xref: /openbmc/qemu/target/arm/debug_helper.c (revision 6e510855)
1 /*
2  * ARM debug helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
15 #include "sysemu/tcg.h"
16 
17 #ifdef CONFIG_TCG
18 /* Return the Exception Level targeted by debug exceptions. */
19 static int arm_debug_target_el(CPUARMState *env)
20 {
21     bool secure = arm_is_secure(env);
22     bool route_to_el2 = false;
23 
24     if (arm_feature(env, ARM_FEATURE_M)) {
25         return 1;
26     }
27 
28     if (arm_is_el2_enabled(env)) {
29         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
30                        env->cp15.mdcr_el2 & MDCR_TDE;
31     }
32 
33     if (route_to_el2) {
34         return 2;
35     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
36                !arm_el_is_aa64(env, 3) && secure) {
37         return 3;
38     } else {
39         return 1;
40     }
41 }
42 
43 /*
44  * Raise an exception to the debug target el.
45  * Modify syndrome to indicate when origin and target EL are the same.
46  */
47 G_NORETURN static void
48 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
49 {
50     int debug_el = arm_debug_target_el(env);
51     int cur_el = arm_current_el(env);
52 
53     /*
54      * If singlestep is targeting a lower EL than the current one, then
55      * DisasContext.ss_active must be false and we can never get here.
56      * Similarly for watchpoint and breakpoint matches.
57      */
58     assert(debug_el >= cur_el);
59     syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
60     raise_exception(env, excp, syndrome, debug_el);
61 }
62 
63 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
64 static bool aa64_generate_debug_exceptions(CPUARMState *env)
65 {
66     int cur_el = arm_current_el(env);
67     int debug_el;
68 
69     if (cur_el == 3) {
70         return false;
71     }
72 
73     /* MDCR_EL3.SDD disables debug events from Secure state */
74     if (arm_is_secure_below_el3(env)
75         && extract32(env->cp15.mdcr_el3, 16, 1)) {
76         return false;
77     }
78 
79     /*
80      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
81      * while not masking the (D)ebug bit in DAIF.
82      */
83     debug_el = arm_debug_target_el(env);
84 
85     if (cur_el == debug_el) {
86         return extract32(env->cp15.mdscr_el1, 13, 1)
87             && !(env->daif & PSTATE_D);
88     }
89 
90     /* Otherwise the debug target needs to be a higher EL */
91     return debug_el > cur_el;
92 }
93 
94 static bool aa32_generate_debug_exceptions(CPUARMState *env)
95 {
96     int el = arm_current_el(env);
97 
98     if (el == 0 && arm_el_is_aa64(env, 1)) {
99         return aa64_generate_debug_exceptions(env);
100     }
101 
102     if (arm_is_secure(env)) {
103         int spd;
104 
105         if (el == 0 && (env->cp15.sder & 1)) {
106             /*
107              * SDER.SUIDEN means debug exceptions from Secure EL0
108              * are always enabled. Otherwise they are controlled by
109              * SDCR.SPD like those from other Secure ELs.
110              */
111             return true;
112         }
113 
114         spd = extract32(env->cp15.mdcr_el3, 14, 2);
115         switch (spd) {
116         case 1:
117             /* SPD == 0b01 is reserved, but behaves as 0b00. */
118         case 0:
119             /*
120              * For 0b00 we return true if external secure invasive debug
121              * is enabled. On real hardware this is controlled by external
122              * signals to the core. QEMU always permits debug, and behaves
123              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
124              */
125             return true;
126         case 2:
127             return false;
128         case 3:
129             return true;
130         }
131     }
132 
133     return el != 2;
134 }
135 
136 /*
137  * Return true if debugging exceptions are currently enabled.
138  * This corresponds to what in ARM ARM pseudocode would be
139  *    if UsingAArch32() then
140  *        return AArch32.GenerateDebugExceptions()
141  *    else
142  *        return AArch64.GenerateDebugExceptions()
143  * We choose to push the if() down into this function for clarity,
144  * since the pseudocode has it at all callsites except for the one in
145  * CheckSoftwareStep(), where it is elided because both branches would
146  * always return the same value.
147  */
148 bool arm_generate_debug_exceptions(CPUARMState *env)
149 {
150     if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
151         return false;
152     }
153     if (is_a64(env)) {
154         return aa64_generate_debug_exceptions(env);
155     } else {
156         return aa32_generate_debug_exceptions(env);
157     }
158 }
159 
160 /*
161  * Is single-stepping active? (Note that the "is EL_D AArch64?" check
162  * implicitly means this always returns false in pre-v8 CPUs.)
163  */
164 bool arm_singlestep_active(CPUARMState *env)
165 {
166     return extract32(env->cp15.mdscr_el1, 0, 1)
167         && arm_el_is_aa64(env, arm_debug_target_el(env))
168         && arm_generate_debug_exceptions(env);
169 }
170 
171 /* Return true if the linked breakpoint entry lbn passes its checks */
172 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
173 {
174     CPUARMState *env = &cpu->env;
175     uint64_t bcr = env->cp15.dbgbcr[lbn];
176     int brps = arm_num_brps(cpu);
177     int ctx_cmps = arm_num_ctx_cmps(cpu);
178     int bt;
179     uint32_t contextidr;
180     uint64_t hcr_el2;
181 
182     /*
183      * Links to unimplemented or non-context aware breakpoints are
184      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
185      * as if linked to an UNKNOWN context-aware breakpoint (in which
186      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
187      * We choose the former.
188      */
189     if (lbn >= brps || lbn < (brps - ctx_cmps)) {
190         return false;
191     }
192 
193     bcr = env->cp15.dbgbcr[lbn];
194 
195     if (extract64(bcr, 0, 1) == 0) {
196         /* Linked breakpoint disabled : generate no events */
197         return false;
198     }
199 
200     bt = extract64(bcr, 20, 4);
201     hcr_el2 = arm_hcr_el2_eff(env);
202 
203     switch (bt) {
204     case 3: /* linked context ID match */
205         switch (arm_current_el(env)) {
206         default:
207             /* Context matches never fire in AArch64 EL3 */
208             return false;
209         case 2:
210             if (!(hcr_el2 & HCR_E2H)) {
211                 /* Context matches never fire in EL2 without E2H enabled. */
212                 return false;
213             }
214             contextidr = env->cp15.contextidr_el[2];
215             break;
216         case 1:
217             contextidr = env->cp15.contextidr_el[1];
218             break;
219         case 0:
220             if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
221                 contextidr = env->cp15.contextidr_el[2];
222             } else {
223                 contextidr = env->cp15.contextidr_el[1];
224             }
225             break;
226         }
227         break;
228 
229     case 7:  /* linked contextidr_el1 match */
230         contextidr = env->cp15.contextidr_el[1];
231         break;
232     case 13: /* linked contextidr_el2 match */
233         contextidr = env->cp15.contextidr_el[2];
234         break;
235 
236     case 9: /* linked VMID match (reserved if no EL2) */
237     case 11: /* linked context ID and VMID match (reserved if no EL2) */
238     case 15: /* linked full context ID match */
239     default:
240         /*
241          * Links to Unlinked context breakpoints must generate no
242          * events; we choose to do the same for reserved values too.
243          */
244         return false;
245     }
246 
247     /*
248      * We match the whole register even if this is AArch32 using the
249      * short descriptor format (in which case it holds both PROCID and ASID),
250      * since we don't implement the optional v7 context ID masking.
251      */
252     return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
253 }
254 
255 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
256 {
257     CPUARMState *env = &cpu->env;
258     uint64_t cr;
259     int pac, hmc, ssc, wt, lbn;
260     /*
261      * Note that for watchpoints the check is against the CPU security
262      * state, not the S/NS attribute on the offending data access.
263      */
264     bool is_secure = arm_is_secure(env);
265     int access_el = arm_current_el(env);
266 
267     if (is_wp) {
268         CPUWatchpoint *wp = env->cpu_watchpoint[n];
269 
270         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
271             return false;
272         }
273         cr = env->cp15.dbgwcr[n];
274         if (wp->hitattrs.user) {
275             /*
276              * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
277              * match watchpoints as if they were accesses done at EL0, even if
278              * the CPU is at EL1 or higher.
279              */
280             access_el = 0;
281         }
282     } else {
283         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
284 
285         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
286             return false;
287         }
288         cr = env->cp15.dbgbcr[n];
289     }
290     /*
291      * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
292      * enabled and that the address and access type match; for breakpoints
293      * we know the address matched; check the remaining fields, including
294      * linked breakpoints. We rely on WCR and BCR having the same layout
295      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
296      * Note that some combinations of {PAC, HMC, SSC} are reserved and
297      * must act either like some valid combination or as if the watchpoint
298      * were disabled. We choose the former, and use this together with
299      * the fact that EL3 must always be Secure and EL2 must always be
300      * Non-Secure to simplify the code slightly compared to the full
301      * table in the ARM ARM.
302      */
303     pac = FIELD_EX64(cr, DBGWCR, PAC);
304     hmc = FIELD_EX64(cr, DBGWCR, HMC);
305     ssc = FIELD_EX64(cr, DBGWCR, SSC);
306 
307     switch (ssc) {
308     case 0:
309         break;
310     case 1:
311     case 3:
312         if (is_secure) {
313             return false;
314         }
315         break;
316     case 2:
317         if (!is_secure) {
318             return false;
319         }
320         break;
321     }
322 
323     switch (access_el) {
324     case 3:
325     case 2:
326         if (!hmc) {
327             return false;
328         }
329         break;
330     case 1:
331         if (extract32(pac, 0, 1) == 0) {
332             return false;
333         }
334         break;
335     case 0:
336         if (extract32(pac, 1, 1) == 0) {
337             return false;
338         }
339         break;
340     default:
341         g_assert_not_reached();
342     }
343 
344     wt = FIELD_EX64(cr, DBGWCR, WT);
345     lbn = FIELD_EX64(cr, DBGWCR, LBN);
346 
347     if (wt && !linked_bp_matches(cpu, lbn)) {
348         return false;
349     }
350 
351     return true;
352 }
353 
354 static bool check_watchpoints(ARMCPU *cpu)
355 {
356     CPUARMState *env = &cpu->env;
357     int n;
358 
359     /*
360      * If watchpoints are disabled globally or we can't take debug
361      * exceptions here then watchpoint firings are ignored.
362      */
363     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
364         || !arm_generate_debug_exceptions(env)) {
365         return false;
366     }
367 
368     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
369         if (bp_wp_matches(cpu, n, true)) {
370             return true;
371         }
372     }
373     return false;
374 }
375 
376 bool arm_debug_check_breakpoint(CPUState *cs)
377 {
378     ARMCPU *cpu = ARM_CPU(cs);
379     CPUARMState *env = &cpu->env;
380     target_ulong pc;
381     int n;
382 
383     /*
384      * If breakpoints are disabled globally or we can't take debug
385      * exceptions here then breakpoint firings are ignored.
386      */
387     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
388         || !arm_generate_debug_exceptions(env)) {
389         return false;
390     }
391 
392     /*
393      * Single-step exceptions have priority over breakpoint exceptions.
394      * If single-step state is active-pending, suppress the bp.
395      */
396     if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
397         return false;
398     }
399 
400     /*
401      * PC alignment faults have priority over breakpoint exceptions.
402      */
403     pc = is_a64(env) ? env->pc : env->regs[15];
404     if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
405         return false;
406     }
407 
408     /*
409      * Instruction aborts have priority over breakpoint exceptions.
410      * TODO: We would need to look up the page for PC and verify that
411      * it is present and executable.
412      */
413 
414     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
415         if (bp_wp_matches(cpu, n, false)) {
416             return true;
417         }
418     }
419     return false;
420 }
421 
422 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
423 {
424     /*
425      * Called by core code when a CPU watchpoint fires; need to check if this
426      * is also an architectural watchpoint match.
427      */
428     ARMCPU *cpu = ARM_CPU(cs);
429 
430     return check_watchpoints(cpu);
431 }
432 
433 /*
434  * Return the FSR value for a debug exception (watchpoint, hardware
435  * breakpoint or BKPT insn) targeting the specified exception level.
436  */
437 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
438 {
439     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
440     int target_el = arm_debug_target_el(env);
441     bool using_lpae;
442 
443     if (arm_feature(env, ARM_FEATURE_M)) {
444         using_lpae = false;
445     } else if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
446         using_lpae = true;
447     } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
448                arm_feature(env, ARM_FEATURE_V8)) {
449         using_lpae = true;
450     } else if (arm_feature(env, ARM_FEATURE_LPAE) &&
451                (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
452         using_lpae = true;
453     } else {
454         using_lpae = false;
455     }
456 
457     if (using_lpae) {
458         return arm_fi_to_lfsc(&fi);
459     } else {
460         return arm_fi_to_sfsc(&fi);
461     }
462 }
463 
464 void arm_debug_excp_handler(CPUState *cs)
465 {
466     /*
467      * Called by core code when a watchpoint or breakpoint fires;
468      * need to check which one and raise the appropriate exception.
469      */
470     ARMCPU *cpu = ARM_CPU(cs);
471     CPUARMState *env = &cpu->env;
472     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
473 
474     if (wp_hit) {
475         if (wp_hit->flags & BP_CPU) {
476             bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
477 
478             cs->watchpoint_hit = NULL;
479 
480             env->exception.fsr = arm_debug_exception_fsr(env);
481             env->exception.vaddress = wp_hit->hitaddr;
482             raise_exception_debug(env, EXCP_DATA_ABORT,
483                                   syn_watchpoint(0, 0, wnr));
484         }
485     } else {
486         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
487 
488         /*
489          * (1) GDB breakpoints should be handled first.
490          * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
491          * since singlestep is also done by generating a debug internal
492          * exception.
493          */
494         if (cpu_breakpoint_test(cs, pc, BP_GDB)
495             || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
496             return;
497         }
498 
499         env->exception.fsr = arm_debug_exception_fsr(env);
500         /*
501          * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
502          * values to the guest that it shouldn't be able to see at its
503          * exception/security level.
504          */
505         env->exception.vaddress = 0;
506         raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
507     }
508 }
509 
510 /*
511  * Raise an EXCP_BKPT with the specified syndrome register value,
512  * targeting the correct exception level for debug exceptions.
513  */
514 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
515 {
516     int debug_el = arm_debug_target_el(env);
517     int cur_el = arm_current_el(env);
518 
519     /* FSR will only be used if the debug target EL is AArch32. */
520     env->exception.fsr = arm_debug_exception_fsr(env);
521     /*
522      * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
523      * values to the guest that it shouldn't be able to see at its
524      * exception/security level.
525      */
526     env->exception.vaddress = 0;
527     /*
528      * Other kinds of architectural debug exception are ignored if
529      * they target an exception level below the current one (in QEMU
530      * this is checked by arm_generate_debug_exceptions()). Breakpoint
531      * instructions are special because they always generate an exception
532      * to somewhere: if they can't go to the configured debug exception
533      * level they are taken to the current exception level.
534      */
535     if (debug_el < cur_el) {
536         debug_el = cur_el;
537     }
538     raise_exception(env, EXCP_BKPT, syndrome, debug_el);
539 }
540 
541 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
542 {
543     raise_exception_debug(env, EXCP_UDEF, syndrome);
544 }
545 
546 void hw_watchpoint_update(ARMCPU *cpu, int n)
547 {
548     CPUARMState *env = &cpu->env;
549     vaddr len = 0;
550     vaddr wvr = env->cp15.dbgwvr[n];
551     uint64_t wcr = env->cp15.dbgwcr[n];
552     int mask;
553     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
554 
555     if (env->cpu_watchpoint[n]) {
556         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
557         env->cpu_watchpoint[n] = NULL;
558     }
559 
560     if (!FIELD_EX64(wcr, DBGWCR, E)) {
561         /* E bit clear : watchpoint disabled */
562         return;
563     }
564 
565     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
566     case 0:
567         /* LSC 00 is reserved and must behave as if the wp is disabled */
568         return;
569     case 1:
570         flags |= BP_MEM_READ;
571         break;
572     case 2:
573         flags |= BP_MEM_WRITE;
574         break;
575     case 3:
576         flags |= BP_MEM_ACCESS;
577         break;
578     }
579 
580     /*
581      * Attempts to use both MASK and BAS fields simultaneously are
582      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
583      * thus generating a watchpoint for every byte in the masked region.
584      */
585     mask = FIELD_EX64(wcr, DBGWCR, MASK);
586     if (mask == 1 || mask == 2) {
587         /*
588          * Reserved values of MASK; we must act as if the mask value was
589          * some non-reserved value, or as if the watchpoint were disabled.
590          * We choose the latter.
591          */
592         return;
593     } else if (mask) {
594         /* Watchpoint covers an aligned area up to 2GB in size */
595         len = 1ULL << mask;
596         /*
597          * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
598          * whether the watchpoint fires when the unmasked bits match; we opt
599          * to generate the exceptions.
600          */
601         wvr &= ~(len - 1);
602     } else {
603         /* Watchpoint covers bytes defined by the byte address select bits */
604         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
605         int basstart;
606 
607         if (extract64(wvr, 2, 1)) {
608             /*
609              * Deprecated case of an only 4-aligned address. BAS[7:4] are
610              * ignored, and BAS[3:0] define which bytes to watch.
611              */
612             bas &= 0xf;
613         }
614 
615         if (bas == 0) {
616             /* This must act as if the watchpoint is disabled */
617             return;
618         }
619 
620         /*
621          * The BAS bits are supposed to be programmed to indicate a contiguous
622          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
623          * we fire for each byte in the word/doubleword addressed by the WVR.
624          * We choose to ignore any non-zero bits after the first range of 1s.
625          */
626         basstart = ctz32(bas);
627         len = cto32(bas >> basstart);
628         wvr += basstart;
629     }
630 
631     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
632                           &env->cpu_watchpoint[n]);
633 }
634 
635 void hw_watchpoint_update_all(ARMCPU *cpu)
636 {
637     int i;
638     CPUARMState *env = &cpu->env;
639 
640     /*
641      * Completely clear out existing QEMU watchpoints and our array, to
642      * avoid possible stale entries following migration load.
643      */
644     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
645     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
646 
647     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
648         hw_watchpoint_update(cpu, i);
649     }
650 }
651 
652 void hw_breakpoint_update(ARMCPU *cpu, int n)
653 {
654     CPUARMState *env = &cpu->env;
655     uint64_t bvr = env->cp15.dbgbvr[n];
656     uint64_t bcr = env->cp15.dbgbcr[n];
657     vaddr addr;
658     int bt;
659     int flags = BP_CPU;
660 
661     if (env->cpu_breakpoint[n]) {
662         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
663         env->cpu_breakpoint[n] = NULL;
664     }
665 
666     if (!extract64(bcr, 0, 1)) {
667         /* E bit clear : watchpoint disabled */
668         return;
669     }
670 
671     bt = extract64(bcr, 20, 4);
672 
673     switch (bt) {
674     case 4: /* unlinked address mismatch (reserved if AArch64) */
675     case 5: /* linked address mismatch (reserved if AArch64) */
676         qemu_log_mask(LOG_UNIMP,
677                       "arm: address mismatch breakpoint types not implemented\n");
678         return;
679     case 0: /* unlinked address match */
680     case 1: /* linked address match */
681     {
682         /*
683          * Bits [1:0] are RES0.
684          *
685          * It is IMPLEMENTATION DEFINED whether bits [63:49]
686          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
687          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
688          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
689          * whether the RESS bits are ignored when comparing an address.
690          * Therefore we are allowed to compare the entire register, which
691          * lets us avoid considering whether FEAT_LVA is actually enabled.
692          *
693          * The BAS field is used to allow setting breakpoints on 16-bit
694          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
695          * a bp will fire if the addresses covered by the bp and the addresses
696          * covered by the insn overlap but the insn doesn't start at the
697          * start of the bp address range. We choose to require the insn and
698          * the bp to have the same address. The constraints on writing to
699          * BAS enforced in dbgbcr_write mean we have only four cases:
700          *  0b0000  => no breakpoint
701          *  0b0011  => breakpoint on addr
702          *  0b1100  => breakpoint on addr + 2
703          *  0b1111  => breakpoint on addr
704          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
705          */
706         int bas = extract64(bcr, 5, 4);
707         addr = bvr & ~3ULL;
708         if (bas == 0) {
709             return;
710         }
711         if (bas == 0xc) {
712             addr += 2;
713         }
714         break;
715     }
716     case 2: /* unlinked context ID match */
717     case 8: /* unlinked VMID match (reserved if no EL2) */
718     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
719         qemu_log_mask(LOG_UNIMP,
720                       "arm: unlinked context breakpoint types not implemented\n");
721         return;
722     case 9: /* linked VMID match (reserved if no EL2) */
723     case 11: /* linked context ID and VMID match (reserved if no EL2) */
724     case 3: /* linked context ID match */
725     default:
726         /*
727          * We must generate no events for Linked context matches (unless
728          * they are linked to by some other bp/wp, which is handled in
729          * updates for the linking bp/wp). We choose to also generate no events
730          * for reserved values.
731          */
732         return;
733     }
734 
735     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
736 }
737 
738 void hw_breakpoint_update_all(ARMCPU *cpu)
739 {
740     int i;
741     CPUARMState *env = &cpu->env;
742 
743     /*
744      * Completely clear out existing QEMU breakpoints and our array, to
745      * avoid possible stale entries following migration load.
746      */
747     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
748     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
749 
750     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
751         hw_breakpoint_update(cpu, i);
752     }
753 }
754 
755 #if !defined(CONFIG_USER_ONLY)
756 
757 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
758 {
759     ARMCPU *cpu = ARM_CPU(cs);
760     CPUARMState *env = &cpu->env;
761 
762     /*
763      * In BE32 system mode, target memory is stored byteswapped (on a
764      * little-endian host system), and by the time we reach here (via an
765      * opcode helper) the addresses of subword accesses have been adjusted
766      * to account for that, which means that watchpoints will not match.
767      * Undo the adjustment here.
768      */
769     if (arm_sctlr_b(env)) {
770         if (len == 1) {
771             addr ^= 3;
772         } else if (len == 2) {
773             addr ^= 2;
774         }
775     }
776 
777     return addr;
778 }
779 
780 #endif /* !CONFIG_USER_ONLY */
781 #endif /* CONFIG_TCG */
782 
783 /*
784  * Check for traps to "powerdown debug" registers, which are controlled
785  * by MDCR.TDOSA
786  */
787 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
788                                    bool isread)
789 {
790     int el = arm_current_el(env);
791     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
792     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
793         (arm_hcr_el2_eff(env) & HCR_TGE);
794 
795     if (el < 2 && mdcr_el2_tdosa) {
796         return CP_ACCESS_TRAP_EL2;
797     }
798     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
799         return CP_ACCESS_TRAP_EL3;
800     }
801     return CP_ACCESS_OK;
802 }
803 
804 /*
805  * Check for traps to "debug ROM" registers, which are controlled
806  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
807  */
808 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
809                                   bool isread)
810 {
811     int el = arm_current_el(env);
812     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
813     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
814         (arm_hcr_el2_eff(env) & HCR_TGE);
815 
816     if (el < 2 && mdcr_el2_tdra) {
817         return CP_ACCESS_TRAP_EL2;
818     }
819     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
820         return CP_ACCESS_TRAP_EL3;
821     }
822     return CP_ACCESS_OK;
823 }
824 
825 /*
826  * Check for traps to general debug registers, which are controlled
827  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
828  */
829 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
830                                   bool isread)
831 {
832     int el = arm_current_el(env);
833     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
834     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
835         (arm_hcr_el2_eff(env) & HCR_TGE);
836 
837     if (el < 2 && mdcr_el2_tda) {
838         return CP_ACCESS_TRAP_EL2;
839     }
840     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
841         return CP_ACCESS_TRAP_EL3;
842     }
843     return CP_ACCESS_OK;
844 }
845 
846 /*
847  * Check for traps to Debug Comms Channel registers. If FEAT_FGT
848  * is implemented then these are controlled by MDCR_EL2.TDCC for
849  * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
850  * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
851  * For EL0, they are also controlled by MDSCR_EL1.TDCC.
852  */
853 static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
854                                   bool isread)
855 {
856     int el = arm_current_el(env);
857     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
858     bool mdscr_el1_tdcc = extract32(env->cp15.mdscr_el1, 12, 1);
859     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
860         (arm_hcr_el2_eff(env) & HCR_TGE);
861     bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
862                                           (mdcr_el2 & MDCR_TDCC);
863     bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
864                                           (env->cp15.mdcr_el3 & MDCR_TDCC);
865 
866     if (el < 1 && mdscr_el1_tdcc) {
867         return CP_ACCESS_TRAP;
868     }
869     if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
870         return CP_ACCESS_TRAP_EL2;
871     }
872     if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
873         return CP_ACCESS_TRAP_EL3;
874     }
875     return CP_ACCESS_OK;
876 }
877 
878 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
879                         uint64_t value)
880 {
881     /*
882      * Writes to OSLAR_EL1 may update the OS lock status, which can be
883      * read via a bit in OSLSR_EL1.
884      */
885     int oslock;
886 
887     if (ri->state == ARM_CP_STATE_AA32) {
888         oslock = (value == 0xC5ACCE55);
889     } else {
890         oslock = value & 1;
891     }
892 
893     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
894 }
895 
896 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
897                         uint64_t value)
898 {
899     ARMCPU *cpu = env_archcpu(env);
900     /*
901      * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
902      * implemented this is RAZ/WI.
903      */
904     if(arm_feature(env, ARM_FEATURE_AARCH64)
905        ? cpu_isar_feature(aa64_doublelock, cpu)
906        : cpu_isar_feature(aa32_doublelock, cpu)) {
907         env->cp15.osdlr_el1 = value & 1;
908     }
909 }
910 
911 static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
912                               uint64_t value)
913 {
914     env->cp15.dbgclaim |= (value & 0xFF);
915 }
916 
917 static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
918 {
919     /* CLAIM bits are RAO */
920     return 0xFF;
921 }
922 
923 static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
924                               uint64_t value)
925 {
926     env->cp15.dbgclaim &= ~(value & 0xFF);
927 }
928 
929 static const ARMCPRegInfo debug_cp_reginfo[] = {
930     /*
931      * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
932      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
933      * unlike DBGDRAR it is never accessible from EL0.
934      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
935      * accessor.
936      */
937     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
938       .access = PL0_R, .accessfn = access_tdra,
939       .type = ARM_CP_CONST, .resetvalue = 0 },
940     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
941       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
942       .access = PL1_R, .accessfn = access_tdra,
943       .type = ARM_CP_CONST, .resetvalue = 0 },
944     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
945       .access = PL0_R, .accessfn = access_tdra,
946       .type = ARM_CP_CONST, .resetvalue = 0 },
947     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
948     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
949       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
950       .access = PL1_RW, .accessfn = access_tda,
951       .fgt = FGT_MDSCR_EL1,
952       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
953       .resetvalue = 0 },
954     /*
955      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
956      * Debug Communication Channel is not implemented.
957      */
958     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
959       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
960       .access = PL0_R, .accessfn = access_tdcc,
961       .type = ARM_CP_CONST, .resetvalue = 0 },
962     /*
963      * These registers belong to the Debug Communications Channel,
964      * which is not implemented. However we implement RAZ/WI behaviour
965      * with trapping to prevent spurious SIGILLs if the guest OS does
966      * access them as the support cannot be probed for.
967      */
968     { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
969       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
970       .access = PL1_RW, .accessfn = access_tdcc,
971       .type = ARM_CP_CONST, .resetvalue = 0 },
972     { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
973       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
974       .access = PL1_RW, .accessfn = access_tdcc,
975       .type = ARM_CP_CONST, .resetvalue = 0 },
976     /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
977     { .name = "DBGDTR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14,
978       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 5, .opc2 = 0,
979       .access = PL0_RW, .accessfn = access_tdcc,
980       .type = ARM_CP_CONST, .resetvalue = 0 },
981     /*
982      * OSECCR_EL1 provides a mechanism for an operating system
983      * to access the contents of EDECCR. EDECCR is not implemented though,
984      * as is the rest of external device mechanism.
985      */
986     { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
987       .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
988       .access = PL1_RW, .accessfn = access_tda,
989       .fgt = FGT_OSECCR_EL1,
990       .type = ARM_CP_CONST, .resetvalue = 0 },
991     /*
992      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
993      * it is unlikely a guest will care.
994      * We don't implement the configurable EL0 access.
995      */
996     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
997       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
998       .type = ARM_CP_ALIAS,
999       .access = PL1_R, .accessfn = access_tda,
1000       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
1001     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
1002       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1003       .access = PL1_W, .type = ARM_CP_NO_RAW,
1004       .accessfn = access_tdosa,
1005       .fgt = FGT_OSLAR_EL1,
1006       .writefn = oslar_write },
1007     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
1008       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
1009       .access = PL1_R, .resetvalue = 10,
1010       .accessfn = access_tdosa,
1011       .fgt = FGT_OSLSR_EL1,
1012       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
1013     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
1014     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
1015       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
1016       .access = PL1_RW, .accessfn = access_tdosa,
1017       .fgt = FGT_OSDLR_EL1,
1018       .writefn = osdlr_write,
1019       .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
1020     /*
1021      * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
1022      * implement vector catch debug events yet.
1023      */
1024     { .name = "DBGVCR",
1025       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
1026       .access = PL1_RW, .accessfn = access_tda,
1027       .type = ARM_CP_NOP },
1028     /*
1029      * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
1030      * to save and restore a 32-bit guest's DBGVCR)
1031      */
1032     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
1033       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
1034       .access = PL2_RW, .accessfn = access_tda,
1035       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
1036     /*
1037      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
1038      * Channel but Linux may try to access this register. The 32-bit
1039      * alias is DBGDCCINT.
1040      */
1041     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
1042       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
1043       .access = PL1_RW, .accessfn = access_tdcc,
1044       .type = ARM_CP_NOP },
1045     /*
1046      * Dummy DBGCLAIM registers.
1047      * "The architecture does not define any functionality for the CLAIM tag bits.",
1048      * so we only keep the raw bits
1049      */
1050     { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
1051       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
1052       .type = ARM_CP_ALIAS,
1053       .access = PL1_RW, .accessfn = access_tda,
1054       .fgt = FGT_DBGCLAIM,
1055       .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
1056     { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
1057       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
1058       .access = PL1_RW, .accessfn = access_tda,
1059       .fgt = FGT_DBGCLAIM,
1060       .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
1061       .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
1062 };
1063 
1064 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
1065     /* 64 bit access versions of the (dummy) debug registers */
1066     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1067       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1068     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1069       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1070 };
1071 
1072 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1073                          uint64_t value)
1074 {
1075     ARMCPU *cpu = env_archcpu(env);
1076     int i = ri->crm;
1077 
1078     /*
1079      * Bits [1:0] are RES0.
1080      *
1081      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
1082      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
1083      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
1084      * whether the RESS bits are ignored when comparing an address.
1085      *
1086      * Therefore we are allowed to compare the entire register, which lets
1087      * us avoid considering whether or not FEAT_LVA is actually enabled.
1088      */
1089     value &= ~3ULL;
1090 
1091     raw_write(env, ri, value);
1092     if (tcg_enabled()) {
1093         hw_watchpoint_update(cpu, i);
1094     }
1095 }
1096 
1097 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098                          uint64_t value)
1099 {
1100     ARMCPU *cpu = env_archcpu(env);
1101     int i = ri->crm;
1102 
1103     raw_write(env, ri, value);
1104     if (tcg_enabled()) {
1105         hw_watchpoint_update(cpu, i);
1106     }
1107 }
1108 
1109 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110                          uint64_t value)
1111 {
1112     ARMCPU *cpu = env_archcpu(env);
1113     int i = ri->crm;
1114 
1115     raw_write(env, ri, value);
1116     if (tcg_enabled()) {
1117         hw_breakpoint_update(cpu, i);
1118     }
1119 }
1120 
1121 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1122                          uint64_t value)
1123 {
1124     ARMCPU *cpu = env_archcpu(env);
1125     int i = ri->crm;
1126 
1127     /*
1128      * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1129      * copy of BAS[0].
1130      */
1131     value = deposit64(value, 6, 1, extract64(value, 5, 1));
1132     value = deposit64(value, 8, 1, extract64(value, 7, 1));
1133 
1134     raw_write(env, ri, value);
1135     if (tcg_enabled()) {
1136         hw_breakpoint_update(cpu, i);
1137     }
1138 }
1139 
1140 void define_debug_regs(ARMCPU *cpu)
1141 {
1142     /*
1143      * Define v7 and v8 architectural debug registers.
1144      * These are just dummy implementations for now.
1145      */
1146     int i;
1147     int wrps, brps, ctx_cmps;
1148 
1149     /*
1150      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1151      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
1152      * the register must not exist for this cpu.
1153      */
1154     if (cpu->isar.dbgdidr != 0) {
1155         ARMCPRegInfo dbgdidr = {
1156             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1157             .opc1 = 0, .opc2 = 0,
1158             .access = PL0_R, .accessfn = access_tda,
1159             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1160         };
1161         define_one_arm_cp_reg(cpu, &dbgdidr);
1162     }
1163 
1164     /*
1165      * DBGDEVID is present in the v7 debug architecture if
1166      * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1167      * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1168      * from v7.1 of the debug architecture. Because no fields have yet
1169      * been defined in DBGDEVID2 (and quite possibly none will ever
1170      * be) we don't define an ARMISARegisters field for it.
1171      * These registers exist only if EL1 can use AArch32, but that
1172      * happens naturally because they are only PL1 accessible anyway.
1173      */
1174     if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1175         ARMCPRegInfo dbgdevid = {
1176             .name = "DBGDEVID",
1177             .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1178             .access = PL1_R, .accessfn = access_tda,
1179             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1180         };
1181         define_one_arm_cp_reg(cpu, &dbgdevid);
1182     }
1183     if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1184         ARMCPRegInfo dbgdevid12[] = {
1185             {
1186                 .name = "DBGDEVID1",
1187                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1188                 .access = PL1_R, .accessfn = access_tda,
1189                 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1190             }, {
1191                 .name = "DBGDEVID2",
1192                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1193                 .access = PL1_R, .accessfn = access_tda,
1194                 .type = ARM_CP_CONST, .resetvalue = 0,
1195             },
1196         };
1197         define_arm_cp_regs(cpu, dbgdevid12);
1198     }
1199 
1200     brps = arm_num_brps(cpu);
1201     wrps = arm_num_wrps(cpu);
1202     ctx_cmps = arm_num_ctx_cmps(cpu);
1203 
1204     assert(ctx_cmps <= brps);
1205 
1206     define_arm_cp_regs(cpu, debug_cp_reginfo);
1207 
1208     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1209         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1210     }
1211 
1212     for (i = 0; i < brps; i++) {
1213         char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1214         char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1215         ARMCPRegInfo dbgregs[] = {
1216             { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1217               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1218               .access = PL1_RW, .accessfn = access_tda,
1219               .fgt = FGT_DBGBVRN_EL1,
1220               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1221               .writefn = dbgbvr_write, .raw_writefn = raw_write
1222             },
1223             { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1224               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1225               .access = PL1_RW, .accessfn = access_tda,
1226               .fgt = FGT_DBGBCRN_EL1,
1227               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1228               .writefn = dbgbcr_write, .raw_writefn = raw_write
1229             },
1230         };
1231         define_arm_cp_regs(cpu, dbgregs);
1232         g_free(dbgbvr_el1_name);
1233         g_free(dbgbcr_el1_name);
1234     }
1235 
1236     for (i = 0; i < wrps; i++) {
1237         char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1238         char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1239         ARMCPRegInfo dbgregs[] = {
1240             { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1241               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1242               .access = PL1_RW, .accessfn = access_tda,
1243               .fgt = FGT_DBGWVRN_EL1,
1244               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1245               .writefn = dbgwvr_write, .raw_writefn = raw_write
1246             },
1247             { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1248               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1249               .access = PL1_RW, .accessfn = access_tda,
1250               .fgt = FGT_DBGWCRN_EL1,
1251               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1252               .writefn = dbgwcr_write, .raw_writefn = raw_write
1253             },
1254         };
1255         define_arm_cp_regs(cpu, dbgregs);
1256         g_free(dbgwvr_el1_name);
1257         g_free(dbgwcr_el1_name);
1258     }
1259 }
1260