xref: /openbmc/qemu/target/arm/debug_helper.c (revision 49e56287)
1 /*
2  * ARM debug helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
15 
16 
17 /* Return the Exception Level targeted by debug exceptions. */
18 static int arm_debug_target_el(CPUARMState *env)
19 {
20     bool secure = arm_is_secure(env);
21     bool route_to_el2 = false;
22 
23     if (arm_is_el2_enabled(env)) {
24         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
25                        env->cp15.mdcr_el2 & MDCR_TDE;
26     }
27 
28     if (route_to_el2) {
29         return 2;
30     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
31                !arm_el_is_aa64(env, 3) && secure) {
32         return 3;
33     } else {
34         return 1;
35     }
36 }
37 
38 /*
39  * Raise an exception to the debug target el.
40  * Modify syndrome to indicate when origin and target EL are the same.
41  */
42 G_NORETURN static void
43 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
44 {
45     int debug_el = arm_debug_target_el(env);
46     int cur_el = arm_current_el(env);
47 
48     /*
49      * If singlestep is targeting a lower EL than the current one, then
50      * DisasContext.ss_active must be false and we can never get here.
51      * Similarly for watchpoint and breakpoint matches.
52      */
53     assert(debug_el >= cur_el);
54     syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
55     raise_exception(env, excp, syndrome, debug_el);
56 }
57 
58 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
59 static bool aa64_generate_debug_exceptions(CPUARMState *env)
60 {
61     int cur_el = arm_current_el(env);
62     int debug_el;
63 
64     if (cur_el == 3) {
65         return false;
66     }
67 
68     /* MDCR_EL3.SDD disables debug events from Secure state */
69     if (arm_is_secure_below_el3(env)
70         && extract32(env->cp15.mdcr_el3, 16, 1)) {
71         return false;
72     }
73 
74     /*
75      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
76      * while not masking the (D)ebug bit in DAIF.
77      */
78     debug_el = arm_debug_target_el(env);
79 
80     if (cur_el == debug_el) {
81         return extract32(env->cp15.mdscr_el1, 13, 1)
82             && !(env->daif & PSTATE_D);
83     }
84 
85     /* Otherwise the debug target needs to be a higher EL */
86     return debug_el > cur_el;
87 }
88 
89 static bool aa32_generate_debug_exceptions(CPUARMState *env)
90 {
91     int el = arm_current_el(env);
92 
93     if (el == 0 && arm_el_is_aa64(env, 1)) {
94         return aa64_generate_debug_exceptions(env);
95     }
96 
97     if (arm_is_secure(env)) {
98         int spd;
99 
100         if (el == 0 && (env->cp15.sder & 1)) {
101             /*
102              * SDER.SUIDEN means debug exceptions from Secure EL0
103              * are always enabled. Otherwise they are controlled by
104              * SDCR.SPD like those from other Secure ELs.
105              */
106             return true;
107         }
108 
109         spd = extract32(env->cp15.mdcr_el3, 14, 2);
110         switch (spd) {
111         case 1:
112             /* SPD == 0b01 is reserved, but behaves as 0b00. */
113         case 0:
114             /*
115              * For 0b00 we return true if external secure invasive debug
116              * is enabled. On real hardware this is controlled by external
117              * signals to the core. QEMU always permits debug, and behaves
118              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
119              */
120             return true;
121         case 2:
122             return false;
123         case 3:
124             return true;
125         }
126     }
127 
128     return el != 2;
129 }
130 
131 /*
132  * Return true if debugging exceptions are currently enabled.
133  * This corresponds to what in ARM ARM pseudocode would be
134  *    if UsingAArch32() then
135  *        return AArch32.GenerateDebugExceptions()
136  *    else
137  *        return AArch64.GenerateDebugExceptions()
138  * We choose to push the if() down into this function for clarity,
139  * since the pseudocode has it at all callsites except for the one in
140  * CheckSoftwareStep(), where it is elided because both branches would
141  * always return the same value.
142  */
143 bool arm_generate_debug_exceptions(CPUARMState *env)
144 {
145     if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
146         return false;
147     }
148     if (is_a64(env)) {
149         return aa64_generate_debug_exceptions(env);
150     } else {
151         return aa32_generate_debug_exceptions(env);
152     }
153 }
154 
155 /*
156  * Is single-stepping active? (Note that the "is EL_D AArch64?" check
157  * implicitly means this always returns false in pre-v8 CPUs.)
158  */
159 bool arm_singlestep_active(CPUARMState *env)
160 {
161     return extract32(env->cp15.mdscr_el1, 0, 1)
162         && arm_el_is_aa64(env, arm_debug_target_el(env))
163         && arm_generate_debug_exceptions(env);
164 }
165 
166 /* Return true if the linked breakpoint entry lbn passes its checks */
167 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
168 {
169     CPUARMState *env = &cpu->env;
170     uint64_t bcr = env->cp15.dbgbcr[lbn];
171     int brps = arm_num_brps(cpu);
172     int ctx_cmps = arm_num_ctx_cmps(cpu);
173     int bt;
174     uint32_t contextidr;
175     uint64_t hcr_el2;
176 
177     /*
178      * Links to unimplemented or non-context aware breakpoints are
179      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
180      * as if linked to an UNKNOWN context-aware breakpoint (in which
181      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
182      * We choose the former.
183      */
184     if (lbn >= brps || lbn < (brps - ctx_cmps)) {
185         return false;
186     }
187 
188     bcr = env->cp15.dbgbcr[lbn];
189 
190     if (extract64(bcr, 0, 1) == 0) {
191         /* Linked breakpoint disabled : generate no events */
192         return false;
193     }
194 
195     bt = extract64(bcr, 20, 4);
196     hcr_el2 = arm_hcr_el2_eff(env);
197 
198     switch (bt) {
199     case 3: /* linked context ID match */
200         switch (arm_current_el(env)) {
201         default:
202             /* Context matches never fire in AArch64 EL3 */
203             return false;
204         case 2:
205             if (!(hcr_el2 & HCR_E2H)) {
206                 /* Context matches never fire in EL2 without E2H enabled. */
207                 return false;
208             }
209             contextidr = env->cp15.contextidr_el[2];
210             break;
211         case 1:
212             contextidr = env->cp15.contextidr_el[1];
213             break;
214         case 0:
215             if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
216                 contextidr = env->cp15.contextidr_el[2];
217             } else {
218                 contextidr = env->cp15.contextidr_el[1];
219             }
220             break;
221         }
222         break;
223 
224     case 7:  /* linked contextidr_el1 match */
225         contextidr = env->cp15.contextidr_el[1];
226         break;
227     case 13: /* linked contextidr_el2 match */
228         contextidr = env->cp15.contextidr_el[2];
229         break;
230 
231     case 9: /* linked VMID match (reserved if no EL2) */
232     case 11: /* linked context ID and VMID match (reserved if no EL2) */
233     case 15: /* linked full context ID match */
234     default:
235         /*
236          * Links to Unlinked context breakpoints must generate no
237          * events; we choose to do the same for reserved values too.
238          */
239         return false;
240     }
241 
242     /*
243      * We match the whole register even if this is AArch32 using the
244      * short descriptor format (in which case it holds both PROCID and ASID),
245      * since we don't implement the optional v7 context ID masking.
246      */
247     return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
248 }
249 
250 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
251 {
252     CPUARMState *env = &cpu->env;
253     uint64_t cr;
254     int pac, hmc, ssc, wt, lbn;
255     /*
256      * Note that for watchpoints the check is against the CPU security
257      * state, not the S/NS attribute on the offending data access.
258      */
259     bool is_secure = arm_is_secure(env);
260     int access_el = arm_current_el(env);
261 
262     if (is_wp) {
263         CPUWatchpoint *wp = env->cpu_watchpoint[n];
264 
265         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
266             return false;
267         }
268         cr = env->cp15.dbgwcr[n];
269         if (wp->hitattrs.user) {
270             /*
271              * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
272              * match watchpoints as if they were accesses done at EL0, even if
273              * the CPU is at EL1 or higher.
274              */
275             access_el = 0;
276         }
277     } else {
278         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
279 
280         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
281             return false;
282         }
283         cr = env->cp15.dbgbcr[n];
284     }
285     /*
286      * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
287      * enabled and that the address and access type match; for breakpoints
288      * we know the address matched; check the remaining fields, including
289      * linked breakpoints. We rely on WCR and BCR having the same layout
290      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
291      * Note that some combinations of {PAC, HMC, SSC} are reserved and
292      * must act either like some valid combination or as if the watchpoint
293      * were disabled. We choose the former, and use this together with
294      * the fact that EL3 must always be Secure and EL2 must always be
295      * Non-Secure to simplify the code slightly compared to the full
296      * table in the ARM ARM.
297      */
298     pac = FIELD_EX64(cr, DBGWCR, PAC);
299     hmc = FIELD_EX64(cr, DBGWCR, HMC);
300     ssc = FIELD_EX64(cr, DBGWCR, SSC);
301 
302     switch (ssc) {
303     case 0:
304         break;
305     case 1:
306     case 3:
307         if (is_secure) {
308             return false;
309         }
310         break;
311     case 2:
312         if (!is_secure) {
313             return false;
314         }
315         break;
316     }
317 
318     switch (access_el) {
319     case 3:
320     case 2:
321         if (!hmc) {
322             return false;
323         }
324         break;
325     case 1:
326         if (extract32(pac, 0, 1) == 0) {
327             return false;
328         }
329         break;
330     case 0:
331         if (extract32(pac, 1, 1) == 0) {
332             return false;
333         }
334         break;
335     default:
336         g_assert_not_reached();
337     }
338 
339     wt = FIELD_EX64(cr, DBGWCR, WT);
340     lbn = FIELD_EX64(cr, DBGWCR, LBN);
341 
342     if (wt && !linked_bp_matches(cpu, lbn)) {
343         return false;
344     }
345 
346     return true;
347 }
348 
349 static bool check_watchpoints(ARMCPU *cpu)
350 {
351     CPUARMState *env = &cpu->env;
352     int n;
353 
354     /*
355      * If watchpoints are disabled globally or we can't take debug
356      * exceptions here then watchpoint firings are ignored.
357      */
358     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
359         || !arm_generate_debug_exceptions(env)) {
360         return false;
361     }
362 
363     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
364         if (bp_wp_matches(cpu, n, true)) {
365             return true;
366         }
367     }
368     return false;
369 }
370 
371 bool arm_debug_check_breakpoint(CPUState *cs)
372 {
373     ARMCPU *cpu = ARM_CPU(cs);
374     CPUARMState *env = &cpu->env;
375     target_ulong pc;
376     int n;
377 
378     /*
379      * If breakpoints are disabled globally or we can't take debug
380      * exceptions here then breakpoint firings are ignored.
381      */
382     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
383         || !arm_generate_debug_exceptions(env)) {
384         return false;
385     }
386 
387     /*
388      * Single-step exceptions have priority over breakpoint exceptions.
389      * If single-step state is active-pending, suppress the bp.
390      */
391     if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
392         return false;
393     }
394 
395     /*
396      * PC alignment faults have priority over breakpoint exceptions.
397      */
398     pc = is_a64(env) ? env->pc : env->regs[15];
399     if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
400         return false;
401     }
402 
403     /*
404      * Instruction aborts have priority over breakpoint exceptions.
405      * TODO: We would need to look up the page for PC and verify that
406      * it is present and executable.
407      */
408 
409     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
410         if (bp_wp_matches(cpu, n, false)) {
411             return true;
412         }
413     }
414     return false;
415 }
416 
417 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
418 {
419     /*
420      * Called by core code when a CPU watchpoint fires; need to check if this
421      * is also an architectural watchpoint match.
422      */
423     ARMCPU *cpu = ARM_CPU(cs);
424 
425     return check_watchpoints(cpu);
426 }
427 
428 /*
429  * Return the FSR value for a debug exception (watchpoint, hardware
430  * breakpoint or BKPT insn) targeting the specified exception level.
431  */
432 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
433 {
434     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
435     int target_el = arm_debug_target_el(env);
436     bool using_lpae = false;
437 
438     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
439         using_lpae = true;
440     } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
441                arm_feature(env, ARM_FEATURE_V8)) {
442         using_lpae = true;
443     } else {
444         if (arm_feature(env, ARM_FEATURE_LPAE) &&
445             (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
446             using_lpae = true;
447         }
448     }
449 
450     if (using_lpae) {
451         return arm_fi_to_lfsc(&fi);
452     } else {
453         return arm_fi_to_sfsc(&fi);
454     }
455 }
456 
457 void arm_debug_excp_handler(CPUState *cs)
458 {
459     /*
460      * Called by core code when a watchpoint or breakpoint fires;
461      * need to check which one and raise the appropriate exception.
462      */
463     ARMCPU *cpu = ARM_CPU(cs);
464     CPUARMState *env = &cpu->env;
465     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
466 
467     if (wp_hit) {
468         if (wp_hit->flags & BP_CPU) {
469             bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
470 
471             cs->watchpoint_hit = NULL;
472 
473             env->exception.fsr = arm_debug_exception_fsr(env);
474             env->exception.vaddress = wp_hit->hitaddr;
475             raise_exception_debug(env, EXCP_DATA_ABORT,
476                                   syn_watchpoint(0, 0, wnr));
477         }
478     } else {
479         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
480 
481         /*
482          * (1) GDB breakpoints should be handled first.
483          * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
484          * since singlestep is also done by generating a debug internal
485          * exception.
486          */
487         if (cpu_breakpoint_test(cs, pc, BP_GDB)
488             || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
489             return;
490         }
491 
492         env->exception.fsr = arm_debug_exception_fsr(env);
493         /*
494          * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
495          * values to the guest that it shouldn't be able to see at its
496          * exception/security level.
497          */
498         env->exception.vaddress = 0;
499         raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
500     }
501 }
502 
503 /*
504  * Raise an EXCP_BKPT with the specified syndrome register value,
505  * targeting the correct exception level for debug exceptions.
506  */
507 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
508 {
509     int debug_el = arm_debug_target_el(env);
510     int cur_el = arm_current_el(env);
511 
512     /* FSR will only be used if the debug target EL is AArch32. */
513     env->exception.fsr = arm_debug_exception_fsr(env);
514     /*
515      * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
516      * values to the guest that it shouldn't be able to see at its
517      * exception/security level.
518      */
519     env->exception.vaddress = 0;
520     /*
521      * Other kinds of architectural debug exception are ignored if
522      * they target an exception level below the current one (in QEMU
523      * this is checked by arm_generate_debug_exceptions()). Breakpoint
524      * instructions are special because they always generate an exception
525      * to somewhere: if they can't go to the configured debug exception
526      * level they are taken to the current exception level.
527      */
528     if (debug_el < cur_el) {
529         debug_el = cur_el;
530     }
531     raise_exception(env, EXCP_BKPT, syndrome, debug_el);
532 }
533 
534 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
535 {
536     raise_exception_debug(env, EXCP_UDEF, syndrome);
537 }
538 
539 /*
540  * Check for traps to "powerdown debug" registers, which are controlled
541  * by MDCR.TDOSA
542  */
543 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
544                                    bool isread)
545 {
546     int el = arm_current_el(env);
547     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
548     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
549         (arm_hcr_el2_eff(env) & HCR_TGE);
550 
551     if (el < 2 && mdcr_el2_tdosa) {
552         return CP_ACCESS_TRAP_EL2;
553     }
554     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
555         return CP_ACCESS_TRAP_EL3;
556     }
557     return CP_ACCESS_OK;
558 }
559 
560 /*
561  * Check for traps to "debug ROM" registers, which are controlled
562  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
563  */
564 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
565                                   bool isread)
566 {
567     int el = arm_current_el(env);
568     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
569     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
570         (arm_hcr_el2_eff(env) & HCR_TGE);
571 
572     if (el < 2 && mdcr_el2_tdra) {
573         return CP_ACCESS_TRAP_EL2;
574     }
575     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
576         return CP_ACCESS_TRAP_EL3;
577     }
578     return CP_ACCESS_OK;
579 }
580 
581 /*
582  * Check for traps to general debug registers, which are controlled
583  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
584  */
585 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
586                                   bool isread)
587 {
588     int el = arm_current_el(env);
589     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
590     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
591         (arm_hcr_el2_eff(env) & HCR_TGE);
592 
593     if (el < 2 && mdcr_el2_tda) {
594         return CP_ACCESS_TRAP_EL2;
595     }
596     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
597         return CP_ACCESS_TRAP_EL3;
598     }
599     return CP_ACCESS_OK;
600 }
601 
602 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
603                         uint64_t value)
604 {
605     /*
606      * Writes to OSLAR_EL1 may update the OS lock status, which can be
607      * read via a bit in OSLSR_EL1.
608      */
609     int oslock;
610 
611     if (ri->state == ARM_CP_STATE_AA32) {
612         oslock = (value == 0xC5ACCE55);
613     } else {
614         oslock = value & 1;
615     }
616 
617     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
618 }
619 
620 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
621                         uint64_t value)
622 {
623     ARMCPU *cpu = env_archcpu(env);
624     /*
625      * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
626      * implemented this is RAZ/WI.
627      */
628     if(arm_feature(env, ARM_FEATURE_AARCH64)
629        ? cpu_isar_feature(aa64_doublelock, cpu)
630        : cpu_isar_feature(aa32_doublelock, cpu)) {
631         env->cp15.osdlr_el1 = value & 1;
632     }
633 }
634 
635 static const ARMCPRegInfo debug_cp_reginfo[] = {
636     /*
637      * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
638      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
639      * unlike DBGDRAR it is never accessible from EL0.
640      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
641      * accessor.
642      */
643     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
644       .access = PL0_R, .accessfn = access_tdra,
645       .type = ARM_CP_CONST, .resetvalue = 0 },
646     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
647       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
648       .access = PL1_R, .accessfn = access_tdra,
649       .type = ARM_CP_CONST, .resetvalue = 0 },
650     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
651       .access = PL0_R, .accessfn = access_tdra,
652       .type = ARM_CP_CONST, .resetvalue = 0 },
653     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
654     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
655       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
656       .access = PL1_RW, .accessfn = access_tda,
657       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
658       .resetvalue = 0 },
659     /*
660      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
661      * Debug Communication Channel is not implemented.
662      */
663     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
664       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
665       .access = PL0_R, .accessfn = access_tda,
666       .type = ARM_CP_CONST, .resetvalue = 0 },
667     /*
668      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
669      * it is unlikely a guest will care.
670      * We don't implement the configurable EL0 access.
671      */
672     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
673       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
674       .type = ARM_CP_ALIAS,
675       .access = PL1_R, .accessfn = access_tda,
676       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
677     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
678       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
679       .access = PL1_W, .type = ARM_CP_NO_RAW,
680       .accessfn = access_tdosa,
681       .writefn = oslar_write },
682     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
683       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
684       .access = PL1_R, .resetvalue = 10,
685       .accessfn = access_tdosa,
686       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
687     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
688     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
689       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
690       .access = PL1_RW, .accessfn = access_tdosa,
691       .writefn = osdlr_write,
692       .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
693     /*
694      * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
695      * implement vector catch debug events yet.
696      */
697     { .name = "DBGVCR",
698       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
699       .access = PL1_RW, .accessfn = access_tda,
700       .type = ARM_CP_NOP },
701     /*
702      * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
703      * to save and restore a 32-bit guest's DBGVCR)
704      */
705     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
706       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
707       .access = PL2_RW, .accessfn = access_tda,
708       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
709     /*
710      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
711      * Channel but Linux may try to access this register. The 32-bit
712      * alias is DBGDCCINT.
713      */
714     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
715       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
716       .access = PL1_RW, .accessfn = access_tda,
717       .type = ARM_CP_NOP },
718 };
719 
720 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
721     /* 64 bit access versions of the (dummy) debug registers */
722     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
723       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
724     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
725       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
726 };
727 
728 void hw_watchpoint_update(ARMCPU *cpu, int n)
729 {
730     CPUARMState *env = &cpu->env;
731     vaddr len = 0;
732     vaddr wvr = env->cp15.dbgwvr[n];
733     uint64_t wcr = env->cp15.dbgwcr[n];
734     int mask;
735     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
736 
737     if (env->cpu_watchpoint[n]) {
738         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
739         env->cpu_watchpoint[n] = NULL;
740     }
741 
742     if (!FIELD_EX64(wcr, DBGWCR, E)) {
743         /* E bit clear : watchpoint disabled */
744         return;
745     }
746 
747     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
748     case 0:
749         /* LSC 00 is reserved and must behave as if the wp is disabled */
750         return;
751     case 1:
752         flags |= BP_MEM_READ;
753         break;
754     case 2:
755         flags |= BP_MEM_WRITE;
756         break;
757     case 3:
758         flags |= BP_MEM_ACCESS;
759         break;
760     }
761 
762     /*
763      * Attempts to use both MASK and BAS fields simultaneously are
764      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
765      * thus generating a watchpoint for every byte in the masked region.
766      */
767     mask = FIELD_EX64(wcr, DBGWCR, MASK);
768     if (mask == 1 || mask == 2) {
769         /*
770          * Reserved values of MASK; we must act as if the mask value was
771          * some non-reserved value, or as if the watchpoint were disabled.
772          * We choose the latter.
773          */
774         return;
775     } else if (mask) {
776         /* Watchpoint covers an aligned area up to 2GB in size */
777         len = 1ULL << mask;
778         /*
779          * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
780          * whether the watchpoint fires when the unmasked bits match; we opt
781          * to generate the exceptions.
782          */
783         wvr &= ~(len - 1);
784     } else {
785         /* Watchpoint covers bytes defined by the byte address select bits */
786         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
787         int basstart;
788 
789         if (extract64(wvr, 2, 1)) {
790             /*
791              * Deprecated case of an only 4-aligned address. BAS[7:4] are
792              * ignored, and BAS[3:0] define which bytes to watch.
793              */
794             bas &= 0xf;
795         }
796 
797         if (bas == 0) {
798             /* This must act as if the watchpoint is disabled */
799             return;
800         }
801 
802         /*
803          * The BAS bits are supposed to be programmed to indicate a contiguous
804          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
805          * we fire for each byte in the word/doubleword addressed by the WVR.
806          * We choose to ignore any non-zero bits after the first range of 1s.
807          */
808         basstart = ctz32(bas);
809         len = cto32(bas >> basstart);
810         wvr += basstart;
811     }
812 
813     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
814                           &env->cpu_watchpoint[n]);
815 }
816 
817 void hw_watchpoint_update_all(ARMCPU *cpu)
818 {
819     int i;
820     CPUARMState *env = &cpu->env;
821 
822     /*
823      * Completely clear out existing QEMU watchpoints and our array, to
824      * avoid possible stale entries following migration load.
825      */
826     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
827     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
828 
829     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
830         hw_watchpoint_update(cpu, i);
831     }
832 }
833 
834 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
835                          uint64_t value)
836 {
837     ARMCPU *cpu = env_archcpu(env);
838     int i = ri->crm;
839 
840     /*
841      * Bits [1:0] are RES0.
842      *
843      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
844      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
845      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
846      * whether the RESS bits are ignored when comparing an address.
847      *
848      * Therefore we are allowed to compare the entire register, which lets
849      * us avoid considering whether or not FEAT_LVA is actually enabled.
850      */
851     value &= ~3ULL;
852 
853     raw_write(env, ri, value);
854     hw_watchpoint_update(cpu, i);
855 }
856 
857 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
858                          uint64_t value)
859 {
860     ARMCPU *cpu = env_archcpu(env);
861     int i = ri->crm;
862 
863     raw_write(env, ri, value);
864     hw_watchpoint_update(cpu, i);
865 }
866 
867 void hw_breakpoint_update(ARMCPU *cpu, int n)
868 {
869     CPUARMState *env = &cpu->env;
870     uint64_t bvr = env->cp15.dbgbvr[n];
871     uint64_t bcr = env->cp15.dbgbcr[n];
872     vaddr addr;
873     int bt;
874     int flags = BP_CPU;
875 
876     if (env->cpu_breakpoint[n]) {
877         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
878         env->cpu_breakpoint[n] = NULL;
879     }
880 
881     if (!extract64(bcr, 0, 1)) {
882         /* E bit clear : watchpoint disabled */
883         return;
884     }
885 
886     bt = extract64(bcr, 20, 4);
887 
888     switch (bt) {
889     case 4: /* unlinked address mismatch (reserved if AArch64) */
890     case 5: /* linked address mismatch (reserved if AArch64) */
891         qemu_log_mask(LOG_UNIMP,
892                       "arm: address mismatch breakpoint types not implemented\n");
893         return;
894     case 0: /* unlinked address match */
895     case 1: /* linked address match */
896     {
897         /*
898          * Bits [1:0] are RES0.
899          *
900          * It is IMPLEMENTATION DEFINED whether bits [63:49]
901          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
902          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
903          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
904          * whether the RESS bits are ignored when comparing an address.
905          * Therefore we are allowed to compare the entire register, which
906          * lets us avoid considering whether FEAT_LVA is actually enabled.
907          *
908          * The BAS field is used to allow setting breakpoints on 16-bit
909          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
910          * a bp will fire if the addresses covered by the bp and the addresses
911          * covered by the insn overlap but the insn doesn't start at the
912          * start of the bp address range. We choose to require the insn and
913          * the bp to have the same address. The constraints on writing to
914          * BAS enforced in dbgbcr_write mean we have only four cases:
915          *  0b0000  => no breakpoint
916          *  0b0011  => breakpoint on addr
917          *  0b1100  => breakpoint on addr + 2
918          *  0b1111  => breakpoint on addr
919          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
920          */
921         int bas = extract64(bcr, 5, 4);
922         addr = bvr & ~3ULL;
923         if (bas == 0) {
924             return;
925         }
926         if (bas == 0xc) {
927             addr += 2;
928         }
929         break;
930     }
931     case 2: /* unlinked context ID match */
932     case 8: /* unlinked VMID match (reserved if no EL2) */
933     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
934         qemu_log_mask(LOG_UNIMP,
935                       "arm: unlinked context breakpoint types not implemented\n");
936         return;
937     case 9: /* linked VMID match (reserved if no EL2) */
938     case 11: /* linked context ID and VMID match (reserved if no EL2) */
939     case 3: /* linked context ID match */
940     default:
941         /*
942          * We must generate no events for Linked context matches (unless
943          * they are linked to by some other bp/wp, which is handled in
944          * updates for the linking bp/wp). We choose to also generate no events
945          * for reserved values.
946          */
947         return;
948     }
949 
950     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
951 }
952 
953 void hw_breakpoint_update_all(ARMCPU *cpu)
954 {
955     int i;
956     CPUARMState *env = &cpu->env;
957 
958     /*
959      * Completely clear out existing QEMU breakpoints and our array, to
960      * avoid possible stale entries following migration load.
961      */
962     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
963     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
964 
965     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
966         hw_breakpoint_update(cpu, i);
967     }
968 }
969 
970 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
971                          uint64_t value)
972 {
973     ARMCPU *cpu = env_archcpu(env);
974     int i = ri->crm;
975 
976     raw_write(env, ri, value);
977     hw_breakpoint_update(cpu, i);
978 }
979 
980 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
981                          uint64_t value)
982 {
983     ARMCPU *cpu = env_archcpu(env);
984     int i = ri->crm;
985 
986     /*
987      * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
988      * copy of BAS[0].
989      */
990     value = deposit64(value, 6, 1, extract64(value, 5, 1));
991     value = deposit64(value, 8, 1, extract64(value, 7, 1));
992 
993     raw_write(env, ri, value);
994     hw_breakpoint_update(cpu, i);
995 }
996 
997 void define_debug_regs(ARMCPU *cpu)
998 {
999     /*
1000      * Define v7 and v8 architectural debug registers.
1001      * These are just dummy implementations for now.
1002      */
1003     int i;
1004     int wrps, brps, ctx_cmps;
1005 
1006     /*
1007      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1008      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
1009      * the register must not exist for this cpu.
1010      */
1011     if (cpu->isar.dbgdidr != 0) {
1012         ARMCPRegInfo dbgdidr = {
1013             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1014             .opc1 = 0, .opc2 = 0,
1015             .access = PL0_R, .accessfn = access_tda,
1016             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1017         };
1018         define_one_arm_cp_reg(cpu, &dbgdidr);
1019     }
1020 
1021     /*
1022      * DBGDEVID is present in the v7 debug architecture if
1023      * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1024      * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1025      * from v7.1 of the debug architecture. Because no fields have yet
1026      * been defined in DBGDEVID2 (and quite possibly none will ever
1027      * be) we don't define an ARMISARegisters field for it.
1028      * These registers exist only if EL1 can use AArch32, but that
1029      * happens naturally because they are only PL1 accessible anyway.
1030      */
1031     if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1032         ARMCPRegInfo dbgdevid = {
1033             .name = "DBGDEVID",
1034             .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1035             .access = PL1_R, .accessfn = access_tda,
1036             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1037         };
1038         define_one_arm_cp_reg(cpu, &dbgdevid);
1039     }
1040     if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1041         ARMCPRegInfo dbgdevid12[] = {
1042             {
1043                 .name = "DBGDEVID1",
1044                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1045                 .access = PL1_R, .accessfn = access_tda,
1046                 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1047             }, {
1048                 .name = "DBGDEVID2",
1049                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1050                 .access = PL1_R, .accessfn = access_tda,
1051                 .type = ARM_CP_CONST, .resetvalue = 0,
1052             },
1053         };
1054         define_arm_cp_regs(cpu, dbgdevid12);
1055     }
1056 
1057     brps = arm_num_brps(cpu);
1058     wrps = arm_num_wrps(cpu);
1059     ctx_cmps = arm_num_ctx_cmps(cpu);
1060 
1061     assert(ctx_cmps <= brps);
1062 
1063     define_arm_cp_regs(cpu, debug_cp_reginfo);
1064 
1065     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1066         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1067     }
1068 
1069     for (i = 0; i < brps; i++) {
1070         char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1071         char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1072         ARMCPRegInfo dbgregs[] = {
1073             { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1074               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1075               .access = PL1_RW, .accessfn = access_tda,
1076               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1077               .writefn = dbgbvr_write, .raw_writefn = raw_write
1078             },
1079             { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1080               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1081               .access = PL1_RW, .accessfn = access_tda,
1082               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1083               .writefn = dbgbcr_write, .raw_writefn = raw_write
1084             },
1085         };
1086         define_arm_cp_regs(cpu, dbgregs);
1087         g_free(dbgbvr_el1_name);
1088         g_free(dbgbcr_el1_name);
1089     }
1090 
1091     for (i = 0; i < wrps; i++) {
1092         char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1093         char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1094         ARMCPRegInfo dbgregs[] = {
1095             { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1096               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1097               .access = PL1_RW, .accessfn = access_tda,
1098               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1099               .writefn = dbgwvr_write, .raw_writefn = raw_write
1100             },
1101             { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1102               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1103               .access = PL1_RW, .accessfn = access_tda,
1104               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1105               .writefn = dbgwcr_write, .raw_writefn = raw_write
1106             },
1107         };
1108         define_arm_cp_regs(cpu, dbgregs);
1109         g_free(dbgwvr_el1_name);
1110         g_free(dbgwcr_el1_name);
1111     }
1112 }
1113 
1114 #if !defined(CONFIG_USER_ONLY)
1115 
1116 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1117 {
1118     ARMCPU *cpu = ARM_CPU(cs);
1119     CPUARMState *env = &cpu->env;
1120 
1121     /*
1122      * In BE32 system mode, target memory is stored byteswapped (on a
1123      * little-endian host system), and by the time we reach here (via an
1124      * opcode helper) the addresses of subword accesses have been adjusted
1125      * to account for that, which means that watchpoints will not match.
1126      * Undo the adjustment here.
1127      */
1128     if (arm_sctlr_b(env)) {
1129         if (len == 1) {
1130             addr ^= 3;
1131         } else if (len == 2) {
1132             addr ^= 2;
1133         }
1134     }
1135 
1136     return addr;
1137 }
1138 
1139 #endif
1140