (arm_is_secure_below_el3(env)) { 13186 idx &= ~ARM_MMU_IDX_A_NS; 13187 } 13188 13189 return idx; 13190 } 13191 13192 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13193 { 13194 return arm_mmu_idx_el(env, arm_current_el(env)); 13195 } 13196 13197 #ifndef CONFIG_USER_ONLY 13198 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13199 { 13200 return stage_1_mmu_idx(arm_mmu_idx(env)); 13201 } 13202 #endif 13203 13204 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13205 ARMMMUIdx mmu_idx, 13206 CPUARMTBFlags flags) 13207 { 13208 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13209 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13210 13211 if (arm_singlestep_active(env)) { 13212 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13213 } 13214 return flags; 13215 } 13216 13217 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13218 ARMMMUIdx mmu_idx, 13219 CPUARMTBFlags flags) 13220 { 13221 bool sctlr_b = arm_sctlr_b(env); 13222 13223 if (sctlr_b) { 13224 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13225 } 13226 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13227 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13228 } 13229 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13230 13231 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13232 } 13233 13234 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13235 ARMMMUIdx mmu_idx) 13236 { 13237 CPUARMTBFlags flags = {}; 13238 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13239 13240 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13241 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13242 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13243 } 13244 13245 if (arm_v7m_is_handler_mode(env)) { 13246 DP_TBFLAG_M32(flags, HANDLER, 1); 13247 } 13248 13249 /* 13250 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13251 * is suppressing them because the requested execution priority 13252 * is less than 0. 13253 */ 13254 if (arm_feature(env, ARM_FEATURE_V8) && 13255 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13256 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13257 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13258 } 13259 13260 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13261 } 13262 13263 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13264 { 13265 CPUARMTBFlags flags = {}; 13266 13267 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13268 return flags; 13269 } 13270 13271 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13272 ARMMMUIdx mmu_idx) 13273 { 13274 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13275 int el = arm_current_el(env); 13276 13277 if (arm_sctlr(env, el) & SCTLR_A) { 13278 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13279 } 13280 13281 if (arm_el_is_aa64(env, 1)) { 13282 DP_TBFLAG_A32(flags, VFPEN, 1); 13283 } 13284 13285 if (el < 2 && env->cp15.hstr_el2 && 13286 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13287 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13288 } 13289 13290 if (env->uncached_cpsr & CPSR_IL) { 13291 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13292 } 13293 13294 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13295 } 13296 13297 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13298 ARMMMUIdx mmu_idx) 13299 { 13300 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13301 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13302 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13303 uint64_t sctlr; 13304 int tbii, tbid; 13305 13306 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13307 13308 /* Get control bits for tagged addresses. */ 13309 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13310 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13311 13312 DP_TBFLAG_A64(flags, TBII, tbii); 13313 DP_TBFLAG_A64(flags, TBID, tbid); 13314 13315 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13316 int sve_el = sve_exception_el(env, el); 13317 uint32_t zcr_len; 13318 13319 /* 13320 * If SVE is disabled, but FP is enabled, 13321 * then the effective len is 0. 13322 */ 13323 if (sve_el != 0 && fp_el == 0) { 13324 zcr_len = 0; 13325 } else { 13326 zcr_len = sve_zcr_len_for_el(env, el); 13327 } 13328 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13329 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13330 } 13331 13332 sctlr = regime_sctlr(env, stage1); 13333 13334 if (sctlr & SCTLR_A) { 13335 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13336 } 13337 13338 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13339 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13340 } 13341 13342 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13343 /* 13344 * In order to save space in flags, we record only whether 13345 * pauth is "inactive", meaning all insns are implemented as 13346 * a nop, or "active" when some action must be performed. 13347 * The decision of which action to take is left to a helper. 13348 */ 13349 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13350 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13351 } 13352 } 13353 13354 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13355 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13356 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13357 DP_TBFLAG_A64(flags, BT, 1); 13358 } 13359 } 13360 13361 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13362 if (!(env->pstate & PSTATE_UAO)) { 13363 switch (mmu_idx) { 13364 case ARMMMUIdx_E10_1: 13365 case ARMMMUIdx_E10_1_PAN: 13366 case ARMMMUIdx_SE10_1: 13367 case ARMMMUIdx_SE10_1_PAN: 13368 /* TODO: ARMv8.3-NV */ 13369 DP_TBFLAG_A64(flags, UNPRIV, 1); 13370 break; 13371 case ARMMMUIdx_E20_2: 13372 case ARMMMUIdx_E20_2_PAN: 13373 case ARMMMUIdx_SE20_2: 13374 case ARMMMUIdx_SE20_2_PAN: 13375 /* 13376 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13377 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13378 */ 13379 if (env->cp15.hcr_el2 & HCR_TGE) { 13380 DP_TBFLAG_A64(flags, UNPRIV, 1); 13381 } 13382 break; 13383 default: 13384 break; 13385 } 13386 } 13387 13388 if (env->pstate & PSTATE_IL) { 13389 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13390 } 13391 13392 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13393 /* 13394 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13395 * if all accesses must be Unchecked: 13396 * 1) If no TBI, then there are no tags in the address to check, 13397 * 2) If Tag Check Override, then all accesses are Unchecked, 13398 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13399 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13400 */ 13401 if (allocation_tag_access_enabled(env, el, sctlr)) { 13402 DP_TBFLAG_A64(flags, ATA, 1); 13403 if (tbid 13404 && !(env->pstate & PSTATE_TCO) 13405 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13406 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13407 } 13408 } 13409 /* And again for unprivileged accesses, if required. */ 13410 if (EX_TBFLAG_A64(flags, UNPRIV) 13411 && tbid 13412 && !(env->pstate & PSTATE_TCO) 13413 && (sctlr & SCTLR_TCF0) 13414 && allocation_tag_access_enabled(env, 0, sctlr)) { 13415 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13416 } 13417 /* Cache TCMA as well as TBI. */ 13418 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13419 } 13420 13421 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13422 } 13423 13424 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13425 { 13426 int el = arm_current_el(env); 13427 int fp_el = fp_exception_el(env, el); 13428 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13429 13430 if (is_a64(env)) { 13431 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13432 } else if (arm_feature(env, ARM_FEATURE_M)) { 13433 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13434 } else { 13435 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13436 } 13437 } 13438 13439 void arm_rebuild_hflags(CPUARMState *env) 13440 { 13441 env->hflags = rebuild_hflags_internal(env); 13442 } 13443 13444 /* 13445 * If we have triggered a EL state change we can't rely on the 13446 * translator having passed it to us, we need to recompute. 13447 */ 13448 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13449 { 13450 int el = arm_current_el(env); 13451 int fp_el = fp_exception_el(env, el); 13452 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13453 13454 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13455 } 13456 13457 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13458 { 13459 int fp_el = fp_exception_el(env, el); 13460 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13461 13462 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13463 } 13464 13465 /* 13466 * If we have triggered a EL state change we can't rely on the 13467 * translator having passed it to us, we need to recompute. 13468 */ 13469 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13470 { 13471 int el = arm_current_el(env); 13472 int fp_el = fp_exception_el(env, el); 13473 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13474 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13475 } 13476 13477 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13478 { 13479 int fp_el = fp_exception_el(env, el); 13480 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13481 13482 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13483 } 13484 13485 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13486 { 13487 int fp_el = fp_exception_el(env, el); 13488 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13489 13490 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13491 } 13492 13493 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13494 { 13495 #ifdef CONFIG_DEBUG_TCG 13496 CPUARMTBFlags c = env->hflags; 13497 CPUARMTBFlags r = rebuild_hflags_internal(env); 13498 13499 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13500 fprintf(stderr, "TCG hflags mismatch " 13501 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13502 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13503 c.flags, c.flags2, r.flags, r.flags2); 13504 abort(); 13505 } 13506 #endif 13507 } 13508 13509 static bool mve_no_pred(CPUARMState *env) 13510 { 13511 /* 13512 * Return true if there is definitely no predication of MVE 13513 * instructions by VPR or LTPSIZE. (Returning false even if there 13514 * isn't any predication is OK; generated code will just be 13515 * a little worse.) 13516 * If the CPU does not implement MVE then this TB flag is always 0. 13517 * 13518 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13519 * logic in gen_update_fp_context() needs to be updated to match. 13520 * 13521 * We do not include the effect of the ECI bits here -- they are 13522 * tracked in other TB flags. This simplifies the logic for 13523 * "when did we emit code that changes the MVE_NO_PRED TB flag 13524 * and thus need to end the TB?". 13525 */ 13526 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13527 return false; 13528 } 13529 if (env->v7m.vpr) { 13530 return false; 13531 } 13532 if (env->v7m.ltpsize < 4) { 13533 return false; 13534 } 13535 return true; 13536 } 13537 13538 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13539 target_ulong *cs_base, uint32_t *pflags) 13540 { 13541 CPUARMTBFlags flags; 13542 13543 assert_hflags_rebuild_correctly(env); 13544 flags = env->hflags; 13545 13546 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13547 *pc = env->pc; 13548 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13549 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13550 } 13551 } else { 13552 *pc = env->regs[15]; 13553 13554 if (arm_feature(env, ARM_FEATURE_M)) { 13555 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13556 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13557 != env->v7m.secure) { 13558 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13559 } 13560 13561 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13562 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13563 (env->v7m.secure && 13564 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13565 /* 13566 * ASPEN is set, but FPCA/SFPA indicate that there is no 13567 * active FP context; we must create a new FP context before 13568 * executing any FP insn. 13569 */ 13570 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13571 } 13572 13573 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13574 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13575 DP_TBFLAG_M32(flags, LSPACT, 1); 13576 } 13577 13578 if (mve_no_pred(env)) { 13579 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13580 } 13581 } else { 13582 /* 13583 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13584 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13585 */ 13586 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13587 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13588 } else { 13589 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13590 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13591 } 13592 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13593 DP_TBFLAG_A32(flags, VFPEN, 1); 13594 } 13595 } 13596 13597 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13598 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13599 } 13600 13601 /* 13602 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13603 * states defined in the ARM ARM for software singlestep: 13604 * SS_ACTIVE PSTATE.SS State 13605 * 0 x Inactive (the TB flag for SS is always 0) 13606 * 1 0 Active-pending 13607 * 1 1 Active-not-pending 13608 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13609 */ 13610 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13611 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13612 } 13613 13614 *pflags = flags.flags; 13615 *cs_base = flags.flags2; 13616 } 13617 13618 #ifdef TARGET_AARCH64 13619 /* 13620 * The manual says that when SVE is enabled and VQ is widened the 13621 * implementation is allowed to zero the previously inaccessible 13622 * portion of the registers. The corollary to that is that when 13623 * SVE is enabled and VQ is narrowed we are also allowed to zero 13624 * the now inaccessible portion of the registers. 13625 * 13626 * The intent of this is that no predicate bit beyond VQ is ever set. 13627 * Which means that some operations on predicate registers themselves 13628 * may operate on full uint64_t or even unrolled across the maximum 13629 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13630 * may well be cheaper than conditionals to restrict the operation 13631 * to the relevant portion of a uint16_t[16]. 13632 */ 13633 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13634 { 13635 int i, j; 13636 uint64_t pmask; 13637 13638 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13639 assert(vq <= env_archcpu(env)->sve_max_vq); 13640 13641 /* Zap the high bits of the zregs. */ 13642 for (i = 0; i < 32; i++) { 13643 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13644 } 13645 13646 /* Zap the high bits of the pregs and ffr. */ 13647 pmask = 0; 13648 if (vq & 3) { 13649 pmask = ~(-1ULL << (16 * (vq & 3))); 13650 } 13651 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13652 for (i = 0; i < 17; ++i) { 13653 env->vfp.pregs[i].p[j] &= pmask; 13654 } 13655 pmask = 0; 13656 } 13657 } 13658 13659 /* 13660 * Notice a change in SVE vector size when changing EL. 13661 */ 13662 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13663 int new_el, bool el0_a64) 13664 { 13665 ARMCPU *cpu = env_archcpu(env); 13666 int old_len, new_len; 13667 bool old_a64, new_a64; 13668 13669 /* Nothing to do if no SVE. */ 13670 if (!cpu_isar_feature(aa64_sve, cpu)) { 13671 return; 13672 } 13673 13674 /* Nothing to do if FP is disabled in either EL. */ 13675 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13676 return; 13677 } 13678 13679 /* 13680 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13681 * at ELx, or not available because the EL is in AArch32 state, then 13682 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13683 * has an effective value of 0". 13684 * 13685 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13686 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13687 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13688 * we already have the correct register contents when encountering the 13689 * vq0->vq0 transition between EL0->EL1. 13690 */ 13691 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13692 old_len = (old_a64 && !sve_exception_el(env, old_el) 13693 ? sve_zcr_len_for_el(env, old_el) : 0); 13694 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13695 new_len = (new_a64 && !sve_exception_el(env, new_el) 13696 ? sve_zcr_len_for_el(env, new_el) : 0); 13697 13698 /* When changing vector length, clear inaccessible state. */ 13699 if (new_len < old_len) { 13700 aarch64_sve_narrow_vq(env, new_len + 1); 13701 } 13702 } 13703 #endif 13704