xref: /openbmc/qemu/target/arm/cpu64.c (revision fd990e86)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31 
32 static inline void set_feature(CPUARMState *env, int feature)
33 {
34     env->features |= 1ULL << feature;
35 }
36 
37 static inline void unset_feature(CPUARMState *env, int feature)
38 {
39     env->features &= ~(1ULL << feature);
40 }
41 
42 #ifndef CONFIG_USER_ONLY
43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
44 {
45     ARMCPU *cpu = env_archcpu(env);
46 
47     /* Number of cores is in [25:24]; otherwise we RAZ */
48     return (cpu->core_count - 1) << 24;
49 }
50 #endif
51 
52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
53 #ifndef CONFIG_USER_ONLY
54     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
55       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
56       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
57       .writefn = arm_cp_write_ignore },
58     { .name = "L2CTLR",
59       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
60       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
61       .writefn = arm_cp_write_ignore },
62 #endif
63     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
64       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
65       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66     { .name = "L2ECTLR",
67       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
68       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
70       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
71       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
73       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
74       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
75     { .name = "CPUACTLR",
76       .cp = 15, .opc1 = 0, .crm = 15,
77       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
78     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
79       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
80       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
81     { .name = "CPUECTLR",
82       .cp = 15, .opc1 = 1, .crm = 15,
83       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
84     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
85       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
86       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
87     { .name = "CPUMERRSR",
88       .cp = 15, .opc1 = 2, .crm = 15,
89       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
90     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
91       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
92       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
93     { .name = "L2MERRSR",
94       .cp = 15, .opc1 = 3, .crm = 15,
95       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
96     REGINFO_SENTINEL
97 };
98 
99 static void aarch64_a57_initfn(Object *obj)
100 {
101     ARMCPU *cpu = ARM_CPU(obj);
102 
103     cpu->dtb_compatible = "arm,cortex-a57";
104     set_feature(&cpu->env, ARM_FEATURE_V8);
105     set_feature(&cpu->env, ARM_FEATURE_NEON);
106     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
107     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
108     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
109     set_feature(&cpu->env, ARM_FEATURE_EL2);
110     set_feature(&cpu->env, ARM_FEATURE_EL3);
111     set_feature(&cpu->env, ARM_FEATURE_PMU);
112     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
113     cpu->midr = 0x411fd070;
114     cpu->revidr = 0x00000000;
115     cpu->reset_fpsid = 0x41034070;
116     cpu->isar.mvfr0 = 0x10110222;
117     cpu->isar.mvfr1 = 0x12111111;
118     cpu->isar.mvfr2 = 0x00000043;
119     cpu->ctr = 0x8444c004;
120     cpu->reset_sctlr = 0x00c50838;
121     cpu->id_pfr0 = 0x00000131;
122     cpu->id_pfr1 = 0x00011011;
123     cpu->isar.id_dfr0 = 0x03010066;
124     cpu->id_afr0 = 0x00000000;
125     cpu->isar.id_mmfr0 = 0x10101105;
126     cpu->isar.id_mmfr1 = 0x40000000;
127     cpu->isar.id_mmfr2 = 0x01260000;
128     cpu->isar.id_mmfr3 = 0x02102211;
129     cpu->isar.id_isar0 = 0x02101110;
130     cpu->isar.id_isar1 = 0x13112111;
131     cpu->isar.id_isar2 = 0x21232042;
132     cpu->isar.id_isar3 = 0x01112131;
133     cpu->isar.id_isar4 = 0x00011142;
134     cpu->isar.id_isar5 = 0x00011121;
135     cpu->isar.id_isar6 = 0;
136     cpu->isar.id_aa64pfr0 = 0x00002222;
137     cpu->isar.id_aa64dfr0 = 0x10305106;
138     cpu->isar.id_aa64isar0 = 0x00011120;
139     cpu->isar.id_aa64mmfr0 = 0x00001124;
140     cpu->isar.dbgdidr = 0x3516d000;
141     cpu->clidr = 0x0a200023;
142     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
143     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
144     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
145     cpu->dcz_blocksize = 4; /* 64 bytes */
146     cpu->gic_num_lrs = 4;
147     cpu->gic_vpribits = 5;
148     cpu->gic_vprebits = 5;
149     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
150 }
151 
152 static void aarch64_a53_initfn(Object *obj)
153 {
154     ARMCPU *cpu = ARM_CPU(obj);
155 
156     cpu->dtb_compatible = "arm,cortex-a53";
157     set_feature(&cpu->env, ARM_FEATURE_V8);
158     set_feature(&cpu->env, ARM_FEATURE_NEON);
159     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
160     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
161     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
162     set_feature(&cpu->env, ARM_FEATURE_EL2);
163     set_feature(&cpu->env, ARM_FEATURE_EL3);
164     set_feature(&cpu->env, ARM_FEATURE_PMU);
165     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
166     cpu->midr = 0x410fd034;
167     cpu->revidr = 0x00000000;
168     cpu->reset_fpsid = 0x41034070;
169     cpu->isar.mvfr0 = 0x10110222;
170     cpu->isar.mvfr1 = 0x12111111;
171     cpu->isar.mvfr2 = 0x00000043;
172     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
173     cpu->reset_sctlr = 0x00c50838;
174     cpu->id_pfr0 = 0x00000131;
175     cpu->id_pfr1 = 0x00011011;
176     cpu->isar.id_dfr0 = 0x03010066;
177     cpu->id_afr0 = 0x00000000;
178     cpu->isar.id_mmfr0 = 0x10101105;
179     cpu->isar.id_mmfr1 = 0x40000000;
180     cpu->isar.id_mmfr2 = 0x01260000;
181     cpu->isar.id_mmfr3 = 0x02102211;
182     cpu->isar.id_isar0 = 0x02101110;
183     cpu->isar.id_isar1 = 0x13112111;
184     cpu->isar.id_isar2 = 0x21232042;
185     cpu->isar.id_isar3 = 0x01112131;
186     cpu->isar.id_isar4 = 0x00011142;
187     cpu->isar.id_isar5 = 0x00011121;
188     cpu->isar.id_isar6 = 0;
189     cpu->isar.id_aa64pfr0 = 0x00002222;
190     cpu->isar.id_aa64dfr0 = 0x10305106;
191     cpu->isar.id_aa64isar0 = 0x00011120;
192     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
193     cpu->isar.dbgdidr = 0x3516d000;
194     cpu->clidr = 0x0a200023;
195     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
196     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
197     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
198     cpu->dcz_blocksize = 4; /* 64 bytes */
199     cpu->gic_num_lrs = 4;
200     cpu->gic_vpribits = 5;
201     cpu->gic_vprebits = 5;
202     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
203 }
204 
205 static void aarch64_a72_initfn(Object *obj)
206 {
207     ARMCPU *cpu = ARM_CPU(obj);
208 
209     cpu->dtb_compatible = "arm,cortex-a72";
210     set_feature(&cpu->env, ARM_FEATURE_V8);
211     set_feature(&cpu->env, ARM_FEATURE_NEON);
212     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
213     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
214     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
215     set_feature(&cpu->env, ARM_FEATURE_EL2);
216     set_feature(&cpu->env, ARM_FEATURE_EL3);
217     set_feature(&cpu->env, ARM_FEATURE_PMU);
218     cpu->midr = 0x410fd083;
219     cpu->revidr = 0x00000000;
220     cpu->reset_fpsid = 0x41034080;
221     cpu->isar.mvfr0 = 0x10110222;
222     cpu->isar.mvfr1 = 0x12111111;
223     cpu->isar.mvfr2 = 0x00000043;
224     cpu->ctr = 0x8444c004;
225     cpu->reset_sctlr = 0x00c50838;
226     cpu->id_pfr0 = 0x00000131;
227     cpu->id_pfr1 = 0x00011011;
228     cpu->isar.id_dfr0 = 0x03010066;
229     cpu->id_afr0 = 0x00000000;
230     cpu->isar.id_mmfr0 = 0x10201105;
231     cpu->isar.id_mmfr1 = 0x40000000;
232     cpu->isar.id_mmfr2 = 0x01260000;
233     cpu->isar.id_mmfr3 = 0x02102211;
234     cpu->isar.id_isar0 = 0x02101110;
235     cpu->isar.id_isar1 = 0x13112111;
236     cpu->isar.id_isar2 = 0x21232042;
237     cpu->isar.id_isar3 = 0x01112131;
238     cpu->isar.id_isar4 = 0x00011142;
239     cpu->isar.id_isar5 = 0x00011121;
240     cpu->isar.id_aa64pfr0 = 0x00002222;
241     cpu->isar.id_aa64dfr0 = 0x10305106;
242     cpu->isar.id_aa64isar0 = 0x00011120;
243     cpu->isar.id_aa64mmfr0 = 0x00001124;
244     cpu->isar.dbgdidr = 0x3516d000;
245     cpu->clidr = 0x0a200023;
246     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
247     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
248     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
249     cpu->dcz_blocksize = 4; /* 64 bytes */
250     cpu->gic_num_lrs = 4;
251     cpu->gic_vpribits = 5;
252     cpu->gic_vprebits = 5;
253     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
254 }
255 
256 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
257 {
258     /*
259      * If any vector lengths are explicitly enabled with sve<N> properties,
260      * then all other lengths are implicitly disabled.  If sve-max-vq is
261      * specified then it is the same as explicitly enabling all lengths
262      * up to and including the specified maximum, which means all larger
263      * lengths will be implicitly disabled.  If no sve<N> properties
264      * are enabled and sve-max-vq is not specified, then all lengths not
265      * explicitly disabled will be enabled.  Additionally, all power-of-two
266      * vector lengths less than the maximum enabled length will be
267      * automatically enabled and all vector lengths larger than the largest
268      * disabled power-of-two vector length will be automatically disabled.
269      * Errors are generated if the user provided input that interferes with
270      * any of the above.  Finally, if SVE is not disabled, then at least one
271      * vector length must be enabled.
272      */
273     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
274     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
275     uint32_t vq, max_vq = 0;
276 
277     /* Collect the set of vector lengths supported by KVM. */
278     bitmap_zero(kvm_supported, ARM_MAX_VQ);
279     if (kvm_enabled() && kvm_arm_sve_supported(CPU(cpu))) {
280         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
281     } else if (kvm_enabled()) {
282         assert(!cpu_isar_feature(aa64_sve, cpu));
283     }
284 
285     /*
286      * Process explicit sve<N> properties.
287      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
288      * Check first for any sve<N> enabled.
289      */
290     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
291         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
292 
293         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
294             error_setg(errp, "cannot enable sve%d", max_vq * 128);
295             error_append_hint(errp, "sve%d is larger than the maximum vector "
296                               "length, sve-max-vq=%d (%d bits)\n",
297                               max_vq * 128, cpu->sve_max_vq,
298                               cpu->sve_max_vq * 128);
299             return;
300         }
301 
302         if (kvm_enabled()) {
303             /*
304              * For KVM we have to automatically enable all supported unitialized
305              * lengths, even when the smaller lengths are not all powers-of-two.
306              */
307             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
308             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
309         } else {
310             /* Propagate enabled bits down through required powers-of-two. */
311             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
312                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
313                     set_bit(vq - 1, cpu->sve_vq_map);
314                 }
315             }
316         }
317     } else if (cpu->sve_max_vq == 0) {
318         /*
319          * No explicit bits enabled, and no implicit bits from sve-max-vq.
320          */
321         if (!cpu_isar_feature(aa64_sve, cpu)) {
322             /* SVE is disabled and so are all vector lengths.  Good. */
323             return;
324         }
325 
326         if (kvm_enabled()) {
327             /* Disabling a supported length disables all larger lengths. */
328             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
329                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
330                     test_bit(vq - 1, kvm_supported)) {
331                     break;
332                 }
333             }
334             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
335             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
336                           cpu->sve_vq_init, max_vq);
337             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
338                 error_setg(errp, "cannot disable sve%d", vq * 128);
339                 error_append_hint(errp, "Disabling sve%d results in all "
340                                   "vector lengths being disabled.\n",
341                                   vq * 128);
342                 error_append_hint(errp, "With SVE enabled, at least one "
343                                   "vector length must be enabled.\n");
344                 return;
345             }
346         } else {
347             /* Disabling a power-of-two disables all larger lengths. */
348             if (test_bit(0, cpu->sve_vq_init)) {
349                 error_setg(errp, "cannot disable sve128");
350                 error_append_hint(errp, "Disabling sve128 results in all "
351                                   "vector lengths being disabled.\n");
352                 error_append_hint(errp, "With SVE enabled, at least one "
353                                   "vector length must be enabled.\n");
354                 return;
355             }
356             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
357                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
358                     break;
359                 }
360             }
361             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
362             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
363         }
364 
365         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
366     }
367 
368     /*
369      * Process the sve-max-vq property.
370      * Note that we know from the above that no bit above
371      * sve-max-vq is currently set.
372      */
373     if (cpu->sve_max_vq != 0) {
374         max_vq = cpu->sve_max_vq;
375 
376         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
377             test_bit(max_vq - 1, cpu->sve_vq_init)) {
378             error_setg(errp, "cannot disable sve%d", max_vq * 128);
379             error_append_hint(errp, "The maximum vector length must be "
380                               "enabled, sve-max-vq=%d (%d bits)\n",
381                               max_vq, max_vq * 128);
382             return;
383         }
384 
385         /* Set all bits not explicitly set within sve-max-vq. */
386         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
387         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
388     }
389 
390     /*
391      * We should know what max-vq is now.  Also, as we're done
392      * manipulating sve-vq-map, we ensure any bits above max-vq
393      * are clear, just in case anybody looks.
394      */
395     assert(max_vq != 0);
396     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
397 
398     if (kvm_enabled()) {
399         /* Ensure the set of lengths matches what KVM supports. */
400         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
401         if (!bitmap_empty(tmp, max_vq)) {
402             vq = find_last_bit(tmp, max_vq) + 1;
403             if (test_bit(vq - 1, cpu->sve_vq_map)) {
404                 if (cpu->sve_max_vq) {
405                     error_setg(errp, "cannot set sve-max-vq=%d",
406                                cpu->sve_max_vq);
407                     error_append_hint(errp, "This KVM host does not support "
408                                       "the vector length %d-bits.\n",
409                                       vq * 128);
410                     error_append_hint(errp, "It may not be possible to use "
411                                       "sve-max-vq with this KVM host. Try "
412                                       "using only sve<N> properties.\n");
413                 } else {
414                     error_setg(errp, "cannot enable sve%d", vq * 128);
415                     error_append_hint(errp, "This KVM host does not support "
416                                       "the vector length %d-bits.\n",
417                                       vq * 128);
418                 }
419             } else {
420                 error_setg(errp, "cannot disable sve%d", vq * 128);
421                 error_append_hint(errp, "The KVM host requires all "
422                                   "supported vector lengths smaller "
423                                   "than %d bits to also be enabled.\n",
424                                   max_vq * 128);
425             }
426             return;
427         }
428     } else {
429         /* Ensure all required powers-of-two are enabled. */
430         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
431             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
432                 error_setg(errp, "cannot disable sve%d", vq * 128);
433                 error_append_hint(errp, "sve%d is required as it "
434                                   "is a power-of-two length smaller than "
435                                   "the maximum, sve%d\n",
436                                   vq * 128, max_vq * 128);
437                 return;
438             }
439         }
440     }
441 
442     /*
443      * Now that we validated all our vector lengths, the only question
444      * left to answer is if we even want SVE at all.
445      */
446     if (!cpu_isar_feature(aa64_sve, cpu)) {
447         error_setg(errp, "cannot enable sve%d", max_vq * 128);
448         error_append_hint(errp, "SVE must be enabled to enable vector "
449                           "lengths.\n");
450         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
451         return;
452     }
453 
454     /* From now on sve_max_vq is the actual maximum supported length. */
455     cpu->sve_max_vq = max_vq;
456 }
457 
458 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
459                                    void *opaque, Error **errp)
460 {
461     ARMCPU *cpu = ARM_CPU(obj);
462     uint32_t value;
463 
464     /* All vector lengths are disabled when SVE is off. */
465     if (!cpu_isar_feature(aa64_sve, cpu)) {
466         value = 0;
467     } else {
468         value = cpu->sve_max_vq;
469     }
470     visit_type_uint32(v, name, &value, errp);
471 }
472 
473 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
474                                    void *opaque, Error **errp)
475 {
476     ARMCPU *cpu = ARM_CPU(obj);
477     Error *err = NULL;
478     uint32_t max_vq;
479 
480     visit_type_uint32(v, name, &max_vq, &err);
481     if (err) {
482         error_propagate(errp, err);
483         return;
484     }
485 
486     if (kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
487         error_setg(errp, "cannot set sve-max-vq");
488         error_append_hint(errp, "SVE not supported by KVM on this host\n");
489         return;
490     }
491 
492     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
493         error_setg(errp, "unsupported SVE vector length");
494         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
495                           ARM_MAX_VQ);
496         return;
497     }
498 
499     cpu->sve_max_vq = max_vq;
500 }
501 
502 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
503                                void *opaque, Error **errp)
504 {
505     ARMCPU *cpu = ARM_CPU(obj);
506     uint32_t vq = atoi(&name[3]) / 128;
507     bool value;
508 
509     /* All vector lengths are disabled when SVE is off. */
510     if (!cpu_isar_feature(aa64_sve, cpu)) {
511         value = false;
512     } else {
513         value = test_bit(vq - 1, cpu->sve_vq_map);
514     }
515     visit_type_bool(v, name, &value, errp);
516 }
517 
518 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
519                                void *opaque, Error **errp)
520 {
521     ARMCPU *cpu = ARM_CPU(obj);
522     uint32_t vq = atoi(&name[3]) / 128;
523     Error *err = NULL;
524     bool value;
525 
526     visit_type_bool(v, name, &value, &err);
527     if (err) {
528         error_propagate(errp, err);
529         return;
530     }
531 
532     if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
533         error_setg(errp, "cannot enable %s", name);
534         error_append_hint(errp, "SVE not supported by KVM on this host\n");
535         return;
536     }
537 
538     if (value) {
539         set_bit(vq - 1, cpu->sve_vq_map);
540     } else {
541         clear_bit(vq - 1, cpu->sve_vq_map);
542     }
543     set_bit(vq - 1, cpu->sve_vq_init);
544 }
545 
546 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
547                             void *opaque, Error **errp)
548 {
549     ARMCPU *cpu = ARM_CPU(obj);
550     bool value = cpu_isar_feature(aa64_sve, cpu);
551 
552     visit_type_bool(v, name, &value, errp);
553 }
554 
555 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
556                             void *opaque, Error **errp)
557 {
558     ARMCPU *cpu = ARM_CPU(obj);
559     Error *err = NULL;
560     bool value;
561     uint64_t t;
562 
563     visit_type_bool(v, name, &value, &err);
564     if (err) {
565         error_propagate(errp, err);
566         return;
567     }
568 
569     if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
570         error_setg(errp, "'sve' feature not supported by KVM on this host");
571         return;
572     }
573 
574     t = cpu->isar.id_aa64pfr0;
575     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
576     cpu->isar.id_aa64pfr0 = t;
577 }
578 
579 void aarch64_add_sve_properties(Object *obj)
580 {
581     uint32_t vq;
582 
583     object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
584                         cpu_arm_set_sve, NULL, NULL, &error_fatal);
585 
586     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
587         char name[8];
588         sprintf(name, "sve%d", vq * 128);
589         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
590                             cpu_arm_set_sve_vq, NULL, NULL, &error_fatal);
591     }
592 }
593 
594 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
595  * otherwise, a CPU with as many features enabled as our emulation supports.
596  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
597  * this only needs to handle 64 bits.
598  */
599 static void aarch64_max_initfn(Object *obj)
600 {
601     ARMCPU *cpu = ARM_CPU(obj);
602 
603     if (kvm_enabled()) {
604         kvm_arm_set_cpu_features_from_host(cpu);
605         kvm_arm_add_vcpu_properties(obj);
606     } else {
607         uint64_t t;
608         uint32_t u;
609         aarch64_a57_initfn(obj);
610 
611         /*
612          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
613          * one and try to apply errata workarounds or use impdef features we
614          * don't provide.
615          * An IMPLEMENTER field of 0 means "reserved for software use";
616          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
617          * to see which features are present";
618          * the VARIANT, PARTNUM and REVISION fields are all implementation
619          * defined and we choose to define PARTNUM just in case guest
620          * code needs to distinguish this QEMU CPU from other software
621          * implementations, though this shouldn't be needed.
622          */
623         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
624         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
625         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
626         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
627         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
628         cpu->midr = t;
629 
630         t = cpu->isar.id_aa64isar0;
631         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
632         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
633         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
634         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
635         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
636         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
637         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
638         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
639         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
640         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
641         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
642         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
643         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
644         cpu->isar.id_aa64isar0 = t;
645 
646         t = cpu->isar.id_aa64isar1;
647         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
648         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
649         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
650         t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
651         t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
652         t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
653         t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
654         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
655         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
656         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
657         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
658         cpu->isar.id_aa64isar1 = t;
659 
660         t = cpu->isar.id_aa64pfr0;
661         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
662         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
663         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
664         cpu->isar.id_aa64pfr0 = t;
665 
666         t = cpu->isar.id_aa64pfr1;
667         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
668         cpu->isar.id_aa64pfr1 = t;
669 
670         t = cpu->isar.id_aa64mmfr1;
671         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
672         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
673         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
674         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
675         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
676         cpu->isar.id_aa64mmfr1 = t;
677 
678         t = cpu->isar.id_aa64mmfr2;
679         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
680         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
681         cpu->isar.id_aa64mmfr2 = t;
682 
683         /* Replicate the same data to the 32-bit id registers.  */
684         u = cpu->isar.id_isar5;
685         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
686         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
687         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
688         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
689         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
690         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
691         cpu->isar.id_isar5 = u;
692 
693         u = cpu->isar.id_isar6;
694         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
695         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
696         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
697         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
698         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
699         cpu->isar.id_isar6 = u;
700 
701         u = cpu->isar.id_mmfr3;
702         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
703         cpu->isar.id_mmfr3 = u;
704 
705         u = cpu->isar.id_mmfr4;
706         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
707         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
708         u = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
709         cpu->isar.id_mmfr4 = u;
710 
711         u = cpu->isar.id_aa64dfr0;
712         u = FIELD_DP64(u, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
713         cpu->isar.id_aa64dfr0 = u;
714 
715         u = cpu->isar.id_dfr0;
716         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
717         cpu->isar.id_dfr0 = u;
718 
719         /*
720          * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
721          * so do not set MVFR1.FPHP.  Strictly speaking this is not legal,
722          * but it is also not legal to enable SVE without support for FP16,
723          * and enabling SVE in system mode is more useful in the short term.
724          */
725 
726 #ifdef CONFIG_USER_ONLY
727         /* For usermode -cpu max we can use a larger and more efficient DCZ
728          * blocksize since we don't have to follow what the hardware does.
729          */
730         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
731         cpu->dcz_blocksize = 7; /*  512 bytes */
732 #endif
733     }
734 
735     aarch64_add_sve_properties(obj);
736     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
737                         cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal);
738 }
739 
740 struct ARMCPUInfo {
741     const char *name;
742     void (*initfn)(Object *obj);
743     void (*class_init)(ObjectClass *oc, void *data);
744 };
745 
746 static const ARMCPUInfo aarch64_cpus[] = {
747     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
748     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
749     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
750     { .name = "max",                .initfn = aarch64_max_initfn },
751     { .name = NULL }
752 };
753 
754 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
755 {
756     ARMCPU *cpu = ARM_CPU(obj);
757 
758     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
759 }
760 
761 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
762 {
763     ARMCPU *cpu = ARM_CPU(obj);
764 
765     /* At this time, this property is only allowed if KVM is enabled.  This
766      * restriction allows us to avoid fixing up functionality that assumes a
767      * uniform execution state like do_interrupt.
768      */
769     if (value == false) {
770         if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) {
771             error_setg(errp, "'aarch64' feature cannot be disabled "
772                              "unless KVM is enabled and 32-bit EL1 "
773                              "is supported");
774             return;
775         }
776         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
777     } else {
778         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
779     }
780 }
781 
782 static void aarch64_cpu_initfn(Object *obj)
783 {
784     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
785                              aarch64_cpu_set_aarch64, NULL);
786     object_property_set_description(obj, "aarch64",
787                                     "Set on/off to enable/disable aarch64 "
788                                     "execution state ",
789                                     NULL);
790 }
791 
792 static void aarch64_cpu_finalizefn(Object *obj)
793 {
794 }
795 
796 static gchar *aarch64_gdb_arch_name(CPUState *cs)
797 {
798     return g_strdup("aarch64");
799 }
800 
801 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
802 {
803     CPUClass *cc = CPU_CLASS(oc);
804 
805     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
806     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
807     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
808     cc->gdb_num_core_regs = 34;
809     cc->gdb_core_xml_file = "aarch64-core.xml";
810     cc->gdb_arch_name = aarch64_gdb_arch_name;
811 }
812 
813 static void aarch64_cpu_instance_init(Object *obj)
814 {
815     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
816 
817     acc->info->initfn(obj);
818     arm_cpu_post_init(obj);
819 }
820 
821 static void cpu_register_class_init(ObjectClass *oc, void *data)
822 {
823     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
824 
825     acc->info = data;
826 }
827 
828 static void aarch64_cpu_register(const ARMCPUInfo *info)
829 {
830     TypeInfo type_info = {
831         .parent = TYPE_AARCH64_CPU,
832         .instance_size = sizeof(ARMCPU),
833         .instance_init = aarch64_cpu_instance_init,
834         .class_size = sizeof(ARMCPUClass),
835         .class_init = info->class_init ?: cpu_register_class_init,
836         .class_data = (void *)info,
837     };
838 
839     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
840     type_register(&type_info);
841     g_free((void *)type_info.name);
842 }
843 
844 static const TypeInfo aarch64_cpu_type_info = {
845     .name = TYPE_AARCH64_CPU,
846     .parent = TYPE_ARM_CPU,
847     .instance_size = sizeof(ARMCPU),
848     .instance_init = aarch64_cpu_initfn,
849     .instance_finalize = aarch64_cpu_finalizefn,
850     .abstract = true,
851     .class_size = sizeof(AArch64CPUClass),
852     .class_init = aarch64_cpu_class_init,
853 };
854 
855 static void aarch64_cpu_register_types(void)
856 {
857     const ARMCPUInfo *info = aarch64_cpus;
858 
859     type_register_static(&aarch64_cpu_type_info);
860 
861     while (info->name) {
862         aarch64_cpu_register(info);
863         info++;
864     }
865 }
866 
867 type_init(aarch64_cpu_register_types)
868