xref: /openbmc/qemu/target/arm/debug_helper.c (revision b14df228)
1 /*
2  * ARM debug helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
15 
16 
17 /* Return the Exception Level targeted by debug exceptions. */
18 static int arm_debug_target_el(CPUARMState *env)
19 {
20     bool secure = arm_is_secure(env);
21     bool route_to_el2 = false;
22 
23     if (arm_is_el2_enabled(env)) {
24         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
25                        env->cp15.mdcr_el2 & MDCR_TDE;
26     }
27 
28     if (route_to_el2) {
29         return 2;
30     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
31                !arm_el_is_aa64(env, 3) && secure) {
32         return 3;
33     } else {
34         return 1;
35     }
36 }
37 
38 /*
39  * Raise an exception to the debug target el.
40  * Modify syndrome to indicate when origin and target EL are the same.
41  */
42 G_NORETURN static void
43 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
44 {
45     int debug_el = arm_debug_target_el(env);
46     int cur_el = arm_current_el(env);
47 
48     /*
49      * If singlestep is targeting a lower EL than the current one, then
50      * DisasContext.ss_active must be false and we can never get here.
51      * Similarly for watchpoint and breakpoint matches.
52      */
53     assert(debug_el >= cur_el);
54     syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
55     raise_exception(env, excp, syndrome, debug_el);
56 }
57 
58 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
59 static bool aa64_generate_debug_exceptions(CPUARMState *env)
60 {
61     int cur_el = arm_current_el(env);
62     int debug_el;
63 
64     if (cur_el == 3) {
65         return false;
66     }
67 
68     /* MDCR_EL3.SDD disables debug events from Secure state */
69     if (arm_is_secure_below_el3(env)
70         && extract32(env->cp15.mdcr_el3, 16, 1)) {
71         return false;
72     }
73 
74     /*
75      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
76      * while not masking the (D)ebug bit in DAIF.
77      */
78     debug_el = arm_debug_target_el(env);
79 
80     if (cur_el == debug_el) {
81         return extract32(env->cp15.mdscr_el1, 13, 1)
82             && !(env->daif & PSTATE_D);
83     }
84 
85     /* Otherwise the debug target needs to be a higher EL */
86     return debug_el > cur_el;
87 }
88 
89 static bool aa32_generate_debug_exceptions(CPUARMState *env)
90 {
91     int el = arm_current_el(env);
92 
93     if (el == 0 && arm_el_is_aa64(env, 1)) {
94         return aa64_generate_debug_exceptions(env);
95     }
96 
97     if (arm_is_secure(env)) {
98         int spd;
99 
100         if (el == 0 && (env->cp15.sder & 1)) {
101             /*
102              * SDER.SUIDEN means debug exceptions from Secure EL0
103              * are always enabled. Otherwise they are controlled by
104              * SDCR.SPD like those from other Secure ELs.
105              */
106             return true;
107         }
108 
109         spd = extract32(env->cp15.mdcr_el3, 14, 2);
110         switch (spd) {
111         case 1:
112             /* SPD == 0b01 is reserved, but behaves as 0b00. */
113         case 0:
114             /*
115              * For 0b00 we return true if external secure invasive debug
116              * is enabled. On real hardware this is controlled by external
117              * signals to the core. QEMU always permits debug, and behaves
118              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
119              */
120             return true;
121         case 2:
122             return false;
123         case 3:
124             return true;
125         }
126     }
127 
128     return el != 2;
129 }
130 
131 /*
132  * Return true if debugging exceptions are currently enabled.
133  * This corresponds to what in ARM ARM pseudocode would be
134  *    if UsingAArch32() then
135  *        return AArch32.GenerateDebugExceptions()
136  *    else
137  *        return AArch64.GenerateDebugExceptions()
138  * We choose to push the if() down into this function for clarity,
139  * since the pseudocode has it at all callsites except for the one in
140  * CheckSoftwareStep(), where it is elided because both branches would
141  * always return the same value.
142  */
143 bool arm_generate_debug_exceptions(CPUARMState *env)
144 {
145     if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
146         return false;
147     }
148     if (is_a64(env)) {
149         return aa64_generate_debug_exceptions(env);
150     } else {
151         return aa32_generate_debug_exceptions(env);
152     }
153 }
154 
155 /*
156  * Is single-stepping active? (Note that the "is EL_D AArch64?" check
157  * implicitly means this always returns false in pre-v8 CPUs.)
158  */
159 bool arm_singlestep_active(CPUARMState *env)
160 {
161     return extract32(env->cp15.mdscr_el1, 0, 1)
162         && arm_el_is_aa64(env, arm_debug_target_el(env))
163         && arm_generate_debug_exceptions(env);
164 }
165 
166 /* Return true if the linked breakpoint entry lbn passes its checks */
167 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
168 {
169     CPUARMState *env = &cpu->env;
170     uint64_t bcr = env->cp15.dbgbcr[lbn];
171     int brps = arm_num_brps(cpu);
172     int ctx_cmps = arm_num_ctx_cmps(cpu);
173     int bt;
174     uint32_t contextidr;
175     uint64_t hcr_el2;
176 
177     /*
178      * Links to unimplemented or non-context aware breakpoints are
179      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
180      * as if linked to an UNKNOWN context-aware breakpoint (in which
181      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
182      * We choose the former.
183      */
184     if (lbn >= brps || lbn < (brps - ctx_cmps)) {
185         return false;
186     }
187 
188     bcr = env->cp15.dbgbcr[lbn];
189 
190     if (extract64(bcr, 0, 1) == 0) {
191         /* Linked breakpoint disabled : generate no events */
192         return false;
193     }
194 
195     bt = extract64(bcr, 20, 4);
196     hcr_el2 = arm_hcr_el2_eff(env);
197 
198     switch (bt) {
199     case 3: /* linked context ID match */
200         switch (arm_current_el(env)) {
201         default:
202             /* Context matches never fire in AArch64 EL3 */
203             return false;
204         case 2:
205             if (!(hcr_el2 & HCR_E2H)) {
206                 /* Context matches never fire in EL2 without E2H enabled. */
207                 return false;
208             }
209             contextidr = env->cp15.contextidr_el[2];
210             break;
211         case 1:
212             contextidr = env->cp15.contextidr_el[1];
213             break;
214         case 0:
215             if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
216                 contextidr = env->cp15.contextidr_el[2];
217             } else {
218                 contextidr = env->cp15.contextidr_el[1];
219             }
220             break;
221         }
222         break;
223 
224     case 7:  /* linked contextidr_el1 match */
225         contextidr = env->cp15.contextidr_el[1];
226         break;
227     case 13: /* linked contextidr_el2 match */
228         contextidr = env->cp15.contextidr_el[2];
229         break;
230 
231     case 9: /* linked VMID match (reserved if no EL2) */
232     case 11: /* linked context ID and VMID match (reserved if no EL2) */
233     case 15: /* linked full context ID match */
234     default:
235         /*
236          * Links to Unlinked context breakpoints must generate no
237          * events; we choose to do the same for reserved values too.
238          */
239         return false;
240     }
241 
242     /*
243      * We match the whole register even if this is AArch32 using the
244      * short descriptor format (in which case it holds both PROCID and ASID),
245      * since we don't implement the optional v7 context ID masking.
246      */
247     return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
248 }
249 
250 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
251 {
252     CPUARMState *env = &cpu->env;
253     uint64_t cr;
254     int pac, hmc, ssc, wt, lbn;
255     /*
256      * Note that for watchpoints the check is against the CPU security
257      * state, not the S/NS attribute on the offending data access.
258      */
259     bool is_secure = arm_is_secure(env);
260     int access_el = arm_current_el(env);
261 
262     if (is_wp) {
263         CPUWatchpoint *wp = env->cpu_watchpoint[n];
264 
265         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
266             return false;
267         }
268         cr = env->cp15.dbgwcr[n];
269         if (wp->hitattrs.user) {
270             /*
271              * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
272              * match watchpoints as if they were accesses done at EL0, even if
273              * the CPU is at EL1 or higher.
274              */
275             access_el = 0;
276         }
277     } else {
278         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
279 
280         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
281             return false;
282         }
283         cr = env->cp15.dbgbcr[n];
284     }
285     /*
286      * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
287      * enabled and that the address and access type match; for breakpoints
288      * we know the address matched; check the remaining fields, including
289      * linked breakpoints. We rely on WCR and BCR having the same layout
290      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
291      * Note that some combinations of {PAC, HMC, SSC} are reserved and
292      * must act either like some valid combination or as if the watchpoint
293      * were disabled. We choose the former, and use this together with
294      * the fact that EL3 must always be Secure and EL2 must always be
295      * Non-Secure to simplify the code slightly compared to the full
296      * table in the ARM ARM.
297      */
298     pac = FIELD_EX64(cr, DBGWCR, PAC);
299     hmc = FIELD_EX64(cr, DBGWCR, HMC);
300     ssc = FIELD_EX64(cr, DBGWCR, SSC);
301 
302     switch (ssc) {
303     case 0:
304         break;
305     case 1:
306     case 3:
307         if (is_secure) {
308             return false;
309         }
310         break;
311     case 2:
312         if (!is_secure) {
313             return false;
314         }
315         break;
316     }
317 
318     switch (access_el) {
319     case 3:
320     case 2:
321         if (!hmc) {
322             return false;
323         }
324         break;
325     case 1:
326         if (extract32(pac, 0, 1) == 0) {
327             return false;
328         }
329         break;
330     case 0:
331         if (extract32(pac, 1, 1) == 0) {
332             return false;
333         }
334         break;
335     default:
336         g_assert_not_reached();
337     }
338 
339     wt = FIELD_EX64(cr, DBGWCR, WT);
340     lbn = FIELD_EX64(cr, DBGWCR, LBN);
341 
342     if (wt && !linked_bp_matches(cpu, lbn)) {
343         return false;
344     }
345 
346     return true;
347 }
348 
349 static bool check_watchpoints(ARMCPU *cpu)
350 {
351     CPUARMState *env = &cpu->env;
352     int n;
353 
354     /*
355      * If watchpoints are disabled globally or we can't take debug
356      * exceptions here then watchpoint firings are ignored.
357      */
358     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
359         || !arm_generate_debug_exceptions(env)) {
360         return false;
361     }
362 
363     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
364         if (bp_wp_matches(cpu, n, true)) {
365             return true;
366         }
367     }
368     return false;
369 }
370 
371 bool arm_debug_check_breakpoint(CPUState *cs)
372 {
373     ARMCPU *cpu = ARM_CPU(cs);
374     CPUARMState *env = &cpu->env;
375     target_ulong pc;
376     int n;
377 
378     /*
379      * If breakpoints are disabled globally or we can't take debug
380      * exceptions here then breakpoint firings are ignored.
381      */
382     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
383         || !arm_generate_debug_exceptions(env)) {
384         return false;
385     }
386 
387     /*
388      * Single-step exceptions have priority over breakpoint exceptions.
389      * If single-step state is active-pending, suppress the bp.
390      */
391     if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
392         return false;
393     }
394 
395     /*
396      * PC alignment faults have priority over breakpoint exceptions.
397      */
398     pc = is_a64(env) ? env->pc : env->regs[15];
399     if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
400         return false;
401     }
402 
403     /*
404      * Instruction aborts have priority over breakpoint exceptions.
405      * TODO: We would need to look up the page for PC and verify that
406      * it is present and executable.
407      */
408 
409     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
410         if (bp_wp_matches(cpu, n, false)) {
411             return true;
412         }
413     }
414     return false;
415 }
416 
417 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
418 {
419     /*
420      * Called by core code when a CPU watchpoint fires; need to check if this
421      * is also an architectural watchpoint match.
422      */
423     ARMCPU *cpu = ARM_CPU(cs);
424 
425     return check_watchpoints(cpu);
426 }
427 
428 /*
429  * Return the FSR value for a debug exception (watchpoint, hardware
430  * breakpoint or BKPT insn) targeting the specified exception level.
431  */
432 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
433 {
434     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
435     int target_el = arm_debug_target_el(env);
436     bool using_lpae = false;
437 
438     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
439         using_lpae = true;
440     } else {
441         if (arm_feature(env, ARM_FEATURE_LPAE) &&
442             (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
443             using_lpae = true;
444         }
445     }
446 
447     if (using_lpae) {
448         return arm_fi_to_lfsc(&fi);
449     } else {
450         return arm_fi_to_sfsc(&fi);
451     }
452 }
453 
454 void arm_debug_excp_handler(CPUState *cs)
455 {
456     /*
457      * Called by core code when a watchpoint or breakpoint fires;
458      * need to check which one and raise the appropriate exception.
459      */
460     ARMCPU *cpu = ARM_CPU(cs);
461     CPUARMState *env = &cpu->env;
462     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
463 
464     if (wp_hit) {
465         if (wp_hit->flags & BP_CPU) {
466             bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
467 
468             cs->watchpoint_hit = NULL;
469 
470             env->exception.fsr = arm_debug_exception_fsr(env);
471             env->exception.vaddress = wp_hit->hitaddr;
472             raise_exception_debug(env, EXCP_DATA_ABORT,
473                                   syn_watchpoint(0, 0, wnr));
474         }
475     } else {
476         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
477 
478         /*
479          * (1) GDB breakpoints should be handled first.
480          * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
481          * since singlestep is also done by generating a debug internal
482          * exception.
483          */
484         if (cpu_breakpoint_test(cs, pc, BP_GDB)
485             || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
486             return;
487         }
488 
489         env->exception.fsr = arm_debug_exception_fsr(env);
490         /*
491          * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
492          * values to the guest that it shouldn't be able to see at its
493          * exception/security level.
494          */
495         env->exception.vaddress = 0;
496         raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
497     }
498 }
499 
500 /*
501  * Raise an EXCP_BKPT with the specified syndrome register value,
502  * targeting the correct exception level for debug exceptions.
503  */
504 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
505 {
506     int debug_el = arm_debug_target_el(env);
507     int cur_el = arm_current_el(env);
508 
509     /* FSR will only be used if the debug target EL is AArch32. */
510     env->exception.fsr = arm_debug_exception_fsr(env);
511     /*
512      * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
513      * values to the guest that it shouldn't be able to see at its
514      * exception/security level.
515      */
516     env->exception.vaddress = 0;
517     /*
518      * Other kinds of architectural debug exception are ignored if
519      * they target an exception level below the current one (in QEMU
520      * this is checked by arm_generate_debug_exceptions()). Breakpoint
521      * instructions are special because they always generate an exception
522      * to somewhere: if they can't go to the configured debug exception
523      * level they are taken to the current exception level.
524      */
525     if (debug_el < cur_el) {
526         debug_el = cur_el;
527     }
528     raise_exception(env, EXCP_BKPT, syndrome, debug_el);
529 }
530 
531 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
532 {
533     raise_exception_debug(env, EXCP_UDEF, syndrome);
534 }
535 
536 /*
537  * Check for traps to "powerdown debug" registers, which are controlled
538  * by MDCR.TDOSA
539  */
540 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
541                                    bool isread)
542 {
543     int el = arm_current_el(env);
544     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
545     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
546         (arm_hcr_el2_eff(env) & HCR_TGE);
547 
548     if (el < 2 && mdcr_el2_tdosa) {
549         return CP_ACCESS_TRAP_EL2;
550     }
551     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
552         return CP_ACCESS_TRAP_EL3;
553     }
554     return CP_ACCESS_OK;
555 }
556 
557 /*
558  * Check for traps to "debug ROM" registers, which are controlled
559  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
560  */
561 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
562                                   bool isread)
563 {
564     int el = arm_current_el(env);
565     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
566     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
567         (arm_hcr_el2_eff(env) & HCR_TGE);
568 
569     if (el < 2 && mdcr_el2_tdra) {
570         return CP_ACCESS_TRAP_EL2;
571     }
572     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
573         return CP_ACCESS_TRAP_EL3;
574     }
575     return CP_ACCESS_OK;
576 }
577 
578 /*
579  * Check for traps to general debug registers, which are controlled
580  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
581  */
582 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
583                                   bool isread)
584 {
585     int el = arm_current_el(env);
586     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
587     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
588         (arm_hcr_el2_eff(env) & HCR_TGE);
589 
590     if (el < 2 && mdcr_el2_tda) {
591         return CP_ACCESS_TRAP_EL2;
592     }
593     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
594         return CP_ACCESS_TRAP_EL3;
595     }
596     return CP_ACCESS_OK;
597 }
598 
599 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
600                         uint64_t value)
601 {
602     /*
603      * Writes to OSLAR_EL1 may update the OS lock status, which can be
604      * read via a bit in OSLSR_EL1.
605      */
606     int oslock;
607 
608     if (ri->state == ARM_CP_STATE_AA32) {
609         oslock = (value == 0xC5ACCE55);
610     } else {
611         oslock = value & 1;
612     }
613 
614     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
615 }
616 
617 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
618                         uint64_t value)
619 {
620     ARMCPU *cpu = env_archcpu(env);
621     /*
622      * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
623      * implemented this is RAZ/WI.
624      */
625     if(arm_feature(env, ARM_FEATURE_AARCH64)
626        ? cpu_isar_feature(aa64_doublelock, cpu)
627        : cpu_isar_feature(aa32_doublelock, cpu)) {
628         env->cp15.osdlr_el1 = value & 1;
629     }
630 }
631 
632 static const ARMCPRegInfo debug_cp_reginfo[] = {
633     /*
634      * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
635      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
636      * unlike DBGDRAR it is never accessible from EL0.
637      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
638      * accessor.
639      */
640     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
641       .access = PL0_R, .accessfn = access_tdra,
642       .type = ARM_CP_CONST, .resetvalue = 0 },
643     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
644       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
645       .access = PL1_R, .accessfn = access_tdra,
646       .type = ARM_CP_CONST, .resetvalue = 0 },
647     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
648       .access = PL0_R, .accessfn = access_tdra,
649       .type = ARM_CP_CONST, .resetvalue = 0 },
650     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
651     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
652       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
653       .access = PL1_RW, .accessfn = access_tda,
654       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
655       .resetvalue = 0 },
656     /*
657      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
658      * Debug Communication Channel is not implemented.
659      */
660     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
661       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
662       .access = PL0_R, .accessfn = access_tda,
663       .type = ARM_CP_CONST, .resetvalue = 0 },
664     /*
665      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
666      * it is unlikely a guest will care.
667      * We don't implement the configurable EL0 access.
668      */
669     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
670       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
671       .type = ARM_CP_ALIAS,
672       .access = PL1_R, .accessfn = access_tda,
673       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
674     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
675       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
676       .access = PL1_W, .type = ARM_CP_NO_RAW,
677       .accessfn = access_tdosa,
678       .writefn = oslar_write },
679     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
680       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
681       .access = PL1_R, .resetvalue = 10,
682       .accessfn = access_tdosa,
683       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
684     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
685     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
686       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
687       .access = PL1_RW, .accessfn = access_tdosa,
688       .writefn = osdlr_write,
689       .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
690     /*
691      * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
692      * implement vector catch debug events yet.
693      */
694     { .name = "DBGVCR",
695       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
696       .access = PL1_RW, .accessfn = access_tda,
697       .type = ARM_CP_NOP },
698     /*
699      * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
700      * to save and restore a 32-bit guest's DBGVCR)
701      */
702     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
703       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
704       .access = PL2_RW, .accessfn = access_tda,
705       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
706     /*
707      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
708      * Channel but Linux may try to access this register. The 32-bit
709      * alias is DBGDCCINT.
710      */
711     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
712       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
713       .access = PL1_RW, .accessfn = access_tda,
714       .type = ARM_CP_NOP },
715 };
716 
717 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
718     /* 64 bit access versions of the (dummy) debug registers */
719     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
720       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
721     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
722       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
723 };
724 
725 void hw_watchpoint_update(ARMCPU *cpu, int n)
726 {
727     CPUARMState *env = &cpu->env;
728     vaddr len = 0;
729     vaddr wvr = env->cp15.dbgwvr[n];
730     uint64_t wcr = env->cp15.dbgwcr[n];
731     int mask;
732     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
733 
734     if (env->cpu_watchpoint[n]) {
735         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
736         env->cpu_watchpoint[n] = NULL;
737     }
738 
739     if (!FIELD_EX64(wcr, DBGWCR, E)) {
740         /* E bit clear : watchpoint disabled */
741         return;
742     }
743 
744     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
745     case 0:
746         /* LSC 00 is reserved and must behave as if the wp is disabled */
747         return;
748     case 1:
749         flags |= BP_MEM_READ;
750         break;
751     case 2:
752         flags |= BP_MEM_WRITE;
753         break;
754     case 3:
755         flags |= BP_MEM_ACCESS;
756         break;
757     }
758 
759     /*
760      * Attempts to use both MASK and BAS fields simultaneously are
761      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
762      * thus generating a watchpoint for every byte in the masked region.
763      */
764     mask = FIELD_EX64(wcr, DBGWCR, MASK);
765     if (mask == 1 || mask == 2) {
766         /*
767          * Reserved values of MASK; we must act as if the mask value was
768          * some non-reserved value, or as if the watchpoint were disabled.
769          * We choose the latter.
770          */
771         return;
772     } else if (mask) {
773         /* Watchpoint covers an aligned area up to 2GB in size */
774         len = 1ULL << mask;
775         /*
776          * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
777          * whether the watchpoint fires when the unmasked bits match; we opt
778          * to generate the exceptions.
779          */
780         wvr &= ~(len - 1);
781     } else {
782         /* Watchpoint covers bytes defined by the byte address select bits */
783         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
784         int basstart;
785 
786         if (extract64(wvr, 2, 1)) {
787             /*
788              * Deprecated case of an only 4-aligned address. BAS[7:4] are
789              * ignored, and BAS[3:0] define which bytes to watch.
790              */
791             bas &= 0xf;
792         }
793 
794         if (bas == 0) {
795             /* This must act as if the watchpoint is disabled */
796             return;
797         }
798 
799         /*
800          * The BAS bits are supposed to be programmed to indicate a contiguous
801          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
802          * we fire for each byte in the word/doubleword addressed by the WVR.
803          * We choose to ignore any non-zero bits after the first range of 1s.
804          */
805         basstart = ctz32(bas);
806         len = cto32(bas >> basstart);
807         wvr += basstart;
808     }
809 
810     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
811                           &env->cpu_watchpoint[n]);
812 }
813 
814 void hw_watchpoint_update_all(ARMCPU *cpu)
815 {
816     int i;
817     CPUARMState *env = &cpu->env;
818 
819     /*
820      * Completely clear out existing QEMU watchpoints and our array, to
821      * avoid possible stale entries following migration load.
822      */
823     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
824     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
825 
826     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
827         hw_watchpoint_update(cpu, i);
828     }
829 }
830 
831 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
832                          uint64_t value)
833 {
834     ARMCPU *cpu = env_archcpu(env);
835     int i = ri->crm;
836 
837     /*
838      * Bits [1:0] are RES0.
839      *
840      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
841      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
842      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
843      * whether the RESS bits are ignored when comparing an address.
844      *
845      * Therefore we are allowed to compare the entire register, which lets
846      * us avoid considering whether or not FEAT_LVA is actually enabled.
847      */
848     value &= ~3ULL;
849 
850     raw_write(env, ri, value);
851     hw_watchpoint_update(cpu, i);
852 }
853 
854 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
855                          uint64_t value)
856 {
857     ARMCPU *cpu = env_archcpu(env);
858     int i = ri->crm;
859 
860     raw_write(env, ri, value);
861     hw_watchpoint_update(cpu, i);
862 }
863 
864 void hw_breakpoint_update(ARMCPU *cpu, int n)
865 {
866     CPUARMState *env = &cpu->env;
867     uint64_t bvr = env->cp15.dbgbvr[n];
868     uint64_t bcr = env->cp15.dbgbcr[n];
869     vaddr addr;
870     int bt;
871     int flags = BP_CPU;
872 
873     if (env->cpu_breakpoint[n]) {
874         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
875         env->cpu_breakpoint[n] = NULL;
876     }
877 
878     if (!extract64(bcr, 0, 1)) {
879         /* E bit clear : watchpoint disabled */
880         return;
881     }
882 
883     bt = extract64(bcr, 20, 4);
884 
885     switch (bt) {
886     case 4: /* unlinked address mismatch (reserved if AArch64) */
887     case 5: /* linked address mismatch (reserved if AArch64) */
888         qemu_log_mask(LOG_UNIMP,
889                       "arm: address mismatch breakpoint types not implemented\n");
890         return;
891     case 0: /* unlinked address match */
892     case 1: /* linked address match */
893     {
894         /*
895          * Bits [1:0] are RES0.
896          *
897          * It is IMPLEMENTATION DEFINED whether bits [63:49]
898          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
899          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
900          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
901          * whether the RESS bits are ignored when comparing an address.
902          * Therefore we are allowed to compare the entire register, which
903          * lets us avoid considering whether FEAT_LVA is actually enabled.
904          *
905          * The BAS field is used to allow setting breakpoints on 16-bit
906          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
907          * a bp will fire if the addresses covered by the bp and the addresses
908          * covered by the insn overlap but the insn doesn't start at the
909          * start of the bp address range. We choose to require the insn and
910          * the bp to have the same address. The constraints on writing to
911          * BAS enforced in dbgbcr_write mean we have only four cases:
912          *  0b0000  => no breakpoint
913          *  0b0011  => breakpoint on addr
914          *  0b1100  => breakpoint on addr + 2
915          *  0b1111  => breakpoint on addr
916          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
917          */
918         int bas = extract64(bcr, 5, 4);
919         addr = bvr & ~3ULL;
920         if (bas == 0) {
921             return;
922         }
923         if (bas == 0xc) {
924             addr += 2;
925         }
926         break;
927     }
928     case 2: /* unlinked context ID match */
929     case 8: /* unlinked VMID match (reserved if no EL2) */
930     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
931         qemu_log_mask(LOG_UNIMP,
932                       "arm: unlinked context breakpoint types not implemented\n");
933         return;
934     case 9: /* linked VMID match (reserved if no EL2) */
935     case 11: /* linked context ID and VMID match (reserved if no EL2) */
936     case 3: /* linked context ID match */
937     default:
938         /*
939          * We must generate no events for Linked context matches (unless
940          * they are linked to by some other bp/wp, which is handled in
941          * updates for the linking bp/wp). We choose to also generate no events
942          * for reserved values.
943          */
944         return;
945     }
946 
947     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
948 }
949 
950 void hw_breakpoint_update_all(ARMCPU *cpu)
951 {
952     int i;
953     CPUARMState *env = &cpu->env;
954 
955     /*
956      * Completely clear out existing QEMU breakpoints and our array, to
957      * avoid possible stale entries following migration load.
958      */
959     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
960     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
961 
962     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
963         hw_breakpoint_update(cpu, i);
964     }
965 }
966 
967 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
968                          uint64_t value)
969 {
970     ARMCPU *cpu = env_archcpu(env);
971     int i = ri->crm;
972 
973     raw_write(env, ri, value);
974     hw_breakpoint_update(cpu, i);
975 }
976 
977 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
978                          uint64_t value)
979 {
980     ARMCPU *cpu = env_archcpu(env);
981     int i = ri->crm;
982 
983     /*
984      * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
985      * copy of BAS[0].
986      */
987     value = deposit64(value, 6, 1, extract64(value, 5, 1));
988     value = deposit64(value, 8, 1, extract64(value, 7, 1));
989 
990     raw_write(env, ri, value);
991     hw_breakpoint_update(cpu, i);
992 }
993 
994 void define_debug_regs(ARMCPU *cpu)
995 {
996     /*
997      * Define v7 and v8 architectural debug registers.
998      * These are just dummy implementations for now.
999      */
1000     int i;
1001     int wrps, brps, ctx_cmps;
1002 
1003     /*
1004      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1005      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
1006      * the register must not exist for this cpu.
1007      */
1008     if (cpu->isar.dbgdidr != 0) {
1009         ARMCPRegInfo dbgdidr = {
1010             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1011             .opc1 = 0, .opc2 = 0,
1012             .access = PL0_R, .accessfn = access_tda,
1013             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1014         };
1015         define_one_arm_cp_reg(cpu, &dbgdidr);
1016     }
1017 
1018     /*
1019      * DBGDEVID is present in the v7 debug architecture if
1020      * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1021      * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1022      * from v7.1 of the debug architecture. Because no fields have yet
1023      * been defined in DBGDEVID2 (and quite possibly none will ever
1024      * be) we don't define an ARMISARegisters field for it.
1025      * These registers exist only if EL1 can use AArch32, but that
1026      * happens naturally because they are only PL1 accessible anyway.
1027      */
1028     if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1029         ARMCPRegInfo dbgdevid = {
1030             .name = "DBGDEVID",
1031             .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1032             .access = PL1_R, .accessfn = access_tda,
1033             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1034         };
1035         define_one_arm_cp_reg(cpu, &dbgdevid);
1036     }
1037     if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1038         ARMCPRegInfo dbgdevid12[] = {
1039             {
1040                 .name = "DBGDEVID1",
1041                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1042                 .access = PL1_R, .accessfn = access_tda,
1043                 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1044             }, {
1045                 .name = "DBGDEVID2",
1046                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1047                 .access = PL1_R, .accessfn = access_tda,
1048                 .type = ARM_CP_CONST, .resetvalue = 0,
1049             },
1050         };
1051         define_arm_cp_regs(cpu, dbgdevid12);
1052     }
1053 
1054     brps = arm_num_brps(cpu);
1055     wrps = arm_num_wrps(cpu);
1056     ctx_cmps = arm_num_ctx_cmps(cpu);
1057 
1058     assert(ctx_cmps <= brps);
1059 
1060     define_arm_cp_regs(cpu, debug_cp_reginfo);
1061 
1062     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1063         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1064     }
1065 
1066     for (i = 0; i < brps; i++) {
1067         char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1068         char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1069         ARMCPRegInfo dbgregs[] = {
1070             { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1071               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1072               .access = PL1_RW, .accessfn = access_tda,
1073               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1074               .writefn = dbgbvr_write, .raw_writefn = raw_write
1075             },
1076             { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1077               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1078               .access = PL1_RW, .accessfn = access_tda,
1079               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1080               .writefn = dbgbcr_write, .raw_writefn = raw_write
1081             },
1082         };
1083         define_arm_cp_regs(cpu, dbgregs);
1084         g_free(dbgbvr_el1_name);
1085         g_free(dbgbcr_el1_name);
1086     }
1087 
1088     for (i = 0; i < wrps; i++) {
1089         char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1090         char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1091         ARMCPRegInfo dbgregs[] = {
1092             { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1093               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1094               .access = PL1_RW, .accessfn = access_tda,
1095               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1096               .writefn = dbgwvr_write, .raw_writefn = raw_write
1097             },
1098             { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1099               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1100               .access = PL1_RW, .accessfn = access_tda,
1101               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1102               .writefn = dbgwcr_write, .raw_writefn = raw_write
1103             },
1104         };
1105         define_arm_cp_regs(cpu, dbgregs);
1106         g_free(dbgwvr_el1_name);
1107         g_free(dbgwcr_el1_name);
1108     }
1109 }
1110 
1111 #if !defined(CONFIG_USER_ONLY)
1112 
1113 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1114 {
1115     ARMCPU *cpu = ARM_CPU(cs);
1116     CPUARMState *env = &cpu->env;
1117 
1118     /*
1119      * In BE32 system mode, target memory is stored byteswapped (on a
1120      * little-endian host system), and by the time we reach here (via an
1121      * opcode helper) the addresses of subword accesses have been adjusted
1122      * to account for that, which means that watchpoints will not match.
1123      * Undo the adjustment here.
1124      */
1125     if (arm_sctlr_b(env)) {
1126         if (len == 1) {
1127             addr ^= 3;
1128         } else if (len == 2) {
1129             addr ^= 2;
1130         }
1131     }
1132 
1133     return addr;
1134 }
1135 
1136 #endif
1137