xref: /openbmc/qemu/target/arm/debug_helper.c (revision c85cad81)
1 /*
2  * ARM debug helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
15 #include "sysemu/tcg.h"
16 
17 #ifdef CONFIG_TCG
18 /* Return the Exception Level targeted by debug exceptions. */
19 static int arm_debug_target_el(CPUARMState *env)
20 {
21     bool secure = arm_is_secure(env);
22     bool route_to_el2 = false;
23 
24     if (arm_is_el2_enabled(env)) {
25         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
26                        env->cp15.mdcr_el2 & MDCR_TDE;
27     }
28 
29     if (route_to_el2) {
30         return 2;
31     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
32                !arm_el_is_aa64(env, 3) && secure) {
33         return 3;
34     } else {
35         return 1;
36     }
37 }
38 
39 /*
40  * Raise an exception to the debug target el.
41  * Modify syndrome to indicate when origin and target EL are the same.
42  */
43 G_NORETURN static void
44 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
45 {
46     int debug_el = arm_debug_target_el(env);
47     int cur_el = arm_current_el(env);
48 
49     /*
50      * If singlestep is targeting a lower EL than the current one, then
51      * DisasContext.ss_active must be false and we can never get here.
52      * Similarly for watchpoint and breakpoint matches.
53      */
54     assert(debug_el >= cur_el);
55     syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
56     raise_exception(env, excp, syndrome, debug_el);
57 }
58 
59 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
60 static bool aa64_generate_debug_exceptions(CPUARMState *env)
61 {
62     int cur_el = arm_current_el(env);
63     int debug_el;
64 
65     if (cur_el == 3) {
66         return false;
67     }
68 
69     /* MDCR_EL3.SDD disables debug events from Secure state */
70     if (arm_is_secure_below_el3(env)
71         && extract32(env->cp15.mdcr_el3, 16, 1)) {
72         return false;
73     }
74 
75     /*
76      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
77      * while not masking the (D)ebug bit in DAIF.
78      */
79     debug_el = arm_debug_target_el(env);
80 
81     if (cur_el == debug_el) {
82         return extract32(env->cp15.mdscr_el1, 13, 1)
83             && !(env->daif & PSTATE_D);
84     }
85 
86     /* Otherwise the debug target needs to be a higher EL */
87     return debug_el > cur_el;
88 }
89 
90 static bool aa32_generate_debug_exceptions(CPUARMState *env)
91 {
92     int el = arm_current_el(env);
93 
94     if (el == 0 && arm_el_is_aa64(env, 1)) {
95         return aa64_generate_debug_exceptions(env);
96     }
97 
98     if (arm_is_secure(env)) {
99         int spd;
100 
101         if (el == 0 && (env->cp15.sder & 1)) {
102             /*
103              * SDER.SUIDEN means debug exceptions from Secure EL0
104              * are always enabled. Otherwise they are controlled by
105              * SDCR.SPD like those from other Secure ELs.
106              */
107             return true;
108         }
109 
110         spd = extract32(env->cp15.mdcr_el3, 14, 2);
111         switch (spd) {
112         case 1:
113             /* SPD == 0b01 is reserved, but behaves as 0b00. */
114         case 0:
115             /*
116              * For 0b00 we return true if external secure invasive debug
117              * is enabled. On real hardware this is controlled by external
118              * signals to the core. QEMU always permits debug, and behaves
119              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
120              */
121             return true;
122         case 2:
123             return false;
124         case 3:
125             return true;
126         }
127     }
128 
129     return el != 2;
130 }
131 
132 /*
133  * Return true if debugging exceptions are currently enabled.
134  * This corresponds to what in ARM ARM pseudocode would be
135  *    if UsingAArch32() then
136  *        return AArch32.GenerateDebugExceptions()
137  *    else
138  *        return AArch64.GenerateDebugExceptions()
139  * We choose to push the if() down into this function for clarity,
140  * since the pseudocode has it at all callsites except for the one in
141  * CheckSoftwareStep(), where it is elided because both branches would
142  * always return the same value.
143  */
144 bool arm_generate_debug_exceptions(CPUARMState *env)
145 {
146     if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
147         return false;
148     }
149     if (is_a64(env)) {
150         return aa64_generate_debug_exceptions(env);
151     } else {
152         return aa32_generate_debug_exceptions(env);
153     }
154 }
155 
156 /*
157  * Is single-stepping active? (Note that the "is EL_D AArch64?" check
158  * implicitly means this always returns false in pre-v8 CPUs.)
159  */
160 bool arm_singlestep_active(CPUARMState *env)
161 {
162     return extract32(env->cp15.mdscr_el1, 0, 1)
163         && arm_el_is_aa64(env, arm_debug_target_el(env))
164         && arm_generate_debug_exceptions(env);
165 }
166 
167 /* Return true if the linked breakpoint entry lbn passes its checks */
168 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
169 {
170     CPUARMState *env = &cpu->env;
171     uint64_t bcr = env->cp15.dbgbcr[lbn];
172     int brps = arm_num_brps(cpu);
173     int ctx_cmps = arm_num_ctx_cmps(cpu);
174     int bt;
175     uint32_t contextidr;
176     uint64_t hcr_el2;
177 
178     /*
179      * Links to unimplemented or non-context aware breakpoints are
180      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
181      * as if linked to an UNKNOWN context-aware breakpoint (in which
182      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
183      * We choose the former.
184      */
185     if (lbn >= brps || lbn < (brps - ctx_cmps)) {
186         return false;
187     }
188 
189     bcr = env->cp15.dbgbcr[lbn];
190 
191     if (extract64(bcr, 0, 1) == 0) {
192         /* Linked breakpoint disabled : generate no events */
193         return false;
194     }
195 
196     bt = extract64(bcr, 20, 4);
197     hcr_el2 = arm_hcr_el2_eff(env);
198 
199     switch (bt) {
200     case 3: /* linked context ID match */
201         switch (arm_current_el(env)) {
202         default:
203             /* Context matches never fire in AArch64 EL3 */
204             return false;
205         case 2:
206             if (!(hcr_el2 & HCR_E2H)) {
207                 /* Context matches never fire in EL2 without E2H enabled. */
208                 return false;
209             }
210             contextidr = env->cp15.contextidr_el[2];
211             break;
212         case 1:
213             contextidr = env->cp15.contextidr_el[1];
214             break;
215         case 0:
216             if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
217                 contextidr = env->cp15.contextidr_el[2];
218             } else {
219                 contextidr = env->cp15.contextidr_el[1];
220             }
221             break;
222         }
223         break;
224 
225     case 7:  /* linked contextidr_el1 match */
226         contextidr = env->cp15.contextidr_el[1];
227         break;
228     case 13: /* linked contextidr_el2 match */
229         contextidr = env->cp15.contextidr_el[2];
230         break;
231 
232     case 9: /* linked VMID match (reserved if no EL2) */
233     case 11: /* linked context ID and VMID match (reserved if no EL2) */
234     case 15: /* linked full context ID match */
235     default:
236         /*
237          * Links to Unlinked context breakpoints must generate no
238          * events; we choose to do the same for reserved values too.
239          */
240         return false;
241     }
242 
243     /*
244      * We match the whole register even if this is AArch32 using the
245      * short descriptor format (in which case it holds both PROCID and ASID),
246      * since we don't implement the optional v7 context ID masking.
247      */
248     return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
249 }
250 
251 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
252 {
253     CPUARMState *env = &cpu->env;
254     uint64_t cr;
255     int pac, hmc, ssc, wt, lbn;
256     /*
257      * Note that for watchpoints the check is against the CPU security
258      * state, not the S/NS attribute on the offending data access.
259      */
260     bool is_secure = arm_is_secure(env);
261     int access_el = arm_current_el(env);
262 
263     if (is_wp) {
264         CPUWatchpoint *wp = env->cpu_watchpoint[n];
265 
266         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
267             return false;
268         }
269         cr = env->cp15.dbgwcr[n];
270         if (wp->hitattrs.user) {
271             /*
272              * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
273              * match watchpoints as if they were accesses done at EL0, even if
274              * the CPU is at EL1 or higher.
275              */
276             access_el = 0;
277         }
278     } else {
279         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
280 
281         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
282             return false;
283         }
284         cr = env->cp15.dbgbcr[n];
285     }
286     /*
287      * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
288      * enabled and that the address and access type match; for breakpoints
289      * we know the address matched; check the remaining fields, including
290      * linked breakpoints. We rely on WCR and BCR having the same layout
291      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
292      * Note that some combinations of {PAC, HMC, SSC} are reserved and
293      * must act either like some valid combination or as if the watchpoint
294      * were disabled. We choose the former, and use this together with
295      * the fact that EL3 must always be Secure and EL2 must always be
296      * Non-Secure to simplify the code slightly compared to the full
297      * table in the ARM ARM.
298      */
299     pac = FIELD_EX64(cr, DBGWCR, PAC);
300     hmc = FIELD_EX64(cr, DBGWCR, HMC);
301     ssc = FIELD_EX64(cr, DBGWCR, SSC);
302 
303     switch (ssc) {
304     case 0:
305         break;
306     case 1:
307     case 3:
308         if (is_secure) {
309             return false;
310         }
311         break;
312     case 2:
313         if (!is_secure) {
314             return false;
315         }
316         break;
317     }
318 
319     switch (access_el) {
320     case 3:
321     case 2:
322         if (!hmc) {
323             return false;
324         }
325         break;
326     case 1:
327         if (extract32(pac, 0, 1) == 0) {
328             return false;
329         }
330         break;
331     case 0:
332         if (extract32(pac, 1, 1) == 0) {
333             return false;
334         }
335         break;
336     default:
337         g_assert_not_reached();
338     }
339 
340     wt = FIELD_EX64(cr, DBGWCR, WT);
341     lbn = FIELD_EX64(cr, DBGWCR, LBN);
342 
343     if (wt && !linked_bp_matches(cpu, lbn)) {
344         return false;
345     }
346 
347     return true;
348 }
349 
350 static bool check_watchpoints(ARMCPU *cpu)
351 {
352     CPUARMState *env = &cpu->env;
353     int n;
354 
355     /*
356      * If watchpoints are disabled globally or we can't take debug
357      * exceptions here then watchpoint firings are ignored.
358      */
359     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
360         || !arm_generate_debug_exceptions(env)) {
361         return false;
362     }
363 
364     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
365         if (bp_wp_matches(cpu, n, true)) {
366             return true;
367         }
368     }
369     return false;
370 }
371 
372 bool arm_debug_check_breakpoint(CPUState *cs)
373 {
374     ARMCPU *cpu = ARM_CPU(cs);
375     CPUARMState *env = &cpu->env;
376     target_ulong pc;
377     int n;
378 
379     /*
380      * If breakpoints are disabled globally or we can't take debug
381      * exceptions here then breakpoint firings are ignored.
382      */
383     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
384         || !arm_generate_debug_exceptions(env)) {
385         return false;
386     }
387 
388     /*
389      * Single-step exceptions have priority over breakpoint exceptions.
390      * If single-step state is active-pending, suppress the bp.
391      */
392     if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
393         return false;
394     }
395 
396     /*
397      * PC alignment faults have priority over breakpoint exceptions.
398      */
399     pc = is_a64(env) ? env->pc : env->regs[15];
400     if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
401         return false;
402     }
403 
404     /*
405      * Instruction aborts have priority over breakpoint exceptions.
406      * TODO: We would need to look up the page for PC and verify that
407      * it is present and executable.
408      */
409 
410     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
411         if (bp_wp_matches(cpu, n, false)) {
412             return true;
413         }
414     }
415     return false;
416 }
417 
418 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
419 {
420     /*
421      * Called by core code when a CPU watchpoint fires; need to check if this
422      * is also an architectural watchpoint match.
423      */
424     ARMCPU *cpu = ARM_CPU(cs);
425 
426     return check_watchpoints(cpu);
427 }
428 
429 /*
430  * Return the FSR value for a debug exception (watchpoint, hardware
431  * breakpoint or BKPT insn) targeting the specified exception level.
432  */
433 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
434 {
435     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
436     int target_el = arm_debug_target_el(env);
437     bool using_lpae = false;
438 
439     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
440         using_lpae = true;
441     } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
442                arm_feature(env, ARM_FEATURE_V8)) {
443         using_lpae = true;
444     } else {
445         if (arm_feature(env, ARM_FEATURE_LPAE) &&
446             (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
447             using_lpae = true;
448         }
449     }
450 
451     if (using_lpae) {
452         return arm_fi_to_lfsc(&fi);
453     } else {
454         return arm_fi_to_sfsc(&fi);
455     }
456 }
457 
458 void arm_debug_excp_handler(CPUState *cs)
459 {
460     /*
461      * Called by core code when a watchpoint or breakpoint fires;
462      * need to check which one and raise the appropriate exception.
463      */
464     ARMCPU *cpu = ARM_CPU(cs);
465     CPUARMState *env = &cpu->env;
466     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
467 
468     if (wp_hit) {
469         if (wp_hit->flags & BP_CPU) {
470             bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
471 
472             cs->watchpoint_hit = NULL;
473 
474             env->exception.fsr = arm_debug_exception_fsr(env);
475             env->exception.vaddress = wp_hit->hitaddr;
476             raise_exception_debug(env, EXCP_DATA_ABORT,
477                                   syn_watchpoint(0, 0, wnr));
478         }
479     } else {
480         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
481 
482         /*
483          * (1) GDB breakpoints should be handled first.
484          * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
485          * since singlestep is also done by generating a debug internal
486          * exception.
487          */
488         if (cpu_breakpoint_test(cs, pc, BP_GDB)
489             || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
490             return;
491         }
492 
493         env->exception.fsr = arm_debug_exception_fsr(env);
494         /*
495          * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
496          * values to the guest that it shouldn't be able to see at its
497          * exception/security level.
498          */
499         env->exception.vaddress = 0;
500         raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
501     }
502 }
503 
504 /*
505  * Raise an EXCP_BKPT with the specified syndrome register value,
506  * targeting the correct exception level for debug exceptions.
507  */
508 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
509 {
510     int debug_el = arm_debug_target_el(env);
511     int cur_el = arm_current_el(env);
512 
513     /* FSR will only be used if the debug target EL is AArch32. */
514     env->exception.fsr = arm_debug_exception_fsr(env);
515     /*
516      * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
517      * values to the guest that it shouldn't be able to see at its
518      * exception/security level.
519      */
520     env->exception.vaddress = 0;
521     /*
522      * Other kinds of architectural debug exception are ignored if
523      * they target an exception level below the current one (in QEMU
524      * this is checked by arm_generate_debug_exceptions()). Breakpoint
525      * instructions are special because they always generate an exception
526      * to somewhere: if they can't go to the configured debug exception
527      * level they are taken to the current exception level.
528      */
529     if (debug_el < cur_el) {
530         debug_el = cur_el;
531     }
532     raise_exception(env, EXCP_BKPT, syndrome, debug_el);
533 }
534 
535 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
536 {
537     raise_exception_debug(env, EXCP_UDEF, syndrome);
538 }
539 
540 void hw_watchpoint_update(ARMCPU *cpu, int n)
541 {
542     CPUARMState *env = &cpu->env;
543     vaddr len = 0;
544     vaddr wvr = env->cp15.dbgwvr[n];
545     uint64_t wcr = env->cp15.dbgwcr[n];
546     int mask;
547     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
548 
549     if (env->cpu_watchpoint[n]) {
550         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
551         env->cpu_watchpoint[n] = NULL;
552     }
553 
554     if (!FIELD_EX64(wcr, DBGWCR, E)) {
555         /* E bit clear : watchpoint disabled */
556         return;
557     }
558 
559     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
560     case 0:
561         /* LSC 00 is reserved and must behave as if the wp is disabled */
562         return;
563     case 1:
564         flags |= BP_MEM_READ;
565         break;
566     case 2:
567         flags |= BP_MEM_WRITE;
568         break;
569     case 3:
570         flags |= BP_MEM_ACCESS;
571         break;
572     }
573 
574     /*
575      * Attempts to use both MASK and BAS fields simultaneously are
576      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
577      * thus generating a watchpoint for every byte in the masked region.
578      */
579     mask = FIELD_EX64(wcr, DBGWCR, MASK);
580     if (mask == 1 || mask == 2) {
581         /*
582          * Reserved values of MASK; we must act as if the mask value was
583          * some non-reserved value, or as if the watchpoint were disabled.
584          * We choose the latter.
585          */
586         return;
587     } else if (mask) {
588         /* Watchpoint covers an aligned area up to 2GB in size */
589         len = 1ULL << mask;
590         /*
591          * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
592          * whether the watchpoint fires when the unmasked bits match; we opt
593          * to generate the exceptions.
594          */
595         wvr &= ~(len - 1);
596     } else {
597         /* Watchpoint covers bytes defined by the byte address select bits */
598         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
599         int basstart;
600 
601         if (extract64(wvr, 2, 1)) {
602             /*
603              * Deprecated case of an only 4-aligned address. BAS[7:4] are
604              * ignored, and BAS[3:0] define which bytes to watch.
605              */
606             bas &= 0xf;
607         }
608 
609         if (bas == 0) {
610             /* This must act as if the watchpoint is disabled */
611             return;
612         }
613 
614         /*
615          * The BAS bits are supposed to be programmed to indicate a contiguous
616          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
617          * we fire for each byte in the word/doubleword addressed by the WVR.
618          * We choose to ignore any non-zero bits after the first range of 1s.
619          */
620         basstart = ctz32(bas);
621         len = cto32(bas >> basstart);
622         wvr += basstart;
623     }
624 
625     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
626                           &env->cpu_watchpoint[n]);
627 }
628 
629 void hw_watchpoint_update_all(ARMCPU *cpu)
630 {
631     int i;
632     CPUARMState *env = &cpu->env;
633 
634     /*
635      * Completely clear out existing QEMU watchpoints and our array, to
636      * avoid possible stale entries following migration load.
637      */
638     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
639     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
640 
641     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
642         hw_watchpoint_update(cpu, i);
643     }
644 }
645 
646 void hw_breakpoint_update(ARMCPU *cpu, int n)
647 {
648     CPUARMState *env = &cpu->env;
649     uint64_t bvr = env->cp15.dbgbvr[n];
650     uint64_t bcr = env->cp15.dbgbcr[n];
651     vaddr addr;
652     int bt;
653     int flags = BP_CPU;
654 
655     if (env->cpu_breakpoint[n]) {
656         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
657         env->cpu_breakpoint[n] = NULL;
658     }
659 
660     if (!extract64(bcr, 0, 1)) {
661         /* E bit clear : watchpoint disabled */
662         return;
663     }
664 
665     bt = extract64(bcr, 20, 4);
666 
667     switch (bt) {
668     case 4: /* unlinked address mismatch (reserved if AArch64) */
669     case 5: /* linked address mismatch (reserved if AArch64) */
670         qemu_log_mask(LOG_UNIMP,
671                       "arm: address mismatch breakpoint types not implemented\n");
672         return;
673     case 0: /* unlinked address match */
674     case 1: /* linked address match */
675     {
676         /*
677          * Bits [1:0] are RES0.
678          *
679          * It is IMPLEMENTATION DEFINED whether bits [63:49]
680          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
681          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
682          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
683          * whether the RESS bits are ignored when comparing an address.
684          * Therefore we are allowed to compare the entire register, which
685          * lets us avoid considering whether FEAT_LVA is actually enabled.
686          *
687          * The BAS field is used to allow setting breakpoints on 16-bit
688          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
689          * a bp will fire if the addresses covered by the bp and the addresses
690          * covered by the insn overlap but the insn doesn't start at the
691          * start of the bp address range. We choose to require the insn and
692          * the bp to have the same address. The constraints on writing to
693          * BAS enforced in dbgbcr_write mean we have only four cases:
694          *  0b0000  => no breakpoint
695          *  0b0011  => breakpoint on addr
696          *  0b1100  => breakpoint on addr + 2
697          *  0b1111  => breakpoint on addr
698          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
699          */
700         int bas = extract64(bcr, 5, 4);
701         addr = bvr & ~3ULL;
702         if (bas == 0) {
703             return;
704         }
705         if (bas == 0xc) {
706             addr += 2;
707         }
708         break;
709     }
710     case 2: /* unlinked context ID match */
711     case 8: /* unlinked VMID match (reserved if no EL2) */
712     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
713         qemu_log_mask(LOG_UNIMP,
714                       "arm: unlinked context breakpoint types not implemented\n");
715         return;
716     case 9: /* linked VMID match (reserved if no EL2) */
717     case 11: /* linked context ID and VMID match (reserved if no EL2) */
718     case 3: /* linked context ID match */
719     default:
720         /*
721          * We must generate no events for Linked context matches (unless
722          * they are linked to by some other bp/wp, which is handled in
723          * updates for the linking bp/wp). We choose to also generate no events
724          * for reserved values.
725          */
726         return;
727     }
728 
729     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
730 }
731 
732 void hw_breakpoint_update_all(ARMCPU *cpu)
733 {
734     int i;
735     CPUARMState *env = &cpu->env;
736 
737     /*
738      * Completely clear out existing QEMU breakpoints and our array, to
739      * avoid possible stale entries following migration load.
740      */
741     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
742     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
743 
744     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
745         hw_breakpoint_update(cpu, i);
746     }
747 }
748 
749 #if !defined(CONFIG_USER_ONLY)
750 
751 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
752 {
753     ARMCPU *cpu = ARM_CPU(cs);
754     CPUARMState *env = &cpu->env;
755 
756     /*
757      * In BE32 system mode, target memory is stored byteswapped (on a
758      * little-endian host system), and by the time we reach here (via an
759      * opcode helper) the addresses of subword accesses have been adjusted
760      * to account for that, which means that watchpoints will not match.
761      * Undo the adjustment here.
762      */
763     if (arm_sctlr_b(env)) {
764         if (len == 1) {
765             addr ^= 3;
766         } else if (len == 2) {
767             addr ^= 2;
768         }
769     }
770 
771     return addr;
772 }
773 
774 #endif /* !CONFIG_USER_ONLY */
775 #endif /* CONFIG_TCG */
776 
777 /*
778  * Check for traps to "powerdown debug" registers, which are controlled
779  * by MDCR.TDOSA
780  */
781 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
782                                    bool isread)
783 {
784     int el = arm_current_el(env);
785     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
786     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
787         (arm_hcr_el2_eff(env) & HCR_TGE);
788 
789     if (el < 2 && mdcr_el2_tdosa) {
790         return CP_ACCESS_TRAP_EL2;
791     }
792     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
793         return CP_ACCESS_TRAP_EL3;
794     }
795     return CP_ACCESS_OK;
796 }
797 
798 /*
799  * Check for traps to "debug ROM" registers, which are controlled
800  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
801  */
802 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
803                                   bool isread)
804 {
805     int el = arm_current_el(env);
806     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
807     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
808         (arm_hcr_el2_eff(env) & HCR_TGE);
809 
810     if (el < 2 && mdcr_el2_tdra) {
811         return CP_ACCESS_TRAP_EL2;
812     }
813     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
814         return CP_ACCESS_TRAP_EL3;
815     }
816     return CP_ACCESS_OK;
817 }
818 
819 /*
820  * Check for traps to general debug registers, which are controlled
821  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
822  */
823 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
824                                   bool isread)
825 {
826     int el = arm_current_el(env);
827     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
828     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
829         (arm_hcr_el2_eff(env) & HCR_TGE);
830 
831     if (el < 2 && mdcr_el2_tda) {
832         return CP_ACCESS_TRAP_EL2;
833     }
834     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
835         return CP_ACCESS_TRAP_EL3;
836     }
837     return CP_ACCESS_OK;
838 }
839 
840 /*
841  * Check for traps to Debug Comms Channel registers. If FEAT_FGT
842  * is implemented then these are controlled by MDCR_EL2.TDCC for
843  * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
844  * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
845  * For EL0, they are also controlled by MDSCR_EL1.TDCC.
846  */
847 static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
848                                   bool isread)
849 {
850     int el = arm_current_el(env);
851     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
852     bool mdscr_el1_tdcc = extract32(env->cp15.mdscr_el1, 12, 1);
853     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
854         (arm_hcr_el2_eff(env) & HCR_TGE);
855     bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
856                                           (mdcr_el2 & MDCR_TDCC);
857     bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
858                                           (env->cp15.mdcr_el3 & MDCR_TDCC);
859 
860     if (el < 1 && mdscr_el1_tdcc) {
861         return CP_ACCESS_TRAP;
862     }
863     if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
864         return CP_ACCESS_TRAP_EL2;
865     }
866     if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
867         return CP_ACCESS_TRAP_EL3;
868     }
869     return CP_ACCESS_OK;
870 }
871 
872 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
873                         uint64_t value)
874 {
875     /*
876      * Writes to OSLAR_EL1 may update the OS lock status, which can be
877      * read via a bit in OSLSR_EL1.
878      */
879     int oslock;
880 
881     if (ri->state == ARM_CP_STATE_AA32) {
882         oslock = (value == 0xC5ACCE55);
883     } else {
884         oslock = value & 1;
885     }
886 
887     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
888 }
889 
890 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
891                         uint64_t value)
892 {
893     ARMCPU *cpu = env_archcpu(env);
894     /*
895      * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
896      * implemented this is RAZ/WI.
897      */
898     if(arm_feature(env, ARM_FEATURE_AARCH64)
899        ? cpu_isar_feature(aa64_doublelock, cpu)
900        : cpu_isar_feature(aa32_doublelock, cpu)) {
901         env->cp15.osdlr_el1 = value & 1;
902     }
903 }
904 
905 static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
906                               uint64_t value)
907 {
908     env->cp15.dbgclaim |= (value & 0xFF);
909 }
910 
911 static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
912 {
913     /* CLAIM bits are RAO */
914     return 0xFF;
915 }
916 
917 static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
918                               uint64_t value)
919 {
920     env->cp15.dbgclaim &= ~(value & 0xFF);
921 }
922 
923 static const ARMCPRegInfo debug_cp_reginfo[] = {
924     /*
925      * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
926      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
927      * unlike DBGDRAR it is never accessible from EL0.
928      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
929      * accessor.
930      */
931     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
932       .access = PL0_R, .accessfn = access_tdra,
933       .type = ARM_CP_CONST, .resetvalue = 0 },
934     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
935       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
936       .access = PL1_R, .accessfn = access_tdra,
937       .type = ARM_CP_CONST, .resetvalue = 0 },
938     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
939       .access = PL0_R, .accessfn = access_tdra,
940       .type = ARM_CP_CONST, .resetvalue = 0 },
941     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
942     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
943       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
944       .access = PL1_RW, .accessfn = access_tda,
945       .fgt = FGT_MDSCR_EL1,
946       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
947       .resetvalue = 0 },
948     /*
949      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
950      * Debug Communication Channel is not implemented.
951      */
952     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
953       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
954       .access = PL0_R, .accessfn = access_tdcc,
955       .type = ARM_CP_CONST, .resetvalue = 0 },
956     /*
957      * These registers belong to the Debug Communications Channel,
958      * which is not implemented. However we implement RAZ/WI behaviour
959      * with trapping to prevent spurious SIGILLs if the guest OS does
960      * access them as the support cannot be probed for.
961      */
962     { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
963       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
964       .access = PL1_RW, .accessfn = access_tdcc,
965       .type = ARM_CP_CONST, .resetvalue = 0 },
966     { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
967       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
968       .access = PL1_RW, .accessfn = access_tdcc,
969       .type = ARM_CP_CONST, .resetvalue = 0 },
970     /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
971     { .name = "DBGDTR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14,
972       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 5, .opc2 = 0,
973       .access = PL0_RW, .accessfn = access_tdcc,
974       .type = ARM_CP_CONST, .resetvalue = 0 },
975     /*
976      * OSECCR_EL1 provides a mechanism for an operating system
977      * to access the contents of EDECCR. EDECCR is not implemented though,
978      * as is the rest of external device mechanism.
979      */
980     { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
981       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
982       .access = PL1_RW, .accessfn = access_tda,
983       .fgt = FGT_OSECCR_EL1,
984       .type = ARM_CP_CONST, .resetvalue = 0 },
985     /*
986      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
987      * it is unlikely a guest will care.
988      * We don't implement the configurable EL0 access.
989      */
990     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
991       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
992       .type = ARM_CP_ALIAS,
993       .access = PL1_R, .accessfn = access_tda,
994       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
995     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
996       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
997       .access = PL1_W, .type = ARM_CP_NO_RAW,
998       .accessfn = access_tdosa,
999       .fgt = FGT_OSLAR_EL1,
1000       .writefn = oslar_write },
1001     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
1002       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
1003       .access = PL1_R, .resetvalue = 10,
1004       .accessfn = access_tdosa,
1005       .fgt = FGT_OSLSR_EL1,
1006       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
1007     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
1008     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
1009       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
1010       .access = PL1_RW, .accessfn = access_tdosa,
1011       .fgt = FGT_OSDLR_EL1,
1012       .writefn = osdlr_write,
1013       .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
1014     /*
1015      * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
1016      * implement vector catch debug events yet.
1017      */
1018     { .name = "DBGVCR",
1019       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
1020       .access = PL1_RW, .accessfn = access_tda,
1021       .type = ARM_CP_NOP },
1022     /*
1023      * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
1024      * to save and restore a 32-bit guest's DBGVCR)
1025      */
1026     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
1027       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
1028       .access = PL2_RW, .accessfn = access_tda,
1029       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
1030     /*
1031      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
1032      * Channel but Linux may try to access this register. The 32-bit
1033      * alias is DBGDCCINT.
1034      */
1035     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
1036       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
1037       .access = PL1_RW, .accessfn = access_tdcc,
1038       .type = ARM_CP_NOP },
1039     /*
1040      * Dummy DBGCLAIM registers.
1041      * "The architecture does not define any functionality for the CLAIM tag bits.",
1042      * so we only keep the raw bits
1043      */
1044     { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
1045       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
1046       .type = ARM_CP_ALIAS,
1047       .access = PL1_RW, .accessfn = access_tda,
1048       .fgt = FGT_DBGCLAIM,
1049       .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
1050     { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
1051       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
1052       .access = PL1_RW, .accessfn = access_tda,
1053       .fgt = FGT_DBGCLAIM,
1054       .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
1055       .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
1056 };
1057 
1058 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
1059     /* 64 bit access versions of the (dummy) debug registers */
1060     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1061       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1062     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1063       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1064 };
1065 
1066 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1067                          uint64_t value)
1068 {
1069     ARMCPU *cpu = env_archcpu(env);
1070     int i = ri->crm;
1071 
1072     /*
1073      * Bits [1:0] are RES0.
1074      *
1075      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
1076      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
1077      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
1078      * whether the RESS bits are ignored when comparing an address.
1079      *
1080      * Therefore we are allowed to compare the entire register, which lets
1081      * us avoid considering whether or not FEAT_LVA is actually enabled.
1082      */
1083     value &= ~3ULL;
1084 
1085     raw_write(env, ri, value);
1086     if (tcg_enabled()) {
1087         hw_watchpoint_update(cpu, i);
1088     }
1089 }
1090 
1091 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1092                          uint64_t value)
1093 {
1094     ARMCPU *cpu = env_archcpu(env);
1095     int i = ri->crm;
1096 
1097     raw_write(env, ri, value);
1098     if (tcg_enabled()) {
1099         hw_watchpoint_update(cpu, i);
1100     }
1101 }
1102 
1103 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                          uint64_t value)
1105 {
1106     ARMCPU *cpu = env_archcpu(env);
1107     int i = ri->crm;
1108 
1109     raw_write(env, ri, value);
1110     if (tcg_enabled()) {
1111         hw_breakpoint_update(cpu, i);
1112     }
1113 }
1114 
1115 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1116                          uint64_t value)
1117 {
1118     ARMCPU *cpu = env_archcpu(env);
1119     int i = ri->crm;
1120 
1121     /*
1122      * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1123      * copy of BAS[0].
1124      */
1125     value = deposit64(value, 6, 1, extract64(value, 5, 1));
1126     value = deposit64(value, 8, 1, extract64(value, 7, 1));
1127 
1128     raw_write(env, ri, value);
1129     if (tcg_enabled()) {
1130         hw_breakpoint_update(cpu, i);
1131     }
1132 }
1133 
1134 void define_debug_regs(ARMCPU *cpu)
1135 {
1136     /*
1137      * Define v7 and v8 architectural debug registers.
1138      * These are just dummy implementations for now.
1139      */
1140     int i;
1141     int wrps, brps, ctx_cmps;
1142 
1143     /*
1144      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1145      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
1146      * the register must not exist for this cpu.
1147      */
1148     if (cpu->isar.dbgdidr != 0) {
1149         ARMCPRegInfo dbgdidr = {
1150             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1151             .opc1 = 0, .opc2 = 0,
1152             .access = PL0_R, .accessfn = access_tda,
1153             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1154         };
1155         define_one_arm_cp_reg(cpu, &dbgdidr);
1156     }
1157 
1158     /*
1159      * DBGDEVID is present in the v7 debug architecture if
1160      * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1161      * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1162      * from v7.1 of the debug architecture. Because no fields have yet
1163      * been defined in DBGDEVID2 (and quite possibly none will ever
1164      * be) we don't define an ARMISARegisters field for it.
1165      * These registers exist only if EL1 can use AArch32, but that
1166      * happens naturally because they are only PL1 accessible anyway.
1167      */
1168     if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1169         ARMCPRegInfo dbgdevid = {
1170             .name = "DBGDEVID",
1171             .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1172             .access = PL1_R, .accessfn = access_tda,
1173             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1174         };
1175         define_one_arm_cp_reg(cpu, &dbgdevid);
1176     }
1177     if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1178         ARMCPRegInfo dbgdevid12[] = {
1179             {
1180                 .name = "DBGDEVID1",
1181                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1182                 .access = PL1_R, .accessfn = access_tda,
1183                 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1184             }, {
1185                 .name = "DBGDEVID2",
1186                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1187                 .access = PL1_R, .accessfn = access_tda,
1188                 .type = ARM_CP_CONST, .resetvalue = 0,
1189             },
1190         };
1191         define_arm_cp_regs(cpu, dbgdevid12);
1192     }
1193 
1194     brps = arm_num_brps(cpu);
1195     wrps = arm_num_wrps(cpu);
1196     ctx_cmps = arm_num_ctx_cmps(cpu);
1197 
1198     assert(ctx_cmps <= brps);
1199 
1200     define_arm_cp_regs(cpu, debug_cp_reginfo);
1201 
1202     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1203         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1204     }
1205 
1206     for (i = 0; i < brps; i++) {
1207         char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1208         char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1209         ARMCPRegInfo dbgregs[] = {
1210             { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1211               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1212               .access = PL1_RW, .accessfn = access_tda,
1213               .fgt = FGT_DBGBVRN_EL1,
1214               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1215               .writefn = dbgbvr_write, .raw_writefn = raw_write
1216             },
1217             { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1218               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1219               .access = PL1_RW, .accessfn = access_tda,
1220               .fgt = FGT_DBGBCRN_EL1,
1221               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1222               .writefn = dbgbcr_write, .raw_writefn = raw_write
1223             },
1224         };
1225         define_arm_cp_regs(cpu, dbgregs);
1226         g_free(dbgbvr_el1_name);
1227         g_free(dbgbcr_el1_name);
1228     }
1229 
1230     for (i = 0; i < wrps; i++) {
1231         char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1232         char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1233         ARMCPRegInfo dbgregs[] = {
1234             { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1235               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1236               .access = PL1_RW, .accessfn = access_tda,
1237               .fgt = FGT_DBGWVRN_EL1,
1238               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1239               .writefn = dbgwvr_write, .raw_writefn = raw_write
1240             },
1241             { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1242               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1243               .access = PL1_RW, .accessfn = access_tda,
1244               .fgt = FGT_DBGWCRN_EL1,
1245               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1246               .writefn = dbgwcr_write, .raw_writefn = raw_write
1247             },
1248         };
1249         define_arm_cp_regs(cpu, dbgregs);
1250         g_free(dbgwvr_el1_name);
1251         g_free(dbgwcr_el1_name);
1252     }
1253 }
1254