xref: /openbmc/qemu/target/arm/debug_helper.c (revision fa3673e4)
1 /*
2  * ARM debug helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpu-features.h"
13 #include "cpregs.h"
14 #include "exec/exec-all.h"
15 #include "exec/helper-proto.h"
16 #include "sysemu/tcg.h"
17 
18 #ifdef CONFIG_TCG
19 /* Return the Exception Level targeted by debug exceptions. */
20 static int arm_debug_target_el(CPUARMState *env)
21 {
22     bool secure = arm_is_secure(env);
23     bool route_to_el2 = false;
24 
25     if (arm_feature(env, ARM_FEATURE_M)) {
26         return 1;
27     }
28 
29     if (arm_is_el2_enabled(env)) {
30         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
31                        env->cp15.mdcr_el2 & MDCR_TDE;
32     }
33 
34     if (route_to_el2) {
35         return 2;
36     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
37                !arm_el_is_aa64(env, 3) && secure) {
38         return 3;
39     } else {
40         return 1;
41     }
42 }
43 
44 /*
45  * Raise an exception to the debug target el.
46  * Modify syndrome to indicate when origin and target EL are the same.
47  */
48 G_NORETURN static void
49 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
50 {
51     int debug_el = arm_debug_target_el(env);
52     int cur_el = arm_current_el(env);
53 
54     /*
55      * If singlestep is targeting a lower EL than the current one, then
56      * DisasContext.ss_active must be false and we can never get here.
57      * Similarly for watchpoint and breakpoint matches.
58      */
59     assert(debug_el >= cur_el);
60     syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
61     raise_exception(env, excp, syndrome, debug_el);
62 }
63 
64 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
65 static bool aa64_generate_debug_exceptions(CPUARMState *env)
66 {
67     int cur_el = arm_current_el(env);
68     int debug_el;
69 
70     if (cur_el == 3) {
71         return false;
72     }
73 
74     /* MDCR_EL3.SDD disables debug events from Secure state */
75     if (arm_is_secure_below_el3(env)
76         && extract32(env->cp15.mdcr_el3, 16, 1)) {
77         return false;
78     }
79 
80     /*
81      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
82      * while not masking the (D)ebug bit in DAIF.
83      */
84     debug_el = arm_debug_target_el(env);
85 
86     if (cur_el == debug_el) {
87         return extract32(env->cp15.mdscr_el1, 13, 1)
88             && !(env->daif & PSTATE_D);
89     }
90 
91     /* Otherwise the debug target needs to be a higher EL */
92     return debug_el > cur_el;
93 }
94 
95 static bool aa32_generate_debug_exceptions(CPUARMState *env)
96 {
97     int el = arm_current_el(env);
98 
99     if (el == 0 && arm_el_is_aa64(env, 1)) {
100         return aa64_generate_debug_exceptions(env);
101     }
102 
103     if (arm_is_secure(env)) {
104         int spd;
105 
106         if (el == 0 && (env->cp15.sder & 1)) {
107             /*
108              * SDER.SUIDEN means debug exceptions from Secure EL0
109              * are always enabled. Otherwise they are controlled by
110              * SDCR.SPD like those from other Secure ELs.
111              */
112             return true;
113         }
114 
115         spd = extract32(env->cp15.mdcr_el3, 14, 2);
116         switch (spd) {
117         case 1:
118             /* SPD == 0b01 is reserved, but behaves as 0b00. */
119         case 0:
120             /*
121              * For 0b00 we return true if external secure invasive debug
122              * is enabled. On real hardware this is controlled by external
123              * signals to the core. QEMU always permits debug, and behaves
124              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
125              */
126             return true;
127         case 2:
128             return false;
129         case 3:
130             return true;
131         }
132     }
133 
134     return el != 2;
135 }
136 
137 /*
138  * Return true if debugging exceptions are currently enabled.
139  * This corresponds to what in ARM ARM pseudocode would be
140  *    if UsingAArch32() then
141  *        return AArch32.GenerateDebugExceptions()
142  *    else
143  *        return AArch64.GenerateDebugExceptions()
144  * We choose to push the if() down into this function for clarity,
145  * since the pseudocode has it at all callsites except for the one in
146  * CheckSoftwareStep(), where it is elided because both branches would
147  * always return the same value.
148  */
149 bool arm_generate_debug_exceptions(CPUARMState *env)
150 {
151     if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
152         return false;
153     }
154     if (is_a64(env)) {
155         return aa64_generate_debug_exceptions(env);
156     } else {
157         return aa32_generate_debug_exceptions(env);
158     }
159 }
160 
161 /*
162  * Is single-stepping active? (Note that the "is EL_D AArch64?" check
163  * implicitly means this always returns false in pre-v8 CPUs.)
164  */
165 bool arm_singlestep_active(CPUARMState *env)
166 {
167     return extract32(env->cp15.mdscr_el1, 0, 1)
168         && arm_el_is_aa64(env, arm_debug_target_el(env))
169         && arm_generate_debug_exceptions(env);
170 }
171 
172 /* Return true if the linked breakpoint entry lbn passes its checks */
173 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
174 {
175     CPUARMState *env = &cpu->env;
176     uint64_t bcr = env->cp15.dbgbcr[lbn];
177     int brps = arm_num_brps(cpu);
178     int ctx_cmps = arm_num_ctx_cmps(cpu);
179     int bt;
180     uint32_t contextidr;
181     uint64_t hcr_el2;
182 
183     /*
184      * Links to unimplemented or non-context aware breakpoints are
185      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
186      * as if linked to an UNKNOWN context-aware breakpoint (in which
187      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
188      * We choose the former.
189      */
190     if (lbn >= brps || lbn < (brps - ctx_cmps)) {
191         return false;
192     }
193 
194     bcr = env->cp15.dbgbcr[lbn];
195 
196     if (extract64(bcr, 0, 1) == 0) {
197         /* Linked breakpoint disabled : generate no events */
198         return false;
199     }
200 
201     bt = extract64(bcr, 20, 4);
202     hcr_el2 = arm_hcr_el2_eff(env);
203 
204     switch (bt) {
205     case 3: /* linked context ID match */
206         switch (arm_current_el(env)) {
207         default:
208             /* Context matches never fire in AArch64 EL3 */
209             return false;
210         case 2:
211             if (!(hcr_el2 & HCR_E2H)) {
212                 /* Context matches never fire in EL2 without E2H enabled. */
213                 return false;
214             }
215             contextidr = env->cp15.contextidr_el[2];
216             break;
217         case 1:
218             contextidr = env->cp15.contextidr_el[1];
219             break;
220         case 0:
221             if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
222                 contextidr = env->cp15.contextidr_el[2];
223             } else {
224                 contextidr = env->cp15.contextidr_el[1];
225             }
226             break;
227         }
228         break;
229 
230     case 7:  /* linked contextidr_el1 match */
231         contextidr = env->cp15.contextidr_el[1];
232         break;
233     case 13: /* linked contextidr_el2 match */
234         contextidr = env->cp15.contextidr_el[2];
235         break;
236 
237     case 9: /* linked VMID match (reserved if no EL2) */
238     case 11: /* linked context ID and VMID match (reserved if no EL2) */
239     case 15: /* linked full context ID match */
240     default:
241         /*
242          * Links to Unlinked context breakpoints must generate no
243          * events; we choose to do the same for reserved values too.
244          */
245         return false;
246     }
247 
248     /*
249      * We match the whole register even if this is AArch32 using the
250      * short descriptor format (in which case it holds both PROCID and ASID),
251      * since we don't implement the optional v7 context ID masking.
252      */
253     return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
254 }
255 
256 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
257 {
258     CPUARMState *env = &cpu->env;
259     uint64_t cr;
260     int pac, hmc, ssc, wt, lbn;
261     /*
262      * Note that for watchpoints the check is against the CPU security
263      * state, not the S/NS attribute on the offending data access.
264      */
265     bool is_secure = arm_is_secure(env);
266     int access_el = arm_current_el(env);
267 
268     if (is_wp) {
269         CPUWatchpoint *wp = env->cpu_watchpoint[n];
270 
271         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
272             return false;
273         }
274         cr = env->cp15.dbgwcr[n];
275         if (wp->hitattrs.user) {
276             /*
277              * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
278              * match watchpoints as if they were accesses done at EL0, even if
279              * the CPU is at EL1 or higher.
280              */
281             access_el = 0;
282         }
283     } else {
284         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
285 
286         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
287             return false;
288         }
289         cr = env->cp15.dbgbcr[n];
290     }
291     /*
292      * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
293      * enabled and that the address and access type match; for breakpoints
294      * we know the address matched; check the remaining fields, including
295      * linked breakpoints. We rely on WCR and BCR having the same layout
296      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
297      * Note that some combinations of {PAC, HMC, SSC} are reserved and
298      * must act either like some valid combination or as if the watchpoint
299      * were disabled. We choose the former, and use this together with
300      * the fact that EL3 must always be Secure and EL2 must always be
301      * Non-Secure to simplify the code slightly compared to the full
302      * table in the ARM ARM.
303      */
304     pac = FIELD_EX64(cr, DBGWCR, PAC);
305     hmc = FIELD_EX64(cr, DBGWCR, HMC);
306     ssc = FIELD_EX64(cr, DBGWCR, SSC);
307 
308     switch (ssc) {
309     case 0:
310         break;
311     case 1:
312     case 3:
313         if (is_secure) {
314             return false;
315         }
316         break;
317     case 2:
318         if (!is_secure) {
319             return false;
320         }
321         break;
322     }
323 
324     switch (access_el) {
325     case 3:
326     case 2:
327         if (!hmc) {
328             return false;
329         }
330         break;
331     case 1:
332         if (extract32(pac, 0, 1) == 0) {
333             return false;
334         }
335         break;
336     case 0:
337         if (extract32(pac, 1, 1) == 0) {
338             return false;
339         }
340         break;
341     default:
342         g_assert_not_reached();
343     }
344 
345     wt = FIELD_EX64(cr, DBGWCR, WT);
346     lbn = FIELD_EX64(cr, DBGWCR, LBN);
347 
348     if (wt && !linked_bp_matches(cpu, lbn)) {
349         return false;
350     }
351 
352     return true;
353 }
354 
355 static bool check_watchpoints(ARMCPU *cpu)
356 {
357     CPUARMState *env = &cpu->env;
358     int n;
359 
360     /*
361      * If watchpoints are disabled globally or we can't take debug
362      * exceptions here then watchpoint firings are ignored.
363      */
364     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
365         || !arm_generate_debug_exceptions(env)) {
366         return false;
367     }
368 
369     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
370         if (bp_wp_matches(cpu, n, true)) {
371             return true;
372         }
373     }
374     return false;
375 }
376 
377 bool arm_debug_check_breakpoint(CPUState *cs)
378 {
379     ARMCPU *cpu = ARM_CPU(cs);
380     CPUARMState *env = &cpu->env;
381     target_ulong pc;
382     int n;
383 
384     /*
385      * If breakpoints are disabled globally or we can't take debug
386      * exceptions here then breakpoint firings are ignored.
387      */
388     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
389         || !arm_generate_debug_exceptions(env)) {
390         return false;
391     }
392 
393     /*
394      * Single-step exceptions have priority over breakpoint exceptions.
395      * If single-step state is active-pending, suppress the bp.
396      */
397     if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
398         return false;
399     }
400 
401     /*
402      * PC alignment faults have priority over breakpoint exceptions.
403      */
404     pc = is_a64(env) ? env->pc : env->regs[15];
405     if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
406         return false;
407     }
408 
409     /*
410      * Instruction aborts have priority over breakpoint exceptions.
411      * TODO: We would need to look up the page for PC and verify that
412      * it is present and executable.
413      */
414 
415     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
416         if (bp_wp_matches(cpu, n, false)) {
417             return true;
418         }
419     }
420     return false;
421 }
422 
423 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
424 {
425     /*
426      * Called by core code when a CPU watchpoint fires; need to check if this
427      * is also an architectural watchpoint match.
428      */
429     ARMCPU *cpu = ARM_CPU(cs);
430 
431     return check_watchpoints(cpu);
432 }
433 
434 /*
435  * Return the FSR value for a debug exception (watchpoint, hardware
436  * breakpoint or BKPT insn) targeting the specified exception level.
437  */
438 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
439 {
440     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
441     int target_el = arm_debug_target_el(env);
442     bool using_lpae;
443 
444     if (arm_feature(env, ARM_FEATURE_M)) {
445         using_lpae = false;
446     } else if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
447         using_lpae = true;
448     } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
449                arm_feature(env, ARM_FEATURE_V8)) {
450         using_lpae = true;
451     } else if (arm_feature(env, ARM_FEATURE_LPAE) &&
452                (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
453         using_lpae = true;
454     } else {
455         using_lpae = false;
456     }
457 
458     if (using_lpae) {
459         return arm_fi_to_lfsc(&fi);
460     } else {
461         return arm_fi_to_sfsc(&fi);
462     }
463 }
464 
465 void arm_debug_excp_handler(CPUState *cs)
466 {
467     /*
468      * Called by core code when a watchpoint or breakpoint fires;
469      * need to check which one and raise the appropriate exception.
470      */
471     ARMCPU *cpu = ARM_CPU(cs);
472     CPUARMState *env = &cpu->env;
473     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
474 
475     if (wp_hit) {
476         if (wp_hit->flags & BP_CPU) {
477             bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
478 
479             cs->watchpoint_hit = NULL;
480 
481             env->exception.fsr = arm_debug_exception_fsr(env);
482             env->exception.vaddress = wp_hit->hitaddr;
483             raise_exception_debug(env, EXCP_DATA_ABORT,
484                                   syn_watchpoint(0, 0, wnr));
485         }
486     } else {
487         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
488 
489         /*
490          * (1) GDB breakpoints should be handled first.
491          * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
492          * since singlestep is also done by generating a debug internal
493          * exception.
494          */
495         if (cpu_breakpoint_test(cs, pc, BP_GDB)
496             || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
497             return;
498         }
499 
500         env->exception.fsr = arm_debug_exception_fsr(env);
501         /*
502          * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
503          * values to the guest that it shouldn't be able to see at its
504          * exception/security level.
505          */
506         env->exception.vaddress = 0;
507         raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
508     }
509 }
510 
511 /*
512  * Raise an EXCP_BKPT with the specified syndrome register value,
513  * targeting the correct exception level for debug exceptions.
514  */
515 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
516 {
517     int debug_el = arm_debug_target_el(env);
518     int cur_el = arm_current_el(env);
519 
520     /* FSR will only be used if the debug target EL is AArch32. */
521     env->exception.fsr = arm_debug_exception_fsr(env);
522     /*
523      * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
524      * values to the guest that it shouldn't be able to see at its
525      * exception/security level.
526      */
527     env->exception.vaddress = 0;
528     /*
529      * Other kinds of architectural debug exception are ignored if
530      * they target an exception level below the current one (in QEMU
531      * this is checked by arm_generate_debug_exceptions()). Breakpoint
532      * instructions are special because they always generate an exception
533      * to somewhere: if they can't go to the configured debug exception
534      * level they are taken to the current exception level.
535      */
536     if (debug_el < cur_el) {
537         debug_el = cur_el;
538     }
539     raise_exception(env, EXCP_BKPT, syndrome, debug_el);
540 }
541 
542 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
543 {
544     raise_exception_debug(env, EXCP_UDEF, syndrome);
545 }
546 
547 void hw_watchpoint_update(ARMCPU *cpu, int n)
548 {
549     CPUARMState *env = &cpu->env;
550     vaddr len = 0;
551     vaddr wvr = env->cp15.dbgwvr[n];
552     uint64_t wcr = env->cp15.dbgwcr[n];
553     int mask;
554     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
555 
556     if (env->cpu_watchpoint[n]) {
557         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
558         env->cpu_watchpoint[n] = NULL;
559     }
560 
561     if (!FIELD_EX64(wcr, DBGWCR, E)) {
562         /* E bit clear : watchpoint disabled */
563         return;
564     }
565 
566     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
567     case 0:
568         /* LSC 00 is reserved and must behave as if the wp is disabled */
569         return;
570     case 1:
571         flags |= BP_MEM_READ;
572         break;
573     case 2:
574         flags |= BP_MEM_WRITE;
575         break;
576     case 3:
577         flags |= BP_MEM_ACCESS;
578         break;
579     }
580 
581     /*
582      * Attempts to use both MASK and BAS fields simultaneously are
583      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
584      * thus generating a watchpoint for every byte in the masked region.
585      */
586     mask = FIELD_EX64(wcr, DBGWCR, MASK);
587     if (mask == 1 || mask == 2) {
588         /*
589          * Reserved values of MASK; we must act as if the mask value was
590          * some non-reserved value, or as if the watchpoint were disabled.
591          * We choose the latter.
592          */
593         return;
594     } else if (mask) {
595         /* Watchpoint covers an aligned area up to 2GB in size */
596         len = 1ULL << mask;
597         /*
598          * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
599          * whether the watchpoint fires when the unmasked bits match; we opt
600          * to generate the exceptions.
601          */
602         wvr &= ~(len - 1);
603     } else {
604         /* Watchpoint covers bytes defined by the byte address select bits */
605         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
606         int basstart;
607 
608         if (extract64(wvr, 2, 1)) {
609             /*
610              * Deprecated case of an only 4-aligned address. BAS[7:4] are
611              * ignored, and BAS[3:0] define which bytes to watch.
612              */
613             bas &= 0xf;
614         }
615 
616         if (bas == 0) {
617             /* This must act as if the watchpoint is disabled */
618             return;
619         }
620 
621         /*
622          * The BAS bits are supposed to be programmed to indicate a contiguous
623          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
624          * we fire for each byte in the word/doubleword addressed by the WVR.
625          * We choose to ignore any non-zero bits after the first range of 1s.
626          */
627         basstart = ctz32(bas);
628         len = cto32(bas >> basstart);
629         wvr += basstart;
630     }
631 
632     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
633                           &env->cpu_watchpoint[n]);
634 }
635 
636 void hw_watchpoint_update_all(ARMCPU *cpu)
637 {
638     int i;
639     CPUARMState *env = &cpu->env;
640 
641     /*
642      * Completely clear out existing QEMU watchpoints and our array, to
643      * avoid possible stale entries following migration load.
644      */
645     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
646     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
647 
648     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
649         hw_watchpoint_update(cpu, i);
650     }
651 }
652 
653 void hw_breakpoint_update(ARMCPU *cpu, int n)
654 {
655     CPUARMState *env = &cpu->env;
656     uint64_t bvr = env->cp15.dbgbvr[n];
657     uint64_t bcr = env->cp15.dbgbcr[n];
658     vaddr addr;
659     int bt;
660     int flags = BP_CPU;
661 
662     if (env->cpu_breakpoint[n]) {
663         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
664         env->cpu_breakpoint[n] = NULL;
665     }
666 
667     if (!extract64(bcr, 0, 1)) {
668         /* E bit clear : watchpoint disabled */
669         return;
670     }
671 
672     bt = extract64(bcr, 20, 4);
673 
674     switch (bt) {
675     case 4: /* unlinked address mismatch (reserved if AArch64) */
676     case 5: /* linked address mismatch (reserved if AArch64) */
677         qemu_log_mask(LOG_UNIMP,
678                       "arm: address mismatch breakpoint types not implemented\n");
679         return;
680     case 0: /* unlinked address match */
681     case 1: /* linked address match */
682     {
683         /*
684          * Bits [1:0] are RES0.
685          *
686          * It is IMPLEMENTATION DEFINED whether bits [63:49]
687          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
688          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
689          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
690          * whether the RESS bits are ignored when comparing an address.
691          * Therefore we are allowed to compare the entire register, which
692          * lets us avoid considering whether FEAT_LVA is actually enabled.
693          *
694          * The BAS field is used to allow setting breakpoints on 16-bit
695          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
696          * a bp will fire if the addresses covered by the bp and the addresses
697          * covered by the insn overlap but the insn doesn't start at the
698          * start of the bp address range. We choose to require the insn and
699          * the bp to have the same address. The constraints on writing to
700          * BAS enforced in dbgbcr_write mean we have only four cases:
701          *  0b0000  => no breakpoint
702          *  0b0011  => breakpoint on addr
703          *  0b1100  => breakpoint on addr + 2
704          *  0b1111  => breakpoint on addr
705          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
706          */
707         int bas = extract64(bcr, 5, 4);
708         addr = bvr & ~3ULL;
709         if (bas == 0) {
710             return;
711         }
712         if (bas == 0xc) {
713             addr += 2;
714         }
715         break;
716     }
717     case 2: /* unlinked context ID match */
718     case 8: /* unlinked VMID match (reserved if no EL2) */
719     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
720         qemu_log_mask(LOG_UNIMP,
721                       "arm: unlinked context breakpoint types not implemented\n");
722         return;
723     case 9: /* linked VMID match (reserved if no EL2) */
724     case 11: /* linked context ID and VMID match (reserved if no EL2) */
725     case 3: /* linked context ID match */
726     default:
727         /*
728          * We must generate no events for Linked context matches (unless
729          * they are linked to by some other bp/wp, which is handled in
730          * updates for the linking bp/wp). We choose to also generate no events
731          * for reserved values.
732          */
733         return;
734     }
735 
736     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
737 }
738 
739 void hw_breakpoint_update_all(ARMCPU *cpu)
740 {
741     int i;
742     CPUARMState *env = &cpu->env;
743 
744     /*
745      * Completely clear out existing QEMU breakpoints and our array, to
746      * avoid possible stale entries following migration load.
747      */
748     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
749     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
750 
751     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
752         hw_breakpoint_update(cpu, i);
753     }
754 }
755 
756 #if !defined(CONFIG_USER_ONLY)
757 
758 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
759 {
760     ARMCPU *cpu = ARM_CPU(cs);
761     CPUARMState *env = &cpu->env;
762 
763     /*
764      * In BE32 system mode, target memory is stored byteswapped (on a
765      * little-endian host system), and by the time we reach here (via an
766      * opcode helper) the addresses of subword accesses have been adjusted
767      * to account for that, which means that watchpoints will not match.
768      * Undo the adjustment here.
769      */
770     if (arm_sctlr_b(env)) {
771         if (len == 1) {
772             addr ^= 3;
773         } else if (len == 2) {
774             addr ^= 2;
775         }
776     }
777 
778     return addr;
779 }
780 
781 #endif /* !CONFIG_USER_ONLY */
782 #endif /* CONFIG_TCG */
783 
784 /*
785  * Check for traps to "powerdown debug" registers, which are controlled
786  * by MDCR.TDOSA
787  */
788 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
789                                    bool isread)
790 {
791     int el = arm_current_el(env);
792     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
793     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
794         (arm_hcr_el2_eff(env) & HCR_TGE);
795 
796     if (el < 2 && mdcr_el2_tdosa) {
797         return CP_ACCESS_TRAP_EL2;
798     }
799     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
800         return CP_ACCESS_TRAP_EL3;
801     }
802     return CP_ACCESS_OK;
803 }
804 
805 /*
806  * Check for traps to "debug ROM" registers, which are controlled
807  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
808  */
809 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
810                                   bool isread)
811 {
812     int el = arm_current_el(env);
813     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
814     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
815         (arm_hcr_el2_eff(env) & HCR_TGE);
816 
817     if (el < 2 && mdcr_el2_tdra) {
818         return CP_ACCESS_TRAP_EL2;
819     }
820     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
821         return CP_ACCESS_TRAP_EL3;
822     }
823     return CP_ACCESS_OK;
824 }
825 
826 /*
827  * Check for traps to general debug registers, which are controlled
828  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
829  */
830 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
831                                   bool isread)
832 {
833     int el = arm_current_el(env);
834     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
835     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
836         (arm_hcr_el2_eff(env) & HCR_TGE);
837 
838     if (el < 2 && mdcr_el2_tda) {
839         return CP_ACCESS_TRAP_EL2;
840     }
841     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
842         return CP_ACCESS_TRAP_EL3;
843     }
844     return CP_ACCESS_OK;
845 }
846 
847 /*
848  * Check for traps to Debug Comms Channel registers. If FEAT_FGT
849  * is implemented then these are controlled by MDCR_EL2.TDCC for
850  * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
851  * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
852  * For EL0, they are also controlled by MDSCR_EL1.TDCC.
853  */
854 static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
855                                   bool isread)
856 {
857     int el = arm_current_el(env);
858     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
859     bool mdscr_el1_tdcc = extract32(env->cp15.mdscr_el1, 12, 1);
860     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
861         (arm_hcr_el2_eff(env) & HCR_TGE);
862     bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
863                                           (mdcr_el2 & MDCR_TDCC);
864     bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
865                                           (env->cp15.mdcr_el3 & MDCR_TDCC);
866 
867     if (el < 1 && mdscr_el1_tdcc) {
868         return CP_ACCESS_TRAP;
869     }
870     if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
871         return CP_ACCESS_TRAP_EL2;
872     }
873     if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
874         return CP_ACCESS_TRAP_EL3;
875     }
876     return CP_ACCESS_OK;
877 }
878 
879 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
880                         uint64_t value)
881 {
882     /*
883      * Writes to OSLAR_EL1 may update the OS lock status, which can be
884      * read via a bit in OSLSR_EL1.
885      */
886     int oslock;
887 
888     if (ri->state == ARM_CP_STATE_AA32) {
889         oslock = (value == 0xC5ACCE55);
890     } else {
891         oslock = value & 1;
892     }
893 
894     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
895 }
896 
897 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
898                         uint64_t value)
899 {
900     ARMCPU *cpu = env_archcpu(env);
901     /*
902      * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
903      * implemented this is RAZ/WI.
904      */
905     if(arm_feature(env, ARM_FEATURE_AARCH64)
906        ? cpu_isar_feature(aa64_doublelock, cpu)
907        : cpu_isar_feature(aa32_doublelock, cpu)) {
908         env->cp15.osdlr_el1 = value & 1;
909     }
910 }
911 
912 static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
913                               uint64_t value)
914 {
915     env->cp15.dbgclaim |= (value & 0xFF);
916 }
917 
918 static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
919 {
920     /* CLAIM bits are RAO */
921     return 0xFF;
922 }
923 
924 static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
925                               uint64_t value)
926 {
927     env->cp15.dbgclaim &= ~(value & 0xFF);
928 }
929 
930 static const ARMCPRegInfo debug_cp_reginfo[] = {
931     /*
932      * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
933      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
934      * unlike DBGDRAR it is never accessible from EL0.
935      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
936      * accessor.
937      */
938     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
939       .access = PL0_R, .accessfn = access_tdra,
940       .type = ARM_CP_CONST, .resetvalue = 0 },
941     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
942       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
943       .access = PL1_R, .accessfn = access_tdra,
944       .type = ARM_CP_CONST, .resetvalue = 0 },
945     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
946       .access = PL0_R, .accessfn = access_tdra,
947       .type = ARM_CP_CONST, .resetvalue = 0 },
948     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
949     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
950       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
951       .access = PL1_RW, .accessfn = access_tda,
952       .fgt = FGT_MDSCR_EL1,
953       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
954       .resetvalue = 0 },
955     /*
956      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
957      * Debug Communication Channel is not implemented.
958      */
959     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
960       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
961       .access = PL0_R, .accessfn = access_tdcc,
962       .type = ARM_CP_CONST, .resetvalue = 0 },
963     /*
964      * These registers belong to the Debug Communications Channel,
965      * which is not implemented. However we implement RAZ/WI behaviour
966      * with trapping to prevent spurious SIGILLs if the guest OS does
967      * access them as the support cannot be probed for.
968      */
969     { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
970       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
971       .access = PL1_RW, .accessfn = access_tdcc,
972       .type = ARM_CP_CONST, .resetvalue = 0 },
973     { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
974       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
975       .access = PL1_RW, .accessfn = access_tdcc,
976       .type = ARM_CP_CONST, .resetvalue = 0 },
977     /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
978     { .name = "DBGDTR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14,
979       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 5, .opc2 = 0,
980       .access = PL0_RW, .accessfn = access_tdcc,
981       .type = ARM_CP_CONST, .resetvalue = 0 },
982     /*
983      * OSECCR_EL1 provides a mechanism for an operating system
984      * to access the contents of EDECCR. EDECCR is not implemented though,
985      * as is the rest of external device mechanism.
986      */
987     { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
988       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
989       .access = PL1_RW, .accessfn = access_tda,
990       .fgt = FGT_OSECCR_EL1,
991       .type = ARM_CP_CONST, .resetvalue = 0 },
992     /*
993      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
994      * it is unlikely a guest will care.
995      * We don't implement the configurable EL0 access.
996      */
997     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
998       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
999       .type = ARM_CP_ALIAS,
1000       .access = PL1_R, .accessfn = access_tda,
1001       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
1002     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
1003       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1004       .access = PL1_W, .type = ARM_CP_NO_RAW,
1005       .accessfn = access_tdosa,
1006       .fgt = FGT_OSLAR_EL1,
1007       .writefn = oslar_write },
1008     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
1009       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
1010       .access = PL1_R, .resetvalue = 10,
1011       .accessfn = access_tdosa,
1012       .fgt = FGT_OSLSR_EL1,
1013       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
1014     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
1015     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
1016       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
1017       .access = PL1_RW, .accessfn = access_tdosa,
1018       .fgt = FGT_OSDLR_EL1,
1019       .writefn = osdlr_write,
1020       .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
1021     /*
1022      * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
1023      * implement vector catch debug events yet.
1024      */
1025     { .name = "DBGVCR",
1026       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
1027       .access = PL1_RW, .accessfn = access_tda,
1028       .type = ARM_CP_NOP },
1029     /*
1030      * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
1031      * to save and restore a 32-bit guest's DBGVCR)
1032      */
1033     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
1034       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
1035       .access = PL2_RW, .accessfn = access_tda,
1036       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
1037     /*
1038      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
1039      * Channel but Linux may try to access this register. The 32-bit
1040      * alias is DBGDCCINT.
1041      */
1042     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
1043       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
1044       .access = PL1_RW, .accessfn = access_tdcc,
1045       .type = ARM_CP_NOP },
1046     /*
1047      * Dummy DBGCLAIM registers.
1048      * "The architecture does not define any functionality for the CLAIM tag bits.",
1049      * so we only keep the raw bits
1050      */
1051     { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
1052       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
1053       .type = ARM_CP_ALIAS,
1054       .access = PL1_RW, .accessfn = access_tda,
1055       .fgt = FGT_DBGCLAIM,
1056       .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
1057     { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
1058       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
1059       .access = PL1_RW, .accessfn = access_tda,
1060       .fgt = FGT_DBGCLAIM,
1061       .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
1062       .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
1063 };
1064 
1065 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
1066     /* 64 bit access versions of the (dummy) debug registers */
1067     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1068       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1069     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1070       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1071 };
1072 
1073 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1074                          uint64_t value)
1075 {
1076     ARMCPU *cpu = env_archcpu(env);
1077     int i = ri->crm;
1078 
1079     /*
1080      * Bits [1:0] are RES0.
1081      *
1082      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
1083      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
1084      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
1085      * whether the RESS bits are ignored when comparing an address.
1086      *
1087      * Therefore we are allowed to compare the entire register, which lets
1088      * us avoid considering whether or not FEAT_LVA is actually enabled.
1089      */
1090     value &= ~3ULL;
1091 
1092     raw_write(env, ri, value);
1093     if (tcg_enabled()) {
1094         hw_watchpoint_update(cpu, i);
1095     }
1096 }
1097 
1098 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1099                          uint64_t value)
1100 {
1101     ARMCPU *cpu = env_archcpu(env);
1102     int i = ri->crm;
1103 
1104     raw_write(env, ri, value);
1105     if (tcg_enabled()) {
1106         hw_watchpoint_update(cpu, i);
1107     }
1108 }
1109 
1110 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111                          uint64_t value)
1112 {
1113     ARMCPU *cpu = env_archcpu(env);
1114     int i = ri->crm;
1115 
1116     raw_write(env, ri, value);
1117     if (tcg_enabled()) {
1118         hw_breakpoint_update(cpu, i);
1119     }
1120 }
1121 
1122 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1123                          uint64_t value)
1124 {
1125     ARMCPU *cpu = env_archcpu(env);
1126     int i = ri->crm;
1127 
1128     /*
1129      * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1130      * copy of BAS[0].
1131      */
1132     value = deposit64(value, 6, 1, extract64(value, 5, 1));
1133     value = deposit64(value, 8, 1, extract64(value, 7, 1));
1134 
1135     raw_write(env, ri, value);
1136     if (tcg_enabled()) {
1137         hw_breakpoint_update(cpu, i);
1138     }
1139 }
1140 
1141 void define_debug_regs(ARMCPU *cpu)
1142 {
1143     /*
1144      * Define v7 and v8 architectural debug registers.
1145      * These are just dummy implementations for now.
1146      */
1147     int i;
1148     int wrps, brps, ctx_cmps;
1149 
1150     /*
1151      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1152      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
1153      * the register must not exist for this cpu.
1154      */
1155     if (cpu->isar.dbgdidr != 0) {
1156         ARMCPRegInfo dbgdidr = {
1157             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1158             .opc1 = 0, .opc2 = 0,
1159             .access = PL0_R, .accessfn = access_tda,
1160             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1161         };
1162         define_one_arm_cp_reg(cpu, &dbgdidr);
1163     }
1164 
1165     /*
1166      * DBGDEVID is present in the v7 debug architecture if
1167      * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1168      * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1169      * from v7.1 of the debug architecture. Because no fields have yet
1170      * been defined in DBGDEVID2 (and quite possibly none will ever
1171      * be) we don't define an ARMISARegisters field for it.
1172      * These registers exist only if EL1 can use AArch32, but that
1173      * happens naturally because they are only PL1 accessible anyway.
1174      */
1175     if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1176         ARMCPRegInfo dbgdevid = {
1177             .name = "DBGDEVID",
1178             .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1179             .access = PL1_R, .accessfn = access_tda,
1180             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1181         };
1182         define_one_arm_cp_reg(cpu, &dbgdevid);
1183     }
1184     if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1185         ARMCPRegInfo dbgdevid12[] = {
1186             {
1187                 .name = "DBGDEVID1",
1188                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1189                 .access = PL1_R, .accessfn = access_tda,
1190                 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1191             }, {
1192                 .name = "DBGDEVID2",
1193                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1194                 .access = PL1_R, .accessfn = access_tda,
1195                 .type = ARM_CP_CONST, .resetvalue = 0,
1196             },
1197         };
1198         define_arm_cp_regs(cpu, dbgdevid12);
1199     }
1200 
1201     brps = arm_num_brps(cpu);
1202     wrps = arm_num_wrps(cpu);
1203     ctx_cmps = arm_num_ctx_cmps(cpu);
1204 
1205     assert(ctx_cmps <= brps);
1206 
1207     define_arm_cp_regs(cpu, debug_cp_reginfo);
1208 
1209     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1210         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1211     }
1212 
1213     for (i = 0; i < brps; i++) {
1214         char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1215         char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1216         ARMCPRegInfo dbgregs[] = {
1217             { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1218               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1219               .access = PL1_RW, .accessfn = access_tda,
1220               .fgt = FGT_DBGBVRN_EL1,
1221               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1222               .writefn = dbgbvr_write, .raw_writefn = raw_write
1223             },
1224             { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1225               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1226               .access = PL1_RW, .accessfn = access_tda,
1227               .fgt = FGT_DBGBCRN_EL1,
1228               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1229               .writefn = dbgbcr_write, .raw_writefn = raw_write
1230             },
1231         };
1232         define_arm_cp_regs(cpu, dbgregs);
1233         g_free(dbgbvr_el1_name);
1234         g_free(dbgbcr_el1_name);
1235     }
1236 
1237     for (i = 0; i < wrps; i++) {
1238         char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1239         char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1240         ARMCPRegInfo dbgregs[] = {
1241             { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1242               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1243               .access = PL1_RW, .accessfn = access_tda,
1244               .fgt = FGT_DBGWVRN_EL1,
1245               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1246               .writefn = dbgwvr_write, .raw_writefn = raw_write
1247             },
1248             { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1249               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1250               .access = PL1_RW, .accessfn = access_tda,
1251               .fgt = FGT_DBGWCRN_EL1,
1252               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1253               .writefn = dbgwcr_write, .raw_writefn = raw_write
1254             },
1255         };
1256         define_arm_cp_regs(cpu, dbgregs);
1257         g_free(dbgwvr_el1_name);
1258         g_free(dbgwcr_el1_name);
1259     }
1260 }
1261