1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #endif 37 38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 39 40 #ifndef CONFIG_USER_ONLY 41 42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 43 MMUAccessType access_type, ARMMMUIdx mmu_idx, 44 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 45 target_ulong *page_size_ptr, 46 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 47 #endif 48 49 static void switch_mode(CPUARMState *env, int mode); 50 51 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 52 { 53 ARMCPU *cpu = env_archcpu(env); 54 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 55 56 /* VFP data registers are always little-endian. */ 57 if (reg < nregs) { 58 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 return gdb_get_reg128(buf, q[0], q[1]); 66 } 67 } 68 switch (reg - nregs) { 69 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 70 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 71 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 72 } 73 return 0; 74 } 75 76 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 77 { 78 ARMCPU *cpu = env_archcpu(env); 79 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 80 81 if (reg < nregs) { 82 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 83 return 8; 84 } 85 if (arm_feature(env, ARM_FEATURE_NEON)) { 86 nregs += 16; 87 if (reg < nregs) { 88 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 89 q[0] = ldq_le_p(buf); 90 q[1] = ldq_le_p(buf + 8); 91 return 16; 92 } 93 } 94 switch (reg - nregs) { 95 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 96 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 97 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 98 } 99 return 0; 100 } 101 102 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 103 { 104 switch (reg) { 105 case 0 ... 31: 106 { 107 /* 128 bit FP register - quads are in LE order */ 108 uint64_t *q = aa64_vfp_qreg(env, reg); 109 return gdb_get_reg128(buf, q[1], q[0]); 110 } 111 case 32: 112 /* FPSR */ 113 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 114 case 33: 115 /* FPCR */ 116 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 117 default: 118 return 0; 119 } 120 } 121 122 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 123 { 124 switch (reg) { 125 case 0 ... 31: 126 /* 128 bit FP register */ 127 { 128 uint64_t *q = aa64_vfp_qreg(env, reg); 129 q[0] = ldq_le_p(buf); 130 q[1] = ldq_le_p(buf + 8); 131 return 16; 132 } 133 case 32: 134 /* FPSR */ 135 vfp_set_fpsr(env, ldl_p(buf)); 136 return 4; 137 case 33: 138 /* FPCR */ 139 vfp_set_fpcr(env, ldl_p(buf)); 140 return 4; 141 default: 142 return 0; 143 } 144 } 145 146 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 147 { 148 assert(ri->fieldoffset); 149 if (cpreg_field_is_64bit(ri)) { 150 return CPREG_FIELD64(env, ri); 151 } else { 152 return CPREG_FIELD32(env, ri); 153 } 154 } 155 156 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 157 uint64_t value) 158 { 159 assert(ri->fieldoffset); 160 if (cpreg_field_is_64bit(ri)) { 161 CPREG_FIELD64(env, ri) = value; 162 } else { 163 CPREG_FIELD32(env, ri) = value; 164 } 165 } 166 167 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 168 { 169 return (char *)env + ri->fieldoffset; 170 } 171 172 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 173 { 174 /* Raw read of a coprocessor register (as needed for migration, etc). */ 175 if (ri->type & ARM_CP_CONST) { 176 return ri->resetvalue; 177 } else if (ri->raw_readfn) { 178 return ri->raw_readfn(env, ri); 179 } else if (ri->readfn) { 180 return ri->readfn(env, ri); 181 } else { 182 return raw_read(env, ri); 183 } 184 } 185 186 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 187 uint64_t v) 188 { 189 /* Raw write of a coprocessor register (as needed for migration, etc). 190 * Note that constant registers are treated as write-ignored; the 191 * caller should check for success by whether a readback gives the 192 * value written. 193 */ 194 if (ri->type & ARM_CP_CONST) { 195 return; 196 } else if (ri->raw_writefn) { 197 ri->raw_writefn(env, ri, v); 198 } else if (ri->writefn) { 199 ri->writefn(env, ri, v); 200 } else { 201 raw_write(env, ri, v); 202 } 203 } 204 205 /** 206 * arm_get/set_gdb_*: get/set a gdb register 207 * @env: the CPU state 208 * @buf: a buffer to copy to/from 209 * @reg: register number (offset from start of group) 210 * 211 * We return the number of bytes copied 212 */ 213 214 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 215 { 216 ARMCPU *cpu = env_archcpu(env); 217 const ARMCPRegInfo *ri; 218 uint32_t key; 219 220 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 222 if (ri) { 223 if (cpreg_field_is_64bit(ri)) { 224 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 225 } else { 226 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 227 } 228 } 229 return 0; 230 } 231 232 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 233 { 234 return 0; 235 } 236 237 #ifdef TARGET_AARCH64 238 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 239 { 240 ARMCPU *cpu = env_archcpu(env); 241 242 switch (reg) { 243 /* The first 32 registers are the zregs */ 244 case 0 ... 31: 245 { 246 int vq, len = 0; 247 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 248 len += gdb_get_reg128(buf, 249 env->vfp.zregs[reg].d[vq * 2 + 1], 250 env->vfp.zregs[reg].d[vq * 2]); 251 } 252 return len; 253 } 254 case 32: 255 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 256 case 33: 257 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 258 /* then 16 predicates and the ffr */ 259 case 34 ... 50: 260 { 261 int preg = reg - 34; 262 int vq, len = 0; 263 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 264 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 265 } 266 return len; 267 } 268 case 51: 269 { 270 /* 271 * We report in Vector Granules (VG) which is 64bit in a Z reg 272 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 273 */ 274 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 275 return gdb_get_reg32(buf, vq * 2); 276 } 277 default: 278 /* gdbstub asked for something out our range */ 279 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 280 break; 281 } 282 283 return 0; 284 } 285 286 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 287 { 288 ARMCPU *cpu = env_archcpu(env); 289 290 /* The first 32 registers are the zregs */ 291 switch (reg) { 292 /* The first 32 registers are the zregs */ 293 case 0 ... 31: 294 { 295 int vq, len = 0; 296 uint64_t *p = (uint64_t *) buf; 297 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 298 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 299 env->vfp.zregs[reg].d[vq * 2] = *p++; 300 len += 16; 301 } 302 return len; 303 } 304 case 32: 305 vfp_set_fpsr(env, *(uint32_t *)buf); 306 return 4; 307 case 33: 308 vfp_set_fpcr(env, *(uint32_t *)buf); 309 return 4; 310 case 34 ... 50: 311 { 312 int preg = reg - 34; 313 int vq, len = 0; 314 uint64_t *p = (uint64_t *) buf; 315 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 316 env->vfp.pregs[preg].p[vq / 4] = *p++; 317 len += 8; 318 } 319 return len; 320 } 321 case 51: 322 /* cannot set vg via gdbstub */ 323 return 0; 324 default: 325 /* gdbstub asked for something out our range */ 326 break; 327 } 328 329 return 0; 330 } 331 #endif /* TARGET_AARCH64 */ 332 333 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 334 { 335 /* Return true if the regdef would cause an assertion if you called 336 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 337 * program bug for it not to have the NO_RAW flag). 338 * NB that returning false here doesn't necessarily mean that calling 339 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 340 * read/write access functions which are safe for raw use" from "has 341 * read/write access functions which have side effects but has forgotten 342 * to provide raw access functions". 343 * The tests here line up with the conditions in read/write_raw_cp_reg() 344 * and assertions in raw_read()/raw_write(). 345 */ 346 if ((ri->type & ARM_CP_CONST) || 347 ri->fieldoffset || 348 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 349 return false; 350 } 351 return true; 352 } 353 354 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 355 { 356 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 357 int i; 358 bool ok = true; 359 360 for (i = 0; i < cpu->cpreg_array_len; i++) { 361 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 362 const ARMCPRegInfo *ri; 363 uint64_t newval; 364 365 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 366 if (!ri) { 367 ok = false; 368 continue; 369 } 370 if (ri->type & ARM_CP_NO_RAW) { 371 continue; 372 } 373 374 newval = read_raw_cp_reg(&cpu->env, ri); 375 if (kvm_sync) { 376 /* 377 * Only sync if the previous list->cpustate sync succeeded. 378 * Rather than tracking the success/failure state for every 379 * item in the list, we just recheck "does the raw write we must 380 * have made in write_list_to_cpustate() read back OK" here. 381 */ 382 uint64_t oldval = cpu->cpreg_values[i]; 383 384 if (oldval == newval) { 385 continue; 386 } 387 388 write_raw_cp_reg(&cpu->env, ri, oldval); 389 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 390 continue; 391 } 392 393 write_raw_cp_reg(&cpu->env, ri, newval); 394 } 395 cpu->cpreg_values[i] = newval; 396 } 397 return ok; 398 } 399 400 bool write_list_to_cpustate(ARMCPU *cpu) 401 { 402 int i; 403 bool ok = true; 404 405 for (i = 0; i < cpu->cpreg_array_len; i++) { 406 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 407 uint64_t v = cpu->cpreg_values[i]; 408 const ARMCPRegInfo *ri; 409 410 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 411 if (!ri) { 412 ok = false; 413 continue; 414 } 415 if (ri->type & ARM_CP_NO_RAW) { 416 continue; 417 } 418 /* Write value and confirm it reads back as written 419 * (to catch read-only registers and partially read-only 420 * registers where the incoming migration value doesn't match) 421 */ 422 write_raw_cp_reg(&cpu->env, ri, v); 423 if (read_raw_cp_reg(&cpu->env, ri) != v) { 424 ok = false; 425 } 426 } 427 return ok; 428 } 429 430 static void add_cpreg_to_list(gpointer key, gpointer opaque) 431 { 432 ARMCPU *cpu = opaque; 433 uint64_t regidx; 434 const ARMCPRegInfo *ri; 435 436 regidx = *(uint32_t *)key; 437 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 438 439 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 440 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 441 /* The value array need not be initialized at this point */ 442 cpu->cpreg_array_len++; 443 } 444 } 445 446 static void count_cpreg(gpointer key, gpointer opaque) 447 { 448 ARMCPU *cpu = opaque; 449 uint64_t regidx; 450 const ARMCPRegInfo *ri; 451 452 regidx = *(uint32_t *)key; 453 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 454 455 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 456 cpu->cpreg_array_len++; 457 } 458 } 459 460 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 461 { 462 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 463 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 464 465 if (aidx > bidx) { 466 return 1; 467 } 468 if (aidx < bidx) { 469 return -1; 470 } 471 return 0; 472 } 473 474 void init_cpreg_list(ARMCPU *cpu) 475 { 476 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 477 * Note that we require cpreg_tuples[] to be sorted by key ID. 478 */ 479 GList *keys; 480 int arraylen; 481 482 keys = g_hash_table_get_keys(cpu->cp_regs); 483 keys = g_list_sort(keys, cpreg_key_compare); 484 485 cpu->cpreg_array_len = 0; 486 487 g_list_foreach(keys, count_cpreg, cpu); 488 489 arraylen = cpu->cpreg_array_len; 490 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 491 cpu->cpreg_values = g_new(uint64_t, arraylen); 492 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 493 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 494 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 495 cpu->cpreg_array_len = 0; 496 497 g_list_foreach(keys, add_cpreg_to_list, cpu); 498 499 assert(cpu->cpreg_array_len == arraylen); 500 501 g_list_free(keys); 502 } 503 504 /* 505 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 506 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 507 * 508 * access_el3_aa32ns: Used to check AArch32 register views. 509 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 510 */ 511 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 512 const ARMCPRegInfo *ri, 513 bool isread) 514 { 515 bool secure = arm_is_secure_below_el3(env); 516 517 assert(!arm_el_is_aa64(env, 3)); 518 if (secure) { 519 return CP_ACCESS_TRAP_UNCATEGORIZED; 520 } 521 return CP_ACCESS_OK; 522 } 523 524 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 525 const ARMCPRegInfo *ri, 526 bool isread) 527 { 528 if (!arm_el_is_aa64(env, 3)) { 529 return access_el3_aa32ns(env, ri, isread); 530 } 531 return CP_ACCESS_OK; 532 } 533 534 /* Some secure-only AArch32 registers trap to EL3 if used from 535 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 536 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 537 * We assume that the .access field is set to PL1_RW. 538 */ 539 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 540 const ARMCPRegInfo *ri, 541 bool isread) 542 { 543 if (arm_current_el(env) == 3) { 544 return CP_ACCESS_OK; 545 } 546 if (arm_is_secure_below_el3(env)) { 547 return CP_ACCESS_TRAP_EL3; 548 } 549 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 550 return CP_ACCESS_TRAP_UNCATEGORIZED; 551 } 552 553 /* Check for traps to "powerdown debug" registers, which are controlled 554 * by MDCR.TDOSA 555 */ 556 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 557 bool isread) 558 { 559 int el = arm_current_el(env); 560 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 561 (env->cp15.mdcr_el2 & MDCR_TDE) || 562 (arm_hcr_el2_eff(env) & HCR_TGE); 563 564 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 565 return CP_ACCESS_TRAP_EL2; 566 } 567 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 568 return CP_ACCESS_TRAP_EL3; 569 } 570 return CP_ACCESS_OK; 571 } 572 573 /* Check for traps to "debug ROM" registers, which are controlled 574 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 575 */ 576 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 577 bool isread) 578 { 579 int el = arm_current_el(env); 580 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 581 (env->cp15.mdcr_el2 & MDCR_TDE) || 582 (arm_hcr_el2_eff(env) & HCR_TGE); 583 584 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 585 return CP_ACCESS_TRAP_EL2; 586 } 587 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 588 return CP_ACCESS_TRAP_EL3; 589 } 590 return CP_ACCESS_OK; 591 } 592 593 /* Check for traps to general debug registers, which are controlled 594 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 595 */ 596 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 597 bool isread) 598 { 599 int el = arm_current_el(env); 600 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 601 (env->cp15.mdcr_el2 & MDCR_TDE) || 602 (arm_hcr_el2_eff(env) & HCR_TGE); 603 604 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 605 return CP_ACCESS_TRAP_EL2; 606 } 607 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 608 return CP_ACCESS_TRAP_EL3; 609 } 610 return CP_ACCESS_OK; 611 } 612 613 /* Check for traps to performance monitor registers, which are controlled 614 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 615 */ 616 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 617 bool isread) 618 { 619 int el = arm_current_el(env); 620 621 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 622 && !arm_is_secure_below_el3(env)) { 623 return CP_ACCESS_TRAP_EL2; 624 } 625 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 626 return CP_ACCESS_TRAP_EL3; 627 } 628 return CP_ACCESS_OK; 629 } 630 631 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 632 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 633 bool isread) 634 { 635 if (arm_current_el(env) == 1) { 636 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 637 if (arm_hcr_el2_eff(env) & trap) { 638 return CP_ACCESS_TRAP_EL2; 639 } 640 } 641 return CP_ACCESS_OK; 642 } 643 644 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 645 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 646 bool isread) 647 { 648 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 649 return CP_ACCESS_TRAP_EL2; 650 } 651 return CP_ACCESS_OK; 652 } 653 654 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 655 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 656 bool isread) 657 { 658 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 659 return CP_ACCESS_TRAP_EL2; 660 } 661 return CP_ACCESS_OK; 662 } 663 664 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 665 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 666 bool isread) 667 { 668 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 669 return CP_ACCESS_TRAP_EL2; 670 } 671 return CP_ACCESS_OK; 672 } 673 674 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 675 { 676 ARMCPU *cpu = env_archcpu(env); 677 678 raw_write(env, ri, value); 679 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 680 } 681 682 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 683 { 684 ARMCPU *cpu = env_archcpu(env); 685 686 if (raw_read(env, ri) != value) { 687 /* Unlike real hardware the qemu TLB uses virtual addresses, 688 * not modified virtual addresses, so this causes a TLB flush. 689 */ 690 tlb_flush(CPU(cpu)); 691 raw_write(env, ri, value); 692 } 693 } 694 695 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 696 uint64_t value) 697 { 698 ARMCPU *cpu = env_archcpu(env); 699 700 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 701 && !extended_addresses_enabled(env)) { 702 /* For VMSA (when not using the LPAE long descriptor page table 703 * format) this register includes the ASID, so do a TLB flush. 704 * For PMSA it is purely a process ID and no action is needed. 705 */ 706 tlb_flush(CPU(cpu)); 707 } 708 raw_write(env, ri, value); 709 } 710 711 /* IS variants of TLB operations must affect all cores */ 712 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 717 tlb_flush_all_cpus_synced(cs); 718 } 719 720 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 721 uint64_t value) 722 { 723 CPUState *cs = env_cpu(env); 724 725 tlb_flush_all_cpus_synced(cs); 726 } 727 728 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 734 } 735 736 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 742 } 743 744 /* 745 * Non-IS variants of TLB operations are upgraded to 746 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 747 * force broadcast of these operations. 748 */ 749 static bool tlb_force_broadcast(CPUARMState *env) 750 { 751 return (env->cp15.hcr_el2 & HCR_FB) && 752 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 753 } 754 755 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 756 uint64_t value) 757 { 758 /* Invalidate all (TLBIALL) */ 759 CPUState *cs = env_cpu(env); 760 761 if (tlb_force_broadcast(env)) { 762 tlb_flush_all_cpus_synced(cs); 763 } else { 764 tlb_flush(cs); 765 } 766 } 767 768 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 769 uint64_t value) 770 { 771 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 772 CPUState *cs = env_cpu(env); 773 774 value &= TARGET_PAGE_MASK; 775 if (tlb_force_broadcast(env)) { 776 tlb_flush_page_all_cpus_synced(cs, value); 777 } else { 778 tlb_flush_page(cs, value); 779 } 780 } 781 782 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 783 uint64_t value) 784 { 785 /* Invalidate by ASID (TLBIASID) */ 786 CPUState *cs = env_cpu(env); 787 788 if (tlb_force_broadcast(env)) { 789 tlb_flush_all_cpus_synced(cs); 790 } else { 791 tlb_flush(cs); 792 } 793 } 794 795 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 796 uint64_t value) 797 { 798 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 799 CPUState *cs = env_cpu(env); 800 801 value &= TARGET_PAGE_MASK; 802 if (tlb_force_broadcast(env)) { 803 tlb_flush_page_all_cpus_synced(cs, value); 804 } else { 805 tlb_flush_page(cs, value); 806 } 807 } 808 809 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 810 uint64_t value) 811 { 812 CPUState *cs = env_cpu(env); 813 814 tlb_flush_by_mmuidx(cs, 815 ARMMMUIdxBit_E10_1 | 816 ARMMMUIdxBit_E10_1_PAN | 817 ARMMMUIdxBit_E10_0 | 818 ARMMMUIdxBit_Stage2); 819 } 820 821 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 822 uint64_t value) 823 { 824 CPUState *cs = env_cpu(env); 825 826 tlb_flush_by_mmuidx_all_cpus_synced(cs, 827 ARMMMUIdxBit_E10_1 | 828 ARMMMUIdxBit_E10_1_PAN | 829 ARMMMUIdxBit_E10_0 | 830 ARMMMUIdxBit_Stage2); 831 } 832 833 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 834 uint64_t value) 835 { 836 /* Invalidate by IPA. This has to invalidate any structures that 837 * contain only stage 2 translation information, but does not need 838 * to apply to structures that contain combined stage 1 and stage 2 839 * translation information. 840 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 841 */ 842 CPUState *cs = env_cpu(env); 843 uint64_t pageaddr; 844 845 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 846 return; 847 } 848 849 pageaddr = sextract64(value << 12, 0, 40); 850 851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 852 } 853 854 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 855 uint64_t value) 856 { 857 CPUState *cs = env_cpu(env); 858 uint64_t pageaddr; 859 860 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 861 return; 862 } 863 864 pageaddr = sextract64(value << 12, 0, 40); 865 866 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 867 ARMMMUIdxBit_Stage2); 868 } 869 870 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 871 uint64_t value) 872 { 873 CPUState *cs = env_cpu(env); 874 875 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 876 } 877 878 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 879 uint64_t value) 880 { 881 CPUState *cs = env_cpu(env); 882 883 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 884 } 885 886 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 887 uint64_t value) 888 { 889 CPUState *cs = env_cpu(env); 890 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 891 892 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 893 } 894 895 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 896 uint64_t value) 897 { 898 CPUState *cs = env_cpu(env); 899 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 900 901 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 902 ARMMMUIdxBit_E2); 903 } 904 905 static const ARMCPRegInfo cp_reginfo[] = { 906 /* Define the secure and non-secure FCSE identifier CP registers 907 * separately because there is no secure bank in V8 (no _EL3). This allows 908 * the secure register to be properly reset and migrated. There is also no 909 * v8 EL1 version of the register so the non-secure instance stands alone. 910 */ 911 { .name = "FCSEIDR", 912 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 913 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 914 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 915 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 916 { .name = "FCSEIDR_S", 917 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 918 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 919 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 920 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 921 /* Define the secure and non-secure context identifier CP registers 922 * separately because there is no secure bank in V8 (no _EL3). This allows 923 * the secure register to be properly reset and migrated. In the 924 * non-secure case, the 32-bit register will have reset and migration 925 * disabled during registration as it is handled by the 64-bit instance. 926 */ 927 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 928 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 929 .access = PL1_RW, .accessfn = access_tvm_trvm, 930 .secure = ARM_CP_SECSTATE_NS, 931 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 932 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 933 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 934 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 935 .access = PL1_RW, .accessfn = access_tvm_trvm, 936 .secure = ARM_CP_SECSTATE_S, 937 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 938 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 939 REGINFO_SENTINEL 940 }; 941 942 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 943 /* NB: Some of these registers exist in v8 but with more precise 944 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 945 */ 946 /* MMU Domain access control / MPU write buffer control */ 947 { .name = "DACR", 948 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 949 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 950 .writefn = dacr_write, .raw_writefn = raw_write, 951 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 952 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 953 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 954 * For v6 and v5, these mappings are overly broad. 955 */ 956 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 957 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 958 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 959 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 960 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 961 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 962 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 963 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 964 /* Cache maintenance ops; some of this space may be overridden later. */ 965 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 966 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 967 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 968 REGINFO_SENTINEL 969 }; 970 971 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 972 /* Not all pre-v6 cores implemented this WFI, so this is slightly 973 * over-broad. 974 */ 975 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 976 .access = PL1_W, .type = ARM_CP_WFI }, 977 REGINFO_SENTINEL 978 }; 979 980 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 981 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 982 * is UNPREDICTABLE; we choose to NOP as most implementations do). 983 */ 984 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 985 .access = PL1_W, .type = ARM_CP_WFI }, 986 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 987 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 988 * OMAPCP will override this space. 989 */ 990 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 991 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 992 .resetvalue = 0 }, 993 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 994 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 995 .resetvalue = 0 }, 996 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 997 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 999 .resetvalue = 0 }, 1000 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 1001 * implementing it as RAZ means the "debug architecture version" bits 1002 * will read as a reserved value, which should cause Linux to not try 1003 * to use the debug hardware. 1004 */ 1005 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 1006 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1007 /* MMU TLB control. Note that the wildcarding means we cover not just 1008 * the unified TLB ops but also the dside/iside/inner-shareable variants. 1009 */ 1010 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 1011 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 1012 .type = ARM_CP_NO_RAW }, 1013 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 1014 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 1015 .type = ARM_CP_NO_RAW }, 1016 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 1017 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 1018 .type = ARM_CP_NO_RAW }, 1019 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 1020 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 1021 .type = ARM_CP_NO_RAW }, 1022 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 1023 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 1024 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 1025 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 1026 REGINFO_SENTINEL 1027 }; 1028 1029 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1030 uint64_t value) 1031 { 1032 uint32_t mask = 0; 1033 1034 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 1035 if (!arm_feature(env, ARM_FEATURE_V8)) { 1036 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 1037 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 1038 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 1039 */ 1040 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 1041 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1042 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1043 1044 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1045 /* ASEDIS [31] bit is RAO/WI */ 1046 value |= (1 << 31); 1047 } 1048 1049 /* VFPv3 and upwards with NEON implement 32 double precision 1050 * registers (D0-D31). 1051 */ 1052 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1053 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1054 value |= (1 << 30); 1055 } 1056 } 1057 value &= mask; 1058 } 1059 1060 /* 1061 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1062 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1063 */ 1064 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1065 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1066 value &= ~(0xf << 20); 1067 value |= env->cp15.cpacr_el1 & (0xf << 20); 1068 } 1069 1070 env->cp15.cpacr_el1 = value; 1071 } 1072 1073 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1074 { 1075 /* 1076 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1077 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1078 */ 1079 uint64_t value = env->cp15.cpacr_el1; 1080 1081 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1082 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1083 value &= ~(0xf << 20); 1084 } 1085 return value; 1086 } 1087 1088 1089 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1090 { 1091 /* Call cpacr_write() so that we reset with the correct RAO bits set 1092 * for our CPU features. 1093 */ 1094 cpacr_write(env, ri, 0); 1095 } 1096 1097 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1098 bool isread) 1099 { 1100 if (arm_feature(env, ARM_FEATURE_V8)) { 1101 /* Check if CPACR accesses are to be trapped to EL2 */ 1102 if (arm_current_el(env) == 1 && 1103 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1104 return CP_ACCESS_TRAP_EL2; 1105 /* Check if CPACR accesses are to be trapped to EL3 */ 1106 } else if (arm_current_el(env) < 3 && 1107 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1108 return CP_ACCESS_TRAP_EL3; 1109 } 1110 } 1111 1112 return CP_ACCESS_OK; 1113 } 1114 1115 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* Check if CPTR accesses are set to trap to EL3 */ 1119 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1120 return CP_ACCESS_TRAP_EL3; 1121 } 1122 1123 return CP_ACCESS_OK; 1124 } 1125 1126 static const ARMCPRegInfo v6_cp_reginfo[] = { 1127 /* prefetch by MVA in v6, NOP in v7 */ 1128 { .name = "MVA_prefetch", 1129 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1130 .access = PL1_W, .type = ARM_CP_NOP }, 1131 /* We need to break the TB after ISB to execute self-modifying code 1132 * correctly and also to take any pending interrupts immediately. 1133 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1134 */ 1135 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1136 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1137 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1138 .access = PL0_W, .type = ARM_CP_NOP }, 1139 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1140 .access = PL0_W, .type = ARM_CP_NOP }, 1141 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1142 .access = PL1_RW, .accessfn = access_tvm_trvm, 1143 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1144 offsetof(CPUARMState, cp15.ifar_ns) }, 1145 .resetvalue = 0, }, 1146 /* Watchpoint Fault Address Register : should actually only be present 1147 * for 1136, 1176, 11MPCore. 1148 */ 1149 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1150 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1151 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1152 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1153 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1154 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1155 REGINFO_SENTINEL 1156 }; 1157 1158 /* Definitions for the PMU registers */ 1159 #define PMCRN_MASK 0xf800 1160 #define PMCRN_SHIFT 11 1161 #define PMCRLC 0x40 1162 #define PMCRDP 0x20 1163 #define PMCRX 0x10 1164 #define PMCRD 0x8 1165 #define PMCRC 0x4 1166 #define PMCRP 0x2 1167 #define PMCRE 0x1 1168 /* 1169 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1170 * which can be written as 1 to trigger behaviour but which stay RAZ). 1171 */ 1172 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1173 1174 #define PMXEVTYPER_P 0x80000000 1175 #define PMXEVTYPER_U 0x40000000 1176 #define PMXEVTYPER_NSK 0x20000000 1177 #define PMXEVTYPER_NSU 0x10000000 1178 #define PMXEVTYPER_NSH 0x08000000 1179 #define PMXEVTYPER_M 0x04000000 1180 #define PMXEVTYPER_MT 0x02000000 1181 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1182 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1183 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1184 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1185 PMXEVTYPER_EVTCOUNT) 1186 1187 #define PMCCFILTR 0xf8000000 1188 #define PMCCFILTR_M PMXEVTYPER_M 1189 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1190 1191 static inline uint32_t pmu_num_counters(CPUARMState *env) 1192 { 1193 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1194 } 1195 1196 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1197 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1198 { 1199 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1200 } 1201 1202 typedef struct pm_event { 1203 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1204 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1205 bool (*supported)(CPUARMState *); 1206 /* 1207 * Retrieve the current count of the underlying event. The programmed 1208 * counters hold a difference from the return value from this function 1209 */ 1210 uint64_t (*get_count)(CPUARMState *); 1211 /* 1212 * Return how many nanoseconds it will take (at a minimum) for count events 1213 * to occur. A negative value indicates the counter will never overflow, or 1214 * that the counter has otherwise arranged for the overflow bit to be set 1215 * and the PMU interrupt to be raised on overflow. 1216 */ 1217 int64_t (*ns_per_count)(uint64_t); 1218 } pm_event; 1219 1220 static bool event_always_supported(CPUARMState *env) 1221 { 1222 return true; 1223 } 1224 1225 static uint64_t swinc_get_count(CPUARMState *env) 1226 { 1227 /* 1228 * SW_INCR events are written directly to the pmevcntr's by writes to 1229 * PMSWINC, so there is no underlying count maintained by the PMU itself 1230 */ 1231 return 0; 1232 } 1233 1234 static int64_t swinc_ns_per(uint64_t ignored) 1235 { 1236 return -1; 1237 } 1238 1239 /* 1240 * Return the underlying cycle count for the PMU cycle counters. If we're in 1241 * usermode, simply return 0. 1242 */ 1243 static uint64_t cycles_get_count(CPUARMState *env) 1244 { 1245 #ifndef CONFIG_USER_ONLY 1246 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1247 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1248 #else 1249 return cpu_get_host_ticks(); 1250 #endif 1251 } 1252 1253 #ifndef CONFIG_USER_ONLY 1254 static int64_t cycles_ns_per(uint64_t cycles) 1255 { 1256 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1257 } 1258 1259 static bool instructions_supported(CPUARMState *env) 1260 { 1261 return use_icount == 1 /* Precise instruction counting */; 1262 } 1263 1264 static uint64_t instructions_get_count(CPUARMState *env) 1265 { 1266 return (uint64_t)cpu_get_icount_raw(); 1267 } 1268 1269 static int64_t instructions_ns_per(uint64_t icount) 1270 { 1271 return cpu_icount_to_ns((int64_t)icount); 1272 } 1273 #endif 1274 1275 static bool pmu_8_1_events_supported(CPUARMState *env) 1276 { 1277 /* For events which are supported in any v8.1 PMU */ 1278 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1279 } 1280 1281 static bool pmu_8_4_events_supported(CPUARMState *env) 1282 { 1283 /* For events which are supported in any v8.1 PMU */ 1284 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1285 } 1286 1287 static uint64_t zero_event_get_count(CPUARMState *env) 1288 { 1289 /* For events which on QEMU never fire, so their count is always zero */ 1290 return 0; 1291 } 1292 1293 static int64_t zero_event_ns_per(uint64_t cycles) 1294 { 1295 /* An event which never fires can never overflow */ 1296 return -1; 1297 } 1298 1299 static const pm_event pm_events[] = { 1300 { .number = 0x000, /* SW_INCR */ 1301 .supported = event_always_supported, 1302 .get_count = swinc_get_count, 1303 .ns_per_count = swinc_ns_per, 1304 }, 1305 #ifndef CONFIG_USER_ONLY 1306 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1307 .supported = instructions_supported, 1308 .get_count = instructions_get_count, 1309 .ns_per_count = instructions_ns_per, 1310 }, 1311 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1312 .supported = event_always_supported, 1313 .get_count = cycles_get_count, 1314 .ns_per_count = cycles_ns_per, 1315 }, 1316 #endif 1317 { .number = 0x023, /* STALL_FRONTEND */ 1318 .supported = pmu_8_1_events_supported, 1319 .get_count = zero_event_get_count, 1320 .ns_per_count = zero_event_ns_per, 1321 }, 1322 { .number = 0x024, /* STALL_BACKEND */ 1323 .supported = pmu_8_1_events_supported, 1324 .get_count = zero_event_get_count, 1325 .ns_per_count = zero_event_ns_per, 1326 }, 1327 { .number = 0x03c, /* STALL */ 1328 .supported = pmu_8_4_events_supported, 1329 .get_count = zero_event_get_count, 1330 .ns_per_count = zero_event_ns_per, 1331 }, 1332 }; 1333 1334 /* 1335 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1336 * events (i.e. the statistical profiling extension), this implementation 1337 * should first be updated to something sparse instead of the current 1338 * supported_event_map[] array. 1339 */ 1340 #define MAX_EVENT_ID 0x3c 1341 #define UNSUPPORTED_EVENT UINT16_MAX 1342 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1343 1344 /* 1345 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1346 * of ARM event numbers to indices in our pm_events array. 1347 * 1348 * Note: Events in the 0x40XX range are not currently supported. 1349 */ 1350 void pmu_init(ARMCPU *cpu) 1351 { 1352 unsigned int i; 1353 1354 /* 1355 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1356 * events to them 1357 */ 1358 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1359 supported_event_map[i] = UNSUPPORTED_EVENT; 1360 } 1361 cpu->pmceid0 = 0; 1362 cpu->pmceid1 = 0; 1363 1364 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1365 const pm_event *cnt = &pm_events[i]; 1366 assert(cnt->number <= MAX_EVENT_ID); 1367 /* We do not currently support events in the 0x40xx range */ 1368 assert(cnt->number <= 0x3f); 1369 1370 if (cnt->supported(&cpu->env)) { 1371 supported_event_map[cnt->number] = i; 1372 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1373 if (cnt->number & 0x20) { 1374 cpu->pmceid1 |= event_mask; 1375 } else { 1376 cpu->pmceid0 |= event_mask; 1377 } 1378 } 1379 } 1380 } 1381 1382 /* 1383 * Check at runtime whether a PMU event is supported for the current machine 1384 */ 1385 static bool event_supported(uint16_t number) 1386 { 1387 if (number > MAX_EVENT_ID) { 1388 return false; 1389 } 1390 return supported_event_map[number] != UNSUPPORTED_EVENT; 1391 } 1392 1393 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1394 bool isread) 1395 { 1396 /* Performance monitor registers user accessibility is controlled 1397 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1398 * trapping to EL2 or EL3 for other accesses. 1399 */ 1400 int el = arm_current_el(env); 1401 1402 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1403 return CP_ACCESS_TRAP; 1404 } 1405 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1406 && !arm_is_secure_below_el3(env)) { 1407 return CP_ACCESS_TRAP_EL2; 1408 } 1409 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1410 return CP_ACCESS_TRAP_EL3; 1411 } 1412 1413 return CP_ACCESS_OK; 1414 } 1415 1416 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1417 const ARMCPRegInfo *ri, 1418 bool isread) 1419 { 1420 /* ER: event counter read trap control */ 1421 if (arm_feature(env, ARM_FEATURE_V8) 1422 && arm_current_el(env) == 0 1423 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1424 && isread) { 1425 return CP_ACCESS_OK; 1426 } 1427 1428 return pmreg_access(env, ri, isread); 1429 } 1430 1431 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1432 const ARMCPRegInfo *ri, 1433 bool isread) 1434 { 1435 /* SW: software increment write trap control */ 1436 if (arm_feature(env, ARM_FEATURE_V8) 1437 && arm_current_el(env) == 0 1438 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1439 && !isread) { 1440 return CP_ACCESS_OK; 1441 } 1442 1443 return pmreg_access(env, ri, isread); 1444 } 1445 1446 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1447 const ARMCPRegInfo *ri, 1448 bool isread) 1449 { 1450 /* ER: event counter read trap control */ 1451 if (arm_feature(env, ARM_FEATURE_V8) 1452 && arm_current_el(env) == 0 1453 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1454 return CP_ACCESS_OK; 1455 } 1456 1457 return pmreg_access(env, ri, isread); 1458 } 1459 1460 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1461 const ARMCPRegInfo *ri, 1462 bool isread) 1463 { 1464 /* CR: cycle counter read trap control */ 1465 if (arm_feature(env, ARM_FEATURE_V8) 1466 && arm_current_el(env) == 0 1467 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1468 && isread) { 1469 return CP_ACCESS_OK; 1470 } 1471 1472 return pmreg_access(env, ri, isread); 1473 } 1474 1475 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1476 * the current EL, security state, and register configuration. 1477 */ 1478 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1479 { 1480 uint64_t filter; 1481 bool e, p, u, nsk, nsu, nsh, m; 1482 bool enabled, prohibited, filtered; 1483 bool secure = arm_is_secure(env); 1484 int el = arm_current_el(env); 1485 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1486 1487 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1488 return false; 1489 } 1490 1491 if (!arm_feature(env, ARM_FEATURE_EL2) || 1492 (counter < hpmn || counter == 31)) { 1493 e = env->cp15.c9_pmcr & PMCRE; 1494 } else { 1495 e = env->cp15.mdcr_el2 & MDCR_HPME; 1496 } 1497 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1498 1499 if (!secure) { 1500 if (el == 2 && (counter < hpmn || counter == 31)) { 1501 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1502 } else { 1503 prohibited = false; 1504 } 1505 } else { 1506 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1507 (env->cp15.mdcr_el3 & MDCR_SPME); 1508 } 1509 1510 if (prohibited && counter == 31) { 1511 prohibited = env->cp15.c9_pmcr & PMCRDP; 1512 } 1513 1514 if (counter == 31) { 1515 filter = env->cp15.pmccfiltr_el0; 1516 } else { 1517 filter = env->cp15.c14_pmevtyper[counter]; 1518 } 1519 1520 p = filter & PMXEVTYPER_P; 1521 u = filter & PMXEVTYPER_U; 1522 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1523 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1524 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1525 m = arm_el_is_aa64(env, 1) && 1526 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1527 1528 if (el == 0) { 1529 filtered = secure ? u : u != nsu; 1530 } else if (el == 1) { 1531 filtered = secure ? p : p != nsk; 1532 } else if (el == 2) { 1533 filtered = !nsh; 1534 } else { /* EL3 */ 1535 filtered = m != p; 1536 } 1537 1538 if (counter != 31) { 1539 /* 1540 * If not checking PMCCNTR, ensure the counter is setup to an event we 1541 * support 1542 */ 1543 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1544 if (!event_supported(event)) { 1545 return false; 1546 } 1547 } 1548 1549 return enabled && !prohibited && !filtered; 1550 } 1551 1552 static void pmu_update_irq(CPUARMState *env) 1553 { 1554 ARMCPU *cpu = env_archcpu(env); 1555 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1556 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1557 } 1558 1559 /* 1560 * Ensure c15_ccnt is the guest-visible count so that operations such as 1561 * enabling/disabling the counter or filtering, modifying the count itself, 1562 * etc. can be done logically. This is essentially a no-op if the counter is 1563 * not enabled at the time of the call. 1564 */ 1565 static void pmccntr_op_start(CPUARMState *env) 1566 { 1567 uint64_t cycles = cycles_get_count(env); 1568 1569 if (pmu_counter_enabled(env, 31)) { 1570 uint64_t eff_cycles = cycles; 1571 if (env->cp15.c9_pmcr & PMCRD) { 1572 /* Increment once every 64 processor clock cycles */ 1573 eff_cycles /= 64; 1574 } 1575 1576 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1577 1578 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1579 1ull << 63 : 1ull << 31; 1580 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1581 env->cp15.c9_pmovsr |= (1 << 31); 1582 pmu_update_irq(env); 1583 } 1584 1585 env->cp15.c15_ccnt = new_pmccntr; 1586 } 1587 env->cp15.c15_ccnt_delta = cycles; 1588 } 1589 1590 /* 1591 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1592 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1593 * pmccntr_op_start. 1594 */ 1595 static void pmccntr_op_finish(CPUARMState *env) 1596 { 1597 if (pmu_counter_enabled(env, 31)) { 1598 #ifndef CONFIG_USER_ONLY 1599 /* Calculate when the counter will next overflow */ 1600 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1601 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1602 remaining_cycles = (uint32_t)remaining_cycles; 1603 } 1604 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1605 1606 if (overflow_in > 0) { 1607 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1608 overflow_in; 1609 ARMCPU *cpu = env_archcpu(env); 1610 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1611 } 1612 #endif 1613 1614 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1615 if (env->cp15.c9_pmcr & PMCRD) { 1616 /* Increment once every 64 processor clock cycles */ 1617 prev_cycles /= 64; 1618 } 1619 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1620 } 1621 } 1622 1623 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1624 { 1625 1626 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1627 uint64_t count = 0; 1628 if (event_supported(event)) { 1629 uint16_t event_idx = supported_event_map[event]; 1630 count = pm_events[event_idx].get_count(env); 1631 } 1632 1633 if (pmu_counter_enabled(env, counter)) { 1634 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1635 1636 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1637 env->cp15.c9_pmovsr |= (1 << counter); 1638 pmu_update_irq(env); 1639 } 1640 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1641 } 1642 env->cp15.c14_pmevcntr_delta[counter] = count; 1643 } 1644 1645 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1646 { 1647 if (pmu_counter_enabled(env, counter)) { 1648 #ifndef CONFIG_USER_ONLY 1649 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1650 uint16_t event_idx = supported_event_map[event]; 1651 uint64_t delta = UINT32_MAX - 1652 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1653 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1654 1655 if (overflow_in > 0) { 1656 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1657 overflow_in; 1658 ARMCPU *cpu = env_archcpu(env); 1659 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1660 } 1661 #endif 1662 1663 env->cp15.c14_pmevcntr_delta[counter] -= 1664 env->cp15.c14_pmevcntr[counter]; 1665 } 1666 } 1667 1668 void pmu_op_start(CPUARMState *env) 1669 { 1670 unsigned int i; 1671 pmccntr_op_start(env); 1672 for (i = 0; i < pmu_num_counters(env); i++) { 1673 pmevcntr_op_start(env, i); 1674 } 1675 } 1676 1677 void pmu_op_finish(CPUARMState *env) 1678 { 1679 unsigned int i; 1680 pmccntr_op_finish(env); 1681 for (i = 0; i < pmu_num_counters(env); i++) { 1682 pmevcntr_op_finish(env, i); 1683 } 1684 } 1685 1686 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1687 { 1688 pmu_op_start(&cpu->env); 1689 } 1690 1691 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1692 { 1693 pmu_op_finish(&cpu->env); 1694 } 1695 1696 void arm_pmu_timer_cb(void *opaque) 1697 { 1698 ARMCPU *cpu = opaque; 1699 1700 /* 1701 * Update all the counter values based on the current underlying counts, 1702 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1703 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1704 * counter may expire. 1705 */ 1706 pmu_op_start(&cpu->env); 1707 pmu_op_finish(&cpu->env); 1708 } 1709 1710 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 pmu_op_start(env); 1714 1715 if (value & PMCRC) { 1716 /* The counter has been reset */ 1717 env->cp15.c15_ccnt = 0; 1718 } 1719 1720 if (value & PMCRP) { 1721 unsigned int i; 1722 for (i = 0; i < pmu_num_counters(env); i++) { 1723 env->cp15.c14_pmevcntr[i] = 0; 1724 } 1725 } 1726 1727 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1728 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1729 1730 pmu_op_finish(env); 1731 } 1732 1733 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 unsigned int i; 1737 for (i = 0; i < pmu_num_counters(env); i++) { 1738 /* Increment a counter's count iff: */ 1739 if ((value & (1 << i)) && /* counter's bit is set */ 1740 /* counter is enabled and not filtered */ 1741 pmu_counter_enabled(env, i) && 1742 /* counter is SW_INCR */ 1743 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1744 pmevcntr_op_start(env, i); 1745 1746 /* 1747 * Detect if this write causes an overflow since we can't predict 1748 * PMSWINC overflows like we can for other events 1749 */ 1750 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1751 1752 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1753 env->cp15.c9_pmovsr |= (1 << i); 1754 pmu_update_irq(env); 1755 } 1756 1757 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1758 1759 pmevcntr_op_finish(env, i); 1760 } 1761 } 1762 } 1763 1764 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1765 { 1766 uint64_t ret; 1767 pmccntr_op_start(env); 1768 ret = env->cp15.c15_ccnt; 1769 pmccntr_op_finish(env); 1770 return ret; 1771 } 1772 1773 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1774 uint64_t value) 1775 { 1776 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1777 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1778 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1779 * accessed. 1780 */ 1781 env->cp15.c9_pmselr = value & 0x1f; 1782 } 1783 1784 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 pmccntr_op_start(env); 1788 env->cp15.c15_ccnt = value; 1789 pmccntr_op_finish(env); 1790 } 1791 1792 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1793 uint64_t value) 1794 { 1795 uint64_t cur_val = pmccntr_read(env, NULL); 1796 1797 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1798 } 1799 1800 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1801 uint64_t value) 1802 { 1803 pmccntr_op_start(env); 1804 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1805 pmccntr_op_finish(env); 1806 } 1807 1808 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 pmccntr_op_start(env); 1812 /* M is not accessible from AArch32 */ 1813 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1814 (value & PMCCFILTR); 1815 pmccntr_op_finish(env); 1816 } 1817 1818 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1819 { 1820 /* M is not visible in AArch32 */ 1821 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1822 } 1823 1824 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 value &= pmu_counter_mask(env); 1828 env->cp15.c9_pmcnten |= value; 1829 } 1830 1831 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1832 uint64_t value) 1833 { 1834 value &= pmu_counter_mask(env); 1835 env->cp15.c9_pmcnten &= ~value; 1836 } 1837 1838 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1839 uint64_t value) 1840 { 1841 value &= pmu_counter_mask(env); 1842 env->cp15.c9_pmovsr &= ~value; 1843 pmu_update_irq(env); 1844 } 1845 1846 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1847 uint64_t value) 1848 { 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pmovsr |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value, const uint8_t counter) 1856 { 1857 if (counter == 31) { 1858 pmccfiltr_write(env, ri, value); 1859 } else if (counter < pmu_num_counters(env)) { 1860 pmevcntr_op_start(env, counter); 1861 1862 /* 1863 * If this counter's event type is changing, store the current 1864 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1865 * pmevcntr_op_finish has the correct baseline when it converts back to 1866 * a delta. 1867 */ 1868 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1869 PMXEVTYPER_EVTCOUNT; 1870 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1871 if (old_event != new_event) { 1872 uint64_t count = 0; 1873 if (event_supported(new_event)) { 1874 uint16_t event_idx = supported_event_map[new_event]; 1875 count = pm_events[event_idx].get_count(env); 1876 } 1877 env->cp15.c14_pmevcntr_delta[counter] = count; 1878 } 1879 1880 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1881 pmevcntr_op_finish(env, counter); 1882 } 1883 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1884 * PMSELR value is equal to or greater than the number of implemented 1885 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1886 */ 1887 } 1888 1889 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1890 const uint8_t counter) 1891 { 1892 if (counter == 31) { 1893 return env->cp15.pmccfiltr_el0; 1894 } else if (counter < pmu_num_counters(env)) { 1895 return env->cp15.c14_pmevtyper[counter]; 1896 } else { 1897 /* 1898 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1899 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1900 */ 1901 return 0; 1902 } 1903 } 1904 1905 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1906 uint64_t value) 1907 { 1908 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1909 pmevtyper_write(env, ri, value, counter); 1910 } 1911 1912 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value) 1914 { 1915 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1916 env->cp15.c14_pmevtyper[counter] = value; 1917 1918 /* 1919 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1920 * pmu_op_finish calls when loading saved state for a migration. Because 1921 * we're potentially updating the type of event here, the value written to 1922 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1923 * different counter type. Therefore, we need to set this value to the 1924 * current count for the counter type we're writing so that pmu_op_finish 1925 * has the correct count for its calculation. 1926 */ 1927 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1928 if (event_supported(event)) { 1929 uint16_t event_idx = supported_event_map[event]; 1930 env->cp15.c14_pmevcntr_delta[counter] = 1931 pm_events[event_idx].get_count(env); 1932 } 1933 } 1934 1935 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1936 { 1937 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1938 return pmevtyper_read(env, ri, counter); 1939 } 1940 1941 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1942 uint64_t value) 1943 { 1944 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1945 } 1946 1947 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1948 { 1949 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1950 } 1951 1952 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1953 uint64_t value, uint8_t counter) 1954 { 1955 if (counter < pmu_num_counters(env)) { 1956 pmevcntr_op_start(env, counter); 1957 env->cp15.c14_pmevcntr[counter] = value; 1958 pmevcntr_op_finish(env, counter); 1959 } 1960 /* 1961 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1962 * are CONSTRAINED UNPREDICTABLE. 1963 */ 1964 } 1965 1966 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1967 uint8_t counter) 1968 { 1969 if (counter < pmu_num_counters(env)) { 1970 uint64_t ret; 1971 pmevcntr_op_start(env, counter); 1972 ret = env->cp15.c14_pmevcntr[counter]; 1973 pmevcntr_op_finish(env, counter); 1974 return ret; 1975 } else { 1976 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1977 * are CONSTRAINED UNPREDICTABLE. */ 1978 return 0; 1979 } 1980 } 1981 1982 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1986 pmevcntr_write(env, ri, value, counter); 1987 } 1988 1989 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1990 { 1991 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1992 return pmevcntr_read(env, ri, counter); 1993 } 1994 1995 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1996 uint64_t value) 1997 { 1998 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1999 assert(counter < pmu_num_counters(env)); 2000 env->cp15.c14_pmevcntr[counter] = value; 2001 pmevcntr_write(env, ri, value, counter); 2002 } 2003 2004 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 2005 { 2006 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 2007 assert(counter < pmu_num_counters(env)); 2008 return env->cp15.c14_pmevcntr[counter]; 2009 } 2010 2011 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2012 uint64_t value) 2013 { 2014 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 2015 } 2016 2017 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2018 { 2019 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 2020 } 2021 2022 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2023 uint64_t value) 2024 { 2025 if (arm_feature(env, ARM_FEATURE_V8)) { 2026 env->cp15.c9_pmuserenr = value & 0xf; 2027 } else { 2028 env->cp15.c9_pmuserenr = value & 1; 2029 } 2030 } 2031 2032 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 2033 uint64_t value) 2034 { 2035 /* We have no event counters so only the C bit can be changed */ 2036 value &= pmu_counter_mask(env); 2037 env->cp15.c9_pminten |= value; 2038 pmu_update_irq(env); 2039 } 2040 2041 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2042 uint64_t value) 2043 { 2044 value &= pmu_counter_mask(env); 2045 env->cp15.c9_pminten &= ~value; 2046 pmu_update_irq(env); 2047 } 2048 2049 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2050 uint64_t value) 2051 { 2052 /* Note that even though the AArch64 view of this register has bits 2053 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2054 * architectural requirements for bits which are RES0 only in some 2055 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2056 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2057 */ 2058 raw_write(env, ri, value & ~0x1FULL); 2059 } 2060 2061 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2062 { 2063 /* Begin with base v8.0 state. */ 2064 uint32_t valid_mask = 0x3fff; 2065 ARMCPU *cpu = env_archcpu(env); 2066 2067 if (arm_el_is_aa64(env, 3)) { 2068 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2069 valid_mask &= ~SCR_NET; 2070 } else { 2071 valid_mask &= ~(SCR_RW | SCR_ST); 2072 } 2073 2074 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2075 valid_mask &= ~SCR_HCE; 2076 2077 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2078 * supported if EL2 exists. The bit is UNK/SBZP when 2079 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2080 * when EL2 is unavailable. 2081 * On ARMv8, this bit is always available. 2082 */ 2083 if (arm_feature(env, ARM_FEATURE_V7) && 2084 !arm_feature(env, ARM_FEATURE_V8)) { 2085 valid_mask &= ~SCR_SMD; 2086 } 2087 } 2088 if (cpu_isar_feature(aa64_lor, cpu)) { 2089 valid_mask |= SCR_TLOR; 2090 } 2091 if (cpu_isar_feature(aa64_pauth, cpu)) { 2092 valid_mask |= SCR_API | SCR_APK; 2093 } 2094 2095 /* Clear all-context RES0 bits. */ 2096 value &= valid_mask; 2097 raw_write(env, ri, value); 2098 } 2099 2100 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2101 const ARMCPRegInfo *ri, 2102 bool isread) 2103 { 2104 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2105 return CP_ACCESS_TRAP_EL2; 2106 } 2107 2108 return CP_ACCESS_OK; 2109 } 2110 2111 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2112 { 2113 ARMCPU *cpu = env_archcpu(env); 2114 2115 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2116 * bank 2117 */ 2118 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2119 ri->secure & ARM_CP_SECSTATE_S); 2120 2121 return cpu->ccsidr[index]; 2122 } 2123 2124 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2125 uint64_t value) 2126 { 2127 raw_write(env, ri, value & 0xf); 2128 } 2129 2130 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2131 { 2132 CPUState *cs = env_cpu(env); 2133 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2134 uint64_t ret = 0; 2135 bool allow_virt = (arm_current_el(env) == 1 && 2136 (!arm_is_secure_below_el3(env) || 2137 (env->cp15.scr_el3 & SCR_EEL2))); 2138 2139 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2140 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2141 ret |= CPSR_I; 2142 } 2143 } else { 2144 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2145 ret |= CPSR_I; 2146 } 2147 } 2148 2149 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2150 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2151 ret |= CPSR_F; 2152 } 2153 } else { 2154 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2155 ret |= CPSR_F; 2156 } 2157 } 2158 2159 /* External aborts are not possible in QEMU so A bit is always clear */ 2160 return ret; 2161 } 2162 2163 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2164 bool isread) 2165 { 2166 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2167 return CP_ACCESS_TRAP_EL2; 2168 } 2169 2170 return CP_ACCESS_OK; 2171 } 2172 2173 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2174 bool isread) 2175 { 2176 if (arm_feature(env, ARM_FEATURE_V8)) { 2177 return access_aa64_tid1(env, ri, isread); 2178 } 2179 2180 return CP_ACCESS_OK; 2181 } 2182 2183 static const ARMCPRegInfo v7_cp_reginfo[] = { 2184 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2185 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2186 .access = PL1_W, .type = ARM_CP_NOP }, 2187 /* Performance monitors are implementation defined in v7, 2188 * but with an ARM recommended set of registers, which we 2189 * follow. 2190 * 2191 * Performance registers fall into three categories: 2192 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2193 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2194 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2195 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2196 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2197 */ 2198 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2199 .access = PL0_RW, .type = ARM_CP_ALIAS, 2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2201 .writefn = pmcntenset_write, 2202 .accessfn = pmreg_access, 2203 .raw_writefn = raw_write }, 2204 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2208 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2209 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2210 .access = PL0_RW, 2211 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2212 .accessfn = pmreg_access, 2213 .writefn = pmcntenclr_write, 2214 .type = ARM_CP_ALIAS }, 2215 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2217 .access = PL0_RW, .accessfn = pmreg_access, 2218 .type = ARM_CP_ALIAS, 2219 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2220 .writefn = pmcntenclr_write }, 2221 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2222 .access = PL0_RW, .type = ARM_CP_IO, 2223 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2224 .accessfn = pmreg_access, 2225 .writefn = pmovsr_write, 2226 .raw_writefn = raw_write }, 2227 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2229 .access = PL0_RW, .accessfn = pmreg_access, 2230 .type = ARM_CP_ALIAS | ARM_CP_IO, 2231 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2232 .writefn = pmovsr_write, 2233 .raw_writefn = raw_write }, 2234 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2235 .access = PL0_W, .accessfn = pmreg_access_swinc, 2236 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2237 .writefn = pmswinc_write }, 2238 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2239 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2240 .access = PL0_W, .accessfn = pmreg_access_swinc, 2241 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2242 .writefn = pmswinc_write }, 2243 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2244 .access = PL0_RW, .type = ARM_CP_ALIAS, 2245 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2246 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2247 .raw_writefn = raw_write}, 2248 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2249 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2250 .access = PL0_RW, .accessfn = pmreg_access_selr, 2251 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2252 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2253 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2254 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2255 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2256 .accessfn = pmreg_access_ccntr }, 2257 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2259 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2260 .type = ARM_CP_IO, 2261 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2262 .readfn = pmccntr_read, .writefn = pmccntr_write, 2263 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2264 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2265 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2266 .access = PL0_RW, .accessfn = pmreg_access, 2267 .type = ARM_CP_ALIAS | ARM_CP_IO, 2268 .resetvalue = 0, }, 2269 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2271 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2272 .access = PL0_RW, .accessfn = pmreg_access, 2273 .type = ARM_CP_IO, 2274 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2275 .resetvalue = 0, }, 2276 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2277 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2278 .accessfn = pmreg_access, 2279 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2280 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2281 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2282 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2283 .accessfn = pmreg_access, 2284 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2285 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2286 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2287 .accessfn = pmreg_access_xevcntr, 2288 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2289 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2291 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2292 .accessfn = pmreg_access_xevcntr, 2293 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2294 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2295 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2296 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2297 .resetvalue = 0, 2298 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2299 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2300 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2301 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2302 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2303 .resetvalue = 0, 2304 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2305 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2306 .access = PL1_RW, .accessfn = access_tpm, 2307 .type = ARM_CP_ALIAS | ARM_CP_IO, 2308 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2309 .resetvalue = 0, 2310 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2311 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2312 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2313 .access = PL1_RW, .accessfn = access_tpm, 2314 .type = ARM_CP_IO, 2315 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2316 .writefn = pmintenset_write, .raw_writefn = raw_write, 2317 .resetvalue = 0x0 }, 2318 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2319 .access = PL1_RW, .accessfn = access_tpm, 2320 .type = ARM_CP_ALIAS | ARM_CP_IO, 2321 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2322 .writefn = pmintenclr_write, }, 2323 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2324 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2325 .access = PL1_RW, .accessfn = access_tpm, 2326 .type = ARM_CP_ALIAS | ARM_CP_IO, 2327 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2328 .writefn = pmintenclr_write }, 2329 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2330 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2331 .access = PL1_R, 2332 .accessfn = access_aa64_tid2, 2333 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2334 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2335 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2336 .access = PL1_RW, 2337 .accessfn = access_aa64_tid2, 2338 .writefn = csselr_write, .resetvalue = 0, 2339 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2340 offsetof(CPUARMState, cp15.csselr_ns) } }, 2341 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2342 * just RAZ for all cores: 2343 */ 2344 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2345 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2346 .access = PL1_R, .type = ARM_CP_CONST, 2347 .accessfn = access_aa64_tid1, 2348 .resetvalue = 0 }, 2349 /* Auxiliary fault status registers: these also are IMPDEF, and we 2350 * choose to RAZ/WI for all cores. 2351 */ 2352 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2353 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2354 .access = PL1_RW, .accessfn = access_tvm_trvm, 2355 .type = ARM_CP_CONST, .resetvalue = 0 }, 2356 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2357 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2358 .access = PL1_RW, .accessfn = access_tvm_trvm, 2359 .type = ARM_CP_CONST, .resetvalue = 0 }, 2360 /* MAIR can just read-as-written because we don't implement caches 2361 * and so don't need to care about memory attributes. 2362 */ 2363 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2364 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2365 .access = PL1_RW, .accessfn = access_tvm_trvm, 2366 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2367 .resetvalue = 0 }, 2368 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2369 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2370 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2371 .resetvalue = 0 }, 2372 /* For non-long-descriptor page tables these are PRRR and NMRR; 2373 * regardless they still act as reads-as-written for QEMU. 2374 */ 2375 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2376 * allows them to assign the correct fieldoffset based on the endianness 2377 * handled in the field definitions. 2378 */ 2379 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2380 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2381 .access = PL1_RW, .accessfn = access_tvm_trvm, 2382 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2383 offsetof(CPUARMState, cp15.mair0_ns) }, 2384 .resetfn = arm_cp_reset_ignore }, 2385 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2386 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2387 .access = PL1_RW, .accessfn = access_tvm_trvm, 2388 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2389 offsetof(CPUARMState, cp15.mair1_ns) }, 2390 .resetfn = arm_cp_reset_ignore }, 2391 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2392 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2393 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2394 /* 32 bit ITLB invalidates */ 2395 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2397 .writefn = tlbiall_write }, 2398 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2400 .writefn = tlbimva_write }, 2401 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2403 .writefn = tlbiasid_write }, 2404 /* 32 bit DTLB invalidates */ 2405 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2406 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2407 .writefn = tlbiall_write }, 2408 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2409 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2410 .writefn = tlbimva_write }, 2411 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2412 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2413 .writefn = tlbiasid_write }, 2414 /* 32 bit TLB invalidates */ 2415 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2417 .writefn = tlbiall_write }, 2418 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2420 .writefn = tlbimva_write }, 2421 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2422 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2423 .writefn = tlbiasid_write }, 2424 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2425 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2426 .writefn = tlbimvaa_write }, 2427 REGINFO_SENTINEL 2428 }; 2429 2430 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2431 /* 32 bit TLB invalidates, Inner Shareable */ 2432 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2433 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2434 .writefn = tlbiall_is_write }, 2435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2436 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2437 .writefn = tlbimva_is_write }, 2438 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2439 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2440 .writefn = tlbiasid_is_write }, 2441 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2442 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2443 .writefn = tlbimvaa_is_write }, 2444 REGINFO_SENTINEL 2445 }; 2446 2447 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2448 /* PMOVSSET is not implemented in v7 before v7ve */ 2449 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2450 .access = PL0_RW, .accessfn = pmreg_access, 2451 .type = ARM_CP_ALIAS | ARM_CP_IO, 2452 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2453 .writefn = pmovsset_write, 2454 .raw_writefn = raw_write }, 2455 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2456 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2457 .access = PL0_RW, .accessfn = pmreg_access, 2458 .type = ARM_CP_ALIAS | ARM_CP_IO, 2459 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2460 .writefn = pmovsset_write, 2461 .raw_writefn = raw_write }, 2462 REGINFO_SENTINEL 2463 }; 2464 2465 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2466 uint64_t value) 2467 { 2468 value &= 1; 2469 env->teecr = value; 2470 } 2471 2472 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2473 bool isread) 2474 { 2475 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2476 return CP_ACCESS_TRAP; 2477 } 2478 return CP_ACCESS_OK; 2479 } 2480 2481 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2482 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2483 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2484 .resetvalue = 0, 2485 .writefn = teecr_write }, 2486 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2487 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2488 .accessfn = teehbr_access, .resetvalue = 0 }, 2489 REGINFO_SENTINEL 2490 }; 2491 2492 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2493 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2494 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2495 .access = PL0_RW, 2496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2497 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2498 .access = PL0_RW, 2499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2500 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2501 .resetfn = arm_cp_reset_ignore }, 2502 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2503 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2504 .access = PL0_R|PL1_W, 2505 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2506 .resetvalue = 0}, 2507 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2508 .access = PL0_R|PL1_W, 2509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2510 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2511 .resetfn = arm_cp_reset_ignore }, 2512 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2513 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2514 .access = PL1_RW, 2515 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2516 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2517 .access = PL1_RW, 2518 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2519 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2520 .resetvalue = 0 }, 2521 REGINFO_SENTINEL 2522 }; 2523 2524 #ifndef CONFIG_USER_ONLY 2525 2526 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2527 bool isread) 2528 { 2529 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2530 * Writable only at the highest implemented exception level. 2531 */ 2532 int el = arm_current_el(env); 2533 uint64_t hcr; 2534 uint32_t cntkctl; 2535 2536 switch (el) { 2537 case 0: 2538 hcr = arm_hcr_el2_eff(env); 2539 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2540 cntkctl = env->cp15.cnthctl_el2; 2541 } else { 2542 cntkctl = env->cp15.c14_cntkctl; 2543 } 2544 if (!extract32(cntkctl, 0, 2)) { 2545 return CP_ACCESS_TRAP; 2546 } 2547 break; 2548 case 1: 2549 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2550 arm_is_secure_below_el3(env)) { 2551 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2552 return CP_ACCESS_TRAP_UNCATEGORIZED; 2553 } 2554 break; 2555 case 2: 2556 case 3: 2557 break; 2558 } 2559 2560 if (!isread && el < arm_highest_el(env)) { 2561 return CP_ACCESS_TRAP_UNCATEGORIZED; 2562 } 2563 2564 return CP_ACCESS_OK; 2565 } 2566 2567 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2568 bool isread) 2569 { 2570 unsigned int cur_el = arm_current_el(env); 2571 bool secure = arm_is_secure(env); 2572 uint64_t hcr = arm_hcr_el2_eff(env); 2573 2574 switch (cur_el) { 2575 case 0: 2576 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2577 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2578 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2579 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2580 } 2581 2582 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2583 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2584 return CP_ACCESS_TRAP; 2585 } 2586 2587 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2588 if (hcr & HCR_E2H) { 2589 if (timeridx == GTIMER_PHYS && 2590 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2591 return CP_ACCESS_TRAP_EL2; 2592 } 2593 } else { 2594 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2595 if (arm_feature(env, ARM_FEATURE_EL2) && 2596 timeridx == GTIMER_PHYS && !secure && 2597 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2598 return CP_ACCESS_TRAP_EL2; 2599 } 2600 } 2601 break; 2602 2603 case 1: 2604 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2605 if (arm_feature(env, ARM_FEATURE_EL2) && 2606 timeridx == GTIMER_PHYS && !secure && 2607 (hcr & HCR_E2H 2608 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2609 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2610 return CP_ACCESS_TRAP_EL2; 2611 } 2612 break; 2613 } 2614 return CP_ACCESS_OK; 2615 } 2616 2617 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2618 bool isread) 2619 { 2620 unsigned int cur_el = arm_current_el(env); 2621 bool secure = arm_is_secure(env); 2622 uint64_t hcr = arm_hcr_el2_eff(env); 2623 2624 switch (cur_el) { 2625 case 0: 2626 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2627 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2628 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2629 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2630 } 2631 2632 /* 2633 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2634 * EL0 if EL0[PV]TEN is zero. 2635 */ 2636 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2637 return CP_ACCESS_TRAP; 2638 } 2639 /* fall through */ 2640 2641 case 1: 2642 if (arm_feature(env, ARM_FEATURE_EL2) && 2643 timeridx == GTIMER_PHYS && !secure) { 2644 if (hcr & HCR_E2H) { 2645 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2646 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2647 return CP_ACCESS_TRAP_EL2; 2648 } 2649 } else { 2650 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2651 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2652 return CP_ACCESS_TRAP_EL2; 2653 } 2654 } 2655 } 2656 break; 2657 } 2658 return CP_ACCESS_OK; 2659 } 2660 2661 static CPAccessResult gt_pct_access(CPUARMState *env, 2662 const ARMCPRegInfo *ri, 2663 bool isread) 2664 { 2665 return gt_counter_access(env, GTIMER_PHYS, isread); 2666 } 2667 2668 static CPAccessResult gt_vct_access(CPUARMState *env, 2669 const ARMCPRegInfo *ri, 2670 bool isread) 2671 { 2672 return gt_counter_access(env, GTIMER_VIRT, isread); 2673 } 2674 2675 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2676 bool isread) 2677 { 2678 return gt_timer_access(env, GTIMER_PHYS, isread); 2679 } 2680 2681 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2682 bool isread) 2683 { 2684 return gt_timer_access(env, GTIMER_VIRT, isread); 2685 } 2686 2687 static CPAccessResult gt_stimer_access(CPUARMState *env, 2688 const ARMCPRegInfo *ri, 2689 bool isread) 2690 { 2691 /* The AArch64 register view of the secure physical timer is 2692 * always accessible from EL3, and configurably accessible from 2693 * Secure EL1. 2694 */ 2695 switch (arm_current_el(env)) { 2696 case 1: 2697 if (!arm_is_secure(env)) { 2698 return CP_ACCESS_TRAP; 2699 } 2700 if (!(env->cp15.scr_el3 & SCR_ST)) { 2701 return CP_ACCESS_TRAP_EL3; 2702 } 2703 return CP_ACCESS_OK; 2704 case 0: 2705 case 2: 2706 return CP_ACCESS_TRAP; 2707 case 3: 2708 return CP_ACCESS_OK; 2709 default: 2710 g_assert_not_reached(); 2711 } 2712 } 2713 2714 static uint64_t gt_get_countervalue(CPUARMState *env) 2715 { 2716 ARMCPU *cpu = env_archcpu(env); 2717 2718 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2719 } 2720 2721 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2722 { 2723 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2724 2725 if (gt->ctl & 1) { 2726 /* Timer enabled: calculate and set current ISTATUS, irq, and 2727 * reset timer to when ISTATUS next has to change 2728 */ 2729 uint64_t offset = timeridx == GTIMER_VIRT ? 2730 cpu->env.cp15.cntvoff_el2 : 0; 2731 uint64_t count = gt_get_countervalue(&cpu->env); 2732 /* Note that this must be unsigned 64 bit arithmetic: */ 2733 int istatus = count - offset >= gt->cval; 2734 uint64_t nexttick; 2735 int irqstate; 2736 2737 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2738 2739 irqstate = (istatus && !(gt->ctl & 2)); 2740 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2741 2742 if (istatus) { 2743 /* Next transition is when count rolls back over to zero */ 2744 nexttick = UINT64_MAX; 2745 } else { 2746 /* Next transition is when we hit cval */ 2747 nexttick = gt->cval + offset; 2748 } 2749 /* Note that the desired next expiry time might be beyond the 2750 * signed-64-bit range of a QEMUTimer -- in this case we just 2751 * set the timer for as far in the future as possible. When the 2752 * timer expires we will reset the timer for any remaining period. 2753 */ 2754 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2755 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2756 } else { 2757 timer_mod(cpu->gt_timer[timeridx], nexttick); 2758 } 2759 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2760 } else { 2761 /* Timer disabled: ISTATUS and timer output always clear */ 2762 gt->ctl &= ~4; 2763 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2764 timer_del(cpu->gt_timer[timeridx]); 2765 trace_arm_gt_recalc_disabled(timeridx); 2766 } 2767 } 2768 2769 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2770 int timeridx) 2771 { 2772 ARMCPU *cpu = env_archcpu(env); 2773 2774 timer_del(cpu->gt_timer[timeridx]); 2775 } 2776 2777 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 return gt_get_countervalue(env); 2780 } 2781 2782 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2783 { 2784 uint64_t hcr; 2785 2786 switch (arm_current_el(env)) { 2787 case 2: 2788 hcr = arm_hcr_el2_eff(env); 2789 if (hcr & HCR_E2H) { 2790 return 0; 2791 } 2792 break; 2793 case 0: 2794 hcr = arm_hcr_el2_eff(env); 2795 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2796 return 0; 2797 } 2798 break; 2799 } 2800 2801 return env->cp15.cntvoff_el2; 2802 } 2803 2804 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2805 { 2806 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2807 } 2808 2809 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 int timeridx, 2811 uint64_t value) 2812 { 2813 trace_arm_gt_cval_write(timeridx, value); 2814 env->cp15.c14_timer[timeridx].cval = value; 2815 gt_recalc_timer(env_archcpu(env), timeridx); 2816 } 2817 2818 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2819 int timeridx) 2820 { 2821 uint64_t offset = 0; 2822 2823 switch (timeridx) { 2824 case GTIMER_VIRT: 2825 case GTIMER_HYPVIRT: 2826 offset = gt_virt_cnt_offset(env); 2827 break; 2828 } 2829 2830 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2831 (gt_get_countervalue(env) - offset)); 2832 } 2833 2834 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2835 int timeridx, 2836 uint64_t value) 2837 { 2838 uint64_t offset = 0; 2839 2840 switch (timeridx) { 2841 case GTIMER_VIRT: 2842 case GTIMER_HYPVIRT: 2843 offset = gt_virt_cnt_offset(env); 2844 break; 2845 } 2846 2847 trace_arm_gt_tval_write(timeridx, value); 2848 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2849 sextract64(value, 0, 32); 2850 gt_recalc_timer(env_archcpu(env), timeridx); 2851 } 2852 2853 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2854 int timeridx, 2855 uint64_t value) 2856 { 2857 ARMCPU *cpu = env_archcpu(env); 2858 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2859 2860 trace_arm_gt_ctl_write(timeridx, value); 2861 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2862 if ((oldval ^ value) & 1) { 2863 /* Enable toggled */ 2864 gt_recalc_timer(cpu, timeridx); 2865 } else if ((oldval ^ value) & 2) { 2866 /* IMASK toggled: don't need to recalculate, 2867 * just set the interrupt line based on ISTATUS 2868 */ 2869 int irqstate = (oldval & 4) && !(value & 2); 2870 2871 trace_arm_gt_imask_toggle(timeridx, irqstate); 2872 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2873 } 2874 } 2875 2876 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2877 { 2878 gt_timer_reset(env, ri, GTIMER_PHYS); 2879 } 2880 2881 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2882 uint64_t value) 2883 { 2884 gt_cval_write(env, ri, GTIMER_PHYS, value); 2885 } 2886 2887 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2888 { 2889 return gt_tval_read(env, ri, GTIMER_PHYS); 2890 } 2891 2892 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2893 uint64_t value) 2894 { 2895 gt_tval_write(env, ri, GTIMER_PHYS, value); 2896 } 2897 2898 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2902 } 2903 2904 static int gt_phys_redir_timeridx(CPUARMState *env) 2905 { 2906 switch (arm_mmu_idx(env)) { 2907 case ARMMMUIdx_E20_0: 2908 case ARMMMUIdx_E20_2: 2909 case ARMMMUIdx_E20_2_PAN: 2910 return GTIMER_HYP; 2911 default: 2912 return GTIMER_PHYS; 2913 } 2914 } 2915 2916 static int gt_virt_redir_timeridx(CPUARMState *env) 2917 { 2918 switch (arm_mmu_idx(env)) { 2919 case ARMMMUIdx_E20_0: 2920 case ARMMMUIdx_E20_2: 2921 case ARMMMUIdx_E20_2_PAN: 2922 return GTIMER_HYPVIRT; 2923 default: 2924 return GTIMER_VIRT; 2925 } 2926 } 2927 2928 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2929 const ARMCPRegInfo *ri) 2930 { 2931 int timeridx = gt_phys_redir_timeridx(env); 2932 return env->cp15.c14_timer[timeridx].cval; 2933 } 2934 2935 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2936 uint64_t value) 2937 { 2938 int timeridx = gt_phys_redir_timeridx(env); 2939 gt_cval_write(env, ri, timeridx, value); 2940 } 2941 2942 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2943 const ARMCPRegInfo *ri) 2944 { 2945 int timeridx = gt_phys_redir_timeridx(env); 2946 return gt_tval_read(env, ri, timeridx); 2947 } 2948 2949 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2950 uint64_t value) 2951 { 2952 int timeridx = gt_phys_redir_timeridx(env); 2953 gt_tval_write(env, ri, timeridx, value); 2954 } 2955 2956 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2957 const ARMCPRegInfo *ri) 2958 { 2959 int timeridx = gt_phys_redir_timeridx(env); 2960 return env->cp15.c14_timer[timeridx].ctl; 2961 } 2962 2963 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2964 uint64_t value) 2965 { 2966 int timeridx = gt_phys_redir_timeridx(env); 2967 gt_ctl_write(env, ri, timeridx, value); 2968 } 2969 2970 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2971 { 2972 gt_timer_reset(env, ri, GTIMER_VIRT); 2973 } 2974 2975 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2976 uint64_t value) 2977 { 2978 gt_cval_write(env, ri, GTIMER_VIRT, value); 2979 } 2980 2981 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2982 { 2983 return gt_tval_read(env, ri, GTIMER_VIRT); 2984 } 2985 2986 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2987 uint64_t value) 2988 { 2989 gt_tval_write(env, ri, GTIMER_VIRT, value); 2990 } 2991 2992 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2993 uint64_t value) 2994 { 2995 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2996 } 2997 2998 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2999 uint64_t value) 3000 { 3001 ARMCPU *cpu = env_archcpu(env); 3002 3003 trace_arm_gt_cntvoff_write(value); 3004 raw_write(env, ri, value); 3005 gt_recalc_timer(cpu, GTIMER_VIRT); 3006 } 3007 3008 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3009 const ARMCPRegInfo *ri) 3010 { 3011 int timeridx = gt_virt_redir_timeridx(env); 3012 return env->cp15.c14_timer[timeridx].cval; 3013 } 3014 3015 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 int timeridx = gt_virt_redir_timeridx(env); 3019 gt_cval_write(env, ri, timeridx, value); 3020 } 3021 3022 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3023 const ARMCPRegInfo *ri) 3024 { 3025 int timeridx = gt_virt_redir_timeridx(env); 3026 return gt_tval_read(env, ri, timeridx); 3027 } 3028 3029 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3030 uint64_t value) 3031 { 3032 int timeridx = gt_virt_redir_timeridx(env); 3033 gt_tval_write(env, ri, timeridx, value); 3034 } 3035 3036 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3037 const ARMCPRegInfo *ri) 3038 { 3039 int timeridx = gt_virt_redir_timeridx(env); 3040 return env->cp15.c14_timer[timeridx].ctl; 3041 } 3042 3043 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3044 uint64_t value) 3045 { 3046 int timeridx = gt_virt_redir_timeridx(env); 3047 gt_ctl_write(env, ri, timeridx, value); 3048 } 3049 3050 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3051 { 3052 gt_timer_reset(env, ri, GTIMER_HYP); 3053 } 3054 3055 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3056 uint64_t value) 3057 { 3058 gt_cval_write(env, ri, GTIMER_HYP, value); 3059 } 3060 3061 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3062 { 3063 return gt_tval_read(env, ri, GTIMER_HYP); 3064 } 3065 3066 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3067 uint64_t value) 3068 { 3069 gt_tval_write(env, ri, GTIMER_HYP, value); 3070 } 3071 3072 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3073 uint64_t value) 3074 { 3075 gt_ctl_write(env, ri, GTIMER_HYP, value); 3076 } 3077 3078 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3079 { 3080 gt_timer_reset(env, ri, GTIMER_SEC); 3081 } 3082 3083 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3084 uint64_t value) 3085 { 3086 gt_cval_write(env, ri, GTIMER_SEC, value); 3087 } 3088 3089 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3090 { 3091 return gt_tval_read(env, ri, GTIMER_SEC); 3092 } 3093 3094 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3095 uint64_t value) 3096 { 3097 gt_tval_write(env, ri, GTIMER_SEC, value); 3098 } 3099 3100 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3101 uint64_t value) 3102 { 3103 gt_ctl_write(env, ri, GTIMER_SEC, value); 3104 } 3105 3106 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3107 { 3108 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3109 } 3110 3111 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3112 uint64_t value) 3113 { 3114 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3115 } 3116 3117 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3118 { 3119 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3120 } 3121 3122 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3123 uint64_t value) 3124 { 3125 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3126 } 3127 3128 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3129 uint64_t value) 3130 { 3131 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3132 } 3133 3134 void arm_gt_ptimer_cb(void *opaque) 3135 { 3136 ARMCPU *cpu = opaque; 3137 3138 gt_recalc_timer(cpu, GTIMER_PHYS); 3139 } 3140 3141 void arm_gt_vtimer_cb(void *opaque) 3142 { 3143 ARMCPU *cpu = opaque; 3144 3145 gt_recalc_timer(cpu, GTIMER_VIRT); 3146 } 3147 3148 void arm_gt_htimer_cb(void *opaque) 3149 { 3150 ARMCPU *cpu = opaque; 3151 3152 gt_recalc_timer(cpu, GTIMER_HYP); 3153 } 3154 3155 void arm_gt_stimer_cb(void *opaque) 3156 { 3157 ARMCPU *cpu = opaque; 3158 3159 gt_recalc_timer(cpu, GTIMER_SEC); 3160 } 3161 3162 void arm_gt_hvtimer_cb(void *opaque) 3163 { 3164 ARMCPU *cpu = opaque; 3165 3166 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3167 } 3168 3169 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3170 { 3171 ARMCPU *cpu = env_archcpu(env); 3172 3173 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3174 } 3175 3176 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3177 /* Note that CNTFRQ is purely reads-as-written for the benefit 3178 * of software; writing it doesn't actually change the timer frequency. 3179 * Our reset value matches the fixed frequency we implement the timer at. 3180 */ 3181 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3182 .type = ARM_CP_ALIAS, 3183 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3184 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3185 }, 3186 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3187 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3188 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3190 .resetfn = arm_gt_cntfrq_reset, 3191 }, 3192 /* overall control: mostly access permissions */ 3193 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3194 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3195 .access = PL1_RW, 3196 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3197 .resetvalue = 0, 3198 }, 3199 /* per-timer control */ 3200 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3201 .secure = ARM_CP_SECSTATE_NS, 3202 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3203 .accessfn = gt_ptimer_access, 3204 .fieldoffset = offsetoflow32(CPUARMState, 3205 cp15.c14_timer[GTIMER_PHYS].ctl), 3206 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3207 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3208 }, 3209 { .name = "CNTP_CTL_S", 3210 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3211 .secure = ARM_CP_SECSTATE_S, 3212 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3213 .accessfn = gt_ptimer_access, 3214 .fieldoffset = offsetoflow32(CPUARMState, 3215 cp15.c14_timer[GTIMER_SEC].ctl), 3216 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3217 }, 3218 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3219 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3220 .type = ARM_CP_IO, .access = PL0_RW, 3221 .accessfn = gt_ptimer_access, 3222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3223 .resetvalue = 0, 3224 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3225 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3226 }, 3227 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3228 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3229 .accessfn = gt_vtimer_access, 3230 .fieldoffset = offsetoflow32(CPUARMState, 3231 cp15.c14_timer[GTIMER_VIRT].ctl), 3232 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3233 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3234 }, 3235 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3237 .type = ARM_CP_IO, .access = PL0_RW, 3238 .accessfn = gt_vtimer_access, 3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3240 .resetvalue = 0, 3241 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3242 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3243 }, 3244 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3245 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3246 .secure = ARM_CP_SECSTATE_NS, 3247 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3248 .accessfn = gt_ptimer_access, 3249 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3250 }, 3251 { .name = "CNTP_TVAL_S", 3252 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3253 .secure = ARM_CP_SECSTATE_S, 3254 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3255 .accessfn = gt_ptimer_access, 3256 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3257 }, 3258 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3259 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3260 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3261 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3262 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3263 }, 3264 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3265 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3266 .accessfn = gt_vtimer_access, 3267 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3268 }, 3269 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3271 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3272 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3273 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3274 }, 3275 /* The counter itself */ 3276 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3277 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3278 .accessfn = gt_pct_access, 3279 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3280 }, 3281 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3283 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3284 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3285 }, 3286 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3287 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3288 .accessfn = gt_vct_access, 3289 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3290 }, 3291 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3292 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3293 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3294 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3295 }, 3296 /* Comparison value, indicating when the timer goes off */ 3297 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3298 .secure = ARM_CP_SECSTATE_NS, 3299 .access = PL0_RW, 3300 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3301 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3302 .accessfn = gt_ptimer_access, 3303 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3304 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3305 }, 3306 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3307 .secure = ARM_CP_SECSTATE_S, 3308 .access = PL0_RW, 3309 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3310 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3311 .accessfn = gt_ptimer_access, 3312 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3313 }, 3314 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3315 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3316 .access = PL0_RW, 3317 .type = ARM_CP_IO, 3318 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3319 .resetvalue = 0, .accessfn = gt_ptimer_access, 3320 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3321 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3322 }, 3323 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3324 .access = PL0_RW, 3325 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3326 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3327 .accessfn = gt_vtimer_access, 3328 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3329 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3330 }, 3331 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3333 .access = PL0_RW, 3334 .type = ARM_CP_IO, 3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3336 .resetvalue = 0, .accessfn = gt_vtimer_access, 3337 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3338 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3339 }, 3340 /* Secure timer -- this is actually restricted to only EL3 3341 * and configurably Secure-EL1 via the accessfn. 3342 */ 3343 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3345 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3346 .accessfn = gt_stimer_access, 3347 .readfn = gt_sec_tval_read, 3348 .writefn = gt_sec_tval_write, 3349 .resetfn = gt_sec_timer_reset, 3350 }, 3351 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3353 .type = ARM_CP_IO, .access = PL1_RW, 3354 .accessfn = gt_stimer_access, 3355 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3356 .resetvalue = 0, 3357 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3358 }, 3359 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3361 .type = ARM_CP_IO, .access = PL1_RW, 3362 .accessfn = gt_stimer_access, 3363 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3364 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3365 }, 3366 REGINFO_SENTINEL 3367 }; 3368 3369 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3370 bool isread) 3371 { 3372 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3373 return CP_ACCESS_TRAP; 3374 } 3375 return CP_ACCESS_OK; 3376 } 3377 3378 #else 3379 3380 /* In user-mode most of the generic timer registers are inaccessible 3381 * however modern kernels (4.12+) allow access to cntvct_el0 3382 */ 3383 3384 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3385 { 3386 ARMCPU *cpu = env_archcpu(env); 3387 3388 /* Currently we have no support for QEMUTimer in linux-user so we 3389 * can't call gt_get_countervalue(env), instead we directly 3390 * call the lower level functions. 3391 */ 3392 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3393 } 3394 3395 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3396 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3397 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3398 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3399 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3400 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3401 }, 3402 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3404 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3405 .readfn = gt_virt_cnt_read, 3406 }, 3407 REGINFO_SENTINEL 3408 }; 3409 3410 #endif 3411 3412 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3413 { 3414 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3415 raw_write(env, ri, value); 3416 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3417 raw_write(env, ri, value & 0xfffff6ff); 3418 } else { 3419 raw_write(env, ri, value & 0xfffff1ff); 3420 } 3421 } 3422 3423 #ifndef CONFIG_USER_ONLY 3424 /* get_phys_addr() isn't present for user-mode-only targets */ 3425 3426 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3427 bool isread) 3428 { 3429 if (ri->opc2 & 4) { 3430 /* The ATS12NSO* operations must trap to EL3 if executed in 3431 * Secure EL1 (which can only happen if EL3 is AArch64). 3432 * They are simply UNDEF if executed from NS EL1. 3433 * They function normally from EL2 or EL3. 3434 */ 3435 if (arm_current_el(env) == 1) { 3436 if (arm_is_secure_below_el3(env)) { 3437 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3438 } 3439 return CP_ACCESS_TRAP_UNCATEGORIZED; 3440 } 3441 } 3442 return CP_ACCESS_OK; 3443 } 3444 3445 #ifdef CONFIG_TCG 3446 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3447 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3448 { 3449 hwaddr phys_addr; 3450 target_ulong page_size; 3451 int prot; 3452 bool ret; 3453 uint64_t par64; 3454 bool format64 = false; 3455 MemTxAttrs attrs = {}; 3456 ARMMMUFaultInfo fi = {}; 3457 ARMCacheAttrs cacheattrs = {}; 3458 3459 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3460 &prot, &page_size, &fi, &cacheattrs); 3461 3462 if (ret) { 3463 /* 3464 * Some kinds of translation fault must cause exceptions rather 3465 * than being reported in the PAR. 3466 */ 3467 int current_el = arm_current_el(env); 3468 int target_el; 3469 uint32_t syn, fsr, fsc; 3470 bool take_exc = false; 3471 3472 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3473 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3474 /* 3475 * Synchronous stage 2 fault on an access made as part of the 3476 * translation table walk for AT S1E0* or AT S1E1* insn 3477 * executed from NS EL1. If this is a synchronous external abort 3478 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3479 * to EL3. Otherwise the fault is taken as an exception to EL2, 3480 * and HPFAR_EL2 holds the faulting IPA. 3481 */ 3482 if (fi.type == ARMFault_SyncExternalOnWalk && 3483 (env->cp15.scr_el3 & SCR_EA)) { 3484 target_el = 3; 3485 } else { 3486 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3487 target_el = 2; 3488 } 3489 take_exc = true; 3490 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3491 /* 3492 * Synchronous external aborts during a translation table walk 3493 * are taken as Data Abort exceptions. 3494 */ 3495 if (fi.stage2) { 3496 if (current_el == 3) { 3497 target_el = 3; 3498 } else { 3499 target_el = 2; 3500 } 3501 } else { 3502 target_el = exception_target_el(env); 3503 } 3504 take_exc = true; 3505 } 3506 3507 if (take_exc) { 3508 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3509 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3510 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3511 fsr = arm_fi_to_lfsc(&fi); 3512 fsc = extract32(fsr, 0, 6); 3513 } else { 3514 fsr = arm_fi_to_sfsc(&fi); 3515 fsc = 0x3f; 3516 } 3517 /* 3518 * Report exception with ESR indicating a fault due to a 3519 * translation table walk for a cache maintenance instruction. 3520 */ 3521 syn = syn_data_abort_no_iss(current_el == target_el, 3522 fi.ea, 1, fi.s1ptw, 1, fsc); 3523 env->exception.vaddress = value; 3524 env->exception.fsr = fsr; 3525 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3526 } 3527 } 3528 3529 if (is_a64(env)) { 3530 format64 = true; 3531 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3532 /* 3533 * ATS1Cxx: 3534 * * TTBCR.EAE determines whether the result is returned using the 3535 * 32-bit or the 64-bit PAR format 3536 * * Instructions executed in Hyp mode always use the 64bit format 3537 * 3538 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3539 * * The Non-secure TTBCR.EAE bit is set to 1 3540 * * The implementation includes EL2, and the value of HCR.VM is 1 3541 * 3542 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3543 * 3544 * ATS1Hx always uses the 64bit format. 3545 */ 3546 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3547 3548 if (arm_feature(env, ARM_FEATURE_EL2)) { 3549 if (mmu_idx == ARMMMUIdx_E10_0 || 3550 mmu_idx == ARMMMUIdx_E10_1 || 3551 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3552 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3553 } else { 3554 format64 |= arm_current_el(env) == 2; 3555 } 3556 } 3557 } 3558 3559 if (format64) { 3560 /* Create a 64-bit PAR */ 3561 par64 = (1 << 11); /* LPAE bit always set */ 3562 if (!ret) { 3563 par64 |= phys_addr & ~0xfffULL; 3564 if (!attrs.secure) { 3565 par64 |= (1 << 9); /* NS */ 3566 } 3567 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3568 par64 |= cacheattrs.shareability << 7; /* SH */ 3569 } else { 3570 uint32_t fsr = arm_fi_to_lfsc(&fi); 3571 3572 par64 |= 1; /* F */ 3573 par64 |= (fsr & 0x3f) << 1; /* FS */ 3574 if (fi.stage2) { 3575 par64 |= (1 << 9); /* S */ 3576 } 3577 if (fi.s1ptw) { 3578 par64 |= (1 << 8); /* PTW */ 3579 } 3580 } 3581 } else { 3582 /* fsr is a DFSR/IFSR value for the short descriptor 3583 * translation table format (with WnR always clear). 3584 * Convert it to a 32-bit PAR. 3585 */ 3586 if (!ret) { 3587 /* We do not set any attribute bits in the PAR */ 3588 if (page_size == (1 << 24) 3589 && arm_feature(env, ARM_FEATURE_V7)) { 3590 par64 = (phys_addr & 0xff000000) | (1 << 1); 3591 } else { 3592 par64 = phys_addr & 0xfffff000; 3593 } 3594 if (!attrs.secure) { 3595 par64 |= (1 << 9); /* NS */ 3596 } 3597 } else { 3598 uint32_t fsr = arm_fi_to_sfsc(&fi); 3599 3600 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3601 ((fsr & 0xf) << 1) | 1; 3602 } 3603 } 3604 return par64; 3605 } 3606 #endif /* CONFIG_TCG */ 3607 3608 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3609 { 3610 #ifdef CONFIG_TCG 3611 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3612 uint64_t par64; 3613 ARMMMUIdx mmu_idx; 3614 int el = arm_current_el(env); 3615 bool secure = arm_is_secure_below_el3(env); 3616 3617 switch (ri->opc2 & 6) { 3618 case 0: 3619 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3620 switch (el) { 3621 case 3: 3622 mmu_idx = ARMMMUIdx_SE3; 3623 break; 3624 case 2: 3625 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3626 /* fall through */ 3627 case 1: 3628 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3629 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3630 : ARMMMUIdx_Stage1_E1_PAN); 3631 } else { 3632 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3633 } 3634 break; 3635 default: 3636 g_assert_not_reached(); 3637 } 3638 break; 3639 case 2: 3640 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3641 switch (el) { 3642 case 3: 3643 mmu_idx = ARMMMUIdx_SE10_0; 3644 break; 3645 case 2: 3646 mmu_idx = ARMMMUIdx_Stage1_E0; 3647 break; 3648 case 1: 3649 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3650 break; 3651 default: 3652 g_assert_not_reached(); 3653 } 3654 break; 3655 case 4: 3656 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3657 mmu_idx = ARMMMUIdx_E10_1; 3658 break; 3659 case 6: 3660 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3661 mmu_idx = ARMMMUIdx_E10_0; 3662 break; 3663 default: 3664 g_assert_not_reached(); 3665 } 3666 3667 par64 = do_ats_write(env, value, access_type, mmu_idx); 3668 3669 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3670 #else 3671 /* Handled by hardware accelerator. */ 3672 g_assert_not_reached(); 3673 #endif /* CONFIG_TCG */ 3674 } 3675 3676 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 #ifdef CONFIG_TCG 3680 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3681 uint64_t par64; 3682 3683 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3684 3685 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3686 #else 3687 /* Handled by hardware accelerator. */ 3688 g_assert_not_reached(); 3689 #endif /* CONFIG_TCG */ 3690 } 3691 3692 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3693 bool isread) 3694 { 3695 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3696 return CP_ACCESS_TRAP; 3697 } 3698 return CP_ACCESS_OK; 3699 } 3700 3701 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3702 uint64_t value) 3703 { 3704 #ifdef CONFIG_TCG 3705 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3706 ARMMMUIdx mmu_idx; 3707 int secure = arm_is_secure_below_el3(env); 3708 3709 switch (ri->opc2 & 6) { 3710 case 0: 3711 switch (ri->opc1) { 3712 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3713 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3714 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3715 : ARMMMUIdx_Stage1_E1_PAN); 3716 } else { 3717 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3718 } 3719 break; 3720 case 4: /* AT S1E2R, AT S1E2W */ 3721 mmu_idx = ARMMMUIdx_E2; 3722 break; 3723 case 6: /* AT S1E3R, AT S1E3W */ 3724 mmu_idx = ARMMMUIdx_SE3; 3725 break; 3726 default: 3727 g_assert_not_reached(); 3728 } 3729 break; 3730 case 2: /* AT S1E0R, AT S1E0W */ 3731 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3732 break; 3733 case 4: /* AT S12E1R, AT S12E1W */ 3734 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3735 break; 3736 case 6: /* AT S12E0R, AT S12E0W */ 3737 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3738 break; 3739 default: 3740 g_assert_not_reached(); 3741 } 3742 3743 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3744 #else 3745 /* Handled by hardware accelerator. */ 3746 g_assert_not_reached(); 3747 #endif /* CONFIG_TCG */ 3748 } 3749 #endif 3750 3751 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3752 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3753 .access = PL1_RW, .resetvalue = 0, 3754 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3755 offsetoflow32(CPUARMState, cp15.par_ns) }, 3756 .writefn = par_write }, 3757 #ifndef CONFIG_USER_ONLY 3758 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3759 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3760 .access = PL1_W, .accessfn = ats_access, 3761 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3762 #endif 3763 REGINFO_SENTINEL 3764 }; 3765 3766 /* Return basic MPU access permission bits. */ 3767 static uint32_t simple_mpu_ap_bits(uint32_t val) 3768 { 3769 uint32_t ret; 3770 uint32_t mask; 3771 int i; 3772 ret = 0; 3773 mask = 3; 3774 for (i = 0; i < 16; i += 2) { 3775 ret |= (val >> i) & mask; 3776 mask <<= 2; 3777 } 3778 return ret; 3779 } 3780 3781 /* Pad basic MPU access permission bits to extended format. */ 3782 static uint32_t extended_mpu_ap_bits(uint32_t val) 3783 { 3784 uint32_t ret; 3785 uint32_t mask; 3786 int i; 3787 ret = 0; 3788 mask = 3; 3789 for (i = 0; i < 16; i += 2) { 3790 ret |= (val & mask) << i; 3791 mask <<= 2; 3792 } 3793 return ret; 3794 } 3795 3796 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3797 uint64_t value) 3798 { 3799 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3800 } 3801 3802 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3803 { 3804 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3805 } 3806 3807 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3808 uint64_t value) 3809 { 3810 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3811 } 3812 3813 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3814 { 3815 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3816 } 3817 3818 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3819 { 3820 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3821 3822 if (!u32p) { 3823 return 0; 3824 } 3825 3826 u32p += env->pmsav7.rnr[M_REG_NS]; 3827 return *u32p; 3828 } 3829 3830 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3831 uint64_t value) 3832 { 3833 ARMCPU *cpu = env_archcpu(env); 3834 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3835 3836 if (!u32p) { 3837 return; 3838 } 3839 3840 u32p += env->pmsav7.rnr[M_REG_NS]; 3841 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3842 *u32p = value; 3843 } 3844 3845 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3846 uint64_t value) 3847 { 3848 ARMCPU *cpu = env_archcpu(env); 3849 uint32_t nrgs = cpu->pmsav7_dregion; 3850 3851 if (value >= nrgs) { 3852 qemu_log_mask(LOG_GUEST_ERROR, 3853 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3854 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3855 return; 3856 } 3857 3858 raw_write(env, ri, value); 3859 } 3860 3861 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3862 /* Reset for all these registers is handled in arm_cpu_reset(), 3863 * because the PMSAv7 is also used by M-profile CPUs, which do 3864 * not register cpregs but still need the state to be reset. 3865 */ 3866 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3867 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3868 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3869 .readfn = pmsav7_read, .writefn = pmsav7_write, 3870 .resetfn = arm_cp_reset_ignore }, 3871 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3872 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3873 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3874 .readfn = pmsav7_read, .writefn = pmsav7_write, 3875 .resetfn = arm_cp_reset_ignore }, 3876 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3877 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3878 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3879 .readfn = pmsav7_read, .writefn = pmsav7_write, 3880 .resetfn = arm_cp_reset_ignore }, 3881 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3882 .access = PL1_RW, 3883 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3884 .writefn = pmsav7_rgnr_write, 3885 .resetfn = arm_cp_reset_ignore }, 3886 REGINFO_SENTINEL 3887 }; 3888 3889 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3890 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3891 .access = PL1_RW, .type = ARM_CP_ALIAS, 3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3893 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3894 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3895 .access = PL1_RW, .type = ARM_CP_ALIAS, 3896 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3897 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3898 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3899 .access = PL1_RW, 3900 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3901 .resetvalue = 0, }, 3902 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3903 .access = PL1_RW, 3904 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3905 .resetvalue = 0, }, 3906 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3907 .access = PL1_RW, 3908 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3909 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3910 .access = PL1_RW, 3911 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3912 /* Protection region base and size registers */ 3913 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3916 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3919 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3922 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3925 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3926 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3927 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3928 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3929 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3930 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3931 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3932 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3933 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3934 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3935 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3936 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3937 REGINFO_SENTINEL 3938 }; 3939 3940 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3941 uint64_t value) 3942 { 3943 TCR *tcr = raw_ptr(env, ri); 3944 int maskshift = extract32(value, 0, 3); 3945 3946 if (!arm_feature(env, ARM_FEATURE_V8)) { 3947 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3948 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3949 * using Long-desciptor translation table format */ 3950 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3951 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3952 /* In an implementation that includes the Security Extensions 3953 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3954 * Short-descriptor translation table format. 3955 */ 3956 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3957 } else { 3958 value &= TTBCR_N; 3959 } 3960 } 3961 3962 /* Update the masks corresponding to the TCR bank being written 3963 * Note that we always calculate mask and base_mask, but 3964 * they are only used for short-descriptor tables (ie if EAE is 0); 3965 * for long-descriptor tables the TCR fields are used differently 3966 * and the mask and base_mask values are meaningless. 3967 */ 3968 tcr->raw_tcr = value; 3969 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3970 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3971 } 3972 3973 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3974 uint64_t value) 3975 { 3976 ARMCPU *cpu = env_archcpu(env); 3977 TCR *tcr = raw_ptr(env, ri); 3978 3979 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3980 /* With LPAE the TTBCR could result in a change of ASID 3981 * via the TTBCR.A1 bit, so do a TLB flush. 3982 */ 3983 tlb_flush(CPU(cpu)); 3984 } 3985 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3986 value = deposit64(tcr->raw_tcr, 0, 32, value); 3987 vmsa_ttbcr_raw_write(env, ri, value); 3988 } 3989 3990 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3991 { 3992 TCR *tcr = raw_ptr(env, ri); 3993 3994 /* Reset both the TCR as well as the masks corresponding to the bank of 3995 * the TCR being reset. 3996 */ 3997 tcr->raw_tcr = 0; 3998 tcr->mask = 0; 3999 tcr->base_mask = 0xffffc000u; 4000 } 4001 4002 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4003 uint64_t value) 4004 { 4005 ARMCPU *cpu = env_archcpu(env); 4006 TCR *tcr = raw_ptr(env, ri); 4007 4008 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4009 tlb_flush(CPU(cpu)); 4010 tcr->raw_tcr = value; 4011 } 4012 4013 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4017 if (cpreg_field_is_64bit(ri) && 4018 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4019 ARMCPU *cpu = env_archcpu(env); 4020 tlb_flush(CPU(cpu)); 4021 } 4022 raw_write(env, ri, value); 4023 } 4024 4025 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4026 uint64_t value) 4027 { 4028 /* 4029 * If we are running with E2&0 regime, then an ASID is active. 4030 * Flush if that might be changing. Note we're not checking 4031 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4032 * holds the active ASID, only checking the field that might. 4033 */ 4034 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4035 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4036 tlb_flush_by_mmuidx(env_cpu(env), 4037 ARMMMUIdxBit_E20_2 | 4038 ARMMMUIdxBit_E20_2_PAN | 4039 ARMMMUIdxBit_E20_0); 4040 } 4041 raw_write(env, ri, value); 4042 } 4043 4044 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4045 uint64_t value) 4046 { 4047 ARMCPU *cpu = env_archcpu(env); 4048 CPUState *cs = CPU(cpu); 4049 4050 /* 4051 * A change in VMID to the stage2 page table (Stage2) invalidates 4052 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4053 */ 4054 if (raw_read(env, ri) != value) { 4055 tlb_flush_by_mmuidx(cs, 4056 ARMMMUIdxBit_E10_1 | 4057 ARMMMUIdxBit_E10_1_PAN | 4058 ARMMMUIdxBit_E10_0 | 4059 ARMMMUIdxBit_Stage2); 4060 raw_write(env, ri, value); 4061 } 4062 } 4063 4064 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4065 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4066 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4067 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4068 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4069 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4070 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4071 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4072 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4073 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4074 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4075 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4076 offsetof(CPUARMState, cp15.dfar_ns) } }, 4077 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4078 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4079 .access = PL1_RW, .accessfn = access_tvm_trvm, 4080 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4081 .resetvalue = 0, }, 4082 REGINFO_SENTINEL 4083 }; 4084 4085 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4086 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4087 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4090 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4091 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4092 .access = PL1_RW, .accessfn = access_tvm_trvm, 4093 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4094 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4095 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4096 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4097 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4098 .access = PL1_RW, .accessfn = access_tvm_trvm, 4099 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4100 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4101 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4102 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4103 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4104 .access = PL1_RW, .accessfn = access_tvm_trvm, 4105 .writefn = vmsa_tcr_el12_write, 4106 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4107 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4108 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4109 .access = PL1_RW, .accessfn = access_tvm_trvm, 4110 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4111 .raw_writefn = vmsa_ttbcr_raw_write, 4112 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4113 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4114 REGINFO_SENTINEL 4115 }; 4116 4117 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4118 * qemu tlbs nor adjusting cached masks. 4119 */ 4120 static const ARMCPRegInfo ttbcr2_reginfo = { 4121 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4122 .access = PL1_RW, .accessfn = access_tvm_trvm, 4123 .type = ARM_CP_ALIAS, 4124 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4125 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4126 }; 4127 4128 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 env->cp15.c15_ticonfig = value & 0xe7; 4132 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4133 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4134 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4135 } 4136 4137 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4138 uint64_t value) 4139 { 4140 env->cp15.c15_threadid = value & 0xffff; 4141 } 4142 4143 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 /* Wait-for-interrupt (deprecated) */ 4147 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4148 } 4149 4150 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4151 uint64_t value) 4152 { 4153 /* On OMAP there are registers indicating the max/min index of dcache lines 4154 * containing a dirty line; cache flush operations have to reset these. 4155 */ 4156 env->cp15.c15_i_max = 0x000; 4157 env->cp15.c15_i_min = 0xff0; 4158 } 4159 4160 static const ARMCPRegInfo omap_cp_reginfo[] = { 4161 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4162 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4163 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4164 .resetvalue = 0, }, 4165 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4166 .access = PL1_RW, .type = ARM_CP_NOP }, 4167 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4168 .access = PL1_RW, 4169 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4170 .writefn = omap_ticonfig_write }, 4171 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4172 .access = PL1_RW, 4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4174 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4175 .access = PL1_RW, .resetvalue = 0xff0, 4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4177 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4178 .access = PL1_RW, 4179 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4180 .writefn = omap_threadid_write }, 4181 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4182 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4183 .type = ARM_CP_NO_RAW, 4184 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4185 /* TODO: Peripheral port remap register: 4186 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4187 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4188 * when MMU is off. 4189 */ 4190 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4191 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4192 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4193 .writefn = omap_cachemaint_write }, 4194 { .name = "C9", .cp = 15, .crn = 9, 4195 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4196 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4197 REGINFO_SENTINEL 4198 }; 4199 4200 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4201 uint64_t value) 4202 { 4203 env->cp15.c15_cpar = value & 0x3fff; 4204 } 4205 4206 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4207 { .name = "XSCALE_CPAR", 4208 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4209 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4210 .writefn = xscale_cpar_write, }, 4211 { .name = "XSCALE_AUXCR", 4212 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4213 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4214 .resetvalue = 0, }, 4215 /* XScale specific cache-lockdown: since we have no cache we NOP these 4216 * and hope the guest does not really rely on cache behaviour. 4217 */ 4218 { .name = "XSCALE_LOCK_ICACHE_LINE", 4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4220 .access = PL1_W, .type = ARM_CP_NOP }, 4221 { .name = "XSCALE_UNLOCK_ICACHE", 4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4223 .access = PL1_W, .type = ARM_CP_NOP }, 4224 { .name = "XSCALE_DCACHE_LOCK", 4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4226 .access = PL1_RW, .type = ARM_CP_NOP }, 4227 { .name = "XSCALE_UNLOCK_DCACHE", 4228 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4229 .access = PL1_W, .type = ARM_CP_NOP }, 4230 REGINFO_SENTINEL 4231 }; 4232 4233 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4234 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4235 * implementation of this implementation-defined space. 4236 * Ideally this should eventually disappear in favour of actually 4237 * implementing the correct behaviour for all cores. 4238 */ 4239 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4240 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4241 .access = PL1_RW, 4242 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4243 .resetvalue = 0 }, 4244 REGINFO_SENTINEL 4245 }; 4246 4247 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4248 /* Cache status: RAZ because we have no cache so it's always clean */ 4249 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4250 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4251 .resetvalue = 0 }, 4252 REGINFO_SENTINEL 4253 }; 4254 4255 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4256 /* We never have a a block transfer operation in progress */ 4257 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4258 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4259 .resetvalue = 0 }, 4260 /* The cache ops themselves: these all NOP for QEMU */ 4261 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4262 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4263 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4264 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4265 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4266 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4267 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4268 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4269 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4270 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4271 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4272 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4273 REGINFO_SENTINEL 4274 }; 4275 4276 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4277 /* The cache test-and-clean instructions always return (1 << 30) 4278 * to indicate that there are no dirty cache lines. 4279 */ 4280 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4282 .resetvalue = (1 << 30) }, 4283 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4284 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4285 .resetvalue = (1 << 30) }, 4286 REGINFO_SENTINEL 4287 }; 4288 4289 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4290 /* Ignore ReadBuffer accesses */ 4291 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4292 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4293 .access = PL1_RW, .resetvalue = 0, 4294 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4295 REGINFO_SENTINEL 4296 }; 4297 4298 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4299 { 4300 ARMCPU *cpu = env_archcpu(env); 4301 unsigned int cur_el = arm_current_el(env); 4302 bool secure = arm_is_secure(env); 4303 4304 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4305 return env->cp15.vpidr_el2; 4306 } 4307 return raw_read(env, ri); 4308 } 4309 4310 static uint64_t mpidr_read_val(CPUARMState *env) 4311 { 4312 ARMCPU *cpu = env_archcpu(env); 4313 uint64_t mpidr = cpu->mp_affinity; 4314 4315 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4316 mpidr |= (1U << 31); 4317 /* Cores which are uniprocessor (non-coherent) 4318 * but still implement the MP extensions set 4319 * bit 30. (For instance, Cortex-R5). 4320 */ 4321 if (cpu->mp_is_up) { 4322 mpidr |= (1u << 30); 4323 } 4324 } 4325 return mpidr; 4326 } 4327 4328 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4329 { 4330 unsigned int cur_el = arm_current_el(env); 4331 bool secure = arm_is_secure(env); 4332 4333 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4334 return env->cp15.vmpidr_el2; 4335 } 4336 return mpidr_read_val(env); 4337 } 4338 4339 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4340 /* NOP AMAIR0/1 */ 4341 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4342 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4343 .access = PL1_RW, .accessfn = access_tvm_trvm, 4344 .type = ARM_CP_CONST, .resetvalue = 0 }, 4345 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4346 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4347 .access = PL1_RW, .accessfn = access_tvm_trvm, 4348 .type = ARM_CP_CONST, .resetvalue = 0 }, 4349 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4350 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4351 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4352 offsetof(CPUARMState, cp15.par_ns)} }, 4353 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4354 .access = PL1_RW, .accessfn = access_tvm_trvm, 4355 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4356 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4357 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4358 .writefn = vmsa_ttbr_write, }, 4359 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4360 .access = PL1_RW, .accessfn = access_tvm_trvm, 4361 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4362 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4363 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4364 .writefn = vmsa_ttbr_write, }, 4365 REGINFO_SENTINEL 4366 }; 4367 4368 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4369 { 4370 return vfp_get_fpcr(env); 4371 } 4372 4373 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4374 uint64_t value) 4375 { 4376 vfp_set_fpcr(env, value); 4377 } 4378 4379 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4380 { 4381 return vfp_get_fpsr(env); 4382 } 4383 4384 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4385 uint64_t value) 4386 { 4387 vfp_set_fpsr(env, value); 4388 } 4389 4390 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4391 bool isread) 4392 { 4393 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4394 return CP_ACCESS_TRAP; 4395 } 4396 return CP_ACCESS_OK; 4397 } 4398 4399 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4400 uint64_t value) 4401 { 4402 env->daif = value & PSTATE_DAIF; 4403 } 4404 4405 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4406 { 4407 return env->pstate & PSTATE_PAN; 4408 } 4409 4410 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4411 uint64_t value) 4412 { 4413 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4414 } 4415 4416 static const ARMCPRegInfo pan_reginfo = { 4417 .name = "PAN", .state = ARM_CP_STATE_AA64, 4418 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4419 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4420 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4421 }; 4422 4423 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4424 { 4425 return env->pstate & PSTATE_UAO; 4426 } 4427 4428 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4429 uint64_t value) 4430 { 4431 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4432 } 4433 4434 static const ARMCPRegInfo uao_reginfo = { 4435 .name = "UAO", .state = ARM_CP_STATE_AA64, 4436 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4437 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4438 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4439 }; 4440 4441 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4442 const ARMCPRegInfo *ri, 4443 bool isread) 4444 { 4445 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4446 switch (arm_current_el(env)) { 4447 case 0: 4448 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4449 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4450 return CP_ACCESS_TRAP; 4451 } 4452 /* fall through */ 4453 case 1: 4454 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4455 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4456 return CP_ACCESS_TRAP_EL2; 4457 } 4458 break; 4459 } 4460 return CP_ACCESS_OK; 4461 } 4462 4463 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4464 const ARMCPRegInfo *ri, 4465 bool isread) 4466 { 4467 /* Cache invalidate/clean to Point of Unification... */ 4468 switch (arm_current_el(env)) { 4469 case 0: 4470 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4471 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4472 return CP_ACCESS_TRAP; 4473 } 4474 /* fall through */ 4475 case 1: 4476 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4477 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4478 return CP_ACCESS_TRAP_EL2; 4479 } 4480 break; 4481 } 4482 return CP_ACCESS_OK; 4483 } 4484 4485 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4486 * Page D4-1736 (DDI0487A.b) 4487 */ 4488 4489 static int vae1_tlbmask(CPUARMState *env) 4490 { 4491 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4492 if (arm_is_secure_below_el3(env)) { 4493 return ARMMMUIdxBit_SE10_1 | 4494 ARMMMUIdxBit_SE10_1_PAN | 4495 ARMMMUIdxBit_SE10_0; 4496 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4497 == (HCR_E2H | HCR_TGE)) { 4498 return ARMMMUIdxBit_E20_2 | 4499 ARMMMUIdxBit_E20_2_PAN | 4500 ARMMMUIdxBit_E20_0; 4501 } else { 4502 return ARMMMUIdxBit_E10_1 | 4503 ARMMMUIdxBit_E10_1_PAN | 4504 ARMMMUIdxBit_E10_0; 4505 } 4506 } 4507 4508 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4509 uint64_t value) 4510 { 4511 CPUState *cs = env_cpu(env); 4512 int mask = vae1_tlbmask(env); 4513 4514 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4515 } 4516 4517 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4518 uint64_t value) 4519 { 4520 CPUState *cs = env_cpu(env); 4521 int mask = vae1_tlbmask(env); 4522 4523 if (tlb_force_broadcast(env)) { 4524 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4525 } else { 4526 tlb_flush_by_mmuidx(cs, mask); 4527 } 4528 } 4529 4530 static int alle1_tlbmask(CPUARMState *env) 4531 { 4532 /* 4533 * Note that the 'ALL' scope must invalidate both stage 1 and 4534 * stage 2 translations, whereas most other scopes only invalidate 4535 * stage 1 translations. 4536 */ 4537 if (arm_is_secure_below_el3(env)) { 4538 return ARMMMUIdxBit_SE10_1 | 4539 ARMMMUIdxBit_SE10_1_PAN | 4540 ARMMMUIdxBit_SE10_0; 4541 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 4542 return ARMMMUIdxBit_E10_1 | 4543 ARMMMUIdxBit_E10_1_PAN | 4544 ARMMMUIdxBit_E10_0 | 4545 ARMMMUIdxBit_Stage2; 4546 } else { 4547 return ARMMMUIdxBit_E10_1 | 4548 ARMMMUIdxBit_E10_1_PAN | 4549 ARMMMUIdxBit_E10_0; 4550 } 4551 } 4552 4553 static int e2_tlbmask(CPUARMState *env) 4554 { 4555 /* TODO: ARMv8.4-SecEL2 */ 4556 return ARMMMUIdxBit_E20_0 | 4557 ARMMMUIdxBit_E20_2 | 4558 ARMMMUIdxBit_E20_2_PAN | 4559 ARMMMUIdxBit_E2; 4560 } 4561 4562 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4563 uint64_t value) 4564 { 4565 CPUState *cs = env_cpu(env); 4566 int mask = alle1_tlbmask(env); 4567 4568 tlb_flush_by_mmuidx(cs, mask); 4569 } 4570 4571 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 CPUState *cs = env_cpu(env); 4575 int mask = e2_tlbmask(env); 4576 4577 tlb_flush_by_mmuidx(cs, mask); 4578 } 4579 4580 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4581 uint64_t value) 4582 { 4583 ARMCPU *cpu = env_archcpu(env); 4584 CPUState *cs = CPU(cpu); 4585 4586 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4587 } 4588 4589 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4590 uint64_t value) 4591 { 4592 CPUState *cs = env_cpu(env); 4593 int mask = alle1_tlbmask(env); 4594 4595 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4596 } 4597 4598 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4599 uint64_t value) 4600 { 4601 CPUState *cs = env_cpu(env); 4602 int mask = e2_tlbmask(env); 4603 4604 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4605 } 4606 4607 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4608 uint64_t value) 4609 { 4610 CPUState *cs = env_cpu(env); 4611 4612 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4613 } 4614 4615 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4616 uint64_t value) 4617 { 4618 /* Invalidate by VA, EL2 4619 * Currently handles both VAE2 and VALE2, since we don't support 4620 * flush-last-level-only. 4621 */ 4622 CPUState *cs = env_cpu(env); 4623 int mask = e2_tlbmask(env); 4624 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4625 4626 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4627 } 4628 4629 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 /* Invalidate by VA, EL3 4633 * Currently handles both VAE3 and VALE3, since we don't support 4634 * flush-last-level-only. 4635 */ 4636 ARMCPU *cpu = env_archcpu(env); 4637 CPUState *cs = CPU(cpu); 4638 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4639 4640 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4641 } 4642 4643 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4644 uint64_t value) 4645 { 4646 CPUState *cs = env_cpu(env); 4647 int mask = vae1_tlbmask(env); 4648 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4649 4650 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4651 } 4652 4653 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4654 uint64_t value) 4655 { 4656 /* Invalidate by VA, EL1&0 (AArch64 version). 4657 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4658 * since we don't support flush-for-specific-ASID-only or 4659 * flush-last-level-only. 4660 */ 4661 CPUState *cs = env_cpu(env); 4662 int mask = vae1_tlbmask(env); 4663 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4664 4665 if (tlb_force_broadcast(env)) { 4666 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4667 } else { 4668 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4669 } 4670 } 4671 4672 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4673 uint64_t value) 4674 { 4675 CPUState *cs = env_cpu(env); 4676 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4677 4678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4679 ARMMMUIdxBit_E2); 4680 } 4681 4682 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4683 uint64_t value) 4684 { 4685 CPUState *cs = env_cpu(env); 4686 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4687 4688 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4689 ARMMMUIdxBit_SE3); 4690 } 4691 4692 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4693 uint64_t value) 4694 { 4695 /* Invalidate by IPA. This has to invalidate any structures that 4696 * contain only stage 2 translation information, but does not need 4697 * to apply to structures that contain combined stage 1 and stage 2 4698 * translation information. 4699 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4700 */ 4701 ARMCPU *cpu = env_archcpu(env); 4702 CPUState *cs = CPU(cpu); 4703 uint64_t pageaddr; 4704 4705 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4706 return; 4707 } 4708 4709 pageaddr = sextract64(value << 12, 0, 48); 4710 4711 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 4712 } 4713 4714 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4715 uint64_t value) 4716 { 4717 CPUState *cs = env_cpu(env); 4718 uint64_t pageaddr; 4719 4720 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4721 return; 4722 } 4723 4724 pageaddr = sextract64(value << 12, 0, 48); 4725 4726 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4727 ARMMMUIdxBit_Stage2); 4728 } 4729 4730 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4731 bool isread) 4732 { 4733 int cur_el = arm_current_el(env); 4734 4735 if (cur_el < 2) { 4736 uint64_t hcr = arm_hcr_el2_eff(env); 4737 4738 if (cur_el == 0) { 4739 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4740 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4741 return CP_ACCESS_TRAP_EL2; 4742 } 4743 } else { 4744 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4745 return CP_ACCESS_TRAP; 4746 } 4747 if (hcr & HCR_TDZ) { 4748 return CP_ACCESS_TRAP_EL2; 4749 } 4750 } 4751 } else if (hcr & HCR_TDZ) { 4752 return CP_ACCESS_TRAP_EL2; 4753 } 4754 } 4755 return CP_ACCESS_OK; 4756 } 4757 4758 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4759 { 4760 ARMCPU *cpu = env_archcpu(env); 4761 int dzp_bit = 1 << 4; 4762 4763 /* DZP indicates whether DC ZVA access is allowed */ 4764 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4765 dzp_bit = 0; 4766 } 4767 return cpu->dcz_blocksize | dzp_bit; 4768 } 4769 4770 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4771 bool isread) 4772 { 4773 if (!(env->pstate & PSTATE_SP)) { 4774 /* Access to SP_EL0 is undefined if it's being used as 4775 * the stack pointer. 4776 */ 4777 return CP_ACCESS_TRAP_UNCATEGORIZED; 4778 } 4779 return CP_ACCESS_OK; 4780 } 4781 4782 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4783 { 4784 return env->pstate & PSTATE_SP; 4785 } 4786 4787 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4788 { 4789 update_spsel(env, val); 4790 } 4791 4792 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4793 uint64_t value) 4794 { 4795 ARMCPU *cpu = env_archcpu(env); 4796 4797 if (raw_read(env, ri) == value) { 4798 /* Skip the TLB flush if nothing actually changed; Linux likes 4799 * to do a lot of pointless SCTLR writes. 4800 */ 4801 return; 4802 } 4803 4804 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4805 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4806 value &= ~SCTLR_M; 4807 } 4808 4809 raw_write(env, ri, value); 4810 /* ??? Lots of these bits are not implemented. */ 4811 /* This may enable/disable the MMU, so do a TLB flush. */ 4812 tlb_flush(CPU(cpu)); 4813 4814 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4815 /* 4816 * Normally we would always end the TB on an SCTLR write; see the 4817 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4818 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4819 * of hflags from the translator, so do it here. 4820 */ 4821 arm_rebuild_hflags(env); 4822 } 4823 } 4824 4825 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4826 bool isread) 4827 { 4828 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4829 return CP_ACCESS_TRAP_FP_EL2; 4830 } 4831 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4832 return CP_ACCESS_TRAP_FP_EL3; 4833 } 4834 return CP_ACCESS_OK; 4835 } 4836 4837 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4838 uint64_t value) 4839 { 4840 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4841 } 4842 4843 static const ARMCPRegInfo v8_cp_reginfo[] = { 4844 /* Minimal set of EL0-visible registers. This will need to be expanded 4845 * significantly for system emulation of AArch64 CPUs. 4846 */ 4847 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4849 .access = PL0_RW, .type = ARM_CP_NZCV }, 4850 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4852 .type = ARM_CP_NO_RAW, 4853 .access = PL0_RW, .accessfn = aa64_daif_access, 4854 .fieldoffset = offsetof(CPUARMState, daif), 4855 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4856 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4858 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4859 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4860 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4861 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4862 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4863 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4864 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4866 .access = PL0_R, .type = ARM_CP_NO_RAW, 4867 .readfn = aa64_dczid_read }, 4868 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4870 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4871 #ifndef CONFIG_USER_ONLY 4872 /* Avoid overhead of an access check that always passes in user-mode */ 4873 .accessfn = aa64_zva_access, 4874 #endif 4875 }, 4876 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4878 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4879 /* Cache ops: all NOPs since we don't emulate caches */ 4880 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4882 .access = PL1_W, .type = ARM_CP_NOP, 4883 .accessfn = aa64_cacheop_pou_access }, 4884 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4886 .access = PL1_W, .type = ARM_CP_NOP, 4887 .accessfn = aa64_cacheop_pou_access }, 4888 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4890 .access = PL0_W, .type = ARM_CP_NOP, 4891 .accessfn = aa64_cacheop_pou_access }, 4892 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4894 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4895 .type = ARM_CP_NOP }, 4896 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4898 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4899 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4901 .access = PL0_W, .type = ARM_CP_NOP, 4902 .accessfn = aa64_cacheop_poc_access }, 4903 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4905 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4906 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4908 .access = PL0_W, .type = ARM_CP_NOP, 4909 .accessfn = aa64_cacheop_pou_access }, 4910 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4912 .access = PL0_W, .type = ARM_CP_NOP, 4913 .accessfn = aa64_cacheop_poc_access }, 4914 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4916 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4917 /* TLBI operations */ 4918 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4920 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4921 .writefn = tlbi_aa64_vmalle1is_write }, 4922 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4924 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4925 .writefn = tlbi_aa64_vae1is_write }, 4926 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4928 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4929 .writefn = tlbi_aa64_vmalle1is_write }, 4930 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4932 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4933 .writefn = tlbi_aa64_vae1is_write }, 4934 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4936 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4937 .writefn = tlbi_aa64_vae1is_write }, 4938 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4940 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4941 .writefn = tlbi_aa64_vae1is_write }, 4942 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4944 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4945 .writefn = tlbi_aa64_vmalle1_write }, 4946 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4948 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4949 .writefn = tlbi_aa64_vae1_write }, 4950 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4952 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4953 .writefn = tlbi_aa64_vmalle1_write }, 4954 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4956 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4957 .writefn = tlbi_aa64_vae1_write }, 4958 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4960 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4961 .writefn = tlbi_aa64_vae1_write }, 4962 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4964 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4965 .writefn = tlbi_aa64_vae1_write }, 4966 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4968 .access = PL2_W, .type = ARM_CP_NO_RAW, 4969 .writefn = tlbi_aa64_ipas2e1is_write }, 4970 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4972 .access = PL2_W, .type = ARM_CP_NO_RAW, 4973 .writefn = tlbi_aa64_ipas2e1is_write }, 4974 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4976 .access = PL2_W, .type = ARM_CP_NO_RAW, 4977 .writefn = tlbi_aa64_alle1is_write }, 4978 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4980 .access = PL2_W, .type = ARM_CP_NO_RAW, 4981 .writefn = tlbi_aa64_alle1is_write }, 4982 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4984 .access = PL2_W, .type = ARM_CP_NO_RAW, 4985 .writefn = tlbi_aa64_ipas2e1_write }, 4986 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4987 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4988 .access = PL2_W, .type = ARM_CP_NO_RAW, 4989 .writefn = tlbi_aa64_ipas2e1_write }, 4990 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4991 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4992 .access = PL2_W, .type = ARM_CP_NO_RAW, 4993 .writefn = tlbi_aa64_alle1_write }, 4994 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4996 .access = PL2_W, .type = ARM_CP_NO_RAW, 4997 .writefn = tlbi_aa64_alle1is_write }, 4998 #ifndef CONFIG_USER_ONLY 4999 /* 64 bit address translation operations */ 5000 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5001 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5002 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5003 .writefn = ats_write64 }, 5004 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5005 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5006 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5007 .writefn = ats_write64 }, 5008 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5009 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5010 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5011 .writefn = ats_write64 }, 5012 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5013 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5014 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5015 .writefn = ats_write64 }, 5016 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5018 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5019 .writefn = ats_write64 }, 5020 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5022 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5023 .writefn = ats_write64 }, 5024 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5026 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5027 .writefn = ats_write64 }, 5028 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5029 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5030 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5031 .writefn = ats_write64 }, 5032 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5033 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5035 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5036 .writefn = ats_write64 }, 5037 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5038 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5039 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5040 .writefn = ats_write64 }, 5041 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5042 .type = ARM_CP_ALIAS, 5043 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5044 .access = PL1_RW, .resetvalue = 0, 5045 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5046 .writefn = par_write }, 5047 #endif 5048 /* TLB invalidate last level of translation table walk */ 5049 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5050 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5051 .writefn = tlbimva_is_write }, 5052 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5053 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5054 .writefn = tlbimvaa_is_write }, 5055 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5056 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5057 .writefn = tlbimva_write }, 5058 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5059 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5060 .writefn = tlbimvaa_write }, 5061 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5062 .type = ARM_CP_NO_RAW, .access = PL2_W, 5063 .writefn = tlbimva_hyp_write }, 5064 { .name = "TLBIMVALHIS", 5065 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5066 .type = ARM_CP_NO_RAW, .access = PL2_W, 5067 .writefn = tlbimva_hyp_is_write }, 5068 { .name = "TLBIIPAS2", 5069 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5070 .type = ARM_CP_NO_RAW, .access = PL2_W, 5071 .writefn = tlbiipas2_write }, 5072 { .name = "TLBIIPAS2IS", 5073 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5074 .type = ARM_CP_NO_RAW, .access = PL2_W, 5075 .writefn = tlbiipas2_is_write }, 5076 { .name = "TLBIIPAS2L", 5077 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5078 .type = ARM_CP_NO_RAW, .access = PL2_W, 5079 .writefn = tlbiipas2_write }, 5080 { .name = "TLBIIPAS2LIS", 5081 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5082 .type = ARM_CP_NO_RAW, .access = PL2_W, 5083 .writefn = tlbiipas2_is_write }, 5084 /* 32 bit cache operations */ 5085 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5086 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5087 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5088 .type = ARM_CP_NOP, .access = PL1_W }, 5089 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5090 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5091 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5092 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5093 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5094 .type = ARM_CP_NOP, .access = PL1_W }, 5095 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5096 .type = ARM_CP_NOP, .access = PL1_W }, 5097 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5098 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5099 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5100 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5101 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5102 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5103 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5104 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5105 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5106 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5107 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5108 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5109 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5110 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5111 /* MMU Domain access control / MPU write buffer control */ 5112 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5113 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5114 .writefn = dacr_write, .raw_writefn = raw_write, 5115 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5116 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5117 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5118 .type = ARM_CP_ALIAS, 5119 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5120 .access = PL1_RW, 5121 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5122 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5123 .type = ARM_CP_ALIAS, 5124 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5125 .access = PL1_RW, 5126 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5127 /* We rely on the access checks not allowing the guest to write to the 5128 * state field when SPSel indicates that it's being used as the stack 5129 * pointer. 5130 */ 5131 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5132 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5133 .access = PL1_RW, .accessfn = sp_el0_access, 5134 .type = ARM_CP_ALIAS, 5135 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5136 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5137 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5138 .access = PL2_RW, .type = ARM_CP_ALIAS, 5139 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5140 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5141 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5142 .type = ARM_CP_NO_RAW, 5143 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5144 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5145 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5146 .type = ARM_CP_ALIAS, 5147 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5148 .access = PL2_RW, .accessfn = fpexc32_access }, 5149 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5150 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5151 .access = PL2_RW, .resetvalue = 0, 5152 .writefn = dacr_write, .raw_writefn = raw_write, 5153 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5154 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5155 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5156 .access = PL2_RW, .resetvalue = 0, 5157 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5158 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5159 .type = ARM_CP_ALIAS, 5160 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5161 .access = PL2_RW, 5162 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5163 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5164 .type = ARM_CP_ALIAS, 5165 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5166 .access = PL2_RW, 5167 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5168 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5169 .type = ARM_CP_ALIAS, 5170 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5171 .access = PL2_RW, 5172 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5173 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5174 .type = ARM_CP_ALIAS, 5175 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5176 .access = PL2_RW, 5177 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5178 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5180 .resetvalue = 0, 5181 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5182 { .name = "SDCR", .type = ARM_CP_ALIAS, 5183 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5184 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5185 .writefn = sdcr_write, 5186 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5187 REGINFO_SENTINEL 5188 }; 5189 5190 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5191 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5192 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5193 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5194 .access = PL2_RW, 5195 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5196 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5197 .type = ARM_CP_NO_RAW, 5198 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5199 .access = PL2_RW, 5200 .type = ARM_CP_CONST, .resetvalue = 0 }, 5201 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5202 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5203 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5204 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5205 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5206 .access = PL2_RW, 5207 .type = ARM_CP_CONST, .resetvalue = 0 }, 5208 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5209 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5210 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5211 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5212 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5213 .access = PL2_RW, .type = ARM_CP_CONST, 5214 .resetvalue = 0 }, 5215 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5216 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5217 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5218 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5219 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5220 .access = PL2_RW, .type = ARM_CP_CONST, 5221 .resetvalue = 0 }, 5222 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5223 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5224 .access = PL2_RW, .type = ARM_CP_CONST, 5225 .resetvalue = 0 }, 5226 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5227 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5228 .access = PL2_RW, .type = ARM_CP_CONST, 5229 .resetvalue = 0 }, 5230 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5231 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5232 .access = PL2_RW, .type = ARM_CP_CONST, 5233 .resetvalue = 0 }, 5234 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5235 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5236 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5237 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5238 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5239 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5240 .type = ARM_CP_CONST, .resetvalue = 0 }, 5241 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5242 .cp = 15, .opc1 = 6, .crm = 2, 5243 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5244 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5245 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5246 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5247 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5248 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5249 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5250 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5251 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5252 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5253 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5254 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5255 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5256 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5257 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5258 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5259 .resetvalue = 0 }, 5260 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5261 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5262 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5263 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5264 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5265 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5266 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5267 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5268 .resetvalue = 0 }, 5269 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5270 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5271 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5272 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5273 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5274 .resetvalue = 0 }, 5275 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5276 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5277 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5278 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5279 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5280 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5281 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5282 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5283 .access = PL2_RW, .accessfn = access_tda, 5284 .type = ARM_CP_CONST, .resetvalue = 0 }, 5285 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5286 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5287 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5288 .type = ARM_CP_CONST, .resetvalue = 0 }, 5289 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5290 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5291 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5292 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5293 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5294 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5295 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5296 .type = ARM_CP_CONST, 5297 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5298 .access = PL2_RW, .resetvalue = 0 }, 5299 REGINFO_SENTINEL 5300 }; 5301 5302 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5303 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5304 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5305 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5306 .access = PL2_RW, 5307 .type = ARM_CP_CONST, .resetvalue = 0 }, 5308 REGINFO_SENTINEL 5309 }; 5310 5311 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5312 { 5313 ARMCPU *cpu = env_archcpu(env); 5314 5315 if (arm_feature(env, ARM_FEATURE_V8)) { 5316 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5317 } else { 5318 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5319 } 5320 5321 if (arm_feature(env, ARM_FEATURE_EL3)) { 5322 valid_mask &= ~HCR_HCD; 5323 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5324 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5325 * However, if we're using the SMC PSCI conduit then QEMU is 5326 * effectively acting like EL3 firmware and so the guest at 5327 * EL2 should retain the ability to prevent EL1 from being 5328 * able to make SMC calls into the ersatz firmware, so in 5329 * that case HCR.TSC should be read/write. 5330 */ 5331 valid_mask &= ~HCR_TSC; 5332 } 5333 5334 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5335 if (cpu_isar_feature(aa64_vh, cpu)) { 5336 valid_mask |= HCR_E2H; 5337 } 5338 if (cpu_isar_feature(aa64_lor, cpu)) { 5339 valid_mask |= HCR_TLOR; 5340 } 5341 if (cpu_isar_feature(aa64_pauth, cpu)) { 5342 valid_mask |= HCR_API | HCR_APK; 5343 } 5344 } 5345 5346 /* Clear RES0 bits. */ 5347 value &= valid_mask; 5348 5349 /* These bits change the MMU setup: 5350 * HCR_VM enables stage 2 translation 5351 * HCR_PTW forbids certain page-table setups 5352 * HCR_DC Disables stage1 and enables stage2 translation 5353 */ 5354 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 5355 tlb_flush(CPU(cpu)); 5356 } 5357 env->cp15.hcr_el2 = value; 5358 5359 /* 5360 * Updates to VI and VF require us to update the status of 5361 * virtual interrupts, which are the logical OR of these bits 5362 * and the state of the input lines from the GIC. (This requires 5363 * that we have the iothread lock, which is done by marking the 5364 * reginfo structs as ARM_CP_IO.) 5365 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5366 * possible for it to be taken immediately, because VIRQ and 5367 * VFIQ are masked unless running at EL0 or EL1, and HCR 5368 * can only be written at EL2. 5369 */ 5370 g_assert(qemu_mutex_iothread_locked()); 5371 arm_cpu_update_virq(cpu); 5372 arm_cpu_update_vfiq(cpu); 5373 } 5374 5375 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5376 { 5377 do_hcr_write(env, value, 0); 5378 } 5379 5380 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5381 uint64_t value) 5382 { 5383 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5384 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5385 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5386 } 5387 5388 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5389 uint64_t value) 5390 { 5391 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5392 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5393 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5394 } 5395 5396 /* 5397 * Return the effective value of HCR_EL2. 5398 * Bits that are not included here: 5399 * RW (read from SCR_EL3.RW as needed) 5400 */ 5401 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5402 { 5403 uint64_t ret = env->cp15.hcr_el2; 5404 5405 if (arm_is_secure_below_el3(env)) { 5406 /* 5407 * "This register has no effect if EL2 is not enabled in the 5408 * current Security state". This is ARMv8.4-SecEL2 speak for 5409 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5410 * 5411 * Prior to that, the language was "In an implementation that 5412 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5413 * as if this field is 0 for all purposes other than a direct 5414 * read or write access of HCR_EL2". With lots of enumeration 5415 * on a per-field basis. In current QEMU, this is condition 5416 * is arm_is_secure_below_el3. 5417 * 5418 * Since the v8.4 language applies to the entire register, and 5419 * appears to be backward compatible, use that. 5420 */ 5421 return 0; 5422 } 5423 5424 /* 5425 * For a cpu that supports both aarch64 and aarch32, we can set bits 5426 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5427 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5428 */ 5429 if (!arm_el_is_aa64(env, 2)) { 5430 uint64_t aa32_valid; 5431 5432 /* 5433 * These bits are up-to-date as of ARMv8.6. 5434 * For HCR, it's easiest to list just the 2 bits that are invalid. 5435 * For HCR2, list those that are valid. 5436 */ 5437 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5438 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5439 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5440 ret &= aa32_valid; 5441 } 5442 5443 if (ret & HCR_TGE) { 5444 /* These bits are up-to-date as of ARMv8.6. */ 5445 if (ret & HCR_E2H) { 5446 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5447 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5448 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5449 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5450 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5451 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5452 } else { 5453 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5454 } 5455 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5456 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5457 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5458 HCR_TLOR); 5459 } 5460 5461 return ret; 5462 } 5463 5464 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5465 uint64_t value) 5466 { 5467 /* 5468 * For A-profile AArch32 EL3, if NSACR.CP10 5469 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5470 */ 5471 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5472 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5473 value &= ~(0x3 << 10); 5474 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5475 } 5476 env->cp15.cptr_el[2] = value; 5477 } 5478 5479 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5480 { 5481 /* 5482 * For A-profile AArch32 EL3, if NSACR.CP10 5483 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5484 */ 5485 uint64_t value = env->cp15.cptr_el[2]; 5486 5487 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5488 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5489 value |= 0x3 << 10; 5490 } 5491 return value; 5492 } 5493 5494 static const ARMCPRegInfo el2_cp_reginfo[] = { 5495 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5496 .type = ARM_CP_IO, 5497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5498 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5499 .writefn = hcr_write }, 5500 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5501 .type = ARM_CP_ALIAS | ARM_CP_IO, 5502 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5503 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5504 .writefn = hcr_writelow }, 5505 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5506 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5507 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5508 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5509 .type = ARM_CP_ALIAS, 5510 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5511 .access = PL2_RW, 5512 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5513 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5514 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5515 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5516 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5517 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5518 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5519 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5520 .type = ARM_CP_ALIAS, 5521 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5522 .access = PL2_RW, 5523 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5524 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5525 .type = ARM_CP_ALIAS, 5526 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5527 .access = PL2_RW, 5528 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5529 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5530 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5531 .access = PL2_RW, .writefn = vbar_write, 5532 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5533 .resetvalue = 0 }, 5534 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5535 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5536 .access = PL3_RW, .type = ARM_CP_ALIAS, 5537 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5538 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5539 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5540 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5541 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5542 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5543 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5544 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5545 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5546 .resetvalue = 0 }, 5547 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5548 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5549 .access = PL2_RW, .type = ARM_CP_ALIAS, 5550 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5551 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5552 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5553 .access = PL2_RW, .type = ARM_CP_CONST, 5554 .resetvalue = 0 }, 5555 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5556 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5557 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5558 .access = PL2_RW, .type = ARM_CP_CONST, 5559 .resetvalue = 0 }, 5560 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5561 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5562 .access = PL2_RW, .type = ARM_CP_CONST, 5563 .resetvalue = 0 }, 5564 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5565 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5566 .access = PL2_RW, .type = ARM_CP_CONST, 5567 .resetvalue = 0 }, 5568 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5569 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5570 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5571 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5572 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5573 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5574 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5575 .type = ARM_CP_ALIAS, 5576 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5577 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5578 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5579 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5580 .access = PL2_RW, 5581 /* no .writefn needed as this can't cause an ASID change; 5582 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5583 */ 5584 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5585 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5586 .cp = 15, .opc1 = 6, .crm = 2, 5587 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5588 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5589 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5590 .writefn = vttbr_write }, 5591 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5593 .access = PL2_RW, .writefn = vttbr_write, 5594 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5595 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5596 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5597 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5598 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5599 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5600 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5601 .access = PL2_RW, .resetvalue = 0, 5602 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5603 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5605 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5606 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5607 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5608 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5609 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5610 { .name = "TLBIALLNSNH", 5611 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5612 .type = ARM_CP_NO_RAW, .access = PL2_W, 5613 .writefn = tlbiall_nsnh_write }, 5614 { .name = "TLBIALLNSNHIS", 5615 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5616 .type = ARM_CP_NO_RAW, .access = PL2_W, 5617 .writefn = tlbiall_nsnh_is_write }, 5618 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5619 .type = ARM_CP_NO_RAW, .access = PL2_W, 5620 .writefn = tlbiall_hyp_write }, 5621 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5622 .type = ARM_CP_NO_RAW, .access = PL2_W, 5623 .writefn = tlbiall_hyp_is_write }, 5624 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5625 .type = ARM_CP_NO_RAW, .access = PL2_W, 5626 .writefn = tlbimva_hyp_write }, 5627 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5628 .type = ARM_CP_NO_RAW, .access = PL2_W, 5629 .writefn = tlbimva_hyp_is_write }, 5630 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5631 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5632 .type = ARM_CP_NO_RAW, .access = PL2_W, 5633 .writefn = tlbi_aa64_alle2_write }, 5634 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5635 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5636 .type = ARM_CP_NO_RAW, .access = PL2_W, 5637 .writefn = tlbi_aa64_vae2_write }, 5638 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5639 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5640 .access = PL2_W, .type = ARM_CP_NO_RAW, 5641 .writefn = tlbi_aa64_vae2_write }, 5642 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5644 .access = PL2_W, .type = ARM_CP_NO_RAW, 5645 .writefn = tlbi_aa64_alle2is_write }, 5646 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5647 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5648 .type = ARM_CP_NO_RAW, .access = PL2_W, 5649 .writefn = tlbi_aa64_vae2is_write }, 5650 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5651 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5652 .access = PL2_W, .type = ARM_CP_NO_RAW, 5653 .writefn = tlbi_aa64_vae2is_write }, 5654 #ifndef CONFIG_USER_ONLY 5655 /* Unlike the other EL2-related AT operations, these must 5656 * UNDEF from EL3 if EL2 is not implemented, which is why we 5657 * define them here rather than with the rest of the AT ops. 5658 */ 5659 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5660 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5661 .access = PL2_W, .accessfn = at_s1e2_access, 5662 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5663 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5664 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5665 .access = PL2_W, .accessfn = at_s1e2_access, 5666 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5667 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5668 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5669 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5670 * to behave as if SCR.NS was 1. 5671 */ 5672 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5673 .access = PL2_W, 5674 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5675 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5676 .access = PL2_W, 5677 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5678 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5679 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5680 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5681 * reset values as IMPDEF. We choose to reset to 3 to comply with 5682 * both ARMv7 and ARMv8. 5683 */ 5684 .access = PL2_RW, .resetvalue = 3, 5685 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5686 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5688 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5689 .writefn = gt_cntvoff_write, 5690 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5691 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5692 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5693 .writefn = gt_cntvoff_write, 5694 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5695 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5696 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5697 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5698 .type = ARM_CP_IO, .access = PL2_RW, 5699 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5700 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5701 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5702 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5703 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5704 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5705 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5706 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5707 .resetfn = gt_hyp_timer_reset, 5708 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5709 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5710 .type = ARM_CP_IO, 5711 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5712 .access = PL2_RW, 5713 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5714 .resetvalue = 0, 5715 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5716 #endif 5717 /* The only field of MDCR_EL2 that has a defined architectural reset value 5718 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5719 * don't implement any PMU event counters, so using zero as a reset 5720 * value for MDCR_EL2 is okay 5721 */ 5722 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5723 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5724 .access = PL2_RW, .resetvalue = 0, 5725 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5726 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5727 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5728 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5729 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5730 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5731 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5732 .access = PL2_RW, 5733 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5734 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5735 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5736 .access = PL2_RW, 5737 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5738 REGINFO_SENTINEL 5739 }; 5740 5741 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5742 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5743 .type = ARM_CP_ALIAS | ARM_CP_IO, 5744 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5745 .access = PL2_RW, 5746 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5747 .writefn = hcr_writehigh }, 5748 REGINFO_SENTINEL 5749 }; 5750 5751 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5752 bool isread) 5753 { 5754 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5755 * At Secure EL1 it traps to EL3. 5756 */ 5757 if (arm_current_el(env) == 3) { 5758 return CP_ACCESS_OK; 5759 } 5760 if (arm_is_secure_below_el3(env)) { 5761 return CP_ACCESS_TRAP_EL3; 5762 } 5763 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5764 if (isread) { 5765 return CP_ACCESS_OK; 5766 } 5767 return CP_ACCESS_TRAP_UNCATEGORIZED; 5768 } 5769 5770 static const ARMCPRegInfo el3_cp_reginfo[] = { 5771 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5772 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5773 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5774 .resetvalue = 0, .writefn = scr_write }, 5775 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5776 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5777 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5778 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5779 .writefn = scr_write }, 5780 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5781 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5782 .access = PL3_RW, .resetvalue = 0, 5783 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5784 { .name = "SDER", 5785 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5786 .access = PL3_RW, .resetvalue = 0, 5787 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5788 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5789 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5790 .writefn = vbar_write, .resetvalue = 0, 5791 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5792 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5794 .access = PL3_RW, .resetvalue = 0, 5795 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5796 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5798 .access = PL3_RW, 5799 /* no .writefn needed as this can't cause an ASID change; 5800 * we must provide a .raw_writefn and .resetfn because we handle 5801 * reset and migration for the AArch32 TTBCR(S), which might be 5802 * using mask and base_mask. 5803 */ 5804 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5805 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5806 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5807 .type = ARM_CP_ALIAS, 5808 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5809 .access = PL3_RW, 5810 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5811 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5813 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5814 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5815 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5816 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5817 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5818 .type = ARM_CP_ALIAS, 5819 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5820 .access = PL3_RW, 5821 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5822 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5823 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5824 .access = PL3_RW, .writefn = vbar_write, 5825 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5826 .resetvalue = 0 }, 5827 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5828 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5829 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5830 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5831 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5832 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5833 .access = PL3_RW, .resetvalue = 0, 5834 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5835 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5837 .access = PL3_RW, .type = ARM_CP_CONST, 5838 .resetvalue = 0 }, 5839 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5840 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5841 .access = PL3_RW, .type = ARM_CP_CONST, 5842 .resetvalue = 0 }, 5843 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5844 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5845 .access = PL3_RW, .type = ARM_CP_CONST, 5846 .resetvalue = 0 }, 5847 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5848 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5849 .access = PL3_W, .type = ARM_CP_NO_RAW, 5850 .writefn = tlbi_aa64_alle3is_write }, 5851 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5852 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5853 .access = PL3_W, .type = ARM_CP_NO_RAW, 5854 .writefn = tlbi_aa64_vae3is_write }, 5855 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5856 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5857 .access = PL3_W, .type = ARM_CP_NO_RAW, 5858 .writefn = tlbi_aa64_vae3is_write }, 5859 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5860 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5861 .access = PL3_W, .type = ARM_CP_NO_RAW, 5862 .writefn = tlbi_aa64_alle3_write }, 5863 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5864 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5865 .access = PL3_W, .type = ARM_CP_NO_RAW, 5866 .writefn = tlbi_aa64_vae3_write }, 5867 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5868 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5869 .access = PL3_W, .type = ARM_CP_NO_RAW, 5870 .writefn = tlbi_aa64_vae3_write }, 5871 REGINFO_SENTINEL 5872 }; 5873 5874 #ifndef CONFIG_USER_ONLY 5875 /* Test if system register redirection is to occur in the current state. */ 5876 static bool redirect_for_e2h(CPUARMState *env) 5877 { 5878 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5879 } 5880 5881 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5882 { 5883 CPReadFn *readfn; 5884 5885 if (redirect_for_e2h(env)) { 5886 /* Switch to the saved EL2 version of the register. */ 5887 ri = ri->opaque; 5888 readfn = ri->readfn; 5889 } else { 5890 readfn = ri->orig_readfn; 5891 } 5892 if (readfn == NULL) { 5893 readfn = raw_read; 5894 } 5895 return readfn(env, ri); 5896 } 5897 5898 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5899 uint64_t value) 5900 { 5901 CPWriteFn *writefn; 5902 5903 if (redirect_for_e2h(env)) { 5904 /* Switch to the saved EL2 version of the register. */ 5905 ri = ri->opaque; 5906 writefn = ri->writefn; 5907 } else { 5908 writefn = ri->orig_writefn; 5909 } 5910 if (writefn == NULL) { 5911 writefn = raw_write; 5912 } 5913 writefn(env, ri, value); 5914 } 5915 5916 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5917 { 5918 struct E2HAlias { 5919 uint32_t src_key, dst_key, new_key; 5920 const char *src_name, *dst_name, *new_name; 5921 bool (*feature)(const ARMISARegisters *id); 5922 }; 5923 5924 #define K(op0, op1, crn, crm, op2) \ 5925 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5926 5927 static const struct E2HAlias aliases[] = { 5928 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5929 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5930 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5931 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5932 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5933 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5934 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5935 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5936 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5937 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5938 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5939 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5940 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5941 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5942 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5943 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5944 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5945 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5946 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5947 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5948 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5949 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5950 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5951 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5952 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5953 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5954 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5955 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5956 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5957 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5958 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5959 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5960 5961 /* 5962 * Note that redirection of ZCR is mentioned in the description 5963 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5964 * not in the summary table. 5965 */ 5966 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5967 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5968 5969 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5970 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5971 }; 5972 #undef K 5973 5974 size_t i; 5975 5976 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5977 const struct E2HAlias *a = &aliases[i]; 5978 ARMCPRegInfo *src_reg, *dst_reg; 5979 5980 if (a->feature && !a->feature(&cpu->isar)) { 5981 continue; 5982 } 5983 5984 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5985 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5986 g_assert(src_reg != NULL); 5987 g_assert(dst_reg != NULL); 5988 5989 /* Cross-compare names to detect typos in the keys. */ 5990 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5991 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5992 5993 /* None of the core system registers use opaque; we will. */ 5994 g_assert(src_reg->opaque == NULL); 5995 5996 /* Create alias before redirection so we dup the right data. */ 5997 if (a->new_key) { 5998 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5999 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6000 bool ok; 6001 6002 new_reg->name = a->new_name; 6003 new_reg->type |= ARM_CP_ALIAS; 6004 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6005 new_reg->access &= PL2_RW | PL3_RW; 6006 6007 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6008 g_assert(ok); 6009 } 6010 6011 src_reg->opaque = dst_reg; 6012 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6013 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6014 if (!src_reg->raw_readfn) { 6015 src_reg->raw_readfn = raw_read; 6016 } 6017 if (!src_reg->raw_writefn) { 6018 src_reg->raw_writefn = raw_write; 6019 } 6020 src_reg->readfn = el2_e2h_read; 6021 src_reg->writefn = el2_e2h_write; 6022 } 6023 } 6024 #endif 6025 6026 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6027 bool isread) 6028 { 6029 int cur_el = arm_current_el(env); 6030 6031 if (cur_el < 2) { 6032 uint64_t hcr = arm_hcr_el2_eff(env); 6033 6034 if (cur_el == 0) { 6035 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6036 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6037 return CP_ACCESS_TRAP_EL2; 6038 } 6039 } else { 6040 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6041 return CP_ACCESS_TRAP; 6042 } 6043 if (hcr & HCR_TID2) { 6044 return CP_ACCESS_TRAP_EL2; 6045 } 6046 } 6047 } else if (hcr & HCR_TID2) { 6048 return CP_ACCESS_TRAP_EL2; 6049 } 6050 } 6051 6052 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6053 return CP_ACCESS_TRAP_EL2; 6054 } 6055 6056 return CP_ACCESS_OK; 6057 } 6058 6059 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6060 uint64_t value) 6061 { 6062 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6063 * read via a bit in OSLSR_EL1. 6064 */ 6065 int oslock; 6066 6067 if (ri->state == ARM_CP_STATE_AA32) { 6068 oslock = (value == 0xC5ACCE55); 6069 } else { 6070 oslock = value & 1; 6071 } 6072 6073 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6074 } 6075 6076 static const ARMCPRegInfo debug_cp_reginfo[] = { 6077 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6078 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6079 * unlike DBGDRAR it is never accessible from EL0. 6080 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6081 * accessor. 6082 */ 6083 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6084 .access = PL0_R, .accessfn = access_tdra, 6085 .type = ARM_CP_CONST, .resetvalue = 0 }, 6086 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6087 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6088 .access = PL1_R, .accessfn = access_tdra, 6089 .type = ARM_CP_CONST, .resetvalue = 0 }, 6090 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6091 .access = PL0_R, .accessfn = access_tdra, 6092 .type = ARM_CP_CONST, .resetvalue = 0 }, 6093 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6094 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6095 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6096 .access = PL1_RW, .accessfn = access_tda, 6097 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6098 .resetvalue = 0 }, 6099 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6100 * We don't implement the configurable EL0 access. 6101 */ 6102 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6103 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6104 .type = ARM_CP_ALIAS, 6105 .access = PL1_R, .accessfn = access_tda, 6106 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6107 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6108 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6109 .access = PL1_W, .type = ARM_CP_NO_RAW, 6110 .accessfn = access_tdosa, 6111 .writefn = oslar_write }, 6112 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6113 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6114 .access = PL1_R, .resetvalue = 10, 6115 .accessfn = access_tdosa, 6116 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6117 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6118 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6119 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6120 .access = PL1_RW, .accessfn = access_tdosa, 6121 .type = ARM_CP_NOP }, 6122 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6123 * implement vector catch debug events yet. 6124 */ 6125 { .name = "DBGVCR", 6126 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6127 .access = PL1_RW, .accessfn = access_tda, 6128 .type = ARM_CP_NOP }, 6129 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6130 * to save and restore a 32-bit guest's DBGVCR) 6131 */ 6132 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6133 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6134 .access = PL2_RW, .accessfn = access_tda, 6135 .type = ARM_CP_NOP }, 6136 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6137 * Channel but Linux may try to access this register. The 32-bit 6138 * alias is DBGDCCINT. 6139 */ 6140 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6141 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6142 .access = PL1_RW, .accessfn = access_tda, 6143 .type = ARM_CP_NOP }, 6144 REGINFO_SENTINEL 6145 }; 6146 6147 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6148 /* 64 bit access versions of the (dummy) debug registers */ 6149 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6150 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6151 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6152 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6153 REGINFO_SENTINEL 6154 }; 6155 6156 /* Return the exception level to which exceptions should be taken 6157 * via SVEAccessTrap. If an exception should be routed through 6158 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6159 * take care of raising that exception. 6160 * C.f. the ARM pseudocode function CheckSVEEnabled. 6161 */ 6162 int sve_exception_el(CPUARMState *env, int el) 6163 { 6164 #ifndef CONFIG_USER_ONLY 6165 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6166 6167 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6168 bool disabled = false; 6169 6170 /* The CPACR.ZEN controls traps to EL1: 6171 * 0, 2 : trap EL0 and EL1 accesses 6172 * 1 : trap only EL0 accesses 6173 * 3 : trap no accesses 6174 */ 6175 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6176 disabled = true; 6177 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6178 disabled = el == 0; 6179 } 6180 if (disabled) { 6181 /* route_to_el2 */ 6182 return hcr_el2 & HCR_TGE ? 2 : 1; 6183 } 6184 6185 /* Check CPACR.FPEN. */ 6186 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6187 disabled = true; 6188 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6189 disabled = el == 0; 6190 } 6191 if (disabled) { 6192 return 0; 6193 } 6194 } 6195 6196 /* CPTR_EL2. Since TZ and TFP are positive, 6197 * they will be zero when EL2 is not present. 6198 */ 6199 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6200 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6201 return 2; 6202 } 6203 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6204 return 0; 6205 } 6206 } 6207 6208 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6209 if (arm_feature(env, ARM_FEATURE_EL3) 6210 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6211 return 3; 6212 } 6213 #endif 6214 return 0; 6215 } 6216 6217 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6218 { 6219 uint32_t end_len; 6220 6221 end_len = start_len &= 0xf; 6222 if (!test_bit(start_len, cpu->sve_vq_map)) { 6223 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6224 assert(end_len < start_len); 6225 } 6226 return end_len; 6227 } 6228 6229 /* 6230 * Given that SVE is enabled, return the vector length for EL. 6231 */ 6232 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6233 { 6234 ARMCPU *cpu = env_archcpu(env); 6235 uint32_t zcr_len = cpu->sve_max_vq - 1; 6236 6237 if (el <= 1) { 6238 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6239 } 6240 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6241 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6242 } 6243 if (arm_feature(env, ARM_FEATURE_EL3)) { 6244 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6245 } 6246 6247 return sve_zcr_get_valid_len(cpu, zcr_len); 6248 } 6249 6250 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6251 uint64_t value) 6252 { 6253 int cur_el = arm_current_el(env); 6254 int old_len = sve_zcr_len_for_el(env, cur_el); 6255 int new_len; 6256 6257 /* Bits other than [3:0] are RAZ/WI. */ 6258 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6259 raw_write(env, ri, value & 0xf); 6260 6261 /* 6262 * Because we arrived here, we know both FP and SVE are enabled; 6263 * otherwise we would have trapped access to the ZCR_ELn register. 6264 */ 6265 new_len = sve_zcr_len_for_el(env, cur_el); 6266 if (new_len < old_len) { 6267 aarch64_sve_narrow_vq(env, new_len + 1); 6268 } 6269 } 6270 6271 static const ARMCPRegInfo zcr_el1_reginfo = { 6272 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6273 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6274 .access = PL1_RW, .type = ARM_CP_SVE, 6275 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6276 .writefn = zcr_write, .raw_writefn = raw_write 6277 }; 6278 6279 static const ARMCPRegInfo zcr_el2_reginfo = { 6280 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6281 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6282 .access = PL2_RW, .type = ARM_CP_SVE, 6283 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6284 .writefn = zcr_write, .raw_writefn = raw_write 6285 }; 6286 6287 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6288 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6289 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6290 .access = PL2_RW, .type = ARM_CP_SVE, 6291 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6292 }; 6293 6294 static const ARMCPRegInfo zcr_el3_reginfo = { 6295 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6296 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6297 .access = PL3_RW, .type = ARM_CP_SVE, 6298 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6299 .writefn = zcr_write, .raw_writefn = raw_write 6300 }; 6301 6302 void hw_watchpoint_update(ARMCPU *cpu, int n) 6303 { 6304 CPUARMState *env = &cpu->env; 6305 vaddr len = 0; 6306 vaddr wvr = env->cp15.dbgwvr[n]; 6307 uint64_t wcr = env->cp15.dbgwcr[n]; 6308 int mask; 6309 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6310 6311 if (env->cpu_watchpoint[n]) { 6312 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6313 env->cpu_watchpoint[n] = NULL; 6314 } 6315 6316 if (!extract64(wcr, 0, 1)) { 6317 /* E bit clear : watchpoint disabled */ 6318 return; 6319 } 6320 6321 switch (extract64(wcr, 3, 2)) { 6322 case 0: 6323 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6324 return; 6325 case 1: 6326 flags |= BP_MEM_READ; 6327 break; 6328 case 2: 6329 flags |= BP_MEM_WRITE; 6330 break; 6331 case 3: 6332 flags |= BP_MEM_ACCESS; 6333 break; 6334 } 6335 6336 /* Attempts to use both MASK and BAS fields simultaneously are 6337 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6338 * thus generating a watchpoint for every byte in the masked region. 6339 */ 6340 mask = extract64(wcr, 24, 4); 6341 if (mask == 1 || mask == 2) { 6342 /* Reserved values of MASK; we must act as if the mask value was 6343 * some non-reserved value, or as if the watchpoint were disabled. 6344 * We choose the latter. 6345 */ 6346 return; 6347 } else if (mask) { 6348 /* Watchpoint covers an aligned area up to 2GB in size */ 6349 len = 1ULL << mask; 6350 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6351 * whether the watchpoint fires when the unmasked bits match; we opt 6352 * to generate the exceptions. 6353 */ 6354 wvr &= ~(len - 1); 6355 } else { 6356 /* Watchpoint covers bytes defined by the byte address select bits */ 6357 int bas = extract64(wcr, 5, 8); 6358 int basstart; 6359 6360 if (extract64(wvr, 2, 1)) { 6361 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6362 * ignored, and BAS[3:0] define which bytes to watch. 6363 */ 6364 bas &= 0xf; 6365 } 6366 6367 if (bas == 0) { 6368 /* This must act as if the watchpoint is disabled */ 6369 return; 6370 } 6371 6372 /* The BAS bits are supposed to be programmed to indicate a contiguous 6373 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6374 * we fire for each byte in the word/doubleword addressed by the WVR. 6375 * We choose to ignore any non-zero bits after the first range of 1s. 6376 */ 6377 basstart = ctz32(bas); 6378 len = cto32(bas >> basstart); 6379 wvr += basstart; 6380 } 6381 6382 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6383 &env->cpu_watchpoint[n]); 6384 } 6385 6386 void hw_watchpoint_update_all(ARMCPU *cpu) 6387 { 6388 int i; 6389 CPUARMState *env = &cpu->env; 6390 6391 /* Completely clear out existing QEMU watchpoints and our array, to 6392 * avoid possible stale entries following migration load. 6393 */ 6394 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6395 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6396 6397 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6398 hw_watchpoint_update(cpu, i); 6399 } 6400 } 6401 6402 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6403 uint64_t value) 6404 { 6405 ARMCPU *cpu = env_archcpu(env); 6406 int i = ri->crm; 6407 6408 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6409 * register reads and behaves as if values written are sign extended. 6410 * Bits [1:0] are RES0. 6411 */ 6412 value = sextract64(value, 0, 49) & ~3ULL; 6413 6414 raw_write(env, ri, value); 6415 hw_watchpoint_update(cpu, i); 6416 } 6417 6418 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6419 uint64_t value) 6420 { 6421 ARMCPU *cpu = env_archcpu(env); 6422 int i = ri->crm; 6423 6424 raw_write(env, ri, value); 6425 hw_watchpoint_update(cpu, i); 6426 } 6427 6428 void hw_breakpoint_update(ARMCPU *cpu, int n) 6429 { 6430 CPUARMState *env = &cpu->env; 6431 uint64_t bvr = env->cp15.dbgbvr[n]; 6432 uint64_t bcr = env->cp15.dbgbcr[n]; 6433 vaddr addr; 6434 int bt; 6435 int flags = BP_CPU; 6436 6437 if (env->cpu_breakpoint[n]) { 6438 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6439 env->cpu_breakpoint[n] = NULL; 6440 } 6441 6442 if (!extract64(bcr, 0, 1)) { 6443 /* E bit clear : watchpoint disabled */ 6444 return; 6445 } 6446 6447 bt = extract64(bcr, 20, 4); 6448 6449 switch (bt) { 6450 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6451 case 5: /* linked address mismatch (reserved if AArch64) */ 6452 qemu_log_mask(LOG_UNIMP, 6453 "arm: address mismatch breakpoint types not implemented\n"); 6454 return; 6455 case 0: /* unlinked address match */ 6456 case 1: /* linked address match */ 6457 { 6458 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6459 * we behave as if the register was sign extended. Bits [1:0] are 6460 * RES0. The BAS field is used to allow setting breakpoints on 16 6461 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6462 * a bp will fire if the addresses covered by the bp and the addresses 6463 * covered by the insn overlap but the insn doesn't start at the 6464 * start of the bp address range. We choose to require the insn and 6465 * the bp to have the same address. The constraints on writing to 6466 * BAS enforced in dbgbcr_write mean we have only four cases: 6467 * 0b0000 => no breakpoint 6468 * 0b0011 => breakpoint on addr 6469 * 0b1100 => breakpoint on addr + 2 6470 * 0b1111 => breakpoint on addr 6471 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6472 */ 6473 int bas = extract64(bcr, 5, 4); 6474 addr = sextract64(bvr, 0, 49) & ~3ULL; 6475 if (bas == 0) { 6476 return; 6477 } 6478 if (bas == 0xc) { 6479 addr += 2; 6480 } 6481 break; 6482 } 6483 case 2: /* unlinked context ID match */ 6484 case 8: /* unlinked VMID match (reserved if no EL2) */ 6485 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6486 qemu_log_mask(LOG_UNIMP, 6487 "arm: unlinked context breakpoint types not implemented\n"); 6488 return; 6489 case 9: /* linked VMID match (reserved if no EL2) */ 6490 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6491 case 3: /* linked context ID match */ 6492 default: 6493 /* We must generate no events for Linked context matches (unless 6494 * they are linked to by some other bp/wp, which is handled in 6495 * updates for the linking bp/wp). We choose to also generate no events 6496 * for reserved values. 6497 */ 6498 return; 6499 } 6500 6501 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6502 } 6503 6504 void hw_breakpoint_update_all(ARMCPU *cpu) 6505 { 6506 int i; 6507 CPUARMState *env = &cpu->env; 6508 6509 /* Completely clear out existing QEMU breakpoints and our array, to 6510 * avoid possible stale entries following migration load. 6511 */ 6512 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6513 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6514 6515 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6516 hw_breakpoint_update(cpu, i); 6517 } 6518 } 6519 6520 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6521 uint64_t value) 6522 { 6523 ARMCPU *cpu = env_archcpu(env); 6524 int i = ri->crm; 6525 6526 raw_write(env, ri, value); 6527 hw_breakpoint_update(cpu, i); 6528 } 6529 6530 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6531 uint64_t value) 6532 { 6533 ARMCPU *cpu = env_archcpu(env); 6534 int i = ri->crm; 6535 6536 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6537 * copy of BAS[0]. 6538 */ 6539 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6540 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6541 6542 raw_write(env, ri, value); 6543 hw_breakpoint_update(cpu, i); 6544 } 6545 6546 static void define_debug_regs(ARMCPU *cpu) 6547 { 6548 /* Define v7 and v8 architectural debug registers. 6549 * These are just dummy implementations for now. 6550 */ 6551 int i; 6552 int wrps, brps, ctx_cmps; 6553 ARMCPRegInfo dbgdidr = { 6554 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6555 .access = PL0_R, .accessfn = access_tda, 6556 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6557 }; 6558 6559 /* Note that all these register fields hold "number of Xs minus 1". */ 6560 brps = arm_num_brps(cpu); 6561 wrps = arm_num_wrps(cpu); 6562 ctx_cmps = arm_num_ctx_cmps(cpu); 6563 6564 assert(ctx_cmps <= brps); 6565 6566 define_one_arm_cp_reg(cpu, &dbgdidr); 6567 define_arm_cp_regs(cpu, debug_cp_reginfo); 6568 6569 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6570 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6571 } 6572 6573 for (i = 0; i < brps; i++) { 6574 ARMCPRegInfo dbgregs[] = { 6575 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6576 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6577 .access = PL1_RW, .accessfn = access_tda, 6578 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6579 .writefn = dbgbvr_write, .raw_writefn = raw_write 6580 }, 6581 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6582 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6583 .access = PL1_RW, .accessfn = access_tda, 6584 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6585 .writefn = dbgbcr_write, .raw_writefn = raw_write 6586 }, 6587 REGINFO_SENTINEL 6588 }; 6589 define_arm_cp_regs(cpu, dbgregs); 6590 } 6591 6592 for (i = 0; i < wrps; i++) { 6593 ARMCPRegInfo dbgregs[] = { 6594 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6595 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6596 .access = PL1_RW, .accessfn = access_tda, 6597 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6598 .writefn = dbgwvr_write, .raw_writefn = raw_write 6599 }, 6600 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6601 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6602 .access = PL1_RW, .accessfn = access_tda, 6603 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6604 .writefn = dbgwcr_write, .raw_writefn = raw_write 6605 }, 6606 REGINFO_SENTINEL 6607 }; 6608 define_arm_cp_regs(cpu, dbgregs); 6609 } 6610 } 6611 6612 static void define_pmu_regs(ARMCPU *cpu) 6613 { 6614 /* 6615 * v7 performance monitor control register: same implementor 6616 * field as main ID register, and we implement four counters in 6617 * addition to the cycle count register. 6618 */ 6619 unsigned int i, pmcrn = 4; 6620 ARMCPRegInfo pmcr = { 6621 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6622 .access = PL0_RW, 6623 .type = ARM_CP_IO | ARM_CP_ALIAS, 6624 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6625 .accessfn = pmreg_access, .writefn = pmcr_write, 6626 .raw_writefn = raw_write, 6627 }; 6628 ARMCPRegInfo pmcr64 = { 6629 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6630 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6631 .access = PL0_RW, .accessfn = pmreg_access, 6632 .type = ARM_CP_IO, 6633 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6634 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6635 PMCRLC, 6636 .writefn = pmcr_write, .raw_writefn = raw_write, 6637 }; 6638 define_one_arm_cp_reg(cpu, &pmcr); 6639 define_one_arm_cp_reg(cpu, &pmcr64); 6640 for (i = 0; i < pmcrn; i++) { 6641 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6642 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6643 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6644 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6645 ARMCPRegInfo pmev_regs[] = { 6646 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6647 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6648 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6649 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6650 .accessfn = pmreg_access }, 6651 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6652 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6653 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6654 .type = ARM_CP_IO, 6655 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6656 .raw_readfn = pmevcntr_rawread, 6657 .raw_writefn = pmevcntr_rawwrite }, 6658 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6659 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6660 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6661 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6662 .accessfn = pmreg_access }, 6663 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6664 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6665 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6666 .type = ARM_CP_IO, 6667 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6668 .raw_writefn = pmevtyper_rawwrite }, 6669 REGINFO_SENTINEL 6670 }; 6671 define_arm_cp_regs(cpu, pmev_regs); 6672 g_free(pmevcntr_name); 6673 g_free(pmevcntr_el0_name); 6674 g_free(pmevtyper_name); 6675 g_free(pmevtyper_el0_name); 6676 } 6677 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6678 ARMCPRegInfo v81_pmu_regs[] = { 6679 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6680 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6681 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6682 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6683 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6684 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6685 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6686 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6687 REGINFO_SENTINEL 6688 }; 6689 define_arm_cp_regs(cpu, v81_pmu_regs); 6690 } 6691 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6692 static const ARMCPRegInfo v84_pmmir = { 6693 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6694 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6695 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6696 .resetvalue = 0 6697 }; 6698 define_one_arm_cp_reg(cpu, &v84_pmmir); 6699 } 6700 } 6701 6702 /* We don't know until after realize whether there's a GICv3 6703 * attached, and that is what registers the gicv3 sysregs. 6704 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6705 * at runtime. 6706 */ 6707 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6708 { 6709 ARMCPU *cpu = env_archcpu(env); 6710 uint64_t pfr1 = cpu->id_pfr1; 6711 6712 if (env->gicv3state) { 6713 pfr1 |= 1 << 28; 6714 } 6715 return pfr1; 6716 } 6717 6718 #ifndef CONFIG_USER_ONLY 6719 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6720 { 6721 ARMCPU *cpu = env_archcpu(env); 6722 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6723 6724 if (env->gicv3state) { 6725 pfr0 |= 1 << 24; 6726 } 6727 return pfr0; 6728 } 6729 #endif 6730 6731 /* Shared logic between LORID and the rest of the LOR* registers. 6732 * Secure state has already been delt with. 6733 */ 6734 static CPAccessResult access_lor_ns(CPUARMState *env) 6735 { 6736 int el = arm_current_el(env); 6737 6738 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6739 return CP_ACCESS_TRAP_EL2; 6740 } 6741 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6742 return CP_ACCESS_TRAP_EL3; 6743 } 6744 return CP_ACCESS_OK; 6745 } 6746 6747 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6748 bool isread) 6749 { 6750 if (arm_is_secure_below_el3(env)) { 6751 /* Access ok in secure mode. */ 6752 return CP_ACCESS_OK; 6753 } 6754 return access_lor_ns(env); 6755 } 6756 6757 static CPAccessResult access_lor_other(CPUARMState *env, 6758 const ARMCPRegInfo *ri, bool isread) 6759 { 6760 if (arm_is_secure_below_el3(env)) { 6761 /* Access denied in secure mode. */ 6762 return CP_ACCESS_TRAP; 6763 } 6764 return access_lor_ns(env); 6765 } 6766 6767 /* 6768 * A trivial implementation of ARMv8.1-LOR leaves all of these 6769 * registers fixed at 0, which indicates that there are zero 6770 * supported Limited Ordering regions. 6771 */ 6772 static const ARMCPRegInfo lor_reginfo[] = { 6773 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6774 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6775 .access = PL1_RW, .accessfn = access_lor_other, 6776 .type = ARM_CP_CONST, .resetvalue = 0 }, 6777 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6778 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6779 .access = PL1_RW, .accessfn = access_lor_other, 6780 .type = ARM_CP_CONST, .resetvalue = 0 }, 6781 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6782 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6783 .access = PL1_RW, .accessfn = access_lor_other, 6784 .type = ARM_CP_CONST, .resetvalue = 0 }, 6785 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6786 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6787 .access = PL1_RW, .accessfn = access_lor_other, 6788 .type = ARM_CP_CONST, .resetvalue = 0 }, 6789 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6791 .access = PL1_R, .accessfn = access_lorid, 6792 .type = ARM_CP_CONST, .resetvalue = 0 }, 6793 REGINFO_SENTINEL 6794 }; 6795 6796 #ifdef TARGET_AARCH64 6797 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6798 bool isread) 6799 { 6800 int el = arm_current_el(env); 6801 6802 if (el < 2 && 6803 arm_feature(env, ARM_FEATURE_EL2) && 6804 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6805 return CP_ACCESS_TRAP_EL2; 6806 } 6807 if (el < 3 && 6808 arm_feature(env, ARM_FEATURE_EL3) && 6809 !(env->cp15.scr_el3 & SCR_APK)) { 6810 return CP_ACCESS_TRAP_EL3; 6811 } 6812 return CP_ACCESS_OK; 6813 } 6814 6815 static const ARMCPRegInfo pauth_reginfo[] = { 6816 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6817 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6818 .access = PL1_RW, .accessfn = access_pauth, 6819 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6820 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6821 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6822 .access = PL1_RW, .accessfn = access_pauth, 6823 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6824 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6826 .access = PL1_RW, .accessfn = access_pauth, 6827 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6828 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6829 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6830 .access = PL1_RW, .accessfn = access_pauth, 6831 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6832 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6834 .access = PL1_RW, .accessfn = access_pauth, 6835 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6836 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6838 .access = PL1_RW, .accessfn = access_pauth, 6839 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6840 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6842 .access = PL1_RW, .accessfn = access_pauth, 6843 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6844 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6846 .access = PL1_RW, .accessfn = access_pauth, 6847 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6848 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6850 .access = PL1_RW, .accessfn = access_pauth, 6851 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6852 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6854 .access = PL1_RW, .accessfn = access_pauth, 6855 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6856 REGINFO_SENTINEL 6857 }; 6858 6859 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6860 { 6861 Error *err = NULL; 6862 uint64_t ret; 6863 6864 /* Success sets NZCV = 0000. */ 6865 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6866 6867 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6868 /* 6869 * ??? Failed, for unknown reasons in the crypto subsystem. 6870 * The best we can do is log the reason and return the 6871 * timed-out indication to the guest. There is no reason 6872 * we know to expect this failure to be transitory, so the 6873 * guest may well hang retrying the operation. 6874 */ 6875 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6876 ri->name, error_get_pretty(err)); 6877 error_free(err); 6878 6879 env->ZF = 0; /* NZCF = 0100 */ 6880 return 0; 6881 } 6882 return ret; 6883 } 6884 6885 /* We do not support re-seeding, so the two registers operate the same. */ 6886 static const ARMCPRegInfo rndr_reginfo[] = { 6887 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6888 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6889 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6890 .access = PL0_R, .readfn = rndr_readfn }, 6891 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6892 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6893 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6894 .access = PL0_R, .readfn = rndr_readfn }, 6895 REGINFO_SENTINEL 6896 }; 6897 6898 #ifndef CONFIG_USER_ONLY 6899 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6900 uint64_t value) 6901 { 6902 ARMCPU *cpu = env_archcpu(env); 6903 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6904 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6905 uint64_t vaddr_in = (uint64_t) value; 6906 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6907 void *haddr; 6908 int mem_idx = cpu_mmu_index(env, false); 6909 6910 /* This won't be crossing page boundaries */ 6911 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6912 if (haddr) { 6913 6914 ram_addr_t offset; 6915 MemoryRegion *mr; 6916 6917 /* RCU lock is already being held */ 6918 mr = memory_region_from_host(haddr, &offset); 6919 6920 if (mr) { 6921 memory_region_do_writeback(mr, offset, dline_size); 6922 } 6923 } 6924 } 6925 6926 static const ARMCPRegInfo dcpop_reg[] = { 6927 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6928 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6929 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6930 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6931 REGINFO_SENTINEL 6932 }; 6933 6934 static const ARMCPRegInfo dcpodp_reg[] = { 6935 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6937 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6938 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6939 REGINFO_SENTINEL 6940 }; 6941 #endif /*CONFIG_USER_ONLY*/ 6942 6943 #endif 6944 6945 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 6946 bool isread) 6947 { 6948 int el = arm_current_el(env); 6949 6950 if (el == 0) { 6951 uint64_t sctlr = arm_sctlr(env, el); 6952 if (!(sctlr & SCTLR_EnRCTX)) { 6953 return CP_ACCESS_TRAP; 6954 } 6955 } else if (el == 1) { 6956 uint64_t hcr = arm_hcr_el2_eff(env); 6957 if (hcr & HCR_NV) { 6958 return CP_ACCESS_TRAP_EL2; 6959 } 6960 } 6961 return CP_ACCESS_OK; 6962 } 6963 6964 static const ARMCPRegInfo predinv_reginfo[] = { 6965 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 6966 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 6967 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6968 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 6969 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 6970 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6971 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 6973 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6974 /* 6975 * Note the AArch32 opcodes have a different OPC1. 6976 */ 6977 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 6978 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 6979 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6980 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 6981 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 6982 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6983 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 6984 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 6985 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6986 REGINFO_SENTINEL 6987 }; 6988 6989 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6990 { 6991 /* Read the high 32 bits of the current CCSIDR */ 6992 return extract64(ccsidr_read(env, ri), 32, 32); 6993 } 6994 6995 static const ARMCPRegInfo ccsidr2_reginfo[] = { 6996 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 6997 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 6998 .access = PL1_R, 6999 .accessfn = access_aa64_tid2, 7000 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7001 REGINFO_SENTINEL 7002 }; 7003 7004 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7005 bool isread) 7006 { 7007 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7008 return CP_ACCESS_TRAP_EL2; 7009 } 7010 7011 return CP_ACCESS_OK; 7012 } 7013 7014 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7015 bool isread) 7016 { 7017 if (arm_feature(env, ARM_FEATURE_V8)) { 7018 return access_aa64_tid3(env, ri, isread); 7019 } 7020 7021 return CP_ACCESS_OK; 7022 } 7023 7024 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7025 bool isread) 7026 { 7027 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7028 return CP_ACCESS_TRAP_EL2; 7029 } 7030 7031 return CP_ACCESS_OK; 7032 } 7033 7034 static const ARMCPRegInfo jazelle_regs[] = { 7035 { .name = "JIDR", 7036 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7037 .access = PL1_R, .accessfn = access_jazelle, 7038 .type = ARM_CP_CONST, .resetvalue = 0 }, 7039 { .name = "JOSCR", 7040 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7041 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7042 { .name = "JMCR", 7043 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7044 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7045 REGINFO_SENTINEL 7046 }; 7047 7048 static const ARMCPRegInfo vhe_reginfo[] = { 7049 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7051 .access = PL2_RW, 7052 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7053 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7055 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7056 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7057 #ifndef CONFIG_USER_ONLY 7058 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7060 .fieldoffset = 7061 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7062 .type = ARM_CP_IO, .access = PL2_RW, 7063 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7064 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7065 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7066 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7067 .resetfn = gt_hv_timer_reset, 7068 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7069 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7070 .type = ARM_CP_IO, 7071 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7072 .access = PL2_RW, 7073 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7074 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7075 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7077 .type = ARM_CP_IO | ARM_CP_ALIAS, 7078 .access = PL2_RW, .accessfn = e2h_access, 7079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7080 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7081 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7082 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7083 .type = ARM_CP_IO | ARM_CP_ALIAS, 7084 .access = PL2_RW, .accessfn = e2h_access, 7085 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7086 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7087 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7089 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7090 .access = PL2_RW, .accessfn = e2h_access, 7091 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7092 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7094 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7095 .access = PL2_RW, .accessfn = e2h_access, 7096 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7097 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7098 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7099 .type = ARM_CP_IO | ARM_CP_ALIAS, 7100 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7101 .access = PL2_RW, .accessfn = e2h_access, 7102 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7103 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7105 .type = ARM_CP_IO | ARM_CP_ALIAS, 7106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7107 .access = PL2_RW, .accessfn = e2h_access, 7108 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7109 #endif 7110 REGINFO_SENTINEL 7111 }; 7112 7113 #ifndef CONFIG_USER_ONLY 7114 static const ARMCPRegInfo ats1e1_reginfo[] = { 7115 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7116 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7117 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7118 .writefn = ats_write64 }, 7119 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7121 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7122 .writefn = ats_write64 }, 7123 REGINFO_SENTINEL 7124 }; 7125 7126 static const ARMCPRegInfo ats1cp_reginfo[] = { 7127 { .name = "ATS1CPRP", 7128 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7129 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7130 .writefn = ats_write }, 7131 { .name = "ATS1CPWP", 7132 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7133 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7134 .writefn = ats_write }, 7135 REGINFO_SENTINEL 7136 }; 7137 #endif 7138 7139 /* 7140 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7141 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7142 * is non-zero, which is never for ARMv7, optionally in ARMv8 7143 * and mandatorily for ARMv8.2 and up. 7144 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7145 * implementation is RAZ/WI we can ignore this detail, as we 7146 * do for ACTLR. 7147 */ 7148 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7149 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7150 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7151 .access = PL1_RW, .accessfn = access_tacr, 7152 .type = ARM_CP_CONST, .resetvalue = 0 }, 7153 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7154 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7155 .access = PL2_RW, .type = ARM_CP_CONST, 7156 .resetvalue = 0 }, 7157 REGINFO_SENTINEL 7158 }; 7159 7160 void register_cp_regs_for_features(ARMCPU *cpu) 7161 { 7162 /* Register all the coprocessor registers based on feature bits */ 7163 CPUARMState *env = &cpu->env; 7164 if (arm_feature(env, ARM_FEATURE_M)) { 7165 /* M profile has no coprocessor registers */ 7166 return; 7167 } 7168 7169 define_arm_cp_regs(cpu, cp_reginfo); 7170 if (!arm_feature(env, ARM_FEATURE_V8)) { 7171 /* Must go early as it is full of wildcards that may be 7172 * overridden by later definitions. 7173 */ 7174 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7175 } 7176 7177 if (arm_feature(env, ARM_FEATURE_V6)) { 7178 /* The ID registers all have impdef reset values */ 7179 ARMCPRegInfo v6_idregs[] = { 7180 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7182 .access = PL1_R, .type = ARM_CP_CONST, 7183 .accessfn = access_aa32_tid3, 7184 .resetvalue = cpu->id_pfr0 }, 7185 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7186 * the value of the GIC field until after we define these regs. 7187 */ 7188 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7189 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7190 .access = PL1_R, .type = ARM_CP_NO_RAW, 7191 .accessfn = access_aa32_tid3, 7192 .readfn = id_pfr1_read, 7193 .writefn = arm_cp_write_ignore }, 7194 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7196 .access = PL1_R, .type = ARM_CP_CONST, 7197 .accessfn = access_aa32_tid3, 7198 .resetvalue = cpu->isar.id_dfr0 }, 7199 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7201 .access = PL1_R, .type = ARM_CP_CONST, 7202 .accessfn = access_aa32_tid3, 7203 .resetvalue = cpu->id_afr0 }, 7204 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7205 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7206 .access = PL1_R, .type = ARM_CP_CONST, 7207 .accessfn = access_aa32_tid3, 7208 .resetvalue = cpu->isar.id_mmfr0 }, 7209 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7211 .access = PL1_R, .type = ARM_CP_CONST, 7212 .accessfn = access_aa32_tid3, 7213 .resetvalue = cpu->isar.id_mmfr1 }, 7214 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7216 .access = PL1_R, .type = ARM_CP_CONST, 7217 .accessfn = access_aa32_tid3, 7218 .resetvalue = cpu->isar.id_mmfr2 }, 7219 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7221 .access = PL1_R, .type = ARM_CP_CONST, 7222 .accessfn = access_aa32_tid3, 7223 .resetvalue = cpu->isar.id_mmfr3 }, 7224 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7226 .access = PL1_R, .type = ARM_CP_CONST, 7227 .accessfn = access_aa32_tid3, 7228 .resetvalue = cpu->isar.id_isar0 }, 7229 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7231 .access = PL1_R, .type = ARM_CP_CONST, 7232 .accessfn = access_aa32_tid3, 7233 .resetvalue = cpu->isar.id_isar1 }, 7234 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7235 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7236 .access = PL1_R, .type = ARM_CP_CONST, 7237 .accessfn = access_aa32_tid3, 7238 .resetvalue = cpu->isar.id_isar2 }, 7239 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7241 .access = PL1_R, .type = ARM_CP_CONST, 7242 .accessfn = access_aa32_tid3, 7243 .resetvalue = cpu->isar.id_isar3 }, 7244 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7245 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7246 .access = PL1_R, .type = ARM_CP_CONST, 7247 .accessfn = access_aa32_tid3, 7248 .resetvalue = cpu->isar.id_isar4 }, 7249 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7250 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7251 .access = PL1_R, .type = ARM_CP_CONST, 7252 .accessfn = access_aa32_tid3, 7253 .resetvalue = cpu->isar.id_isar5 }, 7254 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7255 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7256 .access = PL1_R, .type = ARM_CP_CONST, 7257 .accessfn = access_aa32_tid3, 7258 .resetvalue = cpu->isar.id_mmfr4 }, 7259 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7261 .access = PL1_R, .type = ARM_CP_CONST, 7262 .accessfn = access_aa32_tid3, 7263 .resetvalue = cpu->isar.id_isar6 }, 7264 REGINFO_SENTINEL 7265 }; 7266 define_arm_cp_regs(cpu, v6_idregs); 7267 define_arm_cp_regs(cpu, v6_cp_reginfo); 7268 } else { 7269 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7270 } 7271 if (arm_feature(env, ARM_FEATURE_V6K)) { 7272 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7273 } 7274 if (arm_feature(env, ARM_FEATURE_V7MP) && 7275 !arm_feature(env, ARM_FEATURE_PMSA)) { 7276 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7277 } 7278 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7279 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7280 } 7281 if (arm_feature(env, ARM_FEATURE_V7)) { 7282 ARMCPRegInfo clidr = { 7283 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7284 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7285 .access = PL1_R, .type = ARM_CP_CONST, 7286 .accessfn = access_aa64_tid2, 7287 .resetvalue = cpu->clidr 7288 }; 7289 define_one_arm_cp_reg(cpu, &clidr); 7290 define_arm_cp_regs(cpu, v7_cp_reginfo); 7291 define_debug_regs(cpu); 7292 define_pmu_regs(cpu); 7293 } else { 7294 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7295 } 7296 if (arm_feature(env, ARM_FEATURE_V8)) { 7297 /* AArch64 ID registers, which all have impdef reset values. 7298 * Note that within the ID register ranges the unused slots 7299 * must all RAZ, not UNDEF; future architecture versions may 7300 * define new registers here. 7301 */ 7302 ARMCPRegInfo v8_idregs[] = { 7303 /* 7304 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7305 * emulation because we don't know the right value for the 7306 * GIC field until after we define these regs. 7307 */ 7308 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7310 .access = PL1_R, 7311 #ifdef CONFIG_USER_ONLY 7312 .type = ARM_CP_CONST, 7313 .resetvalue = cpu->isar.id_aa64pfr0 7314 #else 7315 .type = ARM_CP_NO_RAW, 7316 .accessfn = access_aa64_tid3, 7317 .readfn = id_aa64pfr0_read, 7318 .writefn = arm_cp_write_ignore 7319 #endif 7320 }, 7321 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7323 .access = PL1_R, .type = ARM_CP_CONST, 7324 .accessfn = access_aa64_tid3, 7325 .resetvalue = cpu->isar.id_aa64pfr1}, 7326 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7328 .access = PL1_R, .type = ARM_CP_CONST, 7329 .accessfn = access_aa64_tid3, 7330 .resetvalue = 0 }, 7331 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7333 .access = PL1_R, .type = ARM_CP_CONST, 7334 .accessfn = access_aa64_tid3, 7335 .resetvalue = 0 }, 7336 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7338 .access = PL1_R, .type = ARM_CP_CONST, 7339 .accessfn = access_aa64_tid3, 7340 /* At present, only SVEver == 0 is defined anyway. */ 7341 .resetvalue = 0 }, 7342 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7344 .access = PL1_R, .type = ARM_CP_CONST, 7345 .accessfn = access_aa64_tid3, 7346 .resetvalue = 0 }, 7347 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7349 .access = PL1_R, .type = ARM_CP_CONST, 7350 .accessfn = access_aa64_tid3, 7351 .resetvalue = 0 }, 7352 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7354 .access = PL1_R, .type = ARM_CP_CONST, 7355 .accessfn = access_aa64_tid3, 7356 .resetvalue = 0 }, 7357 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7359 .access = PL1_R, .type = ARM_CP_CONST, 7360 .accessfn = access_aa64_tid3, 7361 .resetvalue = cpu->isar.id_aa64dfr0 }, 7362 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7364 .access = PL1_R, .type = ARM_CP_CONST, 7365 .accessfn = access_aa64_tid3, 7366 .resetvalue = cpu->isar.id_aa64dfr1 }, 7367 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7369 .access = PL1_R, .type = ARM_CP_CONST, 7370 .accessfn = access_aa64_tid3, 7371 .resetvalue = 0 }, 7372 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7374 .access = PL1_R, .type = ARM_CP_CONST, 7375 .accessfn = access_aa64_tid3, 7376 .resetvalue = 0 }, 7377 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7379 .access = PL1_R, .type = ARM_CP_CONST, 7380 .accessfn = access_aa64_tid3, 7381 .resetvalue = cpu->id_aa64afr0 }, 7382 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7384 .access = PL1_R, .type = ARM_CP_CONST, 7385 .accessfn = access_aa64_tid3, 7386 .resetvalue = cpu->id_aa64afr1 }, 7387 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7389 .access = PL1_R, .type = ARM_CP_CONST, 7390 .accessfn = access_aa64_tid3, 7391 .resetvalue = 0 }, 7392 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7394 .access = PL1_R, .type = ARM_CP_CONST, 7395 .accessfn = access_aa64_tid3, 7396 .resetvalue = 0 }, 7397 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7399 .access = PL1_R, .type = ARM_CP_CONST, 7400 .accessfn = access_aa64_tid3, 7401 .resetvalue = cpu->isar.id_aa64isar0 }, 7402 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7404 .access = PL1_R, .type = ARM_CP_CONST, 7405 .accessfn = access_aa64_tid3, 7406 .resetvalue = cpu->isar.id_aa64isar1 }, 7407 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7409 .access = PL1_R, .type = ARM_CP_CONST, 7410 .accessfn = access_aa64_tid3, 7411 .resetvalue = 0 }, 7412 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7414 .access = PL1_R, .type = ARM_CP_CONST, 7415 .accessfn = access_aa64_tid3, 7416 .resetvalue = 0 }, 7417 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7419 .access = PL1_R, .type = ARM_CP_CONST, 7420 .accessfn = access_aa64_tid3, 7421 .resetvalue = 0 }, 7422 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7424 .access = PL1_R, .type = ARM_CP_CONST, 7425 .accessfn = access_aa64_tid3, 7426 .resetvalue = 0 }, 7427 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7429 .access = PL1_R, .type = ARM_CP_CONST, 7430 .accessfn = access_aa64_tid3, 7431 .resetvalue = 0 }, 7432 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7434 .access = PL1_R, .type = ARM_CP_CONST, 7435 .accessfn = access_aa64_tid3, 7436 .resetvalue = 0 }, 7437 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7439 .access = PL1_R, .type = ARM_CP_CONST, 7440 .accessfn = access_aa64_tid3, 7441 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7442 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7444 .access = PL1_R, .type = ARM_CP_CONST, 7445 .accessfn = access_aa64_tid3, 7446 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7447 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7449 .access = PL1_R, .type = ARM_CP_CONST, 7450 .accessfn = access_aa64_tid3, 7451 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7452 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7454 .access = PL1_R, .type = ARM_CP_CONST, 7455 .accessfn = access_aa64_tid3, 7456 .resetvalue = 0 }, 7457 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7459 .access = PL1_R, .type = ARM_CP_CONST, 7460 .accessfn = access_aa64_tid3, 7461 .resetvalue = 0 }, 7462 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7464 .access = PL1_R, .type = ARM_CP_CONST, 7465 .accessfn = access_aa64_tid3, 7466 .resetvalue = 0 }, 7467 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7469 .access = PL1_R, .type = ARM_CP_CONST, 7470 .accessfn = access_aa64_tid3, 7471 .resetvalue = 0 }, 7472 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7474 .access = PL1_R, .type = ARM_CP_CONST, 7475 .accessfn = access_aa64_tid3, 7476 .resetvalue = 0 }, 7477 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7479 .access = PL1_R, .type = ARM_CP_CONST, 7480 .accessfn = access_aa64_tid3, 7481 .resetvalue = cpu->isar.mvfr0 }, 7482 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7484 .access = PL1_R, .type = ARM_CP_CONST, 7485 .accessfn = access_aa64_tid3, 7486 .resetvalue = cpu->isar.mvfr1 }, 7487 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7489 .access = PL1_R, .type = ARM_CP_CONST, 7490 .accessfn = access_aa64_tid3, 7491 .resetvalue = cpu->isar.mvfr2 }, 7492 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7494 .access = PL1_R, .type = ARM_CP_CONST, 7495 .accessfn = access_aa64_tid3, 7496 .resetvalue = 0 }, 7497 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7499 .access = PL1_R, .type = ARM_CP_CONST, 7500 .accessfn = access_aa64_tid3, 7501 .resetvalue = 0 }, 7502 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7504 .access = PL1_R, .type = ARM_CP_CONST, 7505 .accessfn = access_aa64_tid3, 7506 .resetvalue = 0 }, 7507 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7509 .access = PL1_R, .type = ARM_CP_CONST, 7510 .accessfn = access_aa64_tid3, 7511 .resetvalue = 0 }, 7512 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7514 .access = PL1_R, .type = ARM_CP_CONST, 7515 .accessfn = access_aa64_tid3, 7516 .resetvalue = 0 }, 7517 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7518 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7519 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7520 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7521 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7523 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7524 .resetvalue = cpu->pmceid0 }, 7525 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7526 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7527 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7528 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7529 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7530 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7531 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7532 .resetvalue = cpu->pmceid1 }, 7533 REGINFO_SENTINEL 7534 }; 7535 #ifdef CONFIG_USER_ONLY 7536 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7537 { .name = "ID_AA64PFR0_EL1", 7538 .exported_bits = 0x000f000f00ff0000, 7539 .fixed_bits = 0x0000000000000011 }, 7540 { .name = "ID_AA64PFR1_EL1", 7541 .exported_bits = 0x00000000000000f0 }, 7542 { .name = "ID_AA64PFR*_EL1_RESERVED", 7543 .is_glob = true }, 7544 { .name = "ID_AA64ZFR0_EL1" }, 7545 { .name = "ID_AA64MMFR0_EL1", 7546 .fixed_bits = 0x00000000ff000000 }, 7547 { .name = "ID_AA64MMFR1_EL1" }, 7548 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7549 .is_glob = true }, 7550 { .name = "ID_AA64DFR0_EL1", 7551 .fixed_bits = 0x0000000000000006 }, 7552 { .name = "ID_AA64DFR1_EL1" }, 7553 { .name = "ID_AA64DFR*_EL1_RESERVED", 7554 .is_glob = true }, 7555 { .name = "ID_AA64AFR*", 7556 .is_glob = true }, 7557 { .name = "ID_AA64ISAR0_EL1", 7558 .exported_bits = 0x00fffffff0fffff0 }, 7559 { .name = "ID_AA64ISAR1_EL1", 7560 .exported_bits = 0x000000f0ffffffff }, 7561 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7562 .is_glob = true }, 7563 REGUSERINFO_SENTINEL 7564 }; 7565 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7566 #endif 7567 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7568 if (!arm_feature(env, ARM_FEATURE_EL3) && 7569 !arm_feature(env, ARM_FEATURE_EL2)) { 7570 ARMCPRegInfo rvbar = { 7571 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7572 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7573 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7574 }; 7575 define_one_arm_cp_reg(cpu, &rvbar); 7576 } 7577 define_arm_cp_regs(cpu, v8_idregs); 7578 define_arm_cp_regs(cpu, v8_cp_reginfo); 7579 } 7580 if (arm_feature(env, ARM_FEATURE_EL2)) { 7581 uint64_t vmpidr_def = mpidr_read_val(env); 7582 ARMCPRegInfo vpidr_regs[] = { 7583 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7584 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7585 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7586 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7587 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7588 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7590 .access = PL2_RW, .resetvalue = cpu->midr, 7591 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7592 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7593 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7594 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7595 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7596 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7597 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7598 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7599 .access = PL2_RW, 7600 .resetvalue = vmpidr_def, 7601 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7602 REGINFO_SENTINEL 7603 }; 7604 define_arm_cp_regs(cpu, vpidr_regs); 7605 define_arm_cp_regs(cpu, el2_cp_reginfo); 7606 if (arm_feature(env, ARM_FEATURE_V8)) { 7607 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7608 } 7609 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7610 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7611 ARMCPRegInfo rvbar = { 7612 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7613 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7614 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7615 }; 7616 define_one_arm_cp_reg(cpu, &rvbar); 7617 } 7618 } else { 7619 /* If EL2 is missing but higher ELs are enabled, we need to 7620 * register the no_el2 reginfos. 7621 */ 7622 if (arm_feature(env, ARM_FEATURE_EL3)) { 7623 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7624 * of MIDR_EL1 and MPIDR_EL1. 7625 */ 7626 ARMCPRegInfo vpidr_regs[] = { 7627 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7628 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7629 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7630 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7631 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7632 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7633 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7634 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7635 .type = ARM_CP_NO_RAW, 7636 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7637 REGINFO_SENTINEL 7638 }; 7639 define_arm_cp_regs(cpu, vpidr_regs); 7640 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7641 if (arm_feature(env, ARM_FEATURE_V8)) { 7642 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7643 } 7644 } 7645 } 7646 if (arm_feature(env, ARM_FEATURE_EL3)) { 7647 define_arm_cp_regs(cpu, el3_cp_reginfo); 7648 ARMCPRegInfo el3_regs[] = { 7649 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7650 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7651 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7652 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7653 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7654 .access = PL3_RW, 7655 .raw_writefn = raw_write, .writefn = sctlr_write, 7656 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7657 .resetvalue = cpu->reset_sctlr }, 7658 REGINFO_SENTINEL 7659 }; 7660 7661 define_arm_cp_regs(cpu, el3_regs); 7662 } 7663 /* The behaviour of NSACR is sufficiently various that we don't 7664 * try to describe it in a single reginfo: 7665 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7666 * reads as constant 0xc00 from NS EL1 and NS EL2 7667 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7668 * if v7 without EL3, register doesn't exist 7669 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7670 */ 7671 if (arm_feature(env, ARM_FEATURE_EL3)) { 7672 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7673 ARMCPRegInfo nsacr = { 7674 .name = "NSACR", .type = ARM_CP_CONST, 7675 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7676 .access = PL1_RW, .accessfn = nsacr_access, 7677 .resetvalue = 0xc00 7678 }; 7679 define_one_arm_cp_reg(cpu, &nsacr); 7680 } else { 7681 ARMCPRegInfo nsacr = { 7682 .name = "NSACR", 7683 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7684 .access = PL3_RW | PL1_R, 7685 .resetvalue = 0, 7686 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7687 }; 7688 define_one_arm_cp_reg(cpu, &nsacr); 7689 } 7690 } else { 7691 if (arm_feature(env, ARM_FEATURE_V8)) { 7692 ARMCPRegInfo nsacr = { 7693 .name = "NSACR", .type = ARM_CP_CONST, 7694 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7695 .access = PL1_R, 7696 .resetvalue = 0xc00 7697 }; 7698 define_one_arm_cp_reg(cpu, &nsacr); 7699 } 7700 } 7701 7702 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7703 if (arm_feature(env, ARM_FEATURE_V6)) { 7704 /* PMSAv6 not implemented */ 7705 assert(arm_feature(env, ARM_FEATURE_V7)); 7706 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7707 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7708 } else { 7709 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7710 } 7711 } else { 7712 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7713 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7714 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7715 if (cpu_isar_feature(aa32_hpd, cpu)) { 7716 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7717 } 7718 } 7719 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7720 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7721 } 7722 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7723 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7724 } 7725 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7726 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7727 } 7728 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7729 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7730 } 7731 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7732 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7733 } 7734 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7735 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7736 } 7737 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7738 define_arm_cp_regs(cpu, omap_cp_reginfo); 7739 } 7740 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7741 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7742 } 7743 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7744 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7745 } 7746 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7747 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7748 } 7749 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7750 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7751 } 7752 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7753 define_arm_cp_regs(cpu, jazelle_regs); 7754 } 7755 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7756 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7757 * be read-only (ie write causes UNDEF exception). 7758 */ 7759 { 7760 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7761 /* Pre-v8 MIDR space. 7762 * Note that the MIDR isn't a simple constant register because 7763 * of the TI925 behaviour where writes to another register can 7764 * cause the MIDR value to change. 7765 * 7766 * Unimplemented registers in the c15 0 0 0 space default to 7767 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7768 * and friends override accordingly. 7769 */ 7770 { .name = "MIDR", 7771 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7772 .access = PL1_R, .resetvalue = cpu->midr, 7773 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7774 .readfn = midr_read, 7775 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7776 .type = ARM_CP_OVERRIDE }, 7777 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7778 { .name = "DUMMY", 7779 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7780 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7781 { .name = "DUMMY", 7782 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7783 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7784 { .name = "DUMMY", 7785 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7786 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7787 { .name = "DUMMY", 7788 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7789 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7790 { .name = "DUMMY", 7791 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7792 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7793 REGINFO_SENTINEL 7794 }; 7795 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7796 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7798 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7799 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7800 .readfn = midr_read }, 7801 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7802 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7803 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7804 .access = PL1_R, .resetvalue = cpu->midr }, 7805 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7806 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7807 .access = PL1_R, .resetvalue = cpu->midr }, 7808 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7810 .access = PL1_R, 7811 .accessfn = access_aa64_tid1, 7812 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7813 REGINFO_SENTINEL 7814 }; 7815 ARMCPRegInfo id_cp_reginfo[] = { 7816 /* These are common to v8 and pre-v8 */ 7817 { .name = "CTR", 7818 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7819 .access = PL1_R, .accessfn = ctr_el0_access, 7820 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7821 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7823 .access = PL0_R, .accessfn = ctr_el0_access, 7824 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7825 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7826 { .name = "TCMTR", 7827 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7828 .access = PL1_R, 7829 .accessfn = access_aa32_tid1, 7830 .type = ARM_CP_CONST, .resetvalue = 0 }, 7831 REGINFO_SENTINEL 7832 }; 7833 /* TLBTR is specific to VMSA */ 7834 ARMCPRegInfo id_tlbtr_reginfo = { 7835 .name = "TLBTR", 7836 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7837 .access = PL1_R, 7838 .accessfn = access_aa32_tid1, 7839 .type = ARM_CP_CONST, .resetvalue = 0, 7840 }; 7841 /* MPUIR is specific to PMSA V6+ */ 7842 ARMCPRegInfo id_mpuir_reginfo = { 7843 .name = "MPUIR", 7844 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7845 .access = PL1_R, .type = ARM_CP_CONST, 7846 .resetvalue = cpu->pmsav7_dregion << 8 7847 }; 7848 ARMCPRegInfo crn0_wi_reginfo = { 7849 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7850 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7851 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7852 }; 7853 #ifdef CONFIG_USER_ONLY 7854 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7855 { .name = "MIDR_EL1", 7856 .exported_bits = 0x00000000ffffffff }, 7857 { .name = "REVIDR_EL1" }, 7858 REGUSERINFO_SENTINEL 7859 }; 7860 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7861 #endif 7862 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7863 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7864 ARMCPRegInfo *r; 7865 /* Register the blanket "writes ignored" value first to cover the 7866 * whole space. Then update the specific ID registers to allow write 7867 * access, so that they ignore writes rather than causing them to 7868 * UNDEF. 7869 */ 7870 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7871 for (r = id_pre_v8_midr_cp_reginfo; 7872 r->type != ARM_CP_SENTINEL; r++) { 7873 r->access = PL1_RW; 7874 } 7875 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7876 r->access = PL1_RW; 7877 } 7878 id_mpuir_reginfo.access = PL1_RW; 7879 id_tlbtr_reginfo.access = PL1_RW; 7880 } 7881 if (arm_feature(env, ARM_FEATURE_V8)) { 7882 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7883 } else { 7884 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7885 } 7886 define_arm_cp_regs(cpu, id_cp_reginfo); 7887 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7888 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7889 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7890 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7891 } 7892 } 7893 7894 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7895 ARMCPRegInfo mpidr_cp_reginfo[] = { 7896 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7897 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7898 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7899 REGINFO_SENTINEL 7900 }; 7901 #ifdef CONFIG_USER_ONLY 7902 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7903 { .name = "MPIDR_EL1", 7904 .fixed_bits = 0x0000000080000000 }, 7905 REGUSERINFO_SENTINEL 7906 }; 7907 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7908 #endif 7909 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7910 } 7911 7912 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7913 ARMCPRegInfo auxcr_reginfo[] = { 7914 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7915 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7916 .access = PL1_RW, .accessfn = access_tacr, 7917 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 7918 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7919 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7920 .access = PL2_RW, .type = ARM_CP_CONST, 7921 .resetvalue = 0 }, 7922 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 7923 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 7924 .access = PL3_RW, .type = ARM_CP_CONST, 7925 .resetvalue = 0 }, 7926 REGINFO_SENTINEL 7927 }; 7928 define_arm_cp_regs(cpu, auxcr_reginfo); 7929 if (cpu_isar_feature(aa32_ac2, cpu)) { 7930 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 7931 } 7932 } 7933 7934 if (arm_feature(env, ARM_FEATURE_CBAR)) { 7935 /* 7936 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 7937 * There are two flavours: 7938 * (1) older 32-bit only cores have a simple 32-bit CBAR 7939 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 7940 * 32-bit register visible to AArch32 at a different encoding 7941 * to the "flavour 1" register and with the bits rearranged to 7942 * be able to squash a 64-bit address into the 32-bit view. 7943 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 7944 * in future if we support AArch32-only configs of some of the 7945 * AArch64 cores we might need to add a specific feature flag 7946 * to indicate cores with "flavour 2" CBAR. 7947 */ 7948 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7949 /* 32 bit view is [31:18] 0...0 [43:32]. */ 7950 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 7951 | extract64(cpu->reset_cbar, 32, 12); 7952 ARMCPRegInfo cbar_reginfo[] = { 7953 { .name = "CBAR", 7954 .type = ARM_CP_CONST, 7955 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 7956 .access = PL1_R, .resetvalue = cbar32 }, 7957 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 7958 .type = ARM_CP_CONST, 7959 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 7960 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 7961 REGINFO_SENTINEL 7962 }; 7963 /* We don't implement a r/w 64 bit CBAR currently */ 7964 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 7965 define_arm_cp_regs(cpu, cbar_reginfo); 7966 } else { 7967 ARMCPRegInfo cbar = { 7968 .name = "CBAR", 7969 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 7970 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 7971 .fieldoffset = offsetof(CPUARMState, 7972 cp15.c15_config_base_address) 7973 }; 7974 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 7975 cbar.access = PL1_R; 7976 cbar.fieldoffset = 0; 7977 cbar.type = ARM_CP_CONST; 7978 } 7979 define_one_arm_cp_reg(cpu, &cbar); 7980 } 7981 } 7982 7983 if (arm_feature(env, ARM_FEATURE_VBAR)) { 7984 ARMCPRegInfo vbar_cp_reginfo[] = { 7985 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 7986 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 7987 .access = PL1_RW, .writefn = vbar_write, 7988 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 7989 offsetof(CPUARMState, cp15.vbar_ns) }, 7990 .resetvalue = 0 }, 7991 REGINFO_SENTINEL 7992 }; 7993 define_arm_cp_regs(cpu, vbar_cp_reginfo); 7994 } 7995 7996 /* Generic registers whose values depend on the implementation */ 7997 { 7998 ARMCPRegInfo sctlr = { 7999 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8000 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8001 .access = PL1_RW, .accessfn = access_tvm_trvm, 8002 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8003 offsetof(CPUARMState, cp15.sctlr_ns) }, 8004 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8005 .raw_writefn = raw_write, 8006 }; 8007 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8008 /* Normally we would always end the TB on an SCTLR write, but Linux 8009 * arch/arm/mach-pxa/sleep.S expects two instructions following 8010 * an MMU enable to execute from cache. Imitate this behaviour. 8011 */ 8012 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8013 } 8014 define_one_arm_cp_reg(cpu, &sctlr); 8015 } 8016 8017 if (cpu_isar_feature(aa64_lor, cpu)) { 8018 define_arm_cp_regs(cpu, lor_reginfo); 8019 } 8020 if (cpu_isar_feature(aa64_pan, cpu)) { 8021 define_one_arm_cp_reg(cpu, &pan_reginfo); 8022 } 8023 #ifndef CONFIG_USER_ONLY 8024 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8025 define_arm_cp_regs(cpu, ats1e1_reginfo); 8026 } 8027 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8028 define_arm_cp_regs(cpu, ats1cp_reginfo); 8029 } 8030 #endif 8031 if (cpu_isar_feature(aa64_uao, cpu)) { 8032 define_one_arm_cp_reg(cpu, &uao_reginfo); 8033 } 8034 8035 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8036 define_arm_cp_regs(cpu, vhe_reginfo); 8037 } 8038 8039 if (cpu_isar_feature(aa64_sve, cpu)) { 8040 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8041 if (arm_feature(env, ARM_FEATURE_EL2)) { 8042 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8043 } else { 8044 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8045 } 8046 if (arm_feature(env, ARM_FEATURE_EL3)) { 8047 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8048 } 8049 } 8050 8051 #ifdef TARGET_AARCH64 8052 if (cpu_isar_feature(aa64_pauth, cpu)) { 8053 define_arm_cp_regs(cpu, pauth_reginfo); 8054 } 8055 if (cpu_isar_feature(aa64_rndr, cpu)) { 8056 define_arm_cp_regs(cpu, rndr_reginfo); 8057 } 8058 #ifndef CONFIG_USER_ONLY 8059 /* Data Cache clean instructions up to PoP */ 8060 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8061 define_one_arm_cp_reg(cpu, dcpop_reg); 8062 8063 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8064 define_one_arm_cp_reg(cpu, dcpodp_reg); 8065 } 8066 } 8067 #endif /*CONFIG_USER_ONLY*/ 8068 #endif 8069 8070 if (cpu_isar_feature(any_predinv, cpu)) { 8071 define_arm_cp_regs(cpu, predinv_reginfo); 8072 } 8073 8074 if (cpu_isar_feature(any_ccidx, cpu)) { 8075 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8076 } 8077 8078 #ifndef CONFIG_USER_ONLY 8079 /* 8080 * Register redirections and aliases must be done last, 8081 * after the registers from the other extensions have been defined. 8082 */ 8083 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8084 define_arm_vh_e2h_redirects_aliases(cpu); 8085 } 8086 #endif 8087 } 8088 8089 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8090 { 8091 CPUState *cs = CPU(cpu); 8092 CPUARMState *env = &cpu->env; 8093 8094 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8095 /* 8096 * The lower part of each SVE register aliases to the FPU 8097 * registers so we don't need to include both. 8098 */ 8099 #ifdef TARGET_AARCH64 8100 if (isar_feature_aa64_sve(&cpu->isar)) { 8101 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8102 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8103 "sve-registers.xml", 0); 8104 } else 8105 #endif 8106 { 8107 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8108 aarch64_fpu_gdb_set_reg, 8109 34, "aarch64-fpu.xml", 0); 8110 } 8111 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8112 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8113 51, "arm-neon.xml", 0); 8114 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8115 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8116 35, "arm-vfp3.xml", 0); 8117 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8118 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8119 19, "arm-vfp.xml", 0); 8120 } 8121 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8122 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8123 "system-registers.xml", 0); 8124 8125 } 8126 8127 /* Sort alphabetically by type name, except for "any". */ 8128 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8129 { 8130 ObjectClass *class_a = (ObjectClass *)a; 8131 ObjectClass *class_b = (ObjectClass *)b; 8132 const char *name_a, *name_b; 8133 8134 name_a = object_class_get_name(class_a); 8135 name_b = object_class_get_name(class_b); 8136 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8137 return 1; 8138 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8139 return -1; 8140 } else { 8141 return strcmp(name_a, name_b); 8142 } 8143 } 8144 8145 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8146 { 8147 ObjectClass *oc = data; 8148 const char *typename; 8149 char *name; 8150 8151 typename = object_class_get_name(oc); 8152 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8153 qemu_printf(" %s\n", name); 8154 g_free(name); 8155 } 8156 8157 void arm_cpu_list(void) 8158 { 8159 GSList *list; 8160 8161 list = object_class_get_list(TYPE_ARM_CPU, false); 8162 list = g_slist_sort(list, arm_cpu_list_compare); 8163 qemu_printf("Available CPUs:\n"); 8164 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8165 g_slist_free(list); 8166 } 8167 8168 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8169 { 8170 ObjectClass *oc = data; 8171 CpuDefinitionInfoList **cpu_list = user_data; 8172 CpuDefinitionInfoList *entry; 8173 CpuDefinitionInfo *info; 8174 const char *typename; 8175 8176 typename = object_class_get_name(oc); 8177 info = g_malloc0(sizeof(*info)); 8178 info->name = g_strndup(typename, 8179 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8180 info->q_typename = g_strdup(typename); 8181 8182 entry = g_malloc0(sizeof(*entry)); 8183 entry->value = info; 8184 entry->next = *cpu_list; 8185 *cpu_list = entry; 8186 } 8187 8188 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8189 { 8190 CpuDefinitionInfoList *cpu_list = NULL; 8191 GSList *list; 8192 8193 list = object_class_get_list(TYPE_ARM_CPU, false); 8194 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8195 g_slist_free(list); 8196 8197 return cpu_list; 8198 } 8199 8200 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8201 void *opaque, int state, int secstate, 8202 int crm, int opc1, int opc2, 8203 const char *name) 8204 { 8205 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8206 * add a single reginfo struct to the hash table. 8207 */ 8208 uint32_t *key = g_new(uint32_t, 1); 8209 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8210 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8211 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8212 8213 r2->name = g_strdup(name); 8214 /* Reset the secure state to the specific incoming state. This is 8215 * necessary as the register may have been defined with both states. 8216 */ 8217 r2->secure = secstate; 8218 8219 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8220 /* Register is banked (using both entries in array). 8221 * Overwriting fieldoffset as the array is only used to define 8222 * banked registers but later only fieldoffset is used. 8223 */ 8224 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8225 } 8226 8227 if (state == ARM_CP_STATE_AA32) { 8228 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8229 /* If the register is banked then we don't need to migrate or 8230 * reset the 32-bit instance in certain cases: 8231 * 8232 * 1) If the register has both 32-bit and 64-bit instances then we 8233 * can count on the 64-bit instance taking care of the 8234 * non-secure bank. 8235 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8236 * taking care of the secure bank. This requires that separate 8237 * 32 and 64-bit definitions are provided. 8238 */ 8239 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8240 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8241 r2->type |= ARM_CP_ALIAS; 8242 } 8243 } else if ((secstate != r->secure) && !ns) { 8244 /* The register is not banked so we only want to allow migration of 8245 * the non-secure instance. 8246 */ 8247 r2->type |= ARM_CP_ALIAS; 8248 } 8249 8250 if (r->state == ARM_CP_STATE_BOTH) { 8251 /* We assume it is a cp15 register if the .cp field is left unset. 8252 */ 8253 if (r2->cp == 0) { 8254 r2->cp = 15; 8255 } 8256 8257 #ifdef HOST_WORDS_BIGENDIAN 8258 if (r2->fieldoffset) { 8259 r2->fieldoffset += sizeof(uint32_t); 8260 } 8261 #endif 8262 } 8263 } 8264 if (state == ARM_CP_STATE_AA64) { 8265 /* To allow abbreviation of ARMCPRegInfo 8266 * definitions, we treat cp == 0 as equivalent to 8267 * the value for "standard guest-visible sysreg". 8268 * STATE_BOTH definitions are also always "standard 8269 * sysreg" in their AArch64 view (the .cp value may 8270 * be non-zero for the benefit of the AArch32 view). 8271 */ 8272 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8273 r2->cp = CP_REG_ARM64_SYSREG_CP; 8274 } 8275 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8276 r2->opc0, opc1, opc2); 8277 } else { 8278 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8279 } 8280 if (opaque) { 8281 r2->opaque = opaque; 8282 } 8283 /* reginfo passed to helpers is correct for the actual access, 8284 * and is never ARM_CP_STATE_BOTH: 8285 */ 8286 r2->state = state; 8287 /* Make sure reginfo passed to helpers for wildcarded regs 8288 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8289 */ 8290 r2->crm = crm; 8291 r2->opc1 = opc1; 8292 r2->opc2 = opc2; 8293 /* By convention, for wildcarded registers only the first 8294 * entry is used for migration; the others are marked as 8295 * ALIAS so we don't try to transfer the register 8296 * multiple times. Special registers (ie NOP/WFI) are 8297 * never migratable and not even raw-accessible. 8298 */ 8299 if ((r->type & ARM_CP_SPECIAL)) { 8300 r2->type |= ARM_CP_NO_RAW; 8301 } 8302 if (((r->crm == CP_ANY) && crm != 0) || 8303 ((r->opc1 == CP_ANY) && opc1 != 0) || 8304 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8305 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8306 } 8307 8308 /* Check that raw accesses are either forbidden or handled. Note that 8309 * we can't assert this earlier because the setup of fieldoffset for 8310 * banked registers has to be done first. 8311 */ 8312 if (!(r2->type & ARM_CP_NO_RAW)) { 8313 assert(!raw_accessors_invalid(r2)); 8314 } 8315 8316 /* Overriding of an existing definition must be explicitly 8317 * requested. 8318 */ 8319 if (!(r->type & ARM_CP_OVERRIDE)) { 8320 ARMCPRegInfo *oldreg; 8321 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8322 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8323 fprintf(stderr, "Register redefined: cp=%d %d bit " 8324 "crn=%d crm=%d opc1=%d opc2=%d, " 8325 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8326 r2->crn, r2->crm, r2->opc1, r2->opc2, 8327 oldreg->name, r2->name); 8328 g_assert_not_reached(); 8329 } 8330 } 8331 g_hash_table_insert(cpu->cp_regs, key, r2); 8332 } 8333 8334 8335 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8336 const ARMCPRegInfo *r, void *opaque) 8337 { 8338 /* Define implementations of coprocessor registers. 8339 * We store these in a hashtable because typically 8340 * there are less than 150 registers in a space which 8341 * is 16*16*16*8*8 = 262144 in size. 8342 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8343 * If a register is defined twice then the second definition is 8344 * used, so this can be used to define some generic registers and 8345 * then override them with implementation specific variations. 8346 * At least one of the original and the second definition should 8347 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8348 * against accidental use. 8349 * 8350 * The state field defines whether the register is to be 8351 * visible in the AArch32 or AArch64 execution state. If the 8352 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8353 * reginfo structure for the AArch32 view, which sees the lower 8354 * 32 bits of the 64 bit register. 8355 * 8356 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8357 * be wildcarded. AArch64 registers are always considered to be 64 8358 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8359 * the register, if any. 8360 */ 8361 int crm, opc1, opc2, state; 8362 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8363 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8364 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8365 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8366 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8367 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8368 /* 64 bit registers have only CRm and Opc1 fields */ 8369 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8370 /* op0 only exists in the AArch64 encodings */ 8371 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8372 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8373 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8374 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8375 * encodes a minimum access level for the register. We roll this 8376 * runtime check into our general permission check code, so check 8377 * here that the reginfo's specified permissions are strict enough 8378 * to encompass the generic architectural permission check. 8379 */ 8380 if (r->state != ARM_CP_STATE_AA32) { 8381 int mask = 0; 8382 switch (r->opc1) { 8383 case 0: 8384 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8385 mask = PL0U_R | PL1_RW; 8386 break; 8387 case 1: case 2: 8388 /* min_EL EL1 */ 8389 mask = PL1_RW; 8390 break; 8391 case 3: 8392 /* min_EL EL0 */ 8393 mask = PL0_RW; 8394 break; 8395 case 4: 8396 case 5: 8397 /* min_EL EL2 */ 8398 mask = PL2_RW; 8399 break; 8400 case 6: 8401 /* min_EL EL3 */ 8402 mask = PL3_RW; 8403 break; 8404 case 7: 8405 /* min_EL EL1, secure mode only (we don't check the latter) */ 8406 mask = PL1_RW; 8407 break; 8408 default: 8409 /* broken reginfo with out-of-range opc1 */ 8410 assert(false); 8411 break; 8412 } 8413 /* assert our permissions are not too lax (stricter is fine) */ 8414 assert((r->access & ~mask) == 0); 8415 } 8416 8417 /* Check that the register definition has enough info to handle 8418 * reads and writes if they are permitted. 8419 */ 8420 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8421 if (r->access & PL3_R) { 8422 assert((r->fieldoffset || 8423 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8424 r->readfn); 8425 } 8426 if (r->access & PL3_W) { 8427 assert((r->fieldoffset || 8428 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8429 r->writefn); 8430 } 8431 } 8432 /* Bad type field probably means missing sentinel at end of reg list */ 8433 assert(cptype_valid(r->type)); 8434 for (crm = crmmin; crm <= crmmax; crm++) { 8435 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8436 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8437 for (state = ARM_CP_STATE_AA32; 8438 state <= ARM_CP_STATE_AA64; state++) { 8439 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8440 continue; 8441 } 8442 if (state == ARM_CP_STATE_AA32) { 8443 /* Under AArch32 CP registers can be common 8444 * (same for secure and non-secure world) or banked. 8445 */ 8446 char *name; 8447 8448 switch (r->secure) { 8449 case ARM_CP_SECSTATE_S: 8450 case ARM_CP_SECSTATE_NS: 8451 add_cpreg_to_hashtable(cpu, r, opaque, state, 8452 r->secure, crm, opc1, opc2, 8453 r->name); 8454 break; 8455 default: 8456 name = g_strdup_printf("%s_S", r->name); 8457 add_cpreg_to_hashtable(cpu, r, opaque, state, 8458 ARM_CP_SECSTATE_S, 8459 crm, opc1, opc2, name); 8460 g_free(name); 8461 add_cpreg_to_hashtable(cpu, r, opaque, state, 8462 ARM_CP_SECSTATE_NS, 8463 crm, opc1, opc2, r->name); 8464 break; 8465 } 8466 } else { 8467 /* AArch64 registers get mapped to non-secure instance 8468 * of AArch32 */ 8469 add_cpreg_to_hashtable(cpu, r, opaque, state, 8470 ARM_CP_SECSTATE_NS, 8471 crm, opc1, opc2, r->name); 8472 } 8473 } 8474 } 8475 } 8476 } 8477 } 8478 8479 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8480 const ARMCPRegInfo *regs, void *opaque) 8481 { 8482 /* Define a whole list of registers */ 8483 const ARMCPRegInfo *r; 8484 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8485 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8486 } 8487 } 8488 8489 /* 8490 * Modify ARMCPRegInfo for access from userspace. 8491 * 8492 * This is a data driven modification directed by 8493 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8494 * user-space cannot alter any values and dynamic values pertaining to 8495 * execution state are hidden from user space view anyway. 8496 */ 8497 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8498 { 8499 const ARMCPRegUserSpaceInfo *m; 8500 ARMCPRegInfo *r; 8501 8502 for (m = mods; m->name; m++) { 8503 GPatternSpec *pat = NULL; 8504 if (m->is_glob) { 8505 pat = g_pattern_spec_new(m->name); 8506 } 8507 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8508 if (pat && g_pattern_match_string(pat, r->name)) { 8509 r->type = ARM_CP_CONST; 8510 r->access = PL0U_R; 8511 r->resetvalue = 0; 8512 /* continue */ 8513 } else if (strcmp(r->name, m->name) == 0) { 8514 r->type = ARM_CP_CONST; 8515 r->access = PL0U_R; 8516 r->resetvalue &= m->exported_bits; 8517 r->resetvalue |= m->fixed_bits; 8518 break; 8519 } 8520 } 8521 if (pat) { 8522 g_pattern_spec_free(pat); 8523 } 8524 } 8525 } 8526 8527 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8528 { 8529 return g_hash_table_lookup(cpregs, &encoded_cp); 8530 } 8531 8532 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8533 uint64_t value) 8534 { 8535 /* Helper coprocessor write function for write-ignore registers */ 8536 } 8537 8538 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8539 { 8540 /* Helper coprocessor write function for read-as-zero registers */ 8541 return 0; 8542 } 8543 8544 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8545 { 8546 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8547 } 8548 8549 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8550 { 8551 /* Return true if it is not valid for us to switch to 8552 * this CPU mode (ie all the UNPREDICTABLE cases in 8553 * the ARM ARM CPSRWriteByInstr pseudocode). 8554 */ 8555 8556 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8557 if (write_type == CPSRWriteByInstr && 8558 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8559 mode == ARM_CPU_MODE_HYP)) { 8560 return 1; 8561 } 8562 8563 switch (mode) { 8564 case ARM_CPU_MODE_USR: 8565 return 0; 8566 case ARM_CPU_MODE_SYS: 8567 case ARM_CPU_MODE_SVC: 8568 case ARM_CPU_MODE_ABT: 8569 case ARM_CPU_MODE_UND: 8570 case ARM_CPU_MODE_IRQ: 8571 case ARM_CPU_MODE_FIQ: 8572 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8573 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8574 */ 8575 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8576 * and CPS are treated as illegal mode changes. 8577 */ 8578 if (write_type == CPSRWriteByInstr && 8579 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8580 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8581 return 1; 8582 } 8583 return 0; 8584 case ARM_CPU_MODE_HYP: 8585 return !arm_feature(env, ARM_FEATURE_EL2) 8586 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8587 case ARM_CPU_MODE_MON: 8588 return arm_current_el(env) < 3; 8589 default: 8590 return 1; 8591 } 8592 } 8593 8594 uint32_t cpsr_read(CPUARMState *env) 8595 { 8596 int ZF; 8597 ZF = (env->ZF == 0); 8598 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8599 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8600 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8601 | ((env->condexec_bits & 0xfc) << 8) 8602 | (env->GE << 16) | (env->daif & CPSR_AIF); 8603 } 8604 8605 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8606 CPSRWriteType write_type) 8607 { 8608 uint32_t changed_daif; 8609 8610 if (mask & CPSR_NZCV) { 8611 env->ZF = (~val) & CPSR_Z; 8612 env->NF = val; 8613 env->CF = (val >> 29) & 1; 8614 env->VF = (val << 3) & 0x80000000; 8615 } 8616 if (mask & CPSR_Q) 8617 env->QF = ((val & CPSR_Q) != 0); 8618 if (mask & CPSR_T) 8619 env->thumb = ((val & CPSR_T) != 0); 8620 if (mask & CPSR_IT_0_1) { 8621 env->condexec_bits &= ~3; 8622 env->condexec_bits |= (val >> 25) & 3; 8623 } 8624 if (mask & CPSR_IT_2_7) { 8625 env->condexec_bits &= 3; 8626 env->condexec_bits |= (val >> 8) & 0xfc; 8627 } 8628 if (mask & CPSR_GE) { 8629 env->GE = (val >> 16) & 0xf; 8630 } 8631 8632 /* In a V7 implementation that includes the security extensions but does 8633 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8634 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8635 * bits respectively. 8636 * 8637 * In a V8 implementation, it is permitted for privileged software to 8638 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8639 */ 8640 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8641 arm_feature(env, ARM_FEATURE_EL3) && 8642 !arm_feature(env, ARM_FEATURE_EL2) && 8643 !arm_is_secure(env)) { 8644 8645 changed_daif = (env->daif ^ val) & mask; 8646 8647 if (changed_daif & CPSR_A) { 8648 /* Check to see if we are allowed to change the masking of async 8649 * abort exceptions from a non-secure state. 8650 */ 8651 if (!(env->cp15.scr_el3 & SCR_AW)) { 8652 qemu_log_mask(LOG_GUEST_ERROR, 8653 "Ignoring attempt to switch CPSR_A flag from " 8654 "non-secure world with SCR.AW bit clear\n"); 8655 mask &= ~CPSR_A; 8656 } 8657 } 8658 8659 if (changed_daif & CPSR_F) { 8660 /* Check to see if we are allowed to change the masking of FIQ 8661 * exceptions from a non-secure state. 8662 */ 8663 if (!(env->cp15.scr_el3 & SCR_FW)) { 8664 qemu_log_mask(LOG_GUEST_ERROR, 8665 "Ignoring attempt to switch CPSR_F flag from " 8666 "non-secure world with SCR.FW bit clear\n"); 8667 mask &= ~CPSR_F; 8668 } 8669 8670 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8671 * If this bit is set software is not allowed to mask 8672 * FIQs, but is allowed to set CPSR_F to 0. 8673 */ 8674 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8675 (val & CPSR_F)) { 8676 qemu_log_mask(LOG_GUEST_ERROR, 8677 "Ignoring attempt to enable CPSR_F flag " 8678 "(non-maskable FIQ [NMFI] support enabled)\n"); 8679 mask &= ~CPSR_F; 8680 } 8681 } 8682 } 8683 8684 env->daif &= ~(CPSR_AIF & mask); 8685 env->daif |= val & CPSR_AIF & mask; 8686 8687 if (write_type != CPSRWriteRaw && 8688 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8689 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8690 /* Note that we can only get here in USR mode if this is a 8691 * gdb stub write; for this case we follow the architectural 8692 * behaviour for guest writes in USR mode of ignoring an attempt 8693 * to switch mode. (Those are caught by translate.c for writes 8694 * triggered by guest instructions.) 8695 */ 8696 mask &= ~CPSR_M; 8697 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8698 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8699 * v7, and has defined behaviour in v8: 8700 * + leave CPSR.M untouched 8701 * + allow changes to the other CPSR fields 8702 * + set PSTATE.IL 8703 * For user changes via the GDB stub, we don't set PSTATE.IL, 8704 * as this would be unnecessarily harsh for a user error. 8705 */ 8706 mask &= ~CPSR_M; 8707 if (write_type != CPSRWriteByGDBStub && 8708 arm_feature(env, ARM_FEATURE_V8)) { 8709 mask |= CPSR_IL; 8710 val |= CPSR_IL; 8711 } 8712 qemu_log_mask(LOG_GUEST_ERROR, 8713 "Illegal AArch32 mode switch attempt from %s to %s\n", 8714 aarch32_mode_name(env->uncached_cpsr), 8715 aarch32_mode_name(val)); 8716 } else { 8717 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8718 write_type == CPSRWriteExceptionReturn ? 8719 "Exception return from AArch32" : 8720 "AArch32 mode switch from", 8721 aarch32_mode_name(env->uncached_cpsr), 8722 aarch32_mode_name(val), env->regs[15]); 8723 switch_mode(env, val & CPSR_M); 8724 } 8725 } 8726 mask &= ~CACHED_CPSR_BITS; 8727 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8728 } 8729 8730 /* Sign/zero extend */ 8731 uint32_t HELPER(sxtb16)(uint32_t x) 8732 { 8733 uint32_t res; 8734 res = (uint16_t)(int8_t)x; 8735 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8736 return res; 8737 } 8738 8739 uint32_t HELPER(uxtb16)(uint32_t x) 8740 { 8741 uint32_t res; 8742 res = (uint16_t)(uint8_t)x; 8743 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8744 return res; 8745 } 8746 8747 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8748 { 8749 if (den == 0) 8750 return 0; 8751 if (num == INT_MIN && den == -1) 8752 return INT_MIN; 8753 return num / den; 8754 } 8755 8756 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8757 { 8758 if (den == 0) 8759 return 0; 8760 return num / den; 8761 } 8762 8763 uint32_t HELPER(rbit)(uint32_t x) 8764 { 8765 return revbit32(x); 8766 } 8767 8768 #ifdef CONFIG_USER_ONLY 8769 8770 static void switch_mode(CPUARMState *env, int mode) 8771 { 8772 ARMCPU *cpu = env_archcpu(env); 8773 8774 if (mode != ARM_CPU_MODE_USR) { 8775 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8776 } 8777 } 8778 8779 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8780 uint32_t cur_el, bool secure) 8781 { 8782 return 1; 8783 } 8784 8785 void aarch64_sync_64_to_32(CPUARMState *env) 8786 { 8787 g_assert_not_reached(); 8788 } 8789 8790 #else 8791 8792 static void switch_mode(CPUARMState *env, int mode) 8793 { 8794 int old_mode; 8795 int i; 8796 8797 old_mode = env->uncached_cpsr & CPSR_M; 8798 if (mode == old_mode) 8799 return; 8800 8801 if (old_mode == ARM_CPU_MODE_FIQ) { 8802 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8803 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8804 } else if (mode == ARM_CPU_MODE_FIQ) { 8805 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8806 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8807 } 8808 8809 i = bank_number(old_mode); 8810 env->banked_r13[i] = env->regs[13]; 8811 env->banked_spsr[i] = env->spsr; 8812 8813 i = bank_number(mode); 8814 env->regs[13] = env->banked_r13[i]; 8815 env->spsr = env->banked_spsr[i]; 8816 8817 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8818 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8819 } 8820 8821 /* Physical Interrupt Target EL Lookup Table 8822 * 8823 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8824 * 8825 * The below multi-dimensional table is used for looking up the target 8826 * exception level given numerous condition criteria. Specifically, the 8827 * target EL is based on SCR and HCR routing controls as well as the 8828 * currently executing EL and secure state. 8829 * 8830 * Dimensions: 8831 * target_el_table[2][2][2][2][2][4] 8832 * | | | | | +--- Current EL 8833 * | | | | +------ Non-secure(0)/Secure(1) 8834 * | | | +--------- HCR mask override 8835 * | | +------------ SCR exec state control 8836 * | +--------------- SCR mask override 8837 * +------------------ 32-bit(0)/64-bit(1) EL3 8838 * 8839 * The table values are as such: 8840 * 0-3 = EL0-EL3 8841 * -1 = Cannot occur 8842 * 8843 * The ARM ARM target EL table includes entries indicating that an "exception 8844 * is not taken". The two cases where this is applicable are: 8845 * 1) An exception is taken from EL3 but the SCR does not have the exception 8846 * routed to EL3. 8847 * 2) An exception is taken from EL2 but the HCR does not have the exception 8848 * routed to EL2. 8849 * In these two cases, the below table contain a target of EL1. This value is 8850 * returned as it is expected that the consumer of the table data will check 8851 * for "target EL >= current EL" to ensure the exception is not taken. 8852 * 8853 * SCR HCR 8854 * 64 EA AMO From 8855 * BIT IRQ IMO Non-secure Secure 8856 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8857 */ 8858 static const int8_t target_el_table[2][2][2][2][2][4] = { 8859 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8860 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8861 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8862 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8863 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8864 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8865 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8866 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8867 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8868 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8869 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8870 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8871 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8872 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8873 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8874 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8875 }; 8876 8877 /* 8878 * Determine the target EL for physical exceptions 8879 */ 8880 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8881 uint32_t cur_el, bool secure) 8882 { 8883 CPUARMState *env = cs->env_ptr; 8884 bool rw; 8885 bool scr; 8886 bool hcr; 8887 int target_el; 8888 /* Is the highest EL AArch64? */ 8889 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 8890 uint64_t hcr_el2; 8891 8892 if (arm_feature(env, ARM_FEATURE_EL3)) { 8893 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 8894 } else { 8895 /* Either EL2 is the highest EL (and so the EL2 register width 8896 * is given by is64); or there is no EL2 or EL3, in which case 8897 * the value of 'rw' does not affect the table lookup anyway. 8898 */ 8899 rw = is64; 8900 } 8901 8902 hcr_el2 = arm_hcr_el2_eff(env); 8903 switch (excp_idx) { 8904 case EXCP_IRQ: 8905 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 8906 hcr = hcr_el2 & HCR_IMO; 8907 break; 8908 case EXCP_FIQ: 8909 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 8910 hcr = hcr_el2 & HCR_FMO; 8911 break; 8912 default: 8913 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 8914 hcr = hcr_el2 & HCR_AMO; 8915 break; 8916 }; 8917 8918 /* 8919 * For these purposes, TGE and AMO/IMO/FMO both force the 8920 * interrupt to EL2. Fold TGE into the bit extracted above. 8921 */ 8922 hcr |= (hcr_el2 & HCR_TGE) != 0; 8923 8924 /* Perform a table-lookup for the target EL given the current state */ 8925 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 8926 8927 assert(target_el > 0); 8928 8929 return target_el; 8930 } 8931 8932 void arm_log_exception(int idx) 8933 { 8934 if (qemu_loglevel_mask(CPU_LOG_INT)) { 8935 const char *exc = NULL; 8936 static const char * const excnames[] = { 8937 [EXCP_UDEF] = "Undefined Instruction", 8938 [EXCP_SWI] = "SVC", 8939 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 8940 [EXCP_DATA_ABORT] = "Data Abort", 8941 [EXCP_IRQ] = "IRQ", 8942 [EXCP_FIQ] = "FIQ", 8943 [EXCP_BKPT] = "Breakpoint", 8944 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 8945 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 8946 [EXCP_HVC] = "Hypervisor Call", 8947 [EXCP_HYP_TRAP] = "Hypervisor Trap", 8948 [EXCP_SMC] = "Secure Monitor Call", 8949 [EXCP_VIRQ] = "Virtual IRQ", 8950 [EXCP_VFIQ] = "Virtual FIQ", 8951 [EXCP_SEMIHOST] = "Semihosting call", 8952 [EXCP_NOCP] = "v7M NOCP UsageFault", 8953 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 8954 [EXCP_STKOF] = "v8M STKOF UsageFault", 8955 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 8956 [EXCP_LSERR] = "v8M LSERR UsageFault", 8957 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 8958 }; 8959 8960 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 8961 exc = excnames[idx]; 8962 } 8963 if (!exc) { 8964 exc = "unknown"; 8965 } 8966 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 8967 } 8968 } 8969 8970 /* 8971 * Function used to synchronize QEMU's AArch64 register set with AArch32 8972 * register set. This is necessary when switching between AArch32 and AArch64 8973 * execution state. 8974 */ 8975 void aarch64_sync_32_to_64(CPUARMState *env) 8976 { 8977 int i; 8978 uint32_t mode = env->uncached_cpsr & CPSR_M; 8979 8980 /* We can blanket copy R[0:7] to X[0:7] */ 8981 for (i = 0; i < 8; i++) { 8982 env->xregs[i] = env->regs[i]; 8983 } 8984 8985 /* 8986 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8987 * Otherwise, they come from the banked user regs. 8988 */ 8989 if (mode == ARM_CPU_MODE_FIQ) { 8990 for (i = 8; i < 13; i++) { 8991 env->xregs[i] = env->usr_regs[i - 8]; 8992 } 8993 } else { 8994 for (i = 8; i < 13; i++) { 8995 env->xregs[i] = env->regs[i]; 8996 } 8997 } 8998 8999 /* 9000 * Registers x13-x23 are the various mode SP and FP registers. Registers 9001 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9002 * from the mode banked register. 9003 */ 9004 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9005 env->xregs[13] = env->regs[13]; 9006 env->xregs[14] = env->regs[14]; 9007 } else { 9008 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9009 /* HYP is an exception in that it is copied from r14 */ 9010 if (mode == ARM_CPU_MODE_HYP) { 9011 env->xregs[14] = env->regs[14]; 9012 } else { 9013 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9014 } 9015 } 9016 9017 if (mode == ARM_CPU_MODE_HYP) { 9018 env->xregs[15] = env->regs[13]; 9019 } else { 9020 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9021 } 9022 9023 if (mode == ARM_CPU_MODE_IRQ) { 9024 env->xregs[16] = env->regs[14]; 9025 env->xregs[17] = env->regs[13]; 9026 } else { 9027 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9028 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9029 } 9030 9031 if (mode == ARM_CPU_MODE_SVC) { 9032 env->xregs[18] = env->regs[14]; 9033 env->xregs[19] = env->regs[13]; 9034 } else { 9035 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9036 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9037 } 9038 9039 if (mode == ARM_CPU_MODE_ABT) { 9040 env->xregs[20] = env->regs[14]; 9041 env->xregs[21] = env->regs[13]; 9042 } else { 9043 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9044 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9045 } 9046 9047 if (mode == ARM_CPU_MODE_UND) { 9048 env->xregs[22] = env->regs[14]; 9049 env->xregs[23] = env->regs[13]; 9050 } else { 9051 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9052 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9053 } 9054 9055 /* 9056 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9057 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9058 * FIQ bank for r8-r14. 9059 */ 9060 if (mode == ARM_CPU_MODE_FIQ) { 9061 for (i = 24; i < 31; i++) { 9062 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9063 } 9064 } else { 9065 for (i = 24; i < 29; i++) { 9066 env->xregs[i] = env->fiq_regs[i - 24]; 9067 } 9068 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9069 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9070 } 9071 9072 env->pc = env->regs[15]; 9073 } 9074 9075 /* 9076 * Function used to synchronize QEMU's AArch32 register set with AArch64 9077 * register set. This is necessary when switching between AArch32 and AArch64 9078 * execution state. 9079 */ 9080 void aarch64_sync_64_to_32(CPUARMState *env) 9081 { 9082 int i; 9083 uint32_t mode = env->uncached_cpsr & CPSR_M; 9084 9085 /* We can blanket copy X[0:7] to R[0:7] */ 9086 for (i = 0; i < 8; i++) { 9087 env->regs[i] = env->xregs[i]; 9088 } 9089 9090 /* 9091 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9092 * Otherwise, we copy x8-x12 into the banked user regs. 9093 */ 9094 if (mode == ARM_CPU_MODE_FIQ) { 9095 for (i = 8; i < 13; i++) { 9096 env->usr_regs[i - 8] = env->xregs[i]; 9097 } 9098 } else { 9099 for (i = 8; i < 13; i++) { 9100 env->regs[i] = env->xregs[i]; 9101 } 9102 } 9103 9104 /* 9105 * Registers r13 & r14 depend on the current mode. 9106 * If we are in a given mode, we copy the corresponding x registers to r13 9107 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9108 * for the mode. 9109 */ 9110 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9111 env->regs[13] = env->xregs[13]; 9112 env->regs[14] = env->xregs[14]; 9113 } else { 9114 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9115 9116 /* 9117 * HYP is an exception in that it does not have its own banked r14 but 9118 * shares the USR r14 9119 */ 9120 if (mode == ARM_CPU_MODE_HYP) { 9121 env->regs[14] = env->xregs[14]; 9122 } else { 9123 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9124 } 9125 } 9126 9127 if (mode == ARM_CPU_MODE_HYP) { 9128 env->regs[13] = env->xregs[15]; 9129 } else { 9130 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9131 } 9132 9133 if (mode == ARM_CPU_MODE_IRQ) { 9134 env->regs[14] = env->xregs[16]; 9135 env->regs[13] = env->xregs[17]; 9136 } else { 9137 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9138 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9139 } 9140 9141 if (mode == ARM_CPU_MODE_SVC) { 9142 env->regs[14] = env->xregs[18]; 9143 env->regs[13] = env->xregs[19]; 9144 } else { 9145 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9146 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9147 } 9148 9149 if (mode == ARM_CPU_MODE_ABT) { 9150 env->regs[14] = env->xregs[20]; 9151 env->regs[13] = env->xregs[21]; 9152 } else { 9153 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9154 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9155 } 9156 9157 if (mode == ARM_CPU_MODE_UND) { 9158 env->regs[14] = env->xregs[22]; 9159 env->regs[13] = env->xregs[23]; 9160 } else { 9161 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9162 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9163 } 9164 9165 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9166 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9167 * FIQ bank for r8-r14. 9168 */ 9169 if (mode == ARM_CPU_MODE_FIQ) { 9170 for (i = 24; i < 31; i++) { 9171 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9172 } 9173 } else { 9174 for (i = 24; i < 29; i++) { 9175 env->fiq_regs[i - 24] = env->xregs[i]; 9176 } 9177 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9178 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9179 } 9180 9181 env->regs[15] = env->pc; 9182 } 9183 9184 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9185 uint32_t mask, uint32_t offset, 9186 uint32_t newpc) 9187 { 9188 int new_el; 9189 9190 /* Change the CPU state so as to actually take the exception. */ 9191 switch_mode(env, new_mode); 9192 9193 /* 9194 * For exceptions taken to AArch32 we must clear the SS bit in both 9195 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9196 */ 9197 env->uncached_cpsr &= ~PSTATE_SS; 9198 env->spsr = cpsr_read(env); 9199 /* Clear IT bits. */ 9200 env->condexec_bits = 0; 9201 /* Switch to the new mode, and to the correct instruction set. */ 9202 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9203 9204 /* This must be after mode switching. */ 9205 new_el = arm_current_el(env); 9206 9207 /* Set new mode endianness */ 9208 env->uncached_cpsr &= ~CPSR_E; 9209 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9210 env->uncached_cpsr |= CPSR_E; 9211 } 9212 /* J and IL must always be cleared for exception entry */ 9213 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9214 env->daif |= mask; 9215 9216 if (new_mode == ARM_CPU_MODE_HYP) { 9217 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9218 env->elr_el[2] = env->regs[15]; 9219 } else { 9220 /* CPSR.PAN is normally preserved preserved unless... */ 9221 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9222 switch (new_el) { 9223 case 3: 9224 if (!arm_is_secure_below_el3(env)) { 9225 /* ... the target is EL3, from non-secure state. */ 9226 env->uncached_cpsr &= ~CPSR_PAN; 9227 break; 9228 } 9229 /* ... the target is EL3, from secure state ... */ 9230 /* fall through */ 9231 case 1: 9232 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9233 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9234 env->uncached_cpsr |= CPSR_PAN; 9235 } 9236 break; 9237 } 9238 } 9239 /* 9240 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9241 * and we should just guard the thumb mode on V4 9242 */ 9243 if (arm_feature(env, ARM_FEATURE_V4T)) { 9244 env->thumb = 9245 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9246 } 9247 env->regs[14] = env->regs[15] + offset; 9248 } 9249 env->regs[15] = newpc; 9250 arm_rebuild_hflags(env); 9251 } 9252 9253 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9254 { 9255 /* 9256 * Handle exception entry to Hyp mode; this is sufficiently 9257 * different to entry to other AArch32 modes that we handle it 9258 * separately here. 9259 * 9260 * The vector table entry used is always the 0x14 Hyp mode entry point, 9261 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9262 * The offset applied to the preferred return address is always zero 9263 * (see DDI0487C.a section G1.12.3). 9264 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9265 */ 9266 uint32_t addr, mask; 9267 ARMCPU *cpu = ARM_CPU(cs); 9268 CPUARMState *env = &cpu->env; 9269 9270 switch (cs->exception_index) { 9271 case EXCP_UDEF: 9272 addr = 0x04; 9273 break; 9274 case EXCP_SWI: 9275 addr = 0x14; 9276 break; 9277 case EXCP_BKPT: 9278 /* Fall through to prefetch abort. */ 9279 case EXCP_PREFETCH_ABORT: 9280 env->cp15.ifar_s = env->exception.vaddress; 9281 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9282 (uint32_t)env->exception.vaddress); 9283 addr = 0x0c; 9284 break; 9285 case EXCP_DATA_ABORT: 9286 env->cp15.dfar_s = env->exception.vaddress; 9287 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9288 (uint32_t)env->exception.vaddress); 9289 addr = 0x10; 9290 break; 9291 case EXCP_IRQ: 9292 addr = 0x18; 9293 break; 9294 case EXCP_FIQ: 9295 addr = 0x1c; 9296 break; 9297 case EXCP_HVC: 9298 addr = 0x08; 9299 break; 9300 case EXCP_HYP_TRAP: 9301 addr = 0x14; 9302 break; 9303 default: 9304 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9305 } 9306 9307 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9308 if (!arm_feature(env, ARM_FEATURE_V8)) { 9309 /* 9310 * QEMU syndrome values are v8-style. v7 has the IL bit 9311 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9312 * If this is a v7 CPU, squash the IL bit in those cases. 9313 */ 9314 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9315 (cs->exception_index == EXCP_DATA_ABORT && 9316 !(env->exception.syndrome & ARM_EL_ISV)) || 9317 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9318 env->exception.syndrome &= ~ARM_EL_IL; 9319 } 9320 } 9321 env->cp15.esr_el[2] = env->exception.syndrome; 9322 } 9323 9324 if (arm_current_el(env) != 2 && addr < 0x14) { 9325 addr = 0x14; 9326 } 9327 9328 mask = 0; 9329 if (!(env->cp15.scr_el3 & SCR_EA)) { 9330 mask |= CPSR_A; 9331 } 9332 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9333 mask |= CPSR_I; 9334 } 9335 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9336 mask |= CPSR_F; 9337 } 9338 9339 addr += env->cp15.hvbar; 9340 9341 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9342 } 9343 9344 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9345 { 9346 ARMCPU *cpu = ARM_CPU(cs); 9347 CPUARMState *env = &cpu->env; 9348 uint32_t addr; 9349 uint32_t mask; 9350 int new_mode; 9351 uint32_t offset; 9352 uint32_t moe; 9353 9354 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9355 switch (syn_get_ec(env->exception.syndrome)) { 9356 case EC_BREAKPOINT: 9357 case EC_BREAKPOINT_SAME_EL: 9358 moe = 1; 9359 break; 9360 case EC_WATCHPOINT: 9361 case EC_WATCHPOINT_SAME_EL: 9362 moe = 10; 9363 break; 9364 case EC_AA32_BKPT: 9365 moe = 3; 9366 break; 9367 case EC_VECTORCATCH: 9368 moe = 5; 9369 break; 9370 default: 9371 moe = 0; 9372 break; 9373 } 9374 9375 if (moe) { 9376 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9377 } 9378 9379 if (env->exception.target_el == 2) { 9380 arm_cpu_do_interrupt_aarch32_hyp(cs); 9381 return; 9382 } 9383 9384 switch (cs->exception_index) { 9385 case EXCP_UDEF: 9386 new_mode = ARM_CPU_MODE_UND; 9387 addr = 0x04; 9388 mask = CPSR_I; 9389 if (env->thumb) 9390 offset = 2; 9391 else 9392 offset = 4; 9393 break; 9394 case EXCP_SWI: 9395 new_mode = ARM_CPU_MODE_SVC; 9396 addr = 0x08; 9397 mask = CPSR_I; 9398 /* The PC already points to the next instruction. */ 9399 offset = 0; 9400 break; 9401 case EXCP_BKPT: 9402 /* Fall through to prefetch abort. */ 9403 case EXCP_PREFETCH_ABORT: 9404 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9405 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9406 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9407 env->exception.fsr, (uint32_t)env->exception.vaddress); 9408 new_mode = ARM_CPU_MODE_ABT; 9409 addr = 0x0c; 9410 mask = CPSR_A | CPSR_I; 9411 offset = 4; 9412 break; 9413 case EXCP_DATA_ABORT: 9414 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9415 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9416 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9417 env->exception.fsr, 9418 (uint32_t)env->exception.vaddress); 9419 new_mode = ARM_CPU_MODE_ABT; 9420 addr = 0x10; 9421 mask = CPSR_A | CPSR_I; 9422 offset = 8; 9423 break; 9424 case EXCP_IRQ: 9425 new_mode = ARM_CPU_MODE_IRQ; 9426 addr = 0x18; 9427 /* Disable IRQ and imprecise data aborts. */ 9428 mask = CPSR_A | CPSR_I; 9429 offset = 4; 9430 if (env->cp15.scr_el3 & SCR_IRQ) { 9431 /* IRQ routed to monitor mode */ 9432 new_mode = ARM_CPU_MODE_MON; 9433 mask |= CPSR_F; 9434 } 9435 break; 9436 case EXCP_FIQ: 9437 new_mode = ARM_CPU_MODE_FIQ; 9438 addr = 0x1c; 9439 /* Disable FIQ, IRQ and imprecise data aborts. */ 9440 mask = CPSR_A | CPSR_I | CPSR_F; 9441 if (env->cp15.scr_el3 & SCR_FIQ) { 9442 /* FIQ routed to monitor mode */ 9443 new_mode = ARM_CPU_MODE_MON; 9444 } 9445 offset = 4; 9446 break; 9447 case EXCP_VIRQ: 9448 new_mode = ARM_CPU_MODE_IRQ; 9449 addr = 0x18; 9450 /* Disable IRQ and imprecise data aborts. */ 9451 mask = CPSR_A | CPSR_I; 9452 offset = 4; 9453 break; 9454 case EXCP_VFIQ: 9455 new_mode = ARM_CPU_MODE_FIQ; 9456 addr = 0x1c; 9457 /* Disable FIQ, IRQ and imprecise data aborts. */ 9458 mask = CPSR_A | CPSR_I | CPSR_F; 9459 offset = 4; 9460 break; 9461 case EXCP_SMC: 9462 new_mode = ARM_CPU_MODE_MON; 9463 addr = 0x08; 9464 mask = CPSR_A | CPSR_I | CPSR_F; 9465 offset = 0; 9466 break; 9467 default: 9468 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9469 return; /* Never happens. Keep compiler happy. */ 9470 } 9471 9472 if (new_mode == ARM_CPU_MODE_MON) { 9473 addr += env->cp15.mvbar; 9474 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9475 /* High vectors. When enabled, base address cannot be remapped. */ 9476 addr += 0xffff0000; 9477 } else { 9478 /* ARM v7 architectures provide a vector base address register to remap 9479 * the interrupt vector table. 9480 * This register is only followed in non-monitor mode, and is banked. 9481 * Note: only bits 31:5 are valid. 9482 */ 9483 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9484 } 9485 9486 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9487 env->cp15.scr_el3 &= ~SCR_NS; 9488 } 9489 9490 take_aarch32_exception(env, new_mode, mask, offset, addr); 9491 } 9492 9493 /* Handle exception entry to a target EL which is using AArch64 */ 9494 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9495 { 9496 ARMCPU *cpu = ARM_CPU(cs); 9497 CPUARMState *env = &cpu->env; 9498 unsigned int new_el = env->exception.target_el; 9499 target_ulong addr = env->cp15.vbar_el[new_el]; 9500 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9501 unsigned int old_mode; 9502 unsigned int cur_el = arm_current_el(env); 9503 9504 /* 9505 * Note that new_el can never be 0. If cur_el is 0, then 9506 * el0_a64 is is_a64(), else el0_a64 is ignored. 9507 */ 9508 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9509 9510 if (cur_el < new_el) { 9511 /* Entry vector offset depends on whether the implemented EL 9512 * immediately lower than the target level is using AArch32 or AArch64 9513 */ 9514 bool is_aa64; 9515 uint64_t hcr; 9516 9517 switch (new_el) { 9518 case 3: 9519 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9520 break; 9521 case 2: 9522 hcr = arm_hcr_el2_eff(env); 9523 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9524 is_aa64 = (hcr & HCR_RW) != 0; 9525 break; 9526 } 9527 /* fall through */ 9528 case 1: 9529 is_aa64 = is_a64(env); 9530 break; 9531 default: 9532 g_assert_not_reached(); 9533 } 9534 9535 if (is_aa64) { 9536 addr += 0x400; 9537 } else { 9538 addr += 0x600; 9539 } 9540 } else if (pstate_read(env) & PSTATE_SP) { 9541 addr += 0x200; 9542 } 9543 9544 switch (cs->exception_index) { 9545 case EXCP_PREFETCH_ABORT: 9546 case EXCP_DATA_ABORT: 9547 env->cp15.far_el[new_el] = env->exception.vaddress; 9548 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9549 env->cp15.far_el[new_el]); 9550 /* fall through */ 9551 case EXCP_BKPT: 9552 case EXCP_UDEF: 9553 case EXCP_SWI: 9554 case EXCP_HVC: 9555 case EXCP_HYP_TRAP: 9556 case EXCP_SMC: 9557 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 9558 /* 9559 * QEMU internal FP/SIMD syndromes from AArch32 include the 9560 * TA and coproc fields which are only exposed if the exception 9561 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9562 * AArch64 format syndrome. 9563 */ 9564 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9565 } 9566 env->cp15.esr_el[new_el] = env->exception.syndrome; 9567 break; 9568 case EXCP_IRQ: 9569 case EXCP_VIRQ: 9570 addr += 0x80; 9571 break; 9572 case EXCP_FIQ: 9573 case EXCP_VFIQ: 9574 addr += 0x100; 9575 break; 9576 default: 9577 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9578 } 9579 9580 if (is_a64(env)) { 9581 old_mode = pstate_read(env); 9582 aarch64_save_sp(env, arm_current_el(env)); 9583 env->elr_el[new_el] = env->pc; 9584 } else { 9585 old_mode = cpsr_read(env); 9586 env->elr_el[new_el] = env->regs[15]; 9587 9588 aarch64_sync_32_to_64(env); 9589 9590 env->condexec_bits = 0; 9591 } 9592 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9593 9594 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9595 env->elr_el[new_el]); 9596 9597 if (cpu_isar_feature(aa64_pan, cpu)) { 9598 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9599 new_mode |= old_mode & PSTATE_PAN; 9600 switch (new_el) { 9601 case 2: 9602 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9603 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9604 != (HCR_E2H | HCR_TGE)) { 9605 break; 9606 } 9607 /* fall through */ 9608 case 1: 9609 /* ... the target is EL1 ... */ 9610 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9611 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9612 new_mode |= PSTATE_PAN; 9613 } 9614 break; 9615 } 9616 } 9617 9618 pstate_write(env, PSTATE_DAIF | new_mode); 9619 env->aarch64 = 1; 9620 aarch64_restore_sp(env, new_el); 9621 helper_rebuild_hflags_a64(env, new_el); 9622 9623 env->pc = addr; 9624 9625 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9626 new_el, env->pc, pstate_read(env)); 9627 } 9628 9629 /* 9630 * Do semihosting call and set the appropriate return value. All the 9631 * permission and validity checks have been done at translate time. 9632 * 9633 * We only see semihosting exceptions in TCG only as they are not 9634 * trapped to the hypervisor in KVM. 9635 */ 9636 #ifdef CONFIG_TCG 9637 static void handle_semihosting(CPUState *cs) 9638 { 9639 ARMCPU *cpu = ARM_CPU(cs); 9640 CPUARMState *env = &cpu->env; 9641 9642 if (is_a64(env)) { 9643 qemu_log_mask(CPU_LOG_INT, 9644 "...handling as semihosting call 0x%" PRIx64 "\n", 9645 env->xregs[0]); 9646 env->xregs[0] = do_arm_semihosting(env); 9647 env->pc += 4; 9648 } else { 9649 qemu_log_mask(CPU_LOG_INT, 9650 "...handling as semihosting call 0x%x\n", 9651 env->regs[0]); 9652 env->regs[0] = do_arm_semihosting(env); 9653 env->regs[15] += env->thumb ? 2 : 4; 9654 } 9655 } 9656 #endif 9657 9658 /* Handle a CPU exception for A and R profile CPUs. 9659 * Do any appropriate logging, handle PSCI calls, and then hand off 9660 * to the AArch64-entry or AArch32-entry function depending on the 9661 * target exception level's register width. 9662 */ 9663 void arm_cpu_do_interrupt(CPUState *cs) 9664 { 9665 ARMCPU *cpu = ARM_CPU(cs); 9666 CPUARMState *env = &cpu->env; 9667 unsigned int new_el = env->exception.target_el; 9668 9669 assert(!arm_feature(env, ARM_FEATURE_M)); 9670 9671 arm_log_exception(cs->exception_index); 9672 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9673 new_el); 9674 if (qemu_loglevel_mask(CPU_LOG_INT) 9675 && !excp_is_internal(cs->exception_index)) { 9676 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9677 syn_get_ec(env->exception.syndrome), 9678 env->exception.syndrome); 9679 } 9680 9681 if (arm_is_psci_call(cpu, cs->exception_index)) { 9682 arm_handle_psci_call(cpu); 9683 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9684 return; 9685 } 9686 9687 /* 9688 * Semihosting semantics depend on the register width of the code 9689 * that caused the exception, not the target exception level, so 9690 * must be handled here. 9691 */ 9692 #ifdef CONFIG_TCG 9693 if (cs->exception_index == EXCP_SEMIHOST) { 9694 handle_semihosting(cs); 9695 return; 9696 } 9697 #endif 9698 9699 /* Hooks may change global state so BQL should be held, also the 9700 * BQL needs to be held for any modification of 9701 * cs->interrupt_request. 9702 */ 9703 g_assert(qemu_mutex_iothread_locked()); 9704 9705 arm_call_pre_el_change_hook(cpu); 9706 9707 assert(!excp_is_internal(cs->exception_index)); 9708 if (arm_el_is_aa64(env, new_el)) { 9709 arm_cpu_do_interrupt_aarch64(cs); 9710 } else { 9711 arm_cpu_do_interrupt_aarch32(cs); 9712 } 9713 9714 arm_call_el_change_hook(cpu); 9715 9716 if (!kvm_enabled()) { 9717 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9718 } 9719 } 9720 #endif /* !CONFIG_USER_ONLY */ 9721 9722 /* Return the exception level which controls this address translation regime */ 9723 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 9724 { 9725 switch (mmu_idx) { 9726 case ARMMMUIdx_E20_0: 9727 case ARMMMUIdx_E20_2: 9728 case ARMMMUIdx_E20_2_PAN: 9729 case ARMMMUIdx_Stage2: 9730 case ARMMMUIdx_E2: 9731 return 2; 9732 case ARMMMUIdx_SE3: 9733 return 3; 9734 case ARMMMUIdx_SE10_0: 9735 return arm_el_is_aa64(env, 3) ? 1 : 3; 9736 case ARMMMUIdx_SE10_1: 9737 case ARMMMUIdx_SE10_1_PAN: 9738 case ARMMMUIdx_Stage1_E0: 9739 case ARMMMUIdx_Stage1_E1: 9740 case ARMMMUIdx_Stage1_E1_PAN: 9741 case ARMMMUIdx_E10_0: 9742 case ARMMMUIdx_E10_1: 9743 case ARMMMUIdx_E10_1_PAN: 9744 case ARMMMUIdx_MPrivNegPri: 9745 case ARMMMUIdx_MUserNegPri: 9746 case ARMMMUIdx_MPriv: 9747 case ARMMMUIdx_MUser: 9748 case ARMMMUIdx_MSPrivNegPri: 9749 case ARMMMUIdx_MSUserNegPri: 9750 case ARMMMUIdx_MSPriv: 9751 case ARMMMUIdx_MSUser: 9752 return 1; 9753 default: 9754 g_assert_not_reached(); 9755 } 9756 } 9757 9758 uint64_t arm_sctlr(CPUARMState *env, int el) 9759 { 9760 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9761 if (el == 0) { 9762 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9763 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9764 } 9765 return env->cp15.sctlr_el[el]; 9766 } 9767 9768 /* Return the SCTLR value which controls this address translation regime */ 9769 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9770 { 9771 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9772 } 9773 9774 #ifndef CONFIG_USER_ONLY 9775 9776 /* Return true if the specified stage of address translation is disabled */ 9777 static inline bool regime_translation_disabled(CPUARMState *env, 9778 ARMMMUIdx mmu_idx) 9779 { 9780 if (arm_feature(env, ARM_FEATURE_M)) { 9781 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9782 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9783 case R_V7M_MPU_CTRL_ENABLE_MASK: 9784 /* Enabled, but not for HardFault and NMI */ 9785 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9786 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9787 /* Enabled for all cases */ 9788 return false; 9789 case 0: 9790 default: 9791 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9792 * we warned about that in armv7m_nvic.c when the guest set it. 9793 */ 9794 return true; 9795 } 9796 } 9797 9798 if (mmu_idx == ARMMMUIdx_Stage2) { 9799 /* HCR.DC means HCR.VM behaves as 1 */ 9800 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9801 } 9802 9803 if (env->cp15.hcr_el2 & HCR_TGE) { 9804 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9805 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9806 return true; 9807 } 9808 } 9809 9810 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9811 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9812 return true; 9813 } 9814 9815 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9816 } 9817 9818 static inline bool regime_translation_big_endian(CPUARMState *env, 9819 ARMMMUIdx mmu_idx) 9820 { 9821 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9822 } 9823 9824 /* Return the TTBR associated with this translation regime */ 9825 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9826 int ttbrn) 9827 { 9828 if (mmu_idx == ARMMMUIdx_Stage2) { 9829 return env->cp15.vttbr_el2; 9830 } 9831 if (ttbrn == 0) { 9832 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9833 } else { 9834 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9835 } 9836 } 9837 9838 #endif /* !CONFIG_USER_ONLY */ 9839 9840 /* Return the TCR controlling this translation regime */ 9841 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 9842 { 9843 if (mmu_idx == ARMMMUIdx_Stage2) { 9844 return &env->cp15.vtcr_el2; 9845 } 9846 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 9847 } 9848 9849 /* Convert a possible stage1+2 MMU index into the appropriate 9850 * stage 1 MMU index 9851 */ 9852 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 9853 { 9854 switch (mmu_idx) { 9855 case ARMMMUIdx_E10_0: 9856 return ARMMMUIdx_Stage1_E0; 9857 case ARMMMUIdx_E10_1: 9858 return ARMMMUIdx_Stage1_E1; 9859 case ARMMMUIdx_E10_1_PAN: 9860 return ARMMMUIdx_Stage1_E1_PAN; 9861 default: 9862 return mmu_idx; 9863 } 9864 } 9865 9866 /* Return true if the translation regime is using LPAE format page tables */ 9867 static inline bool regime_using_lpae_format(CPUARMState *env, 9868 ARMMMUIdx mmu_idx) 9869 { 9870 int el = regime_el(env, mmu_idx); 9871 if (el == 2 || arm_el_is_aa64(env, el)) { 9872 return true; 9873 } 9874 if (arm_feature(env, ARM_FEATURE_LPAE) 9875 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9876 return true; 9877 } 9878 return false; 9879 } 9880 9881 /* Returns true if the stage 1 translation regime is using LPAE format page 9882 * tables. Used when raising alignment exceptions, whose FSR changes depending 9883 * on whether the long or short descriptor format is in use. */ 9884 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9885 { 9886 mmu_idx = stage_1_mmu_idx(mmu_idx); 9887 9888 return regime_using_lpae_format(env, mmu_idx); 9889 } 9890 9891 #ifndef CONFIG_USER_ONLY 9892 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9893 { 9894 switch (mmu_idx) { 9895 case ARMMMUIdx_SE10_0: 9896 case ARMMMUIdx_E20_0: 9897 case ARMMMUIdx_Stage1_E0: 9898 case ARMMMUIdx_MUser: 9899 case ARMMMUIdx_MSUser: 9900 case ARMMMUIdx_MUserNegPri: 9901 case ARMMMUIdx_MSUserNegPri: 9902 return true; 9903 default: 9904 return false; 9905 case ARMMMUIdx_E10_0: 9906 case ARMMMUIdx_E10_1: 9907 case ARMMMUIdx_E10_1_PAN: 9908 g_assert_not_reached(); 9909 } 9910 } 9911 9912 /* Translate section/page access permissions to page 9913 * R/W protection flags 9914 * 9915 * @env: CPUARMState 9916 * @mmu_idx: MMU index indicating required translation regime 9917 * @ap: The 3-bit access permissions (AP[2:0]) 9918 * @domain_prot: The 2-bit domain access permissions 9919 */ 9920 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9921 int ap, int domain_prot) 9922 { 9923 bool is_user = regime_is_user(env, mmu_idx); 9924 9925 if (domain_prot == 3) { 9926 return PAGE_READ | PAGE_WRITE; 9927 } 9928 9929 switch (ap) { 9930 case 0: 9931 if (arm_feature(env, ARM_FEATURE_V7)) { 9932 return 0; 9933 } 9934 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9935 case SCTLR_S: 9936 return is_user ? 0 : PAGE_READ; 9937 case SCTLR_R: 9938 return PAGE_READ; 9939 default: 9940 return 0; 9941 } 9942 case 1: 9943 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9944 case 2: 9945 if (is_user) { 9946 return PAGE_READ; 9947 } else { 9948 return PAGE_READ | PAGE_WRITE; 9949 } 9950 case 3: 9951 return PAGE_READ | PAGE_WRITE; 9952 case 4: /* Reserved. */ 9953 return 0; 9954 case 5: 9955 return is_user ? 0 : PAGE_READ; 9956 case 6: 9957 return PAGE_READ; 9958 case 7: 9959 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9960 return 0; 9961 } 9962 return PAGE_READ; 9963 default: 9964 g_assert_not_reached(); 9965 } 9966 } 9967 9968 /* Translate section/page access permissions to page 9969 * R/W protection flags. 9970 * 9971 * @ap: The 2-bit simple AP (AP[2:1]) 9972 * @is_user: TRUE if accessing from PL0 9973 */ 9974 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9975 { 9976 switch (ap) { 9977 case 0: 9978 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9979 case 1: 9980 return PAGE_READ | PAGE_WRITE; 9981 case 2: 9982 return is_user ? 0 : PAGE_READ; 9983 case 3: 9984 return PAGE_READ; 9985 default: 9986 g_assert_not_reached(); 9987 } 9988 } 9989 9990 static inline int 9991 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9992 { 9993 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9994 } 9995 9996 /* Translate S2 section/page access permissions to protection flags 9997 * 9998 * @env: CPUARMState 9999 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10000 * @xn: XN (execute-never) bit 10001 */ 10002 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 10003 { 10004 int prot = 0; 10005 10006 if (s2ap & 1) { 10007 prot |= PAGE_READ; 10008 } 10009 if (s2ap & 2) { 10010 prot |= PAGE_WRITE; 10011 } 10012 if (!xn) { 10013 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10014 prot |= PAGE_EXEC; 10015 } 10016 } 10017 return prot; 10018 } 10019 10020 /* Translate section/page access permissions to protection flags 10021 * 10022 * @env: CPUARMState 10023 * @mmu_idx: MMU index indicating required translation regime 10024 * @is_aa64: TRUE if AArch64 10025 * @ap: The 2-bit simple AP (AP[2:1]) 10026 * @ns: NS (non-secure) bit 10027 * @xn: XN (execute-never) bit 10028 * @pxn: PXN (privileged execute-never) bit 10029 */ 10030 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10031 int ap, int ns, int xn, int pxn) 10032 { 10033 bool is_user = regime_is_user(env, mmu_idx); 10034 int prot_rw, user_rw; 10035 bool have_wxn; 10036 int wxn = 0; 10037 10038 assert(mmu_idx != ARMMMUIdx_Stage2); 10039 10040 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10041 if (is_user) { 10042 prot_rw = user_rw; 10043 } else { 10044 if (user_rw && regime_is_pan(env, mmu_idx)) { 10045 /* PAN forbids data accesses but doesn't affect insn fetch */ 10046 prot_rw = 0; 10047 } else { 10048 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10049 } 10050 } 10051 10052 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10053 return prot_rw; 10054 } 10055 10056 /* TODO have_wxn should be replaced with 10057 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10058 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10059 * compatible processors have EL2, which is required for [U]WXN. 10060 */ 10061 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10062 10063 if (have_wxn) { 10064 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10065 } 10066 10067 if (is_aa64) { 10068 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10069 xn = pxn || (user_rw & PAGE_WRITE); 10070 } 10071 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10072 switch (regime_el(env, mmu_idx)) { 10073 case 1: 10074 case 3: 10075 if (is_user) { 10076 xn = xn || !(user_rw & PAGE_READ); 10077 } else { 10078 int uwxn = 0; 10079 if (have_wxn) { 10080 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10081 } 10082 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10083 (uwxn && (user_rw & PAGE_WRITE)); 10084 } 10085 break; 10086 case 2: 10087 break; 10088 } 10089 } else { 10090 xn = wxn = 0; 10091 } 10092 10093 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10094 return prot_rw; 10095 } 10096 return prot_rw | PAGE_EXEC; 10097 } 10098 10099 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10100 uint32_t *table, uint32_t address) 10101 { 10102 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10103 TCR *tcr = regime_tcr(env, mmu_idx); 10104 10105 if (address & tcr->mask) { 10106 if (tcr->raw_tcr & TTBCR_PD1) { 10107 /* Translation table walk disabled for TTBR1 */ 10108 return false; 10109 } 10110 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10111 } else { 10112 if (tcr->raw_tcr & TTBCR_PD0) { 10113 /* Translation table walk disabled for TTBR0 */ 10114 return false; 10115 } 10116 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10117 } 10118 *table |= (address >> 18) & 0x3ffc; 10119 return true; 10120 } 10121 10122 /* Translate a S1 pagetable walk through S2 if needed. */ 10123 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10124 hwaddr addr, MemTxAttrs txattrs, 10125 ARMMMUFaultInfo *fi) 10126 { 10127 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10128 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10129 target_ulong s2size; 10130 hwaddr s2pa; 10131 int s2prot; 10132 int ret; 10133 ARMCacheAttrs cacheattrs = {}; 10134 ARMCacheAttrs *pcacheattrs = NULL; 10135 10136 if (env->cp15.hcr_el2 & HCR_PTW) { 10137 /* 10138 * PTW means we must fault if this S1 walk touches S2 Device 10139 * memory; otherwise we don't care about the attributes and can 10140 * save the S2 translation the effort of computing them. 10141 */ 10142 pcacheattrs = &cacheattrs; 10143 } 10144 10145 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa, 10146 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 10147 if (ret) { 10148 assert(fi->type != ARMFault_None); 10149 fi->s2addr = addr; 10150 fi->stage2 = true; 10151 fi->s1ptw = true; 10152 return ~0; 10153 } 10154 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 10155 /* Access was to Device memory: generate Permission fault */ 10156 fi->type = ARMFault_Permission; 10157 fi->s2addr = addr; 10158 fi->stage2 = true; 10159 fi->s1ptw = true; 10160 return ~0; 10161 } 10162 addr = s2pa; 10163 } 10164 return addr; 10165 } 10166 10167 /* All loads done in the course of a page table walk go through here. */ 10168 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10169 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10170 { 10171 ARMCPU *cpu = ARM_CPU(cs); 10172 CPUARMState *env = &cpu->env; 10173 MemTxAttrs attrs = {}; 10174 MemTxResult result = MEMTX_OK; 10175 AddressSpace *as; 10176 uint32_t data; 10177 10178 attrs.secure = is_secure; 10179 as = arm_addressspace(cs, attrs); 10180 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10181 if (fi->s1ptw) { 10182 return 0; 10183 } 10184 if (regime_translation_big_endian(env, mmu_idx)) { 10185 data = address_space_ldl_be(as, addr, attrs, &result); 10186 } else { 10187 data = address_space_ldl_le(as, addr, attrs, &result); 10188 } 10189 if (result == MEMTX_OK) { 10190 return data; 10191 } 10192 fi->type = ARMFault_SyncExternalOnWalk; 10193 fi->ea = arm_extabort_type(result); 10194 return 0; 10195 } 10196 10197 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10198 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10199 { 10200 ARMCPU *cpu = ARM_CPU(cs); 10201 CPUARMState *env = &cpu->env; 10202 MemTxAttrs attrs = {}; 10203 MemTxResult result = MEMTX_OK; 10204 AddressSpace *as; 10205 uint64_t data; 10206 10207 attrs.secure = is_secure; 10208 as = arm_addressspace(cs, attrs); 10209 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10210 if (fi->s1ptw) { 10211 return 0; 10212 } 10213 if (regime_translation_big_endian(env, mmu_idx)) { 10214 data = address_space_ldq_be(as, addr, attrs, &result); 10215 } else { 10216 data = address_space_ldq_le(as, addr, attrs, &result); 10217 } 10218 if (result == MEMTX_OK) { 10219 return data; 10220 } 10221 fi->type = ARMFault_SyncExternalOnWalk; 10222 fi->ea = arm_extabort_type(result); 10223 return 0; 10224 } 10225 10226 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10227 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10228 hwaddr *phys_ptr, int *prot, 10229 target_ulong *page_size, 10230 ARMMMUFaultInfo *fi) 10231 { 10232 CPUState *cs = env_cpu(env); 10233 int level = 1; 10234 uint32_t table; 10235 uint32_t desc; 10236 int type; 10237 int ap; 10238 int domain = 0; 10239 int domain_prot; 10240 hwaddr phys_addr; 10241 uint32_t dacr; 10242 10243 /* Pagetable walk. */ 10244 /* Lookup l1 descriptor. */ 10245 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10246 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10247 fi->type = ARMFault_Translation; 10248 goto do_fault; 10249 } 10250 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10251 mmu_idx, fi); 10252 if (fi->type != ARMFault_None) { 10253 goto do_fault; 10254 } 10255 type = (desc & 3); 10256 domain = (desc >> 5) & 0x0f; 10257 if (regime_el(env, mmu_idx) == 1) { 10258 dacr = env->cp15.dacr_ns; 10259 } else { 10260 dacr = env->cp15.dacr_s; 10261 } 10262 domain_prot = (dacr >> (domain * 2)) & 3; 10263 if (type == 0) { 10264 /* Section translation fault. */ 10265 fi->type = ARMFault_Translation; 10266 goto do_fault; 10267 } 10268 if (type != 2) { 10269 level = 2; 10270 } 10271 if (domain_prot == 0 || domain_prot == 2) { 10272 fi->type = ARMFault_Domain; 10273 goto do_fault; 10274 } 10275 if (type == 2) { 10276 /* 1Mb section. */ 10277 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10278 ap = (desc >> 10) & 3; 10279 *page_size = 1024 * 1024; 10280 } else { 10281 /* Lookup l2 entry. */ 10282 if (type == 1) { 10283 /* Coarse pagetable. */ 10284 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10285 } else { 10286 /* Fine pagetable. */ 10287 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10288 } 10289 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10290 mmu_idx, fi); 10291 if (fi->type != ARMFault_None) { 10292 goto do_fault; 10293 } 10294 switch (desc & 3) { 10295 case 0: /* Page translation fault. */ 10296 fi->type = ARMFault_Translation; 10297 goto do_fault; 10298 case 1: /* 64k page. */ 10299 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10300 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10301 *page_size = 0x10000; 10302 break; 10303 case 2: /* 4k page. */ 10304 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10305 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10306 *page_size = 0x1000; 10307 break; 10308 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10309 if (type == 1) { 10310 /* ARMv6/XScale extended small page format */ 10311 if (arm_feature(env, ARM_FEATURE_XSCALE) 10312 || arm_feature(env, ARM_FEATURE_V6)) { 10313 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10314 *page_size = 0x1000; 10315 } else { 10316 /* UNPREDICTABLE in ARMv5; we choose to take a 10317 * page translation fault. 10318 */ 10319 fi->type = ARMFault_Translation; 10320 goto do_fault; 10321 } 10322 } else { 10323 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10324 *page_size = 0x400; 10325 } 10326 ap = (desc >> 4) & 3; 10327 break; 10328 default: 10329 /* Never happens, but compiler isn't smart enough to tell. */ 10330 abort(); 10331 } 10332 } 10333 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10334 *prot |= *prot ? PAGE_EXEC : 0; 10335 if (!(*prot & (1 << access_type))) { 10336 /* Access permission fault. */ 10337 fi->type = ARMFault_Permission; 10338 goto do_fault; 10339 } 10340 *phys_ptr = phys_addr; 10341 return false; 10342 do_fault: 10343 fi->domain = domain; 10344 fi->level = level; 10345 return true; 10346 } 10347 10348 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10349 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10350 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10351 target_ulong *page_size, ARMMMUFaultInfo *fi) 10352 { 10353 CPUState *cs = env_cpu(env); 10354 int level = 1; 10355 uint32_t table; 10356 uint32_t desc; 10357 uint32_t xn; 10358 uint32_t pxn = 0; 10359 int type; 10360 int ap; 10361 int domain = 0; 10362 int domain_prot; 10363 hwaddr phys_addr; 10364 uint32_t dacr; 10365 bool ns; 10366 10367 /* Pagetable walk. */ 10368 /* Lookup l1 descriptor. */ 10369 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10370 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10371 fi->type = ARMFault_Translation; 10372 goto do_fault; 10373 } 10374 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10375 mmu_idx, fi); 10376 if (fi->type != ARMFault_None) { 10377 goto do_fault; 10378 } 10379 type = (desc & 3); 10380 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10381 /* Section translation fault, or attempt to use the encoding 10382 * which is Reserved on implementations without PXN. 10383 */ 10384 fi->type = ARMFault_Translation; 10385 goto do_fault; 10386 } 10387 if ((type == 1) || !(desc & (1 << 18))) { 10388 /* Page or Section. */ 10389 domain = (desc >> 5) & 0x0f; 10390 } 10391 if (regime_el(env, mmu_idx) == 1) { 10392 dacr = env->cp15.dacr_ns; 10393 } else { 10394 dacr = env->cp15.dacr_s; 10395 } 10396 if (type == 1) { 10397 level = 2; 10398 } 10399 domain_prot = (dacr >> (domain * 2)) & 3; 10400 if (domain_prot == 0 || domain_prot == 2) { 10401 /* Section or Page domain fault */ 10402 fi->type = ARMFault_Domain; 10403 goto do_fault; 10404 } 10405 if (type != 1) { 10406 if (desc & (1 << 18)) { 10407 /* Supersection. */ 10408 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10409 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10410 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10411 *page_size = 0x1000000; 10412 } else { 10413 /* Section. */ 10414 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10415 *page_size = 0x100000; 10416 } 10417 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10418 xn = desc & (1 << 4); 10419 pxn = desc & 1; 10420 ns = extract32(desc, 19, 1); 10421 } else { 10422 if (arm_feature(env, ARM_FEATURE_PXN)) { 10423 pxn = (desc >> 2) & 1; 10424 } 10425 ns = extract32(desc, 3, 1); 10426 /* Lookup l2 entry. */ 10427 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10428 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10429 mmu_idx, fi); 10430 if (fi->type != ARMFault_None) { 10431 goto do_fault; 10432 } 10433 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10434 switch (desc & 3) { 10435 case 0: /* Page translation fault. */ 10436 fi->type = ARMFault_Translation; 10437 goto do_fault; 10438 case 1: /* 64k page. */ 10439 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10440 xn = desc & (1 << 15); 10441 *page_size = 0x10000; 10442 break; 10443 case 2: case 3: /* 4k page. */ 10444 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10445 xn = desc & 1; 10446 *page_size = 0x1000; 10447 break; 10448 default: 10449 /* Never happens, but compiler isn't smart enough to tell. */ 10450 abort(); 10451 } 10452 } 10453 if (domain_prot == 3) { 10454 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10455 } else { 10456 if (pxn && !regime_is_user(env, mmu_idx)) { 10457 xn = 1; 10458 } 10459 if (xn && access_type == MMU_INST_FETCH) { 10460 fi->type = ARMFault_Permission; 10461 goto do_fault; 10462 } 10463 10464 if (arm_feature(env, ARM_FEATURE_V6K) && 10465 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10466 /* The simplified model uses AP[0] as an access control bit. */ 10467 if ((ap & 1) == 0) { 10468 /* Access flag fault. */ 10469 fi->type = ARMFault_AccessFlag; 10470 goto do_fault; 10471 } 10472 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10473 } else { 10474 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10475 } 10476 if (*prot && !xn) { 10477 *prot |= PAGE_EXEC; 10478 } 10479 if (!(*prot & (1 << access_type))) { 10480 /* Access permission fault. */ 10481 fi->type = ARMFault_Permission; 10482 goto do_fault; 10483 } 10484 } 10485 if (ns) { 10486 /* The NS bit will (as required by the architecture) have no effect if 10487 * the CPU doesn't support TZ or this is a non-secure translation 10488 * regime, because the attribute will already be non-secure. 10489 */ 10490 attrs->secure = false; 10491 } 10492 *phys_ptr = phys_addr; 10493 return false; 10494 do_fault: 10495 fi->domain = domain; 10496 fi->level = level; 10497 return true; 10498 } 10499 10500 /* 10501 * check_s2_mmu_setup 10502 * @cpu: ARMCPU 10503 * @is_aa64: True if the translation regime is in AArch64 state 10504 * @startlevel: Suggested starting level 10505 * @inputsize: Bitsize of IPAs 10506 * @stride: Page-table stride (See the ARM ARM) 10507 * 10508 * Returns true if the suggested S2 translation parameters are OK and 10509 * false otherwise. 10510 */ 10511 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10512 int inputsize, int stride) 10513 { 10514 const int grainsize = stride + 3; 10515 int startsizecheck; 10516 10517 /* Negative levels are never allowed. */ 10518 if (level < 0) { 10519 return false; 10520 } 10521 10522 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10523 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10524 return false; 10525 } 10526 10527 if (is_aa64) { 10528 CPUARMState *env = &cpu->env; 10529 unsigned int pamax = arm_pamax(cpu); 10530 10531 switch (stride) { 10532 case 13: /* 64KB Pages. */ 10533 if (level == 0 || (level == 1 && pamax <= 42)) { 10534 return false; 10535 } 10536 break; 10537 case 11: /* 16KB Pages. */ 10538 if (level == 0 || (level == 1 && pamax <= 40)) { 10539 return false; 10540 } 10541 break; 10542 case 9: /* 4KB Pages. */ 10543 if (level == 0 && pamax <= 42) { 10544 return false; 10545 } 10546 break; 10547 default: 10548 g_assert_not_reached(); 10549 } 10550 10551 /* Inputsize checks. */ 10552 if (inputsize > pamax && 10553 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10554 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10555 return false; 10556 } 10557 } else { 10558 /* AArch32 only supports 4KB pages. Assert on that. */ 10559 assert(stride == 9); 10560 10561 if (level == 0) { 10562 return false; 10563 } 10564 } 10565 return true; 10566 } 10567 10568 /* Translate from the 4-bit stage 2 representation of 10569 * memory attributes (without cache-allocation hints) to 10570 * the 8-bit representation of the stage 1 MAIR registers 10571 * (which includes allocation hints). 10572 * 10573 * ref: shared/translation/attrs/S2AttrDecode() 10574 * .../S2ConvertAttrsHints() 10575 */ 10576 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10577 { 10578 uint8_t hiattr = extract32(s2attrs, 2, 2); 10579 uint8_t loattr = extract32(s2attrs, 0, 2); 10580 uint8_t hihint = 0, lohint = 0; 10581 10582 if (hiattr != 0) { /* normal memory */ 10583 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10584 hiattr = loattr = 1; /* non-cacheable */ 10585 } else { 10586 if (hiattr != 1) { /* Write-through or write-back */ 10587 hihint = 3; /* RW allocate */ 10588 } 10589 if (loattr != 1) { /* Write-through or write-back */ 10590 lohint = 3; /* RW allocate */ 10591 } 10592 } 10593 } 10594 10595 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10596 } 10597 #endif /* !CONFIG_USER_ONLY */ 10598 10599 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10600 { 10601 if (regime_has_2_ranges(mmu_idx)) { 10602 return extract64(tcr, 37, 2); 10603 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10604 return 0; /* VTCR_EL2 */ 10605 } else { 10606 /* Replicate the single TBI bit so we always have 2 bits. */ 10607 return extract32(tcr, 20, 1) * 3; 10608 } 10609 } 10610 10611 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10612 { 10613 if (regime_has_2_ranges(mmu_idx)) { 10614 return extract64(tcr, 51, 2); 10615 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10616 return 0; /* VTCR_EL2 */ 10617 } else { 10618 /* Replicate the single TBID bit so we always have 2 bits. */ 10619 return extract32(tcr, 29, 1) * 3; 10620 } 10621 } 10622 10623 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10624 ARMMMUIdx mmu_idx, bool data) 10625 { 10626 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10627 bool epd, hpd, using16k, using64k; 10628 int select, tsz, tbi; 10629 10630 if (!regime_has_2_ranges(mmu_idx)) { 10631 select = 0; 10632 tsz = extract32(tcr, 0, 6); 10633 using64k = extract32(tcr, 14, 1); 10634 using16k = extract32(tcr, 15, 1); 10635 if (mmu_idx == ARMMMUIdx_Stage2) { 10636 /* VTCR_EL2 */ 10637 hpd = false; 10638 } else { 10639 hpd = extract32(tcr, 24, 1); 10640 } 10641 epd = false; 10642 } else { 10643 /* 10644 * Bit 55 is always between the two regions, and is canonical for 10645 * determining if address tagging is enabled. 10646 */ 10647 select = extract64(va, 55, 1); 10648 if (!select) { 10649 tsz = extract32(tcr, 0, 6); 10650 epd = extract32(tcr, 7, 1); 10651 using64k = extract32(tcr, 14, 1); 10652 using16k = extract32(tcr, 15, 1); 10653 hpd = extract64(tcr, 41, 1); 10654 } else { 10655 int tg = extract32(tcr, 30, 2); 10656 using16k = tg == 1; 10657 using64k = tg == 3; 10658 tsz = extract32(tcr, 16, 6); 10659 epd = extract32(tcr, 23, 1); 10660 hpd = extract64(tcr, 42, 1); 10661 } 10662 } 10663 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10664 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10665 10666 /* Present TBI as a composite with TBID. */ 10667 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10668 if (!data) { 10669 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10670 } 10671 tbi = (tbi >> select) & 1; 10672 10673 return (ARMVAParameters) { 10674 .tsz = tsz, 10675 .select = select, 10676 .tbi = tbi, 10677 .epd = epd, 10678 .hpd = hpd, 10679 .using16k = using16k, 10680 .using64k = using64k, 10681 }; 10682 } 10683 10684 #ifndef CONFIG_USER_ONLY 10685 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10686 ARMMMUIdx mmu_idx) 10687 { 10688 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10689 uint32_t el = regime_el(env, mmu_idx); 10690 int select, tsz; 10691 bool epd, hpd; 10692 10693 if (mmu_idx == ARMMMUIdx_Stage2) { 10694 /* VTCR */ 10695 bool sext = extract32(tcr, 4, 1); 10696 bool sign = extract32(tcr, 3, 1); 10697 10698 /* 10699 * If the sign-extend bit is not the same as t0sz[3], the result 10700 * is unpredictable. Flag this as a guest error. 10701 */ 10702 if (sign != sext) { 10703 qemu_log_mask(LOG_GUEST_ERROR, 10704 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10705 } 10706 tsz = sextract32(tcr, 0, 4) + 8; 10707 select = 0; 10708 hpd = false; 10709 epd = false; 10710 } else if (el == 2) { 10711 /* HTCR */ 10712 tsz = extract32(tcr, 0, 3); 10713 select = 0; 10714 hpd = extract64(tcr, 24, 1); 10715 epd = false; 10716 } else { 10717 int t0sz = extract32(tcr, 0, 3); 10718 int t1sz = extract32(tcr, 16, 3); 10719 10720 if (t1sz == 0) { 10721 select = va > (0xffffffffu >> t0sz); 10722 } else { 10723 /* Note that we will detect errors later. */ 10724 select = va >= ~(0xffffffffu >> t1sz); 10725 } 10726 if (!select) { 10727 tsz = t0sz; 10728 epd = extract32(tcr, 7, 1); 10729 hpd = extract64(tcr, 41, 1); 10730 } else { 10731 tsz = t1sz; 10732 epd = extract32(tcr, 23, 1); 10733 hpd = extract64(tcr, 42, 1); 10734 } 10735 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10736 hpd &= extract32(tcr, 6, 1); 10737 } 10738 10739 return (ARMVAParameters) { 10740 .tsz = tsz, 10741 .select = select, 10742 .epd = epd, 10743 .hpd = hpd, 10744 }; 10745 } 10746 10747 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10748 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10749 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10750 target_ulong *page_size_ptr, 10751 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10752 { 10753 ARMCPU *cpu = env_archcpu(env); 10754 CPUState *cs = CPU(cpu); 10755 /* Read an LPAE long-descriptor translation table. */ 10756 ARMFaultType fault_type = ARMFault_Translation; 10757 uint32_t level; 10758 ARMVAParameters param; 10759 uint64_t ttbr; 10760 hwaddr descaddr, indexmask, indexmask_grainsize; 10761 uint32_t tableattrs; 10762 target_ulong page_size; 10763 uint32_t attrs; 10764 int32_t stride; 10765 int addrsize, inputsize; 10766 TCR *tcr = regime_tcr(env, mmu_idx); 10767 int ap, ns, xn, pxn; 10768 uint32_t el = regime_el(env, mmu_idx); 10769 uint64_t descaddrmask; 10770 bool aarch64 = arm_el_is_aa64(env, el); 10771 bool guarded = false; 10772 10773 /* TODO: This code does not support shareability levels. */ 10774 if (aarch64) { 10775 param = aa64_va_parameters(env, address, mmu_idx, 10776 access_type != MMU_INST_FETCH); 10777 level = 0; 10778 addrsize = 64 - 8 * param.tbi; 10779 inputsize = 64 - param.tsz; 10780 } else { 10781 param = aa32_va_parameters(env, address, mmu_idx); 10782 level = 1; 10783 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 10784 inputsize = addrsize - param.tsz; 10785 } 10786 10787 /* 10788 * We determined the region when collecting the parameters, but we 10789 * have not yet validated that the address is valid for the region. 10790 * Extract the top bits and verify that they all match select. 10791 * 10792 * For aa32, if inputsize == addrsize, then we have selected the 10793 * region by exclusion in aa32_va_parameters and there is no more 10794 * validation to do here. 10795 */ 10796 if (inputsize < addrsize) { 10797 target_ulong top_bits = sextract64(address, inputsize, 10798 addrsize - inputsize); 10799 if (-top_bits != param.select) { 10800 /* The gap between the two regions is a Translation fault */ 10801 fault_type = ARMFault_Translation; 10802 goto do_fault; 10803 } 10804 } 10805 10806 if (param.using64k) { 10807 stride = 13; 10808 } else if (param.using16k) { 10809 stride = 11; 10810 } else { 10811 stride = 9; 10812 } 10813 10814 /* Note that QEMU ignores shareability and cacheability attributes, 10815 * so we don't need to do anything with the SH, ORGN, IRGN fields 10816 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 10817 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 10818 * implement any ASID-like capability so we can ignore it (instead 10819 * we will always flush the TLB any time the ASID is changed). 10820 */ 10821 ttbr = regime_ttbr(env, mmu_idx, param.select); 10822 10823 /* Here we should have set up all the parameters for the translation: 10824 * inputsize, ttbr, epd, stride, tbi 10825 */ 10826 10827 if (param.epd) { 10828 /* Translation table walk disabled => Translation fault on TLB miss 10829 * Note: This is always 0 on 64-bit EL2 and EL3. 10830 */ 10831 goto do_fault; 10832 } 10833 10834 if (mmu_idx != ARMMMUIdx_Stage2) { 10835 /* The starting level depends on the virtual address size (which can 10836 * be up to 48 bits) and the translation granule size. It indicates 10837 * the number of strides (stride bits at a time) needed to 10838 * consume the bits of the input address. In the pseudocode this is: 10839 * level = 4 - RoundUp((inputsize - grainsize) / stride) 10840 * where their 'inputsize' is our 'inputsize', 'grainsize' is 10841 * our 'stride + 3' and 'stride' is our 'stride'. 10842 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 10843 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 10844 * = 4 - (inputsize - 4) / stride; 10845 */ 10846 level = 4 - (inputsize - 4) / stride; 10847 } else { 10848 /* For stage 2 translations the starting level is specified by the 10849 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 10850 */ 10851 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 10852 uint32_t startlevel; 10853 bool ok; 10854 10855 if (!aarch64 || stride == 9) { 10856 /* AArch32 or 4KB pages */ 10857 startlevel = 2 - sl0; 10858 } else { 10859 /* 16KB or 64KB pages */ 10860 startlevel = 3 - sl0; 10861 } 10862 10863 /* Check that the starting level is valid. */ 10864 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 10865 inputsize, stride); 10866 if (!ok) { 10867 fault_type = ARMFault_Translation; 10868 goto do_fault; 10869 } 10870 level = startlevel; 10871 } 10872 10873 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 10874 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 10875 10876 /* Now we can extract the actual base address from the TTBR */ 10877 descaddr = extract64(ttbr, 0, 48); 10878 /* 10879 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 10880 * and also to mask out CnP (bit 0) which could validly be non-zero. 10881 */ 10882 descaddr &= ~indexmask; 10883 10884 /* The address field in the descriptor goes up to bit 39 for ARMv7 10885 * but up to bit 47 for ARMv8, but we use the descaddrmask 10886 * up to bit 39 for AArch32, because we don't need other bits in that case 10887 * to construct next descriptor address (anyway they should be all zeroes). 10888 */ 10889 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 10890 ~indexmask_grainsize; 10891 10892 /* Secure accesses start with the page table in secure memory and 10893 * can be downgraded to non-secure at any step. Non-secure accesses 10894 * remain non-secure. We implement this by just ORing in the NSTable/NS 10895 * bits at each step. 10896 */ 10897 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 10898 for (;;) { 10899 uint64_t descriptor; 10900 bool nstable; 10901 10902 descaddr |= (address >> (stride * (4 - level))) & indexmask; 10903 descaddr &= ~7ULL; 10904 nstable = extract32(tableattrs, 4, 1); 10905 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10906 if (fi->type != ARMFault_None) { 10907 goto do_fault; 10908 } 10909 10910 if (!(descriptor & 1) || 10911 (!(descriptor & 2) && (level == 3))) { 10912 /* Invalid, or the Reserved level 3 encoding */ 10913 goto do_fault; 10914 } 10915 descaddr = descriptor & descaddrmask; 10916 10917 if ((descriptor & 2) && (level < 3)) { 10918 /* Table entry. The top five bits are attributes which may 10919 * propagate down through lower levels of the table (and 10920 * which are all arranged so that 0 means "no effect", so 10921 * we can gather them up by ORing in the bits at each level). 10922 */ 10923 tableattrs |= extract64(descriptor, 59, 5); 10924 level++; 10925 indexmask = indexmask_grainsize; 10926 continue; 10927 } 10928 /* Block entry at level 1 or 2, or page entry at level 3. 10929 * These are basically the same thing, although the number 10930 * of bits we pull in from the vaddr varies. 10931 */ 10932 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10933 descaddr |= (address & (page_size - 1)); 10934 /* Extract attributes from the descriptor */ 10935 attrs = extract64(descriptor, 2, 10) 10936 | (extract64(descriptor, 52, 12) << 10); 10937 10938 if (mmu_idx == ARMMMUIdx_Stage2) { 10939 /* Stage 2 table descriptors do not include any attribute fields */ 10940 break; 10941 } 10942 /* Merge in attributes from table descriptors */ 10943 attrs |= nstable << 3; /* NS */ 10944 guarded = extract64(descriptor, 50, 1); /* GP */ 10945 if (param.hpd) { 10946 /* HPD disables all the table attributes except NSTable. */ 10947 break; 10948 } 10949 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10950 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10951 * means "force PL1 access only", which means forcing AP[1] to 0. 10952 */ 10953 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10954 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10955 break; 10956 } 10957 /* Here descaddr is the final physical address, and attributes 10958 * are all in attrs. 10959 */ 10960 fault_type = ARMFault_AccessFlag; 10961 if ((attrs & (1 << 8)) == 0) { 10962 /* Access flag */ 10963 goto do_fault; 10964 } 10965 10966 ap = extract32(attrs, 4, 2); 10967 xn = extract32(attrs, 12, 1); 10968 10969 if (mmu_idx == ARMMMUIdx_Stage2) { 10970 ns = true; 10971 *prot = get_S2prot(env, ap, xn); 10972 } else { 10973 ns = extract32(attrs, 3, 1); 10974 pxn = extract32(attrs, 11, 1); 10975 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10976 } 10977 10978 fault_type = ARMFault_Permission; 10979 if (!(*prot & (1 << access_type))) { 10980 goto do_fault; 10981 } 10982 10983 if (ns) { 10984 /* The NS bit will (as required by the architecture) have no effect if 10985 * the CPU doesn't support TZ or this is a non-secure translation 10986 * regime, because the attribute will already be non-secure. 10987 */ 10988 txattrs->secure = false; 10989 } 10990 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 10991 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 10992 txattrs->target_tlb_bit0 = true; 10993 } 10994 10995 if (cacheattrs != NULL) { 10996 if (mmu_idx == ARMMMUIdx_Stage2) { 10997 cacheattrs->attrs = convert_stage2_attrs(env, 10998 extract32(attrs, 0, 4)); 10999 } else { 11000 /* Index into MAIR registers for cache attributes */ 11001 uint8_t attrindx = extract32(attrs, 0, 3); 11002 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11003 assert(attrindx <= 7); 11004 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11005 } 11006 cacheattrs->shareability = extract32(attrs, 6, 2); 11007 } 11008 11009 *phys_ptr = descaddr; 11010 *page_size_ptr = page_size; 11011 return false; 11012 11013 do_fault: 11014 fi->type = fault_type; 11015 fi->level = level; 11016 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11017 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 11018 return true; 11019 } 11020 11021 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11022 ARMMMUIdx mmu_idx, 11023 int32_t address, int *prot) 11024 { 11025 if (!arm_feature(env, ARM_FEATURE_M)) { 11026 *prot = PAGE_READ | PAGE_WRITE; 11027 switch (address) { 11028 case 0xF0000000 ... 0xFFFFFFFF: 11029 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11030 /* hivecs execing is ok */ 11031 *prot |= PAGE_EXEC; 11032 } 11033 break; 11034 case 0x00000000 ... 0x7FFFFFFF: 11035 *prot |= PAGE_EXEC; 11036 break; 11037 } 11038 } else { 11039 /* Default system address map for M profile cores. 11040 * The architecture specifies which regions are execute-never; 11041 * at the MPU level no other checks are defined. 11042 */ 11043 switch (address) { 11044 case 0x00000000 ... 0x1fffffff: /* ROM */ 11045 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11046 case 0x60000000 ... 0x7fffffff: /* RAM */ 11047 case 0x80000000 ... 0x9fffffff: /* RAM */ 11048 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11049 break; 11050 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11051 case 0xa0000000 ... 0xbfffffff: /* Device */ 11052 case 0xc0000000 ... 0xdfffffff: /* Device */ 11053 case 0xe0000000 ... 0xffffffff: /* System */ 11054 *prot = PAGE_READ | PAGE_WRITE; 11055 break; 11056 default: 11057 g_assert_not_reached(); 11058 } 11059 } 11060 } 11061 11062 static bool pmsav7_use_background_region(ARMCPU *cpu, 11063 ARMMMUIdx mmu_idx, bool is_user) 11064 { 11065 /* Return true if we should use the default memory map as a 11066 * "background" region if there are no hits against any MPU regions. 11067 */ 11068 CPUARMState *env = &cpu->env; 11069 11070 if (is_user) { 11071 return false; 11072 } 11073 11074 if (arm_feature(env, ARM_FEATURE_M)) { 11075 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11076 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11077 } else { 11078 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11079 } 11080 } 11081 11082 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11083 { 11084 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11085 return arm_feature(env, ARM_FEATURE_M) && 11086 extract32(address, 20, 12) == 0xe00; 11087 } 11088 11089 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11090 { 11091 /* True if address is in the M profile system region 11092 * 0xe0000000 - 0xffffffff 11093 */ 11094 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11095 } 11096 11097 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11098 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11099 hwaddr *phys_ptr, int *prot, 11100 target_ulong *page_size, 11101 ARMMMUFaultInfo *fi) 11102 { 11103 ARMCPU *cpu = env_archcpu(env); 11104 int n; 11105 bool is_user = regime_is_user(env, mmu_idx); 11106 11107 *phys_ptr = address; 11108 *page_size = TARGET_PAGE_SIZE; 11109 *prot = 0; 11110 11111 if (regime_translation_disabled(env, mmu_idx) || 11112 m_is_ppb_region(env, address)) { 11113 /* MPU disabled or M profile PPB access: use default memory map. 11114 * The other case which uses the default memory map in the 11115 * v7M ARM ARM pseudocode is exception vector reads from the vector 11116 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11117 * which always does a direct read using address_space_ldl(), rather 11118 * than going via this function, so we don't need to check that here. 11119 */ 11120 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11121 } else { /* MPU enabled */ 11122 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11123 /* region search */ 11124 uint32_t base = env->pmsav7.drbar[n]; 11125 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11126 uint32_t rmask; 11127 bool srdis = false; 11128 11129 if (!(env->pmsav7.drsr[n] & 0x1)) { 11130 continue; 11131 } 11132 11133 if (!rsize) { 11134 qemu_log_mask(LOG_GUEST_ERROR, 11135 "DRSR[%d]: Rsize field cannot be 0\n", n); 11136 continue; 11137 } 11138 rsize++; 11139 rmask = (1ull << rsize) - 1; 11140 11141 if (base & rmask) { 11142 qemu_log_mask(LOG_GUEST_ERROR, 11143 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11144 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11145 n, base, rmask); 11146 continue; 11147 } 11148 11149 if (address < base || address > base + rmask) { 11150 /* 11151 * Address not in this region. We must check whether the 11152 * region covers addresses in the same page as our address. 11153 * In that case we must not report a size that covers the 11154 * whole page for a subsequent hit against a different MPU 11155 * region or the background region, because it would result in 11156 * incorrect TLB hits for subsequent accesses to addresses that 11157 * are in this MPU region. 11158 */ 11159 if (ranges_overlap(base, rmask, 11160 address & TARGET_PAGE_MASK, 11161 TARGET_PAGE_SIZE)) { 11162 *page_size = 1; 11163 } 11164 continue; 11165 } 11166 11167 /* Region matched */ 11168 11169 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11170 int i, snd; 11171 uint32_t srdis_mask; 11172 11173 rsize -= 3; /* sub region size (power of 2) */ 11174 snd = ((address - base) >> rsize) & 0x7; 11175 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11176 11177 srdis_mask = srdis ? 0x3 : 0x0; 11178 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11179 /* This will check in groups of 2, 4 and then 8, whether 11180 * the subregion bits are consistent. rsize is incremented 11181 * back up to give the region size, considering consistent 11182 * adjacent subregions as one region. Stop testing if rsize 11183 * is already big enough for an entire QEMU page. 11184 */ 11185 int snd_rounded = snd & ~(i - 1); 11186 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11187 snd_rounded + 8, i); 11188 if (srdis_mask ^ srdis_multi) { 11189 break; 11190 } 11191 srdis_mask = (srdis_mask << i) | srdis_mask; 11192 rsize++; 11193 } 11194 } 11195 if (srdis) { 11196 continue; 11197 } 11198 if (rsize < TARGET_PAGE_BITS) { 11199 *page_size = 1 << rsize; 11200 } 11201 break; 11202 } 11203 11204 if (n == -1) { /* no hits */ 11205 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11206 /* background fault */ 11207 fi->type = ARMFault_Background; 11208 return true; 11209 } 11210 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11211 } else { /* a MPU hit! */ 11212 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11213 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11214 11215 if (m_is_system_region(env, address)) { 11216 /* System space is always execute never */ 11217 xn = 1; 11218 } 11219 11220 if (is_user) { /* User mode AP bit decoding */ 11221 switch (ap) { 11222 case 0: 11223 case 1: 11224 case 5: 11225 break; /* no access */ 11226 case 3: 11227 *prot |= PAGE_WRITE; 11228 /* fall through */ 11229 case 2: 11230 case 6: 11231 *prot |= PAGE_READ | PAGE_EXEC; 11232 break; 11233 case 7: 11234 /* for v7M, same as 6; for R profile a reserved value */ 11235 if (arm_feature(env, ARM_FEATURE_M)) { 11236 *prot |= PAGE_READ | PAGE_EXEC; 11237 break; 11238 } 11239 /* fall through */ 11240 default: 11241 qemu_log_mask(LOG_GUEST_ERROR, 11242 "DRACR[%d]: Bad value for AP bits: 0x%" 11243 PRIx32 "\n", n, ap); 11244 } 11245 } else { /* Priv. mode AP bits decoding */ 11246 switch (ap) { 11247 case 0: 11248 break; /* no access */ 11249 case 1: 11250 case 2: 11251 case 3: 11252 *prot |= PAGE_WRITE; 11253 /* fall through */ 11254 case 5: 11255 case 6: 11256 *prot |= PAGE_READ | PAGE_EXEC; 11257 break; 11258 case 7: 11259 /* for v7M, same as 6; for R profile a reserved value */ 11260 if (arm_feature(env, ARM_FEATURE_M)) { 11261 *prot |= PAGE_READ | PAGE_EXEC; 11262 break; 11263 } 11264 /* fall through */ 11265 default: 11266 qemu_log_mask(LOG_GUEST_ERROR, 11267 "DRACR[%d]: Bad value for AP bits: 0x%" 11268 PRIx32 "\n", n, ap); 11269 } 11270 } 11271 11272 /* execute never */ 11273 if (xn) { 11274 *prot &= ~PAGE_EXEC; 11275 } 11276 } 11277 } 11278 11279 fi->type = ARMFault_Permission; 11280 fi->level = 1; 11281 return !(*prot & (1 << access_type)); 11282 } 11283 11284 static bool v8m_is_sau_exempt(CPUARMState *env, 11285 uint32_t address, MMUAccessType access_type) 11286 { 11287 /* The architecture specifies that certain address ranges are 11288 * exempt from v8M SAU/IDAU checks. 11289 */ 11290 return 11291 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11292 (address >= 0xe0000000 && address <= 0xe0002fff) || 11293 (address >= 0xe000e000 && address <= 0xe000efff) || 11294 (address >= 0xe002e000 && address <= 0xe002efff) || 11295 (address >= 0xe0040000 && address <= 0xe0041fff) || 11296 (address >= 0xe00ff000 && address <= 0xe00fffff); 11297 } 11298 11299 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11300 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11301 V8M_SAttributes *sattrs) 11302 { 11303 /* Look up the security attributes for this address. Compare the 11304 * pseudocode SecurityCheck() function. 11305 * We assume the caller has zero-initialized *sattrs. 11306 */ 11307 ARMCPU *cpu = env_archcpu(env); 11308 int r; 11309 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11310 int idau_region = IREGION_NOTVALID; 11311 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11312 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11313 11314 if (cpu->idau) { 11315 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11316 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11317 11318 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11319 &idau_nsc); 11320 } 11321 11322 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11323 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11324 return; 11325 } 11326 11327 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11328 sattrs->ns = !regime_is_secure(env, mmu_idx); 11329 return; 11330 } 11331 11332 if (idau_region != IREGION_NOTVALID) { 11333 sattrs->irvalid = true; 11334 sattrs->iregion = idau_region; 11335 } 11336 11337 switch (env->sau.ctrl & 3) { 11338 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11339 break; 11340 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11341 sattrs->ns = true; 11342 break; 11343 default: /* SAU.ENABLE == 1 */ 11344 for (r = 0; r < cpu->sau_sregion; r++) { 11345 if (env->sau.rlar[r] & 1) { 11346 uint32_t base = env->sau.rbar[r] & ~0x1f; 11347 uint32_t limit = env->sau.rlar[r] | 0x1f; 11348 11349 if (base <= address && limit >= address) { 11350 if (base > addr_page_base || limit < addr_page_limit) { 11351 sattrs->subpage = true; 11352 } 11353 if (sattrs->srvalid) { 11354 /* If we hit in more than one region then we must report 11355 * as Secure, not NS-Callable, with no valid region 11356 * number info. 11357 */ 11358 sattrs->ns = false; 11359 sattrs->nsc = false; 11360 sattrs->sregion = 0; 11361 sattrs->srvalid = false; 11362 break; 11363 } else { 11364 if (env->sau.rlar[r] & 2) { 11365 sattrs->nsc = true; 11366 } else { 11367 sattrs->ns = true; 11368 } 11369 sattrs->srvalid = true; 11370 sattrs->sregion = r; 11371 } 11372 } else { 11373 /* 11374 * Address not in this region. We must check whether the 11375 * region covers addresses in the same page as our address. 11376 * In that case we must not report a size that covers the 11377 * whole page for a subsequent hit against a different MPU 11378 * region or the background region, because it would result 11379 * in incorrect TLB hits for subsequent accesses to 11380 * addresses that are in this MPU region. 11381 */ 11382 if (limit >= base && 11383 ranges_overlap(base, limit - base + 1, 11384 addr_page_base, 11385 TARGET_PAGE_SIZE)) { 11386 sattrs->subpage = true; 11387 } 11388 } 11389 } 11390 } 11391 break; 11392 } 11393 11394 /* 11395 * The IDAU will override the SAU lookup results if it specifies 11396 * higher security than the SAU does. 11397 */ 11398 if (!idau_ns) { 11399 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11400 sattrs->ns = false; 11401 sattrs->nsc = idau_nsc; 11402 } 11403 } 11404 } 11405 11406 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11407 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11408 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11409 int *prot, bool *is_subpage, 11410 ARMMMUFaultInfo *fi, uint32_t *mregion) 11411 { 11412 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11413 * that a full phys-to-virt translation does). 11414 * mregion is (if not NULL) set to the region number which matched, 11415 * or -1 if no region number is returned (MPU off, address did not 11416 * hit a region, address hit in multiple regions). 11417 * We set is_subpage to true if the region hit doesn't cover the 11418 * entire TARGET_PAGE the address is within. 11419 */ 11420 ARMCPU *cpu = env_archcpu(env); 11421 bool is_user = regime_is_user(env, mmu_idx); 11422 uint32_t secure = regime_is_secure(env, mmu_idx); 11423 int n; 11424 int matchregion = -1; 11425 bool hit = false; 11426 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11427 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11428 11429 *is_subpage = false; 11430 *phys_ptr = address; 11431 *prot = 0; 11432 if (mregion) { 11433 *mregion = -1; 11434 } 11435 11436 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11437 * was an exception vector read from the vector table (which is always 11438 * done using the default system address map), because those accesses 11439 * are done in arm_v7m_load_vector(), which always does a direct 11440 * read using address_space_ldl(), rather than going via this function. 11441 */ 11442 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11443 hit = true; 11444 } else if (m_is_ppb_region(env, address)) { 11445 hit = true; 11446 } else { 11447 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11448 hit = true; 11449 } 11450 11451 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11452 /* region search */ 11453 /* Note that the base address is bits [31:5] from the register 11454 * with bits [4:0] all zeroes, but the limit address is bits 11455 * [31:5] from the register with bits [4:0] all ones. 11456 */ 11457 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11458 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11459 11460 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11461 /* Region disabled */ 11462 continue; 11463 } 11464 11465 if (address < base || address > limit) { 11466 /* 11467 * Address not in this region. We must check whether the 11468 * region covers addresses in the same page as our address. 11469 * In that case we must not report a size that covers the 11470 * whole page for a subsequent hit against a different MPU 11471 * region or the background region, because it would result in 11472 * incorrect TLB hits for subsequent accesses to addresses that 11473 * are in this MPU region. 11474 */ 11475 if (limit >= base && 11476 ranges_overlap(base, limit - base + 1, 11477 addr_page_base, 11478 TARGET_PAGE_SIZE)) { 11479 *is_subpage = true; 11480 } 11481 continue; 11482 } 11483 11484 if (base > addr_page_base || limit < addr_page_limit) { 11485 *is_subpage = true; 11486 } 11487 11488 if (matchregion != -1) { 11489 /* Multiple regions match -- always a failure (unlike 11490 * PMSAv7 where highest-numbered-region wins) 11491 */ 11492 fi->type = ARMFault_Permission; 11493 fi->level = 1; 11494 return true; 11495 } 11496 11497 matchregion = n; 11498 hit = true; 11499 } 11500 } 11501 11502 if (!hit) { 11503 /* background fault */ 11504 fi->type = ARMFault_Background; 11505 return true; 11506 } 11507 11508 if (matchregion == -1) { 11509 /* hit using the background region */ 11510 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11511 } else { 11512 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11513 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11514 11515 if (m_is_system_region(env, address)) { 11516 /* System space is always execute never */ 11517 xn = 1; 11518 } 11519 11520 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11521 if (*prot && !xn) { 11522 *prot |= PAGE_EXEC; 11523 } 11524 /* We don't need to look the attribute up in the MAIR0/MAIR1 11525 * registers because that only tells us about cacheability. 11526 */ 11527 if (mregion) { 11528 *mregion = matchregion; 11529 } 11530 } 11531 11532 fi->type = ARMFault_Permission; 11533 fi->level = 1; 11534 return !(*prot & (1 << access_type)); 11535 } 11536 11537 11538 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11539 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11540 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11541 int *prot, target_ulong *page_size, 11542 ARMMMUFaultInfo *fi) 11543 { 11544 uint32_t secure = regime_is_secure(env, mmu_idx); 11545 V8M_SAttributes sattrs = {}; 11546 bool ret; 11547 bool mpu_is_subpage; 11548 11549 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11550 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11551 if (access_type == MMU_INST_FETCH) { 11552 /* Instruction fetches always use the MMU bank and the 11553 * transaction attribute determined by the fetch address, 11554 * regardless of CPU state. This is painful for QEMU 11555 * to handle, because it would mean we need to encode 11556 * into the mmu_idx not just the (user, negpri) information 11557 * for the current security state but also that for the 11558 * other security state, which would balloon the number 11559 * of mmu_idx values needed alarmingly. 11560 * Fortunately we can avoid this because it's not actually 11561 * possible to arbitrarily execute code from memory with 11562 * the wrong security attribute: it will always generate 11563 * an exception of some kind or another, apart from the 11564 * special case of an NS CPU executing an SG instruction 11565 * in S&NSC memory. So we always just fail the translation 11566 * here and sort things out in the exception handler 11567 * (including possibly emulating an SG instruction). 11568 */ 11569 if (sattrs.ns != !secure) { 11570 if (sattrs.nsc) { 11571 fi->type = ARMFault_QEMU_NSCExec; 11572 } else { 11573 fi->type = ARMFault_QEMU_SFault; 11574 } 11575 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11576 *phys_ptr = address; 11577 *prot = 0; 11578 return true; 11579 } 11580 } else { 11581 /* For data accesses we always use the MMU bank indicated 11582 * by the current CPU state, but the security attributes 11583 * might downgrade a secure access to nonsecure. 11584 */ 11585 if (sattrs.ns) { 11586 txattrs->secure = false; 11587 } else if (!secure) { 11588 /* NS access to S memory must fault. 11589 * Architecturally we should first check whether the 11590 * MPU information for this address indicates that we 11591 * are doing an unaligned access to Device memory, which 11592 * should generate a UsageFault instead. QEMU does not 11593 * currently check for that kind of unaligned access though. 11594 * If we added it we would need to do so as a special case 11595 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11596 */ 11597 fi->type = ARMFault_QEMU_SFault; 11598 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11599 *phys_ptr = address; 11600 *prot = 0; 11601 return true; 11602 } 11603 } 11604 } 11605 11606 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11607 txattrs, prot, &mpu_is_subpage, fi, NULL); 11608 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11609 return ret; 11610 } 11611 11612 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11613 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11614 hwaddr *phys_ptr, int *prot, 11615 ARMMMUFaultInfo *fi) 11616 { 11617 int n; 11618 uint32_t mask; 11619 uint32_t base; 11620 bool is_user = regime_is_user(env, mmu_idx); 11621 11622 if (regime_translation_disabled(env, mmu_idx)) { 11623 /* MPU disabled. */ 11624 *phys_ptr = address; 11625 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11626 return false; 11627 } 11628 11629 *phys_ptr = address; 11630 for (n = 7; n >= 0; n--) { 11631 base = env->cp15.c6_region[n]; 11632 if ((base & 1) == 0) { 11633 continue; 11634 } 11635 mask = 1 << ((base >> 1) & 0x1f); 11636 /* Keep this shift separate from the above to avoid an 11637 (undefined) << 32. */ 11638 mask = (mask << 1) - 1; 11639 if (((base ^ address) & ~mask) == 0) { 11640 break; 11641 } 11642 } 11643 if (n < 0) { 11644 fi->type = ARMFault_Background; 11645 return true; 11646 } 11647 11648 if (access_type == MMU_INST_FETCH) { 11649 mask = env->cp15.pmsav5_insn_ap; 11650 } else { 11651 mask = env->cp15.pmsav5_data_ap; 11652 } 11653 mask = (mask >> (n * 4)) & 0xf; 11654 switch (mask) { 11655 case 0: 11656 fi->type = ARMFault_Permission; 11657 fi->level = 1; 11658 return true; 11659 case 1: 11660 if (is_user) { 11661 fi->type = ARMFault_Permission; 11662 fi->level = 1; 11663 return true; 11664 } 11665 *prot = PAGE_READ | PAGE_WRITE; 11666 break; 11667 case 2: 11668 *prot = PAGE_READ; 11669 if (!is_user) { 11670 *prot |= PAGE_WRITE; 11671 } 11672 break; 11673 case 3: 11674 *prot = PAGE_READ | PAGE_WRITE; 11675 break; 11676 case 5: 11677 if (is_user) { 11678 fi->type = ARMFault_Permission; 11679 fi->level = 1; 11680 return true; 11681 } 11682 *prot = PAGE_READ; 11683 break; 11684 case 6: 11685 *prot = PAGE_READ; 11686 break; 11687 default: 11688 /* Bad permission. */ 11689 fi->type = ARMFault_Permission; 11690 fi->level = 1; 11691 return true; 11692 } 11693 *prot |= PAGE_EXEC; 11694 return false; 11695 } 11696 11697 /* Combine either inner or outer cacheability attributes for normal 11698 * memory, according to table D4-42 and pseudocode procedure 11699 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11700 * 11701 * NB: only stage 1 includes allocation hints (RW bits), leading to 11702 * some asymmetry. 11703 */ 11704 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11705 { 11706 if (s1 == 4 || s2 == 4) { 11707 /* non-cacheable has precedence */ 11708 return 4; 11709 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11710 /* stage 1 write-through takes precedence */ 11711 return s1; 11712 } else if (extract32(s2, 2, 2) == 2) { 11713 /* stage 2 write-through takes precedence, but the allocation hint 11714 * is still taken from stage 1 11715 */ 11716 return (2 << 2) | extract32(s1, 0, 2); 11717 } else { /* write-back */ 11718 return s1; 11719 } 11720 } 11721 11722 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11723 * and CombineS1S2Desc() 11724 * 11725 * @s1: Attributes from stage 1 walk 11726 * @s2: Attributes from stage 2 walk 11727 */ 11728 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11729 { 11730 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 11731 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 11732 ARMCacheAttrs ret; 11733 11734 /* Combine shareability attributes (table D4-43) */ 11735 if (s1.shareability == 2 || s2.shareability == 2) { 11736 /* if either are outer-shareable, the result is outer-shareable */ 11737 ret.shareability = 2; 11738 } else if (s1.shareability == 3 || s2.shareability == 3) { 11739 /* if either are inner-shareable, the result is inner-shareable */ 11740 ret.shareability = 3; 11741 } else { 11742 /* both non-shareable */ 11743 ret.shareability = 0; 11744 } 11745 11746 /* Combine memory type and cacheability attributes */ 11747 if (s1hi == 0 || s2hi == 0) { 11748 /* Device has precedence over normal */ 11749 if (s1lo == 0 || s2lo == 0) { 11750 /* nGnRnE has precedence over anything */ 11751 ret.attrs = 0; 11752 } else if (s1lo == 4 || s2lo == 4) { 11753 /* non-Reordering has precedence over Reordering */ 11754 ret.attrs = 4; /* nGnRE */ 11755 } else if (s1lo == 8 || s2lo == 8) { 11756 /* non-Gathering has precedence over Gathering */ 11757 ret.attrs = 8; /* nGRE */ 11758 } else { 11759 ret.attrs = 0xc; /* GRE */ 11760 } 11761 11762 /* Any location for which the resultant memory type is any 11763 * type of Device memory is always treated as Outer Shareable. 11764 */ 11765 ret.shareability = 2; 11766 } else { /* Normal memory */ 11767 /* Outer/inner cacheability combine independently */ 11768 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11769 | combine_cacheattr_nibble(s1lo, s2lo); 11770 11771 if (ret.attrs == 0x44) { 11772 /* Any location for which the resultant memory type is Normal 11773 * Inner Non-cacheable, Outer Non-cacheable is always treated 11774 * as Outer Shareable. 11775 */ 11776 ret.shareability = 2; 11777 } 11778 } 11779 11780 return ret; 11781 } 11782 11783 11784 /* get_phys_addr - get the physical address for this virtual address 11785 * 11786 * Find the physical address corresponding to the given virtual address, 11787 * by doing a translation table walk on MMU based systems or using the 11788 * MPU state on MPU based systems. 11789 * 11790 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11791 * prot and page_size may not be filled in, and the populated fsr value provides 11792 * information on why the translation aborted, in the format of a 11793 * DFSR/IFSR fault register, with the following caveats: 11794 * * we honour the short vs long DFSR format differences. 11795 * * the WnR bit is never set (the caller must do this). 11796 * * for PSMAv5 based systems we don't bother to return a full FSR format 11797 * value. 11798 * 11799 * @env: CPUARMState 11800 * @address: virtual address to get physical address for 11801 * @access_type: 0 for read, 1 for write, 2 for execute 11802 * @mmu_idx: MMU index indicating required translation regime 11803 * @phys_ptr: set to the physical address corresponding to the virtual address 11804 * @attrs: set to the memory transaction attributes to use 11805 * @prot: set to the permissions for the page containing phys_ptr 11806 * @page_size: set to the size of the page containing phys_ptr 11807 * @fi: set to fault info if the translation fails 11808 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11809 */ 11810 bool get_phys_addr(CPUARMState *env, target_ulong address, 11811 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11812 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11813 target_ulong *page_size, 11814 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11815 { 11816 if (mmu_idx == ARMMMUIdx_E10_0 || 11817 mmu_idx == ARMMMUIdx_E10_1 || 11818 mmu_idx == ARMMMUIdx_E10_1_PAN) { 11819 /* Call ourselves recursively to do the stage 1 and then stage 2 11820 * translations. 11821 */ 11822 if (arm_feature(env, ARM_FEATURE_EL2)) { 11823 hwaddr ipa; 11824 int s2_prot; 11825 int ret; 11826 ARMCacheAttrs cacheattrs2 = {}; 11827 11828 ret = get_phys_addr(env, address, access_type, 11829 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 11830 prot, page_size, fi, cacheattrs); 11831 11832 /* If S1 fails or S2 is disabled, return early. */ 11833 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 11834 *phys_ptr = ipa; 11835 return ret; 11836 } 11837 11838 /* S1 is done. Now do S2 translation. */ 11839 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 11840 phys_ptr, attrs, &s2_prot, 11841 page_size, fi, 11842 cacheattrs != NULL ? &cacheattrs2 : NULL); 11843 fi->s2addr = ipa; 11844 /* Combine the S1 and S2 perms. */ 11845 *prot &= s2_prot; 11846 11847 /* Combine the S1 and S2 cache attributes, if needed */ 11848 if (!ret && cacheattrs != NULL) { 11849 if (env->cp15.hcr_el2 & HCR_DC) { 11850 /* 11851 * HCR.DC forces the first stage attributes to 11852 * Normal Non-Shareable, 11853 * Inner Write-Back Read-Allocate Write-Allocate, 11854 * Outer Write-Back Read-Allocate Write-Allocate. 11855 */ 11856 cacheattrs->attrs = 0xff; 11857 cacheattrs->shareability = 0; 11858 } 11859 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 11860 } 11861 11862 return ret; 11863 } else { 11864 /* 11865 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 11866 */ 11867 mmu_idx = stage_1_mmu_idx(mmu_idx); 11868 } 11869 } 11870 11871 /* The page table entries may downgrade secure to non-secure, but 11872 * cannot upgrade an non-secure translation regime's attributes 11873 * to secure. 11874 */ 11875 attrs->secure = regime_is_secure(env, mmu_idx); 11876 attrs->user = regime_is_user(env, mmu_idx); 11877 11878 /* Fast Context Switch Extension. This doesn't exist at all in v8. 11879 * In v7 and earlier it affects all stage 1 translations. 11880 */ 11881 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 11882 && !arm_feature(env, ARM_FEATURE_V8)) { 11883 if (regime_el(env, mmu_idx) == 3) { 11884 address += env->cp15.fcseidr_s; 11885 } else { 11886 address += env->cp15.fcseidr_ns; 11887 } 11888 } 11889 11890 if (arm_feature(env, ARM_FEATURE_PMSA)) { 11891 bool ret; 11892 *page_size = TARGET_PAGE_SIZE; 11893 11894 if (arm_feature(env, ARM_FEATURE_V8)) { 11895 /* PMSAv8 */ 11896 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 11897 phys_ptr, attrs, prot, page_size, fi); 11898 } else if (arm_feature(env, ARM_FEATURE_V7)) { 11899 /* PMSAv7 */ 11900 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 11901 phys_ptr, prot, page_size, fi); 11902 } else { 11903 /* Pre-v7 MPU */ 11904 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 11905 phys_ptr, prot, fi); 11906 } 11907 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 11908 " mmu_idx %u -> %s (prot %c%c%c)\n", 11909 access_type == MMU_DATA_LOAD ? "reading" : 11910 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 11911 (uint32_t)address, mmu_idx, 11912 ret ? "Miss" : "Hit", 11913 *prot & PAGE_READ ? 'r' : '-', 11914 *prot & PAGE_WRITE ? 'w' : '-', 11915 *prot & PAGE_EXEC ? 'x' : '-'); 11916 11917 return ret; 11918 } 11919 11920 /* Definitely a real MMU, not an MPU */ 11921 11922 if (regime_translation_disabled(env, mmu_idx)) { 11923 /* 11924 * MMU disabled. S1 addresses within aa64 translation regimes are 11925 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 11926 */ 11927 if (mmu_idx != ARMMMUIdx_Stage2) { 11928 int r_el = regime_el(env, mmu_idx); 11929 if (arm_el_is_aa64(env, r_el)) { 11930 int pamax = arm_pamax(env_archcpu(env)); 11931 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 11932 int addrtop, tbi; 11933 11934 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11935 if (access_type == MMU_INST_FETCH) { 11936 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11937 } 11938 tbi = (tbi >> extract64(address, 55, 1)) & 1; 11939 addrtop = (tbi ? 55 : 63); 11940 11941 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 11942 fi->type = ARMFault_AddressSize; 11943 fi->level = 0; 11944 fi->stage2 = false; 11945 return 1; 11946 } 11947 11948 /* 11949 * When TBI is disabled, we've just validated that all of the 11950 * bits above PAMax are zero, so logically we only need to 11951 * clear the top byte for TBI. But it's clearer to follow 11952 * the pseudocode set of addrdesc.paddress. 11953 */ 11954 address = extract64(address, 0, 52); 11955 } 11956 } 11957 *phys_ptr = address; 11958 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11959 *page_size = TARGET_PAGE_SIZE; 11960 return 0; 11961 } 11962 11963 if (regime_using_lpae_format(env, mmu_idx)) { 11964 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 11965 phys_ptr, attrs, prot, page_size, 11966 fi, cacheattrs); 11967 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11968 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11969 phys_ptr, attrs, prot, page_size, fi); 11970 } else { 11971 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11972 phys_ptr, prot, page_size, fi); 11973 } 11974 } 11975 11976 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11977 MemTxAttrs *attrs) 11978 { 11979 ARMCPU *cpu = ARM_CPU(cs); 11980 CPUARMState *env = &cpu->env; 11981 hwaddr phys_addr; 11982 target_ulong page_size; 11983 int prot; 11984 bool ret; 11985 ARMMMUFaultInfo fi = {}; 11986 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11987 11988 *attrs = (MemTxAttrs) {}; 11989 11990 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11991 attrs, &prot, &page_size, &fi, NULL); 11992 11993 if (ret) { 11994 return -1; 11995 } 11996 return phys_addr; 11997 } 11998 11999 #endif 12000 12001 /* Note that signed overflow is undefined in C. The following routines are 12002 careful to use unsigned types where modulo arithmetic is required. 12003 Failure to do so _will_ break on newer gcc. */ 12004 12005 /* Signed saturating arithmetic. */ 12006 12007 /* Perform 16-bit signed saturating addition. */ 12008 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12009 { 12010 uint16_t res; 12011 12012 res = a + b; 12013 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12014 if (a & 0x8000) 12015 res = 0x8000; 12016 else 12017 res = 0x7fff; 12018 } 12019 return res; 12020 } 12021 12022 /* Perform 8-bit signed saturating addition. */ 12023 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12024 { 12025 uint8_t res; 12026 12027 res = a + b; 12028 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12029 if (a & 0x80) 12030 res = 0x80; 12031 else 12032 res = 0x7f; 12033 } 12034 return res; 12035 } 12036 12037 /* Perform 16-bit signed saturating subtraction. */ 12038 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12039 { 12040 uint16_t res; 12041 12042 res = a - b; 12043 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12044 if (a & 0x8000) 12045 res = 0x8000; 12046 else 12047 res = 0x7fff; 12048 } 12049 return res; 12050 } 12051 12052 /* Perform 8-bit signed saturating subtraction. */ 12053 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12054 { 12055 uint8_t res; 12056 12057 res = a - b; 12058 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12059 if (a & 0x80) 12060 res = 0x80; 12061 else 12062 res = 0x7f; 12063 } 12064 return res; 12065 } 12066 12067 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12068 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12069 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12070 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12071 #define PFX q 12072 12073 #include "op_addsub.h" 12074 12075 /* Unsigned saturating arithmetic. */ 12076 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12077 { 12078 uint16_t res; 12079 res = a + b; 12080 if (res < a) 12081 res = 0xffff; 12082 return res; 12083 } 12084 12085 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12086 { 12087 if (a > b) 12088 return a - b; 12089 else 12090 return 0; 12091 } 12092 12093 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12094 { 12095 uint8_t res; 12096 res = a + b; 12097 if (res < a) 12098 res = 0xff; 12099 return res; 12100 } 12101 12102 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12103 { 12104 if (a > b) 12105 return a - b; 12106 else 12107 return 0; 12108 } 12109 12110 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12111 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12112 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12113 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12114 #define PFX uq 12115 12116 #include "op_addsub.h" 12117 12118 /* Signed modulo arithmetic. */ 12119 #define SARITH16(a, b, n, op) do { \ 12120 int32_t sum; \ 12121 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12122 RESULT(sum, n, 16); \ 12123 if (sum >= 0) \ 12124 ge |= 3 << (n * 2); \ 12125 } while(0) 12126 12127 #define SARITH8(a, b, n, op) do { \ 12128 int32_t sum; \ 12129 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12130 RESULT(sum, n, 8); \ 12131 if (sum >= 0) \ 12132 ge |= 1 << n; \ 12133 } while(0) 12134 12135 12136 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12137 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12138 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12139 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12140 #define PFX s 12141 #define ARITH_GE 12142 12143 #include "op_addsub.h" 12144 12145 /* Unsigned modulo arithmetic. */ 12146 #define ADD16(a, b, n) do { \ 12147 uint32_t sum; \ 12148 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12149 RESULT(sum, n, 16); \ 12150 if ((sum >> 16) == 1) \ 12151 ge |= 3 << (n * 2); \ 12152 } while(0) 12153 12154 #define ADD8(a, b, n) do { \ 12155 uint32_t sum; \ 12156 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12157 RESULT(sum, n, 8); \ 12158 if ((sum >> 8) == 1) \ 12159 ge |= 1 << n; \ 12160 } while(0) 12161 12162 #define SUB16(a, b, n) do { \ 12163 uint32_t sum; \ 12164 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12165 RESULT(sum, n, 16); \ 12166 if ((sum >> 16) == 0) \ 12167 ge |= 3 << (n * 2); \ 12168 } while(0) 12169 12170 #define SUB8(a, b, n) do { \ 12171 uint32_t sum; \ 12172 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12173 RESULT(sum, n, 8); \ 12174 if ((sum >> 8) == 0) \ 12175 ge |= 1 << n; \ 12176 } while(0) 12177 12178 #define PFX u 12179 #define ARITH_GE 12180 12181 #include "op_addsub.h" 12182 12183 /* Halved signed arithmetic. */ 12184 #define ADD16(a, b, n) \ 12185 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12186 #define SUB16(a, b, n) \ 12187 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12188 #define ADD8(a, b, n) \ 12189 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12190 #define SUB8(a, b, n) \ 12191 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12192 #define PFX sh 12193 12194 #include "op_addsub.h" 12195 12196 /* Halved unsigned arithmetic. */ 12197 #define ADD16(a, b, n) \ 12198 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12199 #define SUB16(a, b, n) \ 12200 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12201 #define ADD8(a, b, n) \ 12202 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12203 #define SUB8(a, b, n) \ 12204 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12205 #define PFX uh 12206 12207 #include "op_addsub.h" 12208 12209 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12210 { 12211 if (a > b) 12212 return a - b; 12213 else 12214 return b - a; 12215 } 12216 12217 /* Unsigned sum of absolute byte differences. */ 12218 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12219 { 12220 uint32_t sum; 12221 sum = do_usad(a, b); 12222 sum += do_usad(a >> 8, b >> 8); 12223 sum += do_usad(a >> 16, b >>16); 12224 sum += do_usad(a >> 24, b >> 24); 12225 return sum; 12226 } 12227 12228 /* For ARMv6 SEL instruction. */ 12229 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12230 { 12231 uint32_t mask; 12232 12233 mask = 0; 12234 if (flags & 1) 12235 mask |= 0xff; 12236 if (flags & 2) 12237 mask |= 0xff00; 12238 if (flags & 4) 12239 mask |= 0xff0000; 12240 if (flags & 8) 12241 mask |= 0xff000000; 12242 return (a & mask) | (b & ~mask); 12243 } 12244 12245 /* CRC helpers. 12246 * The upper bytes of val (above the number specified by 'bytes') must have 12247 * been zeroed out by the caller. 12248 */ 12249 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12250 { 12251 uint8_t buf[4]; 12252 12253 stl_le_p(buf, val); 12254 12255 /* zlib crc32 converts the accumulator and output to one's complement. */ 12256 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12257 } 12258 12259 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12260 { 12261 uint8_t buf[4]; 12262 12263 stl_le_p(buf, val); 12264 12265 /* Linux crc32c converts the output to one's complement. */ 12266 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12267 } 12268 12269 /* Return the exception level to which FP-disabled exceptions should 12270 * be taken, or 0 if FP is enabled. 12271 */ 12272 int fp_exception_el(CPUARMState *env, int cur_el) 12273 { 12274 #ifndef CONFIG_USER_ONLY 12275 /* CPACR and the CPTR registers don't exist before v6, so FP is 12276 * always accessible 12277 */ 12278 if (!arm_feature(env, ARM_FEATURE_V6)) { 12279 return 0; 12280 } 12281 12282 if (arm_feature(env, ARM_FEATURE_M)) { 12283 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12284 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12285 return 1; 12286 } 12287 12288 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12289 if (!extract32(env->v7m.nsacr, 10, 1)) { 12290 /* FP insns cause a NOCP UsageFault taken to Secure */ 12291 return 3; 12292 } 12293 } 12294 12295 return 0; 12296 } 12297 12298 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12299 * 0, 2 : trap EL0 and EL1/PL1 accesses 12300 * 1 : trap only EL0 accesses 12301 * 3 : trap no accesses 12302 * This register is ignored if E2H+TGE are both set. 12303 */ 12304 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12305 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12306 12307 switch (fpen) { 12308 case 0: 12309 case 2: 12310 if (cur_el == 0 || cur_el == 1) { 12311 /* Trap to PL1, which might be EL1 or EL3 */ 12312 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12313 return 3; 12314 } 12315 return 1; 12316 } 12317 if (cur_el == 3 && !is_a64(env)) { 12318 /* Secure PL1 running at EL3 */ 12319 return 3; 12320 } 12321 break; 12322 case 1: 12323 if (cur_el == 0) { 12324 return 1; 12325 } 12326 break; 12327 case 3: 12328 break; 12329 } 12330 } 12331 12332 /* 12333 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12334 * to control non-secure access to the FPU. It doesn't have any 12335 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12336 */ 12337 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12338 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12339 if (!extract32(env->cp15.nsacr, 10, 1)) { 12340 /* FP insns act as UNDEF */ 12341 return cur_el == 2 ? 2 : 1; 12342 } 12343 } 12344 12345 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12346 * check because zero bits in the registers mean "don't trap". 12347 */ 12348 12349 /* CPTR_EL2 : present in v7VE or v8 */ 12350 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12351 && !arm_is_secure_below_el3(env)) { 12352 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12353 return 2; 12354 } 12355 12356 /* CPTR_EL3 : present in v8 */ 12357 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12358 /* Trap all FP ops to EL3 */ 12359 return 3; 12360 } 12361 #endif 12362 return 0; 12363 } 12364 12365 /* Return the exception level we're running at if this is our mmu_idx */ 12366 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12367 { 12368 if (mmu_idx & ARM_MMU_IDX_M) { 12369 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12370 } 12371 12372 switch (mmu_idx) { 12373 case ARMMMUIdx_E10_0: 12374 case ARMMMUIdx_E20_0: 12375 case ARMMMUIdx_SE10_0: 12376 return 0; 12377 case ARMMMUIdx_E10_1: 12378 case ARMMMUIdx_E10_1_PAN: 12379 case ARMMMUIdx_SE10_1: 12380 case ARMMMUIdx_SE10_1_PAN: 12381 return 1; 12382 case ARMMMUIdx_E2: 12383 case ARMMMUIdx_E20_2: 12384 case ARMMMUIdx_E20_2_PAN: 12385 return 2; 12386 case ARMMMUIdx_SE3: 12387 return 3; 12388 default: 12389 g_assert_not_reached(); 12390 } 12391 } 12392 12393 #ifndef CONFIG_TCG 12394 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12395 { 12396 g_assert_not_reached(); 12397 } 12398 #endif 12399 12400 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12401 { 12402 if (arm_feature(env, ARM_FEATURE_M)) { 12403 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12404 } 12405 12406 /* See ARM pseudo-function ELIsInHost. */ 12407 switch (el) { 12408 case 0: 12409 if (arm_is_secure_below_el3(env)) { 12410 return ARMMMUIdx_SE10_0; 12411 } 12412 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12413 && arm_el_is_aa64(env, 2)) { 12414 return ARMMMUIdx_E20_0; 12415 } 12416 return ARMMMUIdx_E10_0; 12417 case 1: 12418 if (arm_is_secure_below_el3(env)) { 12419 if (env->pstate & PSTATE_PAN) { 12420 return ARMMMUIdx_SE10_1_PAN; 12421 } 12422 return ARMMMUIdx_SE10_1; 12423 } 12424 if (env->pstate & PSTATE_PAN) { 12425 return ARMMMUIdx_E10_1_PAN; 12426 } 12427 return ARMMMUIdx_E10_1; 12428 case 2: 12429 /* TODO: ARMv8.4-SecEL2 */ 12430 /* Note that TGE does not apply at EL2. */ 12431 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12432 if (env->pstate & PSTATE_PAN) { 12433 return ARMMMUIdx_E20_2_PAN; 12434 } 12435 return ARMMMUIdx_E20_2; 12436 } 12437 return ARMMMUIdx_E2; 12438 case 3: 12439 return ARMMMUIdx_SE3; 12440 default: 12441 g_assert_not_reached(); 12442 } 12443 } 12444 12445 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12446 { 12447 return arm_mmu_idx_el(env, arm_current_el(env)); 12448 } 12449 12450 #ifndef CONFIG_USER_ONLY 12451 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12452 { 12453 return stage_1_mmu_idx(arm_mmu_idx(env)); 12454 } 12455 #endif 12456 12457 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12458 ARMMMUIdx mmu_idx, uint32_t flags) 12459 { 12460 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12461 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12462 arm_to_core_mmu_idx(mmu_idx)); 12463 12464 if (arm_singlestep_active(env)) { 12465 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12466 } 12467 return flags; 12468 } 12469 12470 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12471 ARMMMUIdx mmu_idx, uint32_t flags) 12472 { 12473 bool sctlr_b = arm_sctlr_b(env); 12474 12475 if (sctlr_b) { 12476 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12477 } 12478 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12479 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12480 } 12481 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12482 12483 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12484 } 12485 12486 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12487 ARMMMUIdx mmu_idx) 12488 { 12489 uint32_t flags = 0; 12490 12491 if (arm_v7m_is_handler_mode(env)) { 12492 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12493 } 12494 12495 /* 12496 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12497 * is suppressing them because the requested execution priority 12498 * is less than 0. 12499 */ 12500 if (arm_feature(env, ARM_FEATURE_V8) && 12501 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12502 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12503 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12504 } 12505 12506 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12507 } 12508 12509 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12510 { 12511 int flags = 0; 12512 12513 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12514 arm_debug_target_el(env)); 12515 return flags; 12516 } 12517 12518 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12519 ARMMMUIdx mmu_idx) 12520 { 12521 uint32_t flags = rebuild_hflags_aprofile(env); 12522 12523 if (arm_el_is_aa64(env, 1)) { 12524 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12525 } 12526 12527 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12528 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12529 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12530 } 12531 12532 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12533 } 12534 12535 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12536 ARMMMUIdx mmu_idx) 12537 { 12538 uint32_t flags = rebuild_hflags_aprofile(env); 12539 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12540 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12541 uint64_t sctlr; 12542 int tbii, tbid; 12543 12544 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12545 12546 /* Get control bits for tagged addresses. */ 12547 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12548 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12549 12550 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12551 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12552 12553 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12554 int sve_el = sve_exception_el(env, el); 12555 uint32_t zcr_len; 12556 12557 /* 12558 * If SVE is disabled, but FP is enabled, 12559 * then the effective len is 0. 12560 */ 12561 if (sve_el != 0 && fp_el == 0) { 12562 zcr_len = 0; 12563 } else { 12564 zcr_len = sve_zcr_len_for_el(env, el); 12565 } 12566 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12567 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12568 } 12569 12570 sctlr = regime_sctlr(env, stage1); 12571 12572 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12573 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12574 } 12575 12576 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12577 /* 12578 * In order to save space in flags, we record only whether 12579 * pauth is "inactive", meaning all insns are implemented as 12580 * a nop, or "active" when some action must be performed. 12581 * The decision of which action to take is left to a helper. 12582 */ 12583 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12584 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12585 } 12586 } 12587 12588 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12589 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12590 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12591 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12592 } 12593 } 12594 12595 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12596 if (!(env->pstate & PSTATE_UAO)) { 12597 switch (mmu_idx) { 12598 case ARMMMUIdx_E10_1: 12599 case ARMMMUIdx_E10_1_PAN: 12600 case ARMMMUIdx_SE10_1: 12601 case ARMMMUIdx_SE10_1_PAN: 12602 /* TODO: ARMv8.3-NV */ 12603 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12604 break; 12605 case ARMMMUIdx_E20_2: 12606 case ARMMMUIdx_E20_2_PAN: 12607 /* TODO: ARMv8.4-SecEL2 */ 12608 /* 12609 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12610 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12611 */ 12612 if (env->cp15.hcr_el2 & HCR_TGE) { 12613 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12614 } 12615 break; 12616 default: 12617 break; 12618 } 12619 } 12620 12621 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12622 } 12623 12624 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12625 { 12626 int el = arm_current_el(env); 12627 int fp_el = fp_exception_el(env, el); 12628 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12629 12630 if (is_a64(env)) { 12631 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12632 } else if (arm_feature(env, ARM_FEATURE_M)) { 12633 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12634 } else { 12635 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12636 } 12637 } 12638 12639 void arm_rebuild_hflags(CPUARMState *env) 12640 { 12641 env->hflags = rebuild_hflags_internal(env); 12642 } 12643 12644 /* 12645 * If we have triggered a EL state change we can't rely on the 12646 * translator having passed it to us, we need to recompute. 12647 */ 12648 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12649 { 12650 int el = arm_current_el(env); 12651 int fp_el = fp_exception_el(env, el); 12652 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12653 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12654 } 12655 12656 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12657 { 12658 int fp_el = fp_exception_el(env, el); 12659 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12660 12661 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12662 } 12663 12664 /* 12665 * If we have triggered a EL state change we can't rely on the 12666 * translator having passed it to us, we need to recompute. 12667 */ 12668 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12669 { 12670 int el = arm_current_el(env); 12671 int fp_el = fp_exception_el(env, el); 12672 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12673 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12674 } 12675 12676 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12677 { 12678 int fp_el = fp_exception_el(env, el); 12679 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12680 12681 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12682 } 12683 12684 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12685 { 12686 int fp_el = fp_exception_el(env, el); 12687 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12688 12689 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12690 } 12691 12692 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12693 { 12694 #ifdef CONFIG_DEBUG_TCG 12695 uint32_t env_flags_current = env->hflags; 12696 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12697 12698 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12699 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12700 env_flags_current, env_flags_rebuilt); 12701 abort(); 12702 } 12703 #endif 12704 } 12705 12706 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12707 target_ulong *cs_base, uint32_t *pflags) 12708 { 12709 uint32_t flags = env->hflags; 12710 uint32_t pstate_for_ss; 12711 12712 *cs_base = 0; 12713 assert_hflags_rebuild_correctly(env); 12714 12715 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 12716 *pc = env->pc; 12717 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12718 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 12719 } 12720 pstate_for_ss = env->pstate; 12721 } else { 12722 *pc = env->regs[15]; 12723 12724 if (arm_feature(env, ARM_FEATURE_M)) { 12725 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12726 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12727 != env->v7m.secure) { 12728 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 12729 } 12730 12731 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12732 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12733 (env->v7m.secure && 12734 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12735 /* 12736 * ASPEN is set, but FPCA/SFPA indicate that there is no 12737 * active FP context; we must create a new FP context before 12738 * executing any FP insn. 12739 */ 12740 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 12741 } 12742 12743 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12744 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12745 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 12746 } 12747 } else { 12748 /* 12749 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12750 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12751 */ 12752 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12753 flags = FIELD_DP32(flags, TBFLAG_A32, 12754 XSCALE_CPAR, env->cp15.c15_cpar); 12755 } else { 12756 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 12757 env->vfp.vec_len); 12758 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 12759 env->vfp.vec_stride); 12760 } 12761 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12762 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12763 } 12764 } 12765 12766 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 12767 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 12768 pstate_for_ss = env->uncached_cpsr; 12769 } 12770 12771 /* 12772 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12773 * states defined in the ARM ARM for software singlestep: 12774 * SS_ACTIVE PSTATE.SS State 12775 * 0 x Inactive (the TB flag for SS is always 0) 12776 * 1 0 Active-pending 12777 * 1 1 Active-not-pending 12778 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 12779 */ 12780 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 12781 (pstate_for_ss & PSTATE_SS)) { 12782 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 12783 } 12784 12785 *pflags = flags; 12786 } 12787 12788 #ifdef TARGET_AARCH64 12789 /* 12790 * The manual says that when SVE is enabled and VQ is widened the 12791 * implementation is allowed to zero the previously inaccessible 12792 * portion of the registers. The corollary to that is that when 12793 * SVE is enabled and VQ is narrowed we are also allowed to zero 12794 * the now inaccessible portion of the registers. 12795 * 12796 * The intent of this is that no predicate bit beyond VQ is ever set. 12797 * Which means that some operations on predicate registers themselves 12798 * may operate on full uint64_t or even unrolled across the maximum 12799 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12800 * may well be cheaper than conditionals to restrict the operation 12801 * to the relevant portion of a uint16_t[16]. 12802 */ 12803 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12804 { 12805 int i, j; 12806 uint64_t pmask; 12807 12808 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12809 assert(vq <= env_archcpu(env)->sve_max_vq); 12810 12811 /* Zap the high bits of the zregs. */ 12812 for (i = 0; i < 32; i++) { 12813 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12814 } 12815 12816 /* Zap the high bits of the pregs and ffr. */ 12817 pmask = 0; 12818 if (vq & 3) { 12819 pmask = ~(-1ULL << (16 * (vq & 3))); 12820 } 12821 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12822 for (i = 0; i < 17; ++i) { 12823 env->vfp.pregs[i].p[j] &= pmask; 12824 } 12825 pmask = 0; 12826 } 12827 } 12828 12829 /* 12830 * Notice a change in SVE vector size when changing EL. 12831 */ 12832 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12833 int new_el, bool el0_a64) 12834 { 12835 ARMCPU *cpu = env_archcpu(env); 12836 int old_len, new_len; 12837 bool old_a64, new_a64; 12838 12839 /* Nothing to do if no SVE. */ 12840 if (!cpu_isar_feature(aa64_sve, cpu)) { 12841 return; 12842 } 12843 12844 /* Nothing to do if FP is disabled in either EL. */ 12845 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12846 return; 12847 } 12848 12849 /* 12850 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12851 * at ELx, or not available because the EL is in AArch32 state, then 12852 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12853 * has an effective value of 0". 12854 * 12855 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12856 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12857 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12858 * we already have the correct register contents when encountering the 12859 * vq0->vq0 transition between EL0->EL1. 12860 */ 12861 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12862 old_len = (old_a64 && !sve_exception_el(env, old_el) 12863 ? sve_zcr_len_for_el(env, old_el) : 0); 12864 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12865 new_len = (new_a64 && !sve_exception_el(env, new_el) 12866 ? sve_zcr_len_for_el(env, new_el) : 0); 12867 12868 /* When changing vector length, clear inaccessible state. */ 12869 if (new_len < old_len) { 12870 aarch64_sve_narrow_vq(env, new_len + 1); 12871 } 12872 } 12873 #endif 12874