xref: /openbmc/qemu/target/arm/helper.c (revision 6d62f309)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
34 
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36 
37 static void switch_mode(CPUARMState *env, int mode);
38 
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 {
41     assert(ri->fieldoffset);
42     if (cpreg_field_is_64bit(ri)) {
43         return CPREG_FIELD64(env, ri);
44     } else {
45         return CPREG_FIELD32(env, ri);
46     }
47 }
48 
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 {
51     assert(ri->fieldoffset);
52     if (cpreg_field_is_64bit(ri)) {
53         CPREG_FIELD64(env, ri) = value;
54     } else {
55         CPREG_FIELD32(env, ri) = value;
56     }
57 }
58 
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 {
61     return (char *)env + ri->fieldoffset;
62 }
63 
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66     /* Raw read of a coprocessor register (as needed for migration, etc). */
67     if (ri->type & ARM_CP_CONST) {
68         return ri->resetvalue;
69     } else if (ri->raw_readfn) {
70         return ri->raw_readfn(env, ri);
71     } else if (ri->readfn) {
72         return ri->readfn(env, ri);
73     } else {
74         return raw_read(env, ri);
75     }
76 }
77 
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79                              uint64_t v)
80 {
81     /*
82      * Raw write of a coprocessor register (as needed for migration, etc).
83      * Note that constant registers are treated as write-ignored; the
84      * caller should check for success by whether a readback gives the
85      * value written.
86      */
87     if (ri->type & ARM_CP_CONST) {
88         return;
89     } else if (ri->raw_writefn) {
90         ri->raw_writefn(env, ri, v);
91     } else if (ri->writefn) {
92         ri->writefn(env, ri, v);
93     } else {
94         raw_write(env, ri, v);
95     }
96 }
97 
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
99 {
100    /*
101     * Return true if the regdef would cause an assertion if you called
102     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103     * program bug for it not to have the NO_RAW flag).
104     * NB that returning false here doesn't necessarily mean that calling
105     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106     * read/write access functions which are safe for raw use" from "has
107     * read/write access functions which have side effects but has forgotten
108     * to provide raw access functions".
109     * The tests here line up with the conditions in read/write_raw_cp_reg()
110     * and assertions in raw_read()/raw_write().
111     */
112     if ((ri->type & ARM_CP_CONST) ||
113         ri->fieldoffset ||
114         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115         return false;
116     }
117     return true;
118 }
119 
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 {
122     /* Write the coprocessor state from cpu->env to the (index,value) list. */
123     int i;
124     bool ok = true;
125 
126     for (i = 0; i < cpu->cpreg_array_len; i++) {
127         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128         const ARMCPRegInfo *ri;
129         uint64_t newval;
130 
131         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132         if (!ri) {
133             ok = false;
134             continue;
135         }
136         if (ri->type & ARM_CP_NO_RAW) {
137             continue;
138         }
139 
140         newval = read_raw_cp_reg(&cpu->env, ri);
141         if (kvm_sync) {
142             /*
143              * Only sync if the previous list->cpustate sync succeeded.
144              * Rather than tracking the success/failure state for every
145              * item in the list, we just recheck "does the raw write we must
146              * have made in write_list_to_cpustate() read back OK" here.
147              */
148             uint64_t oldval = cpu->cpreg_values[i];
149 
150             if (oldval == newval) {
151                 continue;
152             }
153 
154             write_raw_cp_reg(&cpu->env, ri, oldval);
155             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156                 continue;
157             }
158 
159             write_raw_cp_reg(&cpu->env, ri, newval);
160         }
161         cpu->cpreg_values[i] = newval;
162     }
163     return ok;
164 }
165 
166 bool write_list_to_cpustate(ARMCPU *cpu)
167 {
168     int i;
169     bool ok = true;
170 
171     for (i = 0; i < cpu->cpreg_array_len; i++) {
172         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173         uint64_t v = cpu->cpreg_values[i];
174         const ARMCPRegInfo *ri;
175 
176         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177         if (!ri) {
178             ok = false;
179             continue;
180         }
181         if (ri->type & ARM_CP_NO_RAW) {
182             continue;
183         }
184         /*
185          * Write value and confirm it reads back as written
186          * (to catch read-only registers and partially read-only
187          * registers where the incoming migration value doesn't match)
188          */
189         write_raw_cp_reg(&cpu->env, ri, v);
190         if (read_raw_cp_reg(&cpu->env, ri) != v) {
191             ok = false;
192         }
193     }
194     return ok;
195 }
196 
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 {
199     ARMCPU *cpu = opaque;
200     uint32_t regidx = (uintptr_t)key;
201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202 
203     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205         /* The value array need not be initialized at this point */
206         cpu->cpreg_array_len++;
207     }
208 }
209 
210 static void count_cpreg(gpointer key, gpointer opaque)
211 {
212     ARMCPU *cpu = opaque;
213     const ARMCPRegInfo *ri;
214 
215     ri = g_hash_table_lookup(cpu->cp_regs, key);
216 
217     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218         cpu->cpreg_array_len++;
219     }
220 }
221 
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 {
224     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226 
227     if (aidx > bidx) {
228         return 1;
229     }
230     if (aidx < bidx) {
231         return -1;
232     }
233     return 0;
234 }
235 
236 void init_cpreg_list(ARMCPU *cpu)
237 {
238     /*
239      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240      * Note that we require cpreg_tuples[] to be sorted by key ID.
241      */
242     GList *keys;
243     int arraylen;
244 
245     keys = g_hash_table_get_keys(cpu->cp_regs);
246     keys = g_list_sort(keys, cpreg_key_compare);
247 
248     cpu->cpreg_array_len = 0;
249 
250     g_list_foreach(keys, count_cpreg, cpu);
251 
252     arraylen = cpu->cpreg_array_len;
253     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258     cpu->cpreg_array_len = 0;
259 
260     g_list_foreach(keys, add_cpreg_to_list, cpu);
261 
262     assert(cpu->cpreg_array_len == arraylen);
263 
264     g_list_free(keys);
265 }
266 
267 static bool arm_pan_enabled(CPUARMState *env)
268 {
269     if (is_a64(env)) {
270         if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271             return false;
272         }
273         return env->pstate & PSTATE_PAN;
274     } else {
275         return env->uncached_cpsr & CPSR_PAN;
276     }
277 }
278 
279 /*
280  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281  */
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283                                         const ARMCPRegInfo *ri,
284                                         bool isread)
285 {
286     if (!is_a64(env) && arm_current_el(env) == 3 &&
287         arm_is_secure_below_el3(env)) {
288         return CP_ACCESS_TRAP_UNCATEGORIZED;
289     }
290     return CP_ACCESS_OK;
291 }
292 
293 /*
294  * Some secure-only AArch32 registers trap to EL3 if used from
295  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297  * We assume that the .access field is set to PL1_RW.
298  */
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300                                             const ARMCPRegInfo *ri,
301                                             bool isread)
302 {
303     if (arm_current_el(env) == 3) {
304         return CP_ACCESS_OK;
305     }
306     if (arm_is_secure_below_el3(env)) {
307         if (env->cp15.scr_el3 & SCR_EEL2) {
308             return CP_ACCESS_TRAP_EL2;
309         }
310         return CP_ACCESS_TRAP_EL3;
311     }
312     /* This will be EL1 NS and EL2 NS, which just UNDEF */
313     return CP_ACCESS_TRAP_UNCATEGORIZED;
314 }
315 
316 /*
317  * Check for traps to performance monitor registers, which are controlled
318  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319  */
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321                                  bool isread)
322 {
323     int el = arm_current_el(env);
324     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325 
326     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327         return CP_ACCESS_TRAP_EL2;
328     }
329     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330         return CP_ACCESS_TRAP_EL3;
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337                                bool isread)
338 {
339     if (arm_current_el(env) == 1) {
340         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341         if (arm_hcr_el2_eff(env) & trap) {
342             return CP_ACCESS_TRAP_EL2;
343         }
344     }
345     return CP_ACCESS_OK;
346 }
347 
348 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350                                  bool isread)
351 {
352     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353         return CP_ACCESS_TRAP_EL2;
354     }
355     return CP_ACCESS_OK;
356 }
357 
358 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360                                   bool isread)
361 {
362     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363         return CP_ACCESS_TRAP_EL2;
364     }
365     return CP_ACCESS_OK;
366 }
367 
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370                                   bool isread)
371 {
372     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373         return CP_ACCESS_TRAP_EL2;
374     }
375     return CP_ACCESS_OK;
376 }
377 
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380                                     bool isread)
381 {
382     if (arm_current_el(env) == 1 &&
383         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384         return CP_ACCESS_TRAP_EL2;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392                                     bool isread)
393 {
394     if (arm_current_el(env) == 1 &&
395         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396         return CP_ACCESS_TRAP_EL2;
397     }
398     return CP_ACCESS_OK;
399 }
400 #endif
401 
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 {
404     ARMCPU *cpu = env_archcpu(env);
405 
406     raw_write(env, ri, value);
407     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
408 }
409 
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 {
412     ARMCPU *cpu = env_archcpu(env);
413 
414     if (raw_read(env, ri) != value) {
415         /*
416          * Unlike real hardware the qemu TLB uses virtual addresses,
417          * not modified virtual addresses, so this causes a TLB flush.
418          */
419         tlb_flush(CPU(cpu));
420         raw_write(env, ri, value);
421     }
422 }
423 
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425                              uint64_t value)
426 {
427     ARMCPU *cpu = env_archcpu(env);
428 
429     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430         && !extended_addresses_enabled(env)) {
431         /*
432          * For VMSA (when not using the LPAE long descriptor page table
433          * format) this register includes the ASID, so do a TLB flush.
434          * For PMSA it is purely a process ID and no action is needed.
435          */
436         tlb_flush(CPU(cpu));
437     }
438     raw_write(env, ri, value);
439 }
440 
441 static int alle1_tlbmask(CPUARMState *env)
442 {
443     /*
444      * Note that the 'ALL' scope must invalidate both stage 1 and
445      * stage 2 translations, whereas most other scopes only invalidate
446      * stage 1 translations.
447      *
448      * For AArch32 this is only used for TLBIALLNSNH and VTTBR
449      * writes, so only needs to apply to NS PL1&0, not S PL1&0.
450      */
451     return (ARMMMUIdxBit_E10_1 |
452             ARMMMUIdxBit_E10_1_PAN |
453             ARMMMUIdxBit_E10_0 |
454             ARMMMUIdxBit_Stage2 |
455             ARMMMUIdxBit_Stage2_S);
456 }
457 
458 
459 /* IS variants of TLB operations must affect all cores */
460 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461                              uint64_t value)
462 {
463     CPUState *cs = env_cpu(env);
464 
465     tlb_flush_all_cpus_synced(cs);
466 }
467 
468 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469                              uint64_t value)
470 {
471     CPUState *cs = env_cpu(env);
472 
473     tlb_flush_all_cpus_synced(cs);
474 }
475 
476 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
477                              uint64_t value)
478 {
479     CPUState *cs = env_cpu(env);
480 
481     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
482 }
483 
484 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
485                              uint64_t value)
486 {
487     CPUState *cs = env_cpu(env);
488 
489     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
490 }
491 
492 /*
493  * Non-IS variants of TLB operations are upgraded to
494  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
495  * force broadcast of these operations.
496  */
497 static bool tlb_force_broadcast(CPUARMState *env)
498 {
499     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
500 }
501 
502 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
503                           uint64_t value)
504 {
505     /* Invalidate all (TLBIALL) */
506     CPUState *cs = env_cpu(env);
507 
508     if (tlb_force_broadcast(env)) {
509         tlb_flush_all_cpus_synced(cs);
510     } else {
511         tlb_flush(cs);
512     }
513 }
514 
515 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
516                           uint64_t value)
517 {
518     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
519     CPUState *cs = env_cpu(env);
520 
521     value &= TARGET_PAGE_MASK;
522     if (tlb_force_broadcast(env)) {
523         tlb_flush_page_all_cpus_synced(cs, value);
524     } else {
525         tlb_flush_page(cs, value);
526     }
527 }
528 
529 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
530                            uint64_t value)
531 {
532     /* Invalidate by ASID (TLBIASID) */
533     CPUState *cs = env_cpu(env);
534 
535     if (tlb_force_broadcast(env)) {
536         tlb_flush_all_cpus_synced(cs);
537     } else {
538         tlb_flush(cs);
539     }
540 }
541 
542 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
543                            uint64_t value)
544 {
545     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
546     CPUState *cs = env_cpu(env);
547 
548     value &= TARGET_PAGE_MASK;
549     if (tlb_force_broadcast(env)) {
550         tlb_flush_page_all_cpus_synced(cs, value);
551     } else {
552         tlb_flush_page(cs, value);
553     }
554 }
555 
556 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                                uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
562 }
563 
564 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                   uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
570 }
571 
572 
573 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574                               uint64_t value)
575 {
576     CPUState *cs = env_cpu(env);
577 
578     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585 
586     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
587 }
588 
589 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
590                               uint64_t value)
591 {
592     CPUState *cs = env_cpu(env);
593     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
594 
595     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
596 }
597 
598 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
599                                  uint64_t value)
600 {
601     CPUState *cs = env_cpu(env);
602     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
603 
604     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
605                                              ARMMMUIdxBit_E2);
606 }
607 
608 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
609                                 uint64_t value)
610 {
611     CPUState *cs = env_cpu(env);
612     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
613 
614     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
615 }
616 
617 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
618                                 uint64_t value)
619 {
620     CPUState *cs = env_cpu(env);
621     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
622 
623     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
624 }
625 
626 static const ARMCPRegInfo cp_reginfo[] = {
627     /*
628      * Define the secure and non-secure FCSE identifier CP registers
629      * separately because there is no secure bank in V8 (no _EL3).  This allows
630      * the secure register to be properly reset and migrated. There is also no
631      * v8 EL1 version of the register so the non-secure instance stands alone.
632      */
633     { .name = "FCSEIDR",
634       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
635       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
636       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
637       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
638     { .name = "FCSEIDR_S",
639       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
640       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
641       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
642       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
643     /*
644      * Define the secure and non-secure context identifier CP registers
645      * separately because there is no secure bank in V8 (no _EL3).  This allows
646      * the secure register to be properly reset and migrated.  In the
647      * non-secure case, the 32-bit register will have reset and migration
648      * disabled during registration as it is handled by the 64-bit instance.
649      */
650     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
651       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
652       .access = PL1_RW, .accessfn = access_tvm_trvm,
653       .fgt = FGT_CONTEXTIDR_EL1,
654       .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
655       .secure = ARM_CP_SECSTATE_NS,
656       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
657       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
658     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
659       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
660       .access = PL1_RW, .accessfn = access_tvm_trvm,
661       .secure = ARM_CP_SECSTATE_S,
662       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
663       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
664 };
665 
666 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
667     /*
668      * NB: Some of these registers exist in v8 but with more precise
669      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
670      */
671     /* MMU Domain access control / MPU write buffer control */
672     { .name = "DACR",
673       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
674       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
675       .writefn = dacr_write, .raw_writefn = raw_write,
676       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
677                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
678     /*
679      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
680      * For v6 and v5, these mappings are overly broad.
681      */
682     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
683       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
684     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
685       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
686     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
687       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
688     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
689       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
690     /* Cache maintenance ops; some of this space may be overridden later. */
691     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
692       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
693       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
694 };
695 
696 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
697     /*
698      * Not all pre-v6 cores implemented this WFI, so this is slightly
699      * over-broad.
700      */
701     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
702       .access = PL1_W, .type = ARM_CP_WFI },
703 };
704 
705 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
706     /*
707      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
708      * is UNPREDICTABLE; we choose to NOP as most implementations do).
709      */
710     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
711       .access = PL1_W, .type = ARM_CP_WFI },
712     /*
713      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
714      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
715      * OMAPCP will override this space.
716      */
717     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
718       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
719       .resetvalue = 0 },
720     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
721       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
722       .resetvalue = 0 },
723     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
724     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
725       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
726       .resetvalue = 0 },
727     /*
728      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
729      * implementing it as RAZ means the "debug architecture version" bits
730      * will read as a reserved value, which should cause Linux to not try
731      * to use the debug hardware.
732      */
733     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
734       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
735     /*
736      * MMU TLB control. Note that the wildcarding means we cover not just
737      * the unified TLB ops but also the dside/iside/inner-shareable variants.
738      */
739     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
740       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
741       .type = ARM_CP_NO_RAW },
742     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
743       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
744       .type = ARM_CP_NO_RAW },
745     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
746       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
747       .type = ARM_CP_NO_RAW },
748     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
749       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
750       .type = ARM_CP_NO_RAW },
751     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
752       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
753     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
754       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
755 };
756 
757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
758                         uint64_t value)
759 {
760     uint32_t mask = 0;
761 
762     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
763     if (!arm_feature(env, ARM_FEATURE_V8)) {
764         /*
765          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
766          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
767          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
768          */
769         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
770             /* VFP coprocessor: cp10 & cp11 [23:20] */
771             mask |= R_CPACR_ASEDIS_MASK |
772                     R_CPACR_D32DIS_MASK |
773                     R_CPACR_CP11_MASK |
774                     R_CPACR_CP10_MASK;
775 
776             if (!arm_feature(env, ARM_FEATURE_NEON)) {
777                 /* ASEDIS [31] bit is RAO/WI */
778                 value |= R_CPACR_ASEDIS_MASK;
779             }
780 
781             /*
782              * VFPv3 and upwards with NEON implement 32 double precision
783              * registers (D0-D31).
784              */
785             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
786                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
787                 value |= R_CPACR_D32DIS_MASK;
788             }
789         }
790         value &= mask;
791     }
792 
793     /*
794      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
795      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
796      */
797     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
800         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
801     }
802 
803     env->cp15.cpacr_el1 = value;
804 }
805 
806 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
807 {
808     /*
809      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
810      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
811      */
812     uint64_t value = env->cp15.cpacr_el1;
813 
814     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
815         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
816         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
817     }
818     return value;
819 }
820 
821 
822 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
823 {
824     /*
825      * Call cpacr_write() so that we reset with the correct RAO bits set
826      * for our CPU features.
827      */
828     cpacr_write(env, ri, 0);
829 }
830 
831 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                    bool isread)
833 {
834     if (arm_feature(env, ARM_FEATURE_V8)) {
835         /* Check if CPACR accesses are to be trapped to EL2 */
836         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
837             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
838             return CP_ACCESS_TRAP_EL2;
839         /* Check if CPACR accesses are to be trapped to EL3 */
840         } else if (arm_current_el(env) < 3 &&
841                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
842             return CP_ACCESS_TRAP_EL3;
843         }
844     }
845 
846     return CP_ACCESS_OK;
847 }
848 
849 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
850                                   bool isread)
851 {
852     /* Check if CPTR accesses are set to trap to EL3 */
853     if (arm_current_el(env) == 2 &&
854         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
855         return CP_ACCESS_TRAP_EL3;
856     }
857 
858     return CP_ACCESS_OK;
859 }
860 
861 static const ARMCPRegInfo v6_cp_reginfo[] = {
862     /* prefetch by MVA in v6, NOP in v7 */
863     { .name = "MVA_prefetch",
864       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
865       .access = PL1_W, .type = ARM_CP_NOP },
866     /*
867      * We need to break the TB after ISB to execute self-modifying code
868      * correctly and also to take any pending interrupts immediately.
869      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
870      */
871     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
872       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
873     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
874       .access = PL0_W, .type = ARM_CP_NOP },
875     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
876       .access = PL0_W, .type = ARM_CP_NOP },
877     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
878       .access = PL1_RW, .accessfn = access_tvm_trvm,
879       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
880                              offsetof(CPUARMState, cp15.ifar_ns) },
881       .resetvalue = 0, },
882     /*
883      * Watchpoint Fault Address Register : should actually only be present
884      * for 1136, 1176, 11MPCore.
885      */
886     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
887       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
888     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
889       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
890       .fgt = FGT_CPACR_EL1,
891       .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
892       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
893       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
894 };
895 
896 typedef struct pm_event {
897     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
898     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
899     bool (*supported)(CPUARMState *);
900     /*
901      * Retrieve the current count of the underlying event. The programmed
902      * counters hold a difference from the return value from this function
903      */
904     uint64_t (*get_count)(CPUARMState *);
905     /*
906      * Return how many nanoseconds it will take (at a minimum) for count events
907      * to occur. A negative value indicates the counter will never overflow, or
908      * that the counter has otherwise arranged for the overflow bit to be set
909      * and the PMU interrupt to be raised on overflow.
910      */
911     int64_t (*ns_per_count)(uint64_t);
912 } pm_event;
913 
914 static bool event_always_supported(CPUARMState *env)
915 {
916     return true;
917 }
918 
919 static uint64_t swinc_get_count(CPUARMState *env)
920 {
921     /*
922      * SW_INCR events are written directly to the pmevcntr's by writes to
923      * PMSWINC, so there is no underlying count maintained by the PMU itself
924      */
925     return 0;
926 }
927 
928 static int64_t swinc_ns_per(uint64_t ignored)
929 {
930     return -1;
931 }
932 
933 /*
934  * Return the underlying cycle count for the PMU cycle counters. If we're in
935  * usermode, simply return 0.
936  */
937 static uint64_t cycles_get_count(CPUARMState *env)
938 {
939 #ifndef CONFIG_USER_ONLY
940     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
941                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
942 #else
943     return cpu_get_host_ticks();
944 #endif
945 }
946 
947 #ifndef CONFIG_USER_ONLY
948 static int64_t cycles_ns_per(uint64_t cycles)
949 {
950     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
951 }
952 
953 static bool instructions_supported(CPUARMState *env)
954 {
955     /* Precise instruction counting */
956     return icount_enabled() == ICOUNT_PRECISE;
957 }
958 
959 static uint64_t instructions_get_count(CPUARMState *env)
960 {
961     assert(icount_enabled() == ICOUNT_PRECISE);
962     return (uint64_t)icount_get_raw();
963 }
964 
965 static int64_t instructions_ns_per(uint64_t icount)
966 {
967     assert(icount_enabled() == ICOUNT_PRECISE);
968     return icount_to_ns((int64_t)icount);
969 }
970 #endif
971 
972 static bool pmuv3p1_events_supported(CPUARMState *env)
973 {
974     /* For events which are supported in any v8.1 PMU */
975     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
976 }
977 
978 static bool pmuv3p4_events_supported(CPUARMState *env)
979 {
980     /* For events which are supported in any v8.1 PMU */
981     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
982 }
983 
984 static uint64_t zero_event_get_count(CPUARMState *env)
985 {
986     /* For events which on QEMU never fire, so their count is always zero */
987     return 0;
988 }
989 
990 static int64_t zero_event_ns_per(uint64_t cycles)
991 {
992     /* An event which never fires can never overflow */
993     return -1;
994 }
995 
996 static const pm_event pm_events[] = {
997     { .number = 0x000, /* SW_INCR */
998       .supported = event_always_supported,
999       .get_count = swinc_get_count,
1000       .ns_per_count = swinc_ns_per,
1001     },
1002 #ifndef CONFIG_USER_ONLY
1003     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1004       .supported = instructions_supported,
1005       .get_count = instructions_get_count,
1006       .ns_per_count = instructions_ns_per,
1007     },
1008     { .number = 0x011, /* CPU_CYCLES, Cycle */
1009       .supported = event_always_supported,
1010       .get_count = cycles_get_count,
1011       .ns_per_count = cycles_ns_per,
1012     },
1013 #endif
1014     { .number = 0x023, /* STALL_FRONTEND */
1015       .supported = pmuv3p1_events_supported,
1016       .get_count = zero_event_get_count,
1017       .ns_per_count = zero_event_ns_per,
1018     },
1019     { .number = 0x024, /* STALL_BACKEND */
1020       .supported = pmuv3p1_events_supported,
1021       .get_count = zero_event_get_count,
1022       .ns_per_count = zero_event_ns_per,
1023     },
1024     { .number = 0x03c, /* STALL */
1025       .supported = pmuv3p4_events_supported,
1026       .get_count = zero_event_get_count,
1027       .ns_per_count = zero_event_ns_per,
1028     },
1029 };
1030 
1031 /*
1032  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1033  * events (i.e. the statistical profiling extension), this implementation
1034  * should first be updated to something sparse instead of the current
1035  * supported_event_map[] array.
1036  */
1037 #define MAX_EVENT_ID 0x3c
1038 #define UNSUPPORTED_EVENT UINT16_MAX
1039 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1040 
1041 /*
1042  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1043  * of ARM event numbers to indices in our pm_events array.
1044  *
1045  * Note: Events in the 0x40XX range are not currently supported.
1046  */
1047 void pmu_init(ARMCPU *cpu)
1048 {
1049     unsigned int i;
1050 
1051     /*
1052      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1053      * events to them
1054      */
1055     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1056         supported_event_map[i] = UNSUPPORTED_EVENT;
1057     }
1058     cpu->pmceid0 = 0;
1059     cpu->pmceid1 = 0;
1060 
1061     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1062         const pm_event *cnt = &pm_events[i];
1063         assert(cnt->number <= MAX_EVENT_ID);
1064         /* We do not currently support events in the 0x40xx range */
1065         assert(cnt->number <= 0x3f);
1066 
1067         if (cnt->supported(&cpu->env)) {
1068             supported_event_map[cnt->number] = i;
1069             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1070             if (cnt->number & 0x20) {
1071                 cpu->pmceid1 |= event_mask;
1072             } else {
1073                 cpu->pmceid0 |= event_mask;
1074             }
1075         }
1076     }
1077 }
1078 
1079 /*
1080  * Check at runtime whether a PMU event is supported for the current machine
1081  */
1082 static bool event_supported(uint16_t number)
1083 {
1084     if (number > MAX_EVENT_ID) {
1085         return false;
1086     }
1087     return supported_event_map[number] != UNSUPPORTED_EVENT;
1088 }
1089 
1090 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1091                                    bool isread)
1092 {
1093     /*
1094      * Performance monitor registers user accessibility is controlled
1095      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1096      * trapping to EL2 or EL3 for other accesses.
1097      */
1098     int el = arm_current_el(env);
1099     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1100 
1101     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1102         return CP_ACCESS_TRAP;
1103     }
1104     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1105         return CP_ACCESS_TRAP_EL2;
1106     }
1107     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1108         return CP_ACCESS_TRAP_EL3;
1109     }
1110 
1111     return CP_ACCESS_OK;
1112 }
1113 
1114 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1115                                            const ARMCPRegInfo *ri,
1116                                            bool isread)
1117 {
1118     /* ER: event counter read trap control */
1119     if (arm_feature(env, ARM_FEATURE_V8)
1120         && arm_current_el(env) == 0
1121         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1122         && isread) {
1123         return CP_ACCESS_OK;
1124     }
1125 
1126     return pmreg_access(env, ri, isread);
1127 }
1128 
1129 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1130                                          const ARMCPRegInfo *ri,
1131                                          bool isread)
1132 {
1133     /* SW: software increment write trap control */
1134     if (arm_feature(env, ARM_FEATURE_V8)
1135         && arm_current_el(env) == 0
1136         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1137         && !isread) {
1138         return CP_ACCESS_OK;
1139     }
1140 
1141     return pmreg_access(env, ri, isread);
1142 }
1143 
1144 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1145                                         const ARMCPRegInfo *ri,
1146                                         bool isread)
1147 {
1148     /* ER: event counter read trap control */
1149     if (arm_feature(env, ARM_FEATURE_V8)
1150         && arm_current_el(env) == 0
1151         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1152         return CP_ACCESS_OK;
1153     }
1154 
1155     return pmreg_access(env, ri, isread);
1156 }
1157 
1158 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1159                                          const ARMCPRegInfo *ri,
1160                                          bool isread)
1161 {
1162     /* CR: cycle counter read trap control */
1163     if (arm_feature(env, ARM_FEATURE_V8)
1164         && arm_current_el(env) == 0
1165         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1166         && isread) {
1167         return CP_ACCESS_OK;
1168     }
1169 
1170     return pmreg_access(env, ri, isread);
1171 }
1172 
1173 /*
1174  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1175  * We use these to decide whether we need to wrap a write to MDCR_EL2
1176  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1177  */
1178 #define MDCR_EL2_PMU_ENABLE_BITS \
1179     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1180 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1181 
1182 /*
1183  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1184  * the current EL, security state, and register configuration.
1185  */
1186 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1187 {
1188     uint64_t filter;
1189     bool e, p, u, nsk, nsu, nsh, m;
1190     bool enabled, prohibited = false, filtered;
1191     bool secure = arm_is_secure(env);
1192     int el = arm_current_el(env);
1193     uint64_t mdcr_el2;
1194     uint8_t hpmn;
1195 
1196     /*
1197      * We might be called for M-profile cores where MDCR_EL2 doesn't
1198      * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1199      * must be before we read that value.
1200      */
1201     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1202         return false;
1203     }
1204 
1205     mdcr_el2 = arm_mdcr_el2_eff(env);
1206     hpmn = mdcr_el2 & MDCR_HPMN;
1207 
1208     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1209             (counter < hpmn || counter == 31)) {
1210         e = env->cp15.c9_pmcr & PMCRE;
1211     } else {
1212         e = mdcr_el2 & MDCR_HPME;
1213     }
1214     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1215 
1216     /* Is event counting prohibited? */
1217     if (el == 2 && (counter < hpmn || counter == 31)) {
1218         prohibited = mdcr_el2 & MDCR_HPMD;
1219     }
1220     if (secure) {
1221         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1222     }
1223 
1224     if (counter == 31) {
1225         /*
1226          * The cycle counter defaults to running. PMCR.DP says "disable
1227          * the cycle counter when event counting is prohibited".
1228          * Some MDCR bits disable the cycle counter specifically.
1229          */
1230         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1231         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1232             if (secure) {
1233                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1234             }
1235             if (el == 2) {
1236                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1237             }
1238         }
1239     }
1240 
1241     if (counter == 31) {
1242         filter = env->cp15.pmccfiltr_el0;
1243     } else {
1244         filter = env->cp15.c14_pmevtyper[counter];
1245     }
1246 
1247     p   = filter & PMXEVTYPER_P;
1248     u   = filter & PMXEVTYPER_U;
1249     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1250     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1251     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1252     m   = arm_el_is_aa64(env, 1) &&
1253               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1254 
1255     if (el == 0) {
1256         filtered = secure ? u : u != nsu;
1257     } else if (el == 1) {
1258         filtered = secure ? p : p != nsk;
1259     } else if (el == 2) {
1260         filtered = !nsh;
1261     } else { /* EL3 */
1262         filtered = m != p;
1263     }
1264 
1265     if (counter != 31) {
1266         /*
1267          * If not checking PMCCNTR, ensure the counter is setup to an event we
1268          * support
1269          */
1270         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1271         if (!event_supported(event)) {
1272             return false;
1273         }
1274     }
1275 
1276     return enabled && !prohibited && !filtered;
1277 }
1278 
1279 static void pmu_update_irq(CPUARMState *env)
1280 {
1281     ARMCPU *cpu = env_archcpu(env);
1282     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1283             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1284 }
1285 
1286 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1287 {
1288     /*
1289      * Return true if the clock divider is enabled and the cycle counter
1290      * is supposed to tick only once every 64 clock cycles. This is
1291      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1292      * (64-bit) cycle counter PMCR.D has no effect.
1293      */
1294     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1295 }
1296 
1297 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1298 {
1299     /* Return true if the specified event counter is configured to be 64 bit */
1300 
1301     /* This isn't intended to be used with the cycle counter */
1302     assert(counter < 31);
1303 
1304     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1305         return false;
1306     }
1307 
1308     if (arm_feature(env, ARM_FEATURE_EL2)) {
1309         /*
1310          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1311          * current security state, so we don't use arm_mdcr_el2_eff() here.
1312          */
1313         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1314         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1315 
1316         if (counter >= hpmn) {
1317             return hlp;
1318         }
1319     }
1320     return env->cp15.c9_pmcr & PMCRLP;
1321 }
1322 
1323 /*
1324  * Ensure c15_ccnt is the guest-visible count so that operations such as
1325  * enabling/disabling the counter or filtering, modifying the count itself,
1326  * etc. can be done logically. This is essentially a no-op if the counter is
1327  * not enabled at the time of the call.
1328  */
1329 static void pmccntr_op_start(CPUARMState *env)
1330 {
1331     uint64_t cycles = cycles_get_count(env);
1332 
1333     if (pmu_counter_enabled(env, 31)) {
1334         uint64_t eff_cycles = cycles;
1335         if (pmccntr_clockdiv_enabled(env)) {
1336             eff_cycles /= 64;
1337         }
1338 
1339         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1340 
1341         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1342                                  1ull << 63 : 1ull << 31;
1343         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1344             env->cp15.c9_pmovsr |= (1ULL << 31);
1345             pmu_update_irq(env);
1346         }
1347 
1348         env->cp15.c15_ccnt = new_pmccntr;
1349     }
1350     env->cp15.c15_ccnt_delta = cycles;
1351 }
1352 
1353 /*
1354  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1355  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1356  * pmccntr_op_start.
1357  */
1358 static void pmccntr_op_finish(CPUARMState *env)
1359 {
1360     if (pmu_counter_enabled(env, 31)) {
1361 #ifndef CONFIG_USER_ONLY
1362         /* Calculate when the counter will next overflow */
1363         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1364         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1365             remaining_cycles = (uint32_t)remaining_cycles;
1366         }
1367         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1368 
1369         if (overflow_in > 0) {
1370             int64_t overflow_at;
1371 
1372             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1373                                  overflow_in, &overflow_at)) {
1374                 ARMCPU *cpu = env_archcpu(env);
1375                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1376             }
1377         }
1378 #endif
1379 
1380         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1381         if (pmccntr_clockdiv_enabled(env)) {
1382             prev_cycles /= 64;
1383         }
1384         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1385     }
1386 }
1387 
1388 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1389 {
1390 
1391     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1392     uint64_t count = 0;
1393     if (event_supported(event)) {
1394         uint16_t event_idx = supported_event_map[event];
1395         count = pm_events[event_idx].get_count(env);
1396     }
1397 
1398     if (pmu_counter_enabled(env, counter)) {
1399         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1400         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1401             1ULL << 63 : 1ULL << 31;
1402 
1403         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1404             env->cp15.c9_pmovsr |= (1 << counter);
1405             pmu_update_irq(env);
1406         }
1407         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1408     }
1409     env->cp15.c14_pmevcntr_delta[counter] = count;
1410 }
1411 
1412 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1413 {
1414     if (pmu_counter_enabled(env, counter)) {
1415 #ifndef CONFIG_USER_ONLY
1416         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1417         uint16_t event_idx = supported_event_map[event];
1418         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1419         int64_t overflow_in;
1420 
1421         if (!pmevcntr_is_64_bit(env, counter)) {
1422             delta = (uint32_t)delta;
1423         }
1424         overflow_in = pm_events[event_idx].ns_per_count(delta);
1425 
1426         if (overflow_in > 0) {
1427             int64_t overflow_at;
1428 
1429             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1430                                  overflow_in, &overflow_at)) {
1431                 ARMCPU *cpu = env_archcpu(env);
1432                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1433             }
1434         }
1435 #endif
1436 
1437         env->cp15.c14_pmevcntr_delta[counter] -=
1438             env->cp15.c14_pmevcntr[counter];
1439     }
1440 }
1441 
1442 void pmu_op_start(CPUARMState *env)
1443 {
1444     unsigned int i;
1445     pmccntr_op_start(env);
1446     for (i = 0; i < pmu_num_counters(env); i++) {
1447         pmevcntr_op_start(env, i);
1448     }
1449 }
1450 
1451 void pmu_op_finish(CPUARMState *env)
1452 {
1453     unsigned int i;
1454     pmccntr_op_finish(env);
1455     for (i = 0; i < pmu_num_counters(env); i++) {
1456         pmevcntr_op_finish(env, i);
1457     }
1458 }
1459 
1460 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1461 {
1462     pmu_op_start(&cpu->env);
1463 }
1464 
1465 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1466 {
1467     pmu_op_finish(&cpu->env);
1468 }
1469 
1470 void arm_pmu_timer_cb(void *opaque)
1471 {
1472     ARMCPU *cpu = opaque;
1473 
1474     /*
1475      * Update all the counter values based on the current underlying counts,
1476      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1477      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1478      * counter may expire.
1479      */
1480     pmu_op_start(&cpu->env);
1481     pmu_op_finish(&cpu->env);
1482 }
1483 
1484 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1485                        uint64_t value)
1486 {
1487     pmu_op_start(env);
1488 
1489     if (value & PMCRC) {
1490         /* The counter has been reset */
1491         env->cp15.c15_ccnt = 0;
1492     }
1493 
1494     if (value & PMCRP) {
1495         unsigned int i;
1496         for (i = 0; i < pmu_num_counters(env); i++) {
1497             env->cp15.c14_pmevcntr[i] = 0;
1498         }
1499     }
1500 
1501     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1502     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1503 
1504     pmu_op_finish(env);
1505 }
1506 
1507 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1508 {
1509     uint64_t pmcr = env->cp15.c9_pmcr;
1510 
1511     /*
1512      * If EL2 is implemented and enabled for the current security state, reads
1513      * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1514      */
1515     if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1516         pmcr &= ~PMCRN_MASK;
1517         pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1518     }
1519 
1520     return pmcr;
1521 }
1522 
1523 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                           uint64_t value)
1525 {
1526     unsigned int i;
1527     uint64_t overflow_mask, new_pmswinc;
1528 
1529     for (i = 0; i < pmu_num_counters(env); i++) {
1530         /* Increment a counter's count iff: */
1531         if ((value & (1 << i)) && /* counter's bit is set */
1532                 /* counter is enabled and not filtered */
1533                 pmu_counter_enabled(env, i) &&
1534                 /* counter is SW_INCR */
1535                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1536             pmevcntr_op_start(env, i);
1537 
1538             /*
1539              * Detect if this write causes an overflow since we can't predict
1540              * PMSWINC overflows like we can for other events
1541              */
1542             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1543 
1544             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1545                 1ULL << 63 : 1ULL << 31;
1546 
1547             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1548                 env->cp15.c9_pmovsr |= (1 << i);
1549                 pmu_update_irq(env);
1550             }
1551 
1552             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1553 
1554             pmevcntr_op_finish(env, i);
1555         }
1556     }
1557 }
1558 
1559 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1560 {
1561     uint64_t ret;
1562     pmccntr_op_start(env);
1563     ret = env->cp15.c15_ccnt;
1564     pmccntr_op_finish(env);
1565     return ret;
1566 }
1567 
1568 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1569                          uint64_t value)
1570 {
1571     /*
1572      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1573      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1574      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1575      * accessed.
1576      */
1577     env->cp15.c9_pmselr = value & 0x1f;
1578 }
1579 
1580 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1581                         uint64_t value)
1582 {
1583     pmccntr_op_start(env);
1584     env->cp15.c15_ccnt = value;
1585     pmccntr_op_finish(env);
1586 }
1587 
1588 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1589                             uint64_t value)
1590 {
1591     uint64_t cur_val = pmccntr_read(env, NULL);
1592 
1593     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1594 }
1595 
1596 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1597                             uint64_t value)
1598 {
1599     pmccntr_op_start(env);
1600     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1601     pmccntr_op_finish(env);
1602 }
1603 
1604 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1605                             uint64_t value)
1606 {
1607     pmccntr_op_start(env);
1608     /* M is not accessible from AArch32 */
1609     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1610         (value & PMCCFILTR);
1611     pmccntr_op_finish(env);
1612 }
1613 
1614 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1615 {
1616     /* M is not visible in AArch32 */
1617     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1618 }
1619 
1620 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1621                             uint64_t value)
1622 {
1623     pmu_op_start(env);
1624     value &= pmu_counter_mask(env);
1625     env->cp15.c9_pmcnten |= value;
1626     pmu_op_finish(env);
1627 }
1628 
1629 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1630                              uint64_t value)
1631 {
1632     pmu_op_start(env);
1633     value &= pmu_counter_mask(env);
1634     env->cp15.c9_pmcnten &= ~value;
1635     pmu_op_finish(env);
1636 }
1637 
1638 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1639                          uint64_t value)
1640 {
1641     value &= pmu_counter_mask(env);
1642     env->cp15.c9_pmovsr &= ~value;
1643     pmu_update_irq(env);
1644 }
1645 
1646 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647                          uint64_t value)
1648 {
1649     value &= pmu_counter_mask(env);
1650     env->cp15.c9_pmovsr |= value;
1651     pmu_update_irq(env);
1652 }
1653 
1654 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1655                              uint64_t value, const uint8_t counter)
1656 {
1657     if (counter == 31) {
1658         pmccfiltr_write(env, ri, value);
1659     } else if (counter < pmu_num_counters(env)) {
1660         pmevcntr_op_start(env, counter);
1661 
1662         /*
1663          * If this counter's event type is changing, store the current
1664          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1665          * pmevcntr_op_finish has the correct baseline when it converts back to
1666          * a delta.
1667          */
1668         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1669             PMXEVTYPER_EVTCOUNT;
1670         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1671         if (old_event != new_event) {
1672             uint64_t count = 0;
1673             if (event_supported(new_event)) {
1674                 uint16_t event_idx = supported_event_map[new_event];
1675                 count = pm_events[event_idx].get_count(env);
1676             }
1677             env->cp15.c14_pmevcntr_delta[counter] = count;
1678         }
1679 
1680         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1681         pmevcntr_op_finish(env, counter);
1682     }
1683     /*
1684      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1685      * PMSELR value is equal to or greater than the number of implemented
1686      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1687      */
1688 }
1689 
1690 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1691                                const uint8_t counter)
1692 {
1693     if (counter == 31) {
1694         return env->cp15.pmccfiltr_el0;
1695     } else if (counter < pmu_num_counters(env)) {
1696         return env->cp15.c14_pmevtyper[counter];
1697     } else {
1698       /*
1699        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1700        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1701        */
1702         return 0;
1703     }
1704 }
1705 
1706 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1707                               uint64_t value)
1708 {
1709     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710     pmevtyper_write(env, ri, value, counter);
1711 }
1712 
1713 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1714                                uint64_t value)
1715 {
1716     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1717     env->cp15.c14_pmevtyper[counter] = value;
1718 
1719     /*
1720      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1721      * pmu_op_finish calls when loading saved state for a migration. Because
1722      * we're potentially updating the type of event here, the value written to
1723      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1724      * different counter type. Therefore, we need to set this value to the
1725      * current count for the counter type we're writing so that pmu_op_finish
1726      * has the correct count for its calculation.
1727      */
1728     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1729     if (event_supported(event)) {
1730         uint16_t event_idx = supported_event_map[event];
1731         env->cp15.c14_pmevcntr_delta[counter] =
1732             pm_events[event_idx].get_count(env);
1733     }
1734 }
1735 
1736 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1737 {
1738     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1739     return pmevtyper_read(env, ri, counter);
1740 }
1741 
1742 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1743                              uint64_t value)
1744 {
1745     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1746 }
1747 
1748 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1749 {
1750     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1751 }
1752 
1753 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1754                              uint64_t value, uint8_t counter)
1755 {
1756     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1757         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1758         value &= MAKE_64BIT_MASK(0, 32);
1759     }
1760     if (counter < pmu_num_counters(env)) {
1761         pmevcntr_op_start(env, counter);
1762         env->cp15.c14_pmevcntr[counter] = value;
1763         pmevcntr_op_finish(env, counter);
1764     }
1765     /*
1766      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1767      * are CONSTRAINED UNPREDICTABLE.
1768      */
1769 }
1770 
1771 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1772                               uint8_t counter)
1773 {
1774     if (counter < pmu_num_counters(env)) {
1775         uint64_t ret;
1776         pmevcntr_op_start(env, counter);
1777         ret = env->cp15.c14_pmevcntr[counter];
1778         pmevcntr_op_finish(env, counter);
1779         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1780             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1781             ret &= MAKE_64BIT_MASK(0, 32);
1782         }
1783         return ret;
1784     } else {
1785       /*
1786        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1787        * are CONSTRAINED UNPREDICTABLE.
1788        */
1789         return 0;
1790     }
1791 }
1792 
1793 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1794                              uint64_t value)
1795 {
1796     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1797     pmevcntr_write(env, ri, value, counter);
1798 }
1799 
1800 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803     return pmevcntr_read(env, ri, counter);
1804 }
1805 
1806 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810     assert(counter < pmu_num_counters(env));
1811     env->cp15.c14_pmevcntr[counter] = value;
1812     pmevcntr_write(env, ri, value, counter);
1813 }
1814 
1815 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1816 {
1817     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1818     assert(counter < pmu_num_counters(env));
1819     return env->cp15.c14_pmevcntr[counter];
1820 }
1821 
1822 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                              uint64_t value)
1824 {
1825     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1826 }
1827 
1828 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1831 }
1832 
1833 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1834                             uint64_t value)
1835 {
1836     if (arm_feature(env, ARM_FEATURE_V8)) {
1837         env->cp15.c9_pmuserenr = value & 0xf;
1838     } else {
1839         env->cp15.c9_pmuserenr = value & 1;
1840     }
1841 }
1842 
1843 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844                              uint64_t value)
1845 {
1846     /* We have no event counters so only the C bit can be changed */
1847     value &= pmu_counter_mask(env);
1848     env->cp15.c9_pminten |= value;
1849     pmu_update_irq(env);
1850 }
1851 
1852 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853                              uint64_t value)
1854 {
1855     value &= pmu_counter_mask(env);
1856     env->cp15.c9_pminten &= ~value;
1857     pmu_update_irq(env);
1858 }
1859 
1860 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861                        uint64_t value)
1862 {
1863     /*
1864      * Note that even though the AArch64 view of this register has bits
1865      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1866      * architectural requirements for bits which are RES0 only in some
1867      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1868      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1869      */
1870     raw_write(env, ri, value & ~0x1FULL);
1871 }
1872 
1873 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1874 {
1875     /* Begin with base v8.0 state.  */
1876     uint64_t valid_mask = 0x3fff;
1877     ARMCPU *cpu = env_archcpu(env);
1878     uint64_t changed;
1879 
1880     /*
1881      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1882      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1883      * Instead, choose the format based on the mode of EL3.
1884      */
1885     if (arm_el_is_aa64(env, 3)) {
1886         value |= SCR_FW | SCR_AW;      /* RES1 */
1887         valid_mask &= ~SCR_NET;        /* RES0 */
1888 
1889         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1890             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1891             value |= SCR_RW;           /* RAO/WI */
1892         }
1893         if (cpu_isar_feature(aa64_ras, cpu)) {
1894             valid_mask |= SCR_TERR;
1895         }
1896         if (cpu_isar_feature(aa64_lor, cpu)) {
1897             valid_mask |= SCR_TLOR;
1898         }
1899         if (cpu_isar_feature(aa64_pauth, cpu)) {
1900             valid_mask |= SCR_API | SCR_APK;
1901         }
1902         if (cpu_isar_feature(aa64_sel2, cpu)) {
1903             valid_mask |= SCR_EEL2;
1904         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1905             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1906             value |= SCR_NS;
1907         }
1908         if (cpu_isar_feature(aa64_mte, cpu)) {
1909             valid_mask |= SCR_ATA;
1910         }
1911         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1912             valid_mask |= SCR_ENSCXT;
1913         }
1914         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1915             valid_mask |= SCR_EASE | SCR_NMEA;
1916         }
1917         if (cpu_isar_feature(aa64_sme, cpu)) {
1918             valid_mask |= SCR_ENTP2;
1919         }
1920         if (cpu_isar_feature(aa64_hcx, cpu)) {
1921             valid_mask |= SCR_HXEN;
1922         }
1923         if (cpu_isar_feature(aa64_fgt, cpu)) {
1924             valid_mask |= SCR_FGTEN;
1925         }
1926         if (cpu_isar_feature(aa64_rme, cpu)) {
1927             valid_mask |= SCR_NSE | SCR_GPF;
1928         }
1929         if (cpu_isar_feature(aa64_ecv, cpu)) {
1930             valid_mask |= SCR_ECVEN;
1931         }
1932     } else {
1933         valid_mask &= ~(SCR_RW | SCR_ST);
1934         if (cpu_isar_feature(aa32_ras, cpu)) {
1935             valid_mask |= SCR_TERR;
1936         }
1937     }
1938 
1939     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1940         valid_mask &= ~SCR_HCE;
1941 
1942         /*
1943          * On ARMv7, SMD (or SCD as it is called in v7) is only
1944          * supported if EL2 exists. The bit is UNK/SBZP when
1945          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1946          * when EL2 is unavailable.
1947          * On ARMv8, this bit is always available.
1948          */
1949         if (arm_feature(env, ARM_FEATURE_V7) &&
1950             !arm_feature(env, ARM_FEATURE_V8)) {
1951             valid_mask &= ~SCR_SMD;
1952         }
1953     }
1954 
1955     /* Clear all-context RES0 bits.  */
1956     value &= valid_mask;
1957     changed = env->cp15.scr_el3 ^ value;
1958     env->cp15.scr_el3 = value;
1959 
1960     /*
1961      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1962      * we must invalidate all TLBs below EL3.
1963      */
1964     if (changed & (SCR_NS | SCR_NSE)) {
1965         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1966                                            ARMMMUIdxBit_E20_0 |
1967                                            ARMMMUIdxBit_E10_1 |
1968                                            ARMMMUIdxBit_E20_2 |
1969                                            ARMMMUIdxBit_E10_1_PAN |
1970                                            ARMMMUIdxBit_E20_2_PAN |
1971                                            ARMMMUIdxBit_E2));
1972     }
1973 }
1974 
1975 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1976 {
1977     /*
1978      * scr_write will set the RES1 bits on an AArch64-only CPU.
1979      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1980      */
1981     scr_write(env, ri, 0);
1982 }
1983 
1984 static CPAccessResult access_tid4(CPUARMState *env,
1985                                   const ARMCPRegInfo *ri,
1986                                   bool isread)
1987 {
1988     if (arm_current_el(env) == 1 &&
1989         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1990         return CP_ACCESS_TRAP_EL2;
1991     }
1992 
1993     return CP_ACCESS_OK;
1994 }
1995 
1996 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1997 {
1998     ARMCPU *cpu = env_archcpu(env);
1999 
2000     /*
2001      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
2002      * bank
2003      */
2004     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2005                                         ri->secure & ARM_CP_SECSTATE_S);
2006 
2007     return cpu->ccsidr[index];
2008 }
2009 
2010 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2011                          uint64_t value)
2012 {
2013     raw_write(env, ri, value & 0xf);
2014 }
2015 
2016 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2017 {
2018     CPUState *cs = env_cpu(env);
2019     bool el1 = arm_current_el(env) == 1;
2020     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2021     uint64_t ret = 0;
2022 
2023     if (hcr_el2 & HCR_IMO) {
2024         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2025             ret |= CPSR_I;
2026         }
2027         if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
2028             ret |= ISR_IS;
2029             ret |= CPSR_I;
2030         }
2031     } else {
2032         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2033             ret |= CPSR_I;
2034         }
2035 
2036         if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
2037             ret |= ISR_IS;
2038             ret |= CPSR_I;
2039         }
2040     }
2041 
2042     if (hcr_el2 & HCR_FMO) {
2043         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2044             ret |= CPSR_F;
2045         }
2046         if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
2047             ret |= ISR_FS;
2048             ret |= CPSR_F;
2049         }
2050     } else {
2051         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2052             ret |= CPSR_F;
2053         }
2054     }
2055 
2056     if (hcr_el2 & HCR_AMO) {
2057         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2058             ret |= CPSR_A;
2059         }
2060     }
2061 
2062     return ret;
2063 }
2064 
2065 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2066                                        bool isread)
2067 {
2068     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2069         return CP_ACCESS_TRAP_EL2;
2070     }
2071 
2072     return CP_ACCESS_OK;
2073 }
2074 
2075 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2076                                        bool isread)
2077 {
2078     if (arm_feature(env, ARM_FEATURE_V8)) {
2079         return access_aa64_tid1(env, ri, isread);
2080     }
2081 
2082     return CP_ACCESS_OK;
2083 }
2084 
2085 static const ARMCPRegInfo v7_cp_reginfo[] = {
2086     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2087     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2088       .access = PL1_W, .type = ARM_CP_NOP },
2089     /*
2090      * Performance monitors are implementation defined in v7,
2091      * but with an ARM recommended set of registers, which we
2092      * follow.
2093      *
2094      * Performance registers fall into three categories:
2095      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2096      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2097      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2098      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2099      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2100      */
2101     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2102       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2103       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2104       .writefn = pmcntenset_write,
2105       .accessfn = pmreg_access,
2106       .fgt = FGT_PMCNTEN,
2107       .raw_writefn = raw_write },
2108     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2109       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2110       .access = PL0_RW, .accessfn = pmreg_access,
2111       .fgt = FGT_PMCNTEN,
2112       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2113       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2114     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2115       .access = PL0_RW,
2116       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2117       .accessfn = pmreg_access,
2118       .fgt = FGT_PMCNTEN,
2119       .writefn = pmcntenclr_write,
2120       .type = ARM_CP_ALIAS | ARM_CP_IO },
2121     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2122       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2123       .access = PL0_RW, .accessfn = pmreg_access,
2124       .fgt = FGT_PMCNTEN,
2125       .type = ARM_CP_ALIAS | ARM_CP_IO,
2126       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2127       .writefn = pmcntenclr_write },
2128     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2129       .access = PL0_RW, .type = ARM_CP_IO,
2130       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2131       .accessfn = pmreg_access,
2132       .fgt = FGT_PMOVS,
2133       .writefn = pmovsr_write,
2134       .raw_writefn = raw_write },
2135     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2136       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2137       .access = PL0_RW, .accessfn = pmreg_access,
2138       .fgt = FGT_PMOVS,
2139       .type = ARM_CP_ALIAS | ARM_CP_IO,
2140       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2141       .writefn = pmovsr_write,
2142       .raw_writefn = raw_write },
2143     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2144       .access = PL0_W, .accessfn = pmreg_access_swinc,
2145       .fgt = FGT_PMSWINC_EL0,
2146       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2147       .writefn = pmswinc_write },
2148     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2149       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2150       .access = PL0_W, .accessfn = pmreg_access_swinc,
2151       .fgt = FGT_PMSWINC_EL0,
2152       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2153       .writefn = pmswinc_write },
2154     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2155       .access = PL0_RW, .type = ARM_CP_ALIAS,
2156       .fgt = FGT_PMSELR_EL0,
2157       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2158       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2159       .raw_writefn = raw_write},
2160     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2161       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2162       .access = PL0_RW, .accessfn = pmreg_access_selr,
2163       .fgt = FGT_PMSELR_EL0,
2164       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2165       .writefn = pmselr_write, .raw_writefn = raw_write, },
2166     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2167       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fgt = FGT_PMCCNTR_EL0,
2169       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2170       .accessfn = pmreg_access_ccntr },
2171     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2172       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2173       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2174       .fgt = FGT_PMCCNTR_EL0,
2175       .type = ARM_CP_IO,
2176       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2177       .readfn = pmccntr_read, .writefn = pmccntr_write,
2178       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2179     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2180       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2181       .access = PL0_RW, .accessfn = pmreg_access,
2182       .fgt = FGT_PMCCFILTR_EL0,
2183       .type = ARM_CP_ALIAS | ARM_CP_IO,
2184       .resetvalue = 0, },
2185     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2186       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2187       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2188       .access = PL0_RW, .accessfn = pmreg_access,
2189       .fgt = FGT_PMCCFILTR_EL0,
2190       .type = ARM_CP_IO,
2191       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2192       .resetvalue = 0, },
2193     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2194       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2195       .accessfn = pmreg_access,
2196       .fgt = FGT_PMEVTYPERN_EL0,
2197       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2198     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2199       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2200       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201       .accessfn = pmreg_access,
2202       .fgt = FGT_PMEVTYPERN_EL0,
2203       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2204     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2205       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2206       .accessfn = pmreg_access_xevcntr,
2207       .fgt = FGT_PMEVCNTRN_EL0,
2208       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2209     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2210       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2211       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2212       .accessfn = pmreg_access_xevcntr,
2213       .fgt = FGT_PMEVCNTRN_EL0,
2214       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2215     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2216       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2217       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2218       .resetvalue = 0,
2219       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2220     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2221       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2222       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2223       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2224       .resetvalue = 0,
2225       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2226     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2227       .access = PL1_RW, .accessfn = access_tpm,
2228       .fgt = FGT_PMINTEN,
2229       .type = ARM_CP_ALIAS | ARM_CP_IO,
2230       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2231       .resetvalue = 0,
2232       .writefn = pmintenset_write, .raw_writefn = raw_write },
2233     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2234       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2235       .access = PL1_RW, .accessfn = access_tpm,
2236       .fgt = FGT_PMINTEN,
2237       .type = ARM_CP_IO,
2238       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2239       .writefn = pmintenset_write, .raw_writefn = raw_write,
2240       .resetvalue = 0x0 },
2241     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2242       .access = PL1_RW, .accessfn = access_tpm,
2243       .fgt = FGT_PMINTEN,
2244       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2245       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2246       .writefn = pmintenclr_write, },
2247     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2248       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2249       .access = PL1_RW, .accessfn = access_tpm,
2250       .fgt = FGT_PMINTEN,
2251       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2252       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2253       .writefn = pmintenclr_write },
2254     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2255       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2256       .access = PL1_R,
2257       .accessfn = access_tid4,
2258       .fgt = FGT_CCSIDR_EL1,
2259       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2260     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2261       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2262       .access = PL1_RW,
2263       .accessfn = access_tid4,
2264       .fgt = FGT_CSSELR_EL1,
2265       .writefn = csselr_write, .resetvalue = 0,
2266       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2267                              offsetof(CPUARMState, cp15.csselr_ns) } },
2268     /*
2269      * Auxiliary ID register: this actually has an IMPDEF value but for now
2270      * just RAZ for all cores:
2271      */
2272     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2273       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2274       .access = PL1_R, .type = ARM_CP_CONST,
2275       .accessfn = access_aa64_tid1,
2276       .fgt = FGT_AIDR_EL1,
2277       .resetvalue = 0 },
2278     /*
2279      * Auxiliary fault status registers: these also are IMPDEF, and we
2280      * choose to RAZ/WI for all cores.
2281      */
2282     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2283       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2284       .access = PL1_RW, .accessfn = access_tvm_trvm,
2285       .fgt = FGT_AFSR0_EL1,
2286       .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2287       .type = ARM_CP_CONST, .resetvalue = 0 },
2288     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2289       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2290       .access = PL1_RW, .accessfn = access_tvm_trvm,
2291       .fgt = FGT_AFSR1_EL1,
2292       .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2293       .type = ARM_CP_CONST, .resetvalue = 0 },
2294     /*
2295      * MAIR can just read-as-written because we don't implement caches
2296      * and so don't need to care about memory attributes.
2297      */
2298     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2299       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2300       .access = PL1_RW, .accessfn = access_tvm_trvm,
2301       .fgt = FGT_MAIR_EL1,
2302       .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2303       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2304       .resetvalue = 0 },
2305     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2306       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2307       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2308       .resetvalue = 0 },
2309     /*
2310      * For non-long-descriptor page tables these are PRRR and NMRR;
2311      * regardless they still act as reads-as-written for QEMU.
2312      */
2313      /*
2314       * MAIR0/1 are defined separately from their 64-bit counterpart which
2315       * allows them to assign the correct fieldoffset based on the endianness
2316       * handled in the field definitions.
2317       */
2318     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2319       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2320       .access = PL1_RW, .accessfn = access_tvm_trvm,
2321       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2322                              offsetof(CPUARMState, cp15.mair0_ns) },
2323       .resetfn = arm_cp_reset_ignore },
2324     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2325       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2326       .access = PL1_RW, .accessfn = access_tvm_trvm,
2327       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2328                              offsetof(CPUARMState, cp15.mair1_ns) },
2329       .resetfn = arm_cp_reset_ignore },
2330     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2331       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2332       .fgt = FGT_ISR_EL1,
2333       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2334     /* 32 bit ITLB invalidates */
2335     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2336       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337       .writefn = tlbiall_write },
2338     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2339       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2340       .writefn = tlbimva_write },
2341     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2342       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2343       .writefn = tlbiasid_write },
2344     /* 32 bit DTLB invalidates */
2345     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2346       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347       .writefn = tlbiall_write },
2348     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2349       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350       .writefn = tlbimva_write },
2351     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2352       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2353       .writefn = tlbiasid_write },
2354     /* 32 bit TLB invalidates */
2355     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2356       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357       .writefn = tlbiall_write },
2358     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2359       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360       .writefn = tlbimva_write },
2361     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2362       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363       .writefn = tlbiasid_write },
2364     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2365       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2366       .writefn = tlbimvaa_write },
2367 };
2368 
2369 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2370     /* 32 bit TLB invalidates, Inner Shareable */
2371     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2372       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2373       .writefn = tlbiall_is_write },
2374     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2375       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2376       .writefn = tlbimva_is_write },
2377     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2378       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2379       .writefn = tlbiasid_is_write },
2380     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2381       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2382       .writefn = tlbimvaa_is_write },
2383 };
2384 
2385 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2386     /* PMOVSSET is not implemented in v7 before v7ve */
2387     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2388       .access = PL0_RW, .accessfn = pmreg_access,
2389       .fgt = FGT_PMOVS,
2390       .type = ARM_CP_ALIAS | ARM_CP_IO,
2391       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2392       .writefn = pmovsset_write,
2393       .raw_writefn = raw_write },
2394     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2395       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2396       .access = PL0_RW, .accessfn = pmreg_access,
2397       .fgt = FGT_PMOVS,
2398       .type = ARM_CP_ALIAS | ARM_CP_IO,
2399       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2400       .writefn = pmovsset_write,
2401       .raw_writefn = raw_write },
2402 };
2403 
2404 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2405                         uint64_t value)
2406 {
2407     value &= 1;
2408     env->teecr = value;
2409 }
2410 
2411 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412                                    bool isread)
2413 {
2414     /*
2415      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2416      * at all, so we don't need to check whether we're v8A.
2417      */
2418     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2419         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2420         return CP_ACCESS_TRAP_EL2;
2421     }
2422     return CP_ACCESS_OK;
2423 }
2424 
2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2426                                     bool isread)
2427 {
2428     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2429         return CP_ACCESS_TRAP;
2430     }
2431     return teecr_access(env, ri, isread);
2432 }
2433 
2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2435     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2436       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2437       .resetvalue = 0,
2438       .writefn = teecr_write, .accessfn = teecr_access },
2439     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2440       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2441       .accessfn = teehbr_access, .resetvalue = 0 },
2442 };
2443 
2444 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2445     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2446       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2447       .access = PL0_RW,
2448       .fgt = FGT_TPIDR_EL0,
2449       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2450     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2451       .access = PL0_RW,
2452       .fgt = FGT_TPIDR_EL0,
2453       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2454                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2455       .resetfn = arm_cp_reset_ignore },
2456     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2457       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2458       .access = PL0_R | PL1_W,
2459       .fgt = FGT_TPIDRRO_EL0,
2460       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2461       .resetvalue = 0},
2462     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2463       .access = PL0_R | PL1_W,
2464       .fgt = FGT_TPIDRRO_EL0,
2465       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2466                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2467       .resetfn = arm_cp_reset_ignore },
2468     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2469       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2470       .access = PL1_RW,
2471       .fgt = FGT_TPIDR_EL1,
2472       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2473     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2474       .access = PL1_RW,
2475       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2476                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2477       .resetvalue = 0 },
2478 };
2479 
2480 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2481 {
2482     ARMCPU *cpu = env_archcpu(env);
2483 
2484     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2485 }
2486 
2487 #ifndef CONFIG_USER_ONLY
2488 
2489 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2490                                        bool isread)
2491 {
2492     /*
2493      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2494      * Writable only at the highest implemented exception level.
2495      */
2496     int el = arm_current_el(env);
2497     uint64_t hcr;
2498     uint32_t cntkctl;
2499 
2500     switch (el) {
2501     case 0:
2502         hcr = arm_hcr_el2_eff(env);
2503         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2504             cntkctl = env->cp15.cnthctl_el2;
2505         } else {
2506             cntkctl = env->cp15.c14_cntkctl;
2507         }
2508         if (!extract32(cntkctl, 0, 2)) {
2509             return CP_ACCESS_TRAP;
2510         }
2511         break;
2512     case 1:
2513         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2514             arm_is_secure_below_el3(env)) {
2515             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2516             return CP_ACCESS_TRAP_UNCATEGORIZED;
2517         }
2518         break;
2519     case 2:
2520     case 3:
2521         break;
2522     }
2523 
2524     if (!isread && el < arm_highest_el(env)) {
2525         return CP_ACCESS_TRAP_UNCATEGORIZED;
2526     }
2527 
2528     return CP_ACCESS_OK;
2529 }
2530 
2531 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2532                                         bool isread)
2533 {
2534     unsigned int cur_el = arm_current_el(env);
2535     bool has_el2 = arm_is_el2_enabled(env);
2536     uint64_t hcr = arm_hcr_el2_eff(env);
2537 
2538     switch (cur_el) {
2539     case 0:
2540         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2541         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2542             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2543                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2544         }
2545 
2546         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2547         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2548             return CP_ACCESS_TRAP;
2549         }
2550         /* fall through */
2551     case 1:
2552         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2553         if (has_el2 && timeridx == GTIMER_PHYS &&
2554             (hcr & HCR_E2H
2555              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2556              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2557             return CP_ACCESS_TRAP_EL2;
2558         }
2559         if (has_el2 && timeridx == GTIMER_VIRT) {
2560             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2561                 return CP_ACCESS_TRAP_EL2;
2562             }
2563         }
2564         break;
2565     }
2566     return CP_ACCESS_OK;
2567 }
2568 
2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2570                                       bool isread)
2571 {
2572     unsigned int cur_el = arm_current_el(env);
2573     bool has_el2 = arm_is_el2_enabled(env);
2574     uint64_t hcr = arm_hcr_el2_eff(env);
2575 
2576     switch (cur_el) {
2577     case 0:
2578         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2579             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2580             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2581                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2582         }
2583 
2584         /*
2585          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2586          * EL0 if EL0[PV]TEN is zero.
2587          */
2588         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2589             return CP_ACCESS_TRAP;
2590         }
2591         /* fall through */
2592 
2593     case 1:
2594         if (has_el2 && timeridx == GTIMER_PHYS) {
2595             if (hcr & HCR_E2H) {
2596                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2597                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2598                     return CP_ACCESS_TRAP_EL2;
2599                 }
2600             } else {
2601                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2602                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2603                     return CP_ACCESS_TRAP_EL2;
2604                 }
2605             }
2606         }
2607         if (has_el2 && timeridx == GTIMER_VIRT) {
2608             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2609                 return CP_ACCESS_TRAP_EL2;
2610             }
2611         }
2612         break;
2613     }
2614     return CP_ACCESS_OK;
2615 }
2616 
2617 static CPAccessResult gt_pct_access(CPUARMState *env,
2618                                     const ARMCPRegInfo *ri,
2619                                     bool isread)
2620 {
2621     return gt_counter_access(env, GTIMER_PHYS, isread);
2622 }
2623 
2624 static CPAccessResult gt_vct_access(CPUARMState *env,
2625                                     const ARMCPRegInfo *ri,
2626                                     bool isread)
2627 {
2628     return gt_counter_access(env, GTIMER_VIRT, isread);
2629 }
2630 
2631 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2632                                        bool isread)
2633 {
2634     return gt_timer_access(env, GTIMER_PHYS, isread);
2635 }
2636 
2637 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2638                                        bool isread)
2639 {
2640     return gt_timer_access(env, GTIMER_VIRT, isread);
2641 }
2642 
2643 static CPAccessResult gt_stimer_access(CPUARMState *env,
2644                                        const ARMCPRegInfo *ri,
2645                                        bool isread)
2646 {
2647     /*
2648      * The AArch64 register view of the secure physical timer is
2649      * always accessible from EL3, and configurably accessible from
2650      * Secure EL1.
2651      */
2652     switch (arm_current_el(env)) {
2653     case 1:
2654         if (!arm_is_secure(env)) {
2655             return CP_ACCESS_TRAP;
2656         }
2657         if (!(env->cp15.scr_el3 & SCR_ST)) {
2658             return CP_ACCESS_TRAP_EL3;
2659         }
2660         return CP_ACCESS_OK;
2661     case 0:
2662     case 2:
2663         return CP_ACCESS_TRAP;
2664     case 3:
2665         return CP_ACCESS_OK;
2666     default:
2667         g_assert_not_reached();
2668     }
2669 }
2670 
2671 uint64_t gt_get_countervalue(CPUARMState *env)
2672 {
2673     ARMCPU *cpu = env_archcpu(env);
2674 
2675     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2676 }
2677 
2678 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2679 {
2680     CPUARMState *env = &cpu->env;
2681     uint64_t cnthctl = env->cp15.cnthctl_el2;
2682     ARMSecuritySpace ss = arm_security_space(env);
2683     /* ISTATUS && !IMASK */
2684     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2685 
2686     /*
2687      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2688      * It is RES0 in Secure and NonSecure state.
2689      */
2690     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2691         ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2692          (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2693         irqstate = 0;
2694     }
2695 
2696     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2697     trace_arm_gt_update_irq(timeridx, irqstate);
2698 }
2699 
2700 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2701 {
2702     /*
2703      * Changing security state between Root and Secure/NonSecure, which may
2704      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2705      * mask bits. Update the IRQ state accordingly.
2706      */
2707     gt_update_irq(cpu, GTIMER_VIRT);
2708     gt_update_irq(cpu, GTIMER_PHYS);
2709 }
2710 
2711 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2712 {
2713     if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2714         FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2715         arm_is_el2_enabled(env) &&
2716         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2717         return env->cp15.cntpoff_el2;
2718     }
2719     return 0;
2720 }
2721 
2722 static uint64_t gt_phys_cnt_offset(CPUARMState *env)
2723 {
2724     if (arm_current_el(env) >= 2) {
2725         return 0;
2726     }
2727     return gt_phys_raw_cnt_offset(env);
2728 }
2729 
2730 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2731 {
2732     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2733 
2734     if (gt->ctl & 1) {
2735         /*
2736          * Timer enabled: calculate and set current ISTATUS, irq, and
2737          * reset timer to when ISTATUS next has to change
2738          */
2739         uint64_t offset = timeridx == GTIMER_VIRT ?
2740             cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
2741         uint64_t count = gt_get_countervalue(&cpu->env);
2742         /* Note that this must be unsigned 64 bit arithmetic: */
2743         int istatus = count - offset >= gt->cval;
2744         uint64_t nexttick;
2745 
2746         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2747 
2748         if (istatus) {
2749             /*
2750              * Next transition is when (count - offset) rolls back over to 0.
2751              * If offset > count then this is when count == offset;
2752              * if offset <= count then this is when count == offset + 2^64
2753              * For the latter case we set nexttick to an "as far in future
2754              * as possible" value and let the code below handle it.
2755              */
2756             if (offset > count) {
2757                 nexttick = offset;
2758             } else {
2759                 nexttick = UINT64_MAX;
2760             }
2761         } else {
2762             /*
2763              * Next transition is when (count - offset) == cval, i.e.
2764              * when count == (cval + offset).
2765              * If that would overflow, then again we set up the next interrupt
2766              * for "as far in the future as possible" for the code below.
2767              */
2768             if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2769                 nexttick = UINT64_MAX;
2770             }
2771         }
2772         /*
2773          * Note that the desired next expiry time might be beyond the
2774          * signed-64-bit range of a QEMUTimer -- in this case we just
2775          * set the timer for as far in the future as possible. When the
2776          * timer expires we will reset the timer for any remaining period.
2777          */
2778         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2779             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2780         } else {
2781             timer_mod(cpu->gt_timer[timeridx], nexttick);
2782         }
2783         trace_arm_gt_recalc(timeridx, nexttick);
2784     } else {
2785         /* Timer disabled: ISTATUS and timer output always clear */
2786         gt->ctl &= ~4;
2787         timer_del(cpu->gt_timer[timeridx]);
2788         trace_arm_gt_recalc_disabled(timeridx);
2789     }
2790     gt_update_irq(cpu, timeridx);
2791 }
2792 
2793 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2794                            int timeridx)
2795 {
2796     ARMCPU *cpu = env_archcpu(env);
2797 
2798     timer_del(cpu->gt_timer[timeridx]);
2799 }
2800 
2801 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2802 {
2803     return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
2804 }
2805 
2806 uint64_t gt_virt_cnt_offset(CPUARMState *env)
2807 {
2808     uint64_t hcr;
2809 
2810     switch (arm_current_el(env)) {
2811     case 2:
2812         hcr = arm_hcr_el2_eff(env);
2813         if (hcr & HCR_E2H) {
2814             return 0;
2815         }
2816         break;
2817     case 0:
2818         hcr = arm_hcr_el2_eff(env);
2819         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2820             return 0;
2821         }
2822         break;
2823     }
2824 
2825     return env->cp15.cntvoff_el2;
2826 }
2827 
2828 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2829 {
2830     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2831 }
2832 
2833 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2834                           int timeridx,
2835                           uint64_t value)
2836 {
2837     trace_arm_gt_cval_write(timeridx, value);
2838     env->cp15.c14_timer[timeridx].cval = value;
2839     gt_recalc_timer(env_archcpu(env), timeridx);
2840 }
2841 
2842 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2843                              int timeridx)
2844 {
2845     uint64_t offset = 0;
2846 
2847     switch (timeridx) {
2848     case GTIMER_VIRT:
2849     case GTIMER_HYPVIRT:
2850         offset = gt_virt_cnt_offset(env);
2851         break;
2852     case GTIMER_PHYS:
2853         offset = gt_phys_cnt_offset(env);
2854         break;
2855     }
2856 
2857     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2858                       (gt_get_countervalue(env) - offset));
2859 }
2860 
2861 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2862                           int timeridx,
2863                           uint64_t value)
2864 {
2865     uint64_t offset = 0;
2866 
2867     switch (timeridx) {
2868     case GTIMER_VIRT:
2869     case GTIMER_HYPVIRT:
2870         offset = gt_virt_cnt_offset(env);
2871         break;
2872     case GTIMER_PHYS:
2873         offset = gt_phys_cnt_offset(env);
2874         break;
2875     }
2876 
2877     trace_arm_gt_tval_write(timeridx, value);
2878     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2879                                          sextract64(value, 0, 32);
2880     gt_recalc_timer(env_archcpu(env), timeridx);
2881 }
2882 
2883 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2884                          int timeridx,
2885                          uint64_t value)
2886 {
2887     ARMCPU *cpu = env_archcpu(env);
2888     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2889 
2890     trace_arm_gt_ctl_write(timeridx, value);
2891     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2892     if ((oldval ^ value) & 1) {
2893         /* Enable toggled */
2894         gt_recalc_timer(cpu, timeridx);
2895     } else if ((oldval ^ value) & 2) {
2896         /*
2897          * IMASK toggled: don't need to recalculate,
2898          * just set the interrupt line based on ISTATUS
2899          */
2900         trace_arm_gt_imask_toggle(timeridx);
2901         gt_update_irq(cpu, timeridx);
2902     }
2903 }
2904 
2905 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2906 {
2907     gt_timer_reset(env, ri, GTIMER_PHYS);
2908 }
2909 
2910 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2911                                uint64_t value)
2912 {
2913     gt_cval_write(env, ri, GTIMER_PHYS, value);
2914 }
2915 
2916 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2917 {
2918     return gt_tval_read(env, ri, GTIMER_PHYS);
2919 }
2920 
2921 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2922                                uint64_t value)
2923 {
2924     gt_tval_write(env, ri, GTIMER_PHYS, value);
2925 }
2926 
2927 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2928                               uint64_t value)
2929 {
2930     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2931 }
2932 
2933 static int gt_phys_redir_timeridx(CPUARMState *env)
2934 {
2935     switch (arm_mmu_idx(env)) {
2936     case ARMMMUIdx_E20_0:
2937     case ARMMMUIdx_E20_2:
2938     case ARMMMUIdx_E20_2_PAN:
2939         return GTIMER_HYP;
2940     default:
2941         return GTIMER_PHYS;
2942     }
2943 }
2944 
2945 static int gt_virt_redir_timeridx(CPUARMState *env)
2946 {
2947     switch (arm_mmu_idx(env)) {
2948     case ARMMMUIdx_E20_0:
2949     case ARMMMUIdx_E20_2:
2950     case ARMMMUIdx_E20_2_PAN:
2951         return GTIMER_HYPVIRT;
2952     default:
2953         return GTIMER_VIRT;
2954     }
2955 }
2956 
2957 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2958                                         const ARMCPRegInfo *ri)
2959 {
2960     int timeridx = gt_phys_redir_timeridx(env);
2961     return env->cp15.c14_timer[timeridx].cval;
2962 }
2963 
2964 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965                                      uint64_t value)
2966 {
2967     int timeridx = gt_phys_redir_timeridx(env);
2968     gt_cval_write(env, ri, timeridx, value);
2969 }
2970 
2971 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2972                                         const ARMCPRegInfo *ri)
2973 {
2974     int timeridx = gt_phys_redir_timeridx(env);
2975     return gt_tval_read(env, ri, timeridx);
2976 }
2977 
2978 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                                      uint64_t value)
2980 {
2981     int timeridx = gt_phys_redir_timeridx(env);
2982     gt_tval_write(env, ri, timeridx, value);
2983 }
2984 
2985 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2986                                        const ARMCPRegInfo *ri)
2987 {
2988     int timeridx = gt_phys_redir_timeridx(env);
2989     return env->cp15.c14_timer[timeridx].ctl;
2990 }
2991 
2992 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993                                     uint64_t value)
2994 {
2995     int timeridx = gt_phys_redir_timeridx(env);
2996     gt_ctl_write(env, ri, timeridx, value);
2997 }
2998 
2999 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001     gt_timer_reset(env, ri, GTIMER_VIRT);
3002 }
3003 
3004 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005                                uint64_t value)
3006 {
3007     gt_cval_write(env, ri, GTIMER_VIRT, value);
3008 }
3009 
3010 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012     return gt_tval_read(env, ri, GTIMER_VIRT);
3013 }
3014 
3015 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                                uint64_t value)
3017 {
3018     gt_tval_write(env, ri, GTIMER_VIRT, value);
3019 }
3020 
3021 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022                               uint64_t value)
3023 {
3024     gt_ctl_write(env, ri, GTIMER_VIRT, value);
3025 }
3026 
3027 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3028                              uint64_t value)
3029 {
3030     ARMCPU *cpu = env_archcpu(env);
3031     uint32_t oldval = env->cp15.cnthctl_el2;
3032     uint32_t valid_mask =
3033         R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3034         R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3035         R_CNTHCTL_EVNTEN_MASK |
3036         R_CNTHCTL_EVNTDIR_MASK |
3037         R_CNTHCTL_EVNTI_MASK |
3038         R_CNTHCTL_EL0VTEN_MASK |
3039         R_CNTHCTL_EL0PTEN_MASK |
3040         R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3041         R_CNTHCTL_EL1PTEN_MASK;
3042 
3043     if (cpu_isar_feature(aa64_rme, cpu)) {
3044         valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3045     }
3046     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3047         valid_mask |=
3048             R_CNTHCTL_EL1TVT_MASK |
3049             R_CNTHCTL_EL1TVCT_MASK |
3050             R_CNTHCTL_EL1NVPCT_MASK |
3051             R_CNTHCTL_EL1NVVCT_MASK |
3052             R_CNTHCTL_EVNTIS_MASK;
3053     }
3054     if (cpu_isar_feature(aa64_ecv, cpu)) {
3055         valid_mask |= R_CNTHCTL_ECV_MASK;
3056     }
3057 
3058     /* Clear RES0 bits */
3059     value &= valid_mask;
3060 
3061     raw_write(env, ri, value);
3062 
3063     if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3064         gt_update_irq(cpu, GTIMER_VIRT);
3065     } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3066         gt_update_irq(cpu, GTIMER_PHYS);
3067     }
3068 }
3069 
3070 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3071                               uint64_t value)
3072 {
3073     ARMCPU *cpu = env_archcpu(env);
3074 
3075     trace_arm_gt_cntvoff_write(value);
3076     raw_write(env, ri, value);
3077     gt_recalc_timer(cpu, GTIMER_VIRT);
3078 }
3079 
3080 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3081                                         const ARMCPRegInfo *ri)
3082 {
3083     int timeridx = gt_virt_redir_timeridx(env);
3084     return env->cp15.c14_timer[timeridx].cval;
3085 }
3086 
3087 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3088                                      uint64_t value)
3089 {
3090     int timeridx = gt_virt_redir_timeridx(env);
3091     gt_cval_write(env, ri, timeridx, value);
3092 }
3093 
3094 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3095                                         const ARMCPRegInfo *ri)
3096 {
3097     int timeridx = gt_virt_redir_timeridx(env);
3098     return gt_tval_read(env, ri, timeridx);
3099 }
3100 
3101 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3102                                      uint64_t value)
3103 {
3104     int timeridx = gt_virt_redir_timeridx(env);
3105     gt_tval_write(env, ri, timeridx, value);
3106 }
3107 
3108 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3109                                        const ARMCPRegInfo *ri)
3110 {
3111     int timeridx = gt_virt_redir_timeridx(env);
3112     return env->cp15.c14_timer[timeridx].ctl;
3113 }
3114 
3115 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116                                     uint64_t value)
3117 {
3118     int timeridx = gt_virt_redir_timeridx(env);
3119     gt_ctl_write(env, ri, timeridx, value);
3120 }
3121 
3122 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3123 {
3124     gt_timer_reset(env, ri, GTIMER_HYP);
3125 }
3126 
3127 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3128                               uint64_t value)
3129 {
3130     gt_cval_write(env, ri, GTIMER_HYP, value);
3131 }
3132 
3133 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3134 {
3135     return gt_tval_read(env, ri, GTIMER_HYP);
3136 }
3137 
3138 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3139                               uint64_t value)
3140 {
3141     gt_tval_write(env, ri, GTIMER_HYP, value);
3142 }
3143 
3144 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145                               uint64_t value)
3146 {
3147     gt_ctl_write(env, ri, GTIMER_HYP, value);
3148 }
3149 
3150 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3151 {
3152     gt_timer_reset(env, ri, GTIMER_SEC);
3153 }
3154 
3155 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156                               uint64_t value)
3157 {
3158     gt_cval_write(env, ri, GTIMER_SEC, value);
3159 }
3160 
3161 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3162 {
3163     return gt_tval_read(env, ri, GTIMER_SEC);
3164 }
3165 
3166 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3167                               uint64_t value)
3168 {
3169     gt_tval_write(env, ri, GTIMER_SEC, value);
3170 }
3171 
3172 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3173                               uint64_t value)
3174 {
3175     gt_ctl_write(env, ri, GTIMER_SEC, value);
3176 }
3177 
3178 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3179 {
3180     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3181 }
3182 
3183 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184                              uint64_t value)
3185 {
3186     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3187 }
3188 
3189 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3190 {
3191     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3192 }
3193 
3194 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3195                              uint64_t value)
3196 {
3197     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3198 }
3199 
3200 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3201                             uint64_t value)
3202 {
3203     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3204 }
3205 
3206 void arm_gt_ptimer_cb(void *opaque)
3207 {
3208     ARMCPU *cpu = opaque;
3209 
3210     gt_recalc_timer(cpu, GTIMER_PHYS);
3211 }
3212 
3213 void arm_gt_vtimer_cb(void *opaque)
3214 {
3215     ARMCPU *cpu = opaque;
3216 
3217     gt_recalc_timer(cpu, GTIMER_VIRT);
3218 }
3219 
3220 void arm_gt_htimer_cb(void *opaque)
3221 {
3222     ARMCPU *cpu = opaque;
3223 
3224     gt_recalc_timer(cpu, GTIMER_HYP);
3225 }
3226 
3227 void arm_gt_stimer_cb(void *opaque)
3228 {
3229     ARMCPU *cpu = opaque;
3230 
3231     gt_recalc_timer(cpu, GTIMER_SEC);
3232 }
3233 
3234 void arm_gt_hvtimer_cb(void *opaque)
3235 {
3236     ARMCPU *cpu = opaque;
3237 
3238     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3239 }
3240 
3241 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3242     /*
3243      * Note that CNTFRQ is purely reads-as-written for the benefit
3244      * of software; writing it doesn't actually change the timer frequency.
3245      * Our reset value matches the fixed frequency we implement the timer at.
3246      */
3247     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3248       .type = ARM_CP_ALIAS,
3249       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3250       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3251     },
3252     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3253       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3254       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3255       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3256       .resetfn = arm_gt_cntfrq_reset,
3257     },
3258     /* overall control: mostly access permissions */
3259     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3260       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3261       .access = PL1_RW,
3262       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3263       .resetvalue = 0,
3264     },
3265     /* per-timer control */
3266     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3267       .secure = ARM_CP_SECSTATE_NS,
3268       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3269       .accessfn = gt_ptimer_access,
3270       .fieldoffset = offsetoflow32(CPUARMState,
3271                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3272       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3273       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3274     },
3275     { .name = "CNTP_CTL_S",
3276       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3277       .secure = ARM_CP_SECSTATE_S,
3278       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3279       .accessfn = gt_ptimer_access,
3280       .fieldoffset = offsetoflow32(CPUARMState,
3281                                    cp15.c14_timer[GTIMER_SEC].ctl),
3282       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3283     },
3284     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3285       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3286       .type = ARM_CP_IO, .access = PL0_RW,
3287       .accessfn = gt_ptimer_access,
3288       .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3290       .resetvalue = 0,
3291       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3292       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3293     },
3294     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3295       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3296       .accessfn = gt_vtimer_access,
3297       .fieldoffset = offsetoflow32(CPUARMState,
3298                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3299       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3300       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3301     },
3302     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3303       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3304       .type = ARM_CP_IO, .access = PL0_RW,
3305       .accessfn = gt_vtimer_access,
3306       .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3307       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3308       .resetvalue = 0,
3309       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3310       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3311     },
3312     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3313     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3314       .secure = ARM_CP_SECSTATE_NS,
3315       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3316       .accessfn = gt_ptimer_access,
3317       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3318     },
3319     { .name = "CNTP_TVAL_S",
3320       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3321       .secure = ARM_CP_SECSTATE_S,
3322       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3323       .accessfn = gt_ptimer_access,
3324       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3325     },
3326     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3327       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3328       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3329       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3330       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3331     },
3332     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3333       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3334       .accessfn = gt_vtimer_access,
3335       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3336     },
3337     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3338       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3339       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3340       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3341       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3342     },
3343     /* The counter itself */
3344     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3345       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3346       .accessfn = gt_pct_access,
3347       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3348     },
3349     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3350       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3351       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3352       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3353     },
3354     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3355       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3356       .accessfn = gt_vct_access,
3357       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3358     },
3359     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3360       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3361       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3362       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3363     },
3364     /* Comparison value, indicating when the timer goes off */
3365     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3366       .secure = ARM_CP_SECSTATE_NS,
3367       .access = PL0_RW,
3368       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3369       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3370       .accessfn = gt_ptimer_access,
3371       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3372       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3373     },
3374     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3375       .secure = ARM_CP_SECSTATE_S,
3376       .access = PL0_RW,
3377       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3378       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3379       .accessfn = gt_ptimer_access,
3380       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3381     },
3382     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3384       .access = PL0_RW,
3385       .type = ARM_CP_IO,
3386       .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3387       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3388       .resetvalue = 0, .accessfn = gt_ptimer_access,
3389       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3390       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3391     },
3392     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3393       .access = PL0_RW,
3394       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3395       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3396       .accessfn = gt_vtimer_access,
3397       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3398       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3399     },
3400     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3401       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3402       .access = PL0_RW,
3403       .type = ARM_CP_IO,
3404       .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3405       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3406       .resetvalue = 0, .accessfn = gt_vtimer_access,
3407       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3408       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3409     },
3410     /*
3411      * Secure timer -- this is actually restricted to only EL3
3412      * and configurably Secure-EL1 via the accessfn.
3413      */
3414     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3415       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3416       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3417       .accessfn = gt_stimer_access,
3418       .readfn = gt_sec_tval_read,
3419       .writefn = gt_sec_tval_write,
3420       .resetfn = gt_sec_timer_reset,
3421     },
3422     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3423       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3424       .type = ARM_CP_IO, .access = PL1_RW,
3425       .accessfn = gt_stimer_access,
3426       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3427       .resetvalue = 0,
3428       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3429     },
3430     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3431       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3432       .type = ARM_CP_IO, .access = PL1_RW,
3433       .accessfn = gt_stimer_access,
3434       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3435       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3436     },
3437 };
3438 
3439 /*
3440  * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3441  * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3442  * so our implementations here are identical to the normal registers.
3443  */
3444 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3445     { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3446       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3447       .accessfn = gt_vct_access,
3448       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3449     },
3450     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3452       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3453       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3454     },
3455     { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3456       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3457       .accessfn = gt_pct_access,
3458       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3459     },
3460     { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3461       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3462       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3463       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3464     },
3465 };
3466 
3467 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3468                                         const ARMCPRegInfo *ri,
3469                                         bool isread)
3470 {
3471     if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3472         !(env->cp15.scr_el3 & SCR_ECVEN)) {
3473         return CP_ACCESS_TRAP_EL3;
3474     }
3475     return CP_ACCESS_OK;
3476 }
3477 
3478 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3479                               uint64_t value)
3480 {
3481     ARMCPU *cpu = env_archcpu(env);
3482 
3483     trace_arm_gt_cntpoff_write(value);
3484     raw_write(env, ri, value);
3485     gt_recalc_timer(cpu, GTIMER_PHYS);
3486 }
3487 
3488 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3489     .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3490     .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3491     .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3492     .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3493     .nv2_redirect_offset = 0x1a8,
3494     .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3495 };
3496 #else
3497 
3498 /*
3499  * In user-mode most of the generic timer registers are inaccessible
3500  * however modern kernels (4.12+) allow access to cntvct_el0
3501  */
3502 
3503 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3504 {
3505     ARMCPU *cpu = env_archcpu(env);
3506 
3507     /*
3508      * Currently we have no support for QEMUTimer in linux-user so we
3509      * can't call gt_get_countervalue(env), instead we directly
3510      * call the lower level functions.
3511      */
3512     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3513 }
3514 
3515 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3516     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3517       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3518       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3519       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3520       .resetfn = arm_gt_cntfrq_reset,
3521     },
3522     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3523       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3524       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3525       .readfn = gt_virt_cnt_read,
3526     },
3527 };
3528 
3529 /*
3530  * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3531  * is exposed to userspace by Linux.
3532  */
3533 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3534     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3535       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3536       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3537       .readfn = gt_virt_cnt_read,
3538     },
3539 };
3540 
3541 #endif
3542 
3543 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3544 {
3545     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3546         raw_write(env, ri, value);
3547     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3548         raw_write(env, ri, value & 0xfffff6ff);
3549     } else {
3550         raw_write(env, ri, value & 0xfffff1ff);
3551     }
3552 }
3553 
3554 #ifndef CONFIG_USER_ONLY
3555 /* get_phys_addr() isn't present for user-mode-only targets */
3556 
3557 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3558                                  bool isread)
3559 {
3560     if (ri->opc2 & 4) {
3561         /*
3562          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3563          * Secure EL1 (which can only happen if EL3 is AArch64).
3564          * They are simply UNDEF if executed from NS EL1.
3565          * They function normally from EL2 or EL3.
3566          */
3567         if (arm_current_el(env) == 1) {
3568             if (arm_is_secure_below_el3(env)) {
3569                 if (env->cp15.scr_el3 & SCR_EEL2) {
3570                     return CP_ACCESS_TRAP_EL2;
3571                 }
3572                 return CP_ACCESS_TRAP_EL3;
3573             }
3574             return CP_ACCESS_TRAP_UNCATEGORIZED;
3575         }
3576     }
3577     return CP_ACCESS_OK;
3578 }
3579 
3580 #ifdef CONFIG_TCG
3581 static int par_el1_shareability(GetPhysAddrResult *res)
3582 {
3583     /*
3584      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3585      * memory -- see pseudocode PAREncodeShareability().
3586      */
3587     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3588         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3589         return 2;
3590     }
3591     return res->cacheattrs.shareability;
3592 }
3593 
3594 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3595                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3596                              ARMSecuritySpace ss)
3597 {
3598     bool ret;
3599     uint64_t par64;
3600     bool format64 = false;
3601     ARMMMUFaultInfo fi = {};
3602     GetPhysAddrResult res = {};
3603 
3604     /*
3605      * I_MXTJT: Granule protection checks are not performed on the final address
3606      * of a successful translation.
3607      */
3608     ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3609                                          &res, &fi);
3610 
3611     /*
3612      * ATS operations only do S1 or S1+S2 translations, so we never
3613      * have to deal with the ARMCacheAttrs format for S2 only.
3614      */
3615     assert(!res.cacheattrs.is_s2_format);
3616 
3617     if (ret) {
3618         /*
3619          * Some kinds of translation fault must cause exceptions rather
3620          * than being reported in the PAR.
3621          */
3622         int current_el = arm_current_el(env);
3623         int target_el;
3624         uint32_t syn, fsr, fsc;
3625         bool take_exc = false;
3626 
3627         if (fi.s1ptw && current_el == 1
3628             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3629             /*
3630              * Synchronous stage 2 fault on an access made as part of the
3631              * translation table walk for AT S1E0* or AT S1E1* insn
3632              * executed from NS EL1. If this is a synchronous external abort
3633              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3634              * to EL3. Otherwise the fault is taken as an exception to EL2,
3635              * and HPFAR_EL2 holds the faulting IPA.
3636              */
3637             if (fi.type == ARMFault_SyncExternalOnWalk &&
3638                 (env->cp15.scr_el3 & SCR_EA)) {
3639                 target_el = 3;
3640             } else {
3641                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3642                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3643                     env->cp15.hpfar_el2 |= HPFAR_NS;
3644                 }
3645                 target_el = 2;
3646             }
3647             take_exc = true;
3648         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3649             /*
3650              * Synchronous external aborts during a translation table walk
3651              * are taken as Data Abort exceptions.
3652              */
3653             if (fi.stage2) {
3654                 if (current_el == 3) {
3655                     target_el = 3;
3656                 } else {
3657                     target_el = 2;
3658                 }
3659             } else {
3660                 target_el = exception_target_el(env);
3661             }
3662             take_exc = true;
3663         }
3664 
3665         if (take_exc) {
3666             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3667             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3668                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3669                 fsr = arm_fi_to_lfsc(&fi);
3670                 fsc = extract32(fsr, 0, 6);
3671             } else {
3672                 fsr = arm_fi_to_sfsc(&fi);
3673                 fsc = 0x3f;
3674             }
3675             /*
3676              * Report exception with ESR indicating a fault due to a
3677              * translation table walk for a cache maintenance instruction.
3678              */
3679             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3680                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3681             env->exception.vaddress = value;
3682             env->exception.fsr = fsr;
3683             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3684         }
3685     }
3686 
3687     if (is_a64(env)) {
3688         format64 = true;
3689     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3690         /*
3691          * ATS1Cxx:
3692          * * TTBCR.EAE determines whether the result is returned using the
3693          *   32-bit or the 64-bit PAR format
3694          * * Instructions executed in Hyp mode always use the 64bit format
3695          *
3696          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3697          * * The Non-secure TTBCR.EAE bit is set to 1
3698          * * The implementation includes EL2, and the value of HCR.VM is 1
3699          *
3700          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3701          *
3702          * ATS1Hx always uses the 64bit format.
3703          */
3704         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3705 
3706         if (arm_feature(env, ARM_FEATURE_EL2)) {
3707             if (mmu_idx == ARMMMUIdx_E10_0 ||
3708                 mmu_idx == ARMMMUIdx_E10_1 ||
3709                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3710                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3711             } else {
3712                 format64 |= arm_current_el(env) == 2;
3713             }
3714         }
3715     }
3716 
3717     if (format64) {
3718         /* Create a 64-bit PAR */
3719         par64 = (1 << 11); /* LPAE bit always set */
3720         if (!ret) {
3721             par64 |= res.f.phys_addr & ~0xfffULL;
3722             if (!res.f.attrs.secure) {
3723                 par64 |= (1 << 9); /* NS */
3724             }
3725             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3726             par64 |= par_el1_shareability(&res) << 7; /* SH */
3727         } else {
3728             uint32_t fsr = arm_fi_to_lfsc(&fi);
3729 
3730             par64 |= 1; /* F */
3731             par64 |= (fsr & 0x3f) << 1; /* FS */
3732             if (fi.stage2) {
3733                 par64 |= (1 << 9); /* S */
3734             }
3735             if (fi.s1ptw) {
3736                 par64 |= (1 << 8); /* PTW */
3737             }
3738         }
3739     } else {
3740         /*
3741          * fsr is a DFSR/IFSR value for the short descriptor
3742          * translation table format (with WnR always clear).
3743          * Convert it to a 32-bit PAR.
3744          */
3745         if (!ret) {
3746             /* We do not set any attribute bits in the PAR */
3747             if (res.f.lg_page_size == 24
3748                 && arm_feature(env, ARM_FEATURE_V7)) {
3749                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3750             } else {
3751                 par64 = res.f.phys_addr & 0xfffff000;
3752             }
3753             if (!res.f.attrs.secure) {
3754                 par64 |= (1 << 9); /* NS */
3755             }
3756         } else {
3757             uint32_t fsr = arm_fi_to_sfsc(&fi);
3758 
3759             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3760                     ((fsr & 0xf) << 1) | 1;
3761         }
3762     }
3763     return par64;
3764 }
3765 #endif /* CONFIG_TCG */
3766 
3767 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3768 {
3769 #ifdef CONFIG_TCG
3770     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3771     uint64_t par64;
3772     ARMMMUIdx mmu_idx;
3773     int el = arm_current_el(env);
3774     ARMSecuritySpace ss = arm_security_space(env);
3775 
3776     switch (ri->opc2 & 6) {
3777     case 0:
3778         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3779         switch (el) {
3780         case 3:
3781             if (ri->crm == 9 && arm_pan_enabled(env)) {
3782                 mmu_idx = ARMMMUIdx_E30_3_PAN;
3783             } else {
3784                 mmu_idx = ARMMMUIdx_E3;
3785             }
3786             break;
3787         case 2:
3788             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3789             /* fall through */
3790         case 1:
3791             if (ri->crm == 9 && arm_pan_enabled(env)) {
3792                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3793             } else {
3794                 mmu_idx = ARMMMUIdx_Stage1_E1;
3795             }
3796             break;
3797         default:
3798             g_assert_not_reached();
3799         }
3800         break;
3801     case 2:
3802         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3803         switch (el) {
3804         case 3:
3805             mmu_idx = ARMMMUIdx_E30_0;
3806             break;
3807         case 2:
3808             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3809             mmu_idx = ARMMMUIdx_Stage1_E0;
3810             break;
3811         case 1:
3812             mmu_idx = ARMMMUIdx_Stage1_E0;
3813             break;
3814         default:
3815             g_assert_not_reached();
3816         }
3817         break;
3818     case 4:
3819         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3820         mmu_idx = ARMMMUIdx_E10_1;
3821         ss = ARMSS_NonSecure;
3822         break;
3823     case 6:
3824         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3825         mmu_idx = ARMMMUIdx_E10_0;
3826         ss = ARMSS_NonSecure;
3827         break;
3828     default:
3829         g_assert_not_reached();
3830     }
3831 
3832     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3833 
3834     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3835 #else
3836     /* Handled by hardware accelerator. */
3837     g_assert_not_reached();
3838 #endif /* CONFIG_TCG */
3839 }
3840 
3841 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3842                         uint64_t value)
3843 {
3844 #ifdef CONFIG_TCG
3845     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3846     uint64_t par64;
3847 
3848     /* There is no SecureEL2 for AArch32. */
3849     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3850                          ARMSS_NonSecure);
3851 
3852     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3853 #else
3854     /* Handled by hardware accelerator. */
3855     g_assert_not_reached();
3856 #endif /* CONFIG_TCG */
3857 }
3858 
3859 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3860                                      bool isread)
3861 {
3862     /*
3863      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3864      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3865      * only happen when executing at EL3 because that combination also causes an
3866      * illegal exception return. We don't need to check FEAT_RME either, because
3867      * scr_write() ensures that the NSE bit is not set otherwise.
3868      */
3869     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3870         return CP_ACCESS_TRAP;
3871     }
3872     return CP_ACCESS_OK;
3873 }
3874 
3875 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3876                                      bool isread)
3877 {
3878     if (arm_current_el(env) == 3 &&
3879         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3880         return CP_ACCESS_TRAP;
3881     }
3882     return at_e012_access(env, ri, isread);
3883 }
3884 
3885 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3886                                       bool isread)
3887 {
3888     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3889         return CP_ACCESS_TRAP_EL2;
3890     }
3891     return at_e012_access(env, ri, isread);
3892 }
3893 
3894 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3895                         uint64_t value)
3896 {
3897 #ifdef CONFIG_TCG
3898     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3899     ARMMMUIdx mmu_idx;
3900     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3901     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3902     bool for_el3 = false;
3903     ARMSecuritySpace ss;
3904 
3905     switch (ri->opc2 & 6) {
3906     case 0:
3907         switch (ri->opc1) {
3908         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3909             if (ri->crm == 9 && arm_pan_enabled(env)) {
3910                 mmu_idx = regime_e20 ?
3911                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3912             } else {
3913                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3914             }
3915             break;
3916         case 4: /* AT S1E2R, AT S1E2W */
3917             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3918             break;
3919         case 6: /* AT S1E3R, AT S1E3W */
3920             mmu_idx = ARMMMUIdx_E3;
3921             for_el3 = true;
3922             break;
3923         default:
3924             g_assert_not_reached();
3925         }
3926         break;
3927     case 2: /* AT S1E0R, AT S1E0W */
3928         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3929         break;
3930     case 4: /* AT S12E1R, AT S12E1W */
3931         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3932         break;
3933     case 6: /* AT S12E0R, AT S12E0W */
3934         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3935         break;
3936     default:
3937         g_assert_not_reached();
3938     }
3939 
3940     ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
3941     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
3942 #else
3943     /* Handled by hardware accelerator. */
3944     g_assert_not_reached();
3945 #endif /* CONFIG_TCG */
3946 }
3947 #endif
3948 
3949 /* Return basic MPU access permission bits.  */
3950 static uint32_t simple_mpu_ap_bits(uint32_t val)
3951 {
3952     uint32_t ret;
3953     uint32_t mask;
3954     int i;
3955     ret = 0;
3956     mask = 3;
3957     for (i = 0; i < 16; i += 2) {
3958         ret |= (val >> i) & mask;
3959         mask <<= 2;
3960     }
3961     return ret;
3962 }
3963 
3964 /* Pad basic MPU access permission bits to extended format.  */
3965 static uint32_t extended_mpu_ap_bits(uint32_t val)
3966 {
3967     uint32_t ret;
3968     uint32_t mask;
3969     int i;
3970     ret = 0;
3971     mask = 3;
3972     for (i = 0; i < 16; i += 2) {
3973         ret |= (val & mask) << i;
3974         mask <<= 2;
3975     }
3976     return ret;
3977 }
3978 
3979 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3980                                  uint64_t value)
3981 {
3982     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3983 }
3984 
3985 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3986 {
3987     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3988 }
3989 
3990 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991                                  uint64_t value)
3992 {
3993     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3994 }
3995 
3996 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3997 {
3998     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3999 }
4000 
4001 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
4002 {
4003     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4004 
4005     if (!u32p) {
4006         return 0;
4007     }
4008 
4009     u32p += env->pmsav7.rnr[M_REG_NS];
4010     return *u32p;
4011 }
4012 
4013 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014                          uint64_t value)
4015 {
4016     ARMCPU *cpu = env_archcpu(env);
4017     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4018 
4019     if (!u32p) {
4020         return;
4021     }
4022 
4023     u32p += env->pmsav7.rnr[M_REG_NS];
4024     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4025     *u32p = value;
4026 }
4027 
4028 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4029                               uint64_t value)
4030 {
4031     ARMCPU *cpu = env_archcpu(env);
4032     uint32_t nrgs = cpu->pmsav7_dregion;
4033 
4034     if (value >= nrgs) {
4035         qemu_log_mask(LOG_GUEST_ERROR,
4036                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4037                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4038         return;
4039     }
4040 
4041     raw_write(env, ri, value);
4042 }
4043 
4044 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4045                           uint64_t value)
4046 {
4047     ARMCPU *cpu = env_archcpu(env);
4048 
4049     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4050     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4051 }
4052 
4053 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4054 {
4055     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4056 }
4057 
4058 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4059                           uint64_t value)
4060 {
4061     ARMCPU *cpu = env_archcpu(env);
4062 
4063     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4064     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4065 }
4066 
4067 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4068 {
4069     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4070 }
4071 
4072 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4073                            uint64_t value)
4074 {
4075     ARMCPU *cpu = env_archcpu(env);
4076 
4077     /*
4078      * Ignore writes that would select not implemented region.
4079      * This is architecturally UNPREDICTABLE.
4080      */
4081     if (value >= cpu->pmsav7_dregion) {
4082         return;
4083     }
4084 
4085     env->pmsav7.rnr[M_REG_NS] = value;
4086 }
4087 
4088 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4089                           uint64_t value)
4090 {
4091     ARMCPU *cpu = env_archcpu(env);
4092 
4093     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4094     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4095 }
4096 
4097 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4098 {
4099     return env->pmsav8.hprbar[env->pmsav8.hprselr];
4100 }
4101 
4102 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4103                           uint64_t value)
4104 {
4105     ARMCPU *cpu = env_archcpu(env);
4106 
4107     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4108     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4109 }
4110 
4111 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4112 {
4113     return env->pmsav8.hprlar[env->pmsav8.hprselr];
4114 }
4115 
4116 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4117                           uint64_t value)
4118 {
4119     uint32_t n;
4120     uint32_t bit;
4121     ARMCPU *cpu = env_archcpu(env);
4122 
4123     /* Ignore writes to unimplemented regions */
4124     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4125     value &= MAKE_64BIT_MASK(0, rmax);
4126 
4127     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4128 
4129     /* Register alias is only valid for first 32 indexes */
4130     for (n = 0; n < rmax; ++n) {
4131         bit = extract32(value, n, 1);
4132         env->pmsav8.hprlar[n] = deposit32(
4133                     env->pmsav8.hprlar[n], 0, 1, bit);
4134     }
4135 }
4136 
4137 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4138 {
4139     uint32_t n;
4140     uint32_t result = 0x0;
4141     ARMCPU *cpu = env_archcpu(env);
4142 
4143     /* Register alias is only valid for first 32 indexes */
4144     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4145         if (env->pmsav8.hprlar[n] & 0x1) {
4146             result |= (0x1 << n);
4147         }
4148     }
4149     return result;
4150 }
4151 
4152 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4153                            uint64_t value)
4154 {
4155     ARMCPU *cpu = env_archcpu(env);
4156 
4157     /*
4158      * Ignore writes that would select not implemented region.
4159      * This is architecturally UNPREDICTABLE.
4160      */
4161     if (value >= cpu->pmsav8r_hdregion) {
4162         return;
4163     }
4164 
4165     env->pmsav8.hprselr = value;
4166 }
4167 
4168 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4169                           uint64_t value)
4170 {
4171     ARMCPU *cpu = env_archcpu(env);
4172     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4173                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4174 
4175     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4176 
4177     if (ri->opc1 & 4) {
4178         if (index >= cpu->pmsav8r_hdregion) {
4179             return;
4180         }
4181         if (ri->opc2 & 0x1) {
4182             env->pmsav8.hprlar[index] = value;
4183         } else {
4184             env->pmsav8.hprbar[index] = value;
4185         }
4186     } else {
4187         if (index >= cpu->pmsav7_dregion) {
4188             return;
4189         }
4190         if (ri->opc2 & 0x1) {
4191             env->pmsav8.rlar[M_REG_NS][index] = value;
4192         } else {
4193             env->pmsav8.rbar[M_REG_NS][index] = value;
4194         }
4195     }
4196 }
4197 
4198 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4199 {
4200     ARMCPU *cpu = env_archcpu(env);
4201     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4202                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4203 
4204     if (ri->opc1 & 4) {
4205         if (index >= cpu->pmsav8r_hdregion) {
4206             return 0x0;
4207         }
4208         if (ri->opc2 & 0x1) {
4209             return env->pmsav8.hprlar[index];
4210         } else {
4211             return env->pmsav8.hprbar[index];
4212         }
4213     } else {
4214         if (index >= cpu->pmsav7_dregion) {
4215             return 0x0;
4216         }
4217         if (ri->opc2 & 0x1) {
4218             return env->pmsav8.rlar[M_REG_NS][index];
4219         } else {
4220             return env->pmsav8.rbar[M_REG_NS][index];
4221         }
4222     }
4223 }
4224 
4225 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4226     { .name = "PRBAR",
4227       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4228       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4229       .accessfn = access_tvm_trvm,
4230       .readfn = prbar_read, .writefn = prbar_write },
4231     { .name = "PRLAR",
4232       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4233       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4234       .accessfn = access_tvm_trvm,
4235       .readfn = prlar_read, .writefn = prlar_write },
4236     { .name = "PRSELR", .resetvalue = 0,
4237       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4238       .access = PL1_RW, .accessfn = access_tvm_trvm,
4239       .writefn = prselr_write,
4240       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4241     { .name = "HPRBAR", .resetvalue = 0,
4242       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4243       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4244       .readfn = hprbar_read, .writefn = hprbar_write },
4245     { .name = "HPRLAR",
4246       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4247       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4248       .readfn = hprlar_read, .writefn = hprlar_write },
4249     { .name = "HPRSELR", .resetvalue = 0,
4250       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4251       .access = PL2_RW,
4252       .writefn = hprselr_write,
4253       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4254     { .name = "HPRENR",
4255       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4256       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4257       .readfn = hprenr_read, .writefn = hprenr_write },
4258 };
4259 
4260 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4261     /*
4262      * Reset for all these registers is handled in arm_cpu_reset(),
4263      * because the PMSAv7 is also used by M-profile CPUs, which do
4264      * not register cpregs but still need the state to be reset.
4265      */
4266     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4267       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4268       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4269       .readfn = pmsav7_read, .writefn = pmsav7_write,
4270       .resetfn = arm_cp_reset_ignore },
4271     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4272       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4273       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4274       .readfn = pmsav7_read, .writefn = pmsav7_write,
4275       .resetfn = arm_cp_reset_ignore },
4276     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4277       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4278       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4279       .readfn = pmsav7_read, .writefn = pmsav7_write,
4280       .resetfn = arm_cp_reset_ignore },
4281     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4282       .access = PL1_RW,
4283       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4284       .writefn = pmsav7_rgnr_write,
4285       .resetfn = arm_cp_reset_ignore },
4286 };
4287 
4288 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4289     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4290       .access = PL1_RW, .type = ARM_CP_ALIAS,
4291       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4292       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4293     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4294       .access = PL1_RW, .type = ARM_CP_ALIAS,
4295       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4296       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4297     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4298       .access = PL1_RW,
4299       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4300       .resetvalue = 0, },
4301     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4302       .access = PL1_RW,
4303       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4304       .resetvalue = 0, },
4305     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4306       .access = PL1_RW,
4307       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4308     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4309       .access = PL1_RW,
4310       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4311     /* Protection region base and size registers */
4312     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4313       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4314       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4315     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4316       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4317       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4318     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4319       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4320       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4321     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4322       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4323       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4324     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4325       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4326       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4327     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4328       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4329       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4330     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4331       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4332       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4333     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4334       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4335       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4336 };
4337 
4338 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4339                              uint64_t value)
4340 {
4341     ARMCPU *cpu = env_archcpu(env);
4342 
4343     if (!arm_feature(env, ARM_FEATURE_V8)) {
4344         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4345             /*
4346              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4347              * using Long-descriptor translation table format
4348              */
4349             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4350         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4351             /*
4352              * In an implementation that includes the Security Extensions
4353              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4354              * Short-descriptor translation table format.
4355              */
4356             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4357         } else {
4358             value &= TTBCR_N;
4359         }
4360     }
4361 
4362     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4363         /*
4364          * With LPAE the TTBCR could result in a change of ASID
4365          * via the TTBCR.A1 bit, so do a TLB flush.
4366          */
4367         tlb_flush(CPU(cpu));
4368     }
4369     raw_write(env, ri, value);
4370 }
4371 
4372 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4373                                uint64_t value)
4374 {
4375     ARMCPU *cpu = env_archcpu(env);
4376 
4377     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4378     tlb_flush(CPU(cpu));
4379     raw_write(env, ri, value);
4380 }
4381 
4382 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4383                             uint64_t value)
4384 {
4385     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4386     if (cpreg_field_is_64bit(ri) &&
4387         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4388         ARMCPU *cpu = env_archcpu(env);
4389         tlb_flush(CPU(cpu));
4390     }
4391     raw_write(env, ri, value);
4392 }
4393 
4394 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4395                                     uint64_t value)
4396 {
4397     /*
4398      * If we are running with E2&0 regime, then an ASID is active.
4399      * Flush if that might be changing.  Note we're not checking
4400      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4401      * holds the active ASID, only checking the field that might.
4402      */
4403     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4404         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4405         uint16_t mask = ARMMMUIdxBit_E20_2 |
4406                         ARMMMUIdxBit_E20_2_PAN |
4407                         ARMMMUIdxBit_E20_0;
4408         tlb_flush_by_mmuidx(env_cpu(env), mask);
4409     }
4410     raw_write(env, ri, value);
4411 }
4412 
4413 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4414                         uint64_t value)
4415 {
4416     ARMCPU *cpu = env_archcpu(env);
4417     CPUState *cs = CPU(cpu);
4418 
4419     /*
4420      * A change in VMID to the stage2 page table (Stage2) invalidates
4421      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4422      */
4423     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4424         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4425     }
4426     raw_write(env, ri, value);
4427 }
4428 
4429 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4430     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4431       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4432       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4433                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4434     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4435       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4436       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4437                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4438     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4439       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4440       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4441                              offsetof(CPUARMState, cp15.dfar_ns) } },
4442     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4443       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4444       .access = PL1_RW, .accessfn = access_tvm_trvm,
4445       .fgt = FGT_FAR_EL1,
4446       .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4447       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4448       .resetvalue = 0, },
4449 };
4450 
4451 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4452     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4453       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4454       .access = PL1_RW, .accessfn = access_tvm_trvm,
4455       .fgt = FGT_ESR_EL1,
4456       .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4457       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4458     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4459       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4460       .access = PL1_RW, .accessfn = access_tvm_trvm,
4461       .fgt = FGT_TTBR0_EL1,
4462       .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4463       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4464       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4465                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4466     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4467       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4468       .access = PL1_RW, .accessfn = access_tvm_trvm,
4469       .fgt = FGT_TTBR1_EL1,
4470       .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4471       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4472       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4473                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4474     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4475       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4476       .access = PL1_RW, .accessfn = access_tvm_trvm,
4477       .fgt = FGT_TCR_EL1,
4478       .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4479       .writefn = vmsa_tcr_el12_write,
4480       .raw_writefn = raw_write,
4481       .resetvalue = 0,
4482       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4483     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4484       .access = PL1_RW, .accessfn = access_tvm_trvm,
4485       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4486       .raw_writefn = raw_write,
4487       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4488                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4489 };
4490 
4491 /*
4492  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4493  * qemu tlbs nor adjusting cached masks.
4494  */
4495 static const ARMCPRegInfo ttbcr2_reginfo = {
4496     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4497     .access = PL1_RW, .accessfn = access_tvm_trvm,
4498     .type = ARM_CP_ALIAS,
4499     .bank_fieldoffsets = {
4500         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4501         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4502     },
4503 };
4504 
4505 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4506                                 uint64_t value)
4507 {
4508     env->cp15.c15_ticonfig = value & 0xe7;
4509     /* The OS_TYPE bit in this register changes the reported CPUID! */
4510     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4511         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4512 }
4513 
4514 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4515                                 uint64_t value)
4516 {
4517     env->cp15.c15_threadid = value & 0xffff;
4518 }
4519 
4520 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4521                            uint64_t value)
4522 {
4523     /* Wait-for-interrupt (deprecated) */
4524     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4525 }
4526 
4527 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4528                                   uint64_t value)
4529 {
4530     /*
4531      * On OMAP there are registers indicating the max/min index of dcache lines
4532      * containing a dirty line; cache flush operations have to reset these.
4533      */
4534     env->cp15.c15_i_max = 0x000;
4535     env->cp15.c15_i_min = 0xff0;
4536 }
4537 
4538 static const ARMCPRegInfo omap_cp_reginfo[] = {
4539     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4540       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4541       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4542       .resetvalue = 0, },
4543     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4544       .access = PL1_RW, .type = ARM_CP_NOP },
4545     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4546       .access = PL1_RW,
4547       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4548       .writefn = omap_ticonfig_write },
4549     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4550       .access = PL1_RW,
4551       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4552     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4553       .access = PL1_RW, .resetvalue = 0xff0,
4554       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4555     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4556       .access = PL1_RW,
4557       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4558       .writefn = omap_threadid_write },
4559     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4560       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4561       .type = ARM_CP_NO_RAW,
4562       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4563     /*
4564      * TODO: Peripheral port remap register:
4565      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4566      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4567      * when MMU is off.
4568      */
4569     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4570       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4571       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4572       .writefn = omap_cachemaint_write },
4573     { .name = "C9", .cp = 15, .crn = 9,
4574       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4575       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4576 };
4577 
4578 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4579                               uint64_t value)
4580 {
4581     env->cp15.c15_cpar = value & 0x3fff;
4582 }
4583 
4584 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4585     { .name = "XSCALE_CPAR",
4586       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4587       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4588       .writefn = xscale_cpar_write, },
4589     { .name = "XSCALE_AUXCR",
4590       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4591       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4592       .resetvalue = 0, },
4593     /*
4594      * XScale specific cache-lockdown: since we have no cache we NOP these
4595      * and hope the guest does not really rely on cache behaviour.
4596      */
4597     { .name = "XSCALE_LOCK_ICACHE_LINE",
4598       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4599       .access = PL1_W, .type = ARM_CP_NOP },
4600     { .name = "XSCALE_UNLOCK_ICACHE",
4601       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4602       .access = PL1_W, .type = ARM_CP_NOP },
4603     { .name = "XSCALE_DCACHE_LOCK",
4604       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4605       .access = PL1_RW, .type = ARM_CP_NOP },
4606     { .name = "XSCALE_UNLOCK_DCACHE",
4607       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4608       .access = PL1_W, .type = ARM_CP_NOP },
4609 };
4610 
4611 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4612     /*
4613      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4614      * implementation of this implementation-defined space.
4615      * Ideally this should eventually disappear in favour of actually
4616      * implementing the correct behaviour for all cores.
4617      */
4618     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4619       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4620       .access = PL1_RW,
4621       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4622       .resetvalue = 0 },
4623 };
4624 
4625 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4626     /* Cache status: RAZ because we have no cache so it's always clean */
4627     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4628       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4629       .resetvalue = 0 },
4630 };
4631 
4632 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4633     /* We never have a block transfer operation in progress */
4634     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4635       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4636       .resetvalue = 0 },
4637     /* The cache ops themselves: these all NOP for QEMU */
4638     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4639       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4640     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4641       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4642     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4643       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4644     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4645       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4646     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4647       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4648     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4649       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4650 };
4651 
4652 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4653     /*
4654      * The cache test-and-clean instructions always return (1 << 30)
4655      * to indicate that there are no dirty cache lines.
4656      */
4657     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4658       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4659       .resetvalue = (1 << 30) },
4660     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4661       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4662       .resetvalue = (1 << 30) },
4663 };
4664 
4665 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4666     /* Ignore ReadBuffer accesses */
4667     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4668       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4669       .access = PL1_RW, .resetvalue = 0,
4670       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4671 };
4672 
4673 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4674 {
4675     unsigned int cur_el = arm_current_el(env);
4676 
4677     if (arm_is_el2_enabled(env) && cur_el == 1) {
4678         return env->cp15.vpidr_el2;
4679     }
4680     return raw_read(env, ri);
4681 }
4682 
4683 static uint64_t mpidr_read_val(CPUARMState *env)
4684 {
4685     ARMCPU *cpu = env_archcpu(env);
4686     uint64_t mpidr = cpu->mp_affinity;
4687 
4688     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4689         mpidr |= (1U << 31);
4690         /*
4691          * Cores which are uniprocessor (non-coherent)
4692          * but still implement the MP extensions set
4693          * bit 30. (For instance, Cortex-R5).
4694          */
4695         if (cpu->mp_is_up) {
4696             mpidr |= (1u << 30);
4697         }
4698     }
4699     return mpidr;
4700 }
4701 
4702 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4703 {
4704     unsigned int cur_el = arm_current_el(env);
4705 
4706     if (arm_is_el2_enabled(env) && cur_el == 1) {
4707         return env->cp15.vmpidr_el2;
4708     }
4709     return mpidr_read_val(env);
4710 }
4711 
4712 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4713     /* NOP AMAIR0/1 */
4714     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4715       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4716       .access = PL1_RW, .accessfn = access_tvm_trvm,
4717       .fgt = FGT_AMAIR_EL1,
4718       .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4719       .type = ARM_CP_CONST, .resetvalue = 0 },
4720     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4721     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4722       .access = PL1_RW, .accessfn = access_tvm_trvm,
4723       .type = ARM_CP_CONST, .resetvalue = 0 },
4724     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4725       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4726       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4727                              offsetof(CPUARMState, cp15.par_ns)} },
4728     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4729       .access = PL1_RW, .accessfn = access_tvm_trvm,
4730       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4731       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4732                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4733       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4734     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4735       .access = PL1_RW, .accessfn = access_tvm_trvm,
4736       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4737       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4738                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4739       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4740 };
4741 
4742 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4743 {
4744     return vfp_get_fpcr(env);
4745 }
4746 
4747 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4748                             uint64_t value)
4749 {
4750     vfp_set_fpcr(env, value);
4751 }
4752 
4753 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4754 {
4755     return vfp_get_fpsr(env);
4756 }
4757 
4758 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4759                             uint64_t value)
4760 {
4761     vfp_set_fpsr(env, value);
4762 }
4763 
4764 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4765                                        bool isread)
4766 {
4767     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4768         return CP_ACCESS_TRAP;
4769     }
4770     return CP_ACCESS_OK;
4771 }
4772 
4773 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4774                             uint64_t value)
4775 {
4776     env->daif = value & PSTATE_DAIF;
4777 }
4778 
4779 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4780 {
4781     return env->pstate & PSTATE_PAN;
4782 }
4783 
4784 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4785                            uint64_t value)
4786 {
4787     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4788 }
4789 
4790 static const ARMCPRegInfo pan_reginfo = {
4791     .name = "PAN", .state = ARM_CP_STATE_AA64,
4792     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4793     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4794     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4795 };
4796 
4797 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4798 {
4799     return env->pstate & PSTATE_UAO;
4800 }
4801 
4802 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4803                            uint64_t value)
4804 {
4805     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4806 }
4807 
4808 static const ARMCPRegInfo uao_reginfo = {
4809     .name = "UAO", .state = ARM_CP_STATE_AA64,
4810     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4811     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4812     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4813 };
4814 
4815 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4816 {
4817     return env->pstate & PSTATE_DIT;
4818 }
4819 
4820 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4821                            uint64_t value)
4822 {
4823     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4824 }
4825 
4826 static const ARMCPRegInfo dit_reginfo = {
4827     .name = "DIT", .state = ARM_CP_STATE_AA64,
4828     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4829     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4830     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4831 };
4832 
4833 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4834 {
4835     return env->pstate & PSTATE_SSBS;
4836 }
4837 
4838 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4839                            uint64_t value)
4840 {
4841     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4842 }
4843 
4844 static const ARMCPRegInfo ssbs_reginfo = {
4845     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4846     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4847     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4848     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4849 };
4850 
4851 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4852                                               const ARMCPRegInfo *ri,
4853                                               bool isread)
4854 {
4855     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4856     switch (arm_current_el(env)) {
4857     case 0:
4858         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4859         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4860             return CP_ACCESS_TRAP;
4861         }
4862         /* fall through */
4863     case 1:
4864         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4865         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4866             return CP_ACCESS_TRAP_EL2;
4867         }
4868         break;
4869     }
4870     return CP_ACCESS_OK;
4871 }
4872 
4873 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4874 {
4875     /* Cache invalidate/clean to Point of Unification... */
4876     switch (arm_current_el(env)) {
4877     case 0:
4878         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4879         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4880             return CP_ACCESS_TRAP;
4881         }
4882         /* fall through */
4883     case 1:
4884         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4885         if (arm_hcr_el2_eff(env) & hcrflags) {
4886             return CP_ACCESS_TRAP_EL2;
4887         }
4888         break;
4889     }
4890     return CP_ACCESS_OK;
4891 }
4892 
4893 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4894                                    bool isread)
4895 {
4896     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4897 }
4898 
4899 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4900                                   bool isread)
4901 {
4902     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4903 }
4904 
4905 /*
4906  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4907  * Page D4-1736 (DDI0487A.b)
4908  */
4909 
4910 static int vae1_tlbmask(CPUARMState *env)
4911 {
4912     uint64_t hcr = arm_hcr_el2_eff(env);
4913     uint16_t mask;
4914 
4915     assert(arm_feature(env, ARM_FEATURE_AARCH64));
4916 
4917     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4918         mask = ARMMMUIdxBit_E20_2 |
4919                ARMMMUIdxBit_E20_2_PAN |
4920                ARMMMUIdxBit_E20_0;
4921     } else {
4922         /* This is AArch64 only, so we don't need to touch the EL30_x TLBs */
4923         mask = ARMMMUIdxBit_E10_1 |
4924                ARMMMUIdxBit_E10_1_PAN |
4925                ARMMMUIdxBit_E10_0;
4926     }
4927     return mask;
4928 }
4929 
4930 static int vae2_tlbmask(CPUARMState *env)
4931 {
4932     uint64_t hcr = arm_hcr_el2_eff(env);
4933     uint16_t mask;
4934 
4935     if (hcr & HCR_E2H) {
4936         mask = ARMMMUIdxBit_E20_2 |
4937                ARMMMUIdxBit_E20_2_PAN |
4938                ARMMMUIdxBit_E20_0;
4939     } else {
4940         mask = ARMMMUIdxBit_E2;
4941     }
4942     return mask;
4943 }
4944 
4945 /* Return 56 if TBI is enabled, 64 otherwise. */
4946 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4947                               uint64_t addr)
4948 {
4949     uint64_t tcr = regime_tcr(env, mmu_idx);
4950     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4951     int select = extract64(addr, 55, 1);
4952 
4953     return (tbi >> select) & 1 ? 56 : 64;
4954 }
4955 
4956 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4957 {
4958     uint64_t hcr = arm_hcr_el2_eff(env);
4959     ARMMMUIdx mmu_idx;
4960 
4961     assert(arm_feature(env, ARM_FEATURE_AARCH64));
4962 
4963     /* Only the regime of the mmu_idx below is significant. */
4964     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4965         mmu_idx = ARMMMUIdx_E20_0;
4966     } else {
4967         mmu_idx = ARMMMUIdx_E10_0;
4968     }
4969 
4970     return tlbbits_for_regime(env, mmu_idx, addr);
4971 }
4972 
4973 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4974 {
4975     uint64_t hcr = arm_hcr_el2_eff(env);
4976     ARMMMUIdx mmu_idx;
4977 
4978     /*
4979      * Only the regime of the mmu_idx below is significant.
4980      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4981      * only has one.
4982      */
4983     if (hcr & HCR_E2H) {
4984         mmu_idx = ARMMMUIdx_E20_2;
4985     } else {
4986         mmu_idx = ARMMMUIdx_E2;
4987     }
4988 
4989     return tlbbits_for_regime(env, mmu_idx, addr);
4990 }
4991 
4992 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4993                                       uint64_t value)
4994 {
4995     CPUState *cs = env_cpu(env);
4996     int mask = vae1_tlbmask(env);
4997 
4998     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4999 }
5000 
5001 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5002                                     uint64_t value)
5003 {
5004     CPUState *cs = env_cpu(env);
5005     int mask = vae1_tlbmask(env);
5006 
5007     if (tlb_force_broadcast(env)) {
5008         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5009     } else {
5010         tlb_flush_by_mmuidx(cs, mask);
5011     }
5012 }
5013 
5014 static int e2_tlbmask(CPUARMState *env)
5015 {
5016     return (ARMMMUIdxBit_E20_0 |
5017             ARMMMUIdxBit_E20_2 |
5018             ARMMMUIdxBit_E20_2_PAN |
5019             ARMMMUIdxBit_E2);
5020 }
5021 
5022 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5023                                   uint64_t value)
5024 {
5025     CPUState *cs = env_cpu(env);
5026     int mask = alle1_tlbmask(env);
5027 
5028     tlb_flush_by_mmuidx(cs, mask);
5029 }
5030 
5031 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5032                                   uint64_t value)
5033 {
5034     CPUState *cs = env_cpu(env);
5035     int mask = e2_tlbmask(env);
5036 
5037     tlb_flush_by_mmuidx(cs, mask);
5038 }
5039 
5040 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5041                                   uint64_t value)
5042 {
5043     ARMCPU *cpu = env_archcpu(env);
5044     CPUState *cs = CPU(cpu);
5045 
5046     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5047 }
5048 
5049 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5050                                     uint64_t value)
5051 {
5052     CPUState *cs = env_cpu(env);
5053     int mask = alle1_tlbmask(env);
5054 
5055     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5056 }
5057 
5058 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5059                                     uint64_t value)
5060 {
5061     CPUState *cs = env_cpu(env);
5062     int mask = e2_tlbmask(env);
5063 
5064     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5065 }
5066 
5067 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5068                                     uint64_t value)
5069 {
5070     CPUState *cs = env_cpu(env);
5071 
5072     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5073 }
5074 
5075 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5076                                  uint64_t value)
5077 {
5078     /*
5079      * Invalidate by VA, EL2
5080      * Currently handles both VAE2 and VALE2, since we don't support
5081      * flush-last-level-only.
5082      */
5083     CPUState *cs = env_cpu(env);
5084     int mask = vae2_tlbmask(env);
5085     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5086     int bits = vae2_tlbbits(env, pageaddr);
5087 
5088     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5089 }
5090 
5091 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5092                                  uint64_t value)
5093 {
5094     /*
5095      * Invalidate by VA, EL3
5096      * Currently handles both VAE3 and VALE3, since we don't support
5097      * flush-last-level-only.
5098      */
5099     ARMCPU *cpu = env_archcpu(env);
5100     CPUState *cs = CPU(cpu);
5101     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5102 
5103     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5104 }
5105 
5106 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5107                                    uint64_t value)
5108 {
5109     CPUState *cs = env_cpu(env);
5110     int mask = vae1_tlbmask(env);
5111     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5112     int bits = vae1_tlbbits(env, pageaddr);
5113 
5114     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5115 }
5116 
5117 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5118                                  uint64_t value)
5119 {
5120     /*
5121      * Invalidate by VA, EL1&0 (AArch64 version).
5122      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5123      * since we don't support flush-for-specific-ASID-only or
5124      * flush-last-level-only.
5125      */
5126     CPUState *cs = env_cpu(env);
5127     int mask = vae1_tlbmask(env);
5128     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5129     int bits = vae1_tlbbits(env, pageaddr);
5130 
5131     if (tlb_force_broadcast(env)) {
5132         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5133     } else {
5134         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5135     }
5136 }
5137 
5138 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5139                                    uint64_t value)
5140 {
5141     CPUState *cs = env_cpu(env);
5142     int mask = vae2_tlbmask(env);
5143     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5144     int bits = vae2_tlbbits(env, pageaddr);
5145 
5146     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5147 }
5148 
5149 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5150                                    uint64_t value)
5151 {
5152     CPUState *cs = env_cpu(env);
5153     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5154     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5155 
5156     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5157                                                   ARMMMUIdxBit_E3, bits);
5158 }
5159 
5160 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5161 {
5162     /*
5163      * The MSB of value is the NS field, which only applies if SEL2
5164      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5165      */
5166     return (value >= 0
5167             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5168             && arm_is_secure_below_el3(env)
5169             ? ARMMMUIdxBit_Stage2_S
5170             : ARMMMUIdxBit_Stage2);
5171 }
5172 
5173 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5174                                     uint64_t value)
5175 {
5176     CPUState *cs = env_cpu(env);
5177     int mask = ipas2e1_tlbmask(env, value);
5178     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5179 
5180     if (tlb_force_broadcast(env)) {
5181         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5182     } else {
5183         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5184     }
5185 }
5186 
5187 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5188                                       uint64_t value)
5189 {
5190     CPUState *cs = env_cpu(env);
5191     int mask = ipas2e1_tlbmask(env, value);
5192     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5193 
5194     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5195 }
5196 
5197 #ifdef TARGET_AARCH64
5198 typedef struct {
5199     uint64_t base;
5200     uint64_t length;
5201 } TLBIRange;
5202 
5203 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5204 {
5205     /*
5206      * Note that the TLBI range TG field encoding differs from both
5207      * TG0 and TG1 encodings.
5208      */
5209     switch (tg) {
5210     case 1:
5211         return Gran4K;
5212     case 2:
5213         return Gran16K;
5214     case 3:
5215         return Gran64K;
5216     default:
5217         return GranInvalid;
5218     }
5219 }
5220 
5221 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5222                                      uint64_t value)
5223 {
5224     unsigned int page_size_granule, page_shift, num, scale, exponent;
5225     /* Extract one bit to represent the va selector in use. */
5226     uint64_t select = sextract64(value, 36, 1);
5227     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5228     TLBIRange ret = { };
5229     ARMGranuleSize gran;
5230 
5231     page_size_granule = extract64(value, 46, 2);
5232     gran = tlbi_range_tg_to_gran_size(page_size_granule);
5233 
5234     /* The granule encoded in value must match the granule in use. */
5235     if (gran != param.gran) {
5236         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5237                       page_size_granule);
5238         return ret;
5239     }
5240 
5241     page_shift = arm_granule_bits(gran);
5242     num = extract64(value, 39, 5);
5243     scale = extract64(value, 44, 2);
5244     exponent = (5 * scale) + 1;
5245 
5246     ret.length = (num + 1) << (exponent + page_shift);
5247 
5248     if (param.select) {
5249         ret.base = sextract64(value, 0, 37);
5250     } else {
5251         ret.base = extract64(value, 0, 37);
5252     }
5253     if (param.ds) {
5254         /*
5255          * With DS=1, BaseADDR is always shifted 16 so that it is able
5256          * to address all 52 va bits.  The input address is perforce
5257          * aligned on a 64k boundary regardless of translation granule.
5258          */
5259         page_shift = 16;
5260     }
5261     ret.base <<= page_shift;
5262 
5263     return ret;
5264 }
5265 
5266 static void do_rvae_write(CPUARMState *env, uint64_t value,
5267                           int idxmap, bool synced)
5268 {
5269     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5270     TLBIRange range;
5271     int bits;
5272 
5273     range = tlbi_aa64_get_range(env, one_idx, value);
5274     bits = tlbbits_for_regime(env, one_idx, range.base);
5275 
5276     if (synced) {
5277         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5278                                                   range.base,
5279                                                   range.length,
5280                                                   idxmap,
5281                                                   bits);
5282     } else {
5283         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5284                                   range.length, idxmap, bits);
5285     }
5286 }
5287 
5288 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5289                                   const ARMCPRegInfo *ri,
5290                                   uint64_t value)
5291 {
5292     /*
5293      * Invalidate by VA range, EL1&0.
5294      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5295      * since we don't support flush-for-specific-ASID-only or
5296      * flush-last-level-only.
5297      */
5298 
5299     do_rvae_write(env, value, vae1_tlbmask(env),
5300                   tlb_force_broadcast(env));
5301 }
5302 
5303 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5304                                     const ARMCPRegInfo *ri,
5305                                     uint64_t value)
5306 {
5307     /*
5308      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5309      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5310      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5311      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5312      * shareable specific flushes.
5313      */
5314 
5315     do_rvae_write(env, value, vae1_tlbmask(env), true);
5316 }
5317 
5318 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5319                                   const ARMCPRegInfo *ri,
5320                                   uint64_t value)
5321 {
5322     /*
5323      * Invalidate by VA range, EL2.
5324      * Currently handles all of RVAE2 and RVALE2,
5325      * since we don't support flush-for-specific-ASID-only or
5326      * flush-last-level-only.
5327      */
5328 
5329     do_rvae_write(env, value, vae2_tlbmask(env),
5330                   tlb_force_broadcast(env));
5331 
5332 
5333 }
5334 
5335 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5336                                     const ARMCPRegInfo *ri,
5337                                     uint64_t value)
5338 {
5339     /*
5340      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5341      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5342      * since we don't support flush-for-specific-ASID-only,
5343      * flush-last-level-only or inner/outer shareable specific flushes.
5344      */
5345 
5346     do_rvae_write(env, value, vae2_tlbmask(env), true);
5347 
5348 }
5349 
5350 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5351                                   const ARMCPRegInfo *ri,
5352                                   uint64_t value)
5353 {
5354     /*
5355      * Invalidate by VA range, EL3.
5356      * Currently handles all of RVAE3 and RVALE3,
5357      * since we don't support flush-for-specific-ASID-only or
5358      * flush-last-level-only.
5359      */
5360 
5361     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5362 }
5363 
5364 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5365                                     const ARMCPRegInfo *ri,
5366                                     uint64_t value)
5367 {
5368     /*
5369      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5370      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5371      * since we don't support flush-for-specific-ASID-only,
5372      * flush-last-level-only or inner/outer specific flushes.
5373      */
5374 
5375     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5376 }
5377 
5378 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5379                                      uint64_t value)
5380 {
5381     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5382                   tlb_force_broadcast(env));
5383 }
5384 
5385 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5386                                        const ARMCPRegInfo *ri,
5387                                        uint64_t value)
5388 {
5389     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5390 }
5391 #endif
5392 
5393 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5394                                       bool isread)
5395 {
5396     int cur_el = arm_current_el(env);
5397 
5398     if (cur_el < 2) {
5399         uint64_t hcr = arm_hcr_el2_eff(env);
5400 
5401         if (cur_el == 0) {
5402             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5403                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5404                     return CP_ACCESS_TRAP_EL2;
5405                 }
5406             } else {
5407                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5408                     return CP_ACCESS_TRAP;
5409                 }
5410                 if (hcr & HCR_TDZ) {
5411                     return CP_ACCESS_TRAP_EL2;
5412                 }
5413             }
5414         } else if (hcr & HCR_TDZ) {
5415             return CP_ACCESS_TRAP_EL2;
5416         }
5417     }
5418     return CP_ACCESS_OK;
5419 }
5420 
5421 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5422 {
5423     ARMCPU *cpu = env_archcpu(env);
5424     int dzp_bit = 1 << 4;
5425 
5426     /* DZP indicates whether DC ZVA access is allowed */
5427     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5428         dzp_bit = 0;
5429     }
5430     return cpu->dcz_blocksize | dzp_bit;
5431 }
5432 
5433 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5434                                     bool isread)
5435 {
5436     if (!(env->pstate & PSTATE_SP)) {
5437         /*
5438          * Access to SP_EL0 is undefined if it's being used as
5439          * the stack pointer.
5440          */
5441         return CP_ACCESS_TRAP_UNCATEGORIZED;
5442     }
5443     return CP_ACCESS_OK;
5444 }
5445 
5446 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5447 {
5448     return env->pstate & PSTATE_SP;
5449 }
5450 
5451 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5452 {
5453     update_spsel(env, val);
5454 }
5455 
5456 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5457                         uint64_t value)
5458 {
5459     ARMCPU *cpu = env_archcpu(env);
5460 
5461     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5462         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5463         value &= ~SCTLR_M;
5464     }
5465 
5466     /* ??? Lots of these bits are not implemented.  */
5467 
5468     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5469         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5470             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5471         } else {
5472             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5473                        SCTLR_ATA0 | SCTLR_ATA);
5474         }
5475     }
5476 
5477     if (raw_read(env, ri) == value) {
5478         /*
5479          * Skip the TLB flush if nothing actually changed; Linux likes
5480          * to do a lot of pointless SCTLR writes.
5481          */
5482         return;
5483     }
5484 
5485     raw_write(env, ri, value);
5486 
5487     /* This may enable/disable the MMU, so do a TLB flush.  */
5488     tlb_flush(CPU(cpu));
5489 
5490     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5491         /*
5492          * Normally we would always end the TB on an SCTLR write; see the
5493          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5494          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5495          * of hflags from the translator, so do it here.
5496          */
5497         arm_rebuild_hflags(env);
5498     }
5499 }
5500 
5501 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5502                            uint64_t value)
5503 {
5504     /*
5505      * Some MDCR_EL3 bits affect whether PMU counters are running:
5506      * if we are trying to change any of those then we must
5507      * bracket this update with PMU start/finish calls.
5508      */
5509     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5510 
5511     if (pmu_op) {
5512         pmu_op_start(env);
5513     }
5514     env->cp15.mdcr_el3 = value;
5515     if (pmu_op) {
5516         pmu_op_finish(env);
5517     }
5518 }
5519 
5520 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5521                        uint64_t value)
5522 {
5523     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5524     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5525 }
5526 
5527 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5528                            uint64_t value)
5529 {
5530     /*
5531      * Some MDCR_EL2 bits affect whether PMU counters are running:
5532      * if we are trying to change any of those then we must
5533      * bracket this update with PMU start/finish calls.
5534      */
5535     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5536 
5537     if (pmu_op) {
5538         pmu_op_start(env);
5539     }
5540     env->cp15.mdcr_el2 = value;
5541     if (pmu_op) {
5542         pmu_op_finish(env);
5543     }
5544 }
5545 
5546 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5547                                  bool isread)
5548 {
5549     if (arm_current_el(env) == 1) {
5550         uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5551 
5552         if (hcr_nv == (HCR_NV | HCR_NV1)) {
5553             return CP_ACCESS_TRAP_EL2;
5554         }
5555     }
5556     return CP_ACCESS_OK;
5557 }
5558 
5559 #ifdef CONFIG_USER_ONLY
5560 /*
5561  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5562  * code to get around W^X restrictions, where one region is writable and the
5563  * other is executable.
5564  *
5565  * Since the executable region is never written to we cannot detect code
5566  * changes when running in user mode, and rely on the emulated JIT telling us
5567  * that the code has changed by executing this instruction.
5568  */
5569 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5570                           uint64_t value)
5571 {
5572     uint64_t icache_line_mask, start_address, end_address;
5573     const ARMCPU *cpu;
5574 
5575     cpu = env_archcpu(env);
5576 
5577     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5578     start_address = value & ~icache_line_mask;
5579     end_address = value | icache_line_mask;
5580 
5581     mmap_lock();
5582 
5583     tb_invalidate_phys_range(start_address, end_address);
5584 
5585     mmap_unlock();
5586 }
5587 #endif
5588 
5589 static const ARMCPRegInfo v8_cp_reginfo[] = {
5590     /*
5591      * Minimal set of EL0-visible registers. This will need to be expanded
5592      * significantly for system emulation of AArch64 CPUs.
5593      */
5594     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5595       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5596       .access = PL0_RW, .type = ARM_CP_NZCV },
5597     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5598       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5599       .type = ARM_CP_NO_RAW,
5600       .access = PL0_RW, .accessfn = aa64_daif_access,
5601       .fieldoffset = offsetof(CPUARMState, daif),
5602       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5603     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5604       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5605       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5606       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5607     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5608       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5609       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5610       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5611     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5612       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5613       .access = PL0_R, .type = ARM_CP_NO_RAW,
5614       .fgt = FGT_DCZID_EL0,
5615       .readfn = aa64_dczid_read },
5616     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5617       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5618       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5619 #ifndef CONFIG_USER_ONLY
5620       /* Avoid overhead of an access check that always passes in user-mode */
5621       .accessfn = aa64_zva_access,
5622       .fgt = FGT_DCZVA,
5623 #endif
5624     },
5625     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5626       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5627       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5628     /*
5629      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5630      * don't emulate caches.
5631      */
5632     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5633       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5634       .access = PL1_W, .type = ARM_CP_NOP,
5635       .fgt = FGT_ICIALLUIS,
5636       .accessfn = access_ticab },
5637     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5638       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5639       .access = PL1_W, .type = ARM_CP_NOP,
5640       .fgt = FGT_ICIALLU,
5641       .accessfn = access_tocu },
5642     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5643       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5644       .access = PL0_W,
5645       .fgt = FGT_ICIVAU,
5646       .accessfn = access_tocu,
5647 #ifdef CONFIG_USER_ONLY
5648       .type = ARM_CP_NO_RAW,
5649       .writefn = ic_ivau_write
5650 #else
5651       .type = ARM_CP_NOP
5652 #endif
5653     },
5654     /* Cache ops: all NOPs since we don't emulate caches */
5655     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5656       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5657       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5658       .fgt = FGT_DCIVAC,
5659       .type = ARM_CP_NOP },
5660     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5661       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5662       .fgt = FGT_DCISW,
5663       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5664     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5665       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5666       .access = PL0_W, .type = ARM_CP_NOP,
5667       .fgt = FGT_DCCVAC,
5668       .accessfn = aa64_cacheop_poc_access },
5669     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5670       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5671       .fgt = FGT_DCCSW,
5672       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5673     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5674       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5675       .access = PL0_W, .type = ARM_CP_NOP,
5676       .fgt = FGT_DCCVAU,
5677       .accessfn = access_tocu },
5678     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5679       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5680       .access = PL0_W, .type = ARM_CP_NOP,
5681       .fgt = FGT_DCCIVAC,
5682       .accessfn = aa64_cacheop_poc_access },
5683     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5684       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5685       .fgt = FGT_DCCISW,
5686       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5687     /* TLBI operations */
5688     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5689       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5690       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5691       .fgt = FGT_TLBIVMALLE1IS,
5692       .writefn = tlbi_aa64_vmalle1is_write },
5693     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5694       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5695       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5696       .fgt = FGT_TLBIVAE1IS,
5697       .writefn = tlbi_aa64_vae1is_write },
5698     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5699       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5700       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5701       .fgt = FGT_TLBIASIDE1IS,
5702       .writefn = tlbi_aa64_vmalle1is_write },
5703     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5704       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5705       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5706       .fgt = FGT_TLBIVAAE1IS,
5707       .writefn = tlbi_aa64_vae1is_write },
5708     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5709       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5710       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5711       .fgt = FGT_TLBIVALE1IS,
5712       .writefn = tlbi_aa64_vae1is_write },
5713     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5714       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5715       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5716       .fgt = FGT_TLBIVAALE1IS,
5717       .writefn = tlbi_aa64_vae1is_write },
5718     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5719       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5720       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5721       .fgt = FGT_TLBIVMALLE1,
5722       .writefn = tlbi_aa64_vmalle1_write },
5723     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5724       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5725       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5726       .fgt = FGT_TLBIVAE1,
5727       .writefn = tlbi_aa64_vae1_write },
5728     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5729       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5730       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5731       .fgt = FGT_TLBIASIDE1,
5732       .writefn = tlbi_aa64_vmalle1_write },
5733     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5734       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5735       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5736       .fgt = FGT_TLBIVAAE1,
5737       .writefn = tlbi_aa64_vae1_write },
5738     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5739       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5740       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5741       .fgt = FGT_TLBIVALE1,
5742       .writefn = tlbi_aa64_vae1_write },
5743     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5744       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5745       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5746       .fgt = FGT_TLBIVAALE1,
5747       .writefn = tlbi_aa64_vae1_write },
5748     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5749       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5750       .access = PL2_W, .type = ARM_CP_NO_RAW,
5751       .writefn = tlbi_aa64_ipas2e1is_write },
5752     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5753       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5754       .access = PL2_W, .type = ARM_CP_NO_RAW,
5755       .writefn = tlbi_aa64_ipas2e1is_write },
5756     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5757       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5758       .access = PL2_W, .type = ARM_CP_NO_RAW,
5759       .writefn = tlbi_aa64_alle1is_write },
5760     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5761       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5762       .access = PL2_W, .type = ARM_CP_NO_RAW,
5763       .writefn = tlbi_aa64_alle1is_write },
5764     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5765       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5766       .access = PL2_W, .type = ARM_CP_NO_RAW,
5767       .writefn = tlbi_aa64_ipas2e1_write },
5768     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5769       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5770       .access = PL2_W, .type = ARM_CP_NO_RAW,
5771       .writefn = tlbi_aa64_ipas2e1_write },
5772     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5773       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5774       .access = PL2_W, .type = ARM_CP_NO_RAW,
5775       .writefn = tlbi_aa64_alle1_write },
5776     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5777       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5778       .access = PL2_W, .type = ARM_CP_NO_RAW,
5779       .writefn = tlbi_aa64_alle1is_write },
5780 #ifndef CONFIG_USER_ONLY
5781     /* 64 bit address translation operations */
5782     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5783       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5784       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5785       .fgt = FGT_ATS1E1R,
5786       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5787     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5788       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5789       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5790       .fgt = FGT_ATS1E1W,
5791       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5792     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5793       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5794       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5795       .fgt = FGT_ATS1E0R,
5796       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5797     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5798       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5799       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5800       .fgt = FGT_ATS1E0W,
5801       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5802     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5803       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5804       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5805       .accessfn = at_e012_access, .writefn = ats_write64 },
5806     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5807       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5808       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5809       .accessfn = at_e012_access, .writefn = ats_write64 },
5810     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5811       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5812       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5813       .accessfn = at_e012_access, .writefn = ats_write64 },
5814     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5815       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5816       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5817       .accessfn = at_e012_access, .writefn = ats_write64 },
5818     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5819     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5820       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5821       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5822       .writefn = ats_write64 },
5823     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5824       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5825       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5826       .writefn = ats_write64 },
5827     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5828       .type = ARM_CP_ALIAS,
5829       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5830       .access = PL1_RW, .resetvalue = 0,
5831       .fgt = FGT_PAR_EL1,
5832       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5833       .writefn = par_write },
5834 #endif
5835     /* TLB invalidate last level of translation table walk */
5836     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5837       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5838       .writefn = tlbimva_is_write },
5839     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5840       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5841       .writefn = tlbimvaa_is_write },
5842     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5843       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5844       .writefn = tlbimva_write },
5845     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5846       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5847       .writefn = tlbimvaa_write },
5848     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5849       .type = ARM_CP_NO_RAW, .access = PL2_W,
5850       .writefn = tlbimva_hyp_write },
5851     { .name = "TLBIMVALHIS",
5852       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5853       .type = ARM_CP_NO_RAW, .access = PL2_W,
5854       .writefn = tlbimva_hyp_is_write },
5855     { .name = "TLBIIPAS2",
5856       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5857       .type = ARM_CP_NO_RAW, .access = PL2_W,
5858       .writefn = tlbiipas2_hyp_write },
5859     { .name = "TLBIIPAS2IS",
5860       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5861       .type = ARM_CP_NO_RAW, .access = PL2_W,
5862       .writefn = tlbiipas2is_hyp_write },
5863     { .name = "TLBIIPAS2L",
5864       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5865       .type = ARM_CP_NO_RAW, .access = PL2_W,
5866       .writefn = tlbiipas2_hyp_write },
5867     { .name = "TLBIIPAS2LIS",
5868       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5869       .type = ARM_CP_NO_RAW, .access = PL2_W,
5870       .writefn = tlbiipas2is_hyp_write },
5871     /* 32 bit cache operations */
5872     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5873       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5874     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5875       .type = ARM_CP_NOP, .access = PL1_W },
5876     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5877       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5878     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5879       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5880     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5881       .type = ARM_CP_NOP, .access = PL1_W },
5882     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5883       .type = ARM_CP_NOP, .access = PL1_W },
5884     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5885       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5886     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5887       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5888     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5889       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5890     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5891       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5892     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5893       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5894     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5895       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5896     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5897       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5898     /* MMU Domain access control / MPU write buffer control */
5899     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5900       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5901       .writefn = dacr_write, .raw_writefn = raw_write,
5902       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5903                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5904     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5905       .type = ARM_CP_ALIAS,
5906       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5907       .access = PL1_RW, .accessfn = access_nv1,
5908       .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5909       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5910     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5911       .type = ARM_CP_ALIAS,
5912       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5913       .access = PL1_RW, .accessfn = access_nv1,
5914       .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5915       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5916     /*
5917      * We rely on the access checks not allowing the guest to write to the
5918      * state field when SPSel indicates that it's being used as the stack
5919      * pointer.
5920      */
5921     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5922       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5923       .access = PL1_RW, .accessfn = sp_el0_access,
5924       .type = ARM_CP_ALIAS,
5925       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5926     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5927       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5928       .nv2_redirect_offset = 0x240,
5929       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5930       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5931     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5932       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5933       .type = ARM_CP_NO_RAW,
5934       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5935     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5936       .type = ARM_CP_ALIAS,
5937       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5938       .access = PL2_RW,
5939       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5940     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5941       .type = ARM_CP_ALIAS,
5942       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5943       .access = PL2_RW,
5944       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5945     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5946       .type = ARM_CP_ALIAS,
5947       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5948       .access = PL2_RW,
5949       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5950     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5951       .type = ARM_CP_ALIAS,
5952       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5953       .access = PL2_RW,
5954       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5955     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5956       .type = ARM_CP_IO,
5957       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5958       .resetvalue = 0,
5959       .access = PL3_RW,
5960       .writefn = mdcr_el3_write,
5961       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5962     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5963       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5964       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5965       .writefn = sdcr_write,
5966       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5967 };
5968 
5969 /* These are present only when EL1 supports AArch32 */
5970 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5971     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5972       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5973       .access = PL2_RW,
5974       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5975       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5976     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5977       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5978       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5979       .writefn = dacr_write, .raw_writefn = raw_write,
5980       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5981     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5982       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5983       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5984       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5985 };
5986 
5987 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5988 {
5989     ARMCPU *cpu = env_archcpu(env);
5990 
5991     if (arm_feature(env, ARM_FEATURE_V8)) {
5992         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5993     } else {
5994         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5995     }
5996 
5997     if (arm_feature(env, ARM_FEATURE_EL3)) {
5998         valid_mask &= ~HCR_HCD;
5999     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
6000         /*
6001          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
6002          * However, if we're using the SMC PSCI conduit then QEMU is
6003          * effectively acting like EL3 firmware and so the guest at
6004          * EL2 should retain the ability to prevent EL1 from being
6005          * able to make SMC calls into the ersatz firmware, so in
6006          * that case HCR.TSC should be read/write.
6007          */
6008         valid_mask &= ~HCR_TSC;
6009     }
6010 
6011     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6012         if (cpu_isar_feature(aa64_vh, cpu)) {
6013             valid_mask |= HCR_E2H;
6014         }
6015         if (cpu_isar_feature(aa64_ras, cpu)) {
6016             valid_mask |= HCR_TERR | HCR_TEA;
6017         }
6018         if (cpu_isar_feature(aa64_lor, cpu)) {
6019             valid_mask |= HCR_TLOR;
6020         }
6021         if (cpu_isar_feature(aa64_pauth, cpu)) {
6022             valid_mask |= HCR_API | HCR_APK;
6023         }
6024         if (cpu_isar_feature(aa64_mte, cpu)) {
6025             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
6026         }
6027         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
6028             valid_mask |= HCR_ENSCXT;
6029         }
6030         if (cpu_isar_feature(aa64_fwb, cpu)) {
6031             valid_mask |= HCR_FWB;
6032         }
6033         if (cpu_isar_feature(aa64_rme, cpu)) {
6034             valid_mask |= HCR_GPF;
6035         }
6036         if (cpu_isar_feature(aa64_nv, cpu)) {
6037             valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6038         }
6039         if (cpu_isar_feature(aa64_nv2, cpu)) {
6040             valid_mask |= HCR_NV2;
6041         }
6042     }
6043 
6044     if (cpu_isar_feature(any_evt, cpu)) {
6045         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6046     } else if (cpu_isar_feature(any_half_evt, cpu)) {
6047         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6048     }
6049 
6050     /* Clear RES0 bits.  */
6051     value &= valid_mask;
6052 
6053     /*
6054      * These bits change the MMU setup:
6055      * HCR_VM enables stage 2 translation
6056      * HCR_PTW forbids certain page-table setups
6057      * HCR_DC disables stage1 and enables stage2 translation
6058      * HCR_DCT enables tagging on (disabled) stage1 translation
6059      * HCR_FWB changes the interpretation of stage2 descriptor bits
6060      * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6061      */
6062     if ((env->cp15.hcr_el2 ^ value) &
6063         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6064         tlb_flush(CPU(cpu));
6065     }
6066     env->cp15.hcr_el2 = value;
6067 
6068     /*
6069      * Updates to VI and VF require us to update the status of
6070      * virtual interrupts, which are the logical OR of these bits
6071      * and the state of the input lines from the GIC. (This requires
6072      * that we have the BQL, which is done by marking the
6073      * reginfo structs as ARM_CP_IO.)
6074      * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
6075      * VFNMI, it is never possible for it to be taken immediately
6076      * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
6077      * at EL0 or EL1, and HCR can only be written at EL2.
6078      */
6079     g_assert(bql_locked());
6080     arm_cpu_update_virq(cpu);
6081     arm_cpu_update_vfiq(cpu);
6082     arm_cpu_update_vserr(cpu);
6083     if (cpu_isar_feature(aa64_nmi, cpu)) {
6084         arm_cpu_update_vinmi(cpu);
6085         arm_cpu_update_vfnmi(cpu);
6086     }
6087 }
6088 
6089 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6090 {
6091     do_hcr_write(env, value, 0);
6092 }
6093 
6094 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6095                           uint64_t value)
6096 {
6097     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6098     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6099     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6100 }
6101 
6102 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6103                          uint64_t value)
6104 {
6105     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6106     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6107     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6108 }
6109 
6110 /*
6111  * Return the effective value of HCR_EL2, at the given security state.
6112  * Bits that are not included here:
6113  * RW       (read from SCR_EL3.RW as needed)
6114  */
6115 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6116 {
6117     uint64_t ret = env->cp15.hcr_el2;
6118 
6119     assert(space != ARMSS_Root);
6120 
6121     if (!arm_is_el2_enabled_secstate(env, space)) {
6122         /*
6123          * "This register has no effect if EL2 is not enabled in the
6124          * current Security state".  This is ARMv8.4-SecEL2 speak for
6125          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6126          *
6127          * Prior to that, the language was "In an implementation that
6128          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6129          * as if this field is 0 for all purposes other than a direct
6130          * read or write access of HCR_EL2".  With lots of enumeration
6131          * on a per-field basis.  In current QEMU, this is condition
6132          * is arm_is_secure_below_el3.
6133          *
6134          * Since the v8.4 language applies to the entire register, and
6135          * appears to be backward compatible, use that.
6136          */
6137         return 0;
6138     }
6139 
6140     /*
6141      * For a cpu that supports both aarch64 and aarch32, we can set bits
6142      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6143      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6144      */
6145     if (!arm_el_is_aa64(env, 2)) {
6146         uint64_t aa32_valid;
6147 
6148         /*
6149          * These bits are up-to-date as of ARMv8.6.
6150          * For HCR, it's easiest to list just the 2 bits that are invalid.
6151          * For HCR2, list those that are valid.
6152          */
6153         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6154         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6155                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6156         ret &= aa32_valid;
6157     }
6158 
6159     if (ret & HCR_TGE) {
6160         /* These bits are up-to-date as of ARMv8.6.  */
6161         if (ret & HCR_E2H) {
6162             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6163                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6164                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6165                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6166                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6167                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6168         } else {
6169             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6170         }
6171         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6172                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6173                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6174                  HCR_TLOR);
6175     }
6176 
6177     return ret;
6178 }
6179 
6180 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6181 {
6182     if (arm_feature(env, ARM_FEATURE_M)) {
6183         return 0;
6184     }
6185     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6186 }
6187 
6188 /*
6189  * Corresponds to ARM pseudocode function ELIsInHost().
6190  */
6191 bool el_is_in_host(CPUARMState *env, int el)
6192 {
6193     uint64_t mask;
6194 
6195     /*
6196      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6197      * Perform the simplest bit tests first, and validate EL2 afterward.
6198      */
6199     if (el & 1) {
6200         return false; /* EL1 or EL3 */
6201     }
6202 
6203     /*
6204      * Note that hcr_write() checks isar_feature_aa64_vh(),
6205      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6206      */
6207     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6208     if ((env->cp15.hcr_el2 & mask) != mask) {
6209         return false;
6210     }
6211 
6212     /* TGE and/or E2H set: double check those bits are currently legal. */
6213     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6214 }
6215 
6216 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6217                        uint64_t value)
6218 {
6219     ARMCPU *cpu = env_archcpu(env);
6220     uint64_t valid_mask = 0;
6221 
6222     /* FEAT_MOPS adds MSCEn and MCE2 */
6223     if (cpu_isar_feature(aa64_mops, cpu)) {
6224         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6225     }
6226 
6227     /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
6228     if (cpu_isar_feature(aa64_nmi, cpu)) {
6229         valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
6230     }
6231 
6232     /* Clear RES0 bits.  */
6233     env->cp15.hcrx_el2 = value & valid_mask;
6234 
6235     /*
6236      * Updates to VINMI and VFNMI require us to update the status of
6237      * virtual NMI, which are the logical OR of these bits
6238      * and the state of the input lines from the GIC. (This requires
6239      * that we have the BQL, which is done by marking the
6240      * reginfo structs as ARM_CP_IO.)
6241      * Note that if a write to HCRX pends a VINMI or VFNMI it is never
6242      * possible for it to be taken immediately, because VINMI and
6243      * VFNMI are masked unless running at EL0 or EL1, and HCRX
6244      * can only be written at EL2.
6245      */
6246     if (cpu_isar_feature(aa64_nmi, cpu)) {
6247         g_assert(bql_locked());
6248         arm_cpu_update_vinmi(cpu);
6249         arm_cpu_update_vfnmi(cpu);
6250     }
6251 }
6252 
6253 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6254                                   bool isread)
6255 {
6256     if (arm_current_el(env) == 2
6257         && arm_feature(env, ARM_FEATURE_EL3)
6258         && !(env->cp15.scr_el3 & SCR_HXEN)) {
6259         return CP_ACCESS_TRAP_EL3;
6260     }
6261     return CP_ACCESS_OK;
6262 }
6263 
6264 static const ARMCPRegInfo hcrx_el2_reginfo = {
6265     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6266     .type = ARM_CP_IO,
6267     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6268     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6269     .nv2_redirect_offset = 0xa0,
6270     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6271 };
6272 
6273 /* Return the effective value of HCRX_EL2.  */
6274 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6275 {
6276     /*
6277      * The bits in this register behave as 0 for all purposes other than
6278      * direct reads of the register if SCR_EL3.HXEn is 0.
6279      * If EL2 is not enabled in the current security state, then the
6280      * bit may behave as if 0, or as if 1, depending on the bit.
6281      * For the moment, we treat the EL2-disabled case as taking
6282      * priority over the HXEn-disabled case. This is true for the only
6283      * bit for a feature which we implement where the answer is different
6284      * for the two cases (MSCEn for FEAT_MOPS).
6285      * This may need to be revisited for future bits.
6286      */
6287     if (!arm_is_el2_enabled(env)) {
6288         uint64_t hcrx = 0;
6289         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6290             /* MSCEn behaves as 1 if EL2 is not enabled */
6291             hcrx |= HCRX_MSCEN;
6292         }
6293         return hcrx;
6294     }
6295     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6296         return 0;
6297     }
6298     return env->cp15.hcrx_el2;
6299 }
6300 
6301 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6302                            uint64_t value)
6303 {
6304     /*
6305      * For A-profile AArch32 EL3, if NSACR.CP10
6306      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6307      */
6308     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6309         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6310         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6311         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6312     }
6313     env->cp15.cptr_el[2] = value;
6314 }
6315 
6316 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6317 {
6318     /*
6319      * For A-profile AArch32 EL3, if NSACR.CP10
6320      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6321      */
6322     uint64_t value = env->cp15.cptr_el[2];
6323 
6324     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6325         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6326         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6327     }
6328     return value;
6329 }
6330 
6331 static const ARMCPRegInfo el2_cp_reginfo[] = {
6332     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6333       .type = ARM_CP_IO,
6334       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6335       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6336       .nv2_redirect_offset = 0x78,
6337       .writefn = hcr_write, .raw_writefn = raw_write },
6338     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6339       .type = ARM_CP_ALIAS | ARM_CP_IO,
6340       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6341       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6342       .writefn = hcr_writelow },
6343     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6344       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6345       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6346     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6347       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6348       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6349       .access = PL2_RW,
6350       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6351     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6352       .type = ARM_CP_NV2_REDIRECT,
6353       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6354       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6355     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6356       .type = ARM_CP_NV2_REDIRECT,
6357       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6358       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6359     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6360       .type = ARM_CP_ALIAS,
6361       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6362       .access = PL2_RW,
6363       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6364     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6365       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6366       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6367       .access = PL2_RW,
6368       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6369     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6370       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6371       .access = PL2_RW, .writefn = vbar_write,
6372       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6373       .resetvalue = 0 },
6374     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6375       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6376       .access = PL3_RW, .type = ARM_CP_ALIAS,
6377       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6378     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6379       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6380       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6381       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6382       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6383     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6384       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6385       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6386       .resetvalue = 0 },
6387     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6388       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6389       .access = PL2_RW, .type = ARM_CP_ALIAS,
6390       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6391     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6392       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6393       .access = PL2_RW, .type = ARM_CP_CONST,
6394       .resetvalue = 0 },
6395     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6396     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6397       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6398       .access = PL2_RW, .type = ARM_CP_CONST,
6399       .resetvalue = 0 },
6400     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6401       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6402       .access = PL2_RW, .type = ARM_CP_CONST,
6403       .resetvalue = 0 },
6404     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6405       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6406       .access = PL2_RW, .type = ARM_CP_CONST,
6407       .resetvalue = 0 },
6408     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6409       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6410       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6411       .raw_writefn = raw_write,
6412       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6413     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6414       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6415       .type = ARM_CP_ALIAS,
6416       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6417       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6418     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6419       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6420       .access = PL2_RW,
6421       .nv2_redirect_offset = 0x40,
6422       /* no .writefn needed as this can't cause an ASID change */
6423       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6424     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6425       .cp = 15, .opc1 = 6, .crm = 2,
6426       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6427       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6428       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6429       .writefn = vttbr_write, .raw_writefn = raw_write },
6430     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6431       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6432       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6433       .nv2_redirect_offset = 0x20,
6434       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6435     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6436       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6437       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6438       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6439     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6440       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6441       .access = PL2_RW, .resetvalue = 0,
6442       .nv2_redirect_offset = 0x90,
6443       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6444     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6445       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6446       .access = PL2_RW, .resetvalue = 0,
6447       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6448       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6449     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6450       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6451       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6452     { .name = "TLBIALLNSNH",
6453       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6454       .type = ARM_CP_NO_RAW, .access = PL2_W,
6455       .writefn = tlbiall_nsnh_write },
6456     { .name = "TLBIALLNSNHIS",
6457       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6458       .type = ARM_CP_NO_RAW, .access = PL2_W,
6459       .writefn = tlbiall_nsnh_is_write },
6460     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6461       .type = ARM_CP_NO_RAW, .access = PL2_W,
6462       .writefn = tlbiall_hyp_write },
6463     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6464       .type = ARM_CP_NO_RAW, .access = PL2_W,
6465       .writefn = tlbiall_hyp_is_write },
6466     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6467       .type = ARM_CP_NO_RAW, .access = PL2_W,
6468       .writefn = tlbimva_hyp_write },
6469     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6470       .type = ARM_CP_NO_RAW, .access = PL2_W,
6471       .writefn = tlbimva_hyp_is_write },
6472     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6473       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6474       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6475       .writefn = tlbi_aa64_alle2_write },
6476     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6477       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6478       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6479       .writefn = tlbi_aa64_vae2_write },
6480     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6481       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6482       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6483       .writefn = tlbi_aa64_vae2_write },
6484     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6485       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6486       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6487       .writefn = tlbi_aa64_alle2is_write },
6488     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6489       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6490       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6491       .writefn = tlbi_aa64_vae2is_write },
6492     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6493       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6494       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6495       .writefn = tlbi_aa64_vae2is_write },
6496 #ifndef CONFIG_USER_ONLY
6497     /*
6498      * Unlike the other EL2-related AT operations, these must
6499      * UNDEF from EL3 if EL2 is not implemented, which is why we
6500      * define them here rather than with the rest of the AT ops.
6501      */
6502     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6503       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6504       .access = PL2_W, .accessfn = at_s1e2_access,
6505       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6506       .writefn = ats_write64 },
6507     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6508       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6509       .access = PL2_W, .accessfn = at_s1e2_access,
6510       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6511       .writefn = ats_write64 },
6512     /*
6513      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6514      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6515      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6516      * to behave as if SCR.NS was 1.
6517      */
6518     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6519       .access = PL2_W,
6520       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6521     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6522       .access = PL2_W,
6523       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6524     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6525       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6526       /*
6527        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6528        * reset values as IMPDEF. We choose to reset to 3 to comply with
6529        * both ARMv7 and ARMv8.
6530        */
6531       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6532       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6533       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6534     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6535       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6536       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6537       .writefn = gt_cntvoff_write,
6538       .nv2_redirect_offset = 0x60,
6539       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6540     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6541       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6542       .writefn = gt_cntvoff_write,
6543       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6544     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6545       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6546       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6547       .type = ARM_CP_IO, .access = PL2_RW,
6548       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6549     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6550       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6551       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6552       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6553     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6554       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6555       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6556       .resetfn = gt_hyp_timer_reset,
6557       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6558     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6559       .type = ARM_CP_IO,
6560       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6561       .access = PL2_RW,
6562       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6563       .resetvalue = 0,
6564       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6565 #endif
6566     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6567       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6568       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6569       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6570     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6571       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6572       .access = PL2_RW,
6573       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6574     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6575       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6576       .access = PL2_RW,
6577       .nv2_redirect_offset = 0x80,
6578       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6579 };
6580 
6581 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6582     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6583       .type = ARM_CP_ALIAS | ARM_CP_IO,
6584       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6585       .access = PL2_RW,
6586       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6587       .writefn = hcr_writehigh },
6588 };
6589 
6590 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6591                                   bool isread)
6592 {
6593     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6594         return CP_ACCESS_OK;
6595     }
6596     return CP_ACCESS_TRAP_UNCATEGORIZED;
6597 }
6598 
6599 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6600     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6601       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6602       .access = PL2_RW, .accessfn = sel2_access,
6603       .nv2_redirect_offset = 0x30,
6604       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6605     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6606       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6607       .access = PL2_RW, .accessfn = sel2_access,
6608       .nv2_redirect_offset = 0x48,
6609       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6610 };
6611 
6612 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6613                                    bool isread)
6614 {
6615     /*
6616      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6617      * At Secure EL1 it traps to EL3 or EL2.
6618      */
6619     if (arm_current_el(env) == 3) {
6620         return CP_ACCESS_OK;
6621     }
6622     if (arm_is_secure_below_el3(env)) {
6623         if (env->cp15.scr_el3 & SCR_EEL2) {
6624             return CP_ACCESS_TRAP_EL2;
6625         }
6626         return CP_ACCESS_TRAP_EL3;
6627     }
6628     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6629     if (isread) {
6630         return CP_ACCESS_OK;
6631     }
6632     return CP_ACCESS_TRAP_UNCATEGORIZED;
6633 }
6634 
6635 static const ARMCPRegInfo el3_cp_reginfo[] = {
6636     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6637       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6638       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6639       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6640     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6641       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6642       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6643       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6644       .writefn = scr_write, .raw_writefn = raw_write },
6645     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6646       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6647       .access = PL3_RW, .resetvalue = 0,
6648       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6649     { .name = "SDER",
6650       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6651       .access = PL3_RW, .resetvalue = 0,
6652       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6653     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6654       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6655       .writefn = vbar_write, .resetvalue = 0,
6656       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6657     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6658       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6659       .access = PL3_RW, .resetvalue = 0,
6660       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6661     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6662       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6663       .access = PL3_RW,
6664       /* no .writefn needed as this can't cause an ASID change */
6665       .resetvalue = 0,
6666       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6667     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6668       .type = ARM_CP_ALIAS,
6669       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6670       .access = PL3_RW,
6671       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6672     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6673       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6674       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6675     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6676       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6677       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6678     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6679       .type = ARM_CP_ALIAS,
6680       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6681       .access = PL3_RW,
6682       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6683     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6684       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6685       .access = PL3_RW, .writefn = vbar_write,
6686       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6687       .resetvalue = 0 },
6688     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6689       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6690       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6691       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6692     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6693       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6694       .access = PL3_RW, .resetvalue = 0,
6695       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6696     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6697       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6698       .access = PL3_RW, .type = ARM_CP_CONST,
6699       .resetvalue = 0 },
6700     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6701       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6702       .access = PL3_RW, .type = ARM_CP_CONST,
6703       .resetvalue = 0 },
6704     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6705       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6706       .access = PL3_RW, .type = ARM_CP_CONST,
6707       .resetvalue = 0 },
6708     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6709       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6710       .access = PL3_W, .type = ARM_CP_NO_RAW,
6711       .writefn = tlbi_aa64_alle3is_write },
6712     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6713       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6714       .access = PL3_W, .type = ARM_CP_NO_RAW,
6715       .writefn = tlbi_aa64_vae3is_write },
6716     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6717       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6718       .access = PL3_W, .type = ARM_CP_NO_RAW,
6719       .writefn = tlbi_aa64_vae3is_write },
6720     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6721       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6722       .access = PL3_W, .type = ARM_CP_NO_RAW,
6723       .writefn = tlbi_aa64_alle3_write },
6724     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6725       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6726       .access = PL3_W, .type = ARM_CP_NO_RAW,
6727       .writefn = tlbi_aa64_vae3_write },
6728     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6729       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6730       .access = PL3_W, .type = ARM_CP_NO_RAW,
6731       .writefn = tlbi_aa64_vae3_write },
6732 };
6733 
6734 #ifndef CONFIG_USER_ONLY
6735 
6736 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6737                                  bool isread)
6738 {
6739     if (arm_current_el(env) == 1) {
6740         /* This must be a FEAT_NV access */
6741         return CP_ACCESS_OK;
6742     }
6743     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6744         return CP_ACCESS_TRAP_UNCATEGORIZED;
6745     }
6746     return CP_ACCESS_OK;
6747 }
6748 
6749 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6750                                       bool isread)
6751 {
6752     if (arm_current_el(env) == 1) {
6753         /* This must be a FEAT_NV access with NVx == 101 */
6754         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6755             return CP_ACCESS_TRAP_EL2;
6756         }
6757     }
6758     return e2h_access(env, ri, isread);
6759 }
6760 
6761 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6762                                       bool isread)
6763 {
6764     if (arm_current_el(env) == 1) {
6765         /* This must be a FEAT_NV access with NVx == 101 */
6766         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6767             return CP_ACCESS_TRAP_EL2;
6768         }
6769     }
6770     return e2h_access(env, ri, isread);
6771 }
6772 
6773 /* Test if system register redirection is to occur in the current state.  */
6774 static bool redirect_for_e2h(CPUARMState *env)
6775 {
6776     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6777 }
6778 
6779 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6780 {
6781     CPReadFn *readfn;
6782 
6783     if (redirect_for_e2h(env)) {
6784         /* Switch to the saved EL2 version of the register.  */
6785         ri = ri->opaque;
6786         readfn = ri->readfn;
6787     } else {
6788         readfn = ri->orig_readfn;
6789     }
6790     if (readfn == NULL) {
6791         readfn = raw_read;
6792     }
6793     return readfn(env, ri);
6794 }
6795 
6796 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6797                           uint64_t value)
6798 {
6799     CPWriteFn *writefn;
6800 
6801     if (redirect_for_e2h(env)) {
6802         /* Switch to the saved EL2 version of the register.  */
6803         ri = ri->opaque;
6804         writefn = ri->writefn;
6805     } else {
6806         writefn = ri->orig_writefn;
6807     }
6808     if (writefn == NULL) {
6809         writefn = raw_write;
6810     }
6811     writefn(env, ri, value);
6812 }
6813 
6814 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6815 {
6816     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6817     return ri->orig_readfn(env, ri->opaque);
6818 }
6819 
6820 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6821                               uint64_t value)
6822 {
6823     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6824     return ri->orig_writefn(env, ri->opaque, value);
6825 }
6826 
6827 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6828                                          const ARMCPRegInfo *ri,
6829                                          bool isread)
6830 {
6831     if (arm_current_el(env) == 1) {
6832         /*
6833          * This must be a FEAT_NV access (will either trap or redirect
6834          * to memory). None of the registers with _EL12 aliases want to
6835          * apply their trap controls for this kind of access, so don't
6836          * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6837          */
6838         return CP_ACCESS_OK;
6839     }
6840     /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6841     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6842         return CP_ACCESS_TRAP_UNCATEGORIZED;
6843     }
6844     if (ri->orig_accessfn) {
6845         return ri->orig_accessfn(env, ri->opaque, isread);
6846     }
6847     return CP_ACCESS_OK;
6848 }
6849 
6850 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6851 {
6852     struct E2HAlias {
6853         uint32_t src_key, dst_key, new_key;
6854         const char *src_name, *dst_name, *new_name;
6855         bool (*feature)(const ARMISARegisters *id);
6856     };
6857 
6858 #define K(op0, op1, crn, crm, op2) \
6859     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6860 
6861     static const struct E2HAlias aliases[] = {
6862         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6863           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6864         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6865           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6866         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6867           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6868         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6869           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6870         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6871           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6872         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6873           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6874         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6875           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6876         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6877           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6878         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6879           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6880         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6881           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6882         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6883           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6884         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6885           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6886         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6887           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6888         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6889           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6890         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6891           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6892         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6893           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6894 
6895         /*
6896          * Note that redirection of ZCR is mentioned in the description
6897          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6898          * not in the summary table.
6899          */
6900         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6901           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6902         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6903           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6904 
6905         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6906           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6907 
6908         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6909           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6910           isar_feature_aa64_scxtnum },
6911 
6912         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6913         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6914     };
6915 #undef K
6916 
6917     size_t i;
6918 
6919     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6920         const struct E2HAlias *a = &aliases[i];
6921         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6922         bool ok;
6923 
6924         if (a->feature && !a->feature(&cpu->isar)) {
6925             continue;
6926         }
6927 
6928         src_reg = g_hash_table_lookup(cpu->cp_regs,
6929                                       (gpointer)(uintptr_t)a->src_key);
6930         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6931                                       (gpointer)(uintptr_t)a->dst_key);
6932         g_assert(src_reg != NULL);
6933         g_assert(dst_reg != NULL);
6934 
6935         /* Cross-compare names to detect typos in the keys.  */
6936         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6937         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6938 
6939         /* None of the core system registers use opaque; we will.  */
6940         g_assert(src_reg->opaque == NULL);
6941 
6942         /* Create alias before redirection so we dup the right data. */
6943         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6944 
6945         new_reg->name = a->new_name;
6946         new_reg->type |= ARM_CP_ALIAS;
6947         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6948         new_reg->access &= PL2_RW | PL3_RW;
6949         /* The new_reg op fields are as per new_key, not the target reg */
6950         new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6951             >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6952         new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6953             >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6954         new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6955             >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6956         new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6957             >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6958         new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6959             >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6960         new_reg->opaque = src_reg;
6961         new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6962         new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6963         new_reg->orig_accessfn = src_reg->accessfn;
6964         if (!new_reg->raw_readfn) {
6965             new_reg->raw_readfn = raw_read;
6966         }
6967         if (!new_reg->raw_writefn) {
6968             new_reg->raw_writefn = raw_write;
6969         }
6970         new_reg->readfn = el2_e2h_e12_read;
6971         new_reg->writefn = el2_e2h_e12_write;
6972         new_reg->accessfn = el2_e2h_e12_access;
6973 
6974         /*
6975          * If the _EL1 register is redirected to memory by FEAT_NV2,
6976          * then it shares the offset with the _EL12 register,
6977          * and which one is redirected depends on HCR_EL2.NV1.
6978          */
6979         if (new_reg->nv2_redirect_offset) {
6980             assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6981             new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6982             new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6983         }
6984 
6985         ok = g_hash_table_insert(cpu->cp_regs,
6986                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6987         g_assert(ok);
6988 
6989         src_reg->opaque = dst_reg;
6990         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6991         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6992         if (!src_reg->raw_readfn) {
6993             src_reg->raw_readfn = raw_read;
6994         }
6995         if (!src_reg->raw_writefn) {
6996             src_reg->raw_writefn = raw_write;
6997         }
6998         src_reg->readfn = el2_e2h_read;
6999         src_reg->writefn = el2_e2h_write;
7000     }
7001 }
7002 #endif
7003 
7004 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
7005                                      bool isread)
7006 {
7007     int cur_el = arm_current_el(env);
7008 
7009     if (cur_el < 2) {
7010         uint64_t hcr = arm_hcr_el2_eff(env);
7011 
7012         if (cur_el == 0) {
7013             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
7014                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
7015                     return CP_ACCESS_TRAP_EL2;
7016                 }
7017             } else {
7018                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7019                     return CP_ACCESS_TRAP;
7020                 }
7021                 if (hcr & HCR_TID2) {
7022                     return CP_ACCESS_TRAP_EL2;
7023                 }
7024             }
7025         } else if (hcr & HCR_TID2) {
7026             return CP_ACCESS_TRAP_EL2;
7027         }
7028     }
7029 
7030     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
7031         return CP_ACCESS_TRAP_EL2;
7032     }
7033 
7034     return CP_ACCESS_OK;
7035 }
7036 
7037 /*
7038  * Check for traps to RAS registers, which are controlled
7039  * by HCR_EL2.TERR and SCR_EL3.TERR.
7040  */
7041 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
7042                                   bool isread)
7043 {
7044     int el = arm_current_el(env);
7045 
7046     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
7047         return CP_ACCESS_TRAP_EL2;
7048     }
7049     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
7050         return CP_ACCESS_TRAP_EL3;
7051     }
7052     return CP_ACCESS_OK;
7053 }
7054 
7055 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7056 {
7057     int el = arm_current_el(env);
7058 
7059     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7060         return env->cp15.vdisr_el2;
7061     }
7062     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7063         return 0; /* RAZ/WI */
7064     }
7065     return env->cp15.disr_el1;
7066 }
7067 
7068 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7069 {
7070     int el = arm_current_el(env);
7071 
7072     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7073         env->cp15.vdisr_el2 = val;
7074         return;
7075     }
7076     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7077         return; /* RAZ/WI */
7078     }
7079     env->cp15.disr_el1 = val;
7080 }
7081 
7082 /*
7083  * Minimal RAS implementation with no Error Records.
7084  * Which means that all of the Error Record registers:
7085  *   ERXADDR_EL1
7086  *   ERXCTLR_EL1
7087  *   ERXFR_EL1
7088  *   ERXMISC0_EL1
7089  *   ERXMISC1_EL1
7090  *   ERXMISC2_EL1
7091  *   ERXMISC3_EL1
7092  *   ERXPFGCDN_EL1  (RASv1p1)
7093  *   ERXPFGCTL_EL1  (RASv1p1)
7094  *   ERXPFGF_EL1    (RASv1p1)
7095  *   ERXSTATUS_EL1
7096  * and
7097  *   ERRSELR_EL1
7098  * may generate UNDEFINED, which is the effect we get by not
7099  * listing them at all.
7100  *
7101  * These registers have fine-grained trap bits, but UNDEF-to-EL1
7102  * is higher priority than FGT-to-EL2 so we do not need to list them
7103  * in order to check for an FGT.
7104  */
7105 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7106     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7107       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7108       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7109       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7110     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7111       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7112       .access = PL1_R, .accessfn = access_terr,
7113       .fgt = FGT_ERRIDR_EL1,
7114       .type = ARM_CP_CONST, .resetvalue = 0 },
7115     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7116       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7117       .nv2_redirect_offset = 0x500,
7118       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7119     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7120       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7121       .nv2_redirect_offset = 0x508,
7122       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7123 };
7124 
7125 /*
7126  * Return the exception level to which exceptions should be taken
7127  * via SVEAccessTrap.  This excludes the check for whether the exception
7128  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
7129  * be found by testing 0 < fp_exception_el < sve_exception_el.
7130  *
7131  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
7132  * pseudocode does *not* separate out the FP trap checks, but has them
7133  * all in one function.
7134  */
7135 int sve_exception_el(CPUARMState *env, int el)
7136 {
7137 #ifndef CONFIG_USER_ONLY
7138     if (el <= 1 && !el_is_in_host(env, el)) {
7139         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7140         case 1:
7141             if (el != 0) {
7142                 break;
7143             }
7144             /* fall through */
7145         case 0:
7146         case 2:
7147             return 1;
7148         }
7149     }
7150 
7151     if (el <= 2 && arm_is_el2_enabled(env)) {
7152         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7153         if (env->cp15.hcr_el2 & HCR_E2H) {
7154             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7155             case 1:
7156                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7157                     break;
7158                 }
7159                 /* fall through */
7160             case 0:
7161             case 2:
7162                 return 2;
7163             }
7164         } else {
7165             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7166                 return 2;
7167             }
7168         }
7169     }
7170 
7171     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
7172     if (arm_feature(env, ARM_FEATURE_EL3)
7173         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7174         return 3;
7175     }
7176 #endif
7177     return 0;
7178 }
7179 
7180 /*
7181  * Return the exception level to which exceptions should be taken for SME.
7182  * C.f. the ARM pseudocode function CheckSMEAccess.
7183  */
7184 int sme_exception_el(CPUARMState *env, int el)
7185 {
7186 #ifndef CONFIG_USER_ONLY
7187     if (el <= 1 && !el_is_in_host(env, el)) {
7188         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7189         case 1:
7190             if (el != 0) {
7191                 break;
7192             }
7193             /* fall through */
7194         case 0:
7195         case 2:
7196             return 1;
7197         }
7198     }
7199 
7200     if (el <= 2 && arm_is_el2_enabled(env)) {
7201         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7202         if (env->cp15.hcr_el2 & HCR_E2H) {
7203             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7204             case 1:
7205                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7206                     break;
7207                 }
7208                 /* fall through */
7209             case 0:
7210             case 2:
7211                 return 2;
7212             }
7213         } else {
7214             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7215                 return 2;
7216             }
7217         }
7218     }
7219 
7220     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
7221     if (arm_feature(env, ARM_FEATURE_EL3)
7222         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7223         return 3;
7224     }
7225 #endif
7226     return 0;
7227 }
7228 
7229 /*
7230  * Given that SVE is enabled, return the vector length for EL.
7231  */
7232 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7233 {
7234     ARMCPU *cpu = env_archcpu(env);
7235     uint64_t *cr = env->vfp.zcr_el;
7236     uint32_t map = cpu->sve_vq.map;
7237     uint32_t len = ARM_MAX_VQ - 1;
7238 
7239     if (sm) {
7240         cr = env->vfp.smcr_el;
7241         map = cpu->sme_vq.map;
7242     }
7243 
7244     if (el <= 1 && !el_is_in_host(env, el)) {
7245         len = MIN(len, 0xf & (uint32_t)cr[1]);
7246     }
7247     if (el <= 2 && arm_is_el2_enabled(env)) {
7248         len = MIN(len, 0xf & (uint32_t)cr[2]);
7249     }
7250     if (arm_feature(env, ARM_FEATURE_EL3)) {
7251         len = MIN(len, 0xf & (uint32_t)cr[3]);
7252     }
7253 
7254     map &= MAKE_64BIT_MASK(0, len + 1);
7255     if (map != 0) {
7256         return 31 - clz32(map);
7257     }
7258 
7259     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7260     assert(sm);
7261     return ctz32(cpu->sme_vq.map);
7262 }
7263 
7264 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7265 {
7266     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7267 }
7268 
7269 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7270                       uint64_t value)
7271 {
7272     int cur_el = arm_current_el(env);
7273     int old_len = sve_vqm1_for_el(env, cur_el);
7274     int new_len;
7275 
7276     /* Bits other than [3:0] are RAZ/WI.  */
7277     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7278     raw_write(env, ri, value & 0xf);
7279 
7280     /*
7281      * Because we arrived here, we know both FP and SVE are enabled;
7282      * otherwise we would have trapped access to the ZCR_ELn register.
7283      */
7284     new_len = sve_vqm1_for_el(env, cur_el);
7285     if (new_len < old_len) {
7286         aarch64_sve_narrow_vq(env, new_len + 1);
7287     }
7288 }
7289 
7290 static const ARMCPRegInfo zcr_reginfo[] = {
7291     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7292       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7293       .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7294       .access = PL1_RW, .type = ARM_CP_SVE,
7295       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7296       .writefn = zcr_write, .raw_writefn = raw_write },
7297     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7298       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7299       .access = PL2_RW, .type = ARM_CP_SVE,
7300       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7301       .writefn = zcr_write, .raw_writefn = raw_write },
7302     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7303       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7304       .access = PL3_RW, .type = ARM_CP_SVE,
7305       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7306       .writefn = zcr_write, .raw_writefn = raw_write },
7307 };
7308 
7309 #ifdef TARGET_AARCH64
7310 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7311                                     bool isread)
7312 {
7313     int el = arm_current_el(env);
7314 
7315     if (el == 0) {
7316         uint64_t sctlr = arm_sctlr(env, el);
7317         if (!(sctlr & SCTLR_EnTP2)) {
7318             return CP_ACCESS_TRAP;
7319         }
7320     }
7321     /* TODO: FEAT_FGT */
7322     if (el < 3
7323         && arm_feature(env, ARM_FEATURE_EL3)
7324         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7325         return CP_ACCESS_TRAP_EL3;
7326     }
7327     return CP_ACCESS_OK;
7328 }
7329 
7330 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7331                                       bool isread)
7332 {
7333     /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7334     if (arm_current_el(env) == 2
7335         && arm_feature(env, ARM_FEATURE_EL3)
7336         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7337         return CP_ACCESS_TRAP_EL3;
7338     }
7339     return CP_ACCESS_OK;
7340 }
7341 
7342 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7343                                    bool isread)
7344 {
7345     if (arm_current_el(env) < 3
7346         && arm_feature(env, ARM_FEATURE_EL3)
7347         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7348         return CP_ACCESS_TRAP_EL3;
7349     }
7350     return CP_ACCESS_OK;
7351 }
7352 
7353 /* ResetSVEState */
7354 static void arm_reset_sve_state(CPUARMState *env)
7355 {
7356     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7357     /* Recall that FFR is stored as pregs[16]. */
7358     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7359     vfp_set_fpcr(env, 0x0800009f);
7360 }
7361 
7362 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7363 {
7364     uint64_t change = (env->svcr ^ new) & mask;
7365 
7366     if (change == 0) {
7367         return;
7368     }
7369     env->svcr ^= change;
7370 
7371     if (change & R_SVCR_SM_MASK) {
7372         arm_reset_sve_state(env);
7373     }
7374 
7375     /*
7376      * ResetSMEState.
7377      *
7378      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
7379      * on enable: while disabled, the storage is inaccessible and the
7380      * value does not matter.  We're not saving the storage in vmstate
7381      * when disabled either.
7382      */
7383     if (change & new & R_SVCR_ZA_MASK) {
7384         memset(env->zarray, 0, sizeof(env->zarray));
7385     }
7386 
7387     if (tcg_enabled()) {
7388         arm_rebuild_hflags(env);
7389     }
7390 }
7391 
7392 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7393                        uint64_t value)
7394 {
7395     aarch64_set_svcr(env, value, -1);
7396 }
7397 
7398 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7399                        uint64_t value)
7400 {
7401     int cur_el = arm_current_el(env);
7402     int old_len = sve_vqm1_for_el(env, cur_el);
7403     int new_len;
7404 
7405     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7406     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7407     raw_write(env, ri, value);
7408 
7409     /*
7410      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7411      * when SVL is widened (old values kept, or zeros).  Choose to keep the
7412      * current values for simplicity.  But for QEMU internals, we must still
7413      * apply the narrower SVL to the Zregs and Pregs -- see the comment
7414      * above aarch64_sve_narrow_vq.
7415      */
7416     new_len = sve_vqm1_for_el(env, cur_el);
7417     if (new_len < old_len) {
7418         aarch64_sve_narrow_vq(env, new_len + 1);
7419     }
7420 }
7421 
7422 static const ARMCPRegInfo sme_reginfo[] = {
7423     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7424       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7425       .access = PL0_RW, .accessfn = access_tpidr2,
7426       .fgt = FGT_NTPIDR2_EL0,
7427       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7428     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7429       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7430       .access = PL0_RW, .type = ARM_CP_SME,
7431       .fieldoffset = offsetof(CPUARMState, svcr),
7432       .writefn = svcr_write, .raw_writefn = raw_write },
7433     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7434       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7435       .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7436       .access = PL1_RW, .type = ARM_CP_SME,
7437       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7438       .writefn = smcr_write, .raw_writefn = raw_write },
7439     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7440       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7441       .access = PL2_RW, .type = ARM_CP_SME,
7442       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7443       .writefn = smcr_write, .raw_writefn = raw_write },
7444     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7445       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7446       .access = PL3_RW, .type = ARM_CP_SME,
7447       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7448       .writefn = smcr_write, .raw_writefn = raw_write },
7449     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7450       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7451       .access = PL1_R, .accessfn = access_aa64_tid1,
7452       /*
7453        * IMPLEMENTOR = 0 (software)
7454        * REVISION    = 0 (implementation defined)
7455        * SMPS        = 0 (no streaming execution priority in QEMU)
7456        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7457        */
7458       .type = ARM_CP_CONST, .resetvalue = 0, },
7459     /*
7460      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7461      */
7462     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7463       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7464       .access = PL1_RW, .accessfn = access_smpri,
7465       .fgt = FGT_NSMPRI_EL1,
7466       .type = ARM_CP_CONST, .resetvalue = 0 },
7467     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7468       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7469       .nv2_redirect_offset = 0x1f8,
7470       .access = PL2_RW, .accessfn = access_smprimap,
7471       .type = ARM_CP_CONST, .resetvalue = 0 },
7472 };
7473 
7474 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7475                                   uint64_t value)
7476 {
7477     CPUState *cs = env_cpu(env);
7478 
7479     tlb_flush(cs);
7480 }
7481 
7482 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7483                         uint64_t value)
7484 {
7485     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7486     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7487         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7488         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7489 
7490     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7491 }
7492 
7493 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7494 {
7495     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7496                                      env_archcpu(env)->reset_l0gptsz);
7497 }
7498 
7499 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7500                                     uint64_t value)
7501 {
7502     CPUState *cs = env_cpu(env);
7503 
7504     tlb_flush_all_cpus_synced(cs);
7505 }
7506 
7507 static const ARMCPRegInfo rme_reginfo[] = {
7508     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7509       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7510       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7511       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7512     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7513       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7514       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7515     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7516       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7517       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7518     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7519       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7520       .access = PL3_W, .type = ARM_CP_NO_RAW,
7521       .writefn = tlbi_aa64_paall_write },
7522     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7523       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7524       .access = PL3_W, .type = ARM_CP_NO_RAW,
7525       .writefn = tlbi_aa64_paallos_write },
7526     /*
7527      * QEMU does not have a way to invalidate by physical address, thus
7528      * invalidating a range of physical addresses is accomplished by
7529      * flushing all tlb entries in the outer shareable domain,
7530      * just like PAALLOS.
7531      */
7532     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7533       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7534       .access = PL3_W, .type = ARM_CP_NO_RAW,
7535       .writefn = tlbi_aa64_paallos_write },
7536     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7537       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7538       .access = PL3_W, .type = ARM_CP_NO_RAW,
7539       .writefn = tlbi_aa64_paallos_write },
7540     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7541       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7542       .access = PL3_W, .type = ARM_CP_NOP },
7543 };
7544 
7545 static const ARMCPRegInfo rme_mte_reginfo[] = {
7546     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7547       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7548       .access = PL3_W, .type = ARM_CP_NOP },
7549 };
7550 
7551 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
7552                               uint64_t value)
7553 {
7554     env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
7555 }
7556 
7557 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
7558 {
7559     return env->pstate & PSTATE_ALLINT;
7560 }
7561 
7562 static CPAccessResult aa64_allint_access(CPUARMState *env,
7563                                          const ARMCPRegInfo *ri, bool isread)
7564 {
7565     if (!isread && arm_current_el(env) == 1 &&
7566         (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
7567         return CP_ACCESS_TRAP_EL2;
7568     }
7569     return CP_ACCESS_OK;
7570 }
7571 
7572 static const ARMCPRegInfo nmi_reginfo[] = {
7573     { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
7574       .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
7575       .type = ARM_CP_NO_RAW,
7576       .access = PL1_RW, .accessfn = aa64_allint_access,
7577       .fieldoffset = offsetof(CPUARMState, pstate),
7578       .writefn = aa64_allint_write, .readfn = aa64_allint_read,
7579       .resetfn = arm_cp_reset_ignore },
7580 };
7581 #endif /* TARGET_AARCH64 */
7582 
7583 static void define_pmu_regs(ARMCPU *cpu)
7584 {
7585     /*
7586      * v7 performance monitor control register: same implementor
7587      * field as main ID register, and we implement four counters in
7588      * addition to the cycle count register.
7589      */
7590     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7591     ARMCPRegInfo pmcr = {
7592         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7593         .access = PL0_RW,
7594         .fgt = FGT_PMCR_EL0,
7595         .type = ARM_CP_IO | ARM_CP_ALIAS,
7596         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7597         .accessfn = pmreg_access,
7598         .readfn = pmcr_read, .raw_readfn = raw_read,
7599         .writefn = pmcr_write, .raw_writefn = raw_write,
7600     };
7601     ARMCPRegInfo pmcr64 = {
7602         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7603         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7604         .access = PL0_RW, .accessfn = pmreg_access,
7605         .fgt = FGT_PMCR_EL0,
7606         .type = ARM_CP_IO,
7607         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7608         .resetvalue = cpu->isar.reset_pmcr_el0,
7609         .readfn = pmcr_read, .raw_readfn = raw_read,
7610         .writefn = pmcr_write, .raw_writefn = raw_write,
7611     };
7612 
7613     define_one_arm_cp_reg(cpu, &pmcr);
7614     define_one_arm_cp_reg(cpu, &pmcr64);
7615     for (i = 0; i < pmcrn; i++) {
7616         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7617         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7618         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7619         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7620         ARMCPRegInfo pmev_regs[] = {
7621             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7622               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7623               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7624               .fgt = FGT_PMEVCNTRN_EL0,
7625               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7626               .accessfn = pmreg_access_xevcntr },
7627             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7628               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7629               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7630               .type = ARM_CP_IO,
7631               .fgt = FGT_PMEVCNTRN_EL0,
7632               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7633               .raw_readfn = pmevcntr_rawread,
7634               .raw_writefn = pmevcntr_rawwrite },
7635             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7636               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7637               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7638               .fgt = FGT_PMEVTYPERN_EL0,
7639               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7640               .accessfn = pmreg_access },
7641             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7642               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7643               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7644               .fgt = FGT_PMEVTYPERN_EL0,
7645               .type = ARM_CP_IO,
7646               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7647               .raw_writefn = pmevtyper_rawwrite },
7648         };
7649         define_arm_cp_regs(cpu, pmev_regs);
7650         g_free(pmevcntr_name);
7651         g_free(pmevcntr_el0_name);
7652         g_free(pmevtyper_name);
7653         g_free(pmevtyper_el0_name);
7654     }
7655     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7656         ARMCPRegInfo v81_pmu_regs[] = {
7657             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7658               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7659               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7660               .fgt = FGT_PMCEIDN_EL0,
7661               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7662             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7663               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7664               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7665               .fgt = FGT_PMCEIDN_EL0,
7666               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7667         };
7668         define_arm_cp_regs(cpu, v81_pmu_regs);
7669     }
7670     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7671         static const ARMCPRegInfo v84_pmmir = {
7672             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7673             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7674             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7675             .fgt = FGT_PMMIR_EL1,
7676             .resetvalue = 0
7677         };
7678         define_one_arm_cp_reg(cpu, &v84_pmmir);
7679     }
7680 }
7681 
7682 #ifndef CONFIG_USER_ONLY
7683 /*
7684  * We don't know until after realize whether there's a GICv3
7685  * attached, and that is what registers the gicv3 sysregs.
7686  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7687  * at runtime.
7688  */
7689 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7690 {
7691     ARMCPU *cpu = env_archcpu(env);
7692     uint64_t pfr1 = cpu->isar.id_pfr1;
7693 
7694     if (env->gicv3state) {
7695         pfr1 |= 1 << 28;
7696     }
7697     return pfr1;
7698 }
7699 
7700 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7701 {
7702     ARMCPU *cpu = env_archcpu(env);
7703     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7704 
7705     if (env->gicv3state) {
7706         pfr0 |= 1 << 24;
7707     }
7708     return pfr0;
7709 }
7710 #endif
7711 
7712 /*
7713  * Shared logic between LORID and the rest of the LOR* registers.
7714  * Secure state exclusion has already been dealt with.
7715  */
7716 static CPAccessResult access_lor_ns(CPUARMState *env,
7717                                     const ARMCPRegInfo *ri, bool isread)
7718 {
7719     int el = arm_current_el(env);
7720 
7721     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7722         return CP_ACCESS_TRAP_EL2;
7723     }
7724     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7725         return CP_ACCESS_TRAP_EL3;
7726     }
7727     return CP_ACCESS_OK;
7728 }
7729 
7730 static CPAccessResult access_lor_other(CPUARMState *env,
7731                                        const ARMCPRegInfo *ri, bool isread)
7732 {
7733     if (arm_is_secure_below_el3(env)) {
7734         /* Access denied in secure mode.  */
7735         return CP_ACCESS_TRAP;
7736     }
7737     return access_lor_ns(env, ri, isread);
7738 }
7739 
7740 /*
7741  * A trivial implementation of ARMv8.1-LOR leaves all of these
7742  * registers fixed at 0, which indicates that there are zero
7743  * supported Limited Ordering regions.
7744  */
7745 static const ARMCPRegInfo lor_reginfo[] = {
7746     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7747       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7748       .access = PL1_RW, .accessfn = access_lor_other,
7749       .fgt = FGT_LORSA_EL1,
7750       .type = ARM_CP_CONST, .resetvalue = 0 },
7751     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7752       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7753       .access = PL1_RW, .accessfn = access_lor_other,
7754       .fgt = FGT_LOREA_EL1,
7755       .type = ARM_CP_CONST, .resetvalue = 0 },
7756     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7757       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7758       .access = PL1_RW, .accessfn = access_lor_other,
7759       .fgt = FGT_LORN_EL1,
7760       .type = ARM_CP_CONST, .resetvalue = 0 },
7761     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7762       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7763       .access = PL1_RW, .accessfn = access_lor_other,
7764       .fgt = FGT_LORC_EL1,
7765       .type = ARM_CP_CONST, .resetvalue = 0 },
7766     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7767       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7768       .access = PL1_R, .accessfn = access_lor_ns,
7769       .fgt = FGT_LORID_EL1,
7770       .type = ARM_CP_CONST, .resetvalue = 0 },
7771 };
7772 
7773 #ifdef TARGET_AARCH64
7774 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7775                                    bool isread)
7776 {
7777     int el = arm_current_el(env);
7778 
7779     if (el < 2 &&
7780         arm_is_el2_enabled(env) &&
7781         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7782         return CP_ACCESS_TRAP_EL2;
7783     }
7784     if (el < 3 &&
7785         arm_feature(env, ARM_FEATURE_EL3) &&
7786         !(env->cp15.scr_el3 & SCR_APK)) {
7787         return CP_ACCESS_TRAP_EL3;
7788     }
7789     return CP_ACCESS_OK;
7790 }
7791 
7792 static const ARMCPRegInfo pauth_reginfo[] = {
7793     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7794       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7795       .access = PL1_RW, .accessfn = access_pauth,
7796       .fgt = FGT_APDAKEY,
7797       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7798     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7799       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7800       .access = PL1_RW, .accessfn = access_pauth,
7801       .fgt = FGT_APDAKEY,
7802       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7803     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7804       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7805       .access = PL1_RW, .accessfn = access_pauth,
7806       .fgt = FGT_APDBKEY,
7807       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7808     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7809       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7810       .access = PL1_RW, .accessfn = access_pauth,
7811       .fgt = FGT_APDBKEY,
7812       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7813     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7814       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7815       .access = PL1_RW, .accessfn = access_pauth,
7816       .fgt = FGT_APGAKEY,
7817       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7818     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7819       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7820       .access = PL1_RW, .accessfn = access_pauth,
7821       .fgt = FGT_APGAKEY,
7822       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7823     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7824       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7825       .access = PL1_RW, .accessfn = access_pauth,
7826       .fgt = FGT_APIAKEY,
7827       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7828     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7829       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7830       .access = PL1_RW, .accessfn = access_pauth,
7831       .fgt = FGT_APIAKEY,
7832       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7833     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7834       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7835       .access = PL1_RW, .accessfn = access_pauth,
7836       .fgt = FGT_APIBKEY,
7837       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7838     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7839       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7840       .access = PL1_RW, .accessfn = access_pauth,
7841       .fgt = FGT_APIBKEY,
7842       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7843 };
7844 
7845 static const ARMCPRegInfo tlbirange_reginfo[] = {
7846     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7847       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7848       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7849       .fgt = FGT_TLBIRVAE1IS,
7850       .writefn = tlbi_aa64_rvae1is_write },
7851     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7852       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7853       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7854       .fgt = FGT_TLBIRVAAE1IS,
7855       .writefn = tlbi_aa64_rvae1is_write },
7856    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7857       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7858       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7859       .fgt = FGT_TLBIRVALE1IS,
7860       .writefn = tlbi_aa64_rvae1is_write },
7861     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7862       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7863       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7864       .fgt = FGT_TLBIRVAALE1IS,
7865       .writefn = tlbi_aa64_rvae1is_write },
7866     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7867       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7868       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7869       .fgt = FGT_TLBIRVAE1OS,
7870       .writefn = tlbi_aa64_rvae1is_write },
7871     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7872       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7873       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7874       .fgt = FGT_TLBIRVAAE1OS,
7875       .writefn = tlbi_aa64_rvae1is_write },
7876    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7877       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7878       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7879       .fgt = FGT_TLBIRVALE1OS,
7880       .writefn = tlbi_aa64_rvae1is_write },
7881     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7883       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7884       .fgt = FGT_TLBIRVAALE1OS,
7885       .writefn = tlbi_aa64_rvae1is_write },
7886     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7887       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7888       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7889       .fgt = FGT_TLBIRVAE1,
7890       .writefn = tlbi_aa64_rvae1_write },
7891     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7892       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7893       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7894       .fgt = FGT_TLBIRVAAE1,
7895       .writefn = tlbi_aa64_rvae1_write },
7896    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7897       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7898       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7899       .fgt = FGT_TLBIRVALE1,
7900       .writefn = tlbi_aa64_rvae1_write },
7901     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7902       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7903       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7904       .fgt = FGT_TLBIRVAALE1,
7905       .writefn = tlbi_aa64_rvae1_write },
7906     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7907       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7908       .access = PL2_W, .type = ARM_CP_NO_RAW,
7909       .writefn = tlbi_aa64_ripas2e1is_write },
7910     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7911       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7912       .access = PL2_W, .type = ARM_CP_NO_RAW,
7913       .writefn = tlbi_aa64_ripas2e1is_write },
7914     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7915       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7916       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7917       .writefn = tlbi_aa64_rvae2is_write },
7918    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7919       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7920       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7921       .writefn = tlbi_aa64_rvae2is_write },
7922     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7923       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7924       .access = PL2_W, .type = ARM_CP_NO_RAW,
7925       .writefn = tlbi_aa64_ripas2e1_write },
7926     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7927       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7928       .access = PL2_W, .type = ARM_CP_NO_RAW,
7929       .writefn = tlbi_aa64_ripas2e1_write },
7930    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7931       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7932       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7933       .writefn = tlbi_aa64_rvae2is_write },
7934    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7936       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7937       .writefn = tlbi_aa64_rvae2is_write },
7938     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7940       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7941       .writefn = tlbi_aa64_rvae2_write },
7942    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7943       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7944       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7945       .writefn = tlbi_aa64_rvae2_write },
7946    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7947       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7948       .access = PL3_W, .type = ARM_CP_NO_RAW,
7949       .writefn = tlbi_aa64_rvae3is_write },
7950    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7951       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7952       .access = PL3_W, .type = ARM_CP_NO_RAW,
7953       .writefn = tlbi_aa64_rvae3is_write },
7954    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7955       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7956       .access = PL3_W, .type = ARM_CP_NO_RAW,
7957       .writefn = tlbi_aa64_rvae3is_write },
7958    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7959       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7960       .access = PL3_W, .type = ARM_CP_NO_RAW,
7961       .writefn = tlbi_aa64_rvae3is_write },
7962    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7963       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7964       .access = PL3_W, .type = ARM_CP_NO_RAW,
7965       .writefn = tlbi_aa64_rvae3_write },
7966    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7967       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7968       .access = PL3_W, .type = ARM_CP_NO_RAW,
7969       .writefn = tlbi_aa64_rvae3_write },
7970 };
7971 
7972 static const ARMCPRegInfo tlbios_reginfo[] = {
7973     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7974       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7975       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7976       .fgt = FGT_TLBIVMALLE1OS,
7977       .writefn = tlbi_aa64_vmalle1is_write },
7978     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7979       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7980       .fgt = FGT_TLBIVAE1OS,
7981       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7982       .writefn = tlbi_aa64_vae1is_write },
7983     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7984       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7985       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7986       .fgt = FGT_TLBIASIDE1OS,
7987       .writefn = tlbi_aa64_vmalle1is_write },
7988     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7989       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7990       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7991       .fgt = FGT_TLBIVAAE1OS,
7992       .writefn = tlbi_aa64_vae1is_write },
7993     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7994       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7995       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7996       .fgt = FGT_TLBIVALE1OS,
7997       .writefn = tlbi_aa64_vae1is_write },
7998     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7999       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
8000       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8001       .fgt = FGT_TLBIVAALE1OS,
8002       .writefn = tlbi_aa64_vae1is_write },
8003     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
8004       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
8005       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8006       .writefn = tlbi_aa64_alle2is_write },
8007     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
8008       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
8009       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8010       .writefn = tlbi_aa64_vae2is_write },
8011    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
8012       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
8013       .access = PL2_W, .type = ARM_CP_NO_RAW,
8014       .writefn = tlbi_aa64_alle1is_write },
8015     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
8016       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
8017       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8018       .writefn = tlbi_aa64_vae2is_write },
8019     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
8020       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
8021       .access = PL2_W, .type = ARM_CP_NO_RAW,
8022       .writefn = tlbi_aa64_alle1is_write },
8023     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
8024       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
8025       .access = PL2_W, .type = ARM_CP_NOP },
8026     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
8027       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
8028       .access = PL2_W, .type = ARM_CP_NOP },
8029     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8030       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
8031       .access = PL2_W, .type = ARM_CP_NOP },
8032     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8033       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
8034       .access = PL2_W, .type = ARM_CP_NOP },
8035     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
8036       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
8037       .access = PL3_W, .type = ARM_CP_NO_RAW,
8038       .writefn = tlbi_aa64_alle3is_write },
8039     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
8040       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
8041       .access = PL3_W, .type = ARM_CP_NO_RAW,
8042       .writefn = tlbi_aa64_vae3is_write },
8043     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
8044       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
8045       .access = PL3_W, .type = ARM_CP_NO_RAW,
8046       .writefn = tlbi_aa64_vae3is_write },
8047 };
8048 
8049 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
8050 {
8051     Error *err = NULL;
8052     uint64_t ret;
8053 
8054     /* Success sets NZCV = 0000.  */
8055     env->NF = env->CF = env->VF = 0, env->ZF = 1;
8056 
8057     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
8058         /*
8059          * ??? Failed, for unknown reasons in the crypto subsystem.
8060          * The best we can do is log the reason and return the
8061          * timed-out indication to the guest.  There is no reason
8062          * we know to expect this failure to be transitory, so the
8063          * guest may well hang retrying the operation.
8064          */
8065         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
8066                       ri->name, error_get_pretty(err));
8067         error_free(err);
8068 
8069         env->ZF = 0; /* NZCF = 0100 */
8070         return 0;
8071     }
8072     return ret;
8073 }
8074 
8075 /* We do not support re-seeding, so the two registers operate the same.  */
8076 static const ARMCPRegInfo rndr_reginfo[] = {
8077     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
8078       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8079       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
8080       .access = PL0_R, .readfn = rndr_readfn },
8081     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
8082       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8083       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
8084       .access = PL0_R, .readfn = rndr_readfn },
8085 };
8086 
8087 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8088                           uint64_t value)
8089 {
8090 #ifdef CONFIG_TCG
8091     ARMCPU *cpu = env_archcpu(env);
8092     /* CTR_EL0 System register -> DminLine, bits [19:16] */
8093     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8094     uint64_t vaddr_in = (uint64_t) value;
8095     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8096     void *haddr;
8097     int mem_idx = arm_env_mmu_index(env);
8098 
8099     /* This won't be crossing page boundaries */
8100     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8101     if (haddr) {
8102 #ifndef CONFIG_USER_ONLY
8103 
8104         ram_addr_t offset;
8105         MemoryRegion *mr;
8106 
8107         /* RCU lock is already being held */
8108         mr = memory_region_from_host(haddr, &offset);
8109 
8110         if (mr) {
8111             memory_region_writeback(mr, offset, dline_size);
8112         }
8113 #endif /*CONFIG_USER_ONLY*/
8114     }
8115 #else
8116     /* Handled by hardware accelerator. */
8117     g_assert_not_reached();
8118 #endif /* CONFIG_TCG */
8119 }
8120 
8121 static const ARMCPRegInfo dcpop_reg[] = {
8122     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8123       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8124       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8125       .fgt = FGT_DCCVAP,
8126       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8127 };
8128 
8129 static const ARMCPRegInfo dcpodp_reg[] = {
8130     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8131       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8132       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8133       .fgt = FGT_DCCVADP,
8134       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8135 };
8136 
8137 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8138                                        bool isread)
8139 {
8140     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8141         return CP_ACCESS_TRAP_EL2;
8142     }
8143 
8144     return CP_ACCESS_OK;
8145 }
8146 
8147 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8148                                  bool isread)
8149 {
8150     int el = arm_current_el(env);
8151     if (el < 2 && arm_is_el2_enabled(env)) {
8152         uint64_t hcr = arm_hcr_el2_eff(env);
8153         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8154             return CP_ACCESS_TRAP_EL2;
8155         }
8156     }
8157     if (el < 3 &&
8158         arm_feature(env, ARM_FEATURE_EL3) &&
8159         !(env->cp15.scr_el3 & SCR_ATA)) {
8160         return CP_ACCESS_TRAP_EL3;
8161     }
8162     return CP_ACCESS_OK;
8163 }
8164 
8165 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8166                                       bool isread)
8167 {
8168     CPAccessResult nv1 = access_nv1(env, ri, isread);
8169 
8170     if (nv1 != CP_ACCESS_OK) {
8171         return nv1;
8172     }
8173     return access_mte(env, ri, isread);
8174 }
8175 
8176 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8177                                       bool isread)
8178 {
8179     /*
8180      * TFSR_EL2: similar to generic access_mte(), but we need to
8181      * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8182      * if NV2 is enabled then we will redirect this to TFSR_EL1
8183      * after doing the HCR and SCR ATA traps; otherwise this will
8184      * be a trap to EL2 and the HCR/SCR traps do not apply.
8185      */
8186     int el = arm_current_el(env);
8187 
8188     if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8189         return CP_ACCESS_OK;
8190     }
8191     if (el < 2 && arm_is_el2_enabled(env)) {
8192         uint64_t hcr = arm_hcr_el2_eff(env);
8193         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8194             return CP_ACCESS_TRAP_EL2;
8195         }
8196     }
8197     if (el < 3 &&
8198         arm_feature(env, ARM_FEATURE_EL3) &&
8199         !(env->cp15.scr_el3 & SCR_ATA)) {
8200         return CP_ACCESS_TRAP_EL3;
8201     }
8202     return CP_ACCESS_OK;
8203 }
8204 
8205 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8206 {
8207     return env->pstate & PSTATE_TCO;
8208 }
8209 
8210 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8211 {
8212     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8213 }
8214 
8215 static const ARMCPRegInfo mte_reginfo[] = {
8216     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8217       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8218       .access = PL1_RW, .accessfn = access_mte,
8219       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8220     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8221       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8222       .access = PL1_RW, .accessfn = access_tfsr_el1,
8223       .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8224       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8225     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8226       .type = ARM_CP_NV2_REDIRECT,
8227       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8228       .access = PL2_RW, .accessfn = access_tfsr_el2,
8229       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8230     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8231       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8232       .access = PL3_RW,
8233       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8234     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8235       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8236       .access = PL1_RW, .accessfn = access_mte,
8237       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8238     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8239       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8240       .access = PL1_RW, .accessfn = access_mte,
8241       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8242     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8243       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8244       .type = ARM_CP_NO_RAW,
8245       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8246     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8247       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8248       .type = ARM_CP_NOP, .access = PL1_W,
8249       .fgt = FGT_DCIVAC,
8250       .accessfn = aa64_cacheop_poc_access },
8251     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8252       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8253       .fgt = FGT_DCISW,
8254       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8255     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8256       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8257       .type = ARM_CP_NOP, .access = PL1_W,
8258       .fgt = FGT_DCIVAC,
8259       .accessfn = aa64_cacheop_poc_access },
8260     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8261       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8262       .fgt = FGT_DCISW,
8263       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8264     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8265       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8266       .fgt = FGT_DCCSW,
8267       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8268     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8269       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8270       .fgt = FGT_DCCSW,
8271       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8272     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8273       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8274       .fgt = FGT_DCCISW,
8275       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8276     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8277       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8278       .fgt = FGT_DCCISW,
8279       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8280 };
8281 
8282 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8283     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8284       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8285       .type = ARM_CP_CONST, .access = PL0_RW, },
8286 };
8287 
8288 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8289     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8290       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8291       .type = ARM_CP_NOP, .access = PL0_W,
8292       .fgt = FGT_DCCVAC,
8293       .accessfn = aa64_cacheop_poc_access },
8294     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8295       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8296       .type = ARM_CP_NOP, .access = PL0_W,
8297       .fgt = FGT_DCCVAC,
8298       .accessfn = aa64_cacheop_poc_access },
8299     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8300       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8301       .type = ARM_CP_NOP, .access = PL0_W,
8302       .fgt = FGT_DCCVAP,
8303       .accessfn = aa64_cacheop_poc_access },
8304     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8305       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8306       .type = ARM_CP_NOP, .access = PL0_W,
8307       .fgt = FGT_DCCVAP,
8308       .accessfn = aa64_cacheop_poc_access },
8309     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8311       .type = ARM_CP_NOP, .access = PL0_W,
8312       .fgt = FGT_DCCVADP,
8313       .accessfn = aa64_cacheop_poc_access },
8314     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8315       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8316       .type = ARM_CP_NOP, .access = PL0_W,
8317       .fgt = FGT_DCCVADP,
8318       .accessfn = aa64_cacheop_poc_access },
8319     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8320       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8321       .type = ARM_CP_NOP, .access = PL0_W,
8322       .fgt = FGT_DCCIVAC,
8323       .accessfn = aa64_cacheop_poc_access },
8324     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8325       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8326       .type = ARM_CP_NOP, .access = PL0_W,
8327       .fgt = FGT_DCCIVAC,
8328       .accessfn = aa64_cacheop_poc_access },
8329     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8330       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8331       .access = PL0_W, .type = ARM_CP_DC_GVA,
8332 #ifndef CONFIG_USER_ONLY
8333       /* Avoid overhead of an access check that always passes in user-mode */
8334       .accessfn = aa64_zva_access,
8335       .fgt = FGT_DCZVA,
8336 #endif
8337     },
8338     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8339       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8340       .access = PL0_W, .type = ARM_CP_DC_GZVA,
8341 #ifndef CONFIG_USER_ONLY
8342       /* Avoid overhead of an access check that always passes in user-mode */
8343       .accessfn = aa64_zva_access,
8344       .fgt = FGT_DCZVA,
8345 #endif
8346     },
8347 };
8348 
8349 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8350                                      bool isread)
8351 {
8352     uint64_t hcr = arm_hcr_el2_eff(env);
8353     int el = arm_current_el(env);
8354 
8355     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8356         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8357             if (hcr & HCR_TGE) {
8358                 return CP_ACCESS_TRAP_EL2;
8359             }
8360             return CP_ACCESS_TRAP;
8361         }
8362     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8363         return CP_ACCESS_TRAP_EL2;
8364     }
8365     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8366         return CP_ACCESS_TRAP_EL2;
8367     }
8368     if (el < 3
8369         && arm_feature(env, ARM_FEATURE_EL3)
8370         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8371         return CP_ACCESS_TRAP_EL3;
8372     }
8373     return CP_ACCESS_OK;
8374 }
8375 
8376 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8377                                          const ARMCPRegInfo *ri,
8378                                          bool isread)
8379 {
8380     CPAccessResult nv1 = access_nv1(env, ri, isread);
8381 
8382     if (nv1 != CP_ACCESS_OK) {
8383         return nv1;
8384     }
8385     return access_scxtnum(env, ri, isread);
8386 }
8387 
8388 static const ARMCPRegInfo scxtnum_reginfo[] = {
8389     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8390       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8391       .access = PL0_RW, .accessfn = access_scxtnum,
8392       .fgt = FGT_SCXTNUM_EL0,
8393       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8394     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8395       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8396       .access = PL1_RW, .accessfn = access_scxtnum_el1,
8397       .fgt = FGT_SCXTNUM_EL1,
8398       .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8399       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8400     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8401       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8402       .access = PL2_RW, .accessfn = access_scxtnum,
8403       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8404     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8405       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8406       .access = PL3_RW,
8407       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8408 };
8409 
8410 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8411                                  bool isread)
8412 {
8413     if (arm_current_el(env) == 2 &&
8414         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8415         return CP_ACCESS_TRAP_EL3;
8416     }
8417     return CP_ACCESS_OK;
8418 }
8419 
8420 static const ARMCPRegInfo fgt_reginfo[] = {
8421     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8422       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8423       .nv2_redirect_offset = 0x1b8,
8424       .access = PL2_RW, .accessfn = access_fgt,
8425       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8426     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8427       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8428       .nv2_redirect_offset = 0x1c0,
8429       .access = PL2_RW, .accessfn = access_fgt,
8430       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8431     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8432       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8433       .nv2_redirect_offset = 0x1d0,
8434       .access = PL2_RW, .accessfn = access_fgt,
8435       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8436     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8437       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8438       .nv2_redirect_offset = 0x1d8,
8439       .access = PL2_RW, .accessfn = access_fgt,
8440       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8441     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8442       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8443       .nv2_redirect_offset = 0x1c8,
8444       .access = PL2_RW, .accessfn = access_fgt,
8445       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8446 };
8447 
8448 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8449                        uint64_t value)
8450 {
8451     /*
8452      * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8453      * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8454      * about the RESS bits at the top -- we choose the "generate an EL2
8455      * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8456      * the ptw.c code detect the resulting invalid address).
8457      */
8458     env->cp15.vncr_el2 = value & ~0xfffULL;
8459 }
8460 
8461 static const ARMCPRegInfo nv2_reginfo[] = {
8462     { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8463       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8464       .access = PL2_RW,
8465       .writefn = vncr_write,
8466       .nv2_redirect_offset = 0xb0,
8467       .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8468 };
8469 
8470 #endif /* TARGET_AARCH64 */
8471 
8472 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8473                                      bool isread)
8474 {
8475     int el = arm_current_el(env);
8476 
8477     if (el == 0) {
8478         uint64_t sctlr = arm_sctlr(env, el);
8479         if (!(sctlr & SCTLR_EnRCTX)) {
8480             return CP_ACCESS_TRAP;
8481         }
8482     } else if (el == 1) {
8483         uint64_t hcr = arm_hcr_el2_eff(env);
8484         if (hcr & HCR_NV) {
8485             return CP_ACCESS_TRAP_EL2;
8486         }
8487     }
8488     return CP_ACCESS_OK;
8489 }
8490 
8491 static const ARMCPRegInfo predinv_reginfo[] = {
8492     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8493       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8494       .fgt = FGT_CFPRCTX,
8495       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8496     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8497       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8498       .fgt = FGT_DVPRCTX,
8499       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8500     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8501       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8502       .fgt = FGT_CPPRCTX,
8503       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8504     /*
8505      * Note the AArch32 opcodes have a different OPC1.
8506      */
8507     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8508       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8509       .fgt = FGT_CFPRCTX,
8510       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8511     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8512       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8513       .fgt = FGT_DVPRCTX,
8514       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8515     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8516       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8517       .fgt = FGT_CPPRCTX,
8518       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8519 };
8520 
8521 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8522 {
8523     /* Read the high 32 bits of the current CCSIDR */
8524     return extract64(ccsidr_read(env, ri), 32, 32);
8525 }
8526 
8527 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8528     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8529       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8530       .access = PL1_R,
8531       .accessfn = access_tid4,
8532       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8533 };
8534 
8535 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8536                                        bool isread)
8537 {
8538     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8539         return CP_ACCESS_TRAP_EL2;
8540     }
8541 
8542     return CP_ACCESS_OK;
8543 }
8544 
8545 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8546                                        bool isread)
8547 {
8548     if (arm_feature(env, ARM_FEATURE_V8)) {
8549         return access_aa64_tid3(env, ri, isread);
8550     }
8551 
8552     return CP_ACCESS_OK;
8553 }
8554 
8555 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8556                                      bool isread)
8557 {
8558     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8559         return CP_ACCESS_TRAP_EL2;
8560     }
8561 
8562     return CP_ACCESS_OK;
8563 }
8564 
8565 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8566                                         const ARMCPRegInfo *ri, bool isread)
8567 {
8568     /*
8569      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8570      * in v7A, not in v8A.
8571      */
8572     if (!arm_feature(env, ARM_FEATURE_V8) &&
8573         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8574         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8575         return CP_ACCESS_TRAP_EL2;
8576     }
8577     return CP_ACCESS_OK;
8578 }
8579 
8580 static const ARMCPRegInfo jazelle_regs[] = {
8581     { .name = "JIDR",
8582       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8583       .access = PL1_R, .accessfn = access_jazelle,
8584       .type = ARM_CP_CONST, .resetvalue = 0 },
8585     { .name = "JOSCR",
8586       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8587       .accessfn = access_joscr_jmcr,
8588       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8589     { .name = "JMCR",
8590       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8591       .accessfn = access_joscr_jmcr,
8592       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8593 };
8594 
8595 static const ARMCPRegInfo contextidr_el2 = {
8596     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8597     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8598     .access = PL2_RW,
8599     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8600 };
8601 
8602 static const ARMCPRegInfo vhe_reginfo[] = {
8603     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8604       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8605       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8606       .raw_writefn = raw_write,
8607       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8608 #ifndef CONFIG_USER_ONLY
8609     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8610       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8611       .fieldoffset =
8612         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8613       .type = ARM_CP_IO, .access = PL2_RW,
8614       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8615     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8616       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8617       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8618       .resetfn = gt_hv_timer_reset,
8619       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8620     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8621       .type = ARM_CP_IO,
8622       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8623       .access = PL2_RW,
8624       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8625       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8626     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8627       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8628       .type = ARM_CP_IO | ARM_CP_ALIAS,
8629       .access = PL2_RW, .accessfn = access_el1nvpct,
8630       .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8631       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8632       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8633     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8634       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8635       .type = ARM_CP_IO | ARM_CP_ALIAS,
8636       .access = PL2_RW, .accessfn = access_el1nvvct,
8637       .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8638       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8639       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8640     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8641       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8642       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8643       .access = PL2_RW, .accessfn = e2h_access,
8644       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8645     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8646       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8647       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8648       .access = PL2_RW, .accessfn = e2h_access,
8649       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8650     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8651       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8652       .type = ARM_CP_IO | ARM_CP_ALIAS,
8653       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8654       .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8655       .access = PL2_RW, .accessfn = access_el1nvpct,
8656       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8657     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8658       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8659       .type = ARM_CP_IO | ARM_CP_ALIAS,
8660       .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8661       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8662       .access = PL2_RW, .accessfn = access_el1nvvct,
8663       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8664 #endif
8665 };
8666 
8667 #ifndef CONFIG_USER_ONLY
8668 static const ARMCPRegInfo ats1e1_reginfo[] = {
8669     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8670       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8671       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8672       .fgt = FGT_ATS1E1RP,
8673       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8674     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8675       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8676       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8677       .fgt = FGT_ATS1E1WP,
8678       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8679 };
8680 
8681 static const ARMCPRegInfo ats1cp_reginfo[] = {
8682     { .name = "ATS1CPRP",
8683       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8684       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8685       .writefn = ats_write },
8686     { .name = "ATS1CPWP",
8687       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8688       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8689       .writefn = ats_write },
8690 };
8691 #endif
8692 
8693 /*
8694  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8695  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8696  * is non-zero, which is never for ARMv7, optionally in ARMv8
8697  * and mandatorily for ARMv8.2 and up.
8698  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8699  * implementation is RAZ/WI we can ignore this detail, as we
8700  * do for ACTLR.
8701  */
8702 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8703     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8704       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8705       .access = PL1_RW, .accessfn = access_tacr,
8706       .type = ARM_CP_CONST, .resetvalue = 0 },
8707     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8708       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8709       .access = PL2_RW, .type = ARM_CP_CONST,
8710       .resetvalue = 0 },
8711 };
8712 
8713 void register_cp_regs_for_features(ARMCPU *cpu)
8714 {
8715     /* Register all the coprocessor registers based on feature bits */
8716     CPUARMState *env = &cpu->env;
8717     if (arm_feature(env, ARM_FEATURE_M)) {
8718         /* M profile has no coprocessor registers */
8719         return;
8720     }
8721 
8722     define_arm_cp_regs(cpu, cp_reginfo);
8723     if (!arm_feature(env, ARM_FEATURE_V8)) {
8724         /*
8725          * Must go early as it is full of wildcards that may be
8726          * overridden by later definitions.
8727          */
8728         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8729     }
8730 
8731     if (arm_feature(env, ARM_FEATURE_V6)) {
8732         /* The ID registers all have impdef reset values */
8733         ARMCPRegInfo v6_idregs[] = {
8734             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8735               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8736               .access = PL1_R, .type = ARM_CP_CONST,
8737               .accessfn = access_aa32_tid3,
8738               .resetvalue = cpu->isar.id_pfr0 },
8739             /*
8740              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8741              * the value of the GIC field until after we define these regs.
8742              */
8743             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8744               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8745               .access = PL1_R, .type = ARM_CP_NO_RAW,
8746               .accessfn = access_aa32_tid3,
8747 #ifdef CONFIG_USER_ONLY
8748               .type = ARM_CP_CONST,
8749               .resetvalue = cpu->isar.id_pfr1,
8750 #else
8751               .type = ARM_CP_NO_RAW,
8752               .accessfn = access_aa32_tid3,
8753               .readfn = id_pfr1_read,
8754               .writefn = arm_cp_write_ignore
8755 #endif
8756             },
8757             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8758               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8759               .access = PL1_R, .type = ARM_CP_CONST,
8760               .accessfn = access_aa32_tid3,
8761               .resetvalue = cpu->isar.id_dfr0 },
8762             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8763               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8764               .access = PL1_R, .type = ARM_CP_CONST,
8765               .accessfn = access_aa32_tid3,
8766               .resetvalue = cpu->id_afr0 },
8767             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8768               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8769               .access = PL1_R, .type = ARM_CP_CONST,
8770               .accessfn = access_aa32_tid3,
8771               .resetvalue = cpu->isar.id_mmfr0 },
8772             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8773               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8774               .access = PL1_R, .type = ARM_CP_CONST,
8775               .accessfn = access_aa32_tid3,
8776               .resetvalue = cpu->isar.id_mmfr1 },
8777             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8778               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8779               .access = PL1_R, .type = ARM_CP_CONST,
8780               .accessfn = access_aa32_tid3,
8781               .resetvalue = cpu->isar.id_mmfr2 },
8782             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8783               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8784               .access = PL1_R, .type = ARM_CP_CONST,
8785               .accessfn = access_aa32_tid3,
8786               .resetvalue = cpu->isar.id_mmfr3 },
8787             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8788               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8789               .access = PL1_R, .type = ARM_CP_CONST,
8790               .accessfn = access_aa32_tid3,
8791               .resetvalue = cpu->isar.id_isar0 },
8792             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8793               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8794               .access = PL1_R, .type = ARM_CP_CONST,
8795               .accessfn = access_aa32_tid3,
8796               .resetvalue = cpu->isar.id_isar1 },
8797             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8798               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8799               .access = PL1_R, .type = ARM_CP_CONST,
8800               .accessfn = access_aa32_tid3,
8801               .resetvalue = cpu->isar.id_isar2 },
8802             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8803               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8804               .access = PL1_R, .type = ARM_CP_CONST,
8805               .accessfn = access_aa32_tid3,
8806               .resetvalue = cpu->isar.id_isar3 },
8807             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8809               .access = PL1_R, .type = ARM_CP_CONST,
8810               .accessfn = access_aa32_tid3,
8811               .resetvalue = cpu->isar.id_isar4 },
8812             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8813               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8814               .access = PL1_R, .type = ARM_CP_CONST,
8815               .accessfn = access_aa32_tid3,
8816               .resetvalue = cpu->isar.id_isar5 },
8817             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8818               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8819               .access = PL1_R, .type = ARM_CP_CONST,
8820               .accessfn = access_aa32_tid3,
8821               .resetvalue = cpu->isar.id_mmfr4 },
8822             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8823               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8824               .access = PL1_R, .type = ARM_CP_CONST,
8825               .accessfn = access_aa32_tid3,
8826               .resetvalue = cpu->isar.id_isar6 },
8827         };
8828         define_arm_cp_regs(cpu, v6_idregs);
8829         define_arm_cp_regs(cpu, v6_cp_reginfo);
8830     } else {
8831         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8832     }
8833     if (arm_feature(env, ARM_FEATURE_V6K)) {
8834         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8835     }
8836     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8837         !arm_feature(env, ARM_FEATURE_PMSA)) {
8838         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8839     }
8840     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8841         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8842     }
8843     if (arm_feature(env, ARM_FEATURE_V7)) {
8844         ARMCPRegInfo clidr = {
8845             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8846             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8847             .access = PL1_R, .type = ARM_CP_CONST,
8848             .accessfn = access_tid4,
8849             .fgt = FGT_CLIDR_EL1,
8850             .resetvalue = cpu->clidr
8851         };
8852         define_one_arm_cp_reg(cpu, &clidr);
8853         define_arm_cp_regs(cpu, v7_cp_reginfo);
8854         define_debug_regs(cpu);
8855         define_pmu_regs(cpu);
8856     } else {
8857         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8858     }
8859     if (arm_feature(env, ARM_FEATURE_V8)) {
8860         /*
8861          * v8 ID registers, which all have impdef reset values.
8862          * Note that within the ID register ranges the unused slots
8863          * must all RAZ, not UNDEF; future architecture versions may
8864          * define new registers here.
8865          * ID registers which are AArch64 views of the AArch32 ID registers
8866          * which already existed in v6 and v7 are handled elsewhere,
8867          * in v6_idregs[].
8868          */
8869         int i;
8870         ARMCPRegInfo v8_idregs[] = {
8871             /*
8872              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8873              * emulation because we don't know the right value for the
8874              * GIC field until after we define these regs.
8875              */
8876             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8877               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8878               .access = PL1_R,
8879 #ifdef CONFIG_USER_ONLY
8880               .type = ARM_CP_CONST,
8881               .resetvalue = cpu->isar.id_aa64pfr0
8882 #else
8883               .type = ARM_CP_NO_RAW,
8884               .accessfn = access_aa64_tid3,
8885               .readfn = id_aa64pfr0_read,
8886               .writefn = arm_cp_write_ignore
8887 #endif
8888             },
8889             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8890               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8891               .access = PL1_R, .type = ARM_CP_CONST,
8892               .accessfn = access_aa64_tid3,
8893               .resetvalue = cpu->isar.id_aa64pfr1},
8894             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8895               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8896               .access = PL1_R, .type = ARM_CP_CONST,
8897               .accessfn = access_aa64_tid3,
8898               .resetvalue = 0 },
8899             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8900               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8901               .access = PL1_R, .type = ARM_CP_CONST,
8902               .accessfn = access_aa64_tid3,
8903               .resetvalue = 0 },
8904             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8905               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8906               .access = PL1_R, .type = ARM_CP_CONST,
8907               .accessfn = access_aa64_tid3,
8908               .resetvalue = cpu->isar.id_aa64zfr0 },
8909             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8910               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8911               .access = PL1_R, .type = ARM_CP_CONST,
8912               .accessfn = access_aa64_tid3,
8913               .resetvalue = cpu->isar.id_aa64smfr0 },
8914             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8915               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8916               .access = PL1_R, .type = ARM_CP_CONST,
8917               .accessfn = access_aa64_tid3,
8918               .resetvalue = 0 },
8919             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8920               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8921               .access = PL1_R, .type = ARM_CP_CONST,
8922               .accessfn = access_aa64_tid3,
8923               .resetvalue = 0 },
8924             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8925               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8926               .access = PL1_R, .type = ARM_CP_CONST,
8927               .accessfn = access_aa64_tid3,
8928               .resetvalue = cpu->isar.id_aa64dfr0 },
8929             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8930               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8931               .access = PL1_R, .type = ARM_CP_CONST,
8932               .accessfn = access_aa64_tid3,
8933               .resetvalue = cpu->isar.id_aa64dfr1 },
8934             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8935               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8936               .access = PL1_R, .type = ARM_CP_CONST,
8937               .accessfn = access_aa64_tid3,
8938               .resetvalue = 0 },
8939             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8940               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8941               .access = PL1_R, .type = ARM_CP_CONST,
8942               .accessfn = access_aa64_tid3,
8943               .resetvalue = 0 },
8944             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8945               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8946               .access = PL1_R, .type = ARM_CP_CONST,
8947               .accessfn = access_aa64_tid3,
8948               .resetvalue = cpu->id_aa64afr0 },
8949             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8950               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8951               .access = PL1_R, .type = ARM_CP_CONST,
8952               .accessfn = access_aa64_tid3,
8953               .resetvalue = cpu->id_aa64afr1 },
8954             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8955               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8956               .access = PL1_R, .type = ARM_CP_CONST,
8957               .accessfn = access_aa64_tid3,
8958               .resetvalue = 0 },
8959             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8960               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8961               .access = PL1_R, .type = ARM_CP_CONST,
8962               .accessfn = access_aa64_tid3,
8963               .resetvalue = 0 },
8964             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8965               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8966               .access = PL1_R, .type = ARM_CP_CONST,
8967               .accessfn = access_aa64_tid3,
8968               .resetvalue = cpu->isar.id_aa64isar0 },
8969             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8970               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8971               .access = PL1_R, .type = ARM_CP_CONST,
8972               .accessfn = access_aa64_tid3,
8973               .resetvalue = cpu->isar.id_aa64isar1 },
8974             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8975               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8976               .access = PL1_R, .type = ARM_CP_CONST,
8977               .accessfn = access_aa64_tid3,
8978               .resetvalue = cpu->isar.id_aa64isar2 },
8979             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8980               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8981               .access = PL1_R, .type = ARM_CP_CONST,
8982               .accessfn = access_aa64_tid3,
8983               .resetvalue = 0 },
8984             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8986               .access = PL1_R, .type = ARM_CP_CONST,
8987               .accessfn = access_aa64_tid3,
8988               .resetvalue = 0 },
8989             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8990               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8991               .access = PL1_R, .type = ARM_CP_CONST,
8992               .accessfn = access_aa64_tid3,
8993               .resetvalue = 0 },
8994             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8995               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8996               .access = PL1_R, .type = ARM_CP_CONST,
8997               .accessfn = access_aa64_tid3,
8998               .resetvalue = 0 },
8999             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9000               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
9001               .access = PL1_R, .type = ARM_CP_CONST,
9002               .accessfn = access_aa64_tid3,
9003               .resetvalue = 0 },
9004             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
9005               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
9006               .access = PL1_R, .type = ARM_CP_CONST,
9007               .accessfn = access_aa64_tid3,
9008               .resetvalue = cpu->isar.id_aa64mmfr0 },
9009             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
9010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
9011               .access = PL1_R, .type = ARM_CP_CONST,
9012               .accessfn = access_aa64_tid3,
9013               .resetvalue = cpu->isar.id_aa64mmfr1 },
9014             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
9015               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
9016               .access = PL1_R, .type = ARM_CP_CONST,
9017               .accessfn = access_aa64_tid3,
9018               .resetvalue = cpu->isar.id_aa64mmfr2 },
9019             { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
9020               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
9021               .access = PL1_R, .type = ARM_CP_CONST,
9022               .accessfn = access_aa64_tid3,
9023               .resetvalue = cpu->isar.id_aa64mmfr3 },
9024             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9025               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
9026               .access = PL1_R, .type = ARM_CP_CONST,
9027               .accessfn = access_aa64_tid3,
9028               .resetvalue = 0 },
9029             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
9031               .access = PL1_R, .type = ARM_CP_CONST,
9032               .accessfn = access_aa64_tid3,
9033               .resetvalue = 0 },
9034             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9035               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
9036               .access = PL1_R, .type = ARM_CP_CONST,
9037               .accessfn = access_aa64_tid3,
9038               .resetvalue = 0 },
9039             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9040               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
9041               .access = PL1_R, .type = ARM_CP_CONST,
9042               .accessfn = access_aa64_tid3,
9043               .resetvalue = 0 },
9044             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
9045               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9046               .access = PL1_R, .type = ARM_CP_CONST,
9047               .accessfn = access_aa64_tid3,
9048               .resetvalue = cpu->isar.mvfr0 },
9049             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
9050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9051               .access = PL1_R, .type = ARM_CP_CONST,
9052               .accessfn = access_aa64_tid3,
9053               .resetvalue = cpu->isar.mvfr1 },
9054             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
9055               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9056               .access = PL1_R, .type = ARM_CP_CONST,
9057               .accessfn = access_aa64_tid3,
9058               .resetvalue = cpu->isar.mvfr2 },
9059             /*
9060              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
9061              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
9062              * as RAZ, since it is in the "reserved for future ID
9063              * registers, RAZ" part of the AArch32 encoding space.
9064              */
9065             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
9066               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9067               .access = PL1_R, .type = ARM_CP_CONST,
9068               .accessfn = access_aa64_tid3,
9069               .resetvalue = 0 },
9070             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
9071               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9072               .access = PL1_R, .type = ARM_CP_CONST,
9073               .accessfn = access_aa64_tid3,
9074               .resetvalue = 0 },
9075             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
9076               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9077               .access = PL1_R, .type = ARM_CP_CONST,
9078               .accessfn = access_aa64_tid3,
9079               .resetvalue = 0 },
9080             /*
9081              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
9082              * they're also RAZ for AArch64, and in v8 are gradually
9083              * being filled with AArch64-view-of-AArch32-ID-register
9084              * for new ID registers.
9085              */
9086             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
9087               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9088               .access = PL1_R, .type = ARM_CP_CONST,
9089               .accessfn = access_aa64_tid3,
9090               .resetvalue = 0 },
9091             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9092               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9093               .access = PL1_R, .type = ARM_CP_CONST,
9094               .accessfn = access_aa64_tid3,
9095               .resetvalue = cpu->isar.id_pfr2 },
9096             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9097               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9098               .access = PL1_R, .type = ARM_CP_CONST,
9099               .accessfn = access_aa64_tid3,
9100               .resetvalue = cpu->isar.id_dfr1 },
9101             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9103               .access = PL1_R, .type = ARM_CP_CONST,
9104               .accessfn = access_aa64_tid3,
9105               .resetvalue = cpu->isar.id_mmfr5 },
9106             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9107               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9108               .access = PL1_R, .type = ARM_CP_CONST,
9109               .accessfn = access_aa64_tid3,
9110               .resetvalue = 0 },
9111             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9112               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9113               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9114               .fgt = FGT_PMCEIDN_EL0,
9115               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9116             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9117               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9118               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9119               .fgt = FGT_PMCEIDN_EL0,
9120               .resetvalue = cpu->pmceid0 },
9121             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9122               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9123               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9124               .fgt = FGT_PMCEIDN_EL0,
9125               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9126             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9127               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9128               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9129               .fgt = FGT_PMCEIDN_EL0,
9130               .resetvalue = cpu->pmceid1 },
9131         };
9132 #ifdef CONFIG_USER_ONLY
9133         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9134             { .name = "ID_AA64PFR0_EL1",
9135               .exported_bits = R_ID_AA64PFR0_FP_MASK |
9136                                R_ID_AA64PFR0_ADVSIMD_MASK |
9137                                R_ID_AA64PFR0_SVE_MASK |
9138                                R_ID_AA64PFR0_DIT_MASK,
9139               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9140                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9141             { .name = "ID_AA64PFR1_EL1",
9142               .exported_bits = R_ID_AA64PFR1_BT_MASK |
9143                                R_ID_AA64PFR1_SSBS_MASK |
9144                                R_ID_AA64PFR1_MTE_MASK |
9145                                R_ID_AA64PFR1_SME_MASK },
9146             { .name = "ID_AA64PFR*_EL1_RESERVED",
9147               .is_glob = true },
9148             { .name = "ID_AA64ZFR0_EL1",
9149               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9150                                R_ID_AA64ZFR0_AES_MASK |
9151                                R_ID_AA64ZFR0_BITPERM_MASK |
9152                                R_ID_AA64ZFR0_BFLOAT16_MASK |
9153                                R_ID_AA64ZFR0_B16B16_MASK |
9154                                R_ID_AA64ZFR0_SHA3_MASK |
9155                                R_ID_AA64ZFR0_SM4_MASK |
9156                                R_ID_AA64ZFR0_I8MM_MASK |
9157                                R_ID_AA64ZFR0_F32MM_MASK |
9158                                R_ID_AA64ZFR0_F64MM_MASK },
9159             { .name = "ID_AA64SMFR0_EL1",
9160               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9161                                R_ID_AA64SMFR0_BI32I32_MASK |
9162                                R_ID_AA64SMFR0_B16F32_MASK |
9163                                R_ID_AA64SMFR0_F16F32_MASK |
9164                                R_ID_AA64SMFR0_I8I32_MASK |
9165                                R_ID_AA64SMFR0_F16F16_MASK |
9166                                R_ID_AA64SMFR0_B16B16_MASK |
9167                                R_ID_AA64SMFR0_I16I32_MASK |
9168                                R_ID_AA64SMFR0_F64F64_MASK |
9169                                R_ID_AA64SMFR0_I16I64_MASK |
9170                                R_ID_AA64SMFR0_SMEVER_MASK |
9171                                R_ID_AA64SMFR0_FA64_MASK },
9172             { .name = "ID_AA64MMFR0_EL1",
9173               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9174               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9175                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9176             { .name = "ID_AA64MMFR1_EL1",
9177               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9178             { .name = "ID_AA64MMFR2_EL1",
9179               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9180             { .name = "ID_AA64MMFR3_EL1",
9181               .exported_bits = 0 },
9182             { .name = "ID_AA64MMFR*_EL1_RESERVED",
9183               .is_glob = true },
9184             { .name = "ID_AA64DFR0_EL1",
9185               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9186             { .name = "ID_AA64DFR1_EL1" },
9187             { .name = "ID_AA64DFR*_EL1_RESERVED",
9188               .is_glob = true },
9189             { .name = "ID_AA64AFR*",
9190               .is_glob = true },
9191             { .name = "ID_AA64ISAR0_EL1",
9192               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9193                                R_ID_AA64ISAR0_SHA1_MASK |
9194                                R_ID_AA64ISAR0_SHA2_MASK |
9195                                R_ID_AA64ISAR0_CRC32_MASK |
9196                                R_ID_AA64ISAR0_ATOMIC_MASK |
9197                                R_ID_AA64ISAR0_RDM_MASK |
9198                                R_ID_AA64ISAR0_SHA3_MASK |
9199                                R_ID_AA64ISAR0_SM3_MASK |
9200                                R_ID_AA64ISAR0_SM4_MASK |
9201                                R_ID_AA64ISAR0_DP_MASK |
9202                                R_ID_AA64ISAR0_FHM_MASK |
9203                                R_ID_AA64ISAR0_TS_MASK |
9204                                R_ID_AA64ISAR0_RNDR_MASK },
9205             { .name = "ID_AA64ISAR1_EL1",
9206               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9207                                R_ID_AA64ISAR1_APA_MASK |
9208                                R_ID_AA64ISAR1_API_MASK |
9209                                R_ID_AA64ISAR1_JSCVT_MASK |
9210                                R_ID_AA64ISAR1_FCMA_MASK |
9211                                R_ID_AA64ISAR1_LRCPC_MASK |
9212                                R_ID_AA64ISAR1_GPA_MASK |
9213                                R_ID_AA64ISAR1_GPI_MASK |
9214                                R_ID_AA64ISAR1_FRINTTS_MASK |
9215                                R_ID_AA64ISAR1_SB_MASK |
9216                                R_ID_AA64ISAR1_BF16_MASK |
9217                                R_ID_AA64ISAR1_DGH_MASK |
9218                                R_ID_AA64ISAR1_I8MM_MASK },
9219             { .name = "ID_AA64ISAR2_EL1",
9220               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9221                                R_ID_AA64ISAR2_RPRES_MASK |
9222                                R_ID_AA64ISAR2_GPA3_MASK |
9223                                R_ID_AA64ISAR2_APA3_MASK |
9224                                R_ID_AA64ISAR2_MOPS_MASK |
9225                                R_ID_AA64ISAR2_BC_MASK |
9226                                R_ID_AA64ISAR2_RPRFM_MASK |
9227                                R_ID_AA64ISAR2_CSSC_MASK },
9228             { .name = "ID_AA64ISAR*_EL1_RESERVED",
9229               .is_glob = true },
9230         };
9231         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9232 #endif
9233         /*
9234          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9235          * TODO: For RMR, a write with bit 1 set should do something with
9236          * cpu_reset(). In the meantime, "the bit is strictly a request",
9237          * so we are in spec just ignoring writes.
9238          */
9239         if (!arm_feature(env, ARM_FEATURE_EL3) &&
9240             !arm_feature(env, ARM_FEATURE_EL2)) {
9241             ARMCPRegInfo el1_reset_regs[] = {
9242                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9243                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9244                   .access = PL1_R,
9245                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9246                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9247                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9248                   .access = PL1_RW, .type = ARM_CP_CONST,
9249                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9250             };
9251             define_arm_cp_regs(cpu, el1_reset_regs);
9252         }
9253         define_arm_cp_regs(cpu, v8_idregs);
9254         define_arm_cp_regs(cpu, v8_cp_reginfo);
9255         if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9256             define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9257         }
9258 
9259         for (i = 4; i < 16; i++) {
9260             /*
9261              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9262              * For pre-v8 cores there are RAZ patterns for these in
9263              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9264              * v8 extends the "must RAZ" part of the ID register space
9265              * to also cover c0, 0, c{8-15}, {0-7}.
9266              * These are STATE_AA32 because in the AArch64 sysreg space
9267              * c4-c7 is where the AArch64 ID registers live (and we've
9268              * already defined those in v8_idregs[]), and c8-c15 are not
9269              * "must RAZ" for AArch64.
9270              */
9271             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9272             ARMCPRegInfo v8_aa32_raz_idregs = {
9273                 .name = name,
9274                 .state = ARM_CP_STATE_AA32,
9275                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9276                 .access = PL1_R, .type = ARM_CP_CONST,
9277                 .accessfn = access_aa64_tid3,
9278                 .resetvalue = 0 };
9279             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9280         }
9281     }
9282 
9283     /*
9284      * Register the base EL2 cpregs.
9285      * Pre v8, these registers are implemented only as part of the
9286      * Virtualization Extensions (EL2 present).  Beginning with v8,
9287      * if EL2 is missing but EL3 is enabled, mostly these become
9288      * RES0 from EL3, with some specific exceptions.
9289      */
9290     if (arm_feature(env, ARM_FEATURE_EL2)
9291         || (arm_feature(env, ARM_FEATURE_EL3)
9292             && arm_feature(env, ARM_FEATURE_V8))) {
9293         uint64_t vmpidr_def = mpidr_read_val(env);
9294         ARMCPRegInfo vpidr_regs[] = {
9295             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9296               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9297               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9298               .resetvalue = cpu->midr,
9299               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9300               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9301             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9302               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9303               .access = PL2_RW, .resetvalue = cpu->midr,
9304               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9305               .nv2_redirect_offset = 0x88,
9306               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9307             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9308               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9309               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9310               .resetvalue = vmpidr_def,
9311               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9312               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9313             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9314               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9315               .access = PL2_RW, .resetvalue = vmpidr_def,
9316               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9317               .nv2_redirect_offset = 0x50,
9318               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9319         };
9320         /*
9321          * The only field of MDCR_EL2 that has a defined architectural reset
9322          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9323          */
9324         ARMCPRegInfo mdcr_el2 = {
9325             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9326             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9327             .writefn = mdcr_el2_write,
9328             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9329             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9330         };
9331         define_one_arm_cp_reg(cpu, &mdcr_el2);
9332         define_arm_cp_regs(cpu, vpidr_regs);
9333         define_arm_cp_regs(cpu, el2_cp_reginfo);
9334         if (arm_feature(env, ARM_FEATURE_V8)) {
9335             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9336         }
9337         if (cpu_isar_feature(aa64_sel2, cpu)) {
9338             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9339         }
9340         /*
9341          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9342          * See commentary near RMR_EL1.
9343          */
9344         if (!arm_feature(env, ARM_FEATURE_EL3)) {
9345             static const ARMCPRegInfo el2_reset_regs[] = {
9346                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9347                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9348                   .access = PL2_R,
9349                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9350                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9351                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9352                   .access = PL2_R,
9353                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9354                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9355                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9356                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9357             };
9358             define_arm_cp_regs(cpu, el2_reset_regs);
9359         }
9360     }
9361 
9362     /* Register the base EL3 cpregs. */
9363     if (arm_feature(env, ARM_FEATURE_EL3)) {
9364         define_arm_cp_regs(cpu, el3_cp_reginfo);
9365         ARMCPRegInfo el3_regs[] = {
9366             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9367               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9368               .access = PL3_R,
9369               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9370             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9371               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9372               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9373             { .name = "RMR", .state = ARM_CP_STATE_AA32,
9374               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9375               .access = PL3_RW, .type = ARM_CP_CONST,
9376               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9377             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9378               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9379               .access = PL3_RW,
9380               .raw_writefn = raw_write, .writefn = sctlr_write,
9381               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9382               .resetvalue = cpu->reset_sctlr },
9383         };
9384 
9385         define_arm_cp_regs(cpu, el3_regs);
9386     }
9387     /*
9388      * The behaviour of NSACR is sufficiently various that we don't
9389      * try to describe it in a single reginfo:
9390      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
9391      *     reads as constant 0xc00 from NS EL1 and NS EL2
9392      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9393      *  if v7 without EL3, register doesn't exist
9394      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9395      */
9396     if (arm_feature(env, ARM_FEATURE_EL3)) {
9397         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9398             static const ARMCPRegInfo nsacr = {
9399                 .name = "NSACR", .type = ARM_CP_CONST,
9400                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9401                 .access = PL1_RW, .accessfn = nsacr_access,
9402                 .resetvalue = 0xc00
9403             };
9404             define_one_arm_cp_reg(cpu, &nsacr);
9405         } else {
9406             static const ARMCPRegInfo nsacr = {
9407                 .name = "NSACR",
9408                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9409                 .access = PL3_RW | PL1_R,
9410                 .resetvalue = 0,
9411                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9412             };
9413             define_one_arm_cp_reg(cpu, &nsacr);
9414         }
9415     } else {
9416         if (arm_feature(env, ARM_FEATURE_V8)) {
9417             static const ARMCPRegInfo nsacr = {
9418                 .name = "NSACR", .type = ARM_CP_CONST,
9419                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9420                 .access = PL1_R,
9421                 .resetvalue = 0xc00
9422             };
9423             define_one_arm_cp_reg(cpu, &nsacr);
9424         }
9425     }
9426 
9427     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9428         if (arm_feature(env, ARM_FEATURE_V6)) {
9429             /* PMSAv6 not implemented */
9430             assert(arm_feature(env, ARM_FEATURE_V7));
9431             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9432             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9433         } else {
9434             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9435         }
9436     } else {
9437         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9438         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9439         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
9440         if (cpu_isar_feature(aa32_hpd, cpu)) {
9441             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9442         }
9443     }
9444     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9445         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9446     }
9447     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9448         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9449     }
9450     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9451         define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9452     }
9453 #ifndef CONFIG_USER_ONLY
9454     if (cpu_isar_feature(aa64_ecv, cpu)) {
9455         define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9456     }
9457 #endif
9458     if (arm_feature(env, ARM_FEATURE_VAPA)) {
9459         ARMCPRegInfo vapa_cp_reginfo[] = {
9460             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9461               .access = PL1_RW, .resetvalue = 0,
9462               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9463                                      offsetoflow32(CPUARMState, cp15.par_ns) },
9464               .writefn = par_write},
9465 #ifndef CONFIG_USER_ONLY
9466             /* This underdecoding is safe because the reginfo is NO_RAW. */
9467             { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9468               .access = PL1_W, .accessfn = ats_access,
9469               .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9470 #endif
9471         };
9472 
9473         /*
9474          * When LPAE exists this 32-bit PAR register is an alias of the
9475          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9476          */
9477         if (arm_feature(env, ARM_FEATURE_LPAE)) {
9478             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9479         }
9480         define_arm_cp_regs(cpu, vapa_cp_reginfo);
9481     }
9482     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9483         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9484     }
9485     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9486         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9487     }
9488     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9489         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9490     }
9491     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9492         define_arm_cp_regs(cpu, omap_cp_reginfo);
9493     }
9494     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9495         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9496     }
9497     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9498         define_arm_cp_regs(cpu, xscale_cp_reginfo);
9499     }
9500     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9501         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9502     }
9503     if (arm_feature(env, ARM_FEATURE_LPAE)) {
9504         define_arm_cp_regs(cpu, lpae_cp_reginfo);
9505     }
9506     if (cpu_isar_feature(aa32_jazelle, cpu)) {
9507         define_arm_cp_regs(cpu, jazelle_regs);
9508     }
9509     /*
9510      * Slightly awkwardly, the OMAP and StrongARM cores need all of
9511      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9512      * be read-only (ie write causes UNDEF exception).
9513      */
9514     {
9515         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9516             /*
9517              * Pre-v8 MIDR space.
9518              * Note that the MIDR isn't a simple constant register because
9519              * of the TI925 behaviour where writes to another register can
9520              * cause the MIDR value to change.
9521              *
9522              * Unimplemented registers in the c15 0 0 0 space default to
9523              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9524              * and friends override accordingly.
9525              */
9526             { .name = "MIDR",
9527               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9528               .access = PL1_R, .resetvalue = cpu->midr,
9529               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9530               .readfn = midr_read,
9531               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9532               .type = ARM_CP_OVERRIDE },
9533             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9534             { .name = "DUMMY",
9535               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9536               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9537             { .name = "DUMMY",
9538               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9539               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9540             { .name = "DUMMY",
9541               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9542               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9543             { .name = "DUMMY",
9544               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9545               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9546             { .name = "DUMMY",
9547               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9548               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9549         };
9550         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9551             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9552               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9553               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9554               .fgt = FGT_MIDR_EL1,
9555               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9556               .readfn = midr_read },
9557             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9558             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9559               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9560               .access = PL1_R, .resetvalue = cpu->midr },
9561             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9562               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9563               .access = PL1_R,
9564               .accessfn = access_aa64_tid1,
9565               .fgt = FGT_REVIDR_EL1,
9566               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9567         };
9568         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9569             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9570             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9571             .access = PL1_R, .resetvalue = cpu->midr
9572         };
9573         ARMCPRegInfo id_cp_reginfo[] = {
9574             /* These are common to v8 and pre-v8 */
9575             { .name = "CTR",
9576               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9577               .access = PL1_R, .accessfn = ctr_el0_access,
9578               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9579             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9580               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9581               .access = PL0_R, .accessfn = ctr_el0_access,
9582               .fgt = FGT_CTR_EL0,
9583               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9584             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9585             { .name = "TCMTR",
9586               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9587               .access = PL1_R,
9588               .accessfn = access_aa32_tid1,
9589               .type = ARM_CP_CONST, .resetvalue = 0 },
9590         };
9591         /* TLBTR is specific to VMSA */
9592         ARMCPRegInfo id_tlbtr_reginfo = {
9593               .name = "TLBTR",
9594               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9595               .access = PL1_R,
9596               .accessfn = access_aa32_tid1,
9597               .type = ARM_CP_CONST, .resetvalue = 0,
9598         };
9599         /* MPUIR is specific to PMSA V6+ */
9600         ARMCPRegInfo id_mpuir_reginfo = {
9601               .name = "MPUIR",
9602               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9603               .access = PL1_R, .type = ARM_CP_CONST,
9604               .resetvalue = cpu->pmsav7_dregion << 8
9605         };
9606         /* HMPUIR is specific to PMSA V8 */
9607         ARMCPRegInfo id_hmpuir_reginfo = {
9608             .name = "HMPUIR",
9609             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9610             .access = PL2_R, .type = ARM_CP_CONST,
9611             .resetvalue = cpu->pmsav8r_hdregion
9612         };
9613         static const ARMCPRegInfo crn0_wi_reginfo = {
9614             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9615             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9616             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9617         };
9618 #ifdef CONFIG_USER_ONLY
9619         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9620             { .name = "MIDR_EL1",
9621               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9622                                R_MIDR_EL1_PARTNUM_MASK |
9623                                R_MIDR_EL1_ARCHITECTURE_MASK |
9624                                R_MIDR_EL1_VARIANT_MASK |
9625                                R_MIDR_EL1_IMPLEMENTER_MASK },
9626             { .name = "REVIDR_EL1" },
9627         };
9628         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9629 #endif
9630         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9631             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9632             size_t i;
9633             /*
9634              * Register the blanket "writes ignored" value first to cover the
9635              * whole space. Then update the specific ID registers to allow write
9636              * access, so that they ignore writes rather than causing them to
9637              * UNDEF.
9638              */
9639             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9640             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9641                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9642             }
9643             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9644                 id_cp_reginfo[i].access = PL1_RW;
9645             }
9646             id_mpuir_reginfo.access = PL1_RW;
9647             id_tlbtr_reginfo.access = PL1_RW;
9648         }
9649         if (arm_feature(env, ARM_FEATURE_V8)) {
9650             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9651             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9652                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9653             }
9654         } else {
9655             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9656         }
9657         define_arm_cp_regs(cpu, id_cp_reginfo);
9658         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9659             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9660         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9661                    arm_feature(env, ARM_FEATURE_V8)) {
9662             uint32_t i = 0;
9663             char *tmp_string;
9664 
9665             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9666             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9667             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9668 
9669             /* Register alias is only valid for first 32 indexes */
9670             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9671                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9672                 uint8_t opc1 = extract32(i, 4, 1);
9673                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9674 
9675                 tmp_string = g_strdup_printf("PRBAR%u", i);
9676                 ARMCPRegInfo tmp_prbarn_reginfo = {
9677                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9678                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9679                     .access = PL1_RW, .resetvalue = 0,
9680                     .accessfn = access_tvm_trvm,
9681                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9682                 };
9683                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9684                 g_free(tmp_string);
9685 
9686                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9687                 tmp_string = g_strdup_printf("PRLAR%u", i);
9688                 ARMCPRegInfo tmp_prlarn_reginfo = {
9689                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9690                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9691                     .access = PL1_RW, .resetvalue = 0,
9692                     .accessfn = access_tvm_trvm,
9693                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9694                 };
9695                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9696                 g_free(tmp_string);
9697             }
9698 
9699             /* Register alias is only valid for first 32 indexes */
9700             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9701                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9702                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9703                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9704 
9705                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9706                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9707                     .name = tmp_string,
9708                     .type = ARM_CP_NO_RAW,
9709                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9710                     .access = PL2_RW, .resetvalue = 0,
9711                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9712                 };
9713                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9714                 g_free(tmp_string);
9715 
9716                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9717                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9718                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9719                     .name = tmp_string,
9720                     .type = ARM_CP_NO_RAW,
9721                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9722                     .access = PL2_RW, .resetvalue = 0,
9723                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9724                 };
9725                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9726                 g_free(tmp_string);
9727             }
9728         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9729             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9730         }
9731     }
9732 
9733     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9734         ARMCPRegInfo mpidr_cp_reginfo[] = {
9735             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9736               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9737               .fgt = FGT_MPIDR_EL1,
9738               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9739         };
9740 #ifdef CONFIG_USER_ONLY
9741         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9742             { .name = "MPIDR_EL1",
9743               .fixed_bits = 0x0000000080000000 },
9744         };
9745         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9746 #endif
9747         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9748     }
9749 
9750     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9751         ARMCPRegInfo auxcr_reginfo[] = {
9752             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9753               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9754               .access = PL1_RW, .accessfn = access_tacr,
9755               .nv2_redirect_offset = 0x118,
9756               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9757             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9758               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9759               .access = PL2_RW, .type = ARM_CP_CONST,
9760               .resetvalue = 0 },
9761             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9762               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9763               .access = PL3_RW, .type = ARM_CP_CONST,
9764               .resetvalue = 0 },
9765         };
9766         define_arm_cp_regs(cpu, auxcr_reginfo);
9767         if (cpu_isar_feature(aa32_ac2, cpu)) {
9768             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9769         }
9770     }
9771 
9772     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9773         /*
9774          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9775          * There are two flavours:
9776          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9777          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9778          *      32-bit register visible to AArch32 at a different encoding
9779          *      to the "flavour 1" register and with the bits rearranged to
9780          *      be able to squash a 64-bit address into the 32-bit view.
9781          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9782          * in future if we support AArch32-only configs of some of the
9783          * AArch64 cores we might need to add a specific feature flag
9784          * to indicate cores with "flavour 2" CBAR.
9785          */
9786         if (arm_feature(env, ARM_FEATURE_V8)) {
9787             /* 32 bit view is [31:18] 0...0 [43:32]. */
9788             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9789                 | extract64(cpu->reset_cbar, 32, 12);
9790             ARMCPRegInfo cbar_reginfo[] = {
9791                 { .name = "CBAR",
9792                   .type = ARM_CP_CONST,
9793                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9794                   .access = PL1_R, .resetvalue = cbar32 },
9795                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9796                   .type = ARM_CP_CONST,
9797                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9798                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9799             };
9800             /* We don't implement a r/w 64 bit CBAR currently */
9801             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9802             define_arm_cp_regs(cpu, cbar_reginfo);
9803         } else {
9804             ARMCPRegInfo cbar = {
9805                 .name = "CBAR",
9806                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9807                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9808                 .fieldoffset = offsetof(CPUARMState,
9809                                         cp15.c15_config_base_address)
9810             };
9811             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9812                 cbar.access = PL1_R;
9813                 cbar.fieldoffset = 0;
9814                 cbar.type = ARM_CP_CONST;
9815             }
9816             define_one_arm_cp_reg(cpu, &cbar);
9817         }
9818     }
9819 
9820     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9821         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9822             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9823               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9824               .access = PL1_RW, .writefn = vbar_write,
9825               .accessfn = access_nv1,
9826               .fgt = FGT_VBAR_EL1,
9827               .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9828               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9829                                      offsetof(CPUARMState, cp15.vbar_ns) },
9830               .resetvalue = 0 },
9831         };
9832         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9833     }
9834 
9835     /* Generic registers whose values depend on the implementation */
9836     {
9837         ARMCPRegInfo sctlr = {
9838             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9839             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9840             .access = PL1_RW, .accessfn = access_tvm_trvm,
9841             .fgt = FGT_SCTLR_EL1,
9842             .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9843             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9844                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9845             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9846             .raw_writefn = raw_write,
9847         };
9848         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9849             /*
9850              * Normally we would always end the TB on an SCTLR write, but Linux
9851              * arch/arm/mach-pxa/sleep.S expects two instructions following
9852              * an MMU enable to execute from cache.  Imitate this behaviour.
9853              */
9854             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9855         }
9856         define_one_arm_cp_reg(cpu, &sctlr);
9857 
9858         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9859             arm_feature(env, ARM_FEATURE_V8)) {
9860             ARMCPRegInfo vsctlr = {
9861                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9862                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9863                 .access = PL2_RW, .resetvalue = 0x0,
9864                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9865             };
9866             define_one_arm_cp_reg(cpu, &vsctlr);
9867         }
9868     }
9869 
9870     if (cpu_isar_feature(aa64_lor, cpu)) {
9871         define_arm_cp_regs(cpu, lor_reginfo);
9872     }
9873     if (cpu_isar_feature(aa64_pan, cpu)) {
9874         define_one_arm_cp_reg(cpu, &pan_reginfo);
9875     }
9876 #ifndef CONFIG_USER_ONLY
9877     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9878         define_arm_cp_regs(cpu, ats1e1_reginfo);
9879     }
9880     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9881         define_arm_cp_regs(cpu, ats1cp_reginfo);
9882     }
9883 #endif
9884     if (cpu_isar_feature(aa64_uao, cpu)) {
9885         define_one_arm_cp_reg(cpu, &uao_reginfo);
9886     }
9887 
9888     if (cpu_isar_feature(aa64_dit, cpu)) {
9889         define_one_arm_cp_reg(cpu, &dit_reginfo);
9890     }
9891     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9892         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9893     }
9894     if (cpu_isar_feature(any_ras, cpu)) {
9895         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9896     }
9897 
9898     if (cpu_isar_feature(aa64_vh, cpu) ||
9899         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9900         define_one_arm_cp_reg(cpu, &contextidr_el2);
9901     }
9902     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9903         define_arm_cp_regs(cpu, vhe_reginfo);
9904     }
9905 
9906     if (cpu_isar_feature(aa64_sve, cpu)) {
9907         define_arm_cp_regs(cpu, zcr_reginfo);
9908     }
9909 
9910     if (cpu_isar_feature(aa64_hcx, cpu)) {
9911         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9912     }
9913 
9914 #ifdef TARGET_AARCH64
9915     if (cpu_isar_feature(aa64_sme, cpu)) {
9916         define_arm_cp_regs(cpu, sme_reginfo);
9917     }
9918     if (cpu_isar_feature(aa64_pauth, cpu)) {
9919         define_arm_cp_regs(cpu, pauth_reginfo);
9920     }
9921     if (cpu_isar_feature(aa64_rndr, cpu)) {
9922         define_arm_cp_regs(cpu, rndr_reginfo);
9923     }
9924     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9925         define_arm_cp_regs(cpu, tlbirange_reginfo);
9926     }
9927     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9928         define_arm_cp_regs(cpu, tlbios_reginfo);
9929     }
9930     /* Data Cache clean instructions up to PoP */
9931     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9932         define_one_arm_cp_reg(cpu, dcpop_reg);
9933 
9934         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9935             define_one_arm_cp_reg(cpu, dcpodp_reg);
9936         }
9937     }
9938 
9939     /*
9940      * If full MTE is enabled, add all of the system registers.
9941      * If only "instructions available at EL0" are enabled,
9942      * then define only a RAZ/WI version of PSTATE.TCO.
9943      */
9944     if (cpu_isar_feature(aa64_mte, cpu)) {
9945         ARMCPRegInfo gmid_reginfo = {
9946             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9947             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9948             .access = PL1_R, .accessfn = access_aa64_tid5,
9949             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9950         };
9951         define_one_arm_cp_reg(cpu, &gmid_reginfo);
9952         define_arm_cp_regs(cpu, mte_reginfo);
9953         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9954     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9955         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9956         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9957     }
9958 
9959     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9960         define_arm_cp_regs(cpu, scxtnum_reginfo);
9961     }
9962 
9963     if (cpu_isar_feature(aa64_fgt, cpu)) {
9964         define_arm_cp_regs(cpu, fgt_reginfo);
9965     }
9966 
9967     if (cpu_isar_feature(aa64_rme, cpu)) {
9968         define_arm_cp_regs(cpu, rme_reginfo);
9969         if (cpu_isar_feature(aa64_mte, cpu)) {
9970             define_arm_cp_regs(cpu, rme_mte_reginfo);
9971         }
9972     }
9973 
9974     if (cpu_isar_feature(aa64_nv2, cpu)) {
9975         define_arm_cp_regs(cpu, nv2_reginfo);
9976     }
9977 
9978     if (cpu_isar_feature(aa64_nmi, cpu)) {
9979         define_arm_cp_regs(cpu, nmi_reginfo);
9980     }
9981 #endif
9982 
9983     if (cpu_isar_feature(any_predinv, cpu)) {
9984         define_arm_cp_regs(cpu, predinv_reginfo);
9985     }
9986 
9987     if (cpu_isar_feature(any_ccidx, cpu)) {
9988         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9989     }
9990 
9991 #ifndef CONFIG_USER_ONLY
9992     /*
9993      * Register redirections and aliases must be done last,
9994      * after the registers from the other extensions have been defined.
9995      */
9996     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9997         define_arm_vh_e2h_redirects_aliases(cpu);
9998     }
9999 #endif
10000 }
10001 
10002 /*
10003  * Private utility function for define_one_arm_cp_reg_with_opaque():
10004  * add a single reginfo struct to the hash table.
10005  */
10006 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
10007                                    void *opaque, CPState state,
10008                                    CPSecureState secstate,
10009                                    int crm, int opc1, int opc2,
10010                                    const char *name)
10011 {
10012     CPUARMState *env = &cpu->env;
10013     uint32_t key;
10014     ARMCPRegInfo *r2;
10015     bool is64 = r->type & ARM_CP_64BIT;
10016     bool ns = secstate & ARM_CP_SECSTATE_NS;
10017     int cp = r->cp;
10018     size_t name_len;
10019     bool make_const;
10020 
10021     switch (state) {
10022     case ARM_CP_STATE_AA32:
10023         /* We assume it is a cp15 register if the .cp field is left unset. */
10024         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
10025             cp = 15;
10026         }
10027         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
10028         break;
10029     case ARM_CP_STATE_AA64:
10030         /*
10031          * To allow abbreviation of ARMCPRegInfo definitions, we treat
10032          * cp == 0 as equivalent to the value for "standard guest-visible
10033          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
10034          * in their AArch64 view (the .cp value may be non-zero for the
10035          * benefit of the AArch32 view).
10036          */
10037         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
10038             cp = CP_REG_ARM64_SYSREG_CP;
10039         }
10040         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
10041         break;
10042     default:
10043         g_assert_not_reached();
10044     }
10045 
10046     /* Overriding of an existing definition must be explicitly requested. */
10047     if (!(r->type & ARM_CP_OVERRIDE)) {
10048         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
10049         if (oldreg) {
10050             assert(oldreg->type & ARM_CP_OVERRIDE);
10051         }
10052     }
10053 
10054     /*
10055      * Eliminate registers that are not present because the EL is missing.
10056      * Doing this here makes it easier to put all registers for a given
10057      * feature into the same ARMCPRegInfo array and define them all at once.
10058      */
10059     make_const = false;
10060     if (arm_feature(env, ARM_FEATURE_EL3)) {
10061         /*
10062          * An EL2 register without EL2 but with EL3 is (usually) RES0.
10063          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
10064          */
10065         int min_el = ctz32(r->access) / 2;
10066         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
10067             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
10068                 return;
10069             }
10070             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
10071         }
10072     } else {
10073         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
10074                                  ? PL2_RW : PL1_RW);
10075         if ((r->access & max_el) == 0) {
10076             return;
10077         }
10078     }
10079 
10080     /* Combine cpreg and name into one allocation. */
10081     name_len = strlen(name) + 1;
10082     r2 = g_malloc(sizeof(*r2) + name_len);
10083     *r2 = *r;
10084     r2->name = memcpy(r2 + 1, name, name_len);
10085 
10086     /*
10087      * Update fields to match the instantiation, overwiting wildcards
10088      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
10089      */
10090     r2->cp = cp;
10091     r2->crm = crm;
10092     r2->opc1 = opc1;
10093     r2->opc2 = opc2;
10094     r2->state = state;
10095     r2->secure = secstate;
10096     if (opaque) {
10097         r2->opaque = opaque;
10098     }
10099 
10100     if (make_const) {
10101         /* This should not have been a very special register to begin. */
10102         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10103         assert(old_special == 0 || old_special == ARM_CP_NOP);
10104         /*
10105          * Set the special function to CONST, retaining the other flags.
10106          * This is important for e.g. ARM_CP_SVE so that we still
10107          * take the SVE trap if CPTR_EL3.EZ == 0.
10108          */
10109         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10110         /*
10111          * Usually, these registers become RES0, but there are a few
10112          * special cases like VPIDR_EL2 which have a constant non-zero
10113          * value with writes ignored.
10114          */
10115         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10116             r2->resetvalue = 0;
10117         }
10118         /*
10119          * ARM_CP_CONST has precedence, so removing the callbacks and
10120          * offsets are not strictly necessary, but it is potentially
10121          * less confusing to debug later.
10122          */
10123         r2->readfn = NULL;
10124         r2->writefn = NULL;
10125         r2->raw_readfn = NULL;
10126         r2->raw_writefn = NULL;
10127         r2->resetfn = NULL;
10128         r2->fieldoffset = 0;
10129         r2->bank_fieldoffsets[0] = 0;
10130         r2->bank_fieldoffsets[1] = 0;
10131     } else {
10132         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10133 
10134         if (isbanked) {
10135             /*
10136              * Register is banked (using both entries in array).
10137              * Overwriting fieldoffset as the array is only used to define
10138              * banked registers but later only fieldoffset is used.
10139              */
10140             r2->fieldoffset = r->bank_fieldoffsets[ns];
10141         }
10142         if (state == ARM_CP_STATE_AA32) {
10143             if (isbanked) {
10144                 /*
10145                  * If the register is banked then we don't need to migrate or
10146                  * reset the 32-bit instance in certain cases:
10147                  *
10148                  * 1) If the register has both 32-bit and 64-bit instances
10149                  *    then we can count on the 64-bit instance taking care
10150                  *    of the non-secure bank.
10151                  * 2) If ARMv8 is enabled then we can count on a 64-bit
10152                  *    version taking care of the secure bank.  This requires
10153                  *    that separate 32 and 64-bit definitions are provided.
10154                  */
10155                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10156                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10157                     r2->type |= ARM_CP_ALIAS;
10158                 }
10159             } else if ((secstate != r->secure) && !ns) {
10160                 /*
10161                  * The register is not banked so we only want to allow
10162                  * migration of the non-secure instance.
10163                  */
10164                 r2->type |= ARM_CP_ALIAS;
10165             }
10166 
10167             if (HOST_BIG_ENDIAN &&
10168                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10169                 r2->fieldoffset += sizeof(uint32_t);
10170             }
10171         }
10172     }
10173 
10174     /*
10175      * By convention, for wildcarded registers only the first
10176      * entry is used for migration; the others are marked as
10177      * ALIAS so we don't try to transfer the register
10178      * multiple times. Special registers (ie NOP/WFI) are
10179      * never migratable and not even raw-accessible.
10180      */
10181     if (r2->type & ARM_CP_SPECIAL_MASK) {
10182         r2->type |= ARM_CP_NO_RAW;
10183     }
10184     if (((r->crm == CP_ANY) && crm != 0) ||
10185         ((r->opc1 == CP_ANY) && opc1 != 0) ||
10186         ((r->opc2 == CP_ANY) && opc2 != 0)) {
10187         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10188     }
10189 
10190     /*
10191      * Check that raw accesses are either forbidden or handled. Note that
10192      * we can't assert this earlier because the setup of fieldoffset for
10193      * banked registers has to be done first.
10194      */
10195     if (!(r2->type & ARM_CP_NO_RAW)) {
10196         assert(!raw_accessors_invalid(r2));
10197     }
10198 
10199     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10200 }
10201 
10202 
10203 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10204                                        const ARMCPRegInfo *r, void *opaque)
10205 {
10206     /*
10207      * Define implementations of coprocessor registers.
10208      * We store these in a hashtable because typically
10209      * there are less than 150 registers in a space which
10210      * is 16*16*16*8*8 = 262144 in size.
10211      * Wildcarding is supported for the crm, opc1 and opc2 fields.
10212      * If a register is defined twice then the second definition is
10213      * used, so this can be used to define some generic registers and
10214      * then override them with implementation specific variations.
10215      * At least one of the original and the second definition should
10216      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10217      * against accidental use.
10218      *
10219      * The state field defines whether the register is to be
10220      * visible in the AArch32 or AArch64 execution state. If the
10221      * state is set to ARM_CP_STATE_BOTH then we synthesise a
10222      * reginfo structure for the AArch32 view, which sees the lower
10223      * 32 bits of the 64 bit register.
10224      *
10225      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10226      * be wildcarded. AArch64 registers are always considered to be 64
10227      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10228      * the register, if any.
10229      */
10230     int crm, opc1, opc2;
10231     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10232     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10233     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10234     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10235     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10236     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10237     CPState state;
10238 
10239     /* 64 bit registers have only CRm and Opc1 fields */
10240     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10241     /* op0 only exists in the AArch64 encodings */
10242     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10243     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10244     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10245     /*
10246      * This API is only for Arm's system coprocessors (14 and 15) or
10247      * (M-profile or v7A-and-earlier only) for implementation defined
10248      * coprocessors in the range 0..7.  Our decode assumes this, since
10249      * 8..13 can be used for other insns including VFP and Neon. See
10250      * valid_cp() in translate.c.  Assert here that we haven't tried
10251      * to use an invalid coprocessor number.
10252      */
10253     switch (r->state) {
10254     case ARM_CP_STATE_BOTH:
10255         /* 0 has a special meaning, but otherwise the same rules as AA32. */
10256         if (r->cp == 0) {
10257             break;
10258         }
10259         /* fall through */
10260     case ARM_CP_STATE_AA32:
10261         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10262             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10263             assert(r->cp >= 14 && r->cp <= 15);
10264         } else {
10265             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10266         }
10267         break;
10268     case ARM_CP_STATE_AA64:
10269         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10270         break;
10271     default:
10272         g_assert_not_reached();
10273     }
10274     /*
10275      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10276      * encodes a minimum access level for the register. We roll this
10277      * runtime check into our general permission check code, so check
10278      * here that the reginfo's specified permissions are strict enough
10279      * to encompass the generic architectural permission check.
10280      */
10281     if (r->state != ARM_CP_STATE_AA32) {
10282         CPAccessRights mask;
10283         switch (r->opc1) {
10284         case 0:
10285             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10286             mask = PL0U_R | PL1_RW;
10287             break;
10288         case 1: case 2:
10289             /* min_EL EL1 */
10290             mask = PL1_RW;
10291             break;
10292         case 3:
10293             /* min_EL EL0 */
10294             mask = PL0_RW;
10295             break;
10296         case 4:
10297         case 5:
10298             /* min_EL EL2 */
10299             mask = PL2_RW;
10300             break;
10301         case 6:
10302             /* min_EL EL3 */
10303             mask = PL3_RW;
10304             break;
10305         case 7:
10306             /* min_EL EL1, secure mode only (we don't check the latter) */
10307             mask = PL1_RW;
10308             break;
10309         default:
10310             /* broken reginfo with out-of-range opc1 */
10311             g_assert_not_reached();
10312         }
10313         /* assert our permissions are not too lax (stricter is fine) */
10314         assert((r->access & ~mask) == 0);
10315     }
10316 
10317     /*
10318      * Check that the register definition has enough info to handle
10319      * reads and writes if they are permitted.
10320      */
10321     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10322         if (r->access & PL3_R) {
10323             assert((r->fieldoffset ||
10324                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10325                    r->readfn);
10326         }
10327         if (r->access & PL3_W) {
10328             assert((r->fieldoffset ||
10329                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10330                    r->writefn);
10331         }
10332     }
10333 
10334     for (crm = crmmin; crm <= crmmax; crm++) {
10335         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10336             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10337                 for (state = ARM_CP_STATE_AA32;
10338                      state <= ARM_CP_STATE_AA64; state++) {
10339                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10340                         continue;
10341                     }
10342                     if (state == ARM_CP_STATE_AA32) {
10343                         /*
10344                          * Under AArch32 CP registers can be common
10345                          * (same for secure and non-secure world) or banked.
10346                          */
10347                         char *name;
10348 
10349                         switch (r->secure) {
10350                         case ARM_CP_SECSTATE_S:
10351                         case ARM_CP_SECSTATE_NS:
10352                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10353                                                    r->secure, crm, opc1, opc2,
10354                                                    r->name);
10355                             break;
10356                         case ARM_CP_SECSTATE_BOTH:
10357                             name = g_strdup_printf("%s_S", r->name);
10358                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10359                                                    ARM_CP_SECSTATE_S,
10360                                                    crm, opc1, opc2, name);
10361                             g_free(name);
10362                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10363                                                    ARM_CP_SECSTATE_NS,
10364                                                    crm, opc1, opc2, r->name);
10365                             break;
10366                         default:
10367                             g_assert_not_reached();
10368                         }
10369                     } else {
10370                         /*
10371                          * AArch64 registers get mapped to non-secure instance
10372                          * of AArch32
10373                          */
10374                         add_cpreg_to_hashtable(cpu, r, opaque, state,
10375                                                ARM_CP_SECSTATE_NS,
10376                                                crm, opc1, opc2, r->name);
10377                     }
10378                 }
10379             }
10380         }
10381     }
10382 }
10383 
10384 /* Define a whole list of registers */
10385 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10386                                         void *opaque, size_t len)
10387 {
10388     size_t i;
10389     for (i = 0; i < len; ++i) {
10390         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10391     }
10392 }
10393 
10394 /*
10395  * Modify ARMCPRegInfo for access from userspace.
10396  *
10397  * This is a data driven modification directed by
10398  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10399  * user-space cannot alter any values and dynamic values pertaining to
10400  * execution state are hidden from user space view anyway.
10401  */
10402 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10403                                  const ARMCPRegUserSpaceInfo *mods,
10404                                  size_t mods_len)
10405 {
10406     for (size_t mi = 0; mi < mods_len; ++mi) {
10407         const ARMCPRegUserSpaceInfo *m = mods + mi;
10408         GPatternSpec *pat = NULL;
10409 
10410         if (m->is_glob) {
10411             pat = g_pattern_spec_new(m->name);
10412         }
10413         for (size_t ri = 0; ri < regs_len; ++ri) {
10414             ARMCPRegInfo *r = regs + ri;
10415 
10416             if (pat && g_pattern_match_string(pat, r->name)) {
10417                 r->type = ARM_CP_CONST;
10418                 r->access = PL0U_R;
10419                 r->resetvalue = 0;
10420                 /* continue */
10421             } else if (strcmp(r->name, m->name) == 0) {
10422                 r->type = ARM_CP_CONST;
10423                 r->access = PL0U_R;
10424                 r->resetvalue &= m->exported_bits;
10425                 r->resetvalue |= m->fixed_bits;
10426                 break;
10427             }
10428         }
10429         if (pat) {
10430             g_pattern_spec_free(pat);
10431         }
10432     }
10433 }
10434 
10435 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10436 {
10437     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10438 }
10439 
10440 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10441                          uint64_t value)
10442 {
10443     /* Helper coprocessor write function for write-ignore registers */
10444 }
10445 
10446 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10447 {
10448     /* Helper coprocessor write function for read-as-zero registers */
10449     return 0;
10450 }
10451 
10452 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10453 {
10454     /* Helper coprocessor reset function for do-nothing-on-reset registers */
10455 }
10456 
10457 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10458 {
10459     /*
10460      * Return true if it is not valid for us to switch to
10461      * this CPU mode (ie all the UNPREDICTABLE cases in
10462      * the ARM ARM CPSRWriteByInstr pseudocode).
10463      */
10464 
10465     /* Changes to or from Hyp via MSR and CPS are illegal. */
10466     if (write_type == CPSRWriteByInstr &&
10467         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10468          mode == ARM_CPU_MODE_HYP)) {
10469         return 1;
10470     }
10471 
10472     switch (mode) {
10473     case ARM_CPU_MODE_USR:
10474         return 0;
10475     case ARM_CPU_MODE_SYS:
10476     case ARM_CPU_MODE_SVC:
10477     case ARM_CPU_MODE_ABT:
10478     case ARM_CPU_MODE_UND:
10479     case ARM_CPU_MODE_IRQ:
10480     case ARM_CPU_MODE_FIQ:
10481         /*
10482          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10483          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10484          */
10485         /*
10486          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10487          * and CPS are treated as illegal mode changes.
10488          */
10489         if (write_type == CPSRWriteByInstr &&
10490             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10491             (arm_hcr_el2_eff(env) & HCR_TGE)) {
10492             return 1;
10493         }
10494         return 0;
10495     case ARM_CPU_MODE_HYP:
10496         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10497     case ARM_CPU_MODE_MON:
10498         return arm_current_el(env) < 3;
10499     default:
10500         return 1;
10501     }
10502 }
10503 
10504 uint32_t cpsr_read(CPUARMState *env)
10505 {
10506     int ZF;
10507     ZF = (env->ZF == 0);
10508     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10509         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10510         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10511         | ((env->condexec_bits & 0xfc) << 8)
10512         | (env->GE << 16) | (env->daif & CPSR_AIF);
10513 }
10514 
10515 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10516                 CPSRWriteType write_type)
10517 {
10518     uint32_t changed_daif;
10519     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10520         (mask & (CPSR_M | CPSR_E | CPSR_IL));
10521 
10522     if (mask & CPSR_NZCV) {
10523         env->ZF = (~val) & CPSR_Z;
10524         env->NF = val;
10525         env->CF = (val >> 29) & 1;
10526         env->VF = (val << 3) & 0x80000000;
10527     }
10528     if (mask & CPSR_Q) {
10529         env->QF = ((val & CPSR_Q) != 0);
10530     }
10531     if (mask & CPSR_T) {
10532         env->thumb = ((val & CPSR_T) != 0);
10533     }
10534     if (mask & CPSR_IT_0_1) {
10535         env->condexec_bits &= ~3;
10536         env->condexec_bits |= (val >> 25) & 3;
10537     }
10538     if (mask & CPSR_IT_2_7) {
10539         env->condexec_bits &= 3;
10540         env->condexec_bits |= (val >> 8) & 0xfc;
10541     }
10542     if (mask & CPSR_GE) {
10543         env->GE = (val >> 16) & 0xf;
10544     }
10545 
10546     /*
10547      * In a V7 implementation that includes the security extensions but does
10548      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10549      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10550      * bits respectively.
10551      *
10552      * In a V8 implementation, it is permitted for privileged software to
10553      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10554      */
10555     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10556         arm_feature(env, ARM_FEATURE_EL3) &&
10557         !arm_feature(env, ARM_FEATURE_EL2) &&
10558         !arm_is_secure(env)) {
10559 
10560         changed_daif = (env->daif ^ val) & mask;
10561 
10562         if (changed_daif & CPSR_A) {
10563             /*
10564              * Check to see if we are allowed to change the masking of async
10565              * abort exceptions from a non-secure state.
10566              */
10567             if (!(env->cp15.scr_el3 & SCR_AW)) {
10568                 qemu_log_mask(LOG_GUEST_ERROR,
10569                               "Ignoring attempt to switch CPSR_A flag from "
10570                               "non-secure world with SCR.AW bit clear\n");
10571                 mask &= ~CPSR_A;
10572             }
10573         }
10574 
10575         if (changed_daif & CPSR_F) {
10576             /*
10577              * Check to see if we are allowed to change the masking of FIQ
10578              * exceptions from a non-secure state.
10579              */
10580             if (!(env->cp15.scr_el3 & SCR_FW)) {
10581                 qemu_log_mask(LOG_GUEST_ERROR,
10582                               "Ignoring attempt to switch CPSR_F flag from "
10583                               "non-secure world with SCR.FW bit clear\n");
10584                 mask &= ~CPSR_F;
10585             }
10586 
10587             /*
10588              * Check whether non-maskable FIQ (NMFI) support is enabled.
10589              * If this bit is set software is not allowed to mask
10590              * FIQs, but is allowed to set CPSR_F to 0.
10591              */
10592             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10593                 (val & CPSR_F)) {
10594                 qemu_log_mask(LOG_GUEST_ERROR,
10595                               "Ignoring attempt to enable CPSR_F flag "
10596                               "(non-maskable FIQ [NMFI] support enabled)\n");
10597                 mask &= ~CPSR_F;
10598             }
10599         }
10600     }
10601 
10602     env->daif &= ~(CPSR_AIF & mask);
10603     env->daif |= val & CPSR_AIF & mask;
10604 
10605     if (write_type != CPSRWriteRaw &&
10606         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10607         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10608             /*
10609              * Note that we can only get here in USR mode if this is a
10610              * gdb stub write; for this case we follow the architectural
10611              * behaviour for guest writes in USR mode of ignoring an attempt
10612              * to switch mode. (Those are caught by translate.c for writes
10613              * triggered by guest instructions.)
10614              */
10615             mask &= ~CPSR_M;
10616         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10617             /*
10618              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10619              * v7, and has defined behaviour in v8:
10620              *  + leave CPSR.M untouched
10621              *  + allow changes to the other CPSR fields
10622              *  + set PSTATE.IL
10623              * For user changes via the GDB stub, we don't set PSTATE.IL,
10624              * as this would be unnecessarily harsh for a user error.
10625              */
10626             mask &= ~CPSR_M;
10627             if (write_type != CPSRWriteByGDBStub &&
10628                 arm_feature(env, ARM_FEATURE_V8)) {
10629                 mask |= CPSR_IL;
10630                 val |= CPSR_IL;
10631             }
10632             qemu_log_mask(LOG_GUEST_ERROR,
10633                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10634                           aarch32_mode_name(env->uncached_cpsr),
10635                           aarch32_mode_name(val));
10636         } else {
10637             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10638                           write_type == CPSRWriteExceptionReturn ?
10639                           "Exception return from AArch32" :
10640                           "AArch32 mode switch from",
10641                           aarch32_mode_name(env->uncached_cpsr),
10642                           aarch32_mode_name(val), env->regs[15]);
10643             switch_mode(env, val & CPSR_M);
10644         }
10645     }
10646     mask &= ~CACHED_CPSR_BITS;
10647     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10648     if (tcg_enabled() && rebuild_hflags) {
10649         arm_rebuild_hflags(env);
10650     }
10651 }
10652 
10653 #ifdef CONFIG_USER_ONLY
10654 
10655 static void switch_mode(CPUARMState *env, int mode)
10656 {
10657     ARMCPU *cpu = env_archcpu(env);
10658 
10659     if (mode != ARM_CPU_MODE_USR) {
10660         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10661     }
10662 }
10663 
10664 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10665                                  uint32_t cur_el, bool secure)
10666 {
10667     return 1;
10668 }
10669 
10670 void aarch64_sync_64_to_32(CPUARMState *env)
10671 {
10672     g_assert_not_reached();
10673 }
10674 
10675 #else
10676 
10677 static void switch_mode(CPUARMState *env, int mode)
10678 {
10679     int old_mode;
10680     int i;
10681 
10682     old_mode = env->uncached_cpsr & CPSR_M;
10683     if (mode == old_mode) {
10684         return;
10685     }
10686 
10687     if (old_mode == ARM_CPU_MODE_FIQ) {
10688         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10689         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10690     } else if (mode == ARM_CPU_MODE_FIQ) {
10691         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10692         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10693     }
10694 
10695     i = bank_number(old_mode);
10696     env->banked_r13[i] = env->regs[13];
10697     env->banked_spsr[i] = env->spsr;
10698 
10699     i = bank_number(mode);
10700     env->regs[13] = env->banked_r13[i];
10701     env->spsr = env->banked_spsr[i];
10702 
10703     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10704     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10705 }
10706 
10707 /*
10708  * Physical Interrupt Target EL Lookup Table
10709  *
10710  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10711  *
10712  * The below multi-dimensional table is used for looking up the target
10713  * exception level given numerous condition criteria.  Specifically, the
10714  * target EL is based on SCR and HCR routing controls as well as the
10715  * currently executing EL and secure state.
10716  *
10717  *    Dimensions:
10718  *    target_el_table[2][2][2][2][2][4]
10719  *                    |  |  |  |  |  +--- Current EL
10720  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10721  *                    |  |  |  +--------- HCR mask override
10722  *                    |  |  +------------ SCR exec state control
10723  *                    |  +--------------- SCR mask override
10724  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10725  *
10726  *    The table values are as such:
10727  *    0-3 = EL0-EL3
10728  *     -1 = Cannot occur
10729  *
10730  * The ARM ARM target EL table includes entries indicating that an "exception
10731  * is not taken".  The two cases where this is applicable are:
10732  *    1) An exception is taken from EL3 but the SCR does not have the exception
10733  *    routed to EL3.
10734  *    2) An exception is taken from EL2 but the HCR does not have the exception
10735  *    routed to EL2.
10736  * In these two cases, the below table contain a target of EL1.  This value is
10737  * returned as it is expected that the consumer of the table data will check
10738  * for "target EL >= current EL" to ensure the exception is not taken.
10739  *
10740  *            SCR     HCR
10741  *         64  EA     AMO                 From
10742  *        BIT IRQ     IMO      Non-secure         Secure
10743  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10744  */
10745 static const int8_t target_el_table[2][2][2][2][2][4] = {
10746     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10747        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10748       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10749        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10750      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10751        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10752       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10753        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10754     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10755        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10756       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10757        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10758      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10759        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10760       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10761        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10762 };
10763 
10764 /*
10765  * Determine the target EL for physical exceptions
10766  */
10767 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10768                                  uint32_t cur_el, bool secure)
10769 {
10770     CPUARMState *env = cpu_env(cs);
10771     bool rw;
10772     bool scr;
10773     bool hcr;
10774     int target_el;
10775     /* Is the highest EL AArch64? */
10776     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10777     uint64_t hcr_el2;
10778 
10779     if (arm_feature(env, ARM_FEATURE_EL3)) {
10780         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10781     } else {
10782         /*
10783          * Either EL2 is the highest EL (and so the EL2 register width
10784          * is given by is64); or there is no EL2 or EL3, in which case
10785          * the value of 'rw' does not affect the table lookup anyway.
10786          */
10787         rw = is64;
10788     }
10789 
10790     hcr_el2 = arm_hcr_el2_eff(env);
10791     switch (excp_idx) {
10792     case EXCP_IRQ:
10793     case EXCP_NMI:
10794         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10795         hcr = hcr_el2 & HCR_IMO;
10796         break;
10797     case EXCP_FIQ:
10798         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10799         hcr = hcr_el2 & HCR_FMO;
10800         break;
10801     default:
10802         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10803         hcr = hcr_el2 & HCR_AMO;
10804         break;
10805     };
10806 
10807     /*
10808      * For these purposes, TGE and AMO/IMO/FMO both force the
10809      * interrupt to EL2.  Fold TGE into the bit extracted above.
10810      */
10811     hcr |= (hcr_el2 & HCR_TGE) != 0;
10812 
10813     /* Perform a table-lookup for the target EL given the current state */
10814     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10815 
10816     assert(target_el > 0);
10817 
10818     return target_el;
10819 }
10820 
10821 void arm_log_exception(CPUState *cs)
10822 {
10823     int idx = cs->exception_index;
10824 
10825     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10826         const char *exc = NULL;
10827         static const char * const excnames[] = {
10828             [EXCP_UDEF] = "Undefined Instruction",
10829             [EXCP_SWI] = "SVC",
10830             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10831             [EXCP_DATA_ABORT] = "Data Abort",
10832             [EXCP_IRQ] = "IRQ",
10833             [EXCP_FIQ] = "FIQ",
10834             [EXCP_BKPT] = "Breakpoint",
10835             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10836             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10837             [EXCP_HVC] = "Hypervisor Call",
10838             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10839             [EXCP_SMC] = "Secure Monitor Call",
10840             [EXCP_VIRQ] = "Virtual IRQ",
10841             [EXCP_VFIQ] = "Virtual FIQ",
10842             [EXCP_SEMIHOST] = "Semihosting call",
10843             [EXCP_NOCP] = "v7M NOCP UsageFault",
10844             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10845             [EXCP_STKOF] = "v8M STKOF UsageFault",
10846             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10847             [EXCP_LSERR] = "v8M LSERR UsageFault",
10848             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10849             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10850             [EXCP_VSERR] = "Virtual SERR",
10851             [EXCP_GPC] = "Granule Protection Check",
10852             [EXCP_NMI] = "NMI",
10853             [EXCP_VINMI] = "Virtual IRQ NMI",
10854             [EXCP_VFNMI] = "Virtual FIQ NMI",
10855         };
10856 
10857         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10858             exc = excnames[idx];
10859         }
10860         if (!exc) {
10861             exc = "unknown";
10862         }
10863         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10864                       idx, exc, cs->cpu_index);
10865     }
10866 }
10867 
10868 /*
10869  * Function used to synchronize QEMU's AArch64 register set with AArch32
10870  * register set.  This is necessary when switching between AArch32 and AArch64
10871  * execution state.
10872  */
10873 void aarch64_sync_32_to_64(CPUARMState *env)
10874 {
10875     int i;
10876     uint32_t mode = env->uncached_cpsr & CPSR_M;
10877 
10878     /* We can blanket copy R[0:7] to X[0:7] */
10879     for (i = 0; i < 8; i++) {
10880         env->xregs[i] = env->regs[i];
10881     }
10882 
10883     /*
10884      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10885      * Otherwise, they come from the banked user regs.
10886      */
10887     if (mode == ARM_CPU_MODE_FIQ) {
10888         for (i = 8; i < 13; i++) {
10889             env->xregs[i] = env->usr_regs[i - 8];
10890         }
10891     } else {
10892         for (i = 8; i < 13; i++) {
10893             env->xregs[i] = env->regs[i];
10894         }
10895     }
10896 
10897     /*
10898      * Registers x13-x23 are the various mode SP and FP registers. Registers
10899      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10900      * from the mode banked register.
10901      */
10902     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10903         env->xregs[13] = env->regs[13];
10904         env->xregs[14] = env->regs[14];
10905     } else {
10906         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10907         /* HYP is an exception in that it is copied from r14 */
10908         if (mode == ARM_CPU_MODE_HYP) {
10909             env->xregs[14] = env->regs[14];
10910         } else {
10911             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10912         }
10913     }
10914 
10915     if (mode == ARM_CPU_MODE_HYP) {
10916         env->xregs[15] = env->regs[13];
10917     } else {
10918         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10919     }
10920 
10921     if (mode == ARM_CPU_MODE_IRQ) {
10922         env->xregs[16] = env->regs[14];
10923         env->xregs[17] = env->regs[13];
10924     } else {
10925         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10926         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10927     }
10928 
10929     if (mode == ARM_CPU_MODE_SVC) {
10930         env->xregs[18] = env->regs[14];
10931         env->xregs[19] = env->regs[13];
10932     } else {
10933         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10934         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10935     }
10936 
10937     if (mode == ARM_CPU_MODE_ABT) {
10938         env->xregs[20] = env->regs[14];
10939         env->xregs[21] = env->regs[13];
10940     } else {
10941         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10942         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10943     }
10944 
10945     if (mode == ARM_CPU_MODE_UND) {
10946         env->xregs[22] = env->regs[14];
10947         env->xregs[23] = env->regs[13];
10948     } else {
10949         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10950         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10951     }
10952 
10953     /*
10954      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10955      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10956      * FIQ bank for r8-r14.
10957      */
10958     if (mode == ARM_CPU_MODE_FIQ) {
10959         for (i = 24; i < 31; i++) {
10960             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10961         }
10962     } else {
10963         for (i = 24; i < 29; i++) {
10964             env->xregs[i] = env->fiq_regs[i - 24];
10965         }
10966         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10967         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10968     }
10969 
10970     env->pc = env->regs[15];
10971 }
10972 
10973 /*
10974  * Function used to synchronize QEMU's AArch32 register set with AArch64
10975  * register set.  This is necessary when switching between AArch32 and AArch64
10976  * execution state.
10977  */
10978 void aarch64_sync_64_to_32(CPUARMState *env)
10979 {
10980     int i;
10981     uint32_t mode = env->uncached_cpsr & CPSR_M;
10982 
10983     /* We can blanket copy X[0:7] to R[0:7] */
10984     for (i = 0; i < 8; i++) {
10985         env->regs[i] = env->xregs[i];
10986     }
10987 
10988     /*
10989      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10990      * Otherwise, we copy x8-x12 into the banked user regs.
10991      */
10992     if (mode == ARM_CPU_MODE_FIQ) {
10993         for (i = 8; i < 13; i++) {
10994             env->usr_regs[i - 8] = env->xregs[i];
10995         }
10996     } else {
10997         for (i = 8; i < 13; i++) {
10998             env->regs[i] = env->xregs[i];
10999         }
11000     }
11001 
11002     /*
11003      * Registers r13 & r14 depend on the current mode.
11004      * If we are in a given mode, we copy the corresponding x registers to r13
11005      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
11006      * for the mode.
11007      */
11008     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
11009         env->regs[13] = env->xregs[13];
11010         env->regs[14] = env->xregs[14];
11011     } else {
11012         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
11013 
11014         /*
11015          * HYP is an exception in that it does not have its own banked r14 but
11016          * shares the USR r14
11017          */
11018         if (mode == ARM_CPU_MODE_HYP) {
11019             env->regs[14] = env->xregs[14];
11020         } else {
11021             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
11022         }
11023     }
11024 
11025     if (mode == ARM_CPU_MODE_HYP) {
11026         env->regs[13] = env->xregs[15];
11027     } else {
11028         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
11029     }
11030 
11031     if (mode == ARM_CPU_MODE_IRQ) {
11032         env->regs[14] = env->xregs[16];
11033         env->regs[13] = env->xregs[17];
11034     } else {
11035         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
11036         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
11037     }
11038 
11039     if (mode == ARM_CPU_MODE_SVC) {
11040         env->regs[14] = env->xregs[18];
11041         env->regs[13] = env->xregs[19];
11042     } else {
11043         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
11044         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
11045     }
11046 
11047     if (mode == ARM_CPU_MODE_ABT) {
11048         env->regs[14] = env->xregs[20];
11049         env->regs[13] = env->xregs[21];
11050     } else {
11051         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
11052         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
11053     }
11054 
11055     if (mode == ARM_CPU_MODE_UND) {
11056         env->regs[14] = env->xregs[22];
11057         env->regs[13] = env->xregs[23];
11058     } else {
11059         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
11060         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
11061     }
11062 
11063     /*
11064      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
11065      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
11066      * FIQ bank for r8-r14.
11067      */
11068     if (mode == ARM_CPU_MODE_FIQ) {
11069         for (i = 24; i < 31; i++) {
11070             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
11071         }
11072     } else {
11073         for (i = 24; i < 29; i++) {
11074             env->fiq_regs[i - 24] = env->xregs[i];
11075         }
11076         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
11077         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
11078     }
11079 
11080     env->regs[15] = env->pc;
11081 }
11082 
11083 static void take_aarch32_exception(CPUARMState *env, int new_mode,
11084                                    uint32_t mask, uint32_t offset,
11085                                    uint32_t newpc)
11086 {
11087     int new_el;
11088 
11089     /* Change the CPU state so as to actually take the exception. */
11090     switch_mode(env, new_mode);
11091 
11092     /*
11093      * For exceptions taken to AArch32 we must clear the SS bit in both
11094      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
11095      */
11096     env->pstate &= ~PSTATE_SS;
11097     env->spsr = cpsr_read(env);
11098     /* Clear IT bits.  */
11099     env->condexec_bits = 0;
11100     /* Switch to the new mode, and to the correct instruction set.  */
11101     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11102 
11103     /* This must be after mode switching. */
11104     new_el = arm_current_el(env);
11105 
11106     /* Set new mode endianness */
11107     env->uncached_cpsr &= ~CPSR_E;
11108     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11109         env->uncached_cpsr |= CPSR_E;
11110     }
11111     /* J and IL must always be cleared for exception entry */
11112     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11113     env->daif |= mask;
11114 
11115     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11116         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11117             env->uncached_cpsr |= CPSR_SSBS;
11118         } else {
11119             env->uncached_cpsr &= ~CPSR_SSBS;
11120         }
11121     }
11122 
11123     if (new_mode == ARM_CPU_MODE_HYP) {
11124         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11125         env->elr_el[2] = env->regs[15];
11126     } else {
11127         /* CPSR.PAN is normally preserved preserved unless...  */
11128         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11129             switch (new_el) {
11130             case 3:
11131                 if (!arm_is_secure_below_el3(env)) {
11132                     /* ... the target is EL3, from non-secure state.  */
11133                     env->uncached_cpsr &= ~CPSR_PAN;
11134                     break;
11135                 }
11136                 /* ... the target is EL3, from secure state ... */
11137                 /* fall through */
11138             case 1:
11139                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
11140                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11141                     env->uncached_cpsr |= CPSR_PAN;
11142                 }
11143                 break;
11144             }
11145         }
11146         /*
11147          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11148          * and we should just guard the thumb mode on V4
11149          */
11150         if (arm_feature(env, ARM_FEATURE_V4T)) {
11151             env->thumb =
11152                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11153         }
11154         env->regs[14] = env->regs[15] + offset;
11155     }
11156     env->regs[15] = newpc;
11157 
11158     if (tcg_enabled()) {
11159         arm_rebuild_hflags(env);
11160     }
11161 }
11162 
11163 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11164 {
11165     /*
11166      * Handle exception entry to Hyp mode; this is sufficiently
11167      * different to entry to other AArch32 modes that we handle it
11168      * separately here.
11169      *
11170      * The vector table entry used is always the 0x14 Hyp mode entry point,
11171      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11172      * The offset applied to the preferred return address is always zero
11173      * (see DDI0487C.a section G1.12.3).
11174      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11175      */
11176     uint32_t addr, mask;
11177     ARMCPU *cpu = ARM_CPU(cs);
11178     CPUARMState *env = &cpu->env;
11179 
11180     switch (cs->exception_index) {
11181     case EXCP_UDEF:
11182         addr = 0x04;
11183         break;
11184     case EXCP_SWI:
11185         addr = 0x08;
11186         break;
11187     case EXCP_BKPT:
11188         /* Fall through to prefetch abort.  */
11189     case EXCP_PREFETCH_ABORT:
11190         env->cp15.ifar_s = env->exception.vaddress;
11191         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11192                       (uint32_t)env->exception.vaddress);
11193         addr = 0x0c;
11194         break;
11195     case EXCP_DATA_ABORT:
11196         env->cp15.dfar_s = env->exception.vaddress;
11197         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11198                       (uint32_t)env->exception.vaddress);
11199         addr = 0x10;
11200         break;
11201     case EXCP_IRQ:
11202         addr = 0x18;
11203         break;
11204     case EXCP_FIQ:
11205         addr = 0x1c;
11206         break;
11207     case EXCP_HVC:
11208         addr = 0x08;
11209         break;
11210     case EXCP_HYP_TRAP:
11211         addr = 0x14;
11212         break;
11213     default:
11214         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11215     }
11216 
11217     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11218         if (!arm_feature(env, ARM_FEATURE_V8)) {
11219             /*
11220              * QEMU syndrome values are v8-style. v7 has the IL bit
11221              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11222              * If this is a v7 CPU, squash the IL bit in those cases.
11223              */
11224             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11225                 (cs->exception_index == EXCP_DATA_ABORT &&
11226                  !(env->exception.syndrome & ARM_EL_ISV)) ||
11227                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11228                 env->exception.syndrome &= ~ARM_EL_IL;
11229             }
11230         }
11231         env->cp15.esr_el[2] = env->exception.syndrome;
11232     }
11233 
11234     if (arm_current_el(env) != 2 && addr < 0x14) {
11235         addr = 0x14;
11236     }
11237 
11238     mask = 0;
11239     if (!(env->cp15.scr_el3 & SCR_EA)) {
11240         mask |= CPSR_A;
11241     }
11242     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11243         mask |= CPSR_I;
11244     }
11245     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11246         mask |= CPSR_F;
11247     }
11248 
11249     addr += env->cp15.hvbar;
11250 
11251     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11252 }
11253 
11254 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11255 {
11256     ARMCPU *cpu = ARM_CPU(cs);
11257     CPUARMState *env = &cpu->env;
11258     uint32_t addr;
11259     uint32_t mask;
11260     int new_mode;
11261     uint32_t offset;
11262     uint32_t moe;
11263 
11264     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11265     switch (syn_get_ec(env->exception.syndrome)) {
11266     case EC_BREAKPOINT:
11267     case EC_BREAKPOINT_SAME_EL:
11268         moe = 1;
11269         break;
11270     case EC_WATCHPOINT:
11271     case EC_WATCHPOINT_SAME_EL:
11272         moe = 10;
11273         break;
11274     case EC_AA32_BKPT:
11275         moe = 3;
11276         break;
11277     case EC_VECTORCATCH:
11278         moe = 5;
11279         break;
11280     default:
11281         moe = 0;
11282         break;
11283     }
11284 
11285     if (moe) {
11286         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11287     }
11288 
11289     if (env->exception.target_el == 2) {
11290         /* Debug exceptions are reported differently on AArch32 */
11291         switch (syn_get_ec(env->exception.syndrome)) {
11292         case EC_BREAKPOINT:
11293         case EC_BREAKPOINT_SAME_EL:
11294         case EC_AA32_BKPT:
11295         case EC_VECTORCATCH:
11296             env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11297                                                      0, 0, 0x22);
11298             break;
11299         case EC_WATCHPOINT:
11300             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11301                                                  EC_DATAABORT);
11302             break;
11303         case EC_WATCHPOINT_SAME_EL:
11304             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11305                                                  EC_DATAABORT_SAME_EL);
11306             break;
11307         }
11308         arm_cpu_do_interrupt_aarch32_hyp(cs);
11309         return;
11310     }
11311 
11312     switch (cs->exception_index) {
11313     case EXCP_UDEF:
11314         new_mode = ARM_CPU_MODE_UND;
11315         addr = 0x04;
11316         mask = CPSR_I;
11317         if (env->thumb) {
11318             offset = 2;
11319         } else {
11320             offset = 4;
11321         }
11322         break;
11323     case EXCP_SWI:
11324         new_mode = ARM_CPU_MODE_SVC;
11325         addr = 0x08;
11326         mask = CPSR_I;
11327         /* The PC already points to the next instruction.  */
11328         offset = 0;
11329         break;
11330     case EXCP_BKPT:
11331         /* Fall through to prefetch abort.  */
11332     case EXCP_PREFETCH_ABORT:
11333         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11334         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11335         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11336                       env->exception.fsr, (uint32_t)env->exception.vaddress);
11337         new_mode = ARM_CPU_MODE_ABT;
11338         addr = 0x0c;
11339         mask = CPSR_A | CPSR_I;
11340         offset = 4;
11341         break;
11342     case EXCP_DATA_ABORT:
11343         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11344         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11345         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11346                       env->exception.fsr,
11347                       (uint32_t)env->exception.vaddress);
11348         new_mode = ARM_CPU_MODE_ABT;
11349         addr = 0x10;
11350         mask = CPSR_A | CPSR_I;
11351         offset = 8;
11352         break;
11353     case EXCP_IRQ:
11354         new_mode = ARM_CPU_MODE_IRQ;
11355         addr = 0x18;
11356         /* Disable IRQ and imprecise data aborts.  */
11357         mask = CPSR_A | CPSR_I;
11358         offset = 4;
11359         if (env->cp15.scr_el3 & SCR_IRQ) {
11360             /* IRQ routed to monitor mode */
11361             new_mode = ARM_CPU_MODE_MON;
11362             mask |= CPSR_F;
11363         }
11364         break;
11365     case EXCP_FIQ:
11366         new_mode = ARM_CPU_MODE_FIQ;
11367         addr = 0x1c;
11368         /* Disable FIQ, IRQ and imprecise data aborts.  */
11369         mask = CPSR_A | CPSR_I | CPSR_F;
11370         if (env->cp15.scr_el3 & SCR_FIQ) {
11371             /* FIQ routed to monitor mode */
11372             new_mode = ARM_CPU_MODE_MON;
11373         }
11374         offset = 4;
11375         break;
11376     case EXCP_VIRQ:
11377         new_mode = ARM_CPU_MODE_IRQ;
11378         addr = 0x18;
11379         /* Disable IRQ and imprecise data aborts.  */
11380         mask = CPSR_A | CPSR_I;
11381         offset = 4;
11382         break;
11383     case EXCP_VFIQ:
11384         new_mode = ARM_CPU_MODE_FIQ;
11385         addr = 0x1c;
11386         /* Disable FIQ, IRQ and imprecise data aborts.  */
11387         mask = CPSR_A | CPSR_I | CPSR_F;
11388         offset = 4;
11389         break;
11390     case EXCP_VSERR:
11391         {
11392             /*
11393              * Note that this is reported as a data abort, but the DFAR
11394              * has an UNKNOWN value.  Construct the SError syndrome from
11395              * AET and ExT fields.
11396              */
11397             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11398 
11399             if (extended_addresses_enabled(env)) {
11400                 env->exception.fsr = arm_fi_to_lfsc(&fi);
11401             } else {
11402                 env->exception.fsr = arm_fi_to_sfsc(&fi);
11403             }
11404             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11405             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11406             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11407                           env->exception.fsr);
11408 
11409             new_mode = ARM_CPU_MODE_ABT;
11410             addr = 0x10;
11411             mask = CPSR_A | CPSR_I;
11412             offset = 8;
11413         }
11414         break;
11415     case EXCP_SMC:
11416         new_mode = ARM_CPU_MODE_MON;
11417         addr = 0x08;
11418         mask = CPSR_A | CPSR_I | CPSR_F;
11419         offset = 0;
11420         break;
11421     default:
11422         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11423         return; /* Never happens.  Keep compiler happy.  */
11424     }
11425 
11426     if (new_mode == ARM_CPU_MODE_MON) {
11427         addr += env->cp15.mvbar;
11428     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11429         /* High vectors. When enabled, base address cannot be remapped. */
11430         addr += 0xffff0000;
11431     } else {
11432         /*
11433          * ARM v7 architectures provide a vector base address register to remap
11434          * the interrupt vector table.
11435          * This register is only followed in non-monitor mode, and is banked.
11436          * Note: only bits 31:5 are valid.
11437          */
11438         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11439     }
11440 
11441     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11442         env->cp15.scr_el3 &= ~SCR_NS;
11443     }
11444 
11445     take_aarch32_exception(env, new_mode, mask, offset, addr);
11446 }
11447 
11448 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11449 {
11450     /*
11451      * Return the register number of the AArch64 view of the AArch32
11452      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11453      * be that of the AArch32 mode the exception came from.
11454      */
11455     int mode = env->uncached_cpsr & CPSR_M;
11456 
11457     switch (aarch32_reg) {
11458     case 0 ... 7:
11459         return aarch32_reg;
11460     case 8 ... 12:
11461         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11462     case 13:
11463         switch (mode) {
11464         case ARM_CPU_MODE_USR:
11465         case ARM_CPU_MODE_SYS:
11466             return 13;
11467         case ARM_CPU_MODE_HYP:
11468             return 15;
11469         case ARM_CPU_MODE_IRQ:
11470             return 17;
11471         case ARM_CPU_MODE_SVC:
11472             return 19;
11473         case ARM_CPU_MODE_ABT:
11474             return 21;
11475         case ARM_CPU_MODE_UND:
11476             return 23;
11477         case ARM_CPU_MODE_FIQ:
11478             return 29;
11479         default:
11480             g_assert_not_reached();
11481         }
11482     case 14:
11483         switch (mode) {
11484         case ARM_CPU_MODE_USR:
11485         case ARM_CPU_MODE_SYS:
11486         case ARM_CPU_MODE_HYP:
11487             return 14;
11488         case ARM_CPU_MODE_IRQ:
11489             return 16;
11490         case ARM_CPU_MODE_SVC:
11491             return 18;
11492         case ARM_CPU_MODE_ABT:
11493             return 20;
11494         case ARM_CPU_MODE_UND:
11495             return 22;
11496         case ARM_CPU_MODE_FIQ:
11497             return 30;
11498         default:
11499             g_assert_not_reached();
11500         }
11501     case 15:
11502         return 31;
11503     default:
11504         g_assert_not_reached();
11505     }
11506 }
11507 
11508 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11509 {
11510     uint32_t ret = cpsr_read(env);
11511 
11512     /* Move DIT to the correct location for SPSR_ELx */
11513     if (ret & CPSR_DIT) {
11514         ret &= ~CPSR_DIT;
11515         ret |= PSTATE_DIT;
11516     }
11517     /* Merge PSTATE.SS into SPSR_ELx */
11518     ret |= env->pstate & PSTATE_SS;
11519 
11520     return ret;
11521 }
11522 
11523 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11524 {
11525     /* Return true if this syndrome value is a synchronous external abort */
11526     switch (syn_get_ec(syndrome)) {
11527     case EC_INSNABORT:
11528     case EC_INSNABORT_SAME_EL:
11529     case EC_DATAABORT:
11530     case EC_DATAABORT_SAME_EL:
11531         /* Look at fault status code for all the synchronous ext abort cases */
11532         switch (syndrome & 0x3f) {
11533         case 0x10:
11534         case 0x13:
11535         case 0x14:
11536         case 0x15:
11537         case 0x16:
11538         case 0x17:
11539             return true;
11540         default:
11541             return false;
11542         }
11543     default:
11544         return false;
11545     }
11546 }
11547 
11548 /* Handle exception entry to a target EL which is using AArch64 */
11549 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11550 {
11551     ARMCPU *cpu = ARM_CPU(cs);
11552     CPUARMState *env = &cpu->env;
11553     unsigned int new_el = env->exception.target_el;
11554     target_ulong addr = env->cp15.vbar_el[new_el];
11555     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11556     unsigned int old_mode;
11557     unsigned int cur_el = arm_current_el(env);
11558     int rt;
11559 
11560     if (tcg_enabled()) {
11561         /*
11562          * Note that new_el can never be 0.  If cur_el is 0, then
11563          * el0_a64 is is_a64(), else el0_a64 is ignored.
11564          */
11565         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11566     }
11567 
11568     if (cur_el < new_el) {
11569         /*
11570          * Entry vector offset depends on whether the implemented EL
11571          * immediately lower than the target level is using AArch32 or AArch64
11572          */
11573         bool is_aa64;
11574         uint64_t hcr;
11575 
11576         switch (new_el) {
11577         case 3:
11578             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11579             break;
11580         case 2:
11581             hcr = arm_hcr_el2_eff(env);
11582             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11583                 is_aa64 = (hcr & HCR_RW) != 0;
11584                 break;
11585             }
11586             /* fall through */
11587         case 1:
11588             is_aa64 = is_a64(env);
11589             break;
11590         default:
11591             g_assert_not_reached();
11592         }
11593 
11594         if (is_aa64) {
11595             addr += 0x400;
11596         } else {
11597             addr += 0x600;
11598         }
11599     } else if (pstate_read(env) & PSTATE_SP) {
11600         addr += 0x200;
11601     }
11602 
11603     switch (cs->exception_index) {
11604     case EXCP_GPC:
11605         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11606                       env->cp15.mfar_el3);
11607         /* fall through */
11608     case EXCP_PREFETCH_ABORT:
11609     case EXCP_DATA_ABORT:
11610         /*
11611          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11612          * to be taken to the SError vector entrypoint.
11613          */
11614         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11615             syndrome_is_sync_extabt(env->exception.syndrome)) {
11616             addr += 0x180;
11617         }
11618         env->cp15.far_el[new_el] = env->exception.vaddress;
11619         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11620                       env->cp15.far_el[new_el]);
11621         /* fall through */
11622     case EXCP_BKPT:
11623     case EXCP_UDEF:
11624     case EXCP_SWI:
11625     case EXCP_HVC:
11626     case EXCP_HYP_TRAP:
11627     case EXCP_SMC:
11628         switch (syn_get_ec(env->exception.syndrome)) {
11629         case EC_ADVSIMDFPACCESSTRAP:
11630             /*
11631              * QEMU internal FP/SIMD syndromes from AArch32 include the
11632              * TA and coproc fields which are only exposed if the exception
11633              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11634              * AArch64 format syndrome.
11635              */
11636             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11637             break;
11638         case EC_CP14RTTRAP:
11639         case EC_CP15RTTRAP:
11640         case EC_CP14DTTRAP:
11641             /*
11642              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11643              * the raw register field from the insn; when taking this to
11644              * AArch64 we must convert it to the AArch64 view of the register
11645              * number. Notice that we read a 4-bit AArch32 register number and
11646              * write back a 5-bit AArch64 one.
11647              */
11648             rt = extract32(env->exception.syndrome, 5, 4);
11649             rt = aarch64_regnum(env, rt);
11650             env->exception.syndrome = deposit32(env->exception.syndrome,
11651                                                 5, 5, rt);
11652             break;
11653         case EC_CP15RRTTRAP:
11654         case EC_CP14RRTTRAP:
11655             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11656             rt = extract32(env->exception.syndrome, 5, 4);
11657             rt = aarch64_regnum(env, rt);
11658             env->exception.syndrome = deposit32(env->exception.syndrome,
11659                                                 5, 5, rt);
11660             rt = extract32(env->exception.syndrome, 10, 4);
11661             rt = aarch64_regnum(env, rt);
11662             env->exception.syndrome = deposit32(env->exception.syndrome,
11663                                                 10, 5, rt);
11664             break;
11665         }
11666         env->cp15.esr_el[new_el] = env->exception.syndrome;
11667         break;
11668     case EXCP_IRQ:
11669     case EXCP_VIRQ:
11670     case EXCP_NMI:
11671     case EXCP_VINMI:
11672         addr += 0x80;
11673         break;
11674     case EXCP_FIQ:
11675     case EXCP_VFIQ:
11676     case EXCP_VFNMI:
11677         addr += 0x100;
11678         break;
11679     case EXCP_VSERR:
11680         addr += 0x180;
11681         /* Construct the SError syndrome from IDS and ISS fields. */
11682         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11683         env->cp15.esr_el[new_el] = env->exception.syndrome;
11684         break;
11685     default:
11686         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11687     }
11688 
11689     if (is_a64(env)) {
11690         old_mode = pstate_read(env);
11691         aarch64_save_sp(env, arm_current_el(env));
11692         env->elr_el[new_el] = env->pc;
11693 
11694         if (cur_el == 1 && new_el == 1) {
11695             uint64_t hcr = arm_hcr_el2_eff(env);
11696             if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11697                 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11698                 /*
11699                  * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11700                  * by setting M[3:2] to 0b10.
11701                  * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11702                  * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11703                  */
11704                 old_mode = deposit32(old_mode, 2, 2, 2);
11705             }
11706         }
11707     } else {
11708         old_mode = cpsr_read_for_spsr_elx(env);
11709         env->elr_el[new_el] = env->regs[15];
11710 
11711         aarch64_sync_32_to_64(env);
11712 
11713         env->condexec_bits = 0;
11714     }
11715     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11716 
11717     qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11718     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11719                   env->elr_el[new_el]);
11720 
11721     if (cpu_isar_feature(aa64_pan, cpu)) {
11722         /* The value of PSTATE.PAN is normally preserved, except when ... */
11723         new_mode |= old_mode & PSTATE_PAN;
11724         switch (new_el) {
11725         case 2:
11726             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11727             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11728                 != (HCR_E2H | HCR_TGE)) {
11729                 break;
11730             }
11731             /* fall through */
11732         case 1:
11733             /* ... the target is EL1 ... */
11734             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11735             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11736                 new_mode |= PSTATE_PAN;
11737             }
11738             break;
11739         }
11740     }
11741     if (cpu_isar_feature(aa64_mte, cpu)) {
11742         new_mode |= PSTATE_TCO;
11743     }
11744 
11745     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11746         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11747             new_mode |= PSTATE_SSBS;
11748         } else {
11749             new_mode &= ~PSTATE_SSBS;
11750         }
11751     }
11752 
11753     if (cpu_isar_feature(aa64_nmi, cpu)) {
11754         if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
11755             new_mode |= PSTATE_ALLINT;
11756         } else {
11757             new_mode &= ~PSTATE_ALLINT;
11758         }
11759     }
11760 
11761     pstate_write(env, PSTATE_DAIF | new_mode);
11762     env->aarch64 = true;
11763     aarch64_restore_sp(env, new_el);
11764 
11765     if (tcg_enabled()) {
11766         helper_rebuild_hflags_a64(env, new_el);
11767     }
11768 
11769     env->pc = addr;
11770 
11771     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11772                   new_el, env->pc, pstate_read(env));
11773 }
11774 
11775 /*
11776  * Do semihosting call and set the appropriate return value. All the
11777  * permission and validity checks have been done at translate time.
11778  *
11779  * We only see semihosting exceptions in TCG only as they are not
11780  * trapped to the hypervisor in KVM.
11781  */
11782 #ifdef CONFIG_TCG
11783 static void tcg_handle_semihosting(CPUState *cs)
11784 {
11785     ARMCPU *cpu = ARM_CPU(cs);
11786     CPUARMState *env = &cpu->env;
11787 
11788     if (is_a64(env)) {
11789         qemu_log_mask(CPU_LOG_INT,
11790                       "...handling as semihosting call 0x%" PRIx64 "\n",
11791                       env->xregs[0]);
11792         do_common_semihosting(cs);
11793         env->pc += 4;
11794     } else {
11795         qemu_log_mask(CPU_LOG_INT,
11796                       "...handling as semihosting call 0x%x\n",
11797                       env->regs[0]);
11798         do_common_semihosting(cs);
11799         env->regs[15] += env->thumb ? 2 : 4;
11800     }
11801 }
11802 #endif
11803 
11804 /*
11805  * Handle a CPU exception for A and R profile CPUs.
11806  * Do any appropriate logging, handle PSCI calls, and then hand off
11807  * to the AArch64-entry or AArch32-entry function depending on the
11808  * target exception level's register width.
11809  *
11810  * Note: this is used for both TCG (as the do_interrupt tcg op),
11811  *       and KVM to re-inject guest debug exceptions, and to
11812  *       inject a Synchronous-External-Abort.
11813  */
11814 void arm_cpu_do_interrupt(CPUState *cs)
11815 {
11816     ARMCPU *cpu = ARM_CPU(cs);
11817     CPUARMState *env = &cpu->env;
11818     unsigned int new_el = env->exception.target_el;
11819 
11820     assert(!arm_feature(env, ARM_FEATURE_M));
11821 
11822     arm_log_exception(cs);
11823     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11824                   new_el);
11825     if (qemu_loglevel_mask(CPU_LOG_INT)
11826         && !excp_is_internal(cs->exception_index)) {
11827         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11828                       syn_get_ec(env->exception.syndrome),
11829                       env->exception.syndrome);
11830     }
11831 
11832     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11833         arm_handle_psci_call(cpu);
11834         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11835         return;
11836     }
11837 
11838     /*
11839      * Semihosting semantics depend on the register width of the code
11840      * that caused the exception, not the target exception level, so
11841      * must be handled here.
11842      */
11843 #ifdef CONFIG_TCG
11844     if (cs->exception_index == EXCP_SEMIHOST) {
11845         tcg_handle_semihosting(cs);
11846         return;
11847     }
11848 #endif
11849 
11850     /*
11851      * Hooks may change global state so BQL should be held, also the
11852      * BQL needs to be held for any modification of
11853      * cs->interrupt_request.
11854      */
11855     g_assert(bql_locked());
11856 
11857     arm_call_pre_el_change_hook(cpu);
11858 
11859     assert(!excp_is_internal(cs->exception_index));
11860     if (arm_el_is_aa64(env, new_el)) {
11861         arm_cpu_do_interrupt_aarch64(cs);
11862     } else {
11863         arm_cpu_do_interrupt_aarch32(cs);
11864     }
11865 
11866     arm_call_el_change_hook(cpu);
11867 
11868     if (!kvm_enabled()) {
11869         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11870     }
11871 }
11872 #endif /* !CONFIG_USER_ONLY */
11873 
11874 uint64_t arm_sctlr(CPUARMState *env, int el)
11875 {
11876     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */
11877     if (el == 0) {
11878         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11879         switch (mmu_idx) {
11880         case ARMMMUIdx_E20_0:
11881             el = 2;
11882             break;
11883         case ARMMMUIdx_E30_0:
11884             el = 3;
11885             break;
11886         default:
11887             el = 1;
11888             break;
11889         }
11890     }
11891     return env->cp15.sctlr_el[el];
11892 }
11893 
11894 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11895 {
11896     if (regime_has_2_ranges(mmu_idx)) {
11897         return extract64(tcr, 37, 2);
11898     } else if (regime_is_stage2(mmu_idx)) {
11899         return 0; /* VTCR_EL2 */
11900     } else {
11901         /* Replicate the single TBI bit so we always have 2 bits.  */
11902         return extract32(tcr, 20, 1) * 3;
11903     }
11904 }
11905 
11906 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11907 {
11908     if (regime_has_2_ranges(mmu_idx)) {
11909         return extract64(tcr, 51, 2);
11910     } else if (regime_is_stage2(mmu_idx)) {
11911         return 0; /* VTCR_EL2 */
11912     } else {
11913         /* Replicate the single TBID bit so we always have 2 bits.  */
11914         return extract32(tcr, 29, 1) * 3;
11915     }
11916 }
11917 
11918 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11919 {
11920     if (regime_has_2_ranges(mmu_idx)) {
11921         return extract64(tcr, 57, 2);
11922     } else {
11923         /* Replicate the single TCMA bit so we always have 2 bits.  */
11924         return extract32(tcr, 30, 1) * 3;
11925     }
11926 }
11927 
11928 static ARMGranuleSize tg0_to_gran_size(int tg)
11929 {
11930     switch (tg) {
11931     case 0:
11932         return Gran4K;
11933     case 1:
11934         return Gran64K;
11935     case 2:
11936         return Gran16K;
11937     default:
11938         return GranInvalid;
11939     }
11940 }
11941 
11942 static ARMGranuleSize tg1_to_gran_size(int tg)
11943 {
11944     switch (tg) {
11945     case 1:
11946         return Gran16K;
11947     case 2:
11948         return Gran4K;
11949     case 3:
11950         return Gran64K;
11951     default:
11952         return GranInvalid;
11953     }
11954 }
11955 
11956 static inline bool have4k(ARMCPU *cpu, bool stage2)
11957 {
11958     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11959         : cpu_isar_feature(aa64_tgran4, cpu);
11960 }
11961 
11962 static inline bool have16k(ARMCPU *cpu, bool stage2)
11963 {
11964     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11965         : cpu_isar_feature(aa64_tgran16, cpu);
11966 }
11967 
11968 static inline bool have64k(ARMCPU *cpu, bool stage2)
11969 {
11970     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11971         : cpu_isar_feature(aa64_tgran64, cpu);
11972 }
11973 
11974 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11975                                          bool stage2)
11976 {
11977     switch (gran) {
11978     case Gran4K:
11979         if (have4k(cpu, stage2)) {
11980             return gran;
11981         }
11982         break;
11983     case Gran16K:
11984         if (have16k(cpu, stage2)) {
11985             return gran;
11986         }
11987         break;
11988     case Gran64K:
11989         if (have64k(cpu, stage2)) {
11990             return gran;
11991         }
11992         break;
11993     case GranInvalid:
11994         break;
11995     }
11996     /*
11997      * If the guest selects a granule size that isn't implemented,
11998      * the architecture requires that we behave as if it selected one
11999      * that is (with an IMPDEF choice of which one to pick). We choose
12000      * to implement the smallest supported granule size.
12001      */
12002     if (have4k(cpu, stage2)) {
12003         return Gran4K;
12004     }
12005     if (have16k(cpu, stage2)) {
12006         return Gran16K;
12007     }
12008     assert(have64k(cpu, stage2));
12009     return Gran64K;
12010 }
12011 
12012 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
12013                                    ARMMMUIdx mmu_idx, bool data,
12014                                    bool el1_is_aa32)
12015 {
12016     uint64_t tcr = regime_tcr(env, mmu_idx);
12017     bool epd, hpd, tsz_oob, ds, ha, hd;
12018     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
12019     ARMGranuleSize gran;
12020     ARMCPU *cpu = env_archcpu(env);
12021     bool stage2 = regime_is_stage2(mmu_idx);
12022 
12023     if (!regime_has_2_ranges(mmu_idx)) {
12024         select = 0;
12025         tsz = extract32(tcr, 0, 6);
12026         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12027         if (stage2) {
12028             /* VTCR_EL2 */
12029             hpd = false;
12030         } else {
12031             hpd = extract32(tcr, 24, 1);
12032         }
12033         epd = false;
12034         sh = extract32(tcr, 12, 2);
12035         ps = extract32(tcr, 16, 3);
12036         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
12037         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12038         ds = extract64(tcr, 32, 1);
12039     } else {
12040         bool e0pd;
12041 
12042         /*
12043          * Bit 55 is always between the two regions, and is canonical for
12044          * determining if address tagging is enabled.
12045          */
12046         select = extract64(va, 55, 1);
12047         if (!select) {
12048             tsz = extract32(tcr, 0, 6);
12049             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12050             epd = extract32(tcr, 7, 1);
12051             sh = extract32(tcr, 12, 2);
12052             hpd = extract64(tcr, 41, 1);
12053             e0pd = extract64(tcr, 55, 1);
12054         } else {
12055             tsz = extract32(tcr, 16, 6);
12056             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
12057             epd = extract32(tcr, 23, 1);
12058             sh = extract32(tcr, 28, 2);
12059             hpd = extract64(tcr, 42, 1);
12060             e0pd = extract64(tcr, 56, 1);
12061         }
12062         ps = extract64(tcr, 32, 3);
12063         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
12064         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12065         ds = extract64(tcr, 59, 1);
12066 
12067         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
12068             regime_is_user(env, mmu_idx)) {
12069             epd = true;
12070         }
12071     }
12072 
12073     gran = sanitize_gran_size(cpu, gran, stage2);
12074 
12075     if (cpu_isar_feature(aa64_st, cpu)) {
12076         max_tsz = 48 - (gran == Gran64K);
12077     } else {
12078         max_tsz = 39;
12079     }
12080 
12081     /*
12082      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
12083      * adjust the effective value of DS, as documented.
12084      */
12085     min_tsz = 16;
12086     if (gran == Gran64K) {
12087         if (cpu_isar_feature(aa64_lva, cpu)) {
12088             min_tsz = 12;
12089         }
12090         ds = false;
12091     } else if (ds) {
12092         if (regime_is_stage2(mmu_idx)) {
12093             if (gran == Gran16K) {
12094                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
12095             } else {
12096                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
12097             }
12098         } else {
12099             if (gran == Gran16K) {
12100                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
12101             } else {
12102                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
12103             }
12104         }
12105         if (ds) {
12106             min_tsz = 12;
12107         }
12108     }
12109 
12110     if (stage2 && el1_is_aa32) {
12111         /*
12112          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
12113          * are loosened: a configured IPA of 40 bits is permitted even if
12114          * the implemented PA is less than that (and so a 40 bit IPA would
12115          * fault for an AArch64 EL1). See R_DTLMN.
12116          */
12117         min_tsz = MIN(min_tsz, 24);
12118     }
12119 
12120     if (tsz > max_tsz) {
12121         tsz = max_tsz;
12122         tsz_oob = true;
12123     } else if (tsz < min_tsz) {
12124         tsz = min_tsz;
12125         tsz_oob = true;
12126     } else {
12127         tsz_oob = false;
12128     }
12129 
12130     /* Present TBI as a composite with TBID.  */
12131     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12132     if (!data) {
12133         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12134     }
12135     tbi = (tbi >> select) & 1;
12136 
12137     return (ARMVAParameters) {
12138         .tsz = tsz,
12139         .ps = ps,
12140         .sh = sh,
12141         .select = select,
12142         .tbi = tbi,
12143         .epd = epd,
12144         .hpd = hpd,
12145         .tsz_oob = tsz_oob,
12146         .ds = ds,
12147         .ha = ha,
12148         .hd = ha && hd,
12149         .gran = gran,
12150     };
12151 }
12152 
12153 /*
12154  * Note that signed overflow is undefined in C.  The following routines are
12155  * careful to use unsigned types where modulo arithmetic is required.
12156  * Failure to do so _will_ break on newer gcc.
12157  */
12158 
12159 /* Signed saturating arithmetic.  */
12160 
12161 /* Perform 16-bit signed saturating addition.  */
12162 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12163 {
12164     uint16_t res;
12165 
12166     res = a + b;
12167     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12168         if (a & 0x8000) {
12169             res = 0x8000;
12170         } else {
12171             res = 0x7fff;
12172         }
12173     }
12174     return res;
12175 }
12176 
12177 /* Perform 8-bit signed saturating addition.  */
12178 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12179 {
12180     uint8_t res;
12181 
12182     res = a + b;
12183     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12184         if (a & 0x80) {
12185             res = 0x80;
12186         } else {
12187             res = 0x7f;
12188         }
12189     }
12190     return res;
12191 }
12192 
12193 /* Perform 16-bit signed saturating subtraction.  */
12194 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12195 {
12196     uint16_t res;
12197 
12198     res = a - b;
12199     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12200         if (a & 0x8000) {
12201             res = 0x8000;
12202         } else {
12203             res = 0x7fff;
12204         }
12205     }
12206     return res;
12207 }
12208 
12209 /* Perform 8-bit signed saturating subtraction.  */
12210 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12211 {
12212     uint8_t res;
12213 
12214     res = a - b;
12215     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12216         if (a & 0x80) {
12217             res = 0x80;
12218         } else {
12219             res = 0x7f;
12220         }
12221     }
12222     return res;
12223 }
12224 
12225 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12226 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12227 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12228 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12229 #define PFX q
12230 
12231 #include "op_addsub.h"
12232 
12233 /* Unsigned saturating arithmetic.  */
12234 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12235 {
12236     uint16_t res;
12237     res = a + b;
12238     if (res < a) {
12239         res = 0xffff;
12240     }
12241     return res;
12242 }
12243 
12244 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12245 {
12246     if (a > b) {
12247         return a - b;
12248     } else {
12249         return 0;
12250     }
12251 }
12252 
12253 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12254 {
12255     uint8_t res;
12256     res = a + b;
12257     if (res < a) {
12258         res = 0xff;
12259     }
12260     return res;
12261 }
12262 
12263 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12264 {
12265     if (a > b) {
12266         return a - b;
12267     } else {
12268         return 0;
12269     }
12270 }
12271 
12272 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12273 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12274 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12275 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12276 #define PFX uq
12277 
12278 #include "op_addsub.h"
12279 
12280 /* Signed modulo arithmetic.  */
12281 #define SARITH16(a, b, n, op) do { \
12282     int32_t sum; \
12283     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12284     RESULT(sum, n, 16); \
12285     if (sum >= 0) \
12286         ge |= 3 << (n * 2); \
12287     } while (0)
12288 
12289 #define SARITH8(a, b, n, op) do { \
12290     int32_t sum; \
12291     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12292     RESULT(sum, n, 8); \
12293     if (sum >= 0) \
12294         ge |= 1 << n; \
12295     } while (0)
12296 
12297 
12298 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12299 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12300 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12301 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12302 #define PFX s
12303 #define ARITH_GE
12304 
12305 #include "op_addsub.h"
12306 
12307 /* Unsigned modulo arithmetic.  */
12308 #define ADD16(a, b, n) do { \
12309     uint32_t sum; \
12310     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12311     RESULT(sum, n, 16); \
12312     if ((sum >> 16) == 1) \
12313         ge |= 3 << (n * 2); \
12314     } while (0)
12315 
12316 #define ADD8(a, b, n) do { \
12317     uint32_t sum; \
12318     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12319     RESULT(sum, n, 8); \
12320     if ((sum >> 8) == 1) \
12321         ge |= 1 << n; \
12322     } while (0)
12323 
12324 #define SUB16(a, b, n) do { \
12325     uint32_t sum; \
12326     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12327     RESULT(sum, n, 16); \
12328     if ((sum >> 16) == 0) \
12329         ge |= 3 << (n * 2); \
12330     } while (0)
12331 
12332 #define SUB8(a, b, n) do { \
12333     uint32_t sum; \
12334     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12335     RESULT(sum, n, 8); \
12336     if ((sum >> 8) == 0) \
12337         ge |= 1 << n; \
12338     } while (0)
12339 
12340 #define PFX u
12341 #define ARITH_GE
12342 
12343 #include "op_addsub.h"
12344 
12345 /* Halved signed arithmetic.  */
12346 #define ADD16(a, b, n) \
12347   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12348 #define SUB16(a, b, n) \
12349   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12350 #define ADD8(a, b, n) \
12351   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12352 #define SUB8(a, b, n) \
12353   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12354 #define PFX sh
12355 
12356 #include "op_addsub.h"
12357 
12358 /* Halved unsigned arithmetic.  */
12359 #define ADD16(a, b, n) \
12360   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12361 #define SUB16(a, b, n) \
12362   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12363 #define ADD8(a, b, n) \
12364   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12365 #define SUB8(a, b, n) \
12366   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12367 #define PFX uh
12368 
12369 #include "op_addsub.h"
12370 
12371 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12372 {
12373     if (a > b) {
12374         return a - b;
12375     } else {
12376         return b - a;
12377     }
12378 }
12379 
12380 /* Unsigned sum of absolute byte differences.  */
12381 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12382 {
12383     uint32_t sum;
12384     sum = do_usad(a, b);
12385     sum += do_usad(a >> 8, b >> 8);
12386     sum += do_usad(a >> 16, b >> 16);
12387     sum += do_usad(a >> 24, b >> 24);
12388     return sum;
12389 }
12390 
12391 /* For ARMv6 SEL instruction.  */
12392 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12393 {
12394     uint32_t mask;
12395 
12396     mask = 0;
12397     if (flags & 1) {
12398         mask |= 0xff;
12399     }
12400     if (flags & 2) {
12401         mask |= 0xff00;
12402     }
12403     if (flags & 4) {
12404         mask |= 0xff0000;
12405     }
12406     if (flags & 8) {
12407         mask |= 0xff000000;
12408     }
12409     return (a & mask) | (b & ~mask);
12410 }
12411 
12412 /*
12413  * CRC helpers.
12414  * The upper bytes of val (above the number specified by 'bytes') must have
12415  * been zeroed out by the caller.
12416  */
12417 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12418 {
12419     uint8_t buf[4];
12420 
12421     stl_le_p(buf, val);
12422 
12423     /* zlib crc32 converts the accumulator and output to one's complement.  */
12424     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12425 }
12426 
12427 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12428 {
12429     uint8_t buf[4];
12430 
12431     stl_le_p(buf, val);
12432 
12433     /* Linux crc32c converts the output to one's complement.  */
12434     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12435 }
12436 
12437 /*
12438  * Return the exception level to which FP-disabled exceptions should
12439  * be taken, or 0 if FP is enabled.
12440  */
12441 int fp_exception_el(CPUARMState *env, int cur_el)
12442 {
12443 #ifndef CONFIG_USER_ONLY
12444     uint64_t hcr_el2;
12445 
12446     /*
12447      * CPACR and the CPTR registers don't exist before v6, so FP is
12448      * always accessible
12449      */
12450     if (!arm_feature(env, ARM_FEATURE_V6)) {
12451         return 0;
12452     }
12453 
12454     if (arm_feature(env, ARM_FEATURE_M)) {
12455         /* CPACR can cause a NOCP UsageFault taken to current security state */
12456         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12457             return 1;
12458         }
12459 
12460         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12461             if (!extract32(env->v7m.nsacr, 10, 1)) {
12462                 /* FP insns cause a NOCP UsageFault taken to Secure */
12463                 return 3;
12464             }
12465         }
12466 
12467         return 0;
12468     }
12469 
12470     hcr_el2 = arm_hcr_el2_eff(env);
12471 
12472     /*
12473      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12474      * 0, 2 : trap EL0 and EL1/PL1 accesses
12475      * 1    : trap only EL0 accesses
12476      * 3    : trap no accesses
12477      * This register is ignored if E2H+TGE are both set.
12478      */
12479     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12480         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12481 
12482         switch (fpen) {
12483         case 1:
12484             if (cur_el != 0) {
12485                 break;
12486             }
12487             /* fall through */
12488         case 0:
12489         case 2:
12490             /* Trap from Secure PL0 or PL1 to Secure PL1. */
12491             if (!arm_el_is_aa64(env, 3)
12492                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12493                 return 3;
12494             }
12495             if (cur_el <= 1) {
12496                 return 1;
12497             }
12498             break;
12499         }
12500     }
12501 
12502     /*
12503      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12504      * to control non-secure access to the FPU. It doesn't have any
12505      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12506      */
12507     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12508          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12509         if (!extract32(env->cp15.nsacr, 10, 1)) {
12510             /* FP insns act as UNDEF */
12511             return cur_el == 2 ? 2 : 1;
12512         }
12513     }
12514 
12515     /*
12516      * CPTR_EL2 is present in v7VE or v8, and changes format
12517      * with HCR_EL2.E2H (regardless of TGE).
12518      */
12519     if (cur_el <= 2) {
12520         if (hcr_el2 & HCR_E2H) {
12521             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12522             case 1:
12523                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12524                     break;
12525                 }
12526                 /* fall through */
12527             case 0:
12528             case 2:
12529                 return 2;
12530             }
12531         } else if (arm_is_el2_enabled(env)) {
12532             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12533                 return 2;
12534             }
12535         }
12536     }
12537 
12538     /* CPTR_EL3 : present in v8 */
12539     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12540         /* Trap all FP ops to EL3 */
12541         return 3;
12542     }
12543 #endif
12544     return 0;
12545 }
12546 
12547 /* Return the exception level we're running at if this is our mmu_idx */
12548 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12549 {
12550     if (mmu_idx & ARM_MMU_IDX_M) {
12551         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12552     }
12553 
12554     switch (mmu_idx) {
12555     case ARMMMUIdx_E10_0:
12556     case ARMMMUIdx_E20_0:
12557     case ARMMMUIdx_E30_0:
12558         return 0;
12559     case ARMMMUIdx_E10_1:
12560     case ARMMMUIdx_E10_1_PAN:
12561         return 1;
12562     case ARMMMUIdx_E2:
12563     case ARMMMUIdx_E20_2:
12564     case ARMMMUIdx_E20_2_PAN:
12565         return 2;
12566     case ARMMMUIdx_E3:
12567     case ARMMMUIdx_E30_3_PAN:
12568         return 3;
12569     default:
12570         g_assert_not_reached();
12571     }
12572 }
12573 
12574 #ifndef CONFIG_TCG
12575 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12576 {
12577     g_assert_not_reached();
12578 }
12579 #endif
12580 
12581 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12582 {
12583     ARMMMUIdx idx;
12584     uint64_t hcr;
12585 
12586     if (arm_feature(env, ARM_FEATURE_M)) {
12587         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12588     }
12589 
12590     /* See ARM pseudo-function ELIsInHost.  */
12591     switch (el) {
12592     case 0:
12593         hcr = arm_hcr_el2_eff(env);
12594         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12595             idx = ARMMMUIdx_E20_0;
12596         } else if (arm_is_secure_below_el3(env) &&
12597                    !arm_el_is_aa64(env, 3)) {
12598             idx = ARMMMUIdx_E30_0;
12599         } else {
12600             idx = ARMMMUIdx_E10_0;
12601         }
12602         break;
12603     case 1:
12604         if (arm_pan_enabled(env)) {
12605             idx = ARMMMUIdx_E10_1_PAN;
12606         } else {
12607             idx = ARMMMUIdx_E10_1;
12608         }
12609         break;
12610     case 2:
12611         /* Note that TGE does not apply at EL2.  */
12612         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12613             if (arm_pan_enabled(env)) {
12614                 idx = ARMMMUIdx_E20_2_PAN;
12615             } else {
12616                 idx = ARMMMUIdx_E20_2;
12617             }
12618         } else {
12619             idx = ARMMMUIdx_E2;
12620         }
12621         break;
12622     case 3:
12623         if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) {
12624             return ARMMMUIdx_E30_3_PAN;
12625         }
12626         return ARMMMUIdx_E3;
12627     default:
12628         g_assert_not_reached();
12629     }
12630 
12631     return idx;
12632 }
12633 
12634 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12635 {
12636     return arm_mmu_idx_el(env, arm_current_el(env));
12637 }
12638 
12639 static bool mve_no_pred(CPUARMState *env)
12640 {
12641     /*
12642      * Return true if there is definitely no predication of MVE
12643      * instructions by VPR or LTPSIZE. (Returning false even if there
12644      * isn't any predication is OK; generated code will just be
12645      * a little worse.)
12646      * If the CPU does not implement MVE then this TB flag is always 0.
12647      *
12648      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12649      * logic in gen_update_fp_context() needs to be updated to match.
12650      *
12651      * We do not include the effect of the ECI bits here -- they are
12652      * tracked in other TB flags. This simplifies the logic for
12653      * "when did we emit code that changes the MVE_NO_PRED TB flag
12654      * and thus need to end the TB?".
12655      */
12656     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12657         return false;
12658     }
12659     if (env->v7m.vpr) {
12660         return false;
12661     }
12662     if (env->v7m.ltpsize < 4) {
12663         return false;
12664     }
12665     return true;
12666 }
12667 
12668 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12669                           uint64_t *cs_base, uint32_t *pflags)
12670 {
12671     CPUARMTBFlags flags;
12672 
12673     assert_hflags_rebuild_correctly(env);
12674     flags = env->hflags;
12675 
12676     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12677         *pc = env->pc;
12678         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12679             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12680         }
12681     } else {
12682         *pc = env->regs[15];
12683 
12684         if (arm_feature(env, ARM_FEATURE_M)) {
12685             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12686                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12687                 != env->v7m.secure) {
12688                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12689             }
12690 
12691             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12692                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12693                  (env->v7m.secure &&
12694                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12695                 /*
12696                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12697                  * active FP context; we must create a new FP context before
12698                  * executing any FP insn.
12699                  */
12700                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12701             }
12702 
12703             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12704             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12705                 DP_TBFLAG_M32(flags, LSPACT, 1);
12706             }
12707 
12708             if (mve_no_pred(env)) {
12709                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12710             }
12711         } else {
12712             /*
12713              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12714              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12715              */
12716             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12717                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12718             } else {
12719                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12720                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12721             }
12722             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12723                 DP_TBFLAG_A32(flags, VFPEN, 1);
12724             }
12725         }
12726 
12727         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12728         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12729     }
12730 
12731     /*
12732      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12733      * states defined in the ARM ARM for software singlestep:
12734      *  SS_ACTIVE   PSTATE.SS   State
12735      *     0            x       Inactive (the TB flag for SS is always 0)
12736      *     1            0       Active-pending
12737      *     1            1       Active-not-pending
12738      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12739      */
12740     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12741         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12742     }
12743 
12744     *pflags = flags.flags;
12745     *cs_base = flags.flags2;
12746 }
12747 
12748 #ifdef TARGET_AARCH64
12749 /*
12750  * The manual says that when SVE is enabled and VQ is widened the
12751  * implementation is allowed to zero the previously inaccessible
12752  * portion of the registers.  The corollary to that is that when
12753  * SVE is enabled and VQ is narrowed we are also allowed to zero
12754  * the now inaccessible portion of the registers.
12755  *
12756  * The intent of this is that no predicate bit beyond VQ is ever set.
12757  * Which means that some operations on predicate registers themselves
12758  * may operate on full uint64_t or even unrolled across the maximum
12759  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12760  * may well be cheaper than conditionals to restrict the operation
12761  * to the relevant portion of a uint16_t[16].
12762  */
12763 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12764 {
12765     int i, j;
12766     uint64_t pmask;
12767 
12768     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12769     assert(vq <= env_archcpu(env)->sve_max_vq);
12770 
12771     /* Zap the high bits of the zregs.  */
12772     for (i = 0; i < 32; i++) {
12773         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12774     }
12775 
12776     /* Zap the high bits of the pregs and ffr.  */
12777     pmask = 0;
12778     if (vq & 3) {
12779         pmask = ~(-1ULL << (16 * (vq & 3)));
12780     }
12781     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12782         for (i = 0; i < 17; ++i) {
12783             env->vfp.pregs[i].p[j] &= pmask;
12784         }
12785         pmask = 0;
12786     }
12787 }
12788 
12789 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12790 {
12791     int exc_el;
12792 
12793     if (sm) {
12794         exc_el = sme_exception_el(env, el);
12795     } else {
12796         exc_el = sve_exception_el(env, el);
12797     }
12798     if (exc_el) {
12799         return 0; /* disabled */
12800     }
12801     return sve_vqm1_for_el_sm(env, el, sm);
12802 }
12803 
12804 /*
12805  * Notice a change in SVE vector size when changing EL.
12806  */
12807 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12808                            int new_el, bool el0_a64)
12809 {
12810     ARMCPU *cpu = env_archcpu(env);
12811     int old_len, new_len;
12812     bool old_a64, new_a64, sm;
12813 
12814     /* Nothing to do if no SVE.  */
12815     if (!cpu_isar_feature(aa64_sve, cpu)) {
12816         return;
12817     }
12818 
12819     /* Nothing to do if FP is disabled in either EL.  */
12820     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12821         return;
12822     }
12823 
12824     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12825     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12826 
12827     /*
12828      * Both AArch64.TakeException and AArch64.ExceptionReturn
12829      * invoke ResetSVEState when taking an exception from, or
12830      * returning to, AArch32 state when PSTATE.SM is enabled.
12831      */
12832     sm = FIELD_EX64(env->svcr, SVCR, SM);
12833     if (old_a64 != new_a64 && sm) {
12834         arm_reset_sve_state(env);
12835         return;
12836     }
12837 
12838     /*
12839      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12840      * at ELx, or not available because the EL is in AArch32 state, then
12841      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12842      * has an effective value of 0".
12843      *
12844      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12845      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12846      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12847      * we already have the correct register contents when encountering the
12848      * vq0->vq0 transition between EL0->EL1.
12849      */
12850     old_len = new_len = 0;
12851     if (old_a64) {
12852         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12853     }
12854     if (new_a64) {
12855         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12856     }
12857 
12858     /* When changing vector length, clear inaccessible state.  */
12859     if (new_len < old_len) {
12860         aarch64_sve_narrow_vq(env, new_len + 1);
12861     }
12862 }
12863 #endif
12864 
12865 #ifndef CONFIG_USER_ONLY
12866 ARMSecuritySpace arm_security_space(CPUARMState *env)
12867 {
12868     if (arm_feature(env, ARM_FEATURE_M)) {
12869         return arm_secure_to_space(env->v7m.secure);
12870     }
12871 
12872     /*
12873      * If EL3 is not supported then the secure state is implementation
12874      * defined, in which case QEMU defaults to non-secure.
12875      */
12876     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12877         return ARMSS_NonSecure;
12878     }
12879 
12880     /* Check for AArch64 EL3 or AArch32 Mon. */
12881     if (is_a64(env)) {
12882         if (extract32(env->pstate, 2, 2) == 3) {
12883             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12884                 return ARMSS_Root;
12885             } else {
12886                 return ARMSS_Secure;
12887             }
12888         }
12889     } else {
12890         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12891             return ARMSS_Secure;
12892         }
12893     }
12894 
12895     return arm_security_space_below_el3(env);
12896 }
12897 
12898 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12899 {
12900     assert(!arm_feature(env, ARM_FEATURE_M));
12901 
12902     /*
12903      * If EL3 is not supported then the secure state is implementation
12904      * defined, in which case QEMU defaults to non-secure.
12905      */
12906     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12907         return ARMSS_NonSecure;
12908     }
12909 
12910     /*
12911      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12912      * Ignoring NSE when !NS retains consistency without having to
12913      * modify other predicates.
12914      */
12915     if (!(env->cp15.scr_el3 & SCR_NS)) {
12916         return ARMSS_Secure;
12917     } else if (env->cp15.scr_el3 & SCR_NSE) {
12918         return ARMSS_Realm;
12919     } else {
12920         return ARMSS_NonSecure;
12921     }
12922 }
12923 #endif /* !CONFIG_USER_ONLY */
12924