1 /* 2 * QEMU AArch64 CPU 3 * 4 * Copyright (c) 2013 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #include "qemu/module.h" 25 #if !defined(CONFIG_USER_ONLY) 26 #include "hw/loader.h" 27 #endif 28 #include "sysemu/kvm.h" 29 #include "kvm_arm.h" 30 #include "qapi/visitor.h" 31 32 static inline void set_feature(CPUARMState *env, int feature) 33 { 34 env->features |= 1ULL << feature; 35 } 36 37 static inline void unset_feature(CPUARMState *env, int feature) 38 { 39 env->features &= ~(1ULL << feature); 40 } 41 42 #ifndef CONFIG_USER_ONLY 43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 44 { 45 ARMCPU *cpu = env_archcpu(env); 46 47 /* Number of cores is in [25:24]; otherwise we RAZ */ 48 return (cpu->core_count - 1) << 24; 49 } 50 #endif 51 52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { 53 #ifndef CONFIG_USER_ONLY 54 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, 55 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, 56 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 57 .writefn = arm_cp_write_ignore }, 58 { .name = "L2CTLR", 59 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, 60 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 61 .writefn = arm_cp_write_ignore }, 62 #endif 63 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, 64 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, 65 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 66 { .name = "L2ECTLR", 67 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, 68 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 69 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, 70 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, 71 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 72 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, 73 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, 74 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 75 { .name = "CPUACTLR", 76 .cp = 15, .opc1 = 0, .crm = 15, 77 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 78 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, 79 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, 80 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 81 { .name = "CPUECTLR", 82 .cp = 15, .opc1 = 1, .crm = 15, 83 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 84 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, 85 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, 86 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 87 { .name = "CPUMERRSR", 88 .cp = 15, .opc1 = 2, .crm = 15, 89 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 90 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, 91 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, 92 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 93 { .name = "L2MERRSR", 94 .cp = 15, .opc1 = 3, .crm = 15, 95 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 96 REGINFO_SENTINEL 97 }; 98 99 static void aarch64_a57_initfn(Object *obj) 100 { 101 ARMCPU *cpu = ARM_CPU(obj); 102 103 cpu->dtb_compatible = "arm,cortex-a57"; 104 set_feature(&cpu->env, ARM_FEATURE_V8); 105 set_feature(&cpu->env, ARM_FEATURE_NEON); 106 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 107 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 108 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 109 set_feature(&cpu->env, ARM_FEATURE_EL2); 110 set_feature(&cpu->env, ARM_FEATURE_EL3); 111 set_feature(&cpu->env, ARM_FEATURE_PMU); 112 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; 113 cpu->midr = 0x411fd070; 114 cpu->revidr = 0x00000000; 115 cpu->reset_fpsid = 0x41034070; 116 cpu->isar.mvfr0 = 0x10110222; 117 cpu->isar.mvfr1 = 0x12111111; 118 cpu->isar.mvfr2 = 0x00000043; 119 cpu->ctr = 0x8444c004; 120 cpu->reset_sctlr = 0x00c50838; 121 cpu->id_pfr0 = 0x00000131; 122 cpu->id_pfr1 = 0x00011011; 123 cpu->isar.id_dfr0 = 0x03010066; 124 cpu->id_afr0 = 0x00000000; 125 cpu->isar.id_mmfr0 = 0x10101105; 126 cpu->isar.id_mmfr1 = 0x40000000; 127 cpu->isar.id_mmfr2 = 0x01260000; 128 cpu->isar.id_mmfr3 = 0x02102211; 129 cpu->isar.id_isar0 = 0x02101110; 130 cpu->isar.id_isar1 = 0x13112111; 131 cpu->isar.id_isar2 = 0x21232042; 132 cpu->isar.id_isar3 = 0x01112131; 133 cpu->isar.id_isar4 = 0x00011142; 134 cpu->isar.id_isar5 = 0x00011121; 135 cpu->isar.id_isar6 = 0; 136 cpu->isar.id_aa64pfr0 = 0x00002222; 137 cpu->isar.id_aa64dfr0 = 0x10305106; 138 cpu->isar.id_aa64isar0 = 0x00011120; 139 cpu->isar.id_aa64mmfr0 = 0x00001124; 140 cpu->isar.dbgdidr = 0x3516d000; 141 cpu->clidr = 0x0a200023; 142 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 143 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 144 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ 145 cpu->dcz_blocksize = 4; /* 64 bytes */ 146 cpu->gic_num_lrs = 4; 147 cpu->gic_vpribits = 5; 148 cpu->gic_vprebits = 5; 149 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 150 } 151 152 static void aarch64_a53_initfn(Object *obj) 153 { 154 ARMCPU *cpu = ARM_CPU(obj); 155 156 cpu->dtb_compatible = "arm,cortex-a53"; 157 set_feature(&cpu->env, ARM_FEATURE_V8); 158 set_feature(&cpu->env, ARM_FEATURE_NEON); 159 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 160 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 161 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 162 set_feature(&cpu->env, ARM_FEATURE_EL2); 163 set_feature(&cpu->env, ARM_FEATURE_EL3); 164 set_feature(&cpu->env, ARM_FEATURE_PMU); 165 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; 166 cpu->midr = 0x410fd034; 167 cpu->revidr = 0x00000000; 168 cpu->reset_fpsid = 0x41034070; 169 cpu->isar.mvfr0 = 0x10110222; 170 cpu->isar.mvfr1 = 0x12111111; 171 cpu->isar.mvfr2 = 0x00000043; 172 cpu->ctr = 0x84448004; /* L1Ip = VIPT */ 173 cpu->reset_sctlr = 0x00c50838; 174 cpu->id_pfr0 = 0x00000131; 175 cpu->id_pfr1 = 0x00011011; 176 cpu->isar.id_dfr0 = 0x03010066; 177 cpu->id_afr0 = 0x00000000; 178 cpu->isar.id_mmfr0 = 0x10101105; 179 cpu->isar.id_mmfr1 = 0x40000000; 180 cpu->isar.id_mmfr2 = 0x01260000; 181 cpu->isar.id_mmfr3 = 0x02102211; 182 cpu->isar.id_isar0 = 0x02101110; 183 cpu->isar.id_isar1 = 0x13112111; 184 cpu->isar.id_isar2 = 0x21232042; 185 cpu->isar.id_isar3 = 0x01112131; 186 cpu->isar.id_isar4 = 0x00011142; 187 cpu->isar.id_isar5 = 0x00011121; 188 cpu->isar.id_isar6 = 0; 189 cpu->isar.id_aa64pfr0 = 0x00002222; 190 cpu->isar.id_aa64dfr0 = 0x10305106; 191 cpu->isar.id_aa64isar0 = 0x00011120; 192 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ 193 cpu->isar.dbgdidr = 0x3516d000; 194 cpu->clidr = 0x0a200023; 195 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ 196 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ 197 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ 198 cpu->dcz_blocksize = 4; /* 64 bytes */ 199 cpu->gic_num_lrs = 4; 200 cpu->gic_vpribits = 5; 201 cpu->gic_vprebits = 5; 202 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 203 } 204 205 static void aarch64_a72_initfn(Object *obj) 206 { 207 ARMCPU *cpu = ARM_CPU(obj); 208 209 cpu->dtb_compatible = "arm,cortex-a72"; 210 set_feature(&cpu->env, ARM_FEATURE_V8); 211 set_feature(&cpu->env, ARM_FEATURE_NEON); 212 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 213 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 214 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 215 set_feature(&cpu->env, ARM_FEATURE_EL2); 216 set_feature(&cpu->env, ARM_FEATURE_EL3); 217 set_feature(&cpu->env, ARM_FEATURE_PMU); 218 cpu->midr = 0x410fd083; 219 cpu->revidr = 0x00000000; 220 cpu->reset_fpsid = 0x41034080; 221 cpu->isar.mvfr0 = 0x10110222; 222 cpu->isar.mvfr1 = 0x12111111; 223 cpu->isar.mvfr2 = 0x00000043; 224 cpu->ctr = 0x8444c004; 225 cpu->reset_sctlr = 0x00c50838; 226 cpu->id_pfr0 = 0x00000131; 227 cpu->id_pfr1 = 0x00011011; 228 cpu->isar.id_dfr0 = 0x03010066; 229 cpu->id_afr0 = 0x00000000; 230 cpu->isar.id_mmfr0 = 0x10201105; 231 cpu->isar.id_mmfr1 = 0x40000000; 232 cpu->isar.id_mmfr2 = 0x01260000; 233 cpu->isar.id_mmfr3 = 0x02102211; 234 cpu->isar.id_isar0 = 0x02101110; 235 cpu->isar.id_isar1 = 0x13112111; 236 cpu->isar.id_isar2 = 0x21232042; 237 cpu->isar.id_isar3 = 0x01112131; 238 cpu->isar.id_isar4 = 0x00011142; 239 cpu->isar.id_isar5 = 0x00011121; 240 cpu->isar.id_aa64pfr0 = 0x00002222; 241 cpu->isar.id_aa64dfr0 = 0x10305106; 242 cpu->isar.id_aa64isar0 = 0x00011120; 243 cpu->isar.id_aa64mmfr0 = 0x00001124; 244 cpu->isar.dbgdidr = 0x3516d000; 245 cpu->clidr = 0x0a200023; 246 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 247 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 248 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ 249 cpu->dcz_blocksize = 4; /* 64 bytes */ 250 cpu->gic_num_lrs = 4; 251 cpu->gic_vpribits = 5; 252 cpu->gic_vprebits = 5; 253 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 254 } 255 256 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) 257 { 258 /* 259 * If any vector lengths are explicitly enabled with sve<N> properties, 260 * then all other lengths are implicitly disabled. If sve-max-vq is 261 * specified then it is the same as explicitly enabling all lengths 262 * up to and including the specified maximum, which means all larger 263 * lengths will be implicitly disabled. If no sve<N> properties 264 * are enabled and sve-max-vq is not specified, then all lengths not 265 * explicitly disabled will be enabled. Additionally, all power-of-two 266 * vector lengths less than the maximum enabled length will be 267 * automatically enabled and all vector lengths larger than the largest 268 * disabled power-of-two vector length will be automatically disabled. 269 * Errors are generated if the user provided input that interferes with 270 * any of the above. Finally, if SVE is not disabled, then at least one 271 * vector length must be enabled. 272 */ 273 DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ); 274 DECLARE_BITMAP(tmp, ARM_MAX_VQ); 275 uint32_t vq, max_vq = 0; 276 277 /* Collect the set of vector lengths supported by KVM. */ 278 bitmap_zero(kvm_supported, ARM_MAX_VQ); 279 if (kvm_enabled() && kvm_arm_sve_supported(CPU(cpu))) { 280 kvm_arm_sve_get_vls(CPU(cpu), kvm_supported); 281 } else if (kvm_enabled()) { 282 assert(!cpu_isar_feature(aa64_sve, cpu)); 283 } 284 285 /* 286 * Process explicit sve<N> properties. 287 * From the properties, sve_vq_map<N> implies sve_vq_init<N>. 288 * Check first for any sve<N> enabled. 289 */ 290 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) { 291 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1; 292 293 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { 294 error_setg(errp, "cannot enable sve%d", max_vq * 128); 295 error_append_hint(errp, "sve%d is larger than the maximum vector " 296 "length, sve-max-vq=%d (%d bits)\n", 297 max_vq * 128, cpu->sve_max_vq, 298 cpu->sve_max_vq * 128); 299 return; 300 } 301 302 if (kvm_enabled()) { 303 /* 304 * For KVM we have to automatically enable all supported unitialized 305 * lengths, even when the smaller lengths are not all powers-of-two. 306 */ 307 bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq); 308 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 309 } else { 310 /* Propagate enabled bits down through required powers-of-two. */ 311 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 312 if (!test_bit(vq - 1, cpu->sve_vq_init)) { 313 set_bit(vq - 1, cpu->sve_vq_map); 314 } 315 } 316 } 317 } else if (cpu->sve_max_vq == 0) { 318 /* 319 * No explicit bits enabled, and no implicit bits from sve-max-vq. 320 */ 321 if (!cpu_isar_feature(aa64_sve, cpu)) { 322 /* SVE is disabled and so are all vector lengths. Good. */ 323 return; 324 } 325 326 if (kvm_enabled()) { 327 /* Disabling a supported length disables all larger lengths. */ 328 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 329 if (test_bit(vq - 1, cpu->sve_vq_init) && 330 test_bit(vq - 1, kvm_supported)) { 331 break; 332 } 333 } 334 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 335 bitmap_andnot(cpu->sve_vq_map, kvm_supported, 336 cpu->sve_vq_init, max_vq); 337 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) { 338 error_setg(errp, "cannot disable sve%d", vq * 128); 339 error_append_hint(errp, "Disabling sve%d results in all " 340 "vector lengths being disabled.\n", 341 vq * 128); 342 error_append_hint(errp, "With SVE enabled, at least one " 343 "vector length must be enabled.\n"); 344 return; 345 } 346 } else { 347 /* Disabling a power-of-two disables all larger lengths. */ 348 if (test_bit(0, cpu->sve_vq_init)) { 349 error_setg(errp, "cannot disable sve128"); 350 error_append_hint(errp, "Disabling sve128 results in all " 351 "vector lengths being disabled.\n"); 352 error_append_hint(errp, "With SVE enabled, at least one " 353 "vector length must be enabled.\n"); 354 return; 355 } 356 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) { 357 if (test_bit(vq - 1, cpu->sve_vq_init)) { 358 break; 359 } 360 } 361 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 362 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq); 363 } 364 365 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1; 366 } 367 368 /* 369 * Process the sve-max-vq property. 370 * Note that we know from the above that no bit above 371 * sve-max-vq is currently set. 372 */ 373 if (cpu->sve_max_vq != 0) { 374 max_vq = cpu->sve_max_vq; 375 376 if (!test_bit(max_vq - 1, cpu->sve_vq_map) && 377 test_bit(max_vq - 1, cpu->sve_vq_init)) { 378 error_setg(errp, "cannot disable sve%d", max_vq * 128); 379 error_append_hint(errp, "The maximum vector length must be " 380 "enabled, sve-max-vq=%d (%d bits)\n", 381 max_vq, max_vq * 128); 382 return; 383 } 384 385 /* Set all bits not explicitly set within sve-max-vq. */ 386 bitmap_complement(tmp, cpu->sve_vq_init, max_vq); 387 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 388 } 389 390 /* 391 * We should know what max-vq is now. Also, as we're done 392 * manipulating sve-vq-map, we ensure any bits above max-vq 393 * are clear, just in case anybody looks. 394 */ 395 assert(max_vq != 0); 396 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq); 397 398 if (kvm_enabled()) { 399 /* Ensure the set of lengths matches what KVM supports. */ 400 bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq); 401 if (!bitmap_empty(tmp, max_vq)) { 402 vq = find_last_bit(tmp, max_vq) + 1; 403 if (test_bit(vq - 1, cpu->sve_vq_map)) { 404 if (cpu->sve_max_vq) { 405 error_setg(errp, "cannot set sve-max-vq=%d", 406 cpu->sve_max_vq); 407 error_append_hint(errp, "This KVM host does not support " 408 "the vector length %d-bits.\n", 409 vq * 128); 410 error_append_hint(errp, "It may not be possible to use " 411 "sve-max-vq with this KVM host. Try " 412 "using only sve<N> properties.\n"); 413 } else { 414 error_setg(errp, "cannot enable sve%d", vq * 128); 415 error_append_hint(errp, "This KVM host does not support " 416 "the vector length %d-bits.\n", 417 vq * 128); 418 } 419 } else { 420 error_setg(errp, "cannot disable sve%d", vq * 128); 421 error_append_hint(errp, "The KVM host requires all " 422 "supported vector lengths smaller " 423 "than %d bits to also be enabled.\n", 424 max_vq * 128); 425 } 426 return; 427 } 428 } else { 429 /* Ensure all required powers-of-two are enabled. */ 430 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 431 if (!test_bit(vq - 1, cpu->sve_vq_map)) { 432 error_setg(errp, "cannot disable sve%d", vq * 128); 433 error_append_hint(errp, "sve%d is required as it " 434 "is a power-of-two length smaller than " 435 "the maximum, sve%d\n", 436 vq * 128, max_vq * 128); 437 return; 438 } 439 } 440 } 441 442 /* 443 * Now that we validated all our vector lengths, the only question 444 * left to answer is if we even want SVE at all. 445 */ 446 if (!cpu_isar_feature(aa64_sve, cpu)) { 447 error_setg(errp, "cannot enable sve%d", max_vq * 128); 448 error_append_hint(errp, "SVE must be enabled to enable vector " 449 "lengths.\n"); 450 error_append_hint(errp, "Add sve=on to the CPU property list.\n"); 451 return; 452 } 453 454 /* From now on sve_max_vq is the actual maximum supported length. */ 455 cpu->sve_max_vq = max_vq; 456 } 457 458 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, 459 void *opaque, Error **errp) 460 { 461 ARMCPU *cpu = ARM_CPU(obj); 462 uint32_t value; 463 464 /* All vector lengths are disabled when SVE is off. */ 465 if (!cpu_isar_feature(aa64_sve, cpu)) { 466 value = 0; 467 } else { 468 value = cpu->sve_max_vq; 469 } 470 visit_type_uint32(v, name, &value, errp); 471 } 472 473 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, 474 void *opaque, Error **errp) 475 { 476 ARMCPU *cpu = ARM_CPU(obj); 477 Error *err = NULL; 478 uint32_t max_vq; 479 480 visit_type_uint32(v, name, &max_vq, &err); 481 if (err) { 482 error_propagate(errp, err); 483 return; 484 } 485 486 if (kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) { 487 error_setg(errp, "cannot set sve-max-vq"); 488 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 489 return; 490 } 491 492 if (max_vq == 0 || max_vq > ARM_MAX_VQ) { 493 error_setg(errp, "unsupported SVE vector length"); 494 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", 495 ARM_MAX_VQ); 496 return; 497 } 498 499 cpu->sve_max_vq = max_vq; 500 } 501 502 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name, 503 void *opaque, Error **errp) 504 { 505 ARMCPU *cpu = ARM_CPU(obj); 506 uint32_t vq = atoi(&name[3]) / 128; 507 bool value; 508 509 /* All vector lengths are disabled when SVE is off. */ 510 if (!cpu_isar_feature(aa64_sve, cpu)) { 511 value = false; 512 } else { 513 value = test_bit(vq - 1, cpu->sve_vq_map); 514 } 515 visit_type_bool(v, name, &value, errp); 516 } 517 518 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name, 519 void *opaque, Error **errp) 520 { 521 ARMCPU *cpu = ARM_CPU(obj); 522 uint32_t vq = atoi(&name[3]) / 128; 523 Error *err = NULL; 524 bool value; 525 526 visit_type_bool(v, name, &value, &err); 527 if (err) { 528 error_propagate(errp, err); 529 return; 530 } 531 532 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) { 533 error_setg(errp, "cannot enable %s", name); 534 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 535 return; 536 } 537 538 if (value) { 539 set_bit(vq - 1, cpu->sve_vq_map); 540 } else { 541 clear_bit(vq - 1, cpu->sve_vq_map); 542 } 543 set_bit(vq - 1, cpu->sve_vq_init); 544 } 545 546 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name, 547 void *opaque, Error **errp) 548 { 549 ARMCPU *cpu = ARM_CPU(obj); 550 bool value = cpu_isar_feature(aa64_sve, cpu); 551 552 visit_type_bool(v, name, &value, errp); 553 } 554 555 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name, 556 void *opaque, Error **errp) 557 { 558 ARMCPU *cpu = ARM_CPU(obj); 559 Error *err = NULL; 560 bool value; 561 uint64_t t; 562 563 visit_type_bool(v, name, &value, &err); 564 if (err) { 565 error_propagate(errp, err); 566 return; 567 } 568 569 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) { 570 error_setg(errp, "'sve' feature not supported by KVM on this host"); 571 return; 572 } 573 574 t = cpu->isar.id_aa64pfr0; 575 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); 576 cpu->isar.id_aa64pfr0 = t; 577 } 578 579 void aarch64_add_sve_properties(Object *obj) 580 { 581 uint32_t vq; 582 583 object_property_add(obj, "sve", "bool", cpu_arm_get_sve, 584 cpu_arm_set_sve, NULL, NULL, &error_fatal); 585 586 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 587 char name[8]; 588 sprintf(name, "sve%d", vq * 128); 589 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq, 590 cpu_arm_set_sve_vq, NULL, NULL, &error_fatal); 591 } 592 } 593 594 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 595 * otherwise, a CPU with as many features enabled as our emulation supports. 596 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; 597 * this only needs to handle 64 bits. 598 */ 599 static void aarch64_max_initfn(Object *obj) 600 { 601 ARMCPU *cpu = ARM_CPU(obj); 602 603 if (kvm_enabled()) { 604 kvm_arm_set_cpu_features_from_host(cpu); 605 kvm_arm_add_vcpu_properties(obj); 606 } else { 607 uint64_t t; 608 uint32_t u; 609 aarch64_a57_initfn(obj); 610 611 /* 612 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real 613 * one and try to apply errata workarounds or use impdef features we 614 * don't provide. 615 * An IMPLEMENTER field of 0 means "reserved for software use"; 616 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers 617 * to see which features are present"; 618 * the VARIANT, PARTNUM and REVISION fields are all implementation 619 * defined and we choose to define PARTNUM just in case guest 620 * code needs to distinguish this QEMU CPU from other software 621 * implementations, though this shouldn't be needed. 622 */ 623 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); 624 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); 625 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); 626 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); 627 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); 628 cpu->midr = t; 629 630 t = cpu->isar.id_aa64isar0; 631 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ 632 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); 633 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ 634 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); 635 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); 636 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); 637 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); 638 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); 639 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); 640 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); 641 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); 642 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ 643 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); 644 cpu->isar.id_aa64isar0 = t; 645 646 t = cpu->isar.id_aa64isar1; 647 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); 648 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); 649 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); 650 t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */ 651 t = FIELD_DP64(t, ID_AA64ISAR1, API, 0); 652 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1); 653 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0); 654 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); 655 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); 656 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); 657 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */ 658 cpu->isar.id_aa64isar1 = t; 659 660 t = cpu->isar.id_aa64pfr0; 661 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); 662 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); 663 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); 664 cpu->isar.id_aa64pfr0 = t; 665 666 t = cpu->isar.id_aa64pfr1; 667 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); 668 cpu->isar.id_aa64pfr1 = t; 669 670 t = cpu->isar.id_aa64mmfr1; 671 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ 672 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); 673 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); 674 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */ 675 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */ 676 cpu->isar.id_aa64mmfr1 = t; 677 678 t = cpu->isar.id_aa64mmfr2; 679 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); 680 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */ 681 cpu->isar.id_aa64mmfr2 = t; 682 683 /* Replicate the same data to the 32-bit id registers. */ 684 u = cpu->isar.id_isar5; 685 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ 686 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); 687 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); 688 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); 689 u = FIELD_DP32(u, ID_ISAR5, RDM, 1); 690 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); 691 cpu->isar.id_isar5 = u; 692 693 u = cpu->isar.id_isar6; 694 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); 695 u = FIELD_DP32(u, ID_ISAR6, DP, 1); 696 u = FIELD_DP32(u, ID_ISAR6, FHM, 1); 697 u = FIELD_DP32(u, ID_ISAR6, SB, 1); 698 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); 699 cpu->isar.id_isar6 = u; 700 701 u = cpu->isar.id_mmfr3; 702 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */ 703 cpu->isar.id_mmfr3 = u; 704 705 u = cpu->isar.id_mmfr4; 706 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */ 707 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ 708 u = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */ 709 cpu->isar.id_mmfr4 = u; 710 711 u = cpu->isar.id_aa64dfr0; 712 u = FIELD_DP64(u, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */ 713 cpu->isar.id_aa64dfr0 = u; 714 715 u = cpu->isar.id_dfr0; 716 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */ 717 cpu->isar.id_dfr0 = u; 718 719 /* 720 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet, 721 * so do not set MVFR1.FPHP. Strictly speaking this is not legal, 722 * but it is also not legal to enable SVE without support for FP16, 723 * and enabling SVE in system mode is more useful in the short term. 724 */ 725 726 #ifdef CONFIG_USER_ONLY 727 /* For usermode -cpu max we can use a larger and more efficient DCZ 728 * blocksize since we don't have to follow what the hardware does. 729 */ 730 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ 731 cpu->dcz_blocksize = 7; /* 512 bytes */ 732 #endif 733 } 734 735 aarch64_add_sve_properties(obj); 736 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, 737 cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal); 738 } 739 740 struct ARMCPUInfo { 741 const char *name; 742 void (*initfn)(Object *obj); 743 void (*class_init)(ObjectClass *oc, void *data); 744 }; 745 746 static const ARMCPUInfo aarch64_cpus[] = { 747 { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, 748 { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, 749 { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, 750 { .name = "max", .initfn = aarch64_max_initfn }, 751 { .name = NULL } 752 }; 753 754 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) 755 { 756 ARMCPU *cpu = ARM_CPU(obj); 757 758 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); 759 } 760 761 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) 762 { 763 ARMCPU *cpu = ARM_CPU(obj); 764 765 /* At this time, this property is only allowed if KVM is enabled. This 766 * restriction allows us to avoid fixing up functionality that assumes a 767 * uniform execution state like do_interrupt. 768 */ 769 if (value == false) { 770 if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) { 771 error_setg(errp, "'aarch64' feature cannot be disabled " 772 "unless KVM is enabled and 32-bit EL1 " 773 "is supported"); 774 return; 775 } 776 unset_feature(&cpu->env, ARM_FEATURE_AARCH64); 777 } else { 778 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 779 } 780 } 781 782 static void aarch64_cpu_initfn(Object *obj) 783 { 784 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64, 785 aarch64_cpu_set_aarch64, NULL); 786 object_property_set_description(obj, "aarch64", 787 "Set on/off to enable/disable aarch64 " 788 "execution state ", 789 NULL); 790 } 791 792 static void aarch64_cpu_finalizefn(Object *obj) 793 { 794 } 795 796 static gchar *aarch64_gdb_arch_name(CPUState *cs) 797 { 798 return g_strdup("aarch64"); 799 } 800 801 static void aarch64_cpu_class_init(ObjectClass *oc, void *data) 802 { 803 CPUClass *cc = CPU_CLASS(oc); 804 805 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 806 cc->gdb_read_register = aarch64_cpu_gdb_read_register; 807 cc->gdb_write_register = aarch64_cpu_gdb_write_register; 808 cc->gdb_num_core_regs = 34; 809 cc->gdb_core_xml_file = "aarch64-core.xml"; 810 cc->gdb_arch_name = aarch64_gdb_arch_name; 811 } 812 813 static void aarch64_cpu_instance_init(Object *obj) 814 { 815 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 816 817 acc->info->initfn(obj); 818 arm_cpu_post_init(obj); 819 } 820 821 static void cpu_register_class_init(ObjectClass *oc, void *data) 822 { 823 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 824 825 acc->info = data; 826 } 827 828 static void aarch64_cpu_register(const ARMCPUInfo *info) 829 { 830 TypeInfo type_info = { 831 .parent = TYPE_AARCH64_CPU, 832 .instance_size = sizeof(ARMCPU), 833 .instance_init = aarch64_cpu_instance_init, 834 .class_size = sizeof(ARMCPUClass), 835 .class_init = info->class_init ?: cpu_register_class_init, 836 .class_data = (void *)info, 837 }; 838 839 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 840 type_register(&type_info); 841 g_free((void *)type_info.name); 842 } 843 844 static const TypeInfo aarch64_cpu_type_info = { 845 .name = TYPE_AARCH64_CPU, 846 .parent = TYPE_ARM_CPU, 847 .instance_size = sizeof(ARMCPU), 848 .instance_init = aarch64_cpu_initfn, 849 .instance_finalize = aarch64_cpu_finalizefn, 850 .abstract = true, 851 .class_size = sizeof(AArch64CPUClass), 852 .class_init = aarch64_cpu_class_init, 853 }; 854 855 static void aarch64_cpu_register_types(void) 856 { 857 const ARMCPUInfo *info = aarch64_cpus; 858 859 type_register_static(&aarch64_cpu_type_info); 860 861 while (info->name) { 862 aarch64_cpu_register(info); 863 info++; 864 } 865 } 866 867 type_init(aarch64_cpu_register_types) 868