1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "qemu/range.h" 29 #include "qapi/qapi-commands-machine-target.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 #ifdef CONFIG_TCG 33 #include "arm_ldst.h" 34 #include "exec/cpu_ldst.h" 35 #endif 36 37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 38 39 #ifndef CONFIG_USER_ONLY 40 41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 42 MMUAccessType access_type, ARMMMUIdx mmu_idx, 43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 44 target_ulong *page_size_ptr, 45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 46 #endif 47 48 static void switch_mode(CPUARMState *env, int mode); 49 50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 51 { 52 int nregs; 53 54 /* VFP data registers are always little-endian. */ 55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 56 if (reg < nregs) { 57 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 58 return 8; 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 stq_le_p(buf, q[0]); 66 stq_le_p(buf + 8, q[1]); 67 return 16; 68 } 69 } 70 switch (reg - nregs) { 71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 int nregs; 81 82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 /* 128 bit FP register */ 109 { 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 stq_le_p(buf, q[0]); 112 stq_le_p(buf + 8, q[1]); 113 return 16; 114 } 115 case 32: 116 /* FPSR */ 117 stl_p(buf, vfp_get_fpsr(env)); 118 return 4; 119 case 33: 120 /* FPCR */ 121 stl_p(buf, vfp_get_fpcr(env)); 122 return 4; 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 212 { 213 ARMCPU *cpu = env_archcpu(env); 214 const ARMCPRegInfo *ri; 215 uint32_t key; 216 217 key = cpu->dyn_xml.cpregs_keys[reg]; 218 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 219 if (ri) { 220 if (cpreg_field_is_64bit(ri)) { 221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 222 } else { 223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 224 } 225 } 226 return 0; 227 } 228 229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 230 { 231 return 0; 232 } 233 234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 235 { 236 /* Return true if the regdef would cause an assertion if you called 237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 238 * program bug for it not to have the NO_RAW flag). 239 * NB that returning false here doesn't necessarily mean that calling 240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 241 * read/write access functions which are safe for raw use" from "has 242 * read/write access functions which have side effects but has forgotten 243 * to provide raw access functions". 244 * The tests here line up with the conditions in read/write_raw_cp_reg() 245 * and assertions in raw_read()/raw_write(). 246 */ 247 if ((ri->type & ARM_CP_CONST) || 248 ri->fieldoffset || 249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 250 return false; 251 } 252 return true; 253 } 254 255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 256 { 257 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 258 int i; 259 bool ok = true; 260 261 for (i = 0; i < cpu->cpreg_array_len; i++) { 262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 263 const ARMCPRegInfo *ri; 264 uint64_t newval; 265 266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 267 if (!ri) { 268 ok = false; 269 continue; 270 } 271 if (ri->type & ARM_CP_NO_RAW) { 272 continue; 273 } 274 275 newval = read_raw_cp_reg(&cpu->env, ri); 276 if (kvm_sync) { 277 /* 278 * Only sync if the previous list->cpustate sync succeeded. 279 * Rather than tracking the success/failure state for every 280 * item in the list, we just recheck "does the raw write we must 281 * have made in write_list_to_cpustate() read back OK" here. 282 */ 283 uint64_t oldval = cpu->cpreg_values[i]; 284 285 if (oldval == newval) { 286 continue; 287 } 288 289 write_raw_cp_reg(&cpu->env, ri, oldval); 290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 291 continue; 292 } 293 294 write_raw_cp_reg(&cpu->env, ri, newval); 295 } 296 cpu->cpreg_values[i] = newval; 297 } 298 return ok; 299 } 300 301 bool write_list_to_cpustate(ARMCPU *cpu) 302 { 303 int i; 304 bool ok = true; 305 306 for (i = 0; i < cpu->cpreg_array_len; i++) { 307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 308 uint64_t v = cpu->cpreg_values[i]; 309 const ARMCPRegInfo *ri; 310 311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 312 if (!ri) { 313 ok = false; 314 continue; 315 } 316 if (ri->type & ARM_CP_NO_RAW) { 317 continue; 318 } 319 /* Write value and confirm it reads back as written 320 * (to catch read-only registers and partially read-only 321 * registers where the incoming migration value doesn't match) 322 */ 323 write_raw_cp_reg(&cpu->env, ri, v); 324 if (read_raw_cp_reg(&cpu->env, ri) != v) { 325 ok = false; 326 } 327 } 328 return ok; 329 } 330 331 static void add_cpreg_to_list(gpointer key, gpointer opaque) 332 { 333 ARMCPU *cpu = opaque; 334 uint64_t regidx; 335 const ARMCPRegInfo *ri; 336 337 regidx = *(uint32_t *)key; 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 339 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 342 /* The value array need not be initialized at this point */ 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static void count_cpreg(gpointer key, gpointer opaque) 348 { 349 ARMCPU *cpu = opaque; 350 uint64_t regidx; 351 const ARMCPRegInfo *ri; 352 353 regidx = *(uint32_t *)key; 354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 355 356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 357 cpu->cpreg_array_len++; 358 } 359 } 360 361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 362 { 363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 365 366 if (aidx > bidx) { 367 return 1; 368 } 369 if (aidx < bidx) { 370 return -1; 371 } 372 return 0; 373 } 374 375 void init_cpreg_list(ARMCPU *cpu) 376 { 377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 378 * Note that we require cpreg_tuples[] to be sorted by key ID. 379 */ 380 GList *keys; 381 int arraylen; 382 383 keys = g_hash_table_get_keys(cpu->cp_regs); 384 keys = g_list_sort(keys, cpreg_key_compare); 385 386 cpu->cpreg_array_len = 0; 387 388 g_list_foreach(keys, count_cpreg, cpu); 389 390 arraylen = cpu->cpreg_array_len; 391 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 392 cpu->cpreg_values = g_new(uint64_t, arraylen); 393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 396 cpu->cpreg_array_len = 0; 397 398 g_list_foreach(keys, add_cpreg_to_list, cpu); 399 400 assert(cpu->cpreg_array_len == arraylen); 401 402 g_list_free(keys); 403 } 404 405 /* 406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 408 * 409 * access_el3_aa32ns: Used to check AArch32 register views. 410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 411 */ 412 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 413 const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 bool secure = arm_is_secure_below_el3(env); 417 418 assert(!arm_el_is_aa64(env, 3)); 419 if (secure) { 420 return CP_ACCESS_TRAP_UNCATEGORIZED; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 426 const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (!arm_el_is_aa64(env, 3)) { 430 return access_el3_aa32ns(env, ri, isread); 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Some secure-only AArch32 registers trap to EL3 if used from 436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 438 * We assume that the .access field is set to PL1_RW. 439 */ 440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 441 const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 3) { 445 return CP_ACCESS_OK; 446 } 447 if (arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL3; 449 } 450 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 451 return CP_ACCESS_TRAP_UNCATEGORIZED; 452 } 453 454 /* Check for traps to "powerdown debug" registers, which are controlled 455 * by MDCR.TDOSA 456 */ 457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 458 bool isread) 459 { 460 int el = arm_current_el(env); 461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 462 (env->cp15.mdcr_el2 & MDCR_TDE) || 463 (arm_hcr_el2_eff(env) & HCR_TGE); 464 465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to "debug ROM" registers, which are controlled 475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 476 */ 477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 482 (env->cp15.mdcr_el2 & MDCR_TDE) || 483 (arm_hcr_el2_eff(env) & HCR_TGE); 484 485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 486 return CP_ACCESS_TRAP_EL2; 487 } 488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 489 return CP_ACCESS_TRAP_EL3; 490 } 491 return CP_ACCESS_OK; 492 } 493 494 /* Check for traps to general debug registers, which are controlled 495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 496 */ 497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 498 bool isread) 499 { 500 int el = arm_current_el(env); 501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 502 (env->cp15.mdcr_el2 & MDCR_TDE) || 503 (arm_hcr_el2_eff(env) & HCR_TGE); 504 505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 506 return CP_ACCESS_TRAP_EL2; 507 } 508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 509 return CP_ACCESS_TRAP_EL3; 510 } 511 return CP_ACCESS_OK; 512 } 513 514 /* Check for traps to performance monitor registers, which are controlled 515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 516 */ 517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 518 bool isread) 519 { 520 int el = arm_current_el(env); 521 522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 523 && !arm_is_secure_below_el3(env)) { 524 return CP_ACCESS_TRAP_EL2; 525 } 526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 527 return CP_ACCESS_TRAP_EL3; 528 } 529 return CP_ACCESS_OK; 530 } 531 532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 533 { 534 ARMCPU *cpu = env_archcpu(env); 535 536 raw_write(env, ri, value); 537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 538 } 539 540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 541 { 542 ARMCPU *cpu = env_archcpu(env); 543 544 if (raw_read(env, ri) != value) { 545 /* Unlike real hardware the qemu TLB uses virtual addresses, 546 * not modified virtual addresses, so this causes a TLB flush. 547 */ 548 tlb_flush(CPU(cpu)); 549 raw_write(env, ri, value); 550 } 551 } 552 553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 ARMCPU *cpu = env_archcpu(env); 557 558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 559 && !extended_addresses_enabled(env)) { 560 /* For VMSA (when not using the LPAE long descriptor page table 561 * format) this register includes the ASID, so do a TLB flush. 562 * For PMSA it is purely a process ID and no action is needed. 563 */ 564 tlb_flush(CPU(cpu)); 565 } 566 raw_write(env, ri, value); 567 } 568 569 /* IS variants of TLB operations must affect all cores */ 570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_all_cpus_synced(cs); 576 } 577 578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_all_cpus_synced(cs); 584 } 585 586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 592 } 593 594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 600 } 601 602 /* 603 * Non-IS variants of TLB operations are upgraded to 604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 605 * force broadcast of these operations. 606 */ 607 static bool tlb_force_broadcast(CPUARMState *env) 608 { 609 return (env->cp15.hcr_el2 & HCR_FB) && 610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 611 } 612 613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 /* Invalidate all (TLBIALL) */ 617 ARMCPU *cpu = env_archcpu(env); 618 619 if (tlb_force_broadcast(env)) { 620 tlbiall_is_write(env, NULL, value); 621 return; 622 } 623 624 tlb_flush(CPU(cpu)); 625 } 626 627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 631 ARMCPU *cpu = env_archcpu(env); 632 633 if (tlb_force_broadcast(env)) { 634 tlbimva_is_write(env, NULL, value); 635 return; 636 } 637 638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 639 } 640 641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 /* Invalidate by ASID (TLBIASID) */ 645 ARMCPU *cpu = env_archcpu(env); 646 647 if (tlb_force_broadcast(env)) { 648 tlbiasid_is_write(env, NULL, value); 649 return; 650 } 651 652 tlb_flush(CPU(cpu)); 653 } 654 655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 659 ARMCPU *cpu = env_archcpu(env); 660 661 if (tlb_force_broadcast(env)) { 662 tlbimvaa_is_write(env, NULL, value); 663 return; 664 } 665 666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 667 } 668 669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 670 uint64_t value) 671 { 672 CPUState *cs = env_cpu(env); 673 674 tlb_flush_by_mmuidx(cs, 675 ARMMMUIdxBit_S12NSE1 | 676 ARMMMUIdxBit_S12NSE0 | 677 ARMMMUIdxBit_S2NS); 678 } 679 680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = env_cpu(env); 684 685 tlb_flush_by_mmuidx_all_cpus_synced(cs, 686 ARMMMUIdxBit_S12NSE1 | 687 ARMMMUIdxBit_S12NSE0 | 688 ARMMMUIdxBit_S2NS); 689 } 690 691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 /* Invalidate by IPA. This has to invalidate any structures that 695 * contain only stage 2 translation information, but does not need 696 * to apply to structures that contain combined stage 1 and stage 2 697 * translation information. 698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 699 */ 700 CPUState *cs = env_cpu(env); 701 uint64_t pageaddr; 702 703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 704 return; 705 } 706 707 pageaddr = sextract64(value << 12, 0, 40); 708 709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 710 } 711 712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 uint64_t pageaddr; 717 718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 719 return; 720 } 721 722 pageaddr = sextract64(value << 12, 0, 40); 723 724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 725 ARMMMUIdxBit_S2NS); 726 } 727 728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 734 } 735 736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 742 } 743 744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 745 uint64_t value) 746 { 747 CPUState *cs = env_cpu(env); 748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 749 750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = env_cpu(env); 757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 758 759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 760 ARMMMUIdxBit_S1E2); 761 } 762 763 static const ARMCPRegInfo cp_reginfo[] = { 764 /* Define the secure and non-secure FCSE identifier CP registers 765 * separately because there is no secure bank in V8 (no _EL3). This allows 766 * the secure register to be properly reset and migrated. There is also no 767 * v8 EL1 version of the register so the non-secure instance stands alone. 768 */ 769 { .name = "FCSEIDR", 770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 774 { .name = "FCSEIDR_S", 775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 779 /* Define the secure and non-secure context identifier CP registers 780 * separately because there is no secure bank in V8 (no _EL3). This allows 781 * the secure register to be properly reset and migrated. In the 782 * non-secure case, the 32-bit register will have reset and migration 783 * disabled during registration as it is handled by the 64-bit instance. 784 */ 785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 795 REGINFO_SENTINEL 796 }; 797 798 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 799 /* NB: Some of these registers exist in v8 but with more precise 800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 801 */ 802 /* MMU Domain access control / MPU write buffer control */ 803 { .name = "DACR", 804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 805 .access = PL1_RW, .resetvalue = 0, 806 .writefn = dacr_write, .raw_writefn = raw_write, 807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 808 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 810 * For v6 and v5, these mappings are overly broad. 811 */ 812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 820 /* Cache maintenance ops; some of this space may be overridden later. */ 821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 824 REGINFO_SENTINEL 825 }; 826 827 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 828 /* Not all pre-v6 cores implemented this WFI, so this is slightly 829 * over-broad. 830 */ 831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 832 .access = PL1_W, .type = ARM_CP_WFI }, 833 REGINFO_SENTINEL 834 }; 835 836 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 838 * is UNPREDICTABLE; we choose to NOP as most implementations do). 839 */ 840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 841 .access = PL1_W, .type = ARM_CP_WFI }, 842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 844 * OMAPCP will override this space. 845 */ 846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 848 .resetvalue = 0 }, 849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 851 .resetvalue = 0 }, 852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 855 .resetvalue = 0 }, 856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 857 * implementing it as RAZ means the "debug architecture version" bits 858 * will read as a reserved value, which should cause Linux to not try 859 * to use the debug hardware. 860 */ 861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 863 /* MMU TLB control. Note that the wildcarding means we cover not just 864 * the unified TLB ops but also the dside/iside/inner-shareable variants. 865 */ 866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 868 .type = ARM_CP_NO_RAW }, 869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 871 .type = ARM_CP_NO_RAW }, 872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 874 .type = ARM_CP_NO_RAW }, 875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 877 .type = ARM_CP_NO_RAW }, 878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 882 REGINFO_SENTINEL 883 }; 884 885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 886 uint64_t value) 887 { 888 uint32_t mask = 0; 889 890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 891 if (!arm_feature(env, ARM_FEATURE_V8)) { 892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 895 */ 896 if (arm_feature(env, ARM_FEATURE_VFP)) { 897 /* VFP coprocessor: cp10 & cp11 [23:20] */ 898 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 899 900 if (!arm_feature(env, ARM_FEATURE_NEON)) { 901 /* ASEDIS [31] bit is RAO/WI */ 902 value |= (1 << 31); 903 } 904 905 /* VFPv3 and upwards with NEON implement 32 double precision 906 * registers (D0-D31). 907 */ 908 if (!arm_feature(env, ARM_FEATURE_NEON) || 909 !arm_feature(env, ARM_FEATURE_VFP3)) { 910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 911 value |= (1 << 30); 912 } 913 } 914 value &= mask; 915 } 916 917 /* 918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 920 */ 921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 923 value &= ~(0xf << 20); 924 value |= env->cp15.cpacr_el1 & (0xf << 20); 925 } 926 927 env->cp15.cpacr_el1 = value; 928 } 929 930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 931 { 932 /* 933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 935 */ 936 uint64_t value = env->cp15.cpacr_el1; 937 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 } 942 return value; 943 } 944 945 946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 947 { 948 /* Call cpacr_write() so that we reset with the correct RAO bits set 949 * for our CPU features. 950 */ 951 cpacr_write(env, ri, 0); 952 } 953 954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 if (arm_feature(env, ARM_FEATURE_V8)) { 958 /* Check if CPACR accesses are to be trapped to EL2 */ 959 if (arm_current_el(env) == 1 && 960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 961 return CP_ACCESS_TRAP_EL2; 962 /* Check if CPACR accesses are to be trapped to EL3 */ 963 } else if (arm_current_el(env) < 3 && 964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 965 return CP_ACCESS_TRAP_EL3; 966 } 967 } 968 969 return CP_ACCESS_OK; 970 } 971 972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 973 bool isread) 974 { 975 /* Check if CPTR accesses are set to trap to EL3 */ 976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 977 return CP_ACCESS_TRAP_EL3; 978 } 979 980 return CP_ACCESS_OK; 981 } 982 983 static const ARMCPRegInfo v6_cp_reginfo[] = { 984 /* prefetch by MVA in v6, NOP in v7 */ 985 { .name = "MVA_prefetch", 986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 987 .access = PL1_W, .type = ARM_CP_NOP }, 988 /* We need to break the TB after ISB to execute self-modifying code 989 * correctly and also to take any pending interrupts immediately. 990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 991 */ 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 995 .access = PL0_W, .type = ARM_CP_NOP }, 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 997 .access = PL0_W, .type = ARM_CP_NOP }, 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 999 .access = PL1_RW, 1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1001 offsetof(CPUARMState, cp15.ifar_ns) }, 1002 .resetvalue = 0, }, 1003 /* Watchpoint Fault Address Register : should actually only be present 1004 * for 1136, 1176, 11MPCore. 1005 */ 1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1012 REGINFO_SENTINEL 1013 }; 1014 1015 /* Definitions for the PMU registers */ 1016 #define PMCRN_MASK 0xf800 1017 #define PMCRN_SHIFT 11 1018 #define PMCRLC 0x40 1019 #define PMCRDP 0x10 1020 #define PMCRD 0x8 1021 #define PMCRC 0x4 1022 #define PMCRP 0x2 1023 #define PMCRE 0x1 1024 1025 #define PMXEVTYPER_P 0x80000000 1026 #define PMXEVTYPER_U 0x40000000 1027 #define PMXEVTYPER_NSK 0x20000000 1028 #define PMXEVTYPER_NSU 0x10000000 1029 #define PMXEVTYPER_NSH 0x08000000 1030 #define PMXEVTYPER_M 0x04000000 1031 #define PMXEVTYPER_MT 0x02000000 1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1035 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1036 PMXEVTYPER_EVTCOUNT) 1037 1038 #define PMCCFILTR 0xf8000000 1039 #define PMCCFILTR_M PMXEVTYPER_M 1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1041 1042 static inline uint32_t pmu_num_counters(CPUARMState *env) 1043 { 1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1045 } 1046 1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1048 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1049 { 1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1051 } 1052 1053 typedef struct pm_event { 1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1056 bool (*supported)(CPUARMState *); 1057 /* 1058 * Retrieve the current count of the underlying event. The programmed 1059 * counters hold a difference from the return value from this function 1060 */ 1061 uint64_t (*get_count)(CPUARMState *); 1062 /* 1063 * Return how many nanoseconds it will take (at a minimum) for count events 1064 * to occur. A negative value indicates the counter will never overflow, or 1065 * that the counter has otherwise arranged for the overflow bit to be set 1066 * and the PMU interrupt to be raised on overflow. 1067 */ 1068 int64_t (*ns_per_count)(uint64_t); 1069 } pm_event; 1070 1071 static bool event_always_supported(CPUARMState *env) 1072 { 1073 return true; 1074 } 1075 1076 static uint64_t swinc_get_count(CPUARMState *env) 1077 { 1078 /* 1079 * SW_INCR events are written directly to the pmevcntr's by writes to 1080 * PMSWINC, so there is no underlying count maintained by the PMU itself 1081 */ 1082 return 0; 1083 } 1084 1085 static int64_t swinc_ns_per(uint64_t ignored) 1086 { 1087 return -1; 1088 } 1089 1090 /* 1091 * Return the underlying cycle count for the PMU cycle counters. If we're in 1092 * usermode, simply return 0. 1093 */ 1094 static uint64_t cycles_get_count(CPUARMState *env) 1095 { 1096 #ifndef CONFIG_USER_ONLY 1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1099 #else 1100 return cpu_get_host_ticks(); 1101 #endif 1102 } 1103 1104 #ifndef CONFIG_USER_ONLY 1105 static int64_t cycles_ns_per(uint64_t cycles) 1106 { 1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1108 } 1109 1110 static bool instructions_supported(CPUARMState *env) 1111 { 1112 return use_icount == 1 /* Precise instruction counting */; 1113 } 1114 1115 static uint64_t instructions_get_count(CPUARMState *env) 1116 { 1117 return (uint64_t)cpu_get_icount_raw(); 1118 } 1119 1120 static int64_t instructions_ns_per(uint64_t icount) 1121 { 1122 return cpu_icount_to_ns((int64_t)icount); 1123 } 1124 #endif 1125 1126 static const pm_event pm_events[] = { 1127 { .number = 0x000, /* SW_INCR */ 1128 .supported = event_always_supported, 1129 .get_count = swinc_get_count, 1130 .ns_per_count = swinc_ns_per, 1131 }, 1132 #ifndef CONFIG_USER_ONLY 1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1134 .supported = instructions_supported, 1135 .get_count = instructions_get_count, 1136 .ns_per_count = instructions_ns_per, 1137 }, 1138 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1139 .supported = event_always_supported, 1140 .get_count = cycles_get_count, 1141 .ns_per_count = cycles_ns_per, 1142 } 1143 #endif 1144 }; 1145 1146 /* 1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1148 * events (i.e. the statistical profiling extension), this implementation 1149 * should first be updated to something sparse instead of the current 1150 * supported_event_map[] array. 1151 */ 1152 #define MAX_EVENT_ID 0x11 1153 #define UNSUPPORTED_EVENT UINT16_MAX 1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1155 1156 /* 1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1158 * of ARM event numbers to indices in our pm_events array. 1159 * 1160 * Note: Events in the 0x40XX range are not currently supported. 1161 */ 1162 void pmu_init(ARMCPU *cpu) 1163 { 1164 unsigned int i; 1165 1166 /* 1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1168 * events to them 1169 */ 1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1171 supported_event_map[i] = UNSUPPORTED_EVENT; 1172 } 1173 cpu->pmceid0 = 0; 1174 cpu->pmceid1 = 0; 1175 1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1177 const pm_event *cnt = &pm_events[i]; 1178 assert(cnt->number <= MAX_EVENT_ID); 1179 /* We do not currently support events in the 0x40xx range */ 1180 assert(cnt->number <= 0x3f); 1181 1182 if (cnt->supported(&cpu->env)) { 1183 supported_event_map[cnt->number] = i; 1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1185 if (cnt->number & 0x20) { 1186 cpu->pmceid1 |= event_mask; 1187 } else { 1188 cpu->pmceid0 |= event_mask; 1189 } 1190 } 1191 } 1192 } 1193 1194 /* 1195 * Check at runtime whether a PMU event is supported for the current machine 1196 */ 1197 static bool event_supported(uint16_t number) 1198 { 1199 if (number > MAX_EVENT_ID) { 1200 return false; 1201 } 1202 return supported_event_map[number] != UNSUPPORTED_EVENT; 1203 } 1204 1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1206 bool isread) 1207 { 1208 /* Performance monitor registers user accessibility is controlled 1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1210 * trapping to EL2 or EL3 for other accesses. 1211 */ 1212 int el = arm_current_el(env); 1213 1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1215 return CP_ACCESS_TRAP; 1216 } 1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1218 && !arm_is_secure_below_el3(env)) { 1219 return CP_ACCESS_TRAP_EL2; 1220 } 1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1222 return CP_ACCESS_TRAP_EL3; 1223 } 1224 1225 return CP_ACCESS_OK; 1226 } 1227 1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1229 const ARMCPRegInfo *ri, 1230 bool isread) 1231 { 1232 /* ER: event counter read trap control */ 1233 if (arm_feature(env, ARM_FEATURE_V8) 1234 && arm_current_el(env) == 0 1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1236 && isread) { 1237 return CP_ACCESS_OK; 1238 } 1239 1240 return pmreg_access(env, ri, isread); 1241 } 1242 1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1244 const ARMCPRegInfo *ri, 1245 bool isread) 1246 { 1247 /* SW: software increment write trap control */ 1248 if (arm_feature(env, ARM_FEATURE_V8) 1249 && arm_current_el(env) == 0 1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1251 && !isread) { 1252 return CP_ACCESS_OK; 1253 } 1254 1255 return pmreg_access(env, ri, isread); 1256 } 1257 1258 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1259 const ARMCPRegInfo *ri, 1260 bool isread) 1261 { 1262 /* ER: event counter read trap control */ 1263 if (arm_feature(env, ARM_FEATURE_V8) 1264 && arm_current_el(env) == 0 1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1266 return CP_ACCESS_OK; 1267 } 1268 1269 return pmreg_access(env, ri, isread); 1270 } 1271 1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1273 const ARMCPRegInfo *ri, 1274 bool isread) 1275 { 1276 /* CR: cycle counter read trap control */ 1277 if (arm_feature(env, ARM_FEATURE_V8) 1278 && arm_current_el(env) == 0 1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1280 && isread) { 1281 return CP_ACCESS_OK; 1282 } 1283 1284 return pmreg_access(env, ri, isread); 1285 } 1286 1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1288 * the current EL, security state, and register configuration. 1289 */ 1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1291 { 1292 uint64_t filter; 1293 bool e, p, u, nsk, nsu, nsh, m; 1294 bool enabled, prohibited, filtered; 1295 bool secure = arm_is_secure(env); 1296 int el = arm_current_el(env); 1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1298 1299 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1300 return false; 1301 } 1302 1303 if (!arm_feature(env, ARM_FEATURE_EL2) || 1304 (counter < hpmn || counter == 31)) { 1305 e = env->cp15.c9_pmcr & PMCRE; 1306 } else { 1307 e = env->cp15.mdcr_el2 & MDCR_HPME; 1308 } 1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1310 1311 if (!secure) { 1312 if (el == 2 && (counter < hpmn || counter == 31)) { 1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1314 } else { 1315 prohibited = false; 1316 } 1317 } else { 1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1319 (env->cp15.mdcr_el3 & MDCR_SPME); 1320 } 1321 1322 if (prohibited && counter == 31) { 1323 prohibited = env->cp15.c9_pmcr & PMCRDP; 1324 } 1325 1326 if (counter == 31) { 1327 filter = env->cp15.pmccfiltr_el0; 1328 } else { 1329 filter = env->cp15.c14_pmevtyper[counter]; 1330 } 1331 1332 p = filter & PMXEVTYPER_P; 1333 u = filter & PMXEVTYPER_U; 1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1337 m = arm_el_is_aa64(env, 1) && 1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1339 1340 if (el == 0) { 1341 filtered = secure ? u : u != nsu; 1342 } else if (el == 1) { 1343 filtered = secure ? p : p != nsk; 1344 } else if (el == 2) { 1345 filtered = !nsh; 1346 } else { /* EL3 */ 1347 filtered = m != p; 1348 } 1349 1350 if (counter != 31) { 1351 /* 1352 * If not checking PMCCNTR, ensure the counter is setup to an event we 1353 * support 1354 */ 1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1356 if (!event_supported(event)) { 1357 return false; 1358 } 1359 } 1360 1361 return enabled && !prohibited && !filtered; 1362 } 1363 1364 static void pmu_update_irq(CPUARMState *env) 1365 { 1366 ARMCPU *cpu = env_archcpu(env); 1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1369 } 1370 1371 /* 1372 * Ensure c15_ccnt is the guest-visible count so that operations such as 1373 * enabling/disabling the counter or filtering, modifying the count itself, 1374 * etc. can be done logically. This is essentially a no-op if the counter is 1375 * not enabled at the time of the call. 1376 */ 1377 static void pmccntr_op_start(CPUARMState *env) 1378 { 1379 uint64_t cycles = cycles_get_count(env); 1380 1381 if (pmu_counter_enabled(env, 31)) { 1382 uint64_t eff_cycles = cycles; 1383 if (env->cp15.c9_pmcr & PMCRD) { 1384 /* Increment once every 64 processor clock cycles */ 1385 eff_cycles /= 64; 1386 } 1387 1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1389 1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1391 1ull << 63 : 1ull << 31; 1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1393 env->cp15.c9_pmovsr |= (1 << 31); 1394 pmu_update_irq(env); 1395 } 1396 1397 env->cp15.c15_ccnt = new_pmccntr; 1398 } 1399 env->cp15.c15_ccnt_delta = cycles; 1400 } 1401 1402 /* 1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1405 * pmccntr_op_start. 1406 */ 1407 static void pmccntr_op_finish(CPUARMState *env) 1408 { 1409 if (pmu_counter_enabled(env, 31)) { 1410 #ifndef CONFIG_USER_ONLY 1411 /* Calculate when the counter will next overflow */ 1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1413 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1414 remaining_cycles = (uint32_t)remaining_cycles; 1415 } 1416 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1417 1418 if (overflow_in > 0) { 1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1420 overflow_in; 1421 ARMCPU *cpu = env_archcpu(env); 1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1423 } 1424 #endif 1425 1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1427 if (env->cp15.c9_pmcr & PMCRD) { 1428 /* Increment once every 64 processor clock cycles */ 1429 prev_cycles /= 64; 1430 } 1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1432 } 1433 } 1434 1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1436 { 1437 1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1439 uint64_t count = 0; 1440 if (event_supported(event)) { 1441 uint16_t event_idx = supported_event_map[event]; 1442 count = pm_events[event_idx].get_count(env); 1443 } 1444 1445 if (pmu_counter_enabled(env, counter)) { 1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1447 1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1449 env->cp15.c9_pmovsr |= (1 << counter); 1450 pmu_update_irq(env); 1451 } 1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1453 } 1454 env->cp15.c14_pmevcntr_delta[counter] = count; 1455 } 1456 1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1458 { 1459 if (pmu_counter_enabled(env, counter)) { 1460 #ifndef CONFIG_USER_ONLY 1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1462 uint16_t event_idx = supported_event_map[event]; 1463 uint64_t delta = UINT32_MAX - 1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1466 1467 if (overflow_in > 0) { 1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1469 overflow_in; 1470 ARMCPU *cpu = env_archcpu(env); 1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1472 } 1473 #endif 1474 1475 env->cp15.c14_pmevcntr_delta[counter] -= 1476 env->cp15.c14_pmevcntr[counter]; 1477 } 1478 } 1479 1480 void pmu_op_start(CPUARMState *env) 1481 { 1482 unsigned int i; 1483 pmccntr_op_start(env); 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 pmevcntr_op_start(env, i); 1486 } 1487 } 1488 1489 void pmu_op_finish(CPUARMState *env) 1490 { 1491 unsigned int i; 1492 pmccntr_op_finish(env); 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 pmevcntr_op_finish(env, i); 1495 } 1496 } 1497 1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1499 { 1500 pmu_op_start(&cpu->env); 1501 } 1502 1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1504 { 1505 pmu_op_finish(&cpu->env); 1506 } 1507 1508 void arm_pmu_timer_cb(void *opaque) 1509 { 1510 ARMCPU *cpu = opaque; 1511 1512 /* 1513 * Update all the counter values based on the current underlying counts, 1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1516 * counter may expire. 1517 */ 1518 pmu_op_start(&cpu->env); 1519 pmu_op_finish(&cpu->env); 1520 } 1521 1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 pmu_op_start(env); 1526 1527 if (value & PMCRC) { 1528 /* The counter has been reset */ 1529 env->cp15.c15_ccnt = 0; 1530 } 1531 1532 if (value & PMCRP) { 1533 unsigned int i; 1534 for (i = 0; i < pmu_num_counters(env); i++) { 1535 env->cp15.c14_pmevcntr[i] = 0; 1536 } 1537 } 1538 1539 /* only the DP, X, D and E bits are writable */ 1540 env->cp15.c9_pmcr &= ~0x39; 1541 env->cp15.c9_pmcr |= (value & 0x39); 1542 1543 pmu_op_finish(env); 1544 } 1545 1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value) 1548 { 1549 unsigned int i; 1550 for (i = 0; i < pmu_num_counters(env); i++) { 1551 /* Increment a counter's count iff: */ 1552 if ((value & (1 << i)) && /* counter's bit is set */ 1553 /* counter is enabled and not filtered */ 1554 pmu_counter_enabled(env, i) && 1555 /* counter is SW_INCR */ 1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1557 pmevcntr_op_start(env, i); 1558 1559 /* 1560 * Detect if this write causes an overflow since we can't predict 1561 * PMSWINC overflows like we can for other events 1562 */ 1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1564 1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1566 env->cp15.c9_pmovsr |= (1 << i); 1567 pmu_update_irq(env); 1568 } 1569 1570 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1571 1572 pmevcntr_op_finish(env, i); 1573 } 1574 } 1575 } 1576 1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1578 { 1579 uint64_t ret; 1580 pmccntr_op_start(env); 1581 ret = env->cp15.c15_ccnt; 1582 pmccntr_op_finish(env); 1583 return ret; 1584 } 1585 1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1592 * accessed. 1593 */ 1594 env->cp15.c9_pmselr = value & 0x1f; 1595 } 1596 1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 pmccntr_op_start(env); 1601 env->cp15.c15_ccnt = value; 1602 pmccntr_op_finish(env); 1603 } 1604 1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint64_t cur_val = pmccntr_read(env, NULL); 1609 1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1611 } 1612 1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1614 uint64_t value) 1615 { 1616 pmccntr_op_start(env); 1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1618 pmccntr_op_finish(env); 1619 } 1620 1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1622 uint64_t value) 1623 { 1624 pmccntr_op_start(env); 1625 /* M is not accessible from AArch32 */ 1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1627 (value & PMCCFILTR); 1628 pmccntr_op_finish(env); 1629 } 1630 1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 /* M is not visible in AArch32 */ 1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1635 } 1636 1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1638 uint64_t value) 1639 { 1640 value &= pmu_counter_mask(env); 1641 env->cp15.c9_pmcnten |= value; 1642 } 1643 1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 value &= pmu_counter_mask(env); 1648 env->cp15.c9_pmcnten &= ~value; 1649 } 1650 1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 value &= pmu_counter_mask(env); 1655 env->cp15.c9_pmovsr &= ~value; 1656 pmu_update_irq(env); 1657 } 1658 1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 value &= pmu_counter_mask(env); 1663 env->cp15.c9_pmovsr |= value; 1664 pmu_update_irq(env); 1665 } 1666 1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value, const uint8_t counter) 1669 { 1670 if (counter == 31) { 1671 pmccfiltr_write(env, ri, value); 1672 } else if (counter < pmu_num_counters(env)) { 1673 pmevcntr_op_start(env, counter); 1674 1675 /* 1676 * If this counter's event type is changing, store the current 1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1678 * pmevcntr_op_finish has the correct baseline when it converts back to 1679 * a delta. 1680 */ 1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1682 PMXEVTYPER_EVTCOUNT; 1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1684 if (old_event != new_event) { 1685 uint64_t count = 0; 1686 if (event_supported(new_event)) { 1687 uint16_t event_idx = supported_event_map[new_event]; 1688 count = pm_events[event_idx].get_count(env); 1689 } 1690 env->cp15.c14_pmevcntr_delta[counter] = count; 1691 } 1692 1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1694 pmevcntr_op_finish(env, counter); 1695 } 1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1697 * PMSELR value is equal to or greater than the number of implemented 1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1699 */ 1700 } 1701 1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1703 const uint8_t counter) 1704 { 1705 if (counter == 31) { 1706 return env->cp15.pmccfiltr_el0; 1707 } else if (counter < pmu_num_counters(env)) { 1708 return env->cp15.c14_pmevtyper[counter]; 1709 } else { 1710 /* 1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1713 */ 1714 return 0; 1715 } 1716 } 1717 1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1722 pmevtyper_write(env, ri, value, counter); 1723 } 1724 1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1729 env->cp15.c14_pmevtyper[counter] = value; 1730 1731 /* 1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1733 * pmu_op_finish calls when loading saved state for a migration. Because 1734 * we're potentially updating the type of event here, the value written to 1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1736 * different counter type. Therefore, we need to set this value to the 1737 * current count for the counter type we're writing so that pmu_op_finish 1738 * has the correct count for its calculation. 1739 */ 1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1741 if (event_supported(event)) { 1742 uint16_t event_idx = supported_event_map[event]; 1743 env->cp15.c14_pmevcntr_delta[counter] = 1744 pm_events[event_idx].get_count(env); 1745 } 1746 } 1747 1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 return pmevtyper_read(env, ri, counter); 1752 } 1753 1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1758 } 1759 1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1761 { 1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1763 } 1764 1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1766 uint64_t value, uint8_t counter) 1767 { 1768 if (counter < pmu_num_counters(env)) { 1769 pmevcntr_op_start(env, counter); 1770 env->cp15.c14_pmevcntr[counter] = value; 1771 pmevcntr_op_finish(env, counter); 1772 } 1773 /* 1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1775 * are CONSTRAINED UNPREDICTABLE. 1776 */ 1777 } 1778 1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint8_t counter) 1781 { 1782 if (counter < pmu_num_counters(env)) { 1783 uint64_t ret; 1784 pmevcntr_op_start(env, counter); 1785 ret = env->cp15.c14_pmevcntr[counter]; 1786 pmevcntr_op_finish(env, counter); 1787 return ret; 1788 } else { 1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1790 * are CONSTRAINED UNPREDICTABLE. */ 1791 return 0; 1792 } 1793 } 1794 1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1799 pmevcntr_write(env, ri, value, counter); 1800 } 1801 1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1805 return pmevcntr_read(env, ri, counter); 1806 } 1807 1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1812 assert(counter < pmu_num_counters(env)); 1813 env->cp15.c14_pmevcntr[counter] = value; 1814 pmevcntr_write(env, ri, value, counter); 1815 } 1816 1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1820 assert(counter < pmu_num_counters(env)); 1821 return env->cp15.c14_pmevcntr[counter]; 1822 } 1823 1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1831 { 1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1833 } 1834 1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 if (arm_feature(env, ARM_FEATURE_V8)) { 1839 env->cp15.c9_pmuserenr = value & 0xf; 1840 } else { 1841 env->cp15.c9_pmuserenr = value & 1; 1842 } 1843 } 1844 1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 /* We have no event counters so only the C bit can be changed */ 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pminten |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 value &= pmu_counter_mask(env); 1858 env->cp15.c9_pminten &= ~value; 1859 pmu_update_irq(env); 1860 } 1861 1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* Note that even though the AArch64 view of this register has bits 1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1867 * architectural requirements for bits which are RES0 only in some 1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1870 */ 1871 raw_write(env, ri, value & ~0x1FULL); 1872 } 1873 1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1875 { 1876 /* Begin with base v8.0 state. */ 1877 uint32_t valid_mask = 0x3fff; 1878 ARMCPU *cpu = env_archcpu(env); 1879 1880 if (arm_el_is_aa64(env, 3)) { 1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1882 valid_mask &= ~SCR_NET; 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 } 1886 1887 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1888 valid_mask &= ~SCR_HCE; 1889 1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1891 * supported if EL2 exists. The bit is UNK/SBZP when 1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1893 * when EL2 is unavailable. 1894 * On ARMv8, this bit is always available. 1895 */ 1896 if (arm_feature(env, ARM_FEATURE_V7) && 1897 !arm_feature(env, ARM_FEATURE_V8)) { 1898 valid_mask &= ~SCR_SMD; 1899 } 1900 } 1901 if (cpu_isar_feature(aa64_lor, cpu)) { 1902 valid_mask |= SCR_TLOR; 1903 } 1904 if (cpu_isar_feature(aa64_pauth, cpu)) { 1905 valid_mask |= SCR_API | SCR_APK; 1906 } 1907 1908 /* Clear all-context RES0 bits. */ 1909 value &= valid_mask; 1910 raw_write(env, ri, value); 1911 } 1912 1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1914 { 1915 ARMCPU *cpu = env_archcpu(env); 1916 1917 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1918 * bank 1919 */ 1920 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1921 ri->secure & ARM_CP_SECSTATE_S); 1922 1923 return cpu->ccsidr[index]; 1924 } 1925 1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint64_t value) 1928 { 1929 raw_write(env, ri, value & 0xf); 1930 } 1931 1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1933 { 1934 CPUState *cs = env_cpu(env); 1935 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1936 uint64_t ret = 0; 1937 1938 if (hcr_el2 & HCR_IMO) { 1939 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1940 ret |= CPSR_I; 1941 } 1942 } else { 1943 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1944 ret |= CPSR_I; 1945 } 1946 } 1947 1948 if (hcr_el2 & HCR_FMO) { 1949 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1950 ret |= CPSR_F; 1951 } 1952 } else { 1953 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1954 ret |= CPSR_F; 1955 } 1956 } 1957 1958 /* External aborts are not possible in QEMU so A bit is always clear */ 1959 return ret; 1960 } 1961 1962 static const ARMCPRegInfo v7_cp_reginfo[] = { 1963 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1964 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1965 .access = PL1_W, .type = ARM_CP_NOP }, 1966 /* Performance monitors are implementation defined in v7, 1967 * but with an ARM recommended set of registers, which we 1968 * follow. 1969 * 1970 * Performance registers fall into three categories: 1971 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1972 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1973 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1974 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1975 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1976 */ 1977 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1978 .access = PL0_RW, .type = ARM_CP_ALIAS, 1979 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1980 .writefn = pmcntenset_write, 1981 .accessfn = pmreg_access, 1982 .raw_writefn = raw_write }, 1983 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1984 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1985 .access = PL0_RW, .accessfn = pmreg_access, 1986 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1987 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1988 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1989 .access = PL0_RW, 1990 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1991 .accessfn = pmreg_access, 1992 .writefn = pmcntenclr_write, 1993 .type = ARM_CP_ALIAS }, 1994 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1995 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1996 .access = PL0_RW, .accessfn = pmreg_access, 1997 .type = ARM_CP_ALIAS, 1998 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1999 .writefn = pmcntenclr_write }, 2000 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2001 .access = PL0_RW, .type = ARM_CP_IO, 2002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2003 .accessfn = pmreg_access, 2004 .writefn = pmovsr_write, 2005 .raw_writefn = raw_write }, 2006 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2007 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2008 .access = PL0_RW, .accessfn = pmreg_access, 2009 .type = ARM_CP_ALIAS | ARM_CP_IO, 2010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2011 .writefn = pmovsr_write, 2012 .raw_writefn = raw_write }, 2013 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2014 .access = PL0_W, .accessfn = pmreg_access_swinc, 2015 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2016 .writefn = pmswinc_write }, 2017 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2019 .access = PL0_W, .accessfn = pmreg_access_swinc, 2020 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2021 .writefn = pmswinc_write }, 2022 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2023 .access = PL0_RW, .type = ARM_CP_ALIAS, 2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2025 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2026 .raw_writefn = raw_write}, 2027 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2028 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2029 .access = PL0_RW, .accessfn = pmreg_access_selr, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2031 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2032 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2033 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2034 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2035 .accessfn = pmreg_access_ccntr }, 2036 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2037 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2038 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2039 .type = ARM_CP_IO, 2040 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2041 .readfn = pmccntr_read, .writefn = pmccntr_write, 2042 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2043 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2044 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2045 .access = PL0_RW, .accessfn = pmreg_access, 2046 .type = ARM_CP_ALIAS | ARM_CP_IO, 2047 .resetvalue = 0, }, 2048 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2050 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2051 .access = PL0_RW, .accessfn = pmreg_access, 2052 .type = ARM_CP_IO, 2053 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2054 .resetvalue = 0, }, 2055 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2056 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2057 .accessfn = pmreg_access, 2058 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2059 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2061 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2062 .accessfn = pmreg_access, 2063 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2064 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2065 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2066 .accessfn = pmreg_access_xevcntr, 2067 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2068 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2070 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2071 .accessfn = pmreg_access_xevcntr, 2072 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2073 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2074 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2076 .resetvalue = 0, 2077 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2078 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2080 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2082 .resetvalue = 0, 2083 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2084 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2085 .access = PL1_RW, .accessfn = access_tpm, 2086 .type = ARM_CP_ALIAS | ARM_CP_IO, 2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2088 .resetvalue = 0, 2089 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2090 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2091 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2092 .access = PL1_RW, .accessfn = access_tpm, 2093 .type = ARM_CP_IO, 2094 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2095 .writefn = pmintenset_write, .raw_writefn = raw_write, 2096 .resetvalue = 0x0 }, 2097 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2098 .access = PL1_RW, .accessfn = access_tpm, 2099 .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2101 .writefn = pmintenclr_write, }, 2102 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2104 .access = PL1_RW, .accessfn = access_tpm, 2105 .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2107 .writefn = pmintenclr_write }, 2108 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2109 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2110 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2111 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2113 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2114 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2115 offsetof(CPUARMState, cp15.csselr_ns) } }, 2116 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2117 * just RAZ for all cores: 2118 */ 2119 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2120 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2122 /* Auxiliary fault status registers: these also are IMPDEF, and we 2123 * choose to RAZ/WI for all cores. 2124 */ 2125 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2126 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2127 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2128 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2131 /* MAIR can just read-as-written because we don't implement caches 2132 * and so don't need to care about memory attributes. 2133 */ 2134 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2135 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2136 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2137 .resetvalue = 0 }, 2138 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2139 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2141 .resetvalue = 0 }, 2142 /* For non-long-descriptor page tables these are PRRR and NMRR; 2143 * regardless they still act as reads-as-written for QEMU. 2144 */ 2145 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2146 * allows them to assign the correct fieldoffset based on the endianness 2147 * handled in the field definitions. 2148 */ 2149 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2150 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2151 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2152 offsetof(CPUARMState, cp15.mair0_ns) }, 2153 .resetfn = arm_cp_reset_ignore }, 2154 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2155 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2156 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2157 offsetof(CPUARMState, cp15.mair1_ns) }, 2158 .resetfn = arm_cp_reset_ignore }, 2159 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2160 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2161 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2162 /* 32 bit ITLB invalidates */ 2163 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2165 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2167 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2169 /* 32 bit DTLB invalidates */ 2170 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2172 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2174 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2176 /* 32 bit TLB invalidates */ 2177 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2179 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2180 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2181 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2183 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2184 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2185 REGINFO_SENTINEL 2186 }; 2187 2188 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2189 /* 32 bit TLB invalidates, Inner Shareable */ 2190 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2192 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2193 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2194 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2195 .type = ARM_CP_NO_RAW, .access = PL1_W, 2196 .writefn = tlbiasid_is_write }, 2197 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2198 .type = ARM_CP_NO_RAW, .access = PL1_W, 2199 .writefn = tlbimvaa_is_write }, 2200 REGINFO_SENTINEL 2201 }; 2202 2203 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2204 /* PMOVSSET is not implemented in v7 before v7ve */ 2205 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsset_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2212 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2213 .access = PL0_RW, .accessfn = pmreg_access, 2214 .type = ARM_CP_ALIAS | ARM_CP_IO, 2215 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2216 .writefn = pmovsset_write, 2217 .raw_writefn = raw_write }, 2218 REGINFO_SENTINEL 2219 }; 2220 2221 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2222 uint64_t value) 2223 { 2224 value &= 1; 2225 env->teecr = value; 2226 } 2227 2228 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2229 bool isread) 2230 { 2231 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2232 return CP_ACCESS_TRAP; 2233 } 2234 return CP_ACCESS_OK; 2235 } 2236 2237 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2238 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2239 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2240 .resetvalue = 0, 2241 .writefn = teecr_write }, 2242 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2243 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2244 .accessfn = teehbr_access, .resetvalue = 0 }, 2245 REGINFO_SENTINEL 2246 }; 2247 2248 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2249 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2250 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2251 .access = PL0_RW, 2252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2253 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2254 .access = PL0_RW, 2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2256 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2257 .resetfn = arm_cp_reset_ignore }, 2258 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2259 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2260 .access = PL0_R|PL1_W, 2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2262 .resetvalue = 0}, 2263 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2264 .access = PL0_R|PL1_W, 2265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2266 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2267 .resetfn = arm_cp_reset_ignore }, 2268 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2269 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2270 .access = PL1_RW, 2271 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2272 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2273 .access = PL1_RW, 2274 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2275 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2276 .resetvalue = 0 }, 2277 REGINFO_SENTINEL 2278 }; 2279 2280 #ifndef CONFIG_USER_ONLY 2281 2282 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2283 bool isread) 2284 { 2285 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2286 * Writable only at the highest implemented exception level. 2287 */ 2288 int el = arm_current_el(env); 2289 2290 switch (el) { 2291 case 0: 2292 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2293 return CP_ACCESS_TRAP; 2294 } 2295 break; 2296 case 1: 2297 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2298 arm_is_secure_below_el3(env)) { 2299 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2300 return CP_ACCESS_TRAP_UNCATEGORIZED; 2301 } 2302 break; 2303 case 2: 2304 case 3: 2305 break; 2306 } 2307 2308 if (!isread && el < arm_highest_el(env)) { 2309 return CP_ACCESS_TRAP_UNCATEGORIZED; 2310 } 2311 2312 return CP_ACCESS_OK; 2313 } 2314 2315 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2316 bool isread) 2317 { 2318 unsigned int cur_el = arm_current_el(env); 2319 bool secure = arm_is_secure(env); 2320 2321 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2322 if (cur_el == 0 && 2323 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2324 return CP_ACCESS_TRAP; 2325 } 2326 2327 if (arm_feature(env, ARM_FEATURE_EL2) && 2328 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2329 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2330 return CP_ACCESS_TRAP_EL2; 2331 } 2332 return CP_ACCESS_OK; 2333 } 2334 2335 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2336 bool isread) 2337 { 2338 unsigned int cur_el = arm_current_el(env); 2339 bool secure = arm_is_secure(env); 2340 2341 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2342 * EL0[PV]TEN is zero. 2343 */ 2344 if (cur_el == 0 && 2345 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2346 return CP_ACCESS_TRAP; 2347 } 2348 2349 if (arm_feature(env, ARM_FEATURE_EL2) && 2350 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2351 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2352 return CP_ACCESS_TRAP_EL2; 2353 } 2354 return CP_ACCESS_OK; 2355 } 2356 2357 static CPAccessResult gt_pct_access(CPUARMState *env, 2358 const ARMCPRegInfo *ri, 2359 bool isread) 2360 { 2361 return gt_counter_access(env, GTIMER_PHYS, isread); 2362 } 2363 2364 static CPAccessResult gt_vct_access(CPUARMState *env, 2365 const ARMCPRegInfo *ri, 2366 bool isread) 2367 { 2368 return gt_counter_access(env, GTIMER_VIRT, isread); 2369 } 2370 2371 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2372 bool isread) 2373 { 2374 return gt_timer_access(env, GTIMER_PHYS, isread); 2375 } 2376 2377 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2378 bool isread) 2379 { 2380 return gt_timer_access(env, GTIMER_VIRT, isread); 2381 } 2382 2383 static CPAccessResult gt_stimer_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 /* The AArch64 register view of the secure physical timer is 2388 * always accessible from EL3, and configurably accessible from 2389 * Secure EL1. 2390 */ 2391 switch (arm_current_el(env)) { 2392 case 1: 2393 if (!arm_is_secure(env)) { 2394 return CP_ACCESS_TRAP; 2395 } 2396 if (!(env->cp15.scr_el3 & SCR_ST)) { 2397 return CP_ACCESS_TRAP_EL3; 2398 } 2399 return CP_ACCESS_OK; 2400 case 0: 2401 case 2: 2402 return CP_ACCESS_TRAP; 2403 case 3: 2404 return CP_ACCESS_OK; 2405 default: 2406 g_assert_not_reached(); 2407 } 2408 } 2409 2410 static uint64_t gt_get_countervalue(CPUARMState *env) 2411 { 2412 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2413 } 2414 2415 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2416 { 2417 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2418 2419 if (gt->ctl & 1) { 2420 /* Timer enabled: calculate and set current ISTATUS, irq, and 2421 * reset timer to when ISTATUS next has to change 2422 */ 2423 uint64_t offset = timeridx == GTIMER_VIRT ? 2424 cpu->env.cp15.cntvoff_el2 : 0; 2425 uint64_t count = gt_get_countervalue(&cpu->env); 2426 /* Note that this must be unsigned 64 bit arithmetic: */ 2427 int istatus = count - offset >= gt->cval; 2428 uint64_t nexttick; 2429 int irqstate; 2430 2431 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2432 2433 irqstate = (istatus && !(gt->ctl & 2)); 2434 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2435 2436 if (istatus) { 2437 /* Next transition is when count rolls back over to zero */ 2438 nexttick = UINT64_MAX; 2439 } else { 2440 /* Next transition is when we hit cval */ 2441 nexttick = gt->cval + offset; 2442 } 2443 /* Note that the desired next expiry time might be beyond the 2444 * signed-64-bit range of a QEMUTimer -- in this case we just 2445 * set the timer for as far in the future as possible. When the 2446 * timer expires we will reset the timer for any remaining period. 2447 */ 2448 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2449 nexttick = INT64_MAX / GTIMER_SCALE; 2450 } 2451 timer_mod(cpu->gt_timer[timeridx], nexttick); 2452 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2453 } else { 2454 /* Timer disabled: ISTATUS and timer output always clear */ 2455 gt->ctl &= ~4; 2456 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2457 timer_del(cpu->gt_timer[timeridx]); 2458 trace_arm_gt_recalc_disabled(timeridx); 2459 } 2460 } 2461 2462 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2463 int timeridx) 2464 { 2465 ARMCPU *cpu = env_archcpu(env); 2466 2467 timer_del(cpu->gt_timer[timeridx]); 2468 } 2469 2470 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2471 { 2472 return gt_get_countervalue(env); 2473 } 2474 2475 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2476 { 2477 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2478 } 2479 2480 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2481 int timeridx, 2482 uint64_t value) 2483 { 2484 trace_arm_gt_cval_write(timeridx, value); 2485 env->cp15.c14_timer[timeridx].cval = value; 2486 gt_recalc_timer(env_archcpu(env), timeridx); 2487 } 2488 2489 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2490 int timeridx) 2491 { 2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2493 2494 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2495 (gt_get_countervalue(env) - offset)); 2496 } 2497 2498 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2499 int timeridx, 2500 uint64_t value) 2501 { 2502 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2503 2504 trace_arm_gt_tval_write(timeridx, value); 2505 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2506 sextract64(value, 0, 32); 2507 gt_recalc_timer(env_archcpu(env), timeridx); 2508 } 2509 2510 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2511 int timeridx, 2512 uint64_t value) 2513 { 2514 ARMCPU *cpu = env_archcpu(env); 2515 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2516 2517 trace_arm_gt_ctl_write(timeridx, value); 2518 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2519 if ((oldval ^ value) & 1) { 2520 /* Enable toggled */ 2521 gt_recalc_timer(cpu, timeridx); 2522 } else if ((oldval ^ value) & 2) { 2523 /* IMASK toggled: don't need to recalculate, 2524 * just set the interrupt line based on ISTATUS 2525 */ 2526 int irqstate = (oldval & 4) && !(value & 2); 2527 2528 trace_arm_gt_imask_toggle(timeridx, irqstate); 2529 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2530 } 2531 } 2532 2533 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2534 { 2535 gt_timer_reset(env, ri, GTIMER_PHYS); 2536 } 2537 2538 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2539 uint64_t value) 2540 { 2541 gt_cval_write(env, ri, GTIMER_PHYS, value); 2542 } 2543 2544 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2545 { 2546 return gt_tval_read(env, ri, GTIMER_PHYS); 2547 } 2548 2549 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2550 uint64_t value) 2551 { 2552 gt_tval_write(env, ri, GTIMER_PHYS, value); 2553 } 2554 2555 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 uint64_t value) 2557 { 2558 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2559 } 2560 2561 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2562 { 2563 gt_timer_reset(env, ri, GTIMER_VIRT); 2564 } 2565 2566 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2567 uint64_t value) 2568 { 2569 gt_cval_write(env, ri, GTIMER_VIRT, value); 2570 } 2571 2572 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2573 { 2574 return gt_tval_read(env, ri, GTIMER_VIRT); 2575 } 2576 2577 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2578 uint64_t value) 2579 { 2580 gt_tval_write(env, ri, GTIMER_VIRT, value); 2581 } 2582 2583 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2584 uint64_t value) 2585 { 2586 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2587 } 2588 2589 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2590 uint64_t value) 2591 { 2592 ARMCPU *cpu = env_archcpu(env); 2593 2594 trace_arm_gt_cntvoff_write(value); 2595 raw_write(env, ri, value); 2596 gt_recalc_timer(cpu, GTIMER_VIRT); 2597 } 2598 2599 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2600 { 2601 gt_timer_reset(env, ri, GTIMER_HYP); 2602 } 2603 2604 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2605 uint64_t value) 2606 { 2607 gt_cval_write(env, ri, GTIMER_HYP, value); 2608 } 2609 2610 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2611 { 2612 return gt_tval_read(env, ri, GTIMER_HYP); 2613 } 2614 2615 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2616 uint64_t value) 2617 { 2618 gt_tval_write(env, ri, GTIMER_HYP, value); 2619 } 2620 2621 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2622 uint64_t value) 2623 { 2624 gt_ctl_write(env, ri, GTIMER_HYP, value); 2625 } 2626 2627 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2628 { 2629 gt_timer_reset(env, ri, GTIMER_SEC); 2630 } 2631 2632 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2633 uint64_t value) 2634 { 2635 gt_cval_write(env, ri, GTIMER_SEC, value); 2636 } 2637 2638 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2639 { 2640 return gt_tval_read(env, ri, GTIMER_SEC); 2641 } 2642 2643 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2644 uint64_t value) 2645 { 2646 gt_tval_write(env, ri, GTIMER_SEC, value); 2647 } 2648 2649 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2650 uint64_t value) 2651 { 2652 gt_ctl_write(env, ri, GTIMER_SEC, value); 2653 } 2654 2655 void arm_gt_ptimer_cb(void *opaque) 2656 { 2657 ARMCPU *cpu = opaque; 2658 2659 gt_recalc_timer(cpu, GTIMER_PHYS); 2660 } 2661 2662 void arm_gt_vtimer_cb(void *opaque) 2663 { 2664 ARMCPU *cpu = opaque; 2665 2666 gt_recalc_timer(cpu, GTIMER_VIRT); 2667 } 2668 2669 void arm_gt_htimer_cb(void *opaque) 2670 { 2671 ARMCPU *cpu = opaque; 2672 2673 gt_recalc_timer(cpu, GTIMER_HYP); 2674 } 2675 2676 void arm_gt_stimer_cb(void *opaque) 2677 { 2678 ARMCPU *cpu = opaque; 2679 2680 gt_recalc_timer(cpu, GTIMER_SEC); 2681 } 2682 2683 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2684 /* Note that CNTFRQ is purely reads-as-written for the benefit 2685 * of software; writing it doesn't actually change the timer frequency. 2686 * Our reset value matches the fixed frequency we implement the timer at. 2687 */ 2688 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2689 .type = ARM_CP_ALIAS, 2690 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2691 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2692 }, 2693 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2694 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2695 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2696 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2697 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2698 }, 2699 /* overall control: mostly access permissions */ 2700 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2701 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2702 .access = PL1_RW, 2703 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2704 .resetvalue = 0, 2705 }, 2706 /* per-timer control */ 2707 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2708 .secure = ARM_CP_SECSTATE_NS, 2709 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2710 .accessfn = gt_ptimer_access, 2711 .fieldoffset = offsetoflow32(CPUARMState, 2712 cp15.c14_timer[GTIMER_PHYS].ctl), 2713 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2714 }, 2715 { .name = "CNTP_CTL_S", 2716 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2717 .secure = ARM_CP_SECSTATE_S, 2718 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2719 .accessfn = gt_ptimer_access, 2720 .fieldoffset = offsetoflow32(CPUARMState, 2721 cp15.c14_timer[GTIMER_SEC].ctl), 2722 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2723 }, 2724 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2725 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2726 .type = ARM_CP_IO, .access = PL0_RW, 2727 .accessfn = gt_ptimer_access, 2728 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2729 .resetvalue = 0, 2730 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2731 }, 2732 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2733 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2734 .accessfn = gt_vtimer_access, 2735 .fieldoffset = offsetoflow32(CPUARMState, 2736 cp15.c14_timer[GTIMER_VIRT].ctl), 2737 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2738 }, 2739 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2740 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2741 .type = ARM_CP_IO, .access = PL0_RW, 2742 .accessfn = gt_vtimer_access, 2743 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2744 .resetvalue = 0, 2745 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2746 }, 2747 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2748 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2749 .secure = ARM_CP_SECSTATE_NS, 2750 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2751 .accessfn = gt_ptimer_access, 2752 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2753 }, 2754 { .name = "CNTP_TVAL_S", 2755 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2756 .secure = ARM_CP_SECSTATE_S, 2757 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2758 .accessfn = gt_ptimer_access, 2759 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2760 }, 2761 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2762 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2763 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2764 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2765 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2766 }, 2767 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2768 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2769 .accessfn = gt_vtimer_access, 2770 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2771 }, 2772 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2773 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2774 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2775 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2776 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2777 }, 2778 /* The counter itself */ 2779 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2781 .accessfn = gt_pct_access, 2782 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2783 }, 2784 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2787 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2788 }, 2789 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2790 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2791 .accessfn = gt_vct_access, 2792 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2793 }, 2794 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2795 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2796 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2797 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2798 }, 2799 /* Comparison value, indicating when the timer goes off */ 2800 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2801 .secure = ARM_CP_SECSTATE_NS, 2802 .access = PL0_RW, 2803 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2804 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2805 .accessfn = gt_ptimer_access, 2806 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2807 }, 2808 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2809 .secure = ARM_CP_SECSTATE_S, 2810 .access = PL0_RW, 2811 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2812 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2813 .accessfn = gt_ptimer_access, 2814 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2815 }, 2816 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2817 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2818 .access = PL0_RW, 2819 .type = ARM_CP_IO, 2820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2821 .resetvalue = 0, .accessfn = gt_ptimer_access, 2822 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2823 }, 2824 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2825 .access = PL0_RW, 2826 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2827 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2828 .accessfn = gt_vtimer_access, 2829 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2830 }, 2831 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2832 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2833 .access = PL0_RW, 2834 .type = ARM_CP_IO, 2835 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2836 .resetvalue = 0, .accessfn = gt_vtimer_access, 2837 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2838 }, 2839 /* Secure timer -- this is actually restricted to only EL3 2840 * and configurably Secure-EL1 via the accessfn. 2841 */ 2842 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2843 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2844 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2845 .accessfn = gt_stimer_access, 2846 .readfn = gt_sec_tval_read, 2847 .writefn = gt_sec_tval_write, 2848 .resetfn = gt_sec_timer_reset, 2849 }, 2850 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2851 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2852 .type = ARM_CP_IO, .access = PL1_RW, 2853 .accessfn = gt_stimer_access, 2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2855 .resetvalue = 0, 2856 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2857 }, 2858 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2859 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2860 .type = ARM_CP_IO, .access = PL1_RW, 2861 .accessfn = gt_stimer_access, 2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2863 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2864 }, 2865 REGINFO_SENTINEL 2866 }; 2867 2868 #else 2869 2870 /* In user-mode most of the generic timer registers are inaccessible 2871 * however modern kernels (4.12+) allow access to cntvct_el0 2872 */ 2873 2874 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2875 { 2876 /* Currently we have no support for QEMUTimer in linux-user so we 2877 * can't call gt_get_countervalue(env), instead we directly 2878 * call the lower level functions. 2879 */ 2880 return cpu_get_clock() / GTIMER_SCALE; 2881 } 2882 2883 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2884 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2885 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2886 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2887 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2888 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2889 }, 2890 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2892 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2893 .readfn = gt_virt_cnt_read, 2894 }, 2895 REGINFO_SENTINEL 2896 }; 2897 2898 #endif 2899 2900 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2901 { 2902 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2903 raw_write(env, ri, value); 2904 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2905 raw_write(env, ri, value & 0xfffff6ff); 2906 } else { 2907 raw_write(env, ri, value & 0xfffff1ff); 2908 } 2909 } 2910 2911 #ifndef CONFIG_USER_ONLY 2912 /* get_phys_addr() isn't present for user-mode-only targets */ 2913 2914 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2915 bool isread) 2916 { 2917 if (ri->opc2 & 4) { 2918 /* The ATS12NSO* operations must trap to EL3 if executed in 2919 * Secure EL1 (which can only happen if EL3 is AArch64). 2920 * They are simply UNDEF if executed from NS EL1. 2921 * They function normally from EL2 or EL3. 2922 */ 2923 if (arm_current_el(env) == 1) { 2924 if (arm_is_secure_below_el3(env)) { 2925 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2926 } 2927 return CP_ACCESS_TRAP_UNCATEGORIZED; 2928 } 2929 } 2930 return CP_ACCESS_OK; 2931 } 2932 2933 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2934 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2935 { 2936 hwaddr phys_addr; 2937 target_ulong page_size; 2938 int prot; 2939 bool ret; 2940 uint64_t par64; 2941 bool format64 = false; 2942 MemTxAttrs attrs = {}; 2943 ARMMMUFaultInfo fi = {}; 2944 ARMCacheAttrs cacheattrs = {}; 2945 2946 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2947 &prot, &page_size, &fi, &cacheattrs); 2948 2949 if (ret) { 2950 /* 2951 * Some kinds of translation fault must cause exceptions rather 2952 * than being reported in the PAR. 2953 */ 2954 int current_el = arm_current_el(env); 2955 int target_el; 2956 uint32_t syn, fsr, fsc; 2957 bool take_exc = false; 2958 2959 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 2960 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { 2961 /* 2962 * Synchronous stage 2 fault on an access made as part of the 2963 * translation table walk for AT S1E0* or AT S1E1* insn 2964 * executed from NS EL1. If this is a synchronous external abort 2965 * and SCR_EL3.EA == 1, then we take a synchronous external abort 2966 * to EL3. Otherwise the fault is taken as an exception to EL2, 2967 * and HPFAR_EL2 holds the faulting IPA. 2968 */ 2969 if (fi.type == ARMFault_SyncExternalOnWalk && 2970 (env->cp15.scr_el3 & SCR_EA)) { 2971 target_el = 3; 2972 } else { 2973 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 2974 target_el = 2; 2975 } 2976 take_exc = true; 2977 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 2978 /* 2979 * Synchronous external aborts during a translation table walk 2980 * are taken as Data Abort exceptions. 2981 */ 2982 if (fi.stage2) { 2983 if (current_el == 3) { 2984 target_el = 3; 2985 } else { 2986 target_el = 2; 2987 } 2988 } else { 2989 target_el = exception_target_el(env); 2990 } 2991 take_exc = true; 2992 } 2993 2994 if (take_exc) { 2995 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 2996 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 2997 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 2998 fsr = arm_fi_to_lfsc(&fi); 2999 fsc = extract32(fsr, 0, 6); 3000 } else { 3001 fsr = arm_fi_to_sfsc(&fi); 3002 fsc = 0x3f; 3003 } 3004 /* 3005 * Report exception with ESR indicating a fault due to a 3006 * translation table walk for a cache maintenance instruction. 3007 */ 3008 syn = syn_data_abort_no_iss(current_el == target_el, 3009 fi.ea, 1, fi.s1ptw, 1, fsc); 3010 env->exception.vaddress = value; 3011 env->exception.fsr = fsr; 3012 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3013 } 3014 } 3015 3016 if (is_a64(env)) { 3017 format64 = true; 3018 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3019 /* 3020 * ATS1Cxx: 3021 * * TTBCR.EAE determines whether the result is returned using the 3022 * 32-bit or the 64-bit PAR format 3023 * * Instructions executed in Hyp mode always use the 64bit format 3024 * 3025 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3026 * * The Non-secure TTBCR.EAE bit is set to 1 3027 * * The implementation includes EL2, and the value of HCR.VM is 1 3028 * 3029 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3030 * 3031 * ATS1Hx always uses the 64bit format. 3032 */ 3033 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3034 3035 if (arm_feature(env, ARM_FEATURE_EL2)) { 3036 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 3037 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3038 } else { 3039 format64 |= arm_current_el(env) == 2; 3040 } 3041 } 3042 } 3043 3044 if (format64) { 3045 /* Create a 64-bit PAR */ 3046 par64 = (1 << 11); /* LPAE bit always set */ 3047 if (!ret) { 3048 par64 |= phys_addr & ~0xfffULL; 3049 if (!attrs.secure) { 3050 par64 |= (1 << 9); /* NS */ 3051 } 3052 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3053 par64 |= cacheattrs.shareability << 7; /* SH */ 3054 } else { 3055 uint32_t fsr = arm_fi_to_lfsc(&fi); 3056 3057 par64 |= 1; /* F */ 3058 par64 |= (fsr & 0x3f) << 1; /* FS */ 3059 if (fi.stage2) { 3060 par64 |= (1 << 9); /* S */ 3061 } 3062 if (fi.s1ptw) { 3063 par64 |= (1 << 8); /* PTW */ 3064 } 3065 } 3066 } else { 3067 /* fsr is a DFSR/IFSR value for the short descriptor 3068 * translation table format (with WnR always clear). 3069 * Convert it to a 32-bit PAR. 3070 */ 3071 if (!ret) { 3072 /* We do not set any attribute bits in the PAR */ 3073 if (page_size == (1 << 24) 3074 && arm_feature(env, ARM_FEATURE_V7)) { 3075 par64 = (phys_addr & 0xff000000) | (1 << 1); 3076 } else { 3077 par64 = phys_addr & 0xfffff000; 3078 } 3079 if (!attrs.secure) { 3080 par64 |= (1 << 9); /* NS */ 3081 } 3082 } else { 3083 uint32_t fsr = arm_fi_to_sfsc(&fi); 3084 3085 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3086 ((fsr & 0xf) << 1) | 1; 3087 } 3088 } 3089 return par64; 3090 } 3091 3092 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3093 { 3094 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3095 uint64_t par64; 3096 ARMMMUIdx mmu_idx; 3097 int el = arm_current_el(env); 3098 bool secure = arm_is_secure_below_el3(env); 3099 3100 switch (ri->opc2 & 6) { 3101 case 0: 3102 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3103 switch (el) { 3104 case 3: 3105 mmu_idx = ARMMMUIdx_S1E3; 3106 break; 3107 case 2: 3108 mmu_idx = ARMMMUIdx_S1NSE1; 3109 break; 3110 case 1: 3111 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3112 break; 3113 default: 3114 g_assert_not_reached(); 3115 } 3116 break; 3117 case 2: 3118 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3119 switch (el) { 3120 case 3: 3121 mmu_idx = ARMMMUIdx_S1SE0; 3122 break; 3123 case 2: 3124 mmu_idx = ARMMMUIdx_S1NSE0; 3125 break; 3126 case 1: 3127 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3128 break; 3129 default: 3130 g_assert_not_reached(); 3131 } 3132 break; 3133 case 4: 3134 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3135 mmu_idx = ARMMMUIdx_S12NSE1; 3136 break; 3137 case 6: 3138 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3139 mmu_idx = ARMMMUIdx_S12NSE0; 3140 break; 3141 default: 3142 g_assert_not_reached(); 3143 } 3144 3145 par64 = do_ats_write(env, value, access_type, mmu_idx); 3146 3147 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3148 } 3149 3150 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3151 uint64_t value) 3152 { 3153 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3154 uint64_t par64; 3155 3156 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3157 3158 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3159 } 3160 3161 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3162 bool isread) 3163 { 3164 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3165 return CP_ACCESS_TRAP; 3166 } 3167 return CP_ACCESS_OK; 3168 } 3169 3170 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3171 uint64_t value) 3172 { 3173 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3174 ARMMMUIdx mmu_idx; 3175 int secure = arm_is_secure_below_el3(env); 3176 3177 switch (ri->opc2 & 6) { 3178 case 0: 3179 switch (ri->opc1) { 3180 case 0: /* AT S1E1R, AT S1E1W */ 3181 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3182 break; 3183 case 4: /* AT S1E2R, AT S1E2W */ 3184 mmu_idx = ARMMMUIdx_S1E2; 3185 break; 3186 case 6: /* AT S1E3R, AT S1E3W */ 3187 mmu_idx = ARMMMUIdx_S1E3; 3188 break; 3189 default: 3190 g_assert_not_reached(); 3191 } 3192 break; 3193 case 2: /* AT S1E0R, AT S1E0W */ 3194 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3195 break; 3196 case 4: /* AT S12E1R, AT S12E1W */ 3197 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3198 break; 3199 case 6: /* AT S12E0R, AT S12E0W */ 3200 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3201 break; 3202 default: 3203 g_assert_not_reached(); 3204 } 3205 3206 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3207 } 3208 #endif 3209 3210 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3211 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3212 .access = PL1_RW, .resetvalue = 0, 3213 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3214 offsetoflow32(CPUARMState, cp15.par_ns) }, 3215 .writefn = par_write }, 3216 #ifndef CONFIG_USER_ONLY 3217 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3218 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3219 .access = PL1_W, .accessfn = ats_access, 3220 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3221 #endif 3222 REGINFO_SENTINEL 3223 }; 3224 3225 /* Return basic MPU access permission bits. */ 3226 static uint32_t simple_mpu_ap_bits(uint32_t val) 3227 { 3228 uint32_t ret; 3229 uint32_t mask; 3230 int i; 3231 ret = 0; 3232 mask = 3; 3233 for (i = 0; i < 16; i += 2) { 3234 ret |= (val >> i) & mask; 3235 mask <<= 2; 3236 } 3237 return ret; 3238 } 3239 3240 /* Pad basic MPU access permission bits to extended format. */ 3241 static uint32_t extended_mpu_ap_bits(uint32_t val) 3242 { 3243 uint32_t ret; 3244 uint32_t mask; 3245 int i; 3246 ret = 0; 3247 mask = 3; 3248 for (i = 0; i < 16; i += 2) { 3249 ret |= (val & mask) << i; 3250 mask <<= 2; 3251 } 3252 return ret; 3253 } 3254 3255 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3256 uint64_t value) 3257 { 3258 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3259 } 3260 3261 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3262 { 3263 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3264 } 3265 3266 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3267 uint64_t value) 3268 { 3269 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3270 } 3271 3272 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3273 { 3274 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3275 } 3276 3277 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3278 { 3279 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3280 3281 if (!u32p) { 3282 return 0; 3283 } 3284 3285 u32p += env->pmsav7.rnr[M_REG_NS]; 3286 return *u32p; 3287 } 3288 3289 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3290 uint64_t value) 3291 { 3292 ARMCPU *cpu = env_archcpu(env); 3293 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3294 3295 if (!u32p) { 3296 return; 3297 } 3298 3299 u32p += env->pmsav7.rnr[M_REG_NS]; 3300 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3301 *u32p = value; 3302 } 3303 3304 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3305 uint64_t value) 3306 { 3307 ARMCPU *cpu = env_archcpu(env); 3308 uint32_t nrgs = cpu->pmsav7_dregion; 3309 3310 if (value >= nrgs) { 3311 qemu_log_mask(LOG_GUEST_ERROR, 3312 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3313 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3314 return; 3315 } 3316 3317 raw_write(env, ri, value); 3318 } 3319 3320 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3321 /* Reset for all these registers is handled in arm_cpu_reset(), 3322 * because the PMSAv7 is also used by M-profile CPUs, which do 3323 * not register cpregs but still need the state to be reset. 3324 */ 3325 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3326 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3327 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3328 .readfn = pmsav7_read, .writefn = pmsav7_write, 3329 .resetfn = arm_cp_reset_ignore }, 3330 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3331 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3332 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3333 .readfn = pmsav7_read, .writefn = pmsav7_write, 3334 .resetfn = arm_cp_reset_ignore }, 3335 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3336 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3337 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3338 .readfn = pmsav7_read, .writefn = pmsav7_write, 3339 .resetfn = arm_cp_reset_ignore }, 3340 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3341 .access = PL1_RW, 3342 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3343 .writefn = pmsav7_rgnr_write, 3344 .resetfn = arm_cp_reset_ignore }, 3345 REGINFO_SENTINEL 3346 }; 3347 3348 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3349 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3350 .access = PL1_RW, .type = ARM_CP_ALIAS, 3351 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3352 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3353 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3354 .access = PL1_RW, .type = ARM_CP_ALIAS, 3355 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3356 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3357 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3358 .access = PL1_RW, 3359 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3360 .resetvalue = 0, }, 3361 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3362 .access = PL1_RW, 3363 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3364 .resetvalue = 0, }, 3365 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3366 .access = PL1_RW, 3367 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3368 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3369 .access = PL1_RW, 3370 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3371 /* Protection region base and size registers */ 3372 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3373 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3374 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3375 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3376 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3377 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3378 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3379 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3380 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3381 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3382 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3383 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3384 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3385 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3386 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3387 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3388 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3389 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3390 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3391 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3392 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3393 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3394 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3395 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3396 REGINFO_SENTINEL 3397 }; 3398 3399 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3400 uint64_t value) 3401 { 3402 TCR *tcr = raw_ptr(env, ri); 3403 int maskshift = extract32(value, 0, 3); 3404 3405 if (!arm_feature(env, ARM_FEATURE_V8)) { 3406 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3407 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3408 * using Long-desciptor translation table format */ 3409 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3410 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3411 /* In an implementation that includes the Security Extensions 3412 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3413 * Short-descriptor translation table format. 3414 */ 3415 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3416 } else { 3417 value &= TTBCR_N; 3418 } 3419 } 3420 3421 /* Update the masks corresponding to the TCR bank being written 3422 * Note that we always calculate mask and base_mask, but 3423 * they are only used for short-descriptor tables (ie if EAE is 0); 3424 * for long-descriptor tables the TCR fields are used differently 3425 * and the mask and base_mask values are meaningless. 3426 */ 3427 tcr->raw_tcr = value; 3428 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3429 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3430 } 3431 3432 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3433 uint64_t value) 3434 { 3435 ARMCPU *cpu = env_archcpu(env); 3436 TCR *tcr = raw_ptr(env, ri); 3437 3438 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3439 /* With LPAE the TTBCR could result in a change of ASID 3440 * via the TTBCR.A1 bit, so do a TLB flush. 3441 */ 3442 tlb_flush(CPU(cpu)); 3443 } 3444 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3445 value = deposit64(tcr->raw_tcr, 0, 32, value); 3446 vmsa_ttbcr_raw_write(env, ri, value); 3447 } 3448 3449 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3450 { 3451 TCR *tcr = raw_ptr(env, ri); 3452 3453 /* Reset both the TCR as well as the masks corresponding to the bank of 3454 * the TCR being reset. 3455 */ 3456 tcr->raw_tcr = 0; 3457 tcr->mask = 0; 3458 tcr->base_mask = 0xffffc000u; 3459 } 3460 3461 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3462 uint64_t value) 3463 { 3464 ARMCPU *cpu = env_archcpu(env); 3465 TCR *tcr = raw_ptr(env, ri); 3466 3467 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3468 tlb_flush(CPU(cpu)); 3469 tcr->raw_tcr = value; 3470 } 3471 3472 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3473 uint64_t value) 3474 { 3475 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3476 if (cpreg_field_is_64bit(ri) && 3477 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3478 ARMCPU *cpu = env_archcpu(env); 3479 tlb_flush(CPU(cpu)); 3480 } 3481 raw_write(env, ri, value); 3482 } 3483 3484 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3485 uint64_t value) 3486 { 3487 ARMCPU *cpu = env_archcpu(env); 3488 CPUState *cs = CPU(cpu); 3489 3490 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3491 if (raw_read(env, ri) != value) { 3492 tlb_flush_by_mmuidx(cs, 3493 ARMMMUIdxBit_S12NSE1 | 3494 ARMMMUIdxBit_S12NSE0 | 3495 ARMMMUIdxBit_S2NS); 3496 raw_write(env, ri, value); 3497 } 3498 } 3499 3500 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3501 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3502 .access = PL1_RW, .type = ARM_CP_ALIAS, 3503 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3504 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3505 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3506 .access = PL1_RW, .resetvalue = 0, 3507 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3508 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3509 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3510 .access = PL1_RW, .resetvalue = 0, 3511 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3512 offsetof(CPUARMState, cp15.dfar_ns) } }, 3513 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3515 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3516 .resetvalue = 0, }, 3517 REGINFO_SENTINEL 3518 }; 3519 3520 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3521 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3522 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3523 .access = PL1_RW, 3524 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3525 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3526 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3527 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3528 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3529 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3530 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3531 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3532 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3533 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3534 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3535 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3536 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3537 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3538 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3539 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3540 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3541 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3542 .raw_writefn = vmsa_ttbcr_raw_write, 3543 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3544 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3545 REGINFO_SENTINEL 3546 }; 3547 3548 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3549 * qemu tlbs nor adjusting cached masks. 3550 */ 3551 static const ARMCPRegInfo ttbcr2_reginfo = { 3552 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3553 .access = PL1_RW, .type = ARM_CP_ALIAS, 3554 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3555 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3556 }; 3557 3558 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3559 uint64_t value) 3560 { 3561 env->cp15.c15_ticonfig = value & 0xe7; 3562 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3563 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3564 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3565 } 3566 3567 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3568 uint64_t value) 3569 { 3570 env->cp15.c15_threadid = value & 0xffff; 3571 } 3572 3573 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3574 uint64_t value) 3575 { 3576 /* Wait-for-interrupt (deprecated) */ 3577 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3578 } 3579 3580 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 /* On OMAP there are registers indicating the max/min index of dcache lines 3584 * containing a dirty line; cache flush operations have to reset these. 3585 */ 3586 env->cp15.c15_i_max = 0x000; 3587 env->cp15.c15_i_min = 0xff0; 3588 } 3589 3590 static const ARMCPRegInfo omap_cp_reginfo[] = { 3591 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3592 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3593 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3594 .resetvalue = 0, }, 3595 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3596 .access = PL1_RW, .type = ARM_CP_NOP }, 3597 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3598 .access = PL1_RW, 3599 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3600 .writefn = omap_ticonfig_write }, 3601 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3602 .access = PL1_RW, 3603 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3604 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3605 .access = PL1_RW, .resetvalue = 0xff0, 3606 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3607 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3608 .access = PL1_RW, 3609 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3610 .writefn = omap_threadid_write }, 3611 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3612 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3613 .type = ARM_CP_NO_RAW, 3614 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3615 /* TODO: Peripheral port remap register: 3616 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3617 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3618 * when MMU is off. 3619 */ 3620 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3621 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3622 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3623 .writefn = omap_cachemaint_write }, 3624 { .name = "C9", .cp = 15, .crn = 9, 3625 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3626 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3627 REGINFO_SENTINEL 3628 }; 3629 3630 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3631 uint64_t value) 3632 { 3633 env->cp15.c15_cpar = value & 0x3fff; 3634 } 3635 3636 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3637 { .name = "XSCALE_CPAR", 3638 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3640 .writefn = xscale_cpar_write, }, 3641 { .name = "XSCALE_AUXCR", 3642 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3644 .resetvalue = 0, }, 3645 /* XScale specific cache-lockdown: since we have no cache we NOP these 3646 * and hope the guest does not really rely on cache behaviour. 3647 */ 3648 { .name = "XSCALE_LOCK_ICACHE_LINE", 3649 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3650 .access = PL1_W, .type = ARM_CP_NOP }, 3651 { .name = "XSCALE_UNLOCK_ICACHE", 3652 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3653 .access = PL1_W, .type = ARM_CP_NOP }, 3654 { .name = "XSCALE_DCACHE_LOCK", 3655 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3656 .access = PL1_RW, .type = ARM_CP_NOP }, 3657 { .name = "XSCALE_UNLOCK_DCACHE", 3658 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3659 .access = PL1_W, .type = ARM_CP_NOP }, 3660 REGINFO_SENTINEL 3661 }; 3662 3663 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3664 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3665 * implementation of this implementation-defined space. 3666 * Ideally this should eventually disappear in favour of actually 3667 * implementing the correct behaviour for all cores. 3668 */ 3669 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3670 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3671 .access = PL1_RW, 3672 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3673 .resetvalue = 0 }, 3674 REGINFO_SENTINEL 3675 }; 3676 3677 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3678 /* Cache status: RAZ because we have no cache so it's always clean */ 3679 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3680 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3681 .resetvalue = 0 }, 3682 REGINFO_SENTINEL 3683 }; 3684 3685 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3686 /* We never have a a block transfer operation in progress */ 3687 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3688 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3689 .resetvalue = 0 }, 3690 /* The cache ops themselves: these all NOP for QEMU */ 3691 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3692 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3693 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3694 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3695 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3696 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3697 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3698 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3699 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3700 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3701 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3702 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3703 REGINFO_SENTINEL 3704 }; 3705 3706 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3707 /* The cache test-and-clean instructions always return (1 << 30) 3708 * to indicate that there are no dirty cache lines. 3709 */ 3710 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3711 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3712 .resetvalue = (1 << 30) }, 3713 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3714 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3715 .resetvalue = (1 << 30) }, 3716 REGINFO_SENTINEL 3717 }; 3718 3719 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3720 /* Ignore ReadBuffer accesses */ 3721 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3722 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3723 .access = PL1_RW, .resetvalue = 0, 3724 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3725 REGINFO_SENTINEL 3726 }; 3727 3728 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 ARMCPU *cpu = env_archcpu(env); 3731 unsigned int cur_el = arm_current_el(env); 3732 bool secure = arm_is_secure(env); 3733 3734 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3735 return env->cp15.vpidr_el2; 3736 } 3737 return raw_read(env, ri); 3738 } 3739 3740 static uint64_t mpidr_read_val(CPUARMState *env) 3741 { 3742 ARMCPU *cpu = env_archcpu(env); 3743 uint64_t mpidr = cpu->mp_affinity; 3744 3745 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3746 mpidr |= (1U << 31); 3747 /* Cores which are uniprocessor (non-coherent) 3748 * but still implement the MP extensions set 3749 * bit 30. (For instance, Cortex-R5). 3750 */ 3751 if (cpu->mp_is_up) { 3752 mpidr |= (1u << 30); 3753 } 3754 } 3755 return mpidr; 3756 } 3757 3758 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3759 { 3760 unsigned int cur_el = arm_current_el(env); 3761 bool secure = arm_is_secure(env); 3762 3763 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3764 return env->cp15.vmpidr_el2; 3765 } 3766 return mpidr_read_val(env); 3767 } 3768 3769 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3770 /* NOP AMAIR0/1 */ 3771 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3772 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3773 .access = PL1_RW, .type = ARM_CP_CONST, 3774 .resetvalue = 0 }, 3775 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3776 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3777 .access = PL1_RW, .type = ARM_CP_CONST, 3778 .resetvalue = 0 }, 3779 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3780 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3781 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3782 offsetof(CPUARMState, cp15.par_ns)} }, 3783 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3784 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3785 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3786 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3787 .writefn = vmsa_ttbr_write, }, 3788 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3789 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3791 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3792 .writefn = vmsa_ttbr_write, }, 3793 REGINFO_SENTINEL 3794 }; 3795 3796 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3797 { 3798 return vfp_get_fpcr(env); 3799 } 3800 3801 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3802 uint64_t value) 3803 { 3804 vfp_set_fpcr(env, value); 3805 } 3806 3807 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3808 { 3809 return vfp_get_fpsr(env); 3810 } 3811 3812 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3813 uint64_t value) 3814 { 3815 vfp_set_fpsr(env, value); 3816 } 3817 3818 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3819 bool isread) 3820 { 3821 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3822 return CP_ACCESS_TRAP; 3823 } 3824 return CP_ACCESS_OK; 3825 } 3826 3827 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3828 uint64_t value) 3829 { 3830 env->daif = value & PSTATE_DAIF; 3831 } 3832 3833 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3834 const ARMCPRegInfo *ri, 3835 bool isread) 3836 { 3837 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3838 * SCTLR_EL1.UCI is set. 3839 */ 3840 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3841 return CP_ACCESS_TRAP; 3842 } 3843 return CP_ACCESS_OK; 3844 } 3845 3846 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3847 * Page D4-1736 (DDI0487A.b) 3848 */ 3849 3850 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3851 uint64_t value) 3852 { 3853 CPUState *cs = env_cpu(env); 3854 bool sec = arm_is_secure_below_el3(env); 3855 3856 if (sec) { 3857 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3858 ARMMMUIdxBit_S1SE1 | 3859 ARMMMUIdxBit_S1SE0); 3860 } else { 3861 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3862 ARMMMUIdxBit_S12NSE1 | 3863 ARMMMUIdxBit_S12NSE0); 3864 } 3865 } 3866 3867 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3868 uint64_t value) 3869 { 3870 CPUState *cs = env_cpu(env); 3871 3872 if (tlb_force_broadcast(env)) { 3873 tlbi_aa64_vmalle1is_write(env, NULL, value); 3874 return; 3875 } 3876 3877 if (arm_is_secure_below_el3(env)) { 3878 tlb_flush_by_mmuidx(cs, 3879 ARMMMUIdxBit_S1SE1 | 3880 ARMMMUIdxBit_S1SE0); 3881 } else { 3882 tlb_flush_by_mmuidx(cs, 3883 ARMMMUIdxBit_S12NSE1 | 3884 ARMMMUIdxBit_S12NSE0); 3885 } 3886 } 3887 3888 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3889 uint64_t value) 3890 { 3891 /* Note that the 'ALL' scope must invalidate both stage 1 and 3892 * stage 2 translations, whereas most other scopes only invalidate 3893 * stage 1 translations. 3894 */ 3895 ARMCPU *cpu = env_archcpu(env); 3896 CPUState *cs = CPU(cpu); 3897 3898 if (arm_is_secure_below_el3(env)) { 3899 tlb_flush_by_mmuidx(cs, 3900 ARMMMUIdxBit_S1SE1 | 3901 ARMMMUIdxBit_S1SE0); 3902 } else { 3903 if (arm_feature(env, ARM_FEATURE_EL2)) { 3904 tlb_flush_by_mmuidx(cs, 3905 ARMMMUIdxBit_S12NSE1 | 3906 ARMMMUIdxBit_S12NSE0 | 3907 ARMMMUIdxBit_S2NS); 3908 } else { 3909 tlb_flush_by_mmuidx(cs, 3910 ARMMMUIdxBit_S12NSE1 | 3911 ARMMMUIdxBit_S12NSE0); 3912 } 3913 } 3914 } 3915 3916 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3917 uint64_t value) 3918 { 3919 ARMCPU *cpu = env_archcpu(env); 3920 CPUState *cs = CPU(cpu); 3921 3922 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3923 } 3924 3925 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3926 uint64_t value) 3927 { 3928 ARMCPU *cpu = env_archcpu(env); 3929 CPUState *cs = CPU(cpu); 3930 3931 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3932 } 3933 3934 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3935 uint64_t value) 3936 { 3937 /* Note that the 'ALL' scope must invalidate both stage 1 and 3938 * stage 2 translations, whereas most other scopes only invalidate 3939 * stage 1 translations. 3940 */ 3941 CPUState *cs = env_cpu(env); 3942 bool sec = arm_is_secure_below_el3(env); 3943 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3944 3945 if (sec) { 3946 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3947 ARMMMUIdxBit_S1SE1 | 3948 ARMMMUIdxBit_S1SE0); 3949 } else if (has_el2) { 3950 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3951 ARMMMUIdxBit_S12NSE1 | 3952 ARMMMUIdxBit_S12NSE0 | 3953 ARMMMUIdxBit_S2NS); 3954 } else { 3955 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3956 ARMMMUIdxBit_S12NSE1 | 3957 ARMMMUIdxBit_S12NSE0); 3958 } 3959 } 3960 3961 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 CPUState *cs = env_cpu(env); 3965 3966 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3967 } 3968 3969 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3970 uint64_t value) 3971 { 3972 CPUState *cs = env_cpu(env); 3973 3974 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3975 } 3976 3977 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 /* Invalidate by VA, EL2 3981 * Currently handles both VAE2 and VALE2, since we don't support 3982 * flush-last-level-only. 3983 */ 3984 ARMCPU *cpu = env_archcpu(env); 3985 CPUState *cs = CPU(cpu); 3986 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3987 3988 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3989 } 3990 3991 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3992 uint64_t value) 3993 { 3994 /* Invalidate by VA, EL3 3995 * Currently handles both VAE3 and VALE3, since we don't support 3996 * flush-last-level-only. 3997 */ 3998 ARMCPU *cpu = env_archcpu(env); 3999 CPUState *cs = CPU(cpu); 4000 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4001 4002 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 4003 } 4004 4005 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4006 uint64_t value) 4007 { 4008 ARMCPU *cpu = env_archcpu(env); 4009 CPUState *cs = CPU(cpu); 4010 bool sec = arm_is_secure_below_el3(env); 4011 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4012 4013 if (sec) { 4014 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4015 ARMMMUIdxBit_S1SE1 | 4016 ARMMMUIdxBit_S1SE0); 4017 } else { 4018 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4019 ARMMMUIdxBit_S12NSE1 | 4020 ARMMMUIdxBit_S12NSE0); 4021 } 4022 } 4023 4024 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4025 uint64_t value) 4026 { 4027 /* Invalidate by VA, EL1&0 (AArch64 version). 4028 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4029 * since we don't support flush-for-specific-ASID-only or 4030 * flush-last-level-only. 4031 */ 4032 ARMCPU *cpu = env_archcpu(env); 4033 CPUState *cs = CPU(cpu); 4034 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4035 4036 if (tlb_force_broadcast(env)) { 4037 tlbi_aa64_vae1is_write(env, NULL, value); 4038 return; 4039 } 4040 4041 if (arm_is_secure_below_el3(env)) { 4042 tlb_flush_page_by_mmuidx(cs, pageaddr, 4043 ARMMMUIdxBit_S1SE1 | 4044 ARMMMUIdxBit_S1SE0); 4045 } else { 4046 tlb_flush_page_by_mmuidx(cs, pageaddr, 4047 ARMMMUIdxBit_S12NSE1 | 4048 ARMMMUIdxBit_S12NSE0); 4049 } 4050 } 4051 4052 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4053 uint64_t value) 4054 { 4055 CPUState *cs = env_cpu(env); 4056 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4057 4058 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4059 ARMMMUIdxBit_S1E2); 4060 } 4061 4062 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4063 uint64_t value) 4064 { 4065 CPUState *cs = env_cpu(env); 4066 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4067 4068 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4069 ARMMMUIdxBit_S1E3); 4070 } 4071 4072 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4073 uint64_t value) 4074 { 4075 /* Invalidate by IPA. This has to invalidate any structures that 4076 * contain only stage 2 translation information, but does not need 4077 * to apply to structures that contain combined stage 1 and stage 2 4078 * translation information. 4079 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4080 */ 4081 ARMCPU *cpu = env_archcpu(env); 4082 CPUState *cs = CPU(cpu); 4083 uint64_t pageaddr; 4084 4085 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4086 return; 4087 } 4088 4089 pageaddr = sextract64(value << 12, 0, 48); 4090 4091 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4092 } 4093 4094 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4095 uint64_t value) 4096 { 4097 CPUState *cs = env_cpu(env); 4098 uint64_t pageaddr; 4099 4100 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4101 return; 4102 } 4103 4104 pageaddr = sextract64(value << 12, 0, 48); 4105 4106 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4107 ARMMMUIdxBit_S2NS); 4108 } 4109 4110 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4111 bool isread) 4112 { 4113 /* We don't implement EL2, so the only control on DC ZVA is the 4114 * bit in the SCTLR which can prohibit access for EL0. 4115 */ 4116 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4117 return CP_ACCESS_TRAP; 4118 } 4119 return CP_ACCESS_OK; 4120 } 4121 4122 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4123 { 4124 ARMCPU *cpu = env_archcpu(env); 4125 int dzp_bit = 1 << 4; 4126 4127 /* DZP indicates whether DC ZVA access is allowed */ 4128 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4129 dzp_bit = 0; 4130 } 4131 return cpu->dcz_blocksize | dzp_bit; 4132 } 4133 4134 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4135 bool isread) 4136 { 4137 if (!(env->pstate & PSTATE_SP)) { 4138 /* Access to SP_EL0 is undefined if it's being used as 4139 * the stack pointer. 4140 */ 4141 return CP_ACCESS_TRAP_UNCATEGORIZED; 4142 } 4143 return CP_ACCESS_OK; 4144 } 4145 4146 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4147 { 4148 return env->pstate & PSTATE_SP; 4149 } 4150 4151 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4152 { 4153 update_spsel(env, val); 4154 } 4155 4156 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4157 uint64_t value) 4158 { 4159 ARMCPU *cpu = env_archcpu(env); 4160 4161 if (raw_read(env, ri) == value) { 4162 /* Skip the TLB flush if nothing actually changed; Linux likes 4163 * to do a lot of pointless SCTLR writes. 4164 */ 4165 return; 4166 } 4167 4168 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4169 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4170 value &= ~SCTLR_M; 4171 } 4172 4173 raw_write(env, ri, value); 4174 /* ??? Lots of these bits are not implemented. */ 4175 /* This may enable/disable the MMU, so do a TLB flush. */ 4176 tlb_flush(CPU(cpu)); 4177 4178 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4179 /* 4180 * Normally we would always end the TB on an SCTLR write; see the 4181 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4182 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4183 * of hflags from the translator, so do it here. 4184 */ 4185 arm_rebuild_hflags(env); 4186 } 4187 } 4188 4189 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4190 bool isread) 4191 { 4192 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4193 return CP_ACCESS_TRAP_FP_EL2; 4194 } 4195 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4196 return CP_ACCESS_TRAP_FP_EL3; 4197 } 4198 return CP_ACCESS_OK; 4199 } 4200 4201 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4202 uint64_t value) 4203 { 4204 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4205 } 4206 4207 static const ARMCPRegInfo v8_cp_reginfo[] = { 4208 /* Minimal set of EL0-visible registers. This will need to be expanded 4209 * significantly for system emulation of AArch64 CPUs. 4210 */ 4211 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4212 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4213 .access = PL0_RW, .type = ARM_CP_NZCV }, 4214 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4215 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4216 .type = ARM_CP_NO_RAW, 4217 .access = PL0_RW, .accessfn = aa64_daif_access, 4218 .fieldoffset = offsetof(CPUARMState, daif), 4219 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4220 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4221 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4222 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4223 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4224 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4225 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4226 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4227 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4228 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4229 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4230 .access = PL0_R, .type = ARM_CP_NO_RAW, 4231 .readfn = aa64_dczid_read }, 4232 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4233 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4234 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4235 #ifndef CONFIG_USER_ONLY 4236 /* Avoid overhead of an access check that always passes in user-mode */ 4237 .accessfn = aa64_zva_access, 4238 #endif 4239 }, 4240 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4241 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4242 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4243 /* Cache ops: all NOPs since we don't emulate caches */ 4244 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4246 .access = PL1_W, .type = ARM_CP_NOP }, 4247 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4249 .access = PL1_W, .type = ARM_CP_NOP }, 4250 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4252 .access = PL0_W, .type = ARM_CP_NOP, 4253 .accessfn = aa64_cacheop_access }, 4254 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4255 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4256 .access = PL1_W, .type = ARM_CP_NOP }, 4257 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4258 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4259 .access = PL1_W, .type = ARM_CP_NOP }, 4260 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4262 .access = PL0_W, .type = ARM_CP_NOP, 4263 .accessfn = aa64_cacheop_access }, 4264 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4265 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4266 .access = PL1_W, .type = ARM_CP_NOP }, 4267 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4268 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4269 .access = PL0_W, .type = ARM_CP_NOP, 4270 .accessfn = aa64_cacheop_access }, 4271 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4272 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4273 .access = PL0_W, .type = ARM_CP_NOP, 4274 .accessfn = aa64_cacheop_access }, 4275 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4276 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4277 .access = PL1_W, .type = ARM_CP_NOP }, 4278 /* TLBI operations */ 4279 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4280 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4281 .access = PL1_W, .type = ARM_CP_NO_RAW, 4282 .writefn = tlbi_aa64_vmalle1is_write }, 4283 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4284 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4285 .access = PL1_W, .type = ARM_CP_NO_RAW, 4286 .writefn = tlbi_aa64_vae1is_write }, 4287 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4288 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4289 .access = PL1_W, .type = ARM_CP_NO_RAW, 4290 .writefn = tlbi_aa64_vmalle1is_write }, 4291 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4292 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4293 .access = PL1_W, .type = ARM_CP_NO_RAW, 4294 .writefn = tlbi_aa64_vae1is_write }, 4295 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4296 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4297 .access = PL1_W, .type = ARM_CP_NO_RAW, 4298 .writefn = tlbi_aa64_vae1is_write }, 4299 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4300 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4301 .access = PL1_W, .type = ARM_CP_NO_RAW, 4302 .writefn = tlbi_aa64_vae1is_write }, 4303 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4304 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4305 .access = PL1_W, .type = ARM_CP_NO_RAW, 4306 .writefn = tlbi_aa64_vmalle1_write }, 4307 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4308 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4309 .access = PL1_W, .type = ARM_CP_NO_RAW, 4310 .writefn = tlbi_aa64_vae1_write }, 4311 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4312 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4313 .access = PL1_W, .type = ARM_CP_NO_RAW, 4314 .writefn = tlbi_aa64_vmalle1_write }, 4315 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4316 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4317 .access = PL1_W, .type = ARM_CP_NO_RAW, 4318 .writefn = tlbi_aa64_vae1_write }, 4319 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4321 .access = PL1_W, .type = ARM_CP_NO_RAW, 4322 .writefn = tlbi_aa64_vae1_write }, 4323 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4324 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4325 .access = PL1_W, .type = ARM_CP_NO_RAW, 4326 .writefn = tlbi_aa64_vae1_write }, 4327 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4328 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4329 .access = PL2_W, .type = ARM_CP_NO_RAW, 4330 .writefn = tlbi_aa64_ipas2e1is_write }, 4331 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4332 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4333 .access = PL2_W, .type = ARM_CP_NO_RAW, 4334 .writefn = tlbi_aa64_ipas2e1is_write }, 4335 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4336 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4337 .access = PL2_W, .type = ARM_CP_NO_RAW, 4338 .writefn = tlbi_aa64_alle1is_write }, 4339 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4340 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4341 .access = PL2_W, .type = ARM_CP_NO_RAW, 4342 .writefn = tlbi_aa64_alle1is_write }, 4343 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4344 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4345 .access = PL2_W, .type = ARM_CP_NO_RAW, 4346 .writefn = tlbi_aa64_ipas2e1_write }, 4347 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4349 .access = PL2_W, .type = ARM_CP_NO_RAW, 4350 .writefn = tlbi_aa64_ipas2e1_write }, 4351 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4352 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4353 .access = PL2_W, .type = ARM_CP_NO_RAW, 4354 .writefn = tlbi_aa64_alle1_write }, 4355 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4356 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4357 .access = PL2_W, .type = ARM_CP_NO_RAW, 4358 .writefn = tlbi_aa64_alle1is_write }, 4359 #ifndef CONFIG_USER_ONLY 4360 /* 64 bit address translation operations */ 4361 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4362 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4363 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4364 .writefn = ats_write64 }, 4365 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4366 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4367 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4368 .writefn = ats_write64 }, 4369 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4370 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4371 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4372 .writefn = ats_write64 }, 4373 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4374 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4375 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4376 .writefn = ats_write64 }, 4377 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4378 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4379 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4380 .writefn = ats_write64 }, 4381 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4382 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4383 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4384 .writefn = ats_write64 }, 4385 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4386 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4387 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4388 .writefn = ats_write64 }, 4389 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4390 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4391 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4392 .writefn = ats_write64 }, 4393 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4394 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4395 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4396 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4397 .writefn = ats_write64 }, 4398 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4399 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4400 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4401 .writefn = ats_write64 }, 4402 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4403 .type = ARM_CP_ALIAS, 4404 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4405 .access = PL1_RW, .resetvalue = 0, 4406 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4407 .writefn = par_write }, 4408 #endif 4409 /* TLB invalidate last level of translation table walk */ 4410 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4412 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4413 .type = ARM_CP_NO_RAW, .access = PL1_W, 4414 .writefn = tlbimvaa_is_write }, 4415 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4417 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4419 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4420 .type = ARM_CP_NO_RAW, .access = PL2_W, 4421 .writefn = tlbimva_hyp_write }, 4422 { .name = "TLBIMVALHIS", 4423 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4424 .type = ARM_CP_NO_RAW, .access = PL2_W, 4425 .writefn = tlbimva_hyp_is_write }, 4426 { .name = "TLBIIPAS2", 4427 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4428 .type = ARM_CP_NO_RAW, .access = PL2_W, 4429 .writefn = tlbiipas2_write }, 4430 { .name = "TLBIIPAS2IS", 4431 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4432 .type = ARM_CP_NO_RAW, .access = PL2_W, 4433 .writefn = tlbiipas2_is_write }, 4434 { .name = "TLBIIPAS2L", 4435 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4436 .type = ARM_CP_NO_RAW, .access = PL2_W, 4437 .writefn = tlbiipas2_write }, 4438 { .name = "TLBIIPAS2LIS", 4439 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4440 .type = ARM_CP_NO_RAW, .access = PL2_W, 4441 .writefn = tlbiipas2_is_write }, 4442 /* 32 bit cache operations */ 4443 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4444 .type = ARM_CP_NOP, .access = PL1_W }, 4445 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4446 .type = ARM_CP_NOP, .access = PL1_W }, 4447 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4448 .type = ARM_CP_NOP, .access = PL1_W }, 4449 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4450 .type = ARM_CP_NOP, .access = PL1_W }, 4451 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4452 .type = ARM_CP_NOP, .access = PL1_W }, 4453 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4454 .type = ARM_CP_NOP, .access = PL1_W }, 4455 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4456 .type = ARM_CP_NOP, .access = PL1_W }, 4457 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4458 .type = ARM_CP_NOP, .access = PL1_W }, 4459 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4460 .type = ARM_CP_NOP, .access = PL1_W }, 4461 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4462 .type = ARM_CP_NOP, .access = PL1_W }, 4463 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4464 .type = ARM_CP_NOP, .access = PL1_W }, 4465 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4466 .type = ARM_CP_NOP, .access = PL1_W }, 4467 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4468 .type = ARM_CP_NOP, .access = PL1_W }, 4469 /* MMU Domain access control / MPU write buffer control */ 4470 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4471 .access = PL1_RW, .resetvalue = 0, 4472 .writefn = dacr_write, .raw_writefn = raw_write, 4473 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4474 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4475 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4476 .type = ARM_CP_ALIAS, 4477 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4478 .access = PL1_RW, 4479 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4480 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4481 .type = ARM_CP_ALIAS, 4482 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4483 .access = PL1_RW, 4484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4485 /* We rely on the access checks not allowing the guest to write to the 4486 * state field when SPSel indicates that it's being used as the stack 4487 * pointer. 4488 */ 4489 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4490 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4491 .access = PL1_RW, .accessfn = sp_el0_access, 4492 .type = ARM_CP_ALIAS, 4493 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4494 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4495 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4496 .access = PL2_RW, .type = ARM_CP_ALIAS, 4497 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4498 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4499 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4500 .type = ARM_CP_NO_RAW, 4501 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4502 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4503 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4504 .type = ARM_CP_ALIAS, 4505 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4506 .access = PL2_RW, .accessfn = fpexc32_access }, 4507 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4508 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4509 .access = PL2_RW, .resetvalue = 0, 4510 .writefn = dacr_write, .raw_writefn = raw_write, 4511 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4512 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4514 .access = PL2_RW, .resetvalue = 0, 4515 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4516 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4517 .type = ARM_CP_ALIAS, 4518 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4519 .access = PL2_RW, 4520 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4521 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4522 .type = ARM_CP_ALIAS, 4523 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4524 .access = PL2_RW, 4525 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4526 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4527 .type = ARM_CP_ALIAS, 4528 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4529 .access = PL2_RW, 4530 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4531 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4532 .type = ARM_CP_ALIAS, 4533 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4534 .access = PL2_RW, 4535 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4536 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4537 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4538 .resetvalue = 0, 4539 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4540 { .name = "SDCR", .type = ARM_CP_ALIAS, 4541 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4542 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4543 .writefn = sdcr_write, 4544 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4545 REGINFO_SENTINEL 4546 }; 4547 4548 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4549 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4550 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4551 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4552 .access = PL2_RW, 4553 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4554 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4555 .type = ARM_CP_NO_RAW, 4556 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4557 .access = PL2_RW, 4558 .type = ARM_CP_CONST, .resetvalue = 0 }, 4559 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4560 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4561 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4562 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4563 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4564 .access = PL2_RW, 4565 .type = ARM_CP_CONST, .resetvalue = 0 }, 4566 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4567 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4568 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4569 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4570 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4571 .access = PL2_RW, .type = ARM_CP_CONST, 4572 .resetvalue = 0 }, 4573 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4574 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4575 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4576 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4577 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4578 .access = PL2_RW, .type = ARM_CP_CONST, 4579 .resetvalue = 0 }, 4580 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4581 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4582 .access = PL2_RW, .type = ARM_CP_CONST, 4583 .resetvalue = 0 }, 4584 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4585 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4586 .access = PL2_RW, .type = ARM_CP_CONST, 4587 .resetvalue = 0 }, 4588 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4589 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4590 .access = PL2_RW, .type = ARM_CP_CONST, 4591 .resetvalue = 0 }, 4592 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4593 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4594 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4595 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4596 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4597 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4598 .type = ARM_CP_CONST, .resetvalue = 0 }, 4599 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4600 .cp = 15, .opc1 = 6, .crm = 2, 4601 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4602 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4603 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4604 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4605 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4606 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4607 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4608 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4609 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4610 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4611 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4612 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4613 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4614 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4615 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4616 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4617 .resetvalue = 0 }, 4618 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4619 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4620 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4621 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4622 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4623 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4624 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4625 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4626 .resetvalue = 0 }, 4627 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4628 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4629 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4630 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4631 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4632 .resetvalue = 0 }, 4633 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4634 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4635 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4636 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4637 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4638 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4639 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4640 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4641 .access = PL2_RW, .accessfn = access_tda, 4642 .type = ARM_CP_CONST, .resetvalue = 0 }, 4643 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4644 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4645 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4646 .type = ARM_CP_CONST, .resetvalue = 0 }, 4647 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4648 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4649 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4650 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4651 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4652 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4653 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4654 .type = ARM_CP_CONST, 4655 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4656 .access = PL2_RW, .resetvalue = 0 }, 4657 REGINFO_SENTINEL 4658 }; 4659 4660 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4661 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4662 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4663 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4664 .access = PL2_RW, 4665 .type = ARM_CP_CONST, .resetvalue = 0 }, 4666 REGINFO_SENTINEL 4667 }; 4668 4669 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4670 { 4671 ARMCPU *cpu = env_archcpu(env); 4672 uint64_t valid_mask = HCR_MASK; 4673 4674 if (arm_feature(env, ARM_FEATURE_EL3)) { 4675 valid_mask &= ~HCR_HCD; 4676 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4677 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4678 * However, if we're using the SMC PSCI conduit then QEMU is 4679 * effectively acting like EL3 firmware and so the guest at 4680 * EL2 should retain the ability to prevent EL1 from being 4681 * able to make SMC calls into the ersatz firmware, so in 4682 * that case HCR.TSC should be read/write. 4683 */ 4684 valid_mask &= ~HCR_TSC; 4685 } 4686 if (cpu_isar_feature(aa64_lor, cpu)) { 4687 valid_mask |= HCR_TLOR; 4688 } 4689 if (cpu_isar_feature(aa64_pauth, cpu)) { 4690 valid_mask |= HCR_API | HCR_APK; 4691 } 4692 4693 /* Clear RES0 bits. */ 4694 value &= valid_mask; 4695 4696 /* These bits change the MMU setup: 4697 * HCR_VM enables stage 2 translation 4698 * HCR_PTW forbids certain page-table setups 4699 * HCR_DC Disables stage1 and enables stage2 translation 4700 */ 4701 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4702 tlb_flush(CPU(cpu)); 4703 } 4704 env->cp15.hcr_el2 = value; 4705 4706 /* 4707 * Updates to VI and VF require us to update the status of 4708 * virtual interrupts, which are the logical OR of these bits 4709 * and the state of the input lines from the GIC. (This requires 4710 * that we have the iothread lock, which is done by marking the 4711 * reginfo structs as ARM_CP_IO.) 4712 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4713 * possible for it to be taken immediately, because VIRQ and 4714 * VFIQ are masked unless running at EL0 or EL1, and HCR 4715 * can only be written at EL2. 4716 */ 4717 g_assert(qemu_mutex_iothread_locked()); 4718 arm_cpu_update_virq(cpu); 4719 arm_cpu_update_vfiq(cpu); 4720 } 4721 4722 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4723 uint64_t value) 4724 { 4725 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4726 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4727 hcr_write(env, NULL, value); 4728 } 4729 4730 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4731 uint64_t value) 4732 { 4733 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4734 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4735 hcr_write(env, NULL, value); 4736 } 4737 4738 /* 4739 * Return the effective value of HCR_EL2. 4740 * Bits that are not included here: 4741 * RW (read from SCR_EL3.RW as needed) 4742 */ 4743 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4744 { 4745 uint64_t ret = env->cp15.hcr_el2; 4746 4747 if (arm_is_secure_below_el3(env)) { 4748 /* 4749 * "This register has no effect if EL2 is not enabled in the 4750 * current Security state". This is ARMv8.4-SecEL2 speak for 4751 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4752 * 4753 * Prior to that, the language was "In an implementation that 4754 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4755 * as if this field is 0 for all purposes other than a direct 4756 * read or write access of HCR_EL2". With lots of enumeration 4757 * on a per-field basis. In current QEMU, this is condition 4758 * is arm_is_secure_below_el3. 4759 * 4760 * Since the v8.4 language applies to the entire register, and 4761 * appears to be backward compatible, use that. 4762 */ 4763 ret = 0; 4764 } else if (ret & HCR_TGE) { 4765 /* These bits are up-to-date as of ARMv8.4. */ 4766 if (ret & HCR_E2H) { 4767 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4768 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4769 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4770 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4771 } else { 4772 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4773 } 4774 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4775 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4776 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4777 HCR_TLOR); 4778 } 4779 4780 return ret; 4781 } 4782 4783 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4784 uint64_t value) 4785 { 4786 /* 4787 * For A-profile AArch32 EL3, if NSACR.CP10 4788 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4789 */ 4790 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4791 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4792 value &= ~(0x3 << 10); 4793 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4794 } 4795 env->cp15.cptr_el[2] = value; 4796 } 4797 4798 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4799 { 4800 /* 4801 * For A-profile AArch32 EL3, if NSACR.CP10 4802 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4803 */ 4804 uint64_t value = env->cp15.cptr_el[2]; 4805 4806 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4807 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4808 value |= 0x3 << 10; 4809 } 4810 return value; 4811 } 4812 4813 static const ARMCPRegInfo el2_cp_reginfo[] = { 4814 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4815 .type = ARM_CP_IO, 4816 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4817 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4818 .writefn = hcr_write }, 4819 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4820 .type = ARM_CP_ALIAS | ARM_CP_IO, 4821 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4822 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4823 .writefn = hcr_writelow }, 4824 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4825 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4826 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4827 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4828 .type = ARM_CP_ALIAS, 4829 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4830 .access = PL2_RW, 4831 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4832 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4833 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4834 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4835 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4836 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4837 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4838 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4839 .type = ARM_CP_ALIAS, 4840 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4841 .access = PL2_RW, 4842 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4843 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4844 .type = ARM_CP_ALIAS, 4845 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4846 .access = PL2_RW, 4847 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4848 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4849 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4850 .access = PL2_RW, .writefn = vbar_write, 4851 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4852 .resetvalue = 0 }, 4853 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4855 .access = PL3_RW, .type = ARM_CP_ALIAS, 4856 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4857 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4858 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4859 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4860 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4861 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4862 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4863 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4864 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4865 .resetvalue = 0 }, 4866 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4867 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4868 .access = PL2_RW, .type = ARM_CP_ALIAS, 4869 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4870 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4871 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4872 .access = PL2_RW, .type = ARM_CP_CONST, 4873 .resetvalue = 0 }, 4874 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4875 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4876 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4877 .access = PL2_RW, .type = ARM_CP_CONST, 4878 .resetvalue = 0 }, 4879 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4880 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4881 .access = PL2_RW, .type = ARM_CP_CONST, 4882 .resetvalue = 0 }, 4883 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4884 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4885 .access = PL2_RW, .type = ARM_CP_CONST, 4886 .resetvalue = 0 }, 4887 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4888 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4889 .access = PL2_RW, 4890 /* no .writefn needed as this can't cause an ASID change; 4891 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4892 */ 4893 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4894 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4895 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4896 .type = ARM_CP_ALIAS, 4897 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4898 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4899 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4901 .access = PL2_RW, 4902 /* no .writefn needed as this can't cause an ASID change; 4903 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4904 */ 4905 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4906 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4907 .cp = 15, .opc1 = 6, .crm = 2, 4908 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4909 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4910 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4911 .writefn = vttbr_write }, 4912 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4914 .access = PL2_RW, .writefn = vttbr_write, 4915 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4916 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4917 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4918 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4919 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4920 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4921 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4922 .access = PL2_RW, .resetvalue = 0, 4923 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4924 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4926 .access = PL2_RW, .resetvalue = 0, 4927 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4928 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4929 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4930 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4931 { .name = "TLBIALLNSNH", 4932 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4933 .type = ARM_CP_NO_RAW, .access = PL2_W, 4934 .writefn = tlbiall_nsnh_write }, 4935 { .name = "TLBIALLNSNHIS", 4936 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4937 .type = ARM_CP_NO_RAW, .access = PL2_W, 4938 .writefn = tlbiall_nsnh_is_write }, 4939 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4940 .type = ARM_CP_NO_RAW, .access = PL2_W, 4941 .writefn = tlbiall_hyp_write }, 4942 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4943 .type = ARM_CP_NO_RAW, .access = PL2_W, 4944 .writefn = tlbiall_hyp_is_write }, 4945 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4946 .type = ARM_CP_NO_RAW, .access = PL2_W, 4947 .writefn = tlbimva_hyp_write }, 4948 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4949 .type = ARM_CP_NO_RAW, .access = PL2_W, 4950 .writefn = tlbimva_hyp_is_write }, 4951 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4953 .type = ARM_CP_NO_RAW, .access = PL2_W, 4954 .writefn = tlbi_aa64_alle2_write }, 4955 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4957 .type = ARM_CP_NO_RAW, .access = PL2_W, 4958 .writefn = tlbi_aa64_vae2_write }, 4959 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4961 .access = PL2_W, .type = ARM_CP_NO_RAW, 4962 .writefn = tlbi_aa64_vae2_write }, 4963 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4965 .access = PL2_W, .type = ARM_CP_NO_RAW, 4966 .writefn = tlbi_aa64_alle2is_write }, 4967 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4969 .type = ARM_CP_NO_RAW, .access = PL2_W, 4970 .writefn = tlbi_aa64_vae2is_write }, 4971 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4973 .access = PL2_W, .type = ARM_CP_NO_RAW, 4974 .writefn = tlbi_aa64_vae2is_write }, 4975 #ifndef CONFIG_USER_ONLY 4976 /* Unlike the other EL2-related AT operations, these must 4977 * UNDEF from EL3 if EL2 is not implemented, which is why we 4978 * define them here rather than with the rest of the AT ops. 4979 */ 4980 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4982 .access = PL2_W, .accessfn = at_s1e2_access, 4983 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4984 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4986 .access = PL2_W, .accessfn = at_s1e2_access, 4987 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4988 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4989 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4990 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4991 * to behave as if SCR.NS was 1. 4992 */ 4993 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4994 .access = PL2_W, 4995 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 4996 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4997 .access = PL2_W, 4998 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 4999 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5000 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5001 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5002 * reset values as IMPDEF. We choose to reset to 3 to comply with 5003 * both ARMv7 and ARMv8. 5004 */ 5005 .access = PL2_RW, .resetvalue = 3, 5006 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5007 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5009 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5010 .writefn = gt_cntvoff_write, 5011 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5012 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5013 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5014 .writefn = gt_cntvoff_write, 5015 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5016 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5018 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5019 .type = ARM_CP_IO, .access = PL2_RW, 5020 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5021 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5022 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5023 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5024 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5025 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5026 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5027 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5028 .resetfn = gt_hyp_timer_reset, 5029 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5030 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5031 .type = ARM_CP_IO, 5032 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5033 .access = PL2_RW, 5034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5035 .resetvalue = 0, 5036 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5037 #endif 5038 /* The only field of MDCR_EL2 that has a defined architectural reset value 5039 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5040 * don't implement any PMU event counters, so using zero as a reset 5041 * value for MDCR_EL2 is okay 5042 */ 5043 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5044 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5045 .access = PL2_RW, .resetvalue = 0, 5046 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5047 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5048 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5049 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5050 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5051 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5052 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5053 .access = PL2_RW, 5054 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5055 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5056 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5057 .access = PL2_RW, 5058 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5059 REGINFO_SENTINEL 5060 }; 5061 5062 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5063 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5064 .type = ARM_CP_ALIAS | ARM_CP_IO, 5065 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5066 .access = PL2_RW, 5067 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5068 .writefn = hcr_writehigh }, 5069 REGINFO_SENTINEL 5070 }; 5071 5072 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5073 bool isread) 5074 { 5075 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5076 * At Secure EL1 it traps to EL3. 5077 */ 5078 if (arm_current_el(env) == 3) { 5079 return CP_ACCESS_OK; 5080 } 5081 if (arm_is_secure_below_el3(env)) { 5082 return CP_ACCESS_TRAP_EL3; 5083 } 5084 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5085 if (isread) { 5086 return CP_ACCESS_OK; 5087 } 5088 return CP_ACCESS_TRAP_UNCATEGORIZED; 5089 } 5090 5091 static const ARMCPRegInfo el3_cp_reginfo[] = { 5092 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5094 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5095 .resetvalue = 0, .writefn = scr_write }, 5096 { .name = "SCR", .type = ARM_CP_ALIAS, 5097 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5098 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5099 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5100 .writefn = scr_write }, 5101 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5103 .access = PL3_RW, .resetvalue = 0, 5104 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5105 { .name = "SDER", 5106 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5107 .access = PL3_RW, .resetvalue = 0, 5108 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5109 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5110 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5111 .writefn = vbar_write, .resetvalue = 0, 5112 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5113 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5114 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5115 .access = PL3_RW, .resetvalue = 0, 5116 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5117 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5118 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5119 .access = PL3_RW, 5120 /* no .writefn needed as this can't cause an ASID change; 5121 * we must provide a .raw_writefn and .resetfn because we handle 5122 * reset and migration for the AArch32 TTBCR(S), which might be 5123 * using mask and base_mask. 5124 */ 5125 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5126 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5127 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5128 .type = ARM_CP_ALIAS, 5129 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5130 .access = PL3_RW, 5131 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5132 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5134 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5135 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5136 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5137 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5138 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5139 .type = ARM_CP_ALIAS, 5140 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5141 .access = PL3_RW, 5142 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5143 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5144 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5145 .access = PL3_RW, .writefn = vbar_write, 5146 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5147 .resetvalue = 0 }, 5148 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5149 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5150 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5151 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5152 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5153 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5154 .access = PL3_RW, .resetvalue = 0, 5155 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5156 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5157 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5158 .access = PL3_RW, .type = ARM_CP_CONST, 5159 .resetvalue = 0 }, 5160 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5161 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5162 .access = PL3_RW, .type = ARM_CP_CONST, 5163 .resetvalue = 0 }, 5164 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5165 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5166 .access = PL3_RW, .type = ARM_CP_CONST, 5167 .resetvalue = 0 }, 5168 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5169 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5170 .access = PL3_W, .type = ARM_CP_NO_RAW, 5171 .writefn = tlbi_aa64_alle3is_write }, 5172 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5173 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5174 .access = PL3_W, .type = ARM_CP_NO_RAW, 5175 .writefn = tlbi_aa64_vae3is_write }, 5176 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5177 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5178 .access = PL3_W, .type = ARM_CP_NO_RAW, 5179 .writefn = tlbi_aa64_vae3is_write }, 5180 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5181 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5182 .access = PL3_W, .type = ARM_CP_NO_RAW, 5183 .writefn = tlbi_aa64_alle3_write }, 5184 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5185 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5186 .access = PL3_W, .type = ARM_CP_NO_RAW, 5187 .writefn = tlbi_aa64_vae3_write }, 5188 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5189 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5190 .access = PL3_W, .type = ARM_CP_NO_RAW, 5191 .writefn = tlbi_aa64_vae3_write }, 5192 REGINFO_SENTINEL 5193 }; 5194 5195 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5196 bool isread) 5197 { 5198 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5199 * but the AArch32 CTR has its own reginfo struct) 5200 */ 5201 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5202 return CP_ACCESS_TRAP; 5203 } 5204 return CP_ACCESS_OK; 5205 } 5206 5207 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5208 uint64_t value) 5209 { 5210 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5211 * read via a bit in OSLSR_EL1. 5212 */ 5213 int oslock; 5214 5215 if (ri->state == ARM_CP_STATE_AA32) { 5216 oslock = (value == 0xC5ACCE55); 5217 } else { 5218 oslock = value & 1; 5219 } 5220 5221 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5222 } 5223 5224 static const ARMCPRegInfo debug_cp_reginfo[] = { 5225 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5226 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5227 * unlike DBGDRAR it is never accessible from EL0. 5228 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5229 * accessor. 5230 */ 5231 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5232 .access = PL0_R, .accessfn = access_tdra, 5233 .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5235 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5236 .access = PL1_R, .accessfn = access_tdra, 5237 .type = ARM_CP_CONST, .resetvalue = 0 }, 5238 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5239 .access = PL0_R, .accessfn = access_tdra, 5240 .type = ARM_CP_CONST, .resetvalue = 0 }, 5241 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5242 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5243 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5244 .access = PL1_RW, .accessfn = access_tda, 5245 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5246 .resetvalue = 0 }, 5247 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5248 * We don't implement the configurable EL0 access. 5249 */ 5250 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5251 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5252 .type = ARM_CP_ALIAS, 5253 .access = PL1_R, .accessfn = access_tda, 5254 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5255 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5256 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5257 .access = PL1_W, .type = ARM_CP_NO_RAW, 5258 .accessfn = access_tdosa, 5259 .writefn = oslar_write }, 5260 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5261 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5262 .access = PL1_R, .resetvalue = 10, 5263 .accessfn = access_tdosa, 5264 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5265 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5266 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5267 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5268 .access = PL1_RW, .accessfn = access_tdosa, 5269 .type = ARM_CP_NOP }, 5270 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5271 * implement vector catch debug events yet. 5272 */ 5273 { .name = "DBGVCR", 5274 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5275 .access = PL1_RW, .accessfn = access_tda, 5276 .type = ARM_CP_NOP }, 5277 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5278 * to save and restore a 32-bit guest's DBGVCR) 5279 */ 5280 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5281 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5282 .access = PL2_RW, .accessfn = access_tda, 5283 .type = ARM_CP_NOP }, 5284 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5285 * Channel but Linux may try to access this register. The 32-bit 5286 * alias is DBGDCCINT. 5287 */ 5288 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5289 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5290 .access = PL1_RW, .accessfn = access_tda, 5291 .type = ARM_CP_NOP }, 5292 REGINFO_SENTINEL 5293 }; 5294 5295 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5296 /* 64 bit access versions of the (dummy) debug registers */ 5297 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5298 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5299 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5300 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5301 REGINFO_SENTINEL 5302 }; 5303 5304 /* Return the exception level to which exceptions should be taken 5305 * via SVEAccessTrap. If an exception should be routed through 5306 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5307 * take care of raising that exception. 5308 * C.f. the ARM pseudocode function CheckSVEEnabled. 5309 */ 5310 int sve_exception_el(CPUARMState *env, int el) 5311 { 5312 #ifndef CONFIG_USER_ONLY 5313 if (el <= 1) { 5314 bool disabled = false; 5315 5316 /* The CPACR.ZEN controls traps to EL1: 5317 * 0, 2 : trap EL0 and EL1 accesses 5318 * 1 : trap only EL0 accesses 5319 * 3 : trap no accesses 5320 */ 5321 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5322 disabled = true; 5323 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5324 disabled = el == 0; 5325 } 5326 if (disabled) { 5327 /* route_to_el2 */ 5328 return (arm_feature(env, ARM_FEATURE_EL2) 5329 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5330 } 5331 5332 /* Check CPACR.FPEN. */ 5333 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5334 disabled = true; 5335 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5336 disabled = el == 0; 5337 } 5338 if (disabled) { 5339 return 0; 5340 } 5341 } 5342 5343 /* CPTR_EL2. Since TZ and TFP are positive, 5344 * they will be zero when EL2 is not present. 5345 */ 5346 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5347 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5348 return 2; 5349 } 5350 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5351 return 0; 5352 } 5353 } 5354 5355 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5356 if (arm_feature(env, ARM_FEATURE_EL3) 5357 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5358 return 3; 5359 } 5360 #endif 5361 return 0; 5362 } 5363 5364 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 5365 { 5366 uint32_t start_vq = (start_len & 0xf) + 1; 5367 5368 return arm_cpu_vq_map_next_smaller(cpu, start_vq + 1) - 1; 5369 } 5370 5371 /* 5372 * Given that SVE is enabled, return the vector length for EL. 5373 */ 5374 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5375 { 5376 ARMCPU *cpu = env_archcpu(env); 5377 uint32_t zcr_len = cpu->sve_max_vq - 1; 5378 5379 if (el <= 1) { 5380 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5381 } 5382 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5383 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5384 } 5385 if (arm_feature(env, ARM_FEATURE_EL3)) { 5386 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5387 } 5388 5389 return sve_zcr_get_valid_len(cpu, zcr_len); 5390 } 5391 5392 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5393 uint64_t value) 5394 { 5395 int cur_el = arm_current_el(env); 5396 int old_len = sve_zcr_len_for_el(env, cur_el); 5397 int new_len; 5398 5399 /* Bits other than [3:0] are RAZ/WI. */ 5400 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 5401 raw_write(env, ri, value & 0xf); 5402 5403 /* 5404 * Because we arrived here, we know both FP and SVE are enabled; 5405 * otherwise we would have trapped access to the ZCR_ELn register. 5406 */ 5407 new_len = sve_zcr_len_for_el(env, cur_el); 5408 if (new_len < old_len) { 5409 aarch64_sve_narrow_vq(env, new_len + 1); 5410 } 5411 } 5412 5413 static const ARMCPRegInfo zcr_el1_reginfo = { 5414 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5415 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5416 .access = PL1_RW, .type = ARM_CP_SVE, 5417 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5418 .writefn = zcr_write, .raw_writefn = raw_write 5419 }; 5420 5421 static const ARMCPRegInfo zcr_el2_reginfo = { 5422 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5423 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5424 .access = PL2_RW, .type = ARM_CP_SVE, 5425 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5426 .writefn = zcr_write, .raw_writefn = raw_write 5427 }; 5428 5429 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5430 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5431 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5432 .access = PL2_RW, .type = ARM_CP_SVE, 5433 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5434 }; 5435 5436 static const ARMCPRegInfo zcr_el3_reginfo = { 5437 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5438 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5439 .access = PL3_RW, .type = ARM_CP_SVE, 5440 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5441 .writefn = zcr_write, .raw_writefn = raw_write 5442 }; 5443 5444 void hw_watchpoint_update(ARMCPU *cpu, int n) 5445 { 5446 CPUARMState *env = &cpu->env; 5447 vaddr len = 0; 5448 vaddr wvr = env->cp15.dbgwvr[n]; 5449 uint64_t wcr = env->cp15.dbgwcr[n]; 5450 int mask; 5451 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5452 5453 if (env->cpu_watchpoint[n]) { 5454 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5455 env->cpu_watchpoint[n] = NULL; 5456 } 5457 5458 if (!extract64(wcr, 0, 1)) { 5459 /* E bit clear : watchpoint disabled */ 5460 return; 5461 } 5462 5463 switch (extract64(wcr, 3, 2)) { 5464 case 0: 5465 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5466 return; 5467 case 1: 5468 flags |= BP_MEM_READ; 5469 break; 5470 case 2: 5471 flags |= BP_MEM_WRITE; 5472 break; 5473 case 3: 5474 flags |= BP_MEM_ACCESS; 5475 break; 5476 } 5477 5478 /* Attempts to use both MASK and BAS fields simultaneously are 5479 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5480 * thus generating a watchpoint for every byte in the masked region. 5481 */ 5482 mask = extract64(wcr, 24, 4); 5483 if (mask == 1 || mask == 2) { 5484 /* Reserved values of MASK; we must act as if the mask value was 5485 * some non-reserved value, or as if the watchpoint were disabled. 5486 * We choose the latter. 5487 */ 5488 return; 5489 } else if (mask) { 5490 /* Watchpoint covers an aligned area up to 2GB in size */ 5491 len = 1ULL << mask; 5492 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5493 * whether the watchpoint fires when the unmasked bits match; we opt 5494 * to generate the exceptions. 5495 */ 5496 wvr &= ~(len - 1); 5497 } else { 5498 /* Watchpoint covers bytes defined by the byte address select bits */ 5499 int bas = extract64(wcr, 5, 8); 5500 int basstart; 5501 5502 if (bas == 0) { 5503 /* This must act as if the watchpoint is disabled */ 5504 return; 5505 } 5506 5507 if (extract64(wvr, 2, 1)) { 5508 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5509 * ignored, and BAS[3:0] define which bytes to watch. 5510 */ 5511 bas &= 0xf; 5512 } 5513 /* The BAS bits are supposed to be programmed to indicate a contiguous 5514 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5515 * we fire for each byte in the word/doubleword addressed by the WVR. 5516 * We choose to ignore any non-zero bits after the first range of 1s. 5517 */ 5518 basstart = ctz32(bas); 5519 len = cto32(bas >> basstart); 5520 wvr += basstart; 5521 } 5522 5523 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5524 &env->cpu_watchpoint[n]); 5525 } 5526 5527 void hw_watchpoint_update_all(ARMCPU *cpu) 5528 { 5529 int i; 5530 CPUARMState *env = &cpu->env; 5531 5532 /* Completely clear out existing QEMU watchpoints and our array, to 5533 * avoid possible stale entries following migration load. 5534 */ 5535 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5536 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5537 5538 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5539 hw_watchpoint_update(cpu, i); 5540 } 5541 } 5542 5543 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5544 uint64_t value) 5545 { 5546 ARMCPU *cpu = env_archcpu(env); 5547 int i = ri->crm; 5548 5549 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5550 * register reads and behaves as if values written are sign extended. 5551 * Bits [1:0] are RES0. 5552 */ 5553 value = sextract64(value, 0, 49) & ~3ULL; 5554 5555 raw_write(env, ri, value); 5556 hw_watchpoint_update(cpu, i); 5557 } 5558 5559 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5560 uint64_t value) 5561 { 5562 ARMCPU *cpu = env_archcpu(env); 5563 int i = ri->crm; 5564 5565 raw_write(env, ri, value); 5566 hw_watchpoint_update(cpu, i); 5567 } 5568 5569 void hw_breakpoint_update(ARMCPU *cpu, int n) 5570 { 5571 CPUARMState *env = &cpu->env; 5572 uint64_t bvr = env->cp15.dbgbvr[n]; 5573 uint64_t bcr = env->cp15.dbgbcr[n]; 5574 vaddr addr; 5575 int bt; 5576 int flags = BP_CPU; 5577 5578 if (env->cpu_breakpoint[n]) { 5579 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5580 env->cpu_breakpoint[n] = NULL; 5581 } 5582 5583 if (!extract64(bcr, 0, 1)) { 5584 /* E bit clear : watchpoint disabled */ 5585 return; 5586 } 5587 5588 bt = extract64(bcr, 20, 4); 5589 5590 switch (bt) { 5591 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5592 case 5: /* linked address mismatch (reserved if AArch64) */ 5593 qemu_log_mask(LOG_UNIMP, 5594 "arm: address mismatch breakpoint types not implemented\n"); 5595 return; 5596 case 0: /* unlinked address match */ 5597 case 1: /* linked address match */ 5598 { 5599 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5600 * we behave as if the register was sign extended. Bits [1:0] are 5601 * RES0. The BAS field is used to allow setting breakpoints on 16 5602 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5603 * a bp will fire if the addresses covered by the bp and the addresses 5604 * covered by the insn overlap but the insn doesn't start at the 5605 * start of the bp address range. We choose to require the insn and 5606 * the bp to have the same address. The constraints on writing to 5607 * BAS enforced in dbgbcr_write mean we have only four cases: 5608 * 0b0000 => no breakpoint 5609 * 0b0011 => breakpoint on addr 5610 * 0b1100 => breakpoint on addr + 2 5611 * 0b1111 => breakpoint on addr 5612 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5613 */ 5614 int bas = extract64(bcr, 5, 4); 5615 addr = sextract64(bvr, 0, 49) & ~3ULL; 5616 if (bas == 0) { 5617 return; 5618 } 5619 if (bas == 0xc) { 5620 addr += 2; 5621 } 5622 break; 5623 } 5624 case 2: /* unlinked context ID match */ 5625 case 8: /* unlinked VMID match (reserved if no EL2) */ 5626 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5627 qemu_log_mask(LOG_UNIMP, 5628 "arm: unlinked context breakpoint types not implemented\n"); 5629 return; 5630 case 9: /* linked VMID match (reserved if no EL2) */ 5631 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5632 case 3: /* linked context ID match */ 5633 default: 5634 /* We must generate no events for Linked context matches (unless 5635 * they are linked to by some other bp/wp, which is handled in 5636 * updates for the linking bp/wp). We choose to also generate no events 5637 * for reserved values. 5638 */ 5639 return; 5640 } 5641 5642 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5643 } 5644 5645 void hw_breakpoint_update_all(ARMCPU *cpu) 5646 { 5647 int i; 5648 CPUARMState *env = &cpu->env; 5649 5650 /* Completely clear out existing QEMU breakpoints and our array, to 5651 * avoid possible stale entries following migration load. 5652 */ 5653 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5654 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5655 5656 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5657 hw_breakpoint_update(cpu, i); 5658 } 5659 } 5660 5661 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5662 uint64_t value) 5663 { 5664 ARMCPU *cpu = env_archcpu(env); 5665 int i = ri->crm; 5666 5667 raw_write(env, ri, value); 5668 hw_breakpoint_update(cpu, i); 5669 } 5670 5671 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5672 uint64_t value) 5673 { 5674 ARMCPU *cpu = env_archcpu(env); 5675 int i = ri->crm; 5676 5677 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5678 * copy of BAS[0]. 5679 */ 5680 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5681 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5682 5683 raw_write(env, ri, value); 5684 hw_breakpoint_update(cpu, i); 5685 } 5686 5687 static void define_debug_regs(ARMCPU *cpu) 5688 { 5689 /* Define v7 and v8 architectural debug registers. 5690 * These are just dummy implementations for now. 5691 */ 5692 int i; 5693 int wrps, brps, ctx_cmps; 5694 ARMCPRegInfo dbgdidr = { 5695 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5696 .access = PL0_R, .accessfn = access_tda, 5697 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5698 }; 5699 5700 /* Note that all these register fields hold "number of Xs minus 1". */ 5701 brps = extract32(cpu->dbgdidr, 24, 4); 5702 wrps = extract32(cpu->dbgdidr, 28, 4); 5703 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5704 5705 assert(ctx_cmps <= brps); 5706 5707 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5708 * of the debug registers such as number of breakpoints; 5709 * check that if they both exist then they agree. 5710 */ 5711 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5712 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5713 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5714 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5715 } 5716 5717 define_one_arm_cp_reg(cpu, &dbgdidr); 5718 define_arm_cp_regs(cpu, debug_cp_reginfo); 5719 5720 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5721 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5722 } 5723 5724 for (i = 0; i < brps + 1; i++) { 5725 ARMCPRegInfo dbgregs[] = { 5726 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5727 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5728 .access = PL1_RW, .accessfn = access_tda, 5729 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5730 .writefn = dbgbvr_write, .raw_writefn = raw_write 5731 }, 5732 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5733 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5734 .access = PL1_RW, .accessfn = access_tda, 5735 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5736 .writefn = dbgbcr_write, .raw_writefn = raw_write 5737 }, 5738 REGINFO_SENTINEL 5739 }; 5740 define_arm_cp_regs(cpu, dbgregs); 5741 } 5742 5743 for (i = 0; i < wrps + 1; i++) { 5744 ARMCPRegInfo dbgregs[] = { 5745 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5746 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5747 .access = PL1_RW, .accessfn = access_tda, 5748 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5749 .writefn = dbgwvr_write, .raw_writefn = raw_write 5750 }, 5751 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5752 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5753 .access = PL1_RW, .accessfn = access_tda, 5754 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5755 .writefn = dbgwcr_write, .raw_writefn = raw_write 5756 }, 5757 REGINFO_SENTINEL 5758 }; 5759 define_arm_cp_regs(cpu, dbgregs); 5760 } 5761 } 5762 5763 /* We don't know until after realize whether there's a GICv3 5764 * attached, and that is what registers the gicv3 sysregs. 5765 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5766 * at runtime. 5767 */ 5768 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5769 { 5770 ARMCPU *cpu = env_archcpu(env); 5771 uint64_t pfr1 = cpu->id_pfr1; 5772 5773 if (env->gicv3state) { 5774 pfr1 |= 1 << 28; 5775 } 5776 return pfr1; 5777 } 5778 5779 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5780 { 5781 ARMCPU *cpu = env_archcpu(env); 5782 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5783 5784 if (env->gicv3state) { 5785 pfr0 |= 1 << 24; 5786 } 5787 return pfr0; 5788 } 5789 5790 /* Shared logic between LORID and the rest of the LOR* registers. 5791 * Secure state has already been delt with. 5792 */ 5793 static CPAccessResult access_lor_ns(CPUARMState *env) 5794 { 5795 int el = arm_current_el(env); 5796 5797 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5798 return CP_ACCESS_TRAP_EL2; 5799 } 5800 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5801 return CP_ACCESS_TRAP_EL3; 5802 } 5803 return CP_ACCESS_OK; 5804 } 5805 5806 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5807 bool isread) 5808 { 5809 if (arm_is_secure_below_el3(env)) { 5810 /* Access ok in secure mode. */ 5811 return CP_ACCESS_OK; 5812 } 5813 return access_lor_ns(env); 5814 } 5815 5816 static CPAccessResult access_lor_other(CPUARMState *env, 5817 const ARMCPRegInfo *ri, bool isread) 5818 { 5819 if (arm_is_secure_below_el3(env)) { 5820 /* Access denied in secure mode. */ 5821 return CP_ACCESS_TRAP; 5822 } 5823 return access_lor_ns(env); 5824 } 5825 5826 #ifdef TARGET_AARCH64 5827 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5828 bool isread) 5829 { 5830 int el = arm_current_el(env); 5831 5832 if (el < 2 && 5833 arm_feature(env, ARM_FEATURE_EL2) && 5834 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5835 return CP_ACCESS_TRAP_EL2; 5836 } 5837 if (el < 3 && 5838 arm_feature(env, ARM_FEATURE_EL3) && 5839 !(env->cp15.scr_el3 & SCR_APK)) { 5840 return CP_ACCESS_TRAP_EL3; 5841 } 5842 return CP_ACCESS_OK; 5843 } 5844 5845 static const ARMCPRegInfo pauth_reginfo[] = { 5846 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5847 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5848 .access = PL1_RW, .accessfn = access_pauth, 5849 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5850 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5851 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5852 .access = PL1_RW, .accessfn = access_pauth, 5853 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5854 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5856 .access = PL1_RW, .accessfn = access_pauth, 5857 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5858 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5860 .access = PL1_RW, .accessfn = access_pauth, 5861 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5862 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5864 .access = PL1_RW, .accessfn = access_pauth, 5865 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5866 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5868 .access = PL1_RW, .accessfn = access_pauth, 5869 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5870 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5872 .access = PL1_RW, .accessfn = access_pauth, 5873 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5874 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5876 .access = PL1_RW, .accessfn = access_pauth, 5877 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5878 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5879 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5880 .access = PL1_RW, .accessfn = access_pauth, 5881 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5882 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5883 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5884 .access = PL1_RW, .accessfn = access_pauth, 5885 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5886 REGINFO_SENTINEL 5887 }; 5888 5889 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5890 { 5891 Error *err = NULL; 5892 uint64_t ret; 5893 5894 /* Success sets NZCV = 0000. */ 5895 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5896 5897 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5898 /* 5899 * ??? Failed, for unknown reasons in the crypto subsystem. 5900 * The best we can do is log the reason and return the 5901 * timed-out indication to the guest. There is no reason 5902 * we know to expect this failure to be transitory, so the 5903 * guest may well hang retrying the operation. 5904 */ 5905 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5906 ri->name, error_get_pretty(err)); 5907 error_free(err); 5908 5909 env->ZF = 0; /* NZCF = 0100 */ 5910 return 0; 5911 } 5912 return ret; 5913 } 5914 5915 /* We do not support re-seeding, so the two registers operate the same. */ 5916 static const ARMCPRegInfo rndr_reginfo[] = { 5917 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5918 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5919 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5920 .access = PL0_R, .readfn = rndr_readfn }, 5921 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5922 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5923 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5924 .access = PL0_R, .readfn = rndr_readfn }, 5925 REGINFO_SENTINEL 5926 }; 5927 #endif 5928 5929 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5930 bool isread) 5931 { 5932 int el = arm_current_el(env); 5933 5934 if (el == 0) { 5935 uint64_t sctlr = arm_sctlr(env, el); 5936 if (!(sctlr & SCTLR_EnRCTX)) { 5937 return CP_ACCESS_TRAP; 5938 } 5939 } else if (el == 1) { 5940 uint64_t hcr = arm_hcr_el2_eff(env); 5941 if (hcr & HCR_NV) { 5942 return CP_ACCESS_TRAP_EL2; 5943 } 5944 } 5945 return CP_ACCESS_OK; 5946 } 5947 5948 static const ARMCPRegInfo predinv_reginfo[] = { 5949 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5950 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5951 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5952 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5953 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5954 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5955 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5956 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5957 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5958 /* 5959 * Note the AArch32 opcodes have a different OPC1. 5960 */ 5961 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5962 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5963 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5964 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5965 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5966 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5967 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5968 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5969 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5970 REGINFO_SENTINEL 5971 }; 5972 5973 void register_cp_regs_for_features(ARMCPU *cpu) 5974 { 5975 /* Register all the coprocessor registers based on feature bits */ 5976 CPUARMState *env = &cpu->env; 5977 if (arm_feature(env, ARM_FEATURE_M)) { 5978 /* M profile has no coprocessor registers */ 5979 return; 5980 } 5981 5982 define_arm_cp_regs(cpu, cp_reginfo); 5983 if (!arm_feature(env, ARM_FEATURE_V8)) { 5984 /* Must go early as it is full of wildcards that may be 5985 * overridden by later definitions. 5986 */ 5987 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5988 } 5989 5990 if (arm_feature(env, ARM_FEATURE_V6)) { 5991 /* The ID registers all have impdef reset values */ 5992 ARMCPRegInfo v6_idregs[] = { 5993 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5995 .access = PL1_R, .type = ARM_CP_CONST, 5996 .resetvalue = cpu->id_pfr0 }, 5997 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5998 * the value of the GIC field until after we define these regs. 5999 */ 6000 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 6001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 6002 .access = PL1_R, .type = ARM_CP_NO_RAW, 6003 .readfn = id_pfr1_read, 6004 .writefn = arm_cp_write_ignore }, 6005 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 6006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 6007 .access = PL1_R, .type = ARM_CP_CONST, 6008 .resetvalue = cpu->id_dfr0 }, 6009 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 6010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 6011 .access = PL1_R, .type = ARM_CP_CONST, 6012 .resetvalue = cpu->id_afr0 }, 6013 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 6014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 6015 .access = PL1_R, .type = ARM_CP_CONST, 6016 .resetvalue = cpu->id_mmfr0 }, 6017 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 6018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 6019 .access = PL1_R, .type = ARM_CP_CONST, 6020 .resetvalue = cpu->id_mmfr1 }, 6021 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 6022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 6023 .access = PL1_R, .type = ARM_CP_CONST, 6024 .resetvalue = cpu->id_mmfr2 }, 6025 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 6026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 6027 .access = PL1_R, .type = ARM_CP_CONST, 6028 .resetvalue = cpu->id_mmfr3 }, 6029 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 6030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6031 .access = PL1_R, .type = ARM_CP_CONST, 6032 .resetvalue = cpu->isar.id_isar0 }, 6033 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 6034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 6035 .access = PL1_R, .type = ARM_CP_CONST, 6036 .resetvalue = cpu->isar.id_isar1 }, 6037 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 6038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6039 .access = PL1_R, .type = ARM_CP_CONST, 6040 .resetvalue = cpu->isar.id_isar2 }, 6041 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 6042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 6043 .access = PL1_R, .type = ARM_CP_CONST, 6044 .resetvalue = cpu->isar.id_isar3 }, 6045 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 6047 .access = PL1_R, .type = ARM_CP_CONST, 6048 .resetvalue = cpu->isar.id_isar4 }, 6049 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 6050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 6051 .access = PL1_R, .type = ARM_CP_CONST, 6052 .resetvalue = cpu->isar.id_isar5 }, 6053 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 6054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 6055 .access = PL1_R, .type = ARM_CP_CONST, 6056 .resetvalue = cpu->id_mmfr4 }, 6057 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 6058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 6059 .access = PL1_R, .type = ARM_CP_CONST, 6060 .resetvalue = cpu->isar.id_isar6 }, 6061 REGINFO_SENTINEL 6062 }; 6063 define_arm_cp_regs(cpu, v6_idregs); 6064 define_arm_cp_regs(cpu, v6_cp_reginfo); 6065 } else { 6066 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 6067 } 6068 if (arm_feature(env, ARM_FEATURE_V6K)) { 6069 define_arm_cp_regs(cpu, v6k_cp_reginfo); 6070 } 6071 if (arm_feature(env, ARM_FEATURE_V7MP) && 6072 !arm_feature(env, ARM_FEATURE_PMSA)) { 6073 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 6074 } 6075 if (arm_feature(env, ARM_FEATURE_V7VE)) { 6076 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 6077 } 6078 if (arm_feature(env, ARM_FEATURE_V7)) { 6079 /* v7 performance monitor control register: same implementor 6080 * field as main ID register, and we implement four counters in 6081 * addition to the cycle count register. 6082 */ 6083 unsigned int i, pmcrn = 4; 6084 ARMCPRegInfo pmcr = { 6085 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6086 .access = PL0_RW, 6087 .type = ARM_CP_IO | ARM_CP_ALIAS, 6088 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6089 .accessfn = pmreg_access, .writefn = pmcr_write, 6090 .raw_writefn = raw_write, 6091 }; 6092 ARMCPRegInfo pmcr64 = { 6093 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6095 .access = PL0_RW, .accessfn = pmreg_access, 6096 .type = ARM_CP_IO, 6097 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6098 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6099 .writefn = pmcr_write, .raw_writefn = raw_write, 6100 }; 6101 define_one_arm_cp_reg(cpu, &pmcr); 6102 define_one_arm_cp_reg(cpu, &pmcr64); 6103 for (i = 0; i < pmcrn; i++) { 6104 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6105 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6106 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6107 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6108 ARMCPRegInfo pmev_regs[] = { 6109 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6110 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6111 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6112 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6113 .accessfn = pmreg_access }, 6114 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6115 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6116 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6117 .type = ARM_CP_IO, 6118 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6119 .raw_readfn = pmevcntr_rawread, 6120 .raw_writefn = pmevcntr_rawwrite }, 6121 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6122 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6123 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6124 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6125 .accessfn = pmreg_access }, 6126 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6127 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6128 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6129 .type = ARM_CP_IO, 6130 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6131 .raw_writefn = pmevtyper_rawwrite }, 6132 REGINFO_SENTINEL 6133 }; 6134 define_arm_cp_regs(cpu, pmev_regs); 6135 g_free(pmevcntr_name); 6136 g_free(pmevcntr_el0_name); 6137 g_free(pmevtyper_name); 6138 g_free(pmevtyper_el0_name); 6139 } 6140 ARMCPRegInfo clidr = { 6141 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6142 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6143 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 6144 }; 6145 define_one_arm_cp_reg(cpu, &clidr); 6146 define_arm_cp_regs(cpu, v7_cp_reginfo); 6147 define_debug_regs(cpu); 6148 } else { 6149 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6150 } 6151 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6152 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6153 ARMCPRegInfo v81_pmu_regs[] = { 6154 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6155 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6156 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6157 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6158 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6159 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6160 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6161 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6162 REGINFO_SENTINEL 6163 }; 6164 define_arm_cp_regs(cpu, v81_pmu_regs); 6165 } 6166 if (arm_feature(env, ARM_FEATURE_V8)) { 6167 /* AArch64 ID registers, which all have impdef reset values. 6168 * Note that within the ID register ranges the unused slots 6169 * must all RAZ, not UNDEF; future architecture versions may 6170 * define new registers here. 6171 */ 6172 ARMCPRegInfo v8_idregs[] = { 6173 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6174 * know the right value for the GIC field until after we 6175 * define these regs. 6176 */ 6177 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6179 .access = PL1_R, .type = ARM_CP_NO_RAW, 6180 .readfn = id_aa64pfr0_read, 6181 .writefn = arm_cp_write_ignore }, 6182 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6184 .access = PL1_R, .type = ARM_CP_CONST, 6185 .resetvalue = cpu->isar.id_aa64pfr1}, 6186 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6188 .access = PL1_R, .type = ARM_CP_CONST, 6189 .resetvalue = 0 }, 6190 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6192 .access = PL1_R, .type = ARM_CP_CONST, 6193 .resetvalue = 0 }, 6194 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6196 .access = PL1_R, .type = ARM_CP_CONST, 6197 /* At present, only SVEver == 0 is defined anyway. */ 6198 .resetvalue = 0 }, 6199 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6201 .access = PL1_R, .type = ARM_CP_CONST, 6202 .resetvalue = 0 }, 6203 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6205 .access = PL1_R, .type = ARM_CP_CONST, 6206 .resetvalue = 0 }, 6207 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6209 .access = PL1_R, .type = ARM_CP_CONST, 6210 .resetvalue = 0 }, 6211 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6213 .access = PL1_R, .type = ARM_CP_CONST, 6214 .resetvalue = cpu->id_aa64dfr0 }, 6215 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6217 .access = PL1_R, .type = ARM_CP_CONST, 6218 .resetvalue = cpu->id_aa64dfr1 }, 6219 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6221 .access = PL1_R, .type = ARM_CP_CONST, 6222 .resetvalue = 0 }, 6223 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6225 .access = PL1_R, .type = ARM_CP_CONST, 6226 .resetvalue = 0 }, 6227 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6229 .access = PL1_R, .type = ARM_CP_CONST, 6230 .resetvalue = cpu->id_aa64afr0 }, 6231 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6233 .access = PL1_R, .type = ARM_CP_CONST, 6234 .resetvalue = cpu->id_aa64afr1 }, 6235 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6237 .access = PL1_R, .type = ARM_CP_CONST, 6238 .resetvalue = 0 }, 6239 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6241 .access = PL1_R, .type = ARM_CP_CONST, 6242 .resetvalue = 0 }, 6243 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6245 .access = PL1_R, .type = ARM_CP_CONST, 6246 .resetvalue = cpu->isar.id_aa64isar0 }, 6247 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6249 .access = PL1_R, .type = ARM_CP_CONST, 6250 .resetvalue = cpu->isar.id_aa64isar1 }, 6251 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6253 .access = PL1_R, .type = ARM_CP_CONST, 6254 .resetvalue = 0 }, 6255 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6257 .access = PL1_R, .type = ARM_CP_CONST, 6258 .resetvalue = 0 }, 6259 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6261 .access = PL1_R, .type = ARM_CP_CONST, 6262 .resetvalue = 0 }, 6263 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6265 .access = PL1_R, .type = ARM_CP_CONST, 6266 .resetvalue = 0 }, 6267 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6269 .access = PL1_R, .type = ARM_CP_CONST, 6270 .resetvalue = 0 }, 6271 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6273 .access = PL1_R, .type = ARM_CP_CONST, 6274 .resetvalue = 0 }, 6275 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6277 .access = PL1_R, .type = ARM_CP_CONST, 6278 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6279 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6281 .access = PL1_R, .type = ARM_CP_CONST, 6282 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6283 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6285 .access = PL1_R, .type = ARM_CP_CONST, 6286 .resetvalue = 0 }, 6287 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6289 .access = PL1_R, .type = ARM_CP_CONST, 6290 .resetvalue = 0 }, 6291 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6293 .access = PL1_R, .type = ARM_CP_CONST, 6294 .resetvalue = 0 }, 6295 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6297 .access = PL1_R, .type = ARM_CP_CONST, 6298 .resetvalue = 0 }, 6299 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6301 .access = PL1_R, .type = ARM_CP_CONST, 6302 .resetvalue = 0 }, 6303 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6305 .access = PL1_R, .type = ARM_CP_CONST, 6306 .resetvalue = 0 }, 6307 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6309 .access = PL1_R, .type = ARM_CP_CONST, 6310 .resetvalue = cpu->isar.mvfr0 }, 6311 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6313 .access = PL1_R, .type = ARM_CP_CONST, 6314 .resetvalue = cpu->isar.mvfr1 }, 6315 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6317 .access = PL1_R, .type = ARM_CP_CONST, 6318 .resetvalue = cpu->isar.mvfr2 }, 6319 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6321 .access = PL1_R, .type = ARM_CP_CONST, 6322 .resetvalue = 0 }, 6323 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6325 .access = PL1_R, .type = ARM_CP_CONST, 6326 .resetvalue = 0 }, 6327 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6329 .access = PL1_R, .type = ARM_CP_CONST, 6330 .resetvalue = 0 }, 6331 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6333 .access = PL1_R, .type = ARM_CP_CONST, 6334 .resetvalue = 0 }, 6335 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6337 .access = PL1_R, .type = ARM_CP_CONST, 6338 .resetvalue = 0 }, 6339 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6340 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6341 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6342 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6343 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6345 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6346 .resetvalue = cpu->pmceid0 }, 6347 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6348 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6349 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6350 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6351 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6352 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6353 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6354 .resetvalue = cpu->pmceid1 }, 6355 REGINFO_SENTINEL 6356 }; 6357 #ifdef CONFIG_USER_ONLY 6358 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6359 { .name = "ID_AA64PFR0_EL1", 6360 .exported_bits = 0x000f000f00ff0000, 6361 .fixed_bits = 0x0000000000000011 }, 6362 { .name = "ID_AA64PFR1_EL1", 6363 .exported_bits = 0x00000000000000f0 }, 6364 { .name = "ID_AA64PFR*_EL1_RESERVED", 6365 .is_glob = true }, 6366 { .name = "ID_AA64ZFR0_EL1" }, 6367 { .name = "ID_AA64MMFR0_EL1", 6368 .fixed_bits = 0x00000000ff000000 }, 6369 { .name = "ID_AA64MMFR1_EL1" }, 6370 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6371 .is_glob = true }, 6372 { .name = "ID_AA64DFR0_EL1", 6373 .fixed_bits = 0x0000000000000006 }, 6374 { .name = "ID_AA64DFR1_EL1" }, 6375 { .name = "ID_AA64DFR*_EL1_RESERVED", 6376 .is_glob = true }, 6377 { .name = "ID_AA64AFR*", 6378 .is_glob = true }, 6379 { .name = "ID_AA64ISAR0_EL1", 6380 .exported_bits = 0x00fffffff0fffff0 }, 6381 { .name = "ID_AA64ISAR1_EL1", 6382 .exported_bits = 0x000000f0ffffffff }, 6383 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6384 .is_glob = true }, 6385 REGUSERINFO_SENTINEL 6386 }; 6387 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6388 #endif 6389 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6390 if (!arm_feature(env, ARM_FEATURE_EL3) && 6391 !arm_feature(env, ARM_FEATURE_EL2)) { 6392 ARMCPRegInfo rvbar = { 6393 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6394 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6395 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6396 }; 6397 define_one_arm_cp_reg(cpu, &rvbar); 6398 } 6399 define_arm_cp_regs(cpu, v8_idregs); 6400 define_arm_cp_regs(cpu, v8_cp_reginfo); 6401 } 6402 if (arm_feature(env, ARM_FEATURE_EL2)) { 6403 uint64_t vmpidr_def = mpidr_read_val(env); 6404 ARMCPRegInfo vpidr_regs[] = { 6405 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6406 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6407 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6408 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6409 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6410 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6411 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6412 .access = PL2_RW, .resetvalue = cpu->midr, 6413 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6414 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6415 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6416 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6417 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6418 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6419 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6420 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6421 .access = PL2_RW, 6422 .resetvalue = vmpidr_def, 6423 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6424 REGINFO_SENTINEL 6425 }; 6426 define_arm_cp_regs(cpu, vpidr_regs); 6427 define_arm_cp_regs(cpu, el2_cp_reginfo); 6428 if (arm_feature(env, ARM_FEATURE_V8)) { 6429 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6430 } 6431 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6432 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6433 ARMCPRegInfo rvbar = { 6434 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6435 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6436 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6437 }; 6438 define_one_arm_cp_reg(cpu, &rvbar); 6439 } 6440 } else { 6441 /* If EL2 is missing but higher ELs are enabled, we need to 6442 * register the no_el2 reginfos. 6443 */ 6444 if (arm_feature(env, ARM_FEATURE_EL3)) { 6445 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6446 * of MIDR_EL1 and MPIDR_EL1. 6447 */ 6448 ARMCPRegInfo vpidr_regs[] = { 6449 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6450 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6451 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6452 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6453 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6454 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6455 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6456 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6457 .type = ARM_CP_NO_RAW, 6458 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6459 REGINFO_SENTINEL 6460 }; 6461 define_arm_cp_regs(cpu, vpidr_regs); 6462 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6463 if (arm_feature(env, ARM_FEATURE_V8)) { 6464 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6465 } 6466 } 6467 } 6468 if (arm_feature(env, ARM_FEATURE_EL3)) { 6469 define_arm_cp_regs(cpu, el3_cp_reginfo); 6470 ARMCPRegInfo el3_regs[] = { 6471 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6472 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6473 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6474 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6475 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6476 .access = PL3_RW, 6477 .raw_writefn = raw_write, .writefn = sctlr_write, 6478 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6479 .resetvalue = cpu->reset_sctlr }, 6480 REGINFO_SENTINEL 6481 }; 6482 6483 define_arm_cp_regs(cpu, el3_regs); 6484 } 6485 /* The behaviour of NSACR is sufficiently various that we don't 6486 * try to describe it in a single reginfo: 6487 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6488 * reads as constant 0xc00 from NS EL1 and NS EL2 6489 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6490 * if v7 without EL3, register doesn't exist 6491 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6492 */ 6493 if (arm_feature(env, ARM_FEATURE_EL3)) { 6494 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6495 ARMCPRegInfo nsacr = { 6496 .name = "NSACR", .type = ARM_CP_CONST, 6497 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6498 .access = PL1_RW, .accessfn = nsacr_access, 6499 .resetvalue = 0xc00 6500 }; 6501 define_one_arm_cp_reg(cpu, &nsacr); 6502 } else { 6503 ARMCPRegInfo nsacr = { 6504 .name = "NSACR", 6505 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6506 .access = PL3_RW | PL1_R, 6507 .resetvalue = 0, 6508 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6509 }; 6510 define_one_arm_cp_reg(cpu, &nsacr); 6511 } 6512 } else { 6513 if (arm_feature(env, ARM_FEATURE_V8)) { 6514 ARMCPRegInfo nsacr = { 6515 .name = "NSACR", .type = ARM_CP_CONST, 6516 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6517 .access = PL1_R, 6518 .resetvalue = 0xc00 6519 }; 6520 define_one_arm_cp_reg(cpu, &nsacr); 6521 } 6522 } 6523 6524 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6525 if (arm_feature(env, ARM_FEATURE_V6)) { 6526 /* PMSAv6 not implemented */ 6527 assert(arm_feature(env, ARM_FEATURE_V7)); 6528 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6529 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6530 } else { 6531 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6532 } 6533 } else { 6534 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6535 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6536 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6537 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6538 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6539 } 6540 } 6541 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6542 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6543 } 6544 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6545 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6546 } 6547 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6548 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6549 } 6550 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6551 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6552 } 6553 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6554 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6555 } 6556 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6557 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6558 } 6559 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6560 define_arm_cp_regs(cpu, omap_cp_reginfo); 6561 } 6562 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6563 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6564 } 6565 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6566 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6567 } 6568 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6569 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6570 } 6571 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6572 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6573 } 6574 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6575 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6576 * be read-only (ie write causes UNDEF exception). 6577 */ 6578 { 6579 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6580 /* Pre-v8 MIDR space. 6581 * Note that the MIDR isn't a simple constant register because 6582 * of the TI925 behaviour where writes to another register can 6583 * cause the MIDR value to change. 6584 * 6585 * Unimplemented registers in the c15 0 0 0 space default to 6586 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6587 * and friends override accordingly. 6588 */ 6589 { .name = "MIDR", 6590 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6591 .access = PL1_R, .resetvalue = cpu->midr, 6592 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6593 .readfn = midr_read, 6594 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6595 .type = ARM_CP_OVERRIDE }, 6596 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6597 { .name = "DUMMY", 6598 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6599 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6600 { .name = "DUMMY", 6601 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6602 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6603 { .name = "DUMMY", 6604 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6605 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6606 { .name = "DUMMY", 6607 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6608 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6609 { .name = "DUMMY", 6610 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6611 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6612 REGINFO_SENTINEL 6613 }; 6614 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6615 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6617 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6618 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6619 .readfn = midr_read }, 6620 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6621 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6622 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6623 .access = PL1_R, .resetvalue = cpu->midr }, 6624 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6625 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6626 .access = PL1_R, .resetvalue = cpu->midr }, 6627 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6629 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6630 REGINFO_SENTINEL 6631 }; 6632 ARMCPRegInfo id_cp_reginfo[] = { 6633 /* These are common to v8 and pre-v8 */ 6634 { .name = "CTR", 6635 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6636 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6637 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6638 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6639 .access = PL0_R, .accessfn = ctr_el0_access, 6640 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6641 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6642 { .name = "TCMTR", 6643 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6644 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6645 REGINFO_SENTINEL 6646 }; 6647 /* TLBTR is specific to VMSA */ 6648 ARMCPRegInfo id_tlbtr_reginfo = { 6649 .name = "TLBTR", 6650 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6651 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6652 }; 6653 /* MPUIR is specific to PMSA V6+ */ 6654 ARMCPRegInfo id_mpuir_reginfo = { 6655 .name = "MPUIR", 6656 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6657 .access = PL1_R, .type = ARM_CP_CONST, 6658 .resetvalue = cpu->pmsav7_dregion << 8 6659 }; 6660 ARMCPRegInfo crn0_wi_reginfo = { 6661 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6662 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6663 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6664 }; 6665 #ifdef CONFIG_USER_ONLY 6666 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6667 { .name = "MIDR_EL1", 6668 .exported_bits = 0x00000000ffffffff }, 6669 { .name = "REVIDR_EL1" }, 6670 REGUSERINFO_SENTINEL 6671 }; 6672 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6673 #endif 6674 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6675 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6676 ARMCPRegInfo *r; 6677 /* Register the blanket "writes ignored" value first to cover the 6678 * whole space. Then update the specific ID registers to allow write 6679 * access, so that they ignore writes rather than causing them to 6680 * UNDEF. 6681 */ 6682 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6683 for (r = id_pre_v8_midr_cp_reginfo; 6684 r->type != ARM_CP_SENTINEL; r++) { 6685 r->access = PL1_RW; 6686 } 6687 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6688 r->access = PL1_RW; 6689 } 6690 id_mpuir_reginfo.access = PL1_RW; 6691 id_tlbtr_reginfo.access = PL1_RW; 6692 } 6693 if (arm_feature(env, ARM_FEATURE_V8)) { 6694 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6695 } else { 6696 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6697 } 6698 define_arm_cp_regs(cpu, id_cp_reginfo); 6699 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6700 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6701 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6702 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6703 } 6704 } 6705 6706 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6707 ARMCPRegInfo mpidr_cp_reginfo[] = { 6708 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6709 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6710 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6711 REGINFO_SENTINEL 6712 }; 6713 #ifdef CONFIG_USER_ONLY 6714 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6715 { .name = "MPIDR_EL1", 6716 .fixed_bits = 0x0000000080000000 }, 6717 REGUSERINFO_SENTINEL 6718 }; 6719 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6720 #endif 6721 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6722 } 6723 6724 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6725 ARMCPRegInfo auxcr_reginfo[] = { 6726 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6727 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6728 .access = PL1_RW, .type = ARM_CP_CONST, 6729 .resetvalue = cpu->reset_auxcr }, 6730 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6731 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6732 .access = PL2_RW, .type = ARM_CP_CONST, 6733 .resetvalue = 0 }, 6734 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6735 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6736 .access = PL3_RW, .type = ARM_CP_CONST, 6737 .resetvalue = 0 }, 6738 REGINFO_SENTINEL 6739 }; 6740 define_arm_cp_regs(cpu, auxcr_reginfo); 6741 if (arm_feature(env, ARM_FEATURE_V8)) { 6742 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6743 ARMCPRegInfo hactlr2_reginfo = { 6744 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6745 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6746 .access = PL2_RW, .type = ARM_CP_CONST, 6747 .resetvalue = 0 6748 }; 6749 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6750 } 6751 } 6752 6753 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6754 /* 6755 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 6756 * There are two flavours: 6757 * (1) older 32-bit only cores have a simple 32-bit CBAR 6758 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 6759 * 32-bit register visible to AArch32 at a different encoding 6760 * to the "flavour 1" register and with the bits rearranged to 6761 * be able to squash a 64-bit address into the 32-bit view. 6762 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 6763 * in future if we support AArch32-only configs of some of the 6764 * AArch64 cores we might need to add a specific feature flag 6765 * to indicate cores with "flavour 2" CBAR. 6766 */ 6767 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6768 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6769 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6770 | extract64(cpu->reset_cbar, 32, 12); 6771 ARMCPRegInfo cbar_reginfo[] = { 6772 { .name = "CBAR", 6773 .type = ARM_CP_CONST, 6774 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 6775 .access = PL1_R, .resetvalue = cbar32 }, 6776 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6777 .type = ARM_CP_CONST, 6778 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6779 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6780 REGINFO_SENTINEL 6781 }; 6782 /* We don't implement a r/w 64 bit CBAR currently */ 6783 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6784 define_arm_cp_regs(cpu, cbar_reginfo); 6785 } else { 6786 ARMCPRegInfo cbar = { 6787 .name = "CBAR", 6788 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6789 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6790 .fieldoffset = offsetof(CPUARMState, 6791 cp15.c15_config_base_address) 6792 }; 6793 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6794 cbar.access = PL1_R; 6795 cbar.fieldoffset = 0; 6796 cbar.type = ARM_CP_CONST; 6797 } 6798 define_one_arm_cp_reg(cpu, &cbar); 6799 } 6800 } 6801 6802 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6803 ARMCPRegInfo vbar_cp_reginfo[] = { 6804 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6805 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6806 .access = PL1_RW, .writefn = vbar_write, 6807 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6808 offsetof(CPUARMState, cp15.vbar_ns) }, 6809 .resetvalue = 0 }, 6810 REGINFO_SENTINEL 6811 }; 6812 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6813 } 6814 6815 /* Generic registers whose values depend on the implementation */ 6816 { 6817 ARMCPRegInfo sctlr = { 6818 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6819 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6820 .access = PL1_RW, 6821 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6822 offsetof(CPUARMState, cp15.sctlr_ns) }, 6823 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6824 .raw_writefn = raw_write, 6825 }; 6826 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6827 /* Normally we would always end the TB on an SCTLR write, but Linux 6828 * arch/arm/mach-pxa/sleep.S expects two instructions following 6829 * an MMU enable to execute from cache. Imitate this behaviour. 6830 */ 6831 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6832 } 6833 define_one_arm_cp_reg(cpu, &sctlr); 6834 } 6835 6836 if (cpu_isar_feature(aa64_lor, cpu)) { 6837 /* 6838 * A trivial implementation of ARMv8.1-LOR leaves all of these 6839 * registers fixed at 0, which indicates that there are zero 6840 * supported Limited Ordering regions. 6841 */ 6842 static const ARMCPRegInfo lor_reginfo[] = { 6843 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6845 .access = PL1_RW, .accessfn = access_lor_other, 6846 .type = ARM_CP_CONST, .resetvalue = 0 }, 6847 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6849 .access = PL1_RW, .accessfn = access_lor_other, 6850 .type = ARM_CP_CONST, .resetvalue = 0 }, 6851 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6853 .access = PL1_RW, .accessfn = access_lor_other, 6854 .type = ARM_CP_CONST, .resetvalue = 0 }, 6855 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6856 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6857 .access = PL1_RW, .accessfn = access_lor_other, 6858 .type = ARM_CP_CONST, .resetvalue = 0 }, 6859 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6860 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6861 .access = PL1_R, .accessfn = access_lorid, 6862 .type = ARM_CP_CONST, .resetvalue = 0 }, 6863 REGINFO_SENTINEL 6864 }; 6865 define_arm_cp_regs(cpu, lor_reginfo); 6866 } 6867 6868 if (cpu_isar_feature(aa64_sve, cpu)) { 6869 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6870 if (arm_feature(env, ARM_FEATURE_EL2)) { 6871 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6872 } else { 6873 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6874 } 6875 if (arm_feature(env, ARM_FEATURE_EL3)) { 6876 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6877 } 6878 } 6879 6880 #ifdef TARGET_AARCH64 6881 if (cpu_isar_feature(aa64_pauth, cpu)) { 6882 define_arm_cp_regs(cpu, pauth_reginfo); 6883 } 6884 if (cpu_isar_feature(aa64_rndr, cpu)) { 6885 define_arm_cp_regs(cpu, rndr_reginfo); 6886 } 6887 #endif 6888 6889 /* 6890 * While all v8.0 cpus support aarch64, QEMU does have configurations 6891 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6892 * which will set ID_ISAR6. 6893 */ 6894 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6895 ? cpu_isar_feature(aa64_predinv, cpu) 6896 : cpu_isar_feature(aa32_predinv, cpu)) { 6897 define_arm_cp_regs(cpu, predinv_reginfo); 6898 } 6899 } 6900 6901 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6902 { 6903 CPUState *cs = CPU(cpu); 6904 CPUARMState *env = &cpu->env; 6905 6906 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6907 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6908 aarch64_fpu_gdb_set_reg, 6909 34, "aarch64-fpu.xml", 0); 6910 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6911 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6912 51, "arm-neon.xml", 0); 6913 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6914 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6915 35, "arm-vfp3.xml", 0); 6916 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6917 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6918 19, "arm-vfp.xml", 0); 6919 } 6920 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6921 arm_gen_dynamic_xml(cs), 6922 "system-registers.xml", 0); 6923 } 6924 6925 /* Sort alphabetically by type name, except for "any". */ 6926 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6927 { 6928 ObjectClass *class_a = (ObjectClass *)a; 6929 ObjectClass *class_b = (ObjectClass *)b; 6930 const char *name_a, *name_b; 6931 6932 name_a = object_class_get_name(class_a); 6933 name_b = object_class_get_name(class_b); 6934 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6935 return 1; 6936 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6937 return -1; 6938 } else { 6939 return strcmp(name_a, name_b); 6940 } 6941 } 6942 6943 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6944 { 6945 ObjectClass *oc = data; 6946 const char *typename; 6947 char *name; 6948 6949 typename = object_class_get_name(oc); 6950 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6951 qemu_printf(" %s\n", name); 6952 g_free(name); 6953 } 6954 6955 void arm_cpu_list(void) 6956 { 6957 GSList *list; 6958 6959 list = object_class_get_list(TYPE_ARM_CPU, false); 6960 list = g_slist_sort(list, arm_cpu_list_compare); 6961 qemu_printf("Available CPUs:\n"); 6962 g_slist_foreach(list, arm_cpu_list_entry, NULL); 6963 g_slist_free(list); 6964 } 6965 6966 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6967 { 6968 ObjectClass *oc = data; 6969 CpuDefinitionInfoList **cpu_list = user_data; 6970 CpuDefinitionInfoList *entry; 6971 CpuDefinitionInfo *info; 6972 const char *typename; 6973 6974 typename = object_class_get_name(oc); 6975 info = g_malloc0(sizeof(*info)); 6976 info->name = g_strndup(typename, 6977 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6978 info->q_typename = g_strdup(typename); 6979 6980 entry = g_malloc0(sizeof(*entry)); 6981 entry->value = info; 6982 entry->next = *cpu_list; 6983 *cpu_list = entry; 6984 } 6985 6986 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 6987 { 6988 CpuDefinitionInfoList *cpu_list = NULL; 6989 GSList *list; 6990 6991 list = object_class_get_list(TYPE_ARM_CPU, false); 6992 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6993 g_slist_free(list); 6994 6995 return cpu_list; 6996 } 6997 6998 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6999 void *opaque, int state, int secstate, 7000 int crm, int opc1, int opc2, 7001 const char *name) 7002 { 7003 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 7004 * add a single reginfo struct to the hash table. 7005 */ 7006 uint32_t *key = g_new(uint32_t, 1); 7007 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 7008 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 7009 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 7010 7011 r2->name = g_strdup(name); 7012 /* Reset the secure state to the specific incoming state. This is 7013 * necessary as the register may have been defined with both states. 7014 */ 7015 r2->secure = secstate; 7016 7017 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7018 /* Register is banked (using both entries in array). 7019 * Overwriting fieldoffset as the array is only used to define 7020 * banked registers but later only fieldoffset is used. 7021 */ 7022 r2->fieldoffset = r->bank_fieldoffsets[ns]; 7023 } 7024 7025 if (state == ARM_CP_STATE_AA32) { 7026 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7027 /* If the register is banked then we don't need to migrate or 7028 * reset the 32-bit instance in certain cases: 7029 * 7030 * 1) If the register has both 32-bit and 64-bit instances then we 7031 * can count on the 64-bit instance taking care of the 7032 * non-secure bank. 7033 * 2) If ARMv8 is enabled then we can count on a 64-bit version 7034 * taking care of the secure bank. This requires that separate 7035 * 32 and 64-bit definitions are provided. 7036 */ 7037 if ((r->state == ARM_CP_STATE_BOTH && ns) || 7038 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 7039 r2->type |= ARM_CP_ALIAS; 7040 } 7041 } else if ((secstate != r->secure) && !ns) { 7042 /* The register is not banked so we only want to allow migration of 7043 * the non-secure instance. 7044 */ 7045 r2->type |= ARM_CP_ALIAS; 7046 } 7047 7048 if (r->state == ARM_CP_STATE_BOTH) { 7049 /* We assume it is a cp15 register if the .cp field is left unset. 7050 */ 7051 if (r2->cp == 0) { 7052 r2->cp = 15; 7053 } 7054 7055 #ifdef HOST_WORDS_BIGENDIAN 7056 if (r2->fieldoffset) { 7057 r2->fieldoffset += sizeof(uint32_t); 7058 } 7059 #endif 7060 } 7061 } 7062 if (state == ARM_CP_STATE_AA64) { 7063 /* To allow abbreviation of ARMCPRegInfo 7064 * definitions, we treat cp == 0 as equivalent to 7065 * the value for "standard guest-visible sysreg". 7066 * STATE_BOTH definitions are also always "standard 7067 * sysreg" in their AArch64 view (the .cp value may 7068 * be non-zero for the benefit of the AArch32 view). 7069 */ 7070 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 7071 r2->cp = CP_REG_ARM64_SYSREG_CP; 7072 } 7073 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 7074 r2->opc0, opc1, opc2); 7075 } else { 7076 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 7077 } 7078 if (opaque) { 7079 r2->opaque = opaque; 7080 } 7081 /* reginfo passed to helpers is correct for the actual access, 7082 * and is never ARM_CP_STATE_BOTH: 7083 */ 7084 r2->state = state; 7085 /* Make sure reginfo passed to helpers for wildcarded regs 7086 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 7087 */ 7088 r2->crm = crm; 7089 r2->opc1 = opc1; 7090 r2->opc2 = opc2; 7091 /* By convention, for wildcarded registers only the first 7092 * entry is used for migration; the others are marked as 7093 * ALIAS so we don't try to transfer the register 7094 * multiple times. Special registers (ie NOP/WFI) are 7095 * never migratable and not even raw-accessible. 7096 */ 7097 if ((r->type & ARM_CP_SPECIAL)) { 7098 r2->type |= ARM_CP_NO_RAW; 7099 } 7100 if (((r->crm == CP_ANY) && crm != 0) || 7101 ((r->opc1 == CP_ANY) && opc1 != 0) || 7102 ((r->opc2 == CP_ANY) && opc2 != 0)) { 7103 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 7104 } 7105 7106 /* Check that raw accesses are either forbidden or handled. Note that 7107 * we can't assert this earlier because the setup of fieldoffset for 7108 * banked registers has to be done first. 7109 */ 7110 if (!(r2->type & ARM_CP_NO_RAW)) { 7111 assert(!raw_accessors_invalid(r2)); 7112 } 7113 7114 /* Overriding of an existing definition must be explicitly 7115 * requested. 7116 */ 7117 if (!(r->type & ARM_CP_OVERRIDE)) { 7118 ARMCPRegInfo *oldreg; 7119 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7120 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7121 fprintf(stderr, "Register redefined: cp=%d %d bit " 7122 "crn=%d crm=%d opc1=%d opc2=%d, " 7123 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7124 r2->crn, r2->crm, r2->opc1, r2->opc2, 7125 oldreg->name, r2->name); 7126 g_assert_not_reached(); 7127 } 7128 } 7129 g_hash_table_insert(cpu->cp_regs, key, r2); 7130 } 7131 7132 7133 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7134 const ARMCPRegInfo *r, void *opaque) 7135 { 7136 /* Define implementations of coprocessor registers. 7137 * We store these in a hashtable because typically 7138 * there are less than 150 registers in a space which 7139 * is 16*16*16*8*8 = 262144 in size. 7140 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7141 * If a register is defined twice then the second definition is 7142 * used, so this can be used to define some generic registers and 7143 * then override them with implementation specific variations. 7144 * At least one of the original and the second definition should 7145 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7146 * against accidental use. 7147 * 7148 * The state field defines whether the register is to be 7149 * visible in the AArch32 or AArch64 execution state. If the 7150 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7151 * reginfo structure for the AArch32 view, which sees the lower 7152 * 32 bits of the 64 bit register. 7153 * 7154 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7155 * be wildcarded. AArch64 registers are always considered to be 64 7156 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7157 * the register, if any. 7158 */ 7159 int crm, opc1, opc2, state; 7160 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7161 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7162 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7163 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7164 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7165 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7166 /* 64 bit registers have only CRm and Opc1 fields */ 7167 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7168 /* op0 only exists in the AArch64 encodings */ 7169 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7170 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7171 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7172 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7173 * encodes a minimum access level for the register. We roll this 7174 * runtime check into our general permission check code, so check 7175 * here that the reginfo's specified permissions are strict enough 7176 * to encompass the generic architectural permission check. 7177 */ 7178 if (r->state != ARM_CP_STATE_AA32) { 7179 int mask = 0; 7180 switch (r->opc1) { 7181 case 0: 7182 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7183 mask = PL0U_R | PL1_RW; 7184 break; 7185 case 1: case 2: 7186 /* min_EL EL1 */ 7187 mask = PL1_RW; 7188 break; 7189 case 3: 7190 /* min_EL EL0 */ 7191 mask = PL0_RW; 7192 break; 7193 case 4: 7194 /* min_EL EL2 */ 7195 mask = PL2_RW; 7196 break; 7197 case 5: 7198 /* unallocated encoding, so not possible */ 7199 assert(false); 7200 break; 7201 case 6: 7202 /* min_EL EL3 */ 7203 mask = PL3_RW; 7204 break; 7205 case 7: 7206 /* min_EL EL1, secure mode only (we don't check the latter) */ 7207 mask = PL1_RW; 7208 break; 7209 default: 7210 /* broken reginfo with out-of-range opc1 */ 7211 assert(false); 7212 break; 7213 } 7214 /* assert our permissions are not too lax (stricter is fine) */ 7215 assert((r->access & ~mask) == 0); 7216 } 7217 7218 /* Check that the register definition has enough info to handle 7219 * reads and writes if they are permitted. 7220 */ 7221 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7222 if (r->access & PL3_R) { 7223 assert((r->fieldoffset || 7224 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7225 r->readfn); 7226 } 7227 if (r->access & PL3_W) { 7228 assert((r->fieldoffset || 7229 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7230 r->writefn); 7231 } 7232 } 7233 /* Bad type field probably means missing sentinel at end of reg list */ 7234 assert(cptype_valid(r->type)); 7235 for (crm = crmmin; crm <= crmmax; crm++) { 7236 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7237 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7238 for (state = ARM_CP_STATE_AA32; 7239 state <= ARM_CP_STATE_AA64; state++) { 7240 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7241 continue; 7242 } 7243 if (state == ARM_CP_STATE_AA32) { 7244 /* Under AArch32 CP registers can be common 7245 * (same for secure and non-secure world) or banked. 7246 */ 7247 char *name; 7248 7249 switch (r->secure) { 7250 case ARM_CP_SECSTATE_S: 7251 case ARM_CP_SECSTATE_NS: 7252 add_cpreg_to_hashtable(cpu, r, opaque, state, 7253 r->secure, crm, opc1, opc2, 7254 r->name); 7255 break; 7256 default: 7257 name = g_strdup_printf("%s_S", r->name); 7258 add_cpreg_to_hashtable(cpu, r, opaque, state, 7259 ARM_CP_SECSTATE_S, 7260 crm, opc1, opc2, name); 7261 g_free(name); 7262 add_cpreg_to_hashtable(cpu, r, opaque, state, 7263 ARM_CP_SECSTATE_NS, 7264 crm, opc1, opc2, r->name); 7265 break; 7266 } 7267 } else { 7268 /* AArch64 registers get mapped to non-secure instance 7269 * of AArch32 */ 7270 add_cpreg_to_hashtable(cpu, r, opaque, state, 7271 ARM_CP_SECSTATE_NS, 7272 crm, opc1, opc2, r->name); 7273 } 7274 } 7275 } 7276 } 7277 } 7278 } 7279 7280 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7281 const ARMCPRegInfo *regs, void *opaque) 7282 { 7283 /* Define a whole list of registers */ 7284 const ARMCPRegInfo *r; 7285 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7286 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7287 } 7288 } 7289 7290 /* 7291 * Modify ARMCPRegInfo for access from userspace. 7292 * 7293 * This is a data driven modification directed by 7294 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7295 * user-space cannot alter any values and dynamic values pertaining to 7296 * execution state are hidden from user space view anyway. 7297 */ 7298 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7299 { 7300 const ARMCPRegUserSpaceInfo *m; 7301 ARMCPRegInfo *r; 7302 7303 for (m = mods; m->name; m++) { 7304 GPatternSpec *pat = NULL; 7305 if (m->is_glob) { 7306 pat = g_pattern_spec_new(m->name); 7307 } 7308 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7309 if (pat && g_pattern_match_string(pat, r->name)) { 7310 r->type = ARM_CP_CONST; 7311 r->access = PL0U_R; 7312 r->resetvalue = 0; 7313 /* continue */ 7314 } else if (strcmp(r->name, m->name) == 0) { 7315 r->type = ARM_CP_CONST; 7316 r->access = PL0U_R; 7317 r->resetvalue &= m->exported_bits; 7318 r->resetvalue |= m->fixed_bits; 7319 break; 7320 } 7321 } 7322 if (pat) { 7323 g_pattern_spec_free(pat); 7324 } 7325 } 7326 } 7327 7328 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7329 { 7330 return g_hash_table_lookup(cpregs, &encoded_cp); 7331 } 7332 7333 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7334 uint64_t value) 7335 { 7336 /* Helper coprocessor write function for write-ignore registers */ 7337 } 7338 7339 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7340 { 7341 /* Helper coprocessor write function for read-as-zero registers */ 7342 return 0; 7343 } 7344 7345 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7346 { 7347 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7348 } 7349 7350 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7351 { 7352 /* Return true if it is not valid for us to switch to 7353 * this CPU mode (ie all the UNPREDICTABLE cases in 7354 * the ARM ARM CPSRWriteByInstr pseudocode). 7355 */ 7356 7357 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7358 if (write_type == CPSRWriteByInstr && 7359 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7360 mode == ARM_CPU_MODE_HYP)) { 7361 return 1; 7362 } 7363 7364 switch (mode) { 7365 case ARM_CPU_MODE_USR: 7366 return 0; 7367 case ARM_CPU_MODE_SYS: 7368 case ARM_CPU_MODE_SVC: 7369 case ARM_CPU_MODE_ABT: 7370 case ARM_CPU_MODE_UND: 7371 case ARM_CPU_MODE_IRQ: 7372 case ARM_CPU_MODE_FIQ: 7373 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7374 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7375 */ 7376 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7377 * and CPS are treated as illegal mode changes. 7378 */ 7379 if (write_type == CPSRWriteByInstr && 7380 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7381 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7382 return 1; 7383 } 7384 return 0; 7385 case ARM_CPU_MODE_HYP: 7386 return !arm_feature(env, ARM_FEATURE_EL2) 7387 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7388 case ARM_CPU_MODE_MON: 7389 return arm_current_el(env) < 3; 7390 default: 7391 return 1; 7392 } 7393 } 7394 7395 uint32_t cpsr_read(CPUARMState *env) 7396 { 7397 int ZF; 7398 ZF = (env->ZF == 0); 7399 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7400 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7401 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7402 | ((env->condexec_bits & 0xfc) << 8) 7403 | (env->GE << 16) | (env->daif & CPSR_AIF); 7404 } 7405 7406 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7407 CPSRWriteType write_type) 7408 { 7409 uint32_t changed_daif; 7410 7411 if (mask & CPSR_NZCV) { 7412 env->ZF = (~val) & CPSR_Z; 7413 env->NF = val; 7414 env->CF = (val >> 29) & 1; 7415 env->VF = (val << 3) & 0x80000000; 7416 } 7417 if (mask & CPSR_Q) 7418 env->QF = ((val & CPSR_Q) != 0); 7419 if (mask & CPSR_T) 7420 env->thumb = ((val & CPSR_T) != 0); 7421 if (mask & CPSR_IT_0_1) { 7422 env->condexec_bits &= ~3; 7423 env->condexec_bits |= (val >> 25) & 3; 7424 } 7425 if (mask & CPSR_IT_2_7) { 7426 env->condexec_bits &= 3; 7427 env->condexec_bits |= (val >> 8) & 0xfc; 7428 } 7429 if (mask & CPSR_GE) { 7430 env->GE = (val >> 16) & 0xf; 7431 } 7432 7433 /* In a V7 implementation that includes the security extensions but does 7434 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7435 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7436 * bits respectively. 7437 * 7438 * In a V8 implementation, it is permitted for privileged software to 7439 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7440 */ 7441 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7442 arm_feature(env, ARM_FEATURE_EL3) && 7443 !arm_feature(env, ARM_FEATURE_EL2) && 7444 !arm_is_secure(env)) { 7445 7446 changed_daif = (env->daif ^ val) & mask; 7447 7448 if (changed_daif & CPSR_A) { 7449 /* Check to see if we are allowed to change the masking of async 7450 * abort exceptions from a non-secure state. 7451 */ 7452 if (!(env->cp15.scr_el3 & SCR_AW)) { 7453 qemu_log_mask(LOG_GUEST_ERROR, 7454 "Ignoring attempt to switch CPSR_A flag from " 7455 "non-secure world with SCR.AW bit clear\n"); 7456 mask &= ~CPSR_A; 7457 } 7458 } 7459 7460 if (changed_daif & CPSR_F) { 7461 /* Check to see if we are allowed to change the masking of FIQ 7462 * exceptions from a non-secure state. 7463 */ 7464 if (!(env->cp15.scr_el3 & SCR_FW)) { 7465 qemu_log_mask(LOG_GUEST_ERROR, 7466 "Ignoring attempt to switch CPSR_F flag from " 7467 "non-secure world with SCR.FW bit clear\n"); 7468 mask &= ~CPSR_F; 7469 } 7470 7471 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7472 * If this bit is set software is not allowed to mask 7473 * FIQs, but is allowed to set CPSR_F to 0. 7474 */ 7475 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7476 (val & CPSR_F)) { 7477 qemu_log_mask(LOG_GUEST_ERROR, 7478 "Ignoring attempt to enable CPSR_F flag " 7479 "(non-maskable FIQ [NMFI] support enabled)\n"); 7480 mask &= ~CPSR_F; 7481 } 7482 } 7483 } 7484 7485 env->daif &= ~(CPSR_AIF & mask); 7486 env->daif |= val & CPSR_AIF & mask; 7487 7488 if (write_type != CPSRWriteRaw && 7489 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7490 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7491 /* Note that we can only get here in USR mode if this is a 7492 * gdb stub write; for this case we follow the architectural 7493 * behaviour for guest writes in USR mode of ignoring an attempt 7494 * to switch mode. (Those are caught by translate.c for writes 7495 * triggered by guest instructions.) 7496 */ 7497 mask &= ~CPSR_M; 7498 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7499 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7500 * v7, and has defined behaviour in v8: 7501 * + leave CPSR.M untouched 7502 * + allow changes to the other CPSR fields 7503 * + set PSTATE.IL 7504 * For user changes via the GDB stub, we don't set PSTATE.IL, 7505 * as this would be unnecessarily harsh for a user error. 7506 */ 7507 mask &= ~CPSR_M; 7508 if (write_type != CPSRWriteByGDBStub && 7509 arm_feature(env, ARM_FEATURE_V8)) { 7510 mask |= CPSR_IL; 7511 val |= CPSR_IL; 7512 } 7513 qemu_log_mask(LOG_GUEST_ERROR, 7514 "Illegal AArch32 mode switch attempt from %s to %s\n", 7515 aarch32_mode_name(env->uncached_cpsr), 7516 aarch32_mode_name(val)); 7517 } else { 7518 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7519 write_type == CPSRWriteExceptionReturn ? 7520 "Exception return from AArch32" : 7521 "AArch32 mode switch from", 7522 aarch32_mode_name(env->uncached_cpsr), 7523 aarch32_mode_name(val), env->regs[15]); 7524 switch_mode(env, val & CPSR_M); 7525 } 7526 } 7527 mask &= ~CACHED_CPSR_BITS; 7528 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7529 } 7530 7531 /* Sign/zero extend */ 7532 uint32_t HELPER(sxtb16)(uint32_t x) 7533 { 7534 uint32_t res; 7535 res = (uint16_t)(int8_t)x; 7536 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7537 return res; 7538 } 7539 7540 uint32_t HELPER(uxtb16)(uint32_t x) 7541 { 7542 uint32_t res; 7543 res = (uint16_t)(uint8_t)x; 7544 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7545 return res; 7546 } 7547 7548 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7549 { 7550 if (den == 0) 7551 return 0; 7552 if (num == INT_MIN && den == -1) 7553 return INT_MIN; 7554 return num / den; 7555 } 7556 7557 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7558 { 7559 if (den == 0) 7560 return 0; 7561 return num / den; 7562 } 7563 7564 uint32_t HELPER(rbit)(uint32_t x) 7565 { 7566 return revbit32(x); 7567 } 7568 7569 #ifdef CONFIG_USER_ONLY 7570 7571 static void switch_mode(CPUARMState *env, int mode) 7572 { 7573 ARMCPU *cpu = env_archcpu(env); 7574 7575 if (mode != ARM_CPU_MODE_USR) { 7576 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7577 } 7578 } 7579 7580 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7581 uint32_t cur_el, bool secure) 7582 { 7583 return 1; 7584 } 7585 7586 void aarch64_sync_64_to_32(CPUARMState *env) 7587 { 7588 g_assert_not_reached(); 7589 } 7590 7591 #else 7592 7593 static void switch_mode(CPUARMState *env, int mode) 7594 { 7595 int old_mode; 7596 int i; 7597 7598 old_mode = env->uncached_cpsr & CPSR_M; 7599 if (mode == old_mode) 7600 return; 7601 7602 if (old_mode == ARM_CPU_MODE_FIQ) { 7603 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7604 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7605 } else if (mode == ARM_CPU_MODE_FIQ) { 7606 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7607 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7608 } 7609 7610 i = bank_number(old_mode); 7611 env->banked_r13[i] = env->regs[13]; 7612 env->banked_spsr[i] = env->spsr; 7613 7614 i = bank_number(mode); 7615 env->regs[13] = env->banked_r13[i]; 7616 env->spsr = env->banked_spsr[i]; 7617 7618 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7619 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7620 } 7621 7622 /* Physical Interrupt Target EL Lookup Table 7623 * 7624 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7625 * 7626 * The below multi-dimensional table is used for looking up the target 7627 * exception level given numerous condition criteria. Specifically, the 7628 * target EL is based on SCR and HCR routing controls as well as the 7629 * currently executing EL and secure state. 7630 * 7631 * Dimensions: 7632 * target_el_table[2][2][2][2][2][4] 7633 * | | | | | +--- Current EL 7634 * | | | | +------ Non-secure(0)/Secure(1) 7635 * | | | +--------- HCR mask override 7636 * | | +------------ SCR exec state control 7637 * | +--------------- SCR mask override 7638 * +------------------ 32-bit(0)/64-bit(1) EL3 7639 * 7640 * The table values are as such: 7641 * 0-3 = EL0-EL3 7642 * -1 = Cannot occur 7643 * 7644 * The ARM ARM target EL table includes entries indicating that an "exception 7645 * is not taken". The two cases where this is applicable are: 7646 * 1) An exception is taken from EL3 but the SCR does not have the exception 7647 * routed to EL3. 7648 * 2) An exception is taken from EL2 but the HCR does not have the exception 7649 * routed to EL2. 7650 * In these two cases, the below table contain a target of EL1. This value is 7651 * returned as it is expected that the consumer of the table data will check 7652 * for "target EL >= current EL" to ensure the exception is not taken. 7653 * 7654 * SCR HCR 7655 * 64 EA AMO From 7656 * BIT IRQ IMO Non-secure Secure 7657 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7658 */ 7659 static const int8_t target_el_table[2][2][2][2][2][4] = { 7660 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7661 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7662 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7663 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7664 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7665 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7666 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7667 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7668 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7669 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7670 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7671 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7672 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7673 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7674 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7675 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7676 }; 7677 7678 /* 7679 * Determine the target EL for physical exceptions 7680 */ 7681 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7682 uint32_t cur_el, bool secure) 7683 { 7684 CPUARMState *env = cs->env_ptr; 7685 bool rw; 7686 bool scr; 7687 bool hcr; 7688 int target_el; 7689 /* Is the highest EL AArch64? */ 7690 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7691 uint64_t hcr_el2; 7692 7693 if (arm_feature(env, ARM_FEATURE_EL3)) { 7694 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7695 } else { 7696 /* Either EL2 is the highest EL (and so the EL2 register width 7697 * is given by is64); or there is no EL2 or EL3, in which case 7698 * the value of 'rw' does not affect the table lookup anyway. 7699 */ 7700 rw = is64; 7701 } 7702 7703 hcr_el2 = arm_hcr_el2_eff(env); 7704 switch (excp_idx) { 7705 case EXCP_IRQ: 7706 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7707 hcr = hcr_el2 & HCR_IMO; 7708 break; 7709 case EXCP_FIQ: 7710 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7711 hcr = hcr_el2 & HCR_FMO; 7712 break; 7713 default: 7714 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7715 hcr = hcr_el2 & HCR_AMO; 7716 break; 7717 }; 7718 7719 /* Perform a table-lookup for the target EL given the current state */ 7720 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7721 7722 assert(target_el > 0); 7723 7724 return target_el; 7725 } 7726 7727 void arm_log_exception(int idx) 7728 { 7729 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7730 const char *exc = NULL; 7731 static const char * const excnames[] = { 7732 [EXCP_UDEF] = "Undefined Instruction", 7733 [EXCP_SWI] = "SVC", 7734 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7735 [EXCP_DATA_ABORT] = "Data Abort", 7736 [EXCP_IRQ] = "IRQ", 7737 [EXCP_FIQ] = "FIQ", 7738 [EXCP_BKPT] = "Breakpoint", 7739 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7740 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7741 [EXCP_HVC] = "Hypervisor Call", 7742 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7743 [EXCP_SMC] = "Secure Monitor Call", 7744 [EXCP_VIRQ] = "Virtual IRQ", 7745 [EXCP_VFIQ] = "Virtual FIQ", 7746 [EXCP_SEMIHOST] = "Semihosting call", 7747 [EXCP_NOCP] = "v7M NOCP UsageFault", 7748 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7749 [EXCP_STKOF] = "v8M STKOF UsageFault", 7750 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 7751 [EXCP_LSERR] = "v8M LSERR UsageFault", 7752 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 7753 }; 7754 7755 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7756 exc = excnames[idx]; 7757 } 7758 if (!exc) { 7759 exc = "unknown"; 7760 } 7761 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7762 } 7763 } 7764 7765 /* 7766 * Function used to synchronize QEMU's AArch64 register set with AArch32 7767 * register set. This is necessary when switching between AArch32 and AArch64 7768 * execution state. 7769 */ 7770 void aarch64_sync_32_to_64(CPUARMState *env) 7771 { 7772 int i; 7773 uint32_t mode = env->uncached_cpsr & CPSR_M; 7774 7775 /* We can blanket copy R[0:7] to X[0:7] */ 7776 for (i = 0; i < 8; i++) { 7777 env->xregs[i] = env->regs[i]; 7778 } 7779 7780 /* 7781 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7782 * Otherwise, they come from the banked user regs. 7783 */ 7784 if (mode == ARM_CPU_MODE_FIQ) { 7785 for (i = 8; i < 13; i++) { 7786 env->xregs[i] = env->usr_regs[i - 8]; 7787 } 7788 } else { 7789 for (i = 8; i < 13; i++) { 7790 env->xregs[i] = env->regs[i]; 7791 } 7792 } 7793 7794 /* 7795 * Registers x13-x23 are the various mode SP and FP registers. Registers 7796 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7797 * from the mode banked register. 7798 */ 7799 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7800 env->xregs[13] = env->regs[13]; 7801 env->xregs[14] = env->regs[14]; 7802 } else { 7803 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7804 /* HYP is an exception in that it is copied from r14 */ 7805 if (mode == ARM_CPU_MODE_HYP) { 7806 env->xregs[14] = env->regs[14]; 7807 } else { 7808 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 7809 } 7810 } 7811 7812 if (mode == ARM_CPU_MODE_HYP) { 7813 env->xregs[15] = env->regs[13]; 7814 } else { 7815 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7816 } 7817 7818 if (mode == ARM_CPU_MODE_IRQ) { 7819 env->xregs[16] = env->regs[14]; 7820 env->xregs[17] = env->regs[13]; 7821 } else { 7822 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 7823 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7824 } 7825 7826 if (mode == ARM_CPU_MODE_SVC) { 7827 env->xregs[18] = env->regs[14]; 7828 env->xregs[19] = env->regs[13]; 7829 } else { 7830 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 7831 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7832 } 7833 7834 if (mode == ARM_CPU_MODE_ABT) { 7835 env->xregs[20] = env->regs[14]; 7836 env->xregs[21] = env->regs[13]; 7837 } else { 7838 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 7839 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7840 } 7841 7842 if (mode == ARM_CPU_MODE_UND) { 7843 env->xregs[22] = env->regs[14]; 7844 env->xregs[23] = env->regs[13]; 7845 } else { 7846 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 7847 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7848 } 7849 7850 /* 7851 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7852 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7853 * FIQ bank for r8-r14. 7854 */ 7855 if (mode == ARM_CPU_MODE_FIQ) { 7856 for (i = 24; i < 31; i++) { 7857 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7858 } 7859 } else { 7860 for (i = 24; i < 29; i++) { 7861 env->xregs[i] = env->fiq_regs[i - 24]; 7862 } 7863 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7864 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 7865 } 7866 7867 env->pc = env->regs[15]; 7868 } 7869 7870 /* 7871 * Function used to synchronize QEMU's AArch32 register set with AArch64 7872 * register set. This is necessary when switching between AArch32 and AArch64 7873 * execution state. 7874 */ 7875 void aarch64_sync_64_to_32(CPUARMState *env) 7876 { 7877 int i; 7878 uint32_t mode = env->uncached_cpsr & CPSR_M; 7879 7880 /* We can blanket copy X[0:7] to R[0:7] */ 7881 for (i = 0; i < 8; i++) { 7882 env->regs[i] = env->xregs[i]; 7883 } 7884 7885 /* 7886 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7887 * Otherwise, we copy x8-x12 into the banked user regs. 7888 */ 7889 if (mode == ARM_CPU_MODE_FIQ) { 7890 for (i = 8; i < 13; i++) { 7891 env->usr_regs[i - 8] = env->xregs[i]; 7892 } 7893 } else { 7894 for (i = 8; i < 13; i++) { 7895 env->regs[i] = env->xregs[i]; 7896 } 7897 } 7898 7899 /* 7900 * Registers r13 & r14 depend on the current mode. 7901 * If we are in a given mode, we copy the corresponding x registers to r13 7902 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7903 * for the mode. 7904 */ 7905 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7906 env->regs[13] = env->xregs[13]; 7907 env->regs[14] = env->xregs[14]; 7908 } else { 7909 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7910 7911 /* 7912 * HYP is an exception in that it does not have its own banked r14 but 7913 * shares the USR r14 7914 */ 7915 if (mode == ARM_CPU_MODE_HYP) { 7916 env->regs[14] = env->xregs[14]; 7917 } else { 7918 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7919 } 7920 } 7921 7922 if (mode == ARM_CPU_MODE_HYP) { 7923 env->regs[13] = env->xregs[15]; 7924 } else { 7925 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7926 } 7927 7928 if (mode == ARM_CPU_MODE_IRQ) { 7929 env->regs[14] = env->xregs[16]; 7930 env->regs[13] = env->xregs[17]; 7931 } else { 7932 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7933 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7934 } 7935 7936 if (mode == ARM_CPU_MODE_SVC) { 7937 env->regs[14] = env->xregs[18]; 7938 env->regs[13] = env->xregs[19]; 7939 } else { 7940 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7941 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7942 } 7943 7944 if (mode == ARM_CPU_MODE_ABT) { 7945 env->regs[14] = env->xregs[20]; 7946 env->regs[13] = env->xregs[21]; 7947 } else { 7948 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7949 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7950 } 7951 7952 if (mode == ARM_CPU_MODE_UND) { 7953 env->regs[14] = env->xregs[22]; 7954 env->regs[13] = env->xregs[23]; 7955 } else { 7956 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7957 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7958 } 7959 7960 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7961 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7962 * FIQ bank for r8-r14. 7963 */ 7964 if (mode == ARM_CPU_MODE_FIQ) { 7965 for (i = 24; i < 31; i++) { 7966 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7967 } 7968 } else { 7969 for (i = 24; i < 29; i++) { 7970 env->fiq_regs[i - 24] = env->xregs[i]; 7971 } 7972 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7973 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7974 } 7975 7976 env->regs[15] = env->pc; 7977 } 7978 7979 static void take_aarch32_exception(CPUARMState *env, int new_mode, 7980 uint32_t mask, uint32_t offset, 7981 uint32_t newpc) 7982 { 7983 /* Change the CPU state so as to actually take the exception. */ 7984 switch_mode(env, new_mode); 7985 /* 7986 * For exceptions taken to AArch32 we must clear the SS bit in both 7987 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7988 */ 7989 env->uncached_cpsr &= ~PSTATE_SS; 7990 env->spsr = cpsr_read(env); 7991 /* Clear IT bits. */ 7992 env->condexec_bits = 0; 7993 /* Switch to the new mode, and to the correct instruction set. */ 7994 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7995 /* Set new mode endianness */ 7996 env->uncached_cpsr &= ~CPSR_E; 7997 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7998 env->uncached_cpsr |= CPSR_E; 7999 } 8000 /* J and IL must always be cleared for exception entry */ 8001 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8002 env->daif |= mask; 8003 8004 if (new_mode == ARM_CPU_MODE_HYP) { 8005 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8006 env->elr_el[2] = env->regs[15]; 8007 } else { 8008 /* 8009 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8010 * and we should just guard the thumb mode on V4 8011 */ 8012 if (arm_feature(env, ARM_FEATURE_V4T)) { 8013 env->thumb = 8014 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8015 } 8016 env->regs[14] = env->regs[15] + offset; 8017 } 8018 env->regs[15] = newpc; 8019 arm_rebuild_hflags(env); 8020 } 8021 8022 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8023 { 8024 /* 8025 * Handle exception entry to Hyp mode; this is sufficiently 8026 * different to entry to other AArch32 modes that we handle it 8027 * separately here. 8028 * 8029 * The vector table entry used is always the 0x14 Hyp mode entry point, 8030 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8031 * The offset applied to the preferred return address is always zero 8032 * (see DDI0487C.a section G1.12.3). 8033 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8034 */ 8035 uint32_t addr, mask; 8036 ARMCPU *cpu = ARM_CPU(cs); 8037 CPUARMState *env = &cpu->env; 8038 8039 switch (cs->exception_index) { 8040 case EXCP_UDEF: 8041 addr = 0x04; 8042 break; 8043 case EXCP_SWI: 8044 addr = 0x14; 8045 break; 8046 case EXCP_BKPT: 8047 /* Fall through to prefetch abort. */ 8048 case EXCP_PREFETCH_ABORT: 8049 env->cp15.ifar_s = env->exception.vaddress; 8050 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8051 (uint32_t)env->exception.vaddress); 8052 addr = 0x0c; 8053 break; 8054 case EXCP_DATA_ABORT: 8055 env->cp15.dfar_s = env->exception.vaddress; 8056 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8057 (uint32_t)env->exception.vaddress); 8058 addr = 0x10; 8059 break; 8060 case EXCP_IRQ: 8061 addr = 0x18; 8062 break; 8063 case EXCP_FIQ: 8064 addr = 0x1c; 8065 break; 8066 case EXCP_HVC: 8067 addr = 0x08; 8068 break; 8069 case EXCP_HYP_TRAP: 8070 addr = 0x14; 8071 break; 8072 default: 8073 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8074 } 8075 8076 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8077 if (!arm_feature(env, ARM_FEATURE_V8)) { 8078 /* 8079 * QEMU syndrome values are v8-style. v7 has the IL bit 8080 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8081 * If this is a v7 CPU, squash the IL bit in those cases. 8082 */ 8083 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8084 (cs->exception_index == EXCP_DATA_ABORT && 8085 !(env->exception.syndrome & ARM_EL_ISV)) || 8086 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8087 env->exception.syndrome &= ~ARM_EL_IL; 8088 } 8089 } 8090 env->cp15.esr_el[2] = env->exception.syndrome; 8091 } 8092 8093 if (arm_current_el(env) != 2 && addr < 0x14) { 8094 addr = 0x14; 8095 } 8096 8097 mask = 0; 8098 if (!(env->cp15.scr_el3 & SCR_EA)) { 8099 mask |= CPSR_A; 8100 } 8101 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8102 mask |= CPSR_I; 8103 } 8104 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8105 mask |= CPSR_F; 8106 } 8107 8108 addr += env->cp15.hvbar; 8109 8110 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8111 } 8112 8113 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8114 { 8115 ARMCPU *cpu = ARM_CPU(cs); 8116 CPUARMState *env = &cpu->env; 8117 uint32_t addr; 8118 uint32_t mask; 8119 int new_mode; 8120 uint32_t offset; 8121 uint32_t moe; 8122 8123 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8124 switch (syn_get_ec(env->exception.syndrome)) { 8125 case EC_BREAKPOINT: 8126 case EC_BREAKPOINT_SAME_EL: 8127 moe = 1; 8128 break; 8129 case EC_WATCHPOINT: 8130 case EC_WATCHPOINT_SAME_EL: 8131 moe = 10; 8132 break; 8133 case EC_AA32_BKPT: 8134 moe = 3; 8135 break; 8136 case EC_VECTORCATCH: 8137 moe = 5; 8138 break; 8139 default: 8140 moe = 0; 8141 break; 8142 } 8143 8144 if (moe) { 8145 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8146 } 8147 8148 if (env->exception.target_el == 2) { 8149 arm_cpu_do_interrupt_aarch32_hyp(cs); 8150 return; 8151 } 8152 8153 switch (cs->exception_index) { 8154 case EXCP_UDEF: 8155 new_mode = ARM_CPU_MODE_UND; 8156 addr = 0x04; 8157 mask = CPSR_I; 8158 if (env->thumb) 8159 offset = 2; 8160 else 8161 offset = 4; 8162 break; 8163 case EXCP_SWI: 8164 new_mode = ARM_CPU_MODE_SVC; 8165 addr = 0x08; 8166 mask = CPSR_I; 8167 /* The PC already points to the next instruction. */ 8168 offset = 0; 8169 break; 8170 case EXCP_BKPT: 8171 /* Fall through to prefetch abort. */ 8172 case EXCP_PREFETCH_ABORT: 8173 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8174 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8175 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8176 env->exception.fsr, (uint32_t)env->exception.vaddress); 8177 new_mode = ARM_CPU_MODE_ABT; 8178 addr = 0x0c; 8179 mask = CPSR_A | CPSR_I; 8180 offset = 4; 8181 break; 8182 case EXCP_DATA_ABORT: 8183 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8184 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8185 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8186 env->exception.fsr, 8187 (uint32_t)env->exception.vaddress); 8188 new_mode = ARM_CPU_MODE_ABT; 8189 addr = 0x10; 8190 mask = CPSR_A | CPSR_I; 8191 offset = 8; 8192 break; 8193 case EXCP_IRQ: 8194 new_mode = ARM_CPU_MODE_IRQ; 8195 addr = 0x18; 8196 /* Disable IRQ and imprecise data aborts. */ 8197 mask = CPSR_A | CPSR_I; 8198 offset = 4; 8199 if (env->cp15.scr_el3 & SCR_IRQ) { 8200 /* IRQ routed to monitor mode */ 8201 new_mode = ARM_CPU_MODE_MON; 8202 mask |= CPSR_F; 8203 } 8204 break; 8205 case EXCP_FIQ: 8206 new_mode = ARM_CPU_MODE_FIQ; 8207 addr = 0x1c; 8208 /* Disable FIQ, IRQ and imprecise data aborts. */ 8209 mask = CPSR_A | CPSR_I | CPSR_F; 8210 if (env->cp15.scr_el3 & SCR_FIQ) { 8211 /* FIQ routed to monitor mode */ 8212 new_mode = ARM_CPU_MODE_MON; 8213 } 8214 offset = 4; 8215 break; 8216 case EXCP_VIRQ: 8217 new_mode = ARM_CPU_MODE_IRQ; 8218 addr = 0x18; 8219 /* Disable IRQ and imprecise data aborts. */ 8220 mask = CPSR_A | CPSR_I; 8221 offset = 4; 8222 break; 8223 case EXCP_VFIQ: 8224 new_mode = ARM_CPU_MODE_FIQ; 8225 addr = 0x1c; 8226 /* Disable FIQ, IRQ and imprecise data aborts. */ 8227 mask = CPSR_A | CPSR_I | CPSR_F; 8228 offset = 4; 8229 break; 8230 case EXCP_SMC: 8231 new_mode = ARM_CPU_MODE_MON; 8232 addr = 0x08; 8233 mask = CPSR_A | CPSR_I | CPSR_F; 8234 offset = 0; 8235 break; 8236 default: 8237 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8238 return; /* Never happens. Keep compiler happy. */ 8239 } 8240 8241 if (new_mode == ARM_CPU_MODE_MON) { 8242 addr += env->cp15.mvbar; 8243 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8244 /* High vectors. When enabled, base address cannot be remapped. */ 8245 addr += 0xffff0000; 8246 } else { 8247 /* ARM v7 architectures provide a vector base address register to remap 8248 * the interrupt vector table. 8249 * This register is only followed in non-monitor mode, and is banked. 8250 * Note: only bits 31:5 are valid. 8251 */ 8252 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8253 } 8254 8255 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8256 env->cp15.scr_el3 &= ~SCR_NS; 8257 } 8258 8259 take_aarch32_exception(env, new_mode, mask, offset, addr); 8260 } 8261 8262 /* Handle exception entry to a target EL which is using AArch64 */ 8263 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8264 { 8265 ARMCPU *cpu = ARM_CPU(cs); 8266 CPUARMState *env = &cpu->env; 8267 unsigned int new_el = env->exception.target_el; 8268 target_ulong addr = env->cp15.vbar_el[new_el]; 8269 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8270 unsigned int cur_el = arm_current_el(env); 8271 8272 /* 8273 * Note that new_el can never be 0. If cur_el is 0, then 8274 * el0_a64 is is_a64(), else el0_a64 is ignored. 8275 */ 8276 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8277 8278 if (cur_el < new_el) { 8279 /* Entry vector offset depends on whether the implemented EL 8280 * immediately lower than the target level is using AArch32 or AArch64 8281 */ 8282 bool is_aa64; 8283 8284 switch (new_el) { 8285 case 3: 8286 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8287 break; 8288 case 2: 8289 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8290 break; 8291 case 1: 8292 is_aa64 = is_a64(env); 8293 break; 8294 default: 8295 g_assert_not_reached(); 8296 } 8297 8298 if (is_aa64) { 8299 addr += 0x400; 8300 } else { 8301 addr += 0x600; 8302 } 8303 } else if (pstate_read(env) & PSTATE_SP) { 8304 addr += 0x200; 8305 } 8306 8307 switch (cs->exception_index) { 8308 case EXCP_PREFETCH_ABORT: 8309 case EXCP_DATA_ABORT: 8310 env->cp15.far_el[new_el] = env->exception.vaddress; 8311 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8312 env->cp15.far_el[new_el]); 8313 /* fall through */ 8314 case EXCP_BKPT: 8315 case EXCP_UDEF: 8316 case EXCP_SWI: 8317 case EXCP_HVC: 8318 case EXCP_HYP_TRAP: 8319 case EXCP_SMC: 8320 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8321 /* 8322 * QEMU internal FP/SIMD syndromes from AArch32 include the 8323 * TA and coproc fields which are only exposed if the exception 8324 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8325 * AArch64 format syndrome. 8326 */ 8327 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8328 } 8329 env->cp15.esr_el[new_el] = env->exception.syndrome; 8330 break; 8331 case EXCP_IRQ: 8332 case EXCP_VIRQ: 8333 addr += 0x80; 8334 break; 8335 case EXCP_FIQ: 8336 case EXCP_VFIQ: 8337 addr += 0x100; 8338 break; 8339 case EXCP_SEMIHOST: 8340 qemu_log_mask(CPU_LOG_INT, 8341 "...handling as semihosting call 0x%" PRIx64 "\n", 8342 env->xregs[0]); 8343 env->xregs[0] = do_arm_semihosting(env); 8344 return; 8345 default: 8346 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8347 } 8348 8349 if (is_a64(env)) { 8350 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8351 aarch64_save_sp(env, arm_current_el(env)); 8352 env->elr_el[new_el] = env->pc; 8353 } else { 8354 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8355 env->elr_el[new_el] = env->regs[15]; 8356 8357 aarch64_sync_32_to_64(env); 8358 8359 env->condexec_bits = 0; 8360 } 8361 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8362 env->elr_el[new_el]); 8363 8364 pstate_write(env, PSTATE_DAIF | new_mode); 8365 env->aarch64 = 1; 8366 aarch64_restore_sp(env, new_el); 8367 helper_rebuild_hflags_a64(env, new_el); 8368 8369 env->pc = addr; 8370 8371 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8372 new_el, env->pc, pstate_read(env)); 8373 } 8374 8375 /* 8376 * Do semihosting call and set the appropriate return value. All the 8377 * permission and validity checks have been done at translate time. 8378 * 8379 * We only see semihosting exceptions in TCG only as they are not 8380 * trapped to the hypervisor in KVM. 8381 */ 8382 #ifdef CONFIG_TCG 8383 static void handle_semihosting(CPUState *cs) 8384 { 8385 ARMCPU *cpu = ARM_CPU(cs); 8386 CPUARMState *env = &cpu->env; 8387 8388 if (is_a64(env)) { 8389 qemu_log_mask(CPU_LOG_INT, 8390 "...handling as semihosting call 0x%" PRIx64 "\n", 8391 env->xregs[0]); 8392 env->xregs[0] = do_arm_semihosting(env); 8393 } else { 8394 qemu_log_mask(CPU_LOG_INT, 8395 "...handling as semihosting call 0x%x\n", 8396 env->regs[0]); 8397 env->regs[0] = do_arm_semihosting(env); 8398 } 8399 } 8400 #endif 8401 8402 /* Handle a CPU exception for A and R profile CPUs. 8403 * Do any appropriate logging, handle PSCI calls, and then hand off 8404 * to the AArch64-entry or AArch32-entry function depending on the 8405 * target exception level's register width. 8406 */ 8407 void arm_cpu_do_interrupt(CPUState *cs) 8408 { 8409 ARMCPU *cpu = ARM_CPU(cs); 8410 CPUARMState *env = &cpu->env; 8411 unsigned int new_el = env->exception.target_el; 8412 8413 assert(!arm_feature(env, ARM_FEATURE_M)); 8414 8415 arm_log_exception(cs->exception_index); 8416 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8417 new_el); 8418 if (qemu_loglevel_mask(CPU_LOG_INT) 8419 && !excp_is_internal(cs->exception_index)) { 8420 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8421 syn_get_ec(env->exception.syndrome), 8422 env->exception.syndrome); 8423 } 8424 8425 if (arm_is_psci_call(cpu, cs->exception_index)) { 8426 arm_handle_psci_call(cpu); 8427 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8428 return; 8429 } 8430 8431 /* 8432 * Semihosting semantics depend on the register width of the code 8433 * that caused the exception, not the target exception level, so 8434 * must be handled here. 8435 */ 8436 #ifdef CONFIG_TCG 8437 if (cs->exception_index == EXCP_SEMIHOST) { 8438 handle_semihosting(cs); 8439 return; 8440 } 8441 #endif 8442 8443 /* Hooks may change global state so BQL should be held, also the 8444 * BQL needs to be held for any modification of 8445 * cs->interrupt_request. 8446 */ 8447 g_assert(qemu_mutex_iothread_locked()); 8448 8449 arm_call_pre_el_change_hook(cpu); 8450 8451 assert(!excp_is_internal(cs->exception_index)); 8452 if (arm_el_is_aa64(env, new_el)) { 8453 arm_cpu_do_interrupt_aarch64(cs); 8454 } else { 8455 arm_cpu_do_interrupt_aarch32(cs); 8456 } 8457 8458 arm_call_el_change_hook(cpu); 8459 8460 if (!kvm_enabled()) { 8461 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8462 } 8463 } 8464 #endif /* !CONFIG_USER_ONLY */ 8465 8466 /* Return the exception level which controls this address translation regime */ 8467 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8468 { 8469 switch (mmu_idx) { 8470 case ARMMMUIdx_S2NS: 8471 case ARMMMUIdx_S1E2: 8472 return 2; 8473 case ARMMMUIdx_S1E3: 8474 return 3; 8475 case ARMMMUIdx_S1SE0: 8476 return arm_el_is_aa64(env, 3) ? 1 : 3; 8477 case ARMMMUIdx_S1SE1: 8478 case ARMMMUIdx_S1NSE0: 8479 case ARMMMUIdx_S1NSE1: 8480 case ARMMMUIdx_MPrivNegPri: 8481 case ARMMMUIdx_MUserNegPri: 8482 case ARMMMUIdx_MPriv: 8483 case ARMMMUIdx_MUser: 8484 case ARMMMUIdx_MSPrivNegPri: 8485 case ARMMMUIdx_MSUserNegPri: 8486 case ARMMMUIdx_MSPriv: 8487 case ARMMMUIdx_MSUser: 8488 return 1; 8489 default: 8490 g_assert_not_reached(); 8491 } 8492 } 8493 8494 #ifndef CONFIG_USER_ONLY 8495 8496 /* Return the SCTLR value which controls this address translation regime */ 8497 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8498 { 8499 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8500 } 8501 8502 /* Return true if the specified stage of address translation is disabled */ 8503 static inline bool regime_translation_disabled(CPUARMState *env, 8504 ARMMMUIdx mmu_idx) 8505 { 8506 if (arm_feature(env, ARM_FEATURE_M)) { 8507 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8508 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8509 case R_V7M_MPU_CTRL_ENABLE_MASK: 8510 /* Enabled, but not for HardFault and NMI */ 8511 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8512 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8513 /* Enabled for all cases */ 8514 return false; 8515 case 0: 8516 default: 8517 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8518 * we warned about that in armv7m_nvic.c when the guest set it. 8519 */ 8520 return true; 8521 } 8522 } 8523 8524 if (mmu_idx == ARMMMUIdx_S2NS) { 8525 /* HCR.DC means HCR.VM behaves as 1 */ 8526 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8527 } 8528 8529 if (env->cp15.hcr_el2 & HCR_TGE) { 8530 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8531 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8532 return true; 8533 } 8534 } 8535 8536 if ((env->cp15.hcr_el2 & HCR_DC) && 8537 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8538 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8539 return true; 8540 } 8541 8542 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8543 } 8544 8545 static inline bool regime_translation_big_endian(CPUARMState *env, 8546 ARMMMUIdx mmu_idx) 8547 { 8548 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8549 } 8550 8551 /* Return the TTBR associated with this translation regime */ 8552 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8553 int ttbrn) 8554 { 8555 if (mmu_idx == ARMMMUIdx_S2NS) { 8556 return env->cp15.vttbr_el2; 8557 } 8558 if (ttbrn == 0) { 8559 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8560 } else { 8561 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8562 } 8563 } 8564 8565 #endif /* !CONFIG_USER_ONLY */ 8566 8567 /* Return the TCR controlling this translation regime */ 8568 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8569 { 8570 if (mmu_idx == ARMMMUIdx_S2NS) { 8571 return &env->cp15.vtcr_el2; 8572 } 8573 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8574 } 8575 8576 /* Convert a possible stage1+2 MMU index into the appropriate 8577 * stage 1 MMU index 8578 */ 8579 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8580 { 8581 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8582 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8583 } 8584 return mmu_idx; 8585 } 8586 8587 /* Return true if the translation regime is using LPAE format page tables */ 8588 static inline bool regime_using_lpae_format(CPUARMState *env, 8589 ARMMMUIdx mmu_idx) 8590 { 8591 int el = regime_el(env, mmu_idx); 8592 if (el == 2 || arm_el_is_aa64(env, el)) { 8593 return true; 8594 } 8595 if (arm_feature(env, ARM_FEATURE_LPAE) 8596 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8597 return true; 8598 } 8599 return false; 8600 } 8601 8602 /* Returns true if the stage 1 translation regime is using LPAE format page 8603 * tables. Used when raising alignment exceptions, whose FSR changes depending 8604 * on whether the long or short descriptor format is in use. */ 8605 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8606 { 8607 mmu_idx = stage_1_mmu_idx(mmu_idx); 8608 8609 return regime_using_lpae_format(env, mmu_idx); 8610 } 8611 8612 #ifndef CONFIG_USER_ONLY 8613 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8614 { 8615 switch (mmu_idx) { 8616 case ARMMMUIdx_S1SE0: 8617 case ARMMMUIdx_S1NSE0: 8618 case ARMMMUIdx_MUser: 8619 case ARMMMUIdx_MSUser: 8620 case ARMMMUIdx_MUserNegPri: 8621 case ARMMMUIdx_MSUserNegPri: 8622 return true; 8623 default: 8624 return false; 8625 case ARMMMUIdx_S12NSE0: 8626 case ARMMMUIdx_S12NSE1: 8627 g_assert_not_reached(); 8628 } 8629 } 8630 8631 /* Translate section/page access permissions to page 8632 * R/W protection flags 8633 * 8634 * @env: CPUARMState 8635 * @mmu_idx: MMU index indicating required translation regime 8636 * @ap: The 3-bit access permissions (AP[2:0]) 8637 * @domain_prot: The 2-bit domain access permissions 8638 */ 8639 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8640 int ap, int domain_prot) 8641 { 8642 bool is_user = regime_is_user(env, mmu_idx); 8643 8644 if (domain_prot == 3) { 8645 return PAGE_READ | PAGE_WRITE; 8646 } 8647 8648 switch (ap) { 8649 case 0: 8650 if (arm_feature(env, ARM_FEATURE_V7)) { 8651 return 0; 8652 } 8653 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8654 case SCTLR_S: 8655 return is_user ? 0 : PAGE_READ; 8656 case SCTLR_R: 8657 return PAGE_READ; 8658 default: 8659 return 0; 8660 } 8661 case 1: 8662 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8663 case 2: 8664 if (is_user) { 8665 return PAGE_READ; 8666 } else { 8667 return PAGE_READ | PAGE_WRITE; 8668 } 8669 case 3: 8670 return PAGE_READ | PAGE_WRITE; 8671 case 4: /* Reserved. */ 8672 return 0; 8673 case 5: 8674 return is_user ? 0 : PAGE_READ; 8675 case 6: 8676 return PAGE_READ; 8677 case 7: 8678 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8679 return 0; 8680 } 8681 return PAGE_READ; 8682 default: 8683 g_assert_not_reached(); 8684 } 8685 } 8686 8687 /* Translate section/page access permissions to page 8688 * R/W protection flags. 8689 * 8690 * @ap: The 2-bit simple AP (AP[2:1]) 8691 * @is_user: TRUE if accessing from PL0 8692 */ 8693 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8694 { 8695 switch (ap) { 8696 case 0: 8697 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8698 case 1: 8699 return PAGE_READ | PAGE_WRITE; 8700 case 2: 8701 return is_user ? 0 : PAGE_READ; 8702 case 3: 8703 return PAGE_READ; 8704 default: 8705 g_assert_not_reached(); 8706 } 8707 } 8708 8709 static inline int 8710 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8711 { 8712 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8713 } 8714 8715 /* Translate S2 section/page access permissions to protection flags 8716 * 8717 * @env: CPUARMState 8718 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8719 * @xn: XN (execute-never) bit 8720 */ 8721 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8722 { 8723 int prot = 0; 8724 8725 if (s2ap & 1) { 8726 prot |= PAGE_READ; 8727 } 8728 if (s2ap & 2) { 8729 prot |= PAGE_WRITE; 8730 } 8731 if (!xn) { 8732 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8733 prot |= PAGE_EXEC; 8734 } 8735 } 8736 return prot; 8737 } 8738 8739 /* Translate section/page access permissions to protection flags 8740 * 8741 * @env: CPUARMState 8742 * @mmu_idx: MMU index indicating required translation regime 8743 * @is_aa64: TRUE if AArch64 8744 * @ap: The 2-bit simple AP (AP[2:1]) 8745 * @ns: NS (non-secure) bit 8746 * @xn: XN (execute-never) bit 8747 * @pxn: PXN (privileged execute-never) bit 8748 */ 8749 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8750 int ap, int ns, int xn, int pxn) 8751 { 8752 bool is_user = regime_is_user(env, mmu_idx); 8753 int prot_rw, user_rw; 8754 bool have_wxn; 8755 int wxn = 0; 8756 8757 assert(mmu_idx != ARMMMUIdx_S2NS); 8758 8759 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8760 if (is_user) { 8761 prot_rw = user_rw; 8762 } else { 8763 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8764 } 8765 8766 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8767 return prot_rw; 8768 } 8769 8770 /* TODO have_wxn should be replaced with 8771 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8772 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8773 * compatible processors have EL2, which is required for [U]WXN. 8774 */ 8775 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8776 8777 if (have_wxn) { 8778 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8779 } 8780 8781 if (is_aa64) { 8782 switch (regime_el(env, mmu_idx)) { 8783 case 1: 8784 if (!is_user) { 8785 xn = pxn || (user_rw & PAGE_WRITE); 8786 } 8787 break; 8788 case 2: 8789 case 3: 8790 break; 8791 } 8792 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8793 switch (regime_el(env, mmu_idx)) { 8794 case 1: 8795 case 3: 8796 if (is_user) { 8797 xn = xn || !(user_rw & PAGE_READ); 8798 } else { 8799 int uwxn = 0; 8800 if (have_wxn) { 8801 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8802 } 8803 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8804 (uwxn && (user_rw & PAGE_WRITE)); 8805 } 8806 break; 8807 case 2: 8808 break; 8809 } 8810 } else { 8811 xn = wxn = 0; 8812 } 8813 8814 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8815 return prot_rw; 8816 } 8817 return prot_rw | PAGE_EXEC; 8818 } 8819 8820 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8821 uint32_t *table, uint32_t address) 8822 { 8823 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8824 TCR *tcr = regime_tcr(env, mmu_idx); 8825 8826 if (address & tcr->mask) { 8827 if (tcr->raw_tcr & TTBCR_PD1) { 8828 /* Translation table walk disabled for TTBR1 */ 8829 return false; 8830 } 8831 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8832 } else { 8833 if (tcr->raw_tcr & TTBCR_PD0) { 8834 /* Translation table walk disabled for TTBR0 */ 8835 return false; 8836 } 8837 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8838 } 8839 *table |= (address >> 18) & 0x3ffc; 8840 return true; 8841 } 8842 8843 /* Translate a S1 pagetable walk through S2 if needed. */ 8844 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8845 hwaddr addr, MemTxAttrs txattrs, 8846 ARMMMUFaultInfo *fi) 8847 { 8848 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8849 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8850 target_ulong s2size; 8851 hwaddr s2pa; 8852 int s2prot; 8853 int ret; 8854 ARMCacheAttrs cacheattrs = {}; 8855 ARMCacheAttrs *pcacheattrs = NULL; 8856 8857 if (env->cp15.hcr_el2 & HCR_PTW) { 8858 /* 8859 * PTW means we must fault if this S1 walk touches S2 Device 8860 * memory; otherwise we don't care about the attributes and can 8861 * save the S2 translation the effort of computing them. 8862 */ 8863 pcacheattrs = &cacheattrs; 8864 } 8865 8866 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8867 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 8868 if (ret) { 8869 assert(fi->type != ARMFault_None); 8870 fi->s2addr = addr; 8871 fi->stage2 = true; 8872 fi->s1ptw = true; 8873 return ~0; 8874 } 8875 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 8876 /* Access was to Device memory: generate Permission fault */ 8877 fi->type = ARMFault_Permission; 8878 fi->s2addr = addr; 8879 fi->stage2 = true; 8880 fi->s1ptw = true; 8881 return ~0; 8882 } 8883 addr = s2pa; 8884 } 8885 return addr; 8886 } 8887 8888 /* All loads done in the course of a page table walk go through here. */ 8889 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8890 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8891 { 8892 ARMCPU *cpu = ARM_CPU(cs); 8893 CPUARMState *env = &cpu->env; 8894 MemTxAttrs attrs = {}; 8895 MemTxResult result = MEMTX_OK; 8896 AddressSpace *as; 8897 uint32_t data; 8898 8899 attrs.secure = is_secure; 8900 as = arm_addressspace(cs, attrs); 8901 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8902 if (fi->s1ptw) { 8903 return 0; 8904 } 8905 if (regime_translation_big_endian(env, mmu_idx)) { 8906 data = address_space_ldl_be(as, addr, attrs, &result); 8907 } else { 8908 data = address_space_ldl_le(as, addr, attrs, &result); 8909 } 8910 if (result == MEMTX_OK) { 8911 return data; 8912 } 8913 fi->type = ARMFault_SyncExternalOnWalk; 8914 fi->ea = arm_extabort_type(result); 8915 return 0; 8916 } 8917 8918 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8919 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8920 { 8921 ARMCPU *cpu = ARM_CPU(cs); 8922 CPUARMState *env = &cpu->env; 8923 MemTxAttrs attrs = {}; 8924 MemTxResult result = MEMTX_OK; 8925 AddressSpace *as; 8926 uint64_t data; 8927 8928 attrs.secure = is_secure; 8929 as = arm_addressspace(cs, attrs); 8930 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8931 if (fi->s1ptw) { 8932 return 0; 8933 } 8934 if (regime_translation_big_endian(env, mmu_idx)) { 8935 data = address_space_ldq_be(as, addr, attrs, &result); 8936 } else { 8937 data = address_space_ldq_le(as, addr, attrs, &result); 8938 } 8939 if (result == MEMTX_OK) { 8940 return data; 8941 } 8942 fi->type = ARMFault_SyncExternalOnWalk; 8943 fi->ea = arm_extabort_type(result); 8944 return 0; 8945 } 8946 8947 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8948 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8949 hwaddr *phys_ptr, int *prot, 8950 target_ulong *page_size, 8951 ARMMMUFaultInfo *fi) 8952 { 8953 CPUState *cs = env_cpu(env); 8954 int level = 1; 8955 uint32_t table; 8956 uint32_t desc; 8957 int type; 8958 int ap; 8959 int domain = 0; 8960 int domain_prot; 8961 hwaddr phys_addr; 8962 uint32_t dacr; 8963 8964 /* Pagetable walk. */ 8965 /* Lookup l1 descriptor. */ 8966 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8967 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8968 fi->type = ARMFault_Translation; 8969 goto do_fault; 8970 } 8971 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8972 mmu_idx, fi); 8973 if (fi->type != ARMFault_None) { 8974 goto do_fault; 8975 } 8976 type = (desc & 3); 8977 domain = (desc >> 5) & 0x0f; 8978 if (regime_el(env, mmu_idx) == 1) { 8979 dacr = env->cp15.dacr_ns; 8980 } else { 8981 dacr = env->cp15.dacr_s; 8982 } 8983 domain_prot = (dacr >> (domain * 2)) & 3; 8984 if (type == 0) { 8985 /* Section translation fault. */ 8986 fi->type = ARMFault_Translation; 8987 goto do_fault; 8988 } 8989 if (type != 2) { 8990 level = 2; 8991 } 8992 if (domain_prot == 0 || domain_prot == 2) { 8993 fi->type = ARMFault_Domain; 8994 goto do_fault; 8995 } 8996 if (type == 2) { 8997 /* 1Mb section. */ 8998 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8999 ap = (desc >> 10) & 3; 9000 *page_size = 1024 * 1024; 9001 } else { 9002 /* Lookup l2 entry. */ 9003 if (type == 1) { 9004 /* Coarse pagetable. */ 9005 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9006 } else { 9007 /* Fine pagetable. */ 9008 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9009 } 9010 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9011 mmu_idx, fi); 9012 if (fi->type != ARMFault_None) { 9013 goto do_fault; 9014 } 9015 switch (desc & 3) { 9016 case 0: /* Page translation fault. */ 9017 fi->type = ARMFault_Translation; 9018 goto do_fault; 9019 case 1: /* 64k page. */ 9020 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9021 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9022 *page_size = 0x10000; 9023 break; 9024 case 2: /* 4k page. */ 9025 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9026 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9027 *page_size = 0x1000; 9028 break; 9029 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9030 if (type == 1) { 9031 /* ARMv6/XScale extended small page format */ 9032 if (arm_feature(env, ARM_FEATURE_XSCALE) 9033 || arm_feature(env, ARM_FEATURE_V6)) { 9034 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9035 *page_size = 0x1000; 9036 } else { 9037 /* UNPREDICTABLE in ARMv5; we choose to take a 9038 * page translation fault. 9039 */ 9040 fi->type = ARMFault_Translation; 9041 goto do_fault; 9042 } 9043 } else { 9044 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9045 *page_size = 0x400; 9046 } 9047 ap = (desc >> 4) & 3; 9048 break; 9049 default: 9050 /* Never happens, but compiler isn't smart enough to tell. */ 9051 abort(); 9052 } 9053 } 9054 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9055 *prot |= *prot ? PAGE_EXEC : 0; 9056 if (!(*prot & (1 << access_type))) { 9057 /* Access permission fault. */ 9058 fi->type = ARMFault_Permission; 9059 goto do_fault; 9060 } 9061 *phys_ptr = phys_addr; 9062 return false; 9063 do_fault: 9064 fi->domain = domain; 9065 fi->level = level; 9066 return true; 9067 } 9068 9069 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9070 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9071 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9072 target_ulong *page_size, ARMMMUFaultInfo *fi) 9073 { 9074 CPUState *cs = env_cpu(env); 9075 int level = 1; 9076 uint32_t table; 9077 uint32_t desc; 9078 uint32_t xn; 9079 uint32_t pxn = 0; 9080 int type; 9081 int ap; 9082 int domain = 0; 9083 int domain_prot; 9084 hwaddr phys_addr; 9085 uint32_t dacr; 9086 bool ns; 9087 9088 /* Pagetable walk. */ 9089 /* Lookup l1 descriptor. */ 9090 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9091 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9092 fi->type = ARMFault_Translation; 9093 goto do_fault; 9094 } 9095 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9096 mmu_idx, fi); 9097 if (fi->type != ARMFault_None) { 9098 goto do_fault; 9099 } 9100 type = (desc & 3); 9101 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9102 /* Section translation fault, or attempt to use the encoding 9103 * which is Reserved on implementations without PXN. 9104 */ 9105 fi->type = ARMFault_Translation; 9106 goto do_fault; 9107 } 9108 if ((type == 1) || !(desc & (1 << 18))) { 9109 /* Page or Section. */ 9110 domain = (desc >> 5) & 0x0f; 9111 } 9112 if (regime_el(env, mmu_idx) == 1) { 9113 dacr = env->cp15.dacr_ns; 9114 } else { 9115 dacr = env->cp15.dacr_s; 9116 } 9117 if (type == 1) { 9118 level = 2; 9119 } 9120 domain_prot = (dacr >> (domain * 2)) & 3; 9121 if (domain_prot == 0 || domain_prot == 2) { 9122 /* Section or Page domain fault */ 9123 fi->type = ARMFault_Domain; 9124 goto do_fault; 9125 } 9126 if (type != 1) { 9127 if (desc & (1 << 18)) { 9128 /* Supersection. */ 9129 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9130 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9131 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9132 *page_size = 0x1000000; 9133 } else { 9134 /* Section. */ 9135 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9136 *page_size = 0x100000; 9137 } 9138 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9139 xn = desc & (1 << 4); 9140 pxn = desc & 1; 9141 ns = extract32(desc, 19, 1); 9142 } else { 9143 if (arm_feature(env, ARM_FEATURE_PXN)) { 9144 pxn = (desc >> 2) & 1; 9145 } 9146 ns = extract32(desc, 3, 1); 9147 /* Lookup l2 entry. */ 9148 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9149 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9150 mmu_idx, fi); 9151 if (fi->type != ARMFault_None) { 9152 goto do_fault; 9153 } 9154 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9155 switch (desc & 3) { 9156 case 0: /* Page translation fault. */ 9157 fi->type = ARMFault_Translation; 9158 goto do_fault; 9159 case 1: /* 64k page. */ 9160 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9161 xn = desc & (1 << 15); 9162 *page_size = 0x10000; 9163 break; 9164 case 2: case 3: /* 4k page. */ 9165 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9166 xn = desc & 1; 9167 *page_size = 0x1000; 9168 break; 9169 default: 9170 /* Never happens, but compiler isn't smart enough to tell. */ 9171 abort(); 9172 } 9173 } 9174 if (domain_prot == 3) { 9175 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9176 } else { 9177 if (pxn && !regime_is_user(env, mmu_idx)) { 9178 xn = 1; 9179 } 9180 if (xn && access_type == MMU_INST_FETCH) { 9181 fi->type = ARMFault_Permission; 9182 goto do_fault; 9183 } 9184 9185 if (arm_feature(env, ARM_FEATURE_V6K) && 9186 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9187 /* The simplified model uses AP[0] as an access control bit. */ 9188 if ((ap & 1) == 0) { 9189 /* Access flag fault. */ 9190 fi->type = ARMFault_AccessFlag; 9191 goto do_fault; 9192 } 9193 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9194 } else { 9195 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9196 } 9197 if (*prot && !xn) { 9198 *prot |= PAGE_EXEC; 9199 } 9200 if (!(*prot & (1 << access_type))) { 9201 /* Access permission fault. */ 9202 fi->type = ARMFault_Permission; 9203 goto do_fault; 9204 } 9205 } 9206 if (ns) { 9207 /* The NS bit will (as required by the architecture) have no effect if 9208 * the CPU doesn't support TZ or this is a non-secure translation 9209 * regime, because the attribute will already be non-secure. 9210 */ 9211 attrs->secure = false; 9212 } 9213 *phys_ptr = phys_addr; 9214 return false; 9215 do_fault: 9216 fi->domain = domain; 9217 fi->level = level; 9218 return true; 9219 } 9220 9221 /* 9222 * check_s2_mmu_setup 9223 * @cpu: ARMCPU 9224 * @is_aa64: True if the translation regime is in AArch64 state 9225 * @startlevel: Suggested starting level 9226 * @inputsize: Bitsize of IPAs 9227 * @stride: Page-table stride (See the ARM ARM) 9228 * 9229 * Returns true if the suggested S2 translation parameters are OK and 9230 * false otherwise. 9231 */ 9232 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9233 int inputsize, int stride) 9234 { 9235 const int grainsize = stride + 3; 9236 int startsizecheck; 9237 9238 /* Negative levels are never allowed. */ 9239 if (level < 0) { 9240 return false; 9241 } 9242 9243 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9244 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9245 return false; 9246 } 9247 9248 if (is_aa64) { 9249 CPUARMState *env = &cpu->env; 9250 unsigned int pamax = arm_pamax(cpu); 9251 9252 switch (stride) { 9253 case 13: /* 64KB Pages. */ 9254 if (level == 0 || (level == 1 && pamax <= 42)) { 9255 return false; 9256 } 9257 break; 9258 case 11: /* 16KB Pages. */ 9259 if (level == 0 || (level == 1 && pamax <= 40)) { 9260 return false; 9261 } 9262 break; 9263 case 9: /* 4KB Pages. */ 9264 if (level == 0 && pamax <= 42) { 9265 return false; 9266 } 9267 break; 9268 default: 9269 g_assert_not_reached(); 9270 } 9271 9272 /* Inputsize checks. */ 9273 if (inputsize > pamax && 9274 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9275 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9276 return false; 9277 } 9278 } else { 9279 /* AArch32 only supports 4KB pages. Assert on that. */ 9280 assert(stride == 9); 9281 9282 if (level == 0) { 9283 return false; 9284 } 9285 } 9286 return true; 9287 } 9288 9289 /* Translate from the 4-bit stage 2 representation of 9290 * memory attributes (without cache-allocation hints) to 9291 * the 8-bit representation of the stage 1 MAIR registers 9292 * (which includes allocation hints). 9293 * 9294 * ref: shared/translation/attrs/S2AttrDecode() 9295 * .../S2ConvertAttrsHints() 9296 */ 9297 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9298 { 9299 uint8_t hiattr = extract32(s2attrs, 2, 2); 9300 uint8_t loattr = extract32(s2attrs, 0, 2); 9301 uint8_t hihint = 0, lohint = 0; 9302 9303 if (hiattr != 0) { /* normal memory */ 9304 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9305 hiattr = loattr = 1; /* non-cacheable */ 9306 } else { 9307 if (hiattr != 1) { /* Write-through or write-back */ 9308 hihint = 3; /* RW allocate */ 9309 } 9310 if (loattr != 1) { /* Write-through or write-back */ 9311 lohint = 3; /* RW allocate */ 9312 } 9313 } 9314 } 9315 9316 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9317 } 9318 #endif /* !CONFIG_USER_ONLY */ 9319 9320 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 9321 ARMMMUIdx mmu_idx) 9322 { 9323 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9324 uint32_t el = regime_el(env, mmu_idx); 9325 bool tbi, tbid, epd, hpd, using16k, using64k; 9326 int select, tsz; 9327 9328 /* 9329 * Bit 55 is always between the two regions, and is canonical for 9330 * determining if address tagging is enabled. 9331 */ 9332 select = extract64(va, 55, 1); 9333 9334 if (el > 1) { 9335 tsz = extract32(tcr, 0, 6); 9336 using64k = extract32(tcr, 14, 1); 9337 using16k = extract32(tcr, 15, 1); 9338 if (mmu_idx == ARMMMUIdx_S2NS) { 9339 /* VTCR_EL2 */ 9340 tbi = tbid = hpd = false; 9341 } else { 9342 tbi = extract32(tcr, 20, 1); 9343 hpd = extract32(tcr, 24, 1); 9344 tbid = extract32(tcr, 29, 1); 9345 } 9346 epd = false; 9347 } else if (!select) { 9348 tsz = extract32(tcr, 0, 6); 9349 epd = extract32(tcr, 7, 1); 9350 using64k = extract32(tcr, 14, 1); 9351 using16k = extract32(tcr, 15, 1); 9352 tbi = extract64(tcr, 37, 1); 9353 hpd = extract64(tcr, 41, 1); 9354 tbid = extract64(tcr, 51, 1); 9355 } else { 9356 int tg = extract32(tcr, 30, 2); 9357 using16k = tg == 1; 9358 using64k = tg == 3; 9359 tsz = extract32(tcr, 16, 6); 9360 epd = extract32(tcr, 23, 1); 9361 tbi = extract64(tcr, 38, 1); 9362 hpd = extract64(tcr, 42, 1); 9363 tbid = extract64(tcr, 52, 1); 9364 } 9365 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 9366 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 9367 9368 return (ARMVAParameters) { 9369 .tsz = tsz, 9370 .select = select, 9371 .tbi = tbi, 9372 .tbid = tbid, 9373 .epd = epd, 9374 .hpd = hpd, 9375 .using16k = using16k, 9376 .using64k = using64k, 9377 }; 9378 } 9379 9380 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 9381 ARMMMUIdx mmu_idx, bool data) 9382 { 9383 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 9384 9385 /* Present TBI as a composite with TBID. */ 9386 ret.tbi &= (data || !ret.tbid); 9387 return ret; 9388 } 9389 9390 #ifndef CONFIG_USER_ONLY 9391 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 9392 ARMMMUIdx mmu_idx) 9393 { 9394 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9395 uint32_t el = regime_el(env, mmu_idx); 9396 int select, tsz; 9397 bool epd, hpd; 9398 9399 if (mmu_idx == ARMMMUIdx_S2NS) { 9400 /* VTCR */ 9401 bool sext = extract32(tcr, 4, 1); 9402 bool sign = extract32(tcr, 3, 1); 9403 9404 /* 9405 * If the sign-extend bit is not the same as t0sz[3], the result 9406 * is unpredictable. Flag this as a guest error. 9407 */ 9408 if (sign != sext) { 9409 qemu_log_mask(LOG_GUEST_ERROR, 9410 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9411 } 9412 tsz = sextract32(tcr, 0, 4) + 8; 9413 select = 0; 9414 hpd = false; 9415 epd = false; 9416 } else if (el == 2) { 9417 /* HTCR */ 9418 tsz = extract32(tcr, 0, 3); 9419 select = 0; 9420 hpd = extract64(tcr, 24, 1); 9421 epd = false; 9422 } else { 9423 int t0sz = extract32(tcr, 0, 3); 9424 int t1sz = extract32(tcr, 16, 3); 9425 9426 if (t1sz == 0) { 9427 select = va > (0xffffffffu >> t0sz); 9428 } else { 9429 /* Note that we will detect errors later. */ 9430 select = va >= ~(0xffffffffu >> t1sz); 9431 } 9432 if (!select) { 9433 tsz = t0sz; 9434 epd = extract32(tcr, 7, 1); 9435 hpd = extract64(tcr, 41, 1); 9436 } else { 9437 tsz = t1sz; 9438 epd = extract32(tcr, 23, 1); 9439 hpd = extract64(tcr, 42, 1); 9440 } 9441 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9442 hpd &= extract32(tcr, 6, 1); 9443 } 9444 9445 return (ARMVAParameters) { 9446 .tsz = tsz, 9447 .select = select, 9448 .epd = epd, 9449 .hpd = hpd, 9450 }; 9451 } 9452 9453 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9454 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9455 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9456 target_ulong *page_size_ptr, 9457 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9458 { 9459 ARMCPU *cpu = env_archcpu(env); 9460 CPUState *cs = CPU(cpu); 9461 /* Read an LPAE long-descriptor translation table. */ 9462 ARMFaultType fault_type = ARMFault_Translation; 9463 uint32_t level; 9464 ARMVAParameters param; 9465 uint64_t ttbr; 9466 hwaddr descaddr, indexmask, indexmask_grainsize; 9467 uint32_t tableattrs; 9468 target_ulong page_size; 9469 uint32_t attrs; 9470 int32_t stride; 9471 int addrsize, inputsize; 9472 TCR *tcr = regime_tcr(env, mmu_idx); 9473 int ap, ns, xn, pxn; 9474 uint32_t el = regime_el(env, mmu_idx); 9475 bool ttbr1_valid; 9476 uint64_t descaddrmask; 9477 bool aarch64 = arm_el_is_aa64(env, el); 9478 bool guarded = false; 9479 9480 /* TODO: 9481 * This code does not handle the different format TCR for VTCR_EL2. 9482 * This code also does not support shareability levels. 9483 * Attribute and permission bit handling should also be checked when adding 9484 * support for those page table walks. 9485 */ 9486 if (aarch64) { 9487 param = aa64_va_parameters(env, address, mmu_idx, 9488 access_type != MMU_INST_FETCH); 9489 level = 0; 9490 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9491 * invalid. 9492 */ 9493 ttbr1_valid = (el < 2); 9494 addrsize = 64 - 8 * param.tbi; 9495 inputsize = 64 - param.tsz; 9496 } else { 9497 param = aa32_va_parameters(env, address, mmu_idx); 9498 level = 1; 9499 /* There is no TTBR1 for EL2 */ 9500 ttbr1_valid = (el != 2); 9501 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 9502 inputsize = addrsize - param.tsz; 9503 } 9504 9505 /* 9506 * We determined the region when collecting the parameters, but we 9507 * have not yet validated that the address is valid for the region. 9508 * Extract the top bits and verify that they all match select. 9509 * 9510 * For aa32, if inputsize == addrsize, then we have selected the 9511 * region by exclusion in aa32_va_parameters and there is no more 9512 * validation to do here. 9513 */ 9514 if (inputsize < addrsize) { 9515 target_ulong top_bits = sextract64(address, inputsize, 9516 addrsize - inputsize); 9517 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 9518 /* The gap between the two regions is a Translation fault */ 9519 fault_type = ARMFault_Translation; 9520 goto do_fault; 9521 } 9522 } 9523 9524 if (param.using64k) { 9525 stride = 13; 9526 } else if (param.using16k) { 9527 stride = 11; 9528 } else { 9529 stride = 9; 9530 } 9531 9532 /* Note that QEMU ignores shareability and cacheability attributes, 9533 * so we don't need to do anything with the SH, ORGN, IRGN fields 9534 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9535 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9536 * implement any ASID-like capability so we can ignore it (instead 9537 * we will always flush the TLB any time the ASID is changed). 9538 */ 9539 ttbr = regime_ttbr(env, mmu_idx, param.select); 9540 9541 /* Here we should have set up all the parameters for the translation: 9542 * inputsize, ttbr, epd, stride, tbi 9543 */ 9544 9545 if (param.epd) { 9546 /* Translation table walk disabled => Translation fault on TLB miss 9547 * Note: This is always 0 on 64-bit EL2 and EL3. 9548 */ 9549 goto do_fault; 9550 } 9551 9552 if (mmu_idx != ARMMMUIdx_S2NS) { 9553 /* The starting level depends on the virtual address size (which can 9554 * be up to 48 bits) and the translation granule size. It indicates 9555 * the number of strides (stride bits at a time) needed to 9556 * consume the bits of the input address. In the pseudocode this is: 9557 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9558 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9559 * our 'stride + 3' and 'stride' is our 'stride'. 9560 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9561 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9562 * = 4 - (inputsize - 4) / stride; 9563 */ 9564 level = 4 - (inputsize - 4) / stride; 9565 } else { 9566 /* For stage 2 translations the starting level is specified by the 9567 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9568 */ 9569 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9570 uint32_t startlevel; 9571 bool ok; 9572 9573 if (!aarch64 || stride == 9) { 9574 /* AArch32 or 4KB pages */ 9575 startlevel = 2 - sl0; 9576 } else { 9577 /* 16KB or 64KB pages */ 9578 startlevel = 3 - sl0; 9579 } 9580 9581 /* Check that the starting level is valid. */ 9582 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9583 inputsize, stride); 9584 if (!ok) { 9585 fault_type = ARMFault_Translation; 9586 goto do_fault; 9587 } 9588 level = startlevel; 9589 } 9590 9591 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9592 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9593 9594 /* Now we can extract the actual base address from the TTBR */ 9595 descaddr = extract64(ttbr, 0, 48); 9596 descaddr &= ~indexmask; 9597 9598 /* The address field in the descriptor goes up to bit 39 for ARMv7 9599 * but up to bit 47 for ARMv8, but we use the descaddrmask 9600 * up to bit 39 for AArch32, because we don't need other bits in that case 9601 * to construct next descriptor address (anyway they should be all zeroes). 9602 */ 9603 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9604 ~indexmask_grainsize; 9605 9606 /* Secure accesses start with the page table in secure memory and 9607 * can be downgraded to non-secure at any step. Non-secure accesses 9608 * remain non-secure. We implement this by just ORing in the NSTable/NS 9609 * bits at each step. 9610 */ 9611 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9612 for (;;) { 9613 uint64_t descriptor; 9614 bool nstable; 9615 9616 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9617 descaddr &= ~7ULL; 9618 nstable = extract32(tableattrs, 4, 1); 9619 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9620 if (fi->type != ARMFault_None) { 9621 goto do_fault; 9622 } 9623 9624 if (!(descriptor & 1) || 9625 (!(descriptor & 2) && (level == 3))) { 9626 /* Invalid, or the Reserved level 3 encoding */ 9627 goto do_fault; 9628 } 9629 descaddr = descriptor & descaddrmask; 9630 9631 if ((descriptor & 2) && (level < 3)) { 9632 /* Table entry. The top five bits are attributes which may 9633 * propagate down through lower levels of the table (and 9634 * which are all arranged so that 0 means "no effect", so 9635 * we can gather them up by ORing in the bits at each level). 9636 */ 9637 tableattrs |= extract64(descriptor, 59, 5); 9638 level++; 9639 indexmask = indexmask_grainsize; 9640 continue; 9641 } 9642 /* Block entry at level 1 or 2, or page entry at level 3. 9643 * These are basically the same thing, although the number 9644 * of bits we pull in from the vaddr varies. 9645 */ 9646 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9647 descaddr |= (address & (page_size - 1)); 9648 /* Extract attributes from the descriptor */ 9649 attrs = extract64(descriptor, 2, 10) 9650 | (extract64(descriptor, 52, 12) << 10); 9651 9652 if (mmu_idx == ARMMMUIdx_S2NS) { 9653 /* Stage 2 table descriptors do not include any attribute fields */ 9654 break; 9655 } 9656 /* Merge in attributes from table descriptors */ 9657 attrs |= nstable << 3; /* NS */ 9658 guarded = extract64(descriptor, 50, 1); /* GP */ 9659 if (param.hpd) { 9660 /* HPD disables all the table attributes except NSTable. */ 9661 break; 9662 } 9663 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9664 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9665 * means "force PL1 access only", which means forcing AP[1] to 0. 9666 */ 9667 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 9668 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 9669 break; 9670 } 9671 /* Here descaddr is the final physical address, and attributes 9672 * are all in attrs. 9673 */ 9674 fault_type = ARMFault_AccessFlag; 9675 if ((attrs & (1 << 8)) == 0) { 9676 /* Access flag */ 9677 goto do_fault; 9678 } 9679 9680 ap = extract32(attrs, 4, 2); 9681 xn = extract32(attrs, 12, 1); 9682 9683 if (mmu_idx == ARMMMUIdx_S2NS) { 9684 ns = true; 9685 *prot = get_S2prot(env, ap, xn); 9686 } else { 9687 ns = extract32(attrs, 3, 1); 9688 pxn = extract32(attrs, 11, 1); 9689 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9690 } 9691 9692 fault_type = ARMFault_Permission; 9693 if (!(*prot & (1 << access_type))) { 9694 goto do_fault; 9695 } 9696 9697 if (ns) { 9698 /* The NS bit will (as required by the architecture) have no effect if 9699 * the CPU doesn't support TZ or this is a non-secure translation 9700 * regime, because the attribute will already be non-secure. 9701 */ 9702 txattrs->secure = false; 9703 } 9704 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 9705 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 9706 txattrs->target_tlb_bit0 = true; 9707 } 9708 9709 if (cacheattrs != NULL) { 9710 if (mmu_idx == ARMMMUIdx_S2NS) { 9711 cacheattrs->attrs = convert_stage2_attrs(env, 9712 extract32(attrs, 0, 4)); 9713 } else { 9714 /* Index into MAIR registers for cache attributes */ 9715 uint8_t attrindx = extract32(attrs, 0, 3); 9716 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9717 assert(attrindx <= 7); 9718 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9719 } 9720 cacheattrs->shareability = extract32(attrs, 6, 2); 9721 } 9722 9723 *phys_ptr = descaddr; 9724 *page_size_ptr = page_size; 9725 return false; 9726 9727 do_fault: 9728 fi->type = fault_type; 9729 fi->level = level; 9730 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9731 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9732 return true; 9733 } 9734 9735 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9736 ARMMMUIdx mmu_idx, 9737 int32_t address, int *prot) 9738 { 9739 if (!arm_feature(env, ARM_FEATURE_M)) { 9740 *prot = PAGE_READ | PAGE_WRITE; 9741 switch (address) { 9742 case 0xF0000000 ... 0xFFFFFFFF: 9743 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9744 /* hivecs execing is ok */ 9745 *prot |= PAGE_EXEC; 9746 } 9747 break; 9748 case 0x00000000 ... 0x7FFFFFFF: 9749 *prot |= PAGE_EXEC; 9750 break; 9751 } 9752 } else { 9753 /* Default system address map for M profile cores. 9754 * The architecture specifies which regions are execute-never; 9755 * at the MPU level no other checks are defined. 9756 */ 9757 switch (address) { 9758 case 0x00000000 ... 0x1fffffff: /* ROM */ 9759 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9760 case 0x60000000 ... 0x7fffffff: /* RAM */ 9761 case 0x80000000 ... 0x9fffffff: /* RAM */ 9762 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9763 break; 9764 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9765 case 0xa0000000 ... 0xbfffffff: /* Device */ 9766 case 0xc0000000 ... 0xdfffffff: /* Device */ 9767 case 0xe0000000 ... 0xffffffff: /* System */ 9768 *prot = PAGE_READ | PAGE_WRITE; 9769 break; 9770 default: 9771 g_assert_not_reached(); 9772 } 9773 } 9774 } 9775 9776 static bool pmsav7_use_background_region(ARMCPU *cpu, 9777 ARMMMUIdx mmu_idx, bool is_user) 9778 { 9779 /* Return true if we should use the default memory map as a 9780 * "background" region if there are no hits against any MPU regions. 9781 */ 9782 CPUARMState *env = &cpu->env; 9783 9784 if (is_user) { 9785 return false; 9786 } 9787 9788 if (arm_feature(env, ARM_FEATURE_M)) { 9789 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9790 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9791 } else { 9792 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9793 } 9794 } 9795 9796 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9797 { 9798 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9799 return arm_feature(env, ARM_FEATURE_M) && 9800 extract32(address, 20, 12) == 0xe00; 9801 } 9802 9803 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9804 { 9805 /* True if address is in the M profile system region 9806 * 0xe0000000 - 0xffffffff 9807 */ 9808 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9809 } 9810 9811 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9812 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9813 hwaddr *phys_ptr, int *prot, 9814 target_ulong *page_size, 9815 ARMMMUFaultInfo *fi) 9816 { 9817 ARMCPU *cpu = env_archcpu(env); 9818 int n; 9819 bool is_user = regime_is_user(env, mmu_idx); 9820 9821 *phys_ptr = address; 9822 *page_size = TARGET_PAGE_SIZE; 9823 *prot = 0; 9824 9825 if (regime_translation_disabled(env, mmu_idx) || 9826 m_is_ppb_region(env, address)) { 9827 /* MPU disabled or M profile PPB access: use default memory map. 9828 * The other case which uses the default memory map in the 9829 * v7M ARM ARM pseudocode is exception vector reads from the vector 9830 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9831 * which always does a direct read using address_space_ldl(), rather 9832 * than going via this function, so we don't need to check that here. 9833 */ 9834 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9835 } else { /* MPU enabled */ 9836 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9837 /* region search */ 9838 uint32_t base = env->pmsav7.drbar[n]; 9839 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9840 uint32_t rmask; 9841 bool srdis = false; 9842 9843 if (!(env->pmsav7.drsr[n] & 0x1)) { 9844 continue; 9845 } 9846 9847 if (!rsize) { 9848 qemu_log_mask(LOG_GUEST_ERROR, 9849 "DRSR[%d]: Rsize field cannot be 0\n", n); 9850 continue; 9851 } 9852 rsize++; 9853 rmask = (1ull << rsize) - 1; 9854 9855 if (base & rmask) { 9856 qemu_log_mask(LOG_GUEST_ERROR, 9857 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9858 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9859 n, base, rmask); 9860 continue; 9861 } 9862 9863 if (address < base || address > base + rmask) { 9864 /* 9865 * Address not in this region. We must check whether the 9866 * region covers addresses in the same page as our address. 9867 * In that case we must not report a size that covers the 9868 * whole page for a subsequent hit against a different MPU 9869 * region or the background region, because it would result in 9870 * incorrect TLB hits for subsequent accesses to addresses that 9871 * are in this MPU region. 9872 */ 9873 if (ranges_overlap(base, rmask, 9874 address & TARGET_PAGE_MASK, 9875 TARGET_PAGE_SIZE)) { 9876 *page_size = 1; 9877 } 9878 continue; 9879 } 9880 9881 /* Region matched */ 9882 9883 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9884 int i, snd; 9885 uint32_t srdis_mask; 9886 9887 rsize -= 3; /* sub region size (power of 2) */ 9888 snd = ((address - base) >> rsize) & 0x7; 9889 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9890 9891 srdis_mask = srdis ? 0x3 : 0x0; 9892 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9893 /* This will check in groups of 2, 4 and then 8, whether 9894 * the subregion bits are consistent. rsize is incremented 9895 * back up to give the region size, considering consistent 9896 * adjacent subregions as one region. Stop testing if rsize 9897 * is already big enough for an entire QEMU page. 9898 */ 9899 int snd_rounded = snd & ~(i - 1); 9900 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9901 snd_rounded + 8, i); 9902 if (srdis_mask ^ srdis_multi) { 9903 break; 9904 } 9905 srdis_mask = (srdis_mask << i) | srdis_mask; 9906 rsize++; 9907 } 9908 } 9909 if (srdis) { 9910 continue; 9911 } 9912 if (rsize < TARGET_PAGE_BITS) { 9913 *page_size = 1 << rsize; 9914 } 9915 break; 9916 } 9917 9918 if (n == -1) { /* no hits */ 9919 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9920 /* background fault */ 9921 fi->type = ARMFault_Background; 9922 return true; 9923 } 9924 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9925 } else { /* a MPU hit! */ 9926 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9927 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9928 9929 if (m_is_system_region(env, address)) { 9930 /* System space is always execute never */ 9931 xn = 1; 9932 } 9933 9934 if (is_user) { /* User mode AP bit decoding */ 9935 switch (ap) { 9936 case 0: 9937 case 1: 9938 case 5: 9939 break; /* no access */ 9940 case 3: 9941 *prot |= PAGE_WRITE; 9942 /* fall through */ 9943 case 2: 9944 case 6: 9945 *prot |= PAGE_READ | PAGE_EXEC; 9946 break; 9947 case 7: 9948 /* for v7M, same as 6; for R profile a reserved value */ 9949 if (arm_feature(env, ARM_FEATURE_M)) { 9950 *prot |= PAGE_READ | PAGE_EXEC; 9951 break; 9952 } 9953 /* fall through */ 9954 default: 9955 qemu_log_mask(LOG_GUEST_ERROR, 9956 "DRACR[%d]: Bad value for AP bits: 0x%" 9957 PRIx32 "\n", n, ap); 9958 } 9959 } else { /* Priv. mode AP bits decoding */ 9960 switch (ap) { 9961 case 0: 9962 break; /* no access */ 9963 case 1: 9964 case 2: 9965 case 3: 9966 *prot |= PAGE_WRITE; 9967 /* fall through */ 9968 case 5: 9969 case 6: 9970 *prot |= PAGE_READ | PAGE_EXEC; 9971 break; 9972 case 7: 9973 /* for v7M, same as 6; for R profile a reserved value */ 9974 if (arm_feature(env, ARM_FEATURE_M)) { 9975 *prot |= PAGE_READ | PAGE_EXEC; 9976 break; 9977 } 9978 /* fall through */ 9979 default: 9980 qemu_log_mask(LOG_GUEST_ERROR, 9981 "DRACR[%d]: Bad value for AP bits: 0x%" 9982 PRIx32 "\n", n, ap); 9983 } 9984 } 9985 9986 /* execute never */ 9987 if (xn) { 9988 *prot &= ~PAGE_EXEC; 9989 } 9990 } 9991 } 9992 9993 fi->type = ARMFault_Permission; 9994 fi->level = 1; 9995 return !(*prot & (1 << access_type)); 9996 } 9997 9998 static bool v8m_is_sau_exempt(CPUARMState *env, 9999 uint32_t address, MMUAccessType access_type) 10000 { 10001 /* The architecture specifies that certain address ranges are 10002 * exempt from v8M SAU/IDAU checks. 10003 */ 10004 return 10005 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10006 (address >= 0xe0000000 && address <= 0xe0002fff) || 10007 (address >= 0xe000e000 && address <= 0xe000efff) || 10008 (address >= 0xe002e000 && address <= 0xe002efff) || 10009 (address >= 0xe0040000 && address <= 0xe0041fff) || 10010 (address >= 0xe00ff000 && address <= 0xe00fffff); 10011 } 10012 10013 void v8m_security_lookup(CPUARMState *env, uint32_t address, 10014 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10015 V8M_SAttributes *sattrs) 10016 { 10017 /* Look up the security attributes for this address. Compare the 10018 * pseudocode SecurityCheck() function. 10019 * We assume the caller has zero-initialized *sattrs. 10020 */ 10021 ARMCPU *cpu = env_archcpu(env); 10022 int r; 10023 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10024 int idau_region = IREGION_NOTVALID; 10025 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10026 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10027 10028 if (cpu->idau) { 10029 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10030 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10031 10032 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10033 &idau_nsc); 10034 } 10035 10036 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10037 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10038 return; 10039 } 10040 10041 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10042 sattrs->ns = !regime_is_secure(env, mmu_idx); 10043 return; 10044 } 10045 10046 if (idau_region != IREGION_NOTVALID) { 10047 sattrs->irvalid = true; 10048 sattrs->iregion = idau_region; 10049 } 10050 10051 switch (env->sau.ctrl & 3) { 10052 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10053 break; 10054 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10055 sattrs->ns = true; 10056 break; 10057 default: /* SAU.ENABLE == 1 */ 10058 for (r = 0; r < cpu->sau_sregion; r++) { 10059 if (env->sau.rlar[r] & 1) { 10060 uint32_t base = env->sau.rbar[r] & ~0x1f; 10061 uint32_t limit = env->sau.rlar[r] | 0x1f; 10062 10063 if (base <= address && limit >= address) { 10064 if (base > addr_page_base || limit < addr_page_limit) { 10065 sattrs->subpage = true; 10066 } 10067 if (sattrs->srvalid) { 10068 /* If we hit in more than one region then we must report 10069 * as Secure, not NS-Callable, with no valid region 10070 * number info. 10071 */ 10072 sattrs->ns = false; 10073 sattrs->nsc = false; 10074 sattrs->sregion = 0; 10075 sattrs->srvalid = false; 10076 break; 10077 } else { 10078 if (env->sau.rlar[r] & 2) { 10079 sattrs->nsc = true; 10080 } else { 10081 sattrs->ns = true; 10082 } 10083 sattrs->srvalid = true; 10084 sattrs->sregion = r; 10085 } 10086 } else { 10087 /* 10088 * Address not in this region. We must check whether the 10089 * region covers addresses in the same page as our address. 10090 * In that case we must not report a size that covers the 10091 * whole page for a subsequent hit against a different MPU 10092 * region or the background region, because it would result 10093 * in incorrect TLB hits for subsequent accesses to 10094 * addresses that are in this MPU region. 10095 */ 10096 if (limit >= base && 10097 ranges_overlap(base, limit - base + 1, 10098 addr_page_base, 10099 TARGET_PAGE_SIZE)) { 10100 sattrs->subpage = true; 10101 } 10102 } 10103 } 10104 } 10105 break; 10106 } 10107 10108 /* 10109 * The IDAU will override the SAU lookup results if it specifies 10110 * higher security than the SAU does. 10111 */ 10112 if (!idau_ns) { 10113 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10114 sattrs->ns = false; 10115 sattrs->nsc = idau_nsc; 10116 } 10117 } 10118 } 10119 10120 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10121 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10122 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10123 int *prot, bool *is_subpage, 10124 ARMMMUFaultInfo *fi, uint32_t *mregion) 10125 { 10126 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10127 * that a full phys-to-virt translation does). 10128 * mregion is (if not NULL) set to the region number which matched, 10129 * or -1 if no region number is returned (MPU off, address did not 10130 * hit a region, address hit in multiple regions). 10131 * We set is_subpage to true if the region hit doesn't cover the 10132 * entire TARGET_PAGE the address is within. 10133 */ 10134 ARMCPU *cpu = env_archcpu(env); 10135 bool is_user = regime_is_user(env, mmu_idx); 10136 uint32_t secure = regime_is_secure(env, mmu_idx); 10137 int n; 10138 int matchregion = -1; 10139 bool hit = false; 10140 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10141 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10142 10143 *is_subpage = false; 10144 *phys_ptr = address; 10145 *prot = 0; 10146 if (mregion) { 10147 *mregion = -1; 10148 } 10149 10150 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10151 * was an exception vector read from the vector table (which is always 10152 * done using the default system address map), because those accesses 10153 * are done in arm_v7m_load_vector(), which always does a direct 10154 * read using address_space_ldl(), rather than going via this function. 10155 */ 10156 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10157 hit = true; 10158 } else if (m_is_ppb_region(env, address)) { 10159 hit = true; 10160 } else { 10161 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10162 hit = true; 10163 } 10164 10165 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10166 /* region search */ 10167 /* Note that the base address is bits [31:5] from the register 10168 * with bits [4:0] all zeroes, but the limit address is bits 10169 * [31:5] from the register with bits [4:0] all ones. 10170 */ 10171 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10172 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10173 10174 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10175 /* Region disabled */ 10176 continue; 10177 } 10178 10179 if (address < base || address > limit) { 10180 /* 10181 * Address not in this region. We must check whether the 10182 * region covers addresses in the same page as our address. 10183 * In that case we must not report a size that covers the 10184 * whole page for a subsequent hit against a different MPU 10185 * region or the background region, because it would result in 10186 * incorrect TLB hits for subsequent accesses to addresses that 10187 * are in this MPU region. 10188 */ 10189 if (limit >= base && 10190 ranges_overlap(base, limit - base + 1, 10191 addr_page_base, 10192 TARGET_PAGE_SIZE)) { 10193 *is_subpage = true; 10194 } 10195 continue; 10196 } 10197 10198 if (base > addr_page_base || limit < addr_page_limit) { 10199 *is_subpage = true; 10200 } 10201 10202 if (matchregion != -1) { 10203 /* Multiple regions match -- always a failure (unlike 10204 * PMSAv7 where highest-numbered-region wins) 10205 */ 10206 fi->type = ARMFault_Permission; 10207 fi->level = 1; 10208 return true; 10209 } 10210 10211 matchregion = n; 10212 hit = true; 10213 } 10214 } 10215 10216 if (!hit) { 10217 /* background fault */ 10218 fi->type = ARMFault_Background; 10219 return true; 10220 } 10221 10222 if (matchregion == -1) { 10223 /* hit using the background region */ 10224 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10225 } else { 10226 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10227 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10228 10229 if (m_is_system_region(env, address)) { 10230 /* System space is always execute never */ 10231 xn = 1; 10232 } 10233 10234 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10235 if (*prot && !xn) { 10236 *prot |= PAGE_EXEC; 10237 } 10238 /* We don't need to look the attribute up in the MAIR0/MAIR1 10239 * registers because that only tells us about cacheability. 10240 */ 10241 if (mregion) { 10242 *mregion = matchregion; 10243 } 10244 } 10245 10246 fi->type = ARMFault_Permission; 10247 fi->level = 1; 10248 return !(*prot & (1 << access_type)); 10249 } 10250 10251 10252 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10253 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10254 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10255 int *prot, target_ulong *page_size, 10256 ARMMMUFaultInfo *fi) 10257 { 10258 uint32_t secure = regime_is_secure(env, mmu_idx); 10259 V8M_SAttributes sattrs = {}; 10260 bool ret; 10261 bool mpu_is_subpage; 10262 10263 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10264 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10265 if (access_type == MMU_INST_FETCH) { 10266 /* Instruction fetches always use the MMU bank and the 10267 * transaction attribute determined by the fetch address, 10268 * regardless of CPU state. This is painful for QEMU 10269 * to handle, because it would mean we need to encode 10270 * into the mmu_idx not just the (user, negpri) information 10271 * for the current security state but also that for the 10272 * other security state, which would balloon the number 10273 * of mmu_idx values needed alarmingly. 10274 * Fortunately we can avoid this because it's not actually 10275 * possible to arbitrarily execute code from memory with 10276 * the wrong security attribute: it will always generate 10277 * an exception of some kind or another, apart from the 10278 * special case of an NS CPU executing an SG instruction 10279 * in S&NSC memory. So we always just fail the translation 10280 * here and sort things out in the exception handler 10281 * (including possibly emulating an SG instruction). 10282 */ 10283 if (sattrs.ns != !secure) { 10284 if (sattrs.nsc) { 10285 fi->type = ARMFault_QEMU_NSCExec; 10286 } else { 10287 fi->type = ARMFault_QEMU_SFault; 10288 } 10289 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10290 *phys_ptr = address; 10291 *prot = 0; 10292 return true; 10293 } 10294 } else { 10295 /* For data accesses we always use the MMU bank indicated 10296 * by the current CPU state, but the security attributes 10297 * might downgrade a secure access to nonsecure. 10298 */ 10299 if (sattrs.ns) { 10300 txattrs->secure = false; 10301 } else if (!secure) { 10302 /* NS access to S memory must fault. 10303 * Architecturally we should first check whether the 10304 * MPU information for this address indicates that we 10305 * are doing an unaligned access to Device memory, which 10306 * should generate a UsageFault instead. QEMU does not 10307 * currently check for that kind of unaligned access though. 10308 * If we added it we would need to do so as a special case 10309 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10310 */ 10311 fi->type = ARMFault_QEMU_SFault; 10312 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10313 *phys_ptr = address; 10314 *prot = 0; 10315 return true; 10316 } 10317 } 10318 } 10319 10320 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10321 txattrs, prot, &mpu_is_subpage, fi, NULL); 10322 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10323 return ret; 10324 } 10325 10326 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10327 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10328 hwaddr *phys_ptr, int *prot, 10329 ARMMMUFaultInfo *fi) 10330 { 10331 int n; 10332 uint32_t mask; 10333 uint32_t base; 10334 bool is_user = regime_is_user(env, mmu_idx); 10335 10336 if (regime_translation_disabled(env, mmu_idx)) { 10337 /* MPU disabled. */ 10338 *phys_ptr = address; 10339 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10340 return false; 10341 } 10342 10343 *phys_ptr = address; 10344 for (n = 7; n >= 0; n--) { 10345 base = env->cp15.c6_region[n]; 10346 if ((base & 1) == 0) { 10347 continue; 10348 } 10349 mask = 1 << ((base >> 1) & 0x1f); 10350 /* Keep this shift separate from the above to avoid an 10351 (undefined) << 32. */ 10352 mask = (mask << 1) - 1; 10353 if (((base ^ address) & ~mask) == 0) { 10354 break; 10355 } 10356 } 10357 if (n < 0) { 10358 fi->type = ARMFault_Background; 10359 return true; 10360 } 10361 10362 if (access_type == MMU_INST_FETCH) { 10363 mask = env->cp15.pmsav5_insn_ap; 10364 } else { 10365 mask = env->cp15.pmsav5_data_ap; 10366 } 10367 mask = (mask >> (n * 4)) & 0xf; 10368 switch (mask) { 10369 case 0: 10370 fi->type = ARMFault_Permission; 10371 fi->level = 1; 10372 return true; 10373 case 1: 10374 if (is_user) { 10375 fi->type = ARMFault_Permission; 10376 fi->level = 1; 10377 return true; 10378 } 10379 *prot = PAGE_READ | PAGE_WRITE; 10380 break; 10381 case 2: 10382 *prot = PAGE_READ; 10383 if (!is_user) { 10384 *prot |= PAGE_WRITE; 10385 } 10386 break; 10387 case 3: 10388 *prot = PAGE_READ | PAGE_WRITE; 10389 break; 10390 case 5: 10391 if (is_user) { 10392 fi->type = ARMFault_Permission; 10393 fi->level = 1; 10394 return true; 10395 } 10396 *prot = PAGE_READ; 10397 break; 10398 case 6: 10399 *prot = PAGE_READ; 10400 break; 10401 default: 10402 /* Bad permission. */ 10403 fi->type = ARMFault_Permission; 10404 fi->level = 1; 10405 return true; 10406 } 10407 *prot |= PAGE_EXEC; 10408 return false; 10409 } 10410 10411 /* Combine either inner or outer cacheability attributes for normal 10412 * memory, according to table D4-42 and pseudocode procedure 10413 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10414 * 10415 * NB: only stage 1 includes allocation hints (RW bits), leading to 10416 * some asymmetry. 10417 */ 10418 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10419 { 10420 if (s1 == 4 || s2 == 4) { 10421 /* non-cacheable has precedence */ 10422 return 4; 10423 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10424 /* stage 1 write-through takes precedence */ 10425 return s1; 10426 } else if (extract32(s2, 2, 2) == 2) { 10427 /* stage 2 write-through takes precedence, but the allocation hint 10428 * is still taken from stage 1 10429 */ 10430 return (2 << 2) | extract32(s1, 0, 2); 10431 } else { /* write-back */ 10432 return s1; 10433 } 10434 } 10435 10436 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10437 * and CombineS1S2Desc() 10438 * 10439 * @s1: Attributes from stage 1 walk 10440 * @s2: Attributes from stage 2 walk 10441 */ 10442 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10443 { 10444 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10445 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10446 ARMCacheAttrs ret; 10447 10448 /* Combine shareability attributes (table D4-43) */ 10449 if (s1.shareability == 2 || s2.shareability == 2) { 10450 /* if either are outer-shareable, the result is outer-shareable */ 10451 ret.shareability = 2; 10452 } else if (s1.shareability == 3 || s2.shareability == 3) { 10453 /* if either are inner-shareable, the result is inner-shareable */ 10454 ret.shareability = 3; 10455 } else { 10456 /* both non-shareable */ 10457 ret.shareability = 0; 10458 } 10459 10460 /* Combine memory type and cacheability attributes */ 10461 if (s1hi == 0 || s2hi == 0) { 10462 /* Device has precedence over normal */ 10463 if (s1lo == 0 || s2lo == 0) { 10464 /* nGnRnE has precedence over anything */ 10465 ret.attrs = 0; 10466 } else if (s1lo == 4 || s2lo == 4) { 10467 /* non-Reordering has precedence over Reordering */ 10468 ret.attrs = 4; /* nGnRE */ 10469 } else if (s1lo == 8 || s2lo == 8) { 10470 /* non-Gathering has precedence over Gathering */ 10471 ret.attrs = 8; /* nGRE */ 10472 } else { 10473 ret.attrs = 0xc; /* GRE */ 10474 } 10475 10476 /* Any location for which the resultant memory type is any 10477 * type of Device memory is always treated as Outer Shareable. 10478 */ 10479 ret.shareability = 2; 10480 } else { /* Normal memory */ 10481 /* Outer/inner cacheability combine independently */ 10482 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10483 | combine_cacheattr_nibble(s1lo, s2lo); 10484 10485 if (ret.attrs == 0x44) { 10486 /* Any location for which the resultant memory type is Normal 10487 * Inner Non-cacheable, Outer Non-cacheable is always treated 10488 * as Outer Shareable. 10489 */ 10490 ret.shareability = 2; 10491 } 10492 } 10493 10494 return ret; 10495 } 10496 10497 10498 /* get_phys_addr - get the physical address for this virtual address 10499 * 10500 * Find the physical address corresponding to the given virtual address, 10501 * by doing a translation table walk on MMU based systems or using the 10502 * MPU state on MPU based systems. 10503 * 10504 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10505 * prot and page_size may not be filled in, and the populated fsr value provides 10506 * information on why the translation aborted, in the format of a 10507 * DFSR/IFSR fault register, with the following caveats: 10508 * * we honour the short vs long DFSR format differences. 10509 * * the WnR bit is never set (the caller must do this). 10510 * * for PSMAv5 based systems we don't bother to return a full FSR format 10511 * value. 10512 * 10513 * @env: CPUARMState 10514 * @address: virtual address to get physical address for 10515 * @access_type: 0 for read, 1 for write, 2 for execute 10516 * @mmu_idx: MMU index indicating required translation regime 10517 * @phys_ptr: set to the physical address corresponding to the virtual address 10518 * @attrs: set to the memory transaction attributes to use 10519 * @prot: set to the permissions for the page containing phys_ptr 10520 * @page_size: set to the size of the page containing phys_ptr 10521 * @fi: set to fault info if the translation fails 10522 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10523 */ 10524 bool get_phys_addr(CPUARMState *env, target_ulong address, 10525 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10526 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10527 target_ulong *page_size, 10528 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10529 { 10530 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10531 /* Call ourselves recursively to do the stage 1 and then stage 2 10532 * translations. 10533 */ 10534 if (arm_feature(env, ARM_FEATURE_EL2)) { 10535 hwaddr ipa; 10536 int s2_prot; 10537 int ret; 10538 ARMCacheAttrs cacheattrs2 = {}; 10539 10540 ret = get_phys_addr(env, address, access_type, 10541 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10542 prot, page_size, fi, cacheattrs); 10543 10544 /* If S1 fails or S2 is disabled, return early. */ 10545 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10546 *phys_ptr = ipa; 10547 return ret; 10548 } 10549 10550 /* S1 is done. Now do S2 translation. */ 10551 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10552 phys_ptr, attrs, &s2_prot, 10553 page_size, fi, 10554 cacheattrs != NULL ? &cacheattrs2 : NULL); 10555 fi->s2addr = ipa; 10556 /* Combine the S1 and S2 perms. */ 10557 *prot &= s2_prot; 10558 10559 /* Combine the S1 and S2 cache attributes, if needed */ 10560 if (!ret && cacheattrs != NULL) { 10561 if (env->cp15.hcr_el2 & HCR_DC) { 10562 /* 10563 * HCR.DC forces the first stage attributes to 10564 * Normal Non-Shareable, 10565 * Inner Write-Back Read-Allocate Write-Allocate, 10566 * Outer Write-Back Read-Allocate Write-Allocate. 10567 */ 10568 cacheattrs->attrs = 0xff; 10569 cacheattrs->shareability = 0; 10570 } 10571 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10572 } 10573 10574 return ret; 10575 } else { 10576 /* 10577 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10578 */ 10579 mmu_idx = stage_1_mmu_idx(mmu_idx); 10580 } 10581 } 10582 10583 /* The page table entries may downgrade secure to non-secure, but 10584 * cannot upgrade an non-secure translation regime's attributes 10585 * to secure. 10586 */ 10587 attrs->secure = regime_is_secure(env, mmu_idx); 10588 attrs->user = regime_is_user(env, mmu_idx); 10589 10590 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10591 * In v7 and earlier it affects all stage 1 translations. 10592 */ 10593 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10594 && !arm_feature(env, ARM_FEATURE_V8)) { 10595 if (regime_el(env, mmu_idx) == 3) { 10596 address += env->cp15.fcseidr_s; 10597 } else { 10598 address += env->cp15.fcseidr_ns; 10599 } 10600 } 10601 10602 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10603 bool ret; 10604 *page_size = TARGET_PAGE_SIZE; 10605 10606 if (arm_feature(env, ARM_FEATURE_V8)) { 10607 /* PMSAv8 */ 10608 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10609 phys_ptr, attrs, prot, page_size, fi); 10610 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10611 /* PMSAv7 */ 10612 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10613 phys_ptr, prot, page_size, fi); 10614 } else { 10615 /* Pre-v7 MPU */ 10616 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10617 phys_ptr, prot, fi); 10618 } 10619 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10620 " mmu_idx %u -> %s (prot %c%c%c)\n", 10621 access_type == MMU_DATA_LOAD ? "reading" : 10622 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10623 (uint32_t)address, mmu_idx, 10624 ret ? "Miss" : "Hit", 10625 *prot & PAGE_READ ? 'r' : '-', 10626 *prot & PAGE_WRITE ? 'w' : '-', 10627 *prot & PAGE_EXEC ? 'x' : '-'); 10628 10629 return ret; 10630 } 10631 10632 /* Definitely a real MMU, not an MPU */ 10633 10634 if (regime_translation_disabled(env, mmu_idx)) { 10635 /* MMU disabled. */ 10636 *phys_ptr = address; 10637 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10638 *page_size = TARGET_PAGE_SIZE; 10639 return 0; 10640 } 10641 10642 if (regime_using_lpae_format(env, mmu_idx)) { 10643 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10644 phys_ptr, attrs, prot, page_size, 10645 fi, cacheattrs); 10646 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10647 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10648 phys_ptr, attrs, prot, page_size, fi); 10649 } else { 10650 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10651 phys_ptr, prot, page_size, fi); 10652 } 10653 } 10654 10655 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10656 MemTxAttrs *attrs) 10657 { 10658 ARMCPU *cpu = ARM_CPU(cs); 10659 CPUARMState *env = &cpu->env; 10660 hwaddr phys_addr; 10661 target_ulong page_size; 10662 int prot; 10663 bool ret; 10664 ARMMMUFaultInfo fi = {}; 10665 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 10666 10667 *attrs = (MemTxAttrs) {}; 10668 10669 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10670 attrs, &prot, &page_size, &fi, NULL); 10671 10672 if (ret) { 10673 return -1; 10674 } 10675 return phys_addr; 10676 } 10677 10678 #endif 10679 10680 /* Note that signed overflow is undefined in C. The following routines are 10681 careful to use unsigned types where modulo arithmetic is required. 10682 Failure to do so _will_ break on newer gcc. */ 10683 10684 /* Signed saturating arithmetic. */ 10685 10686 /* Perform 16-bit signed saturating addition. */ 10687 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10688 { 10689 uint16_t res; 10690 10691 res = a + b; 10692 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10693 if (a & 0x8000) 10694 res = 0x8000; 10695 else 10696 res = 0x7fff; 10697 } 10698 return res; 10699 } 10700 10701 /* Perform 8-bit signed saturating addition. */ 10702 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10703 { 10704 uint8_t res; 10705 10706 res = a + b; 10707 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10708 if (a & 0x80) 10709 res = 0x80; 10710 else 10711 res = 0x7f; 10712 } 10713 return res; 10714 } 10715 10716 /* Perform 16-bit signed saturating subtraction. */ 10717 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10718 { 10719 uint16_t res; 10720 10721 res = a - b; 10722 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10723 if (a & 0x8000) 10724 res = 0x8000; 10725 else 10726 res = 0x7fff; 10727 } 10728 return res; 10729 } 10730 10731 /* Perform 8-bit signed saturating subtraction. */ 10732 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10733 { 10734 uint8_t res; 10735 10736 res = a - b; 10737 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10738 if (a & 0x80) 10739 res = 0x80; 10740 else 10741 res = 0x7f; 10742 } 10743 return res; 10744 } 10745 10746 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10747 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10748 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10749 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10750 #define PFX q 10751 10752 #include "op_addsub.h" 10753 10754 /* Unsigned saturating arithmetic. */ 10755 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10756 { 10757 uint16_t res; 10758 res = a + b; 10759 if (res < a) 10760 res = 0xffff; 10761 return res; 10762 } 10763 10764 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10765 { 10766 if (a > b) 10767 return a - b; 10768 else 10769 return 0; 10770 } 10771 10772 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10773 { 10774 uint8_t res; 10775 res = a + b; 10776 if (res < a) 10777 res = 0xff; 10778 return res; 10779 } 10780 10781 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10782 { 10783 if (a > b) 10784 return a - b; 10785 else 10786 return 0; 10787 } 10788 10789 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10790 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10791 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10792 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10793 #define PFX uq 10794 10795 #include "op_addsub.h" 10796 10797 /* Signed modulo arithmetic. */ 10798 #define SARITH16(a, b, n, op) do { \ 10799 int32_t sum; \ 10800 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10801 RESULT(sum, n, 16); \ 10802 if (sum >= 0) \ 10803 ge |= 3 << (n * 2); \ 10804 } while(0) 10805 10806 #define SARITH8(a, b, n, op) do { \ 10807 int32_t sum; \ 10808 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10809 RESULT(sum, n, 8); \ 10810 if (sum >= 0) \ 10811 ge |= 1 << n; \ 10812 } while(0) 10813 10814 10815 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10816 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10817 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10818 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10819 #define PFX s 10820 #define ARITH_GE 10821 10822 #include "op_addsub.h" 10823 10824 /* Unsigned modulo arithmetic. */ 10825 #define ADD16(a, b, n) do { \ 10826 uint32_t sum; \ 10827 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10828 RESULT(sum, n, 16); \ 10829 if ((sum >> 16) == 1) \ 10830 ge |= 3 << (n * 2); \ 10831 } while(0) 10832 10833 #define ADD8(a, b, n) do { \ 10834 uint32_t sum; \ 10835 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10836 RESULT(sum, n, 8); \ 10837 if ((sum >> 8) == 1) \ 10838 ge |= 1 << n; \ 10839 } while(0) 10840 10841 #define SUB16(a, b, n) do { \ 10842 uint32_t sum; \ 10843 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10844 RESULT(sum, n, 16); \ 10845 if ((sum >> 16) == 0) \ 10846 ge |= 3 << (n * 2); \ 10847 } while(0) 10848 10849 #define SUB8(a, b, n) do { \ 10850 uint32_t sum; \ 10851 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10852 RESULT(sum, n, 8); \ 10853 if ((sum >> 8) == 0) \ 10854 ge |= 1 << n; \ 10855 } while(0) 10856 10857 #define PFX u 10858 #define ARITH_GE 10859 10860 #include "op_addsub.h" 10861 10862 /* Halved signed arithmetic. */ 10863 #define ADD16(a, b, n) \ 10864 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10865 #define SUB16(a, b, n) \ 10866 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10867 #define ADD8(a, b, n) \ 10868 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10869 #define SUB8(a, b, n) \ 10870 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10871 #define PFX sh 10872 10873 #include "op_addsub.h" 10874 10875 /* Halved unsigned arithmetic. */ 10876 #define ADD16(a, b, n) \ 10877 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10878 #define SUB16(a, b, n) \ 10879 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10880 #define ADD8(a, b, n) \ 10881 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10882 #define SUB8(a, b, n) \ 10883 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10884 #define PFX uh 10885 10886 #include "op_addsub.h" 10887 10888 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10889 { 10890 if (a > b) 10891 return a - b; 10892 else 10893 return b - a; 10894 } 10895 10896 /* Unsigned sum of absolute byte differences. */ 10897 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10898 { 10899 uint32_t sum; 10900 sum = do_usad(a, b); 10901 sum += do_usad(a >> 8, b >> 8); 10902 sum += do_usad(a >> 16, b >>16); 10903 sum += do_usad(a >> 24, b >> 24); 10904 return sum; 10905 } 10906 10907 /* For ARMv6 SEL instruction. */ 10908 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10909 { 10910 uint32_t mask; 10911 10912 mask = 0; 10913 if (flags & 1) 10914 mask |= 0xff; 10915 if (flags & 2) 10916 mask |= 0xff00; 10917 if (flags & 4) 10918 mask |= 0xff0000; 10919 if (flags & 8) 10920 mask |= 0xff000000; 10921 return (a & mask) | (b & ~mask); 10922 } 10923 10924 /* CRC helpers. 10925 * The upper bytes of val (above the number specified by 'bytes') must have 10926 * been zeroed out by the caller. 10927 */ 10928 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10929 { 10930 uint8_t buf[4]; 10931 10932 stl_le_p(buf, val); 10933 10934 /* zlib crc32 converts the accumulator and output to one's complement. */ 10935 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10936 } 10937 10938 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10939 { 10940 uint8_t buf[4]; 10941 10942 stl_le_p(buf, val); 10943 10944 /* Linux crc32c converts the output to one's complement. */ 10945 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10946 } 10947 10948 /* Return the exception level to which FP-disabled exceptions should 10949 * be taken, or 0 if FP is enabled. 10950 */ 10951 int fp_exception_el(CPUARMState *env, int cur_el) 10952 { 10953 #ifndef CONFIG_USER_ONLY 10954 int fpen; 10955 10956 /* CPACR and the CPTR registers don't exist before v6, so FP is 10957 * always accessible 10958 */ 10959 if (!arm_feature(env, ARM_FEATURE_V6)) { 10960 return 0; 10961 } 10962 10963 if (arm_feature(env, ARM_FEATURE_M)) { 10964 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10965 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10966 return 1; 10967 } 10968 10969 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10970 if (!extract32(env->v7m.nsacr, 10, 1)) { 10971 /* FP insns cause a NOCP UsageFault taken to Secure */ 10972 return 3; 10973 } 10974 } 10975 10976 return 0; 10977 } 10978 10979 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10980 * 0, 2 : trap EL0 and EL1/PL1 accesses 10981 * 1 : trap only EL0 accesses 10982 * 3 : trap no accesses 10983 */ 10984 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 10985 switch (fpen) { 10986 case 0: 10987 case 2: 10988 if (cur_el == 0 || cur_el == 1) { 10989 /* Trap to PL1, which might be EL1 or EL3 */ 10990 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 10991 return 3; 10992 } 10993 return 1; 10994 } 10995 if (cur_el == 3 && !is_a64(env)) { 10996 /* Secure PL1 running at EL3 */ 10997 return 3; 10998 } 10999 break; 11000 case 1: 11001 if (cur_el == 0) { 11002 return 1; 11003 } 11004 break; 11005 case 3: 11006 break; 11007 } 11008 11009 /* 11010 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11011 * to control non-secure access to the FPU. It doesn't have any 11012 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11013 */ 11014 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11015 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11016 if (!extract32(env->cp15.nsacr, 10, 1)) { 11017 /* FP insns act as UNDEF */ 11018 return cur_el == 2 ? 2 : 1; 11019 } 11020 } 11021 11022 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 11023 * check because zero bits in the registers mean "don't trap". 11024 */ 11025 11026 /* CPTR_EL2 : present in v7VE or v8 */ 11027 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 11028 && !arm_is_secure_below_el3(env)) { 11029 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 11030 return 2; 11031 } 11032 11033 /* CPTR_EL3 : present in v8 */ 11034 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 11035 /* Trap all FP ops to EL3 */ 11036 return 3; 11037 } 11038 #endif 11039 return 0; 11040 } 11041 11042 #ifndef CONFIG_TCG 11043 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11044 { 11045 g_assert_not_reached(); 11046 } 11047 #endif 11048 11049 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11050 { 11051 if (arm_feature(env, ARM_FEATURE_M)) { 11052 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11053 } 11054 11055 if (el < 2 && arm_is_secure_below_el3(env)) { 11056 return ARMMMUIdx_S1SE0 + el; 11057 } else { 11058 return ARMMMUIdx_S12NSE0 + el; 11059 } 11060 } 11061 11062 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11063 { 11064 return arm_mmu_idx_el(env, arm_current_el(env)); 11065 } 11066 11067 int cpu_mmu_index(CPUARMState *env, bool ifetch) 11068 { 11069 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 11070 } 11071 11072 #ifndef CONFIG_USER_ONLY 11073 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 11074 { 11075 return stage_1_mmu_idx(arm_mmu_idx(env)); 11076 } 11077 #endif 11078 11079 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 11080 ARMMMUIdx mmu_idx, uint32_t flags) 11081 { 11082 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 11083 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 11084 arm_to_core_mmu_idx(mmu_idx)); 11085 11086 if (arm_singlestep_active(env)) { 11087 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 11088 } 11089 return flags; 11090 } 11091 11092 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11093 ARMMMUIdx mmu_idx, uint32_t flags) 11094 { 11095 bool sctlr_b = arm_sctlr_b(env); 11096 11097 if (sctlr_b) { 11098 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 11099 } 11100 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11101 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11102 } 11103 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 11104 11105 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11106 } 11107 11108 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 11109 ARMMMUIdx mmu_idx) 11110 { 11111 uint32_t flags = 0; 11112 11113 /* v8M always enables the fpu. */ 11114 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11115 11116 if (arm_v7m_is_handler_mode(env)) { 11117 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 11118 } 11119 11120 /* 11121 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11122 * is suppressing them because the requested execution priority 11123 * is less than 0. 11124 */ 11125 if (arm_feature(env, ARM_FEATURE_V8) && 11126 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11127 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11128 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 11129 } 11130 11131 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11132 } 11133 11134 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 11135 { 11136 int flags = 0; 11137 11138 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 11139 arm_debug_target_el(env)); 11140 return flags; 11141 } 11142 11143 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 11144 ARMMMUIdx mmu_idx) 11145 { 11146 uint32_t flags = rebuild_hflags_aprofile(env); 11147 11148 if (arm_el_is_aa64(env, 1)) { 11149 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11150 } 11151 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11152 } 11153 11154 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11155 ARMMMUIdx mmu_idx) 11156 { 11157 uint32_t flags = rebuild_hflags_aprofile(env); 11158 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11159 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 11160 uint64_t sctlr; 11161 int tbii, tbid; 11162 11163 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 11164 11165 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 11166 if (regime_el(env, stage1) < 2) { 11167 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 11168 tbid = (p1.tbi << 1) | p0.tbi; 11169 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 11170 } else { 11171 tbid = p0.tbi; 11172 tbii = tbid & !p0.tbid; 11173 } 11174 11175 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 11176 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 11177 11178 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11179 int sve_el = sve_exception_el(env, el); 11180 uint32_t zcr_len; 11181 11182 /* 11183 * If SVE is disabled, but FP is enabled, 11184 * then the effective len is 0. 11185 */ 11186 if (sve_el != 0 && fp_el == 0) { 11187 zcr_len = 0; 11188 } else { 11189 zcr_len = sve_zcr_len_for_el(env, el); 11190 } 11191 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 11192 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 11193 } 11194 11195 sctlr = arm_sctlr(env, el); 11196 11197 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11198 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11199 } 11200 11201 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11202 /* 11203 * In order to save space in flags, we record only whether 11204 * pauth is "inactive", meaning all insns are implemented as 11205 * a nop, or "active" when some action must be performed. 11206 * The decision of which action to take is left to a helper. 11207 */ 11208 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11209 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 11210 } 11211 } 11212 11213 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11214 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11215 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11216 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 11217 } 11218 } 11219 11220 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11221 } 11222 11223 static uint32_t rebuild_hflags_internal(CPUARMState *env) 11224 { 11225 int el = arm_current_el(env); 11226 int fp_el = fp_exception_el(env, el); 11227 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11228 11229 if (is_a64(env)) { 11230 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11231 } else if (arm_feature(env, ARM_FEATURE_M)) { 11232 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11233 } else { 11234 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11235 } 11236 } 11237 11238 void arm_rebuild_hflags(CPUARMState *env) 11239 { 11240 env->hflags = rebuild_hflags_internal(env); 11241 } 11242 11243 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11244 { 11245 int fp_el = fp_exception_el(env, el); 11246 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11247 11248 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11249 } 11250 11251 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11252 { 11253 int fp_el = fp_exception_el(env, el); 11254 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11255 11256 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11257 } 11258 11259 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11260 { 11261 int fp_el = fp_exception_el(env, el); 11262 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11263 11264 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11265 } 11266 11267 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11268 target_ulong *cs_base, uint32_t *pflags) 11269 { 11270 uint32_t flags = env->hflags; 11271 uint32_t pstate_for_ss; 11272 11273 *cs_base = 0; 11274 #ifdef CONFIG_DEBUG_TCG 11275 assert(flags == rebuild_hflags_internal(env)); 11276 #endif 11277 11278 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 11279 *pc = env->pc; 11280 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11281 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 11282 } 11283 pstate_for_ss = env->pstate; 11284 } else { 11285 *pc = env->regs[15]; 11286 11287 if (arm_feature(env, ARM_FEATURE_M)) { 11288 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11289 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11290 != env->v7m.secure) { 11291 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 11292 } 11293 11294 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11295 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11296 (env->v7m.secure && 11297 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11298 /* 11299 * ASPEN is set, but FPCA/SFPA indicate that there is no 11300 * active FP context; we must create a new FP context before 11301 * executing any FP insn. 11302 */ 11303 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 11304 } 11305 11306 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11307 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11308 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 11309 } 11310 } else { 11311 /* 11312 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11313 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11314 */ 11315 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11316 flags = FIELD_DP32(flags, TBFLAG_A32, 11317 XSCALE_CPAR, env->cp15.c15_cpar); 11318 } else { 11319 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 11320 env->vfp.vec_len); 11321 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 11322 env->vfp.vec_stride); 11323 } 11324 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11325 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11326 } 11327 } 11328 11329 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 11330 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 11331 pstate_for_ss = env->uncached_cpsr; 11332 } 11333 11334 /* 11335 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11336 * states defined in the ARM ARM for software singlestep: 11337 * SS_ACTIVE PSTATE.SS State 11338 * 0 x Inactive (the TB flag for SS is always 0) 11339 * 1 0 Active-pending 11340 * 1 1 Active-not-pending 11341 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 11342 */ 11343 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 11344 (pstate_for_ss & PSTATE_SS)) { 11345 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11346 } 11347 11348 *pflags = flags; 11349 } 11350 11351 #ifdef TARGET_AARCH64 11352 /* 11353 * The manual says that when SVE is enabled and VQ is widened the 11354 * implementation is allowed to zero the previously inaccessible 11355 * portion of the registers. The corollary to that is that when 11356 * SVE is enabled and VQ is narrowed we are also allowed to zero 11357 * the now inaccessible portion of the registers. 11358 * 11359 * The intent of this is that no predicate bit beyond VQ is ever set. 11360 * Which means that some operations on predicate registers themselves 11361 * may operate on full uint64_t or even unrolled across the maximum 11362 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11363 * may well be cheaper than conditionals to restrict the operation 11364 * to the relevant portion of a uint16_t[16]. 11365 */ 11366 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11367 { 11368 int i, j; 11369 uint64_t pmask; 11370 11371 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11372 assert(vq <= env_archcpu(env)->sve_max_vq); 11373 11374 /* Zap the high bits of the zregs. */ 11375 for (i = 0; i < 32; i++) { 11376 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11377 } 11378 11379 /* Zap the high bits of the pregs and ffr. */ 11380 pmask = 0; 11381 if (vq & 3) { 11382 pmask = ~(-1ULL << (16 * (vq & 3))); 11383 } 11384 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11385 for (i = 0; i < 17; ++i) { 11386 env->vfp.pregs[i].p[j] &= pmask; 11387 } 11388 pmask = 0; 11389 } 11390 } 11391 11392 /* 11393 * Notice a change in SVE vector size when changing EL. 11394 */ 11395 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11396 int new_el, bool el0_a64) 11397 { 11398 ARMCPU *cpu = env_archcpu(env); 11399 int old_len, new_len; 11400 bool old_a64, new_a64; 11401 11402 /* Nothing to do if no SVE. */ 11403 if (!cpu_isar_feature(aa64_sve, cpu)) { 11404 return; 11405 } 11406 11407 /* Nothing to do if FP is disabled in either EL. */ 11408 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11409 return; 11410 } 11411 11412 /* 11413 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11414 * at ELx, or not available because the EL is in AArch32 state, then 11415 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11416 * has an effective value of 0". 11417 * 11418 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11419 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11420 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11421 * we already have the correct register contents when encountering the 11422 * vq0->vq0 transition between EL0->EL1. 11423 */ 11424 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11425 old_len = (old_a64 && !sve_exception_el(env, old_el) 11426 ? sve_zcr_len_for_el(env, old_el) : 0); 11427 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11428 new_len = (new_a64 && !sve_exception_el(env, new_el) 11429 ? sve_zcr_len_for_el(env, new_el) : 0); 11430 11431 /* When changing vector length, clear inaccessible state. */ 11432 if (new_len < old_len) { 11433 aarch64_sve_narrow_vq(env, new_len + 1); 11434 } 11435 } 11436 #endif 11437