xref: /openbmc/qemu/target/arm/cpu64.c (revision fb418b51)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 #include "internals.h"
38 
39 static void aarch64_a35_initfn(Object *obj)
40 {
41     ARMCPU *cpu = ARM_CPU(obj);
42 
43     cpu->dtb_compatible = "arm,cortex-a35";
44     set_feature(&cpu->env, ARM_FEATURE_V8);
45     set_feature(&cpu->env, ARM_FEATURE_NEON);
46     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
47     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
48     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
49     set_feature(&cpu->env, ARM_FEATURE_EL2);
50     set_feature(&cpu->env, ARM_FEATURE_EL3);
51     set_feature(&cpu->env, ARM_FEATURE_PMU);
52 
53     /* From B2.2 AArch64 identification registers. */
54     cpu->midr = 0x411fd040;
55     cpu->revidr = 0;
56     cpu->ctr = 0x84448004;
57     cpu->isar.id_pfr0 = 0x00000131;
58     cpu->isar.id_pfr1 = 0x00011011;
59     cpu->isar.id_dfr0 = 0x03010066;
60     cpu->id_afr0 = 0;
61     cpu->isar.id_mmfr0 = 0x10201105;
62     cpu->isar.id_mmfr1 = 0x40000000;
63     cpu->isar.id_mmfr2 = 0x01260000;
64     cpu->isar.id_mmfr3 = 0x02102211;
65     cpu->isar.id_isar0 = 0x02101110;
66     cpu->isar.id_isar1 = 0x13112111;
67     cpu->isar.id_isar2 = 0x21232042;
68     cpu->isar.id_isar3 = 0x01112131;
69     cpu->isar.id_isar4 = 0x00011142;
70     cpu->isar.id_isar5 = 0x00011121;
71     cpu->isar.id_aa64pfr0 = 0x00002222;
72     cpu->isar.id_aa64pfr1 = 0;
73     cpu->isar.id_aa64dfr0 = 0x10305106;
74     cpu->isar.id_aa64dfr1 = 0;
75     cpu->isar.id_aa64isar0 = 0x00011120;
76     cpu->isar.id_aa64isar1 = 0;
77     cpu->isar.id_aa64mmfr0 = 0x00101122;
78     cpu->isar.id_aa64mmfr1 = 0;
79     cpu->clidr = 0x0a200023;
80     cpu->dcz_blocksize = 4;
81 
82     /* From B2.4 AArch64 Virtual Memory control registers */
83     cpu->reset_sctlr = 0x00c50838;
84 
85     /* From B2.10 AArch64 performance monitor registers */
86     cpu->isar.reset_pmcr_el0 = 0x410a3000;
87 
88     /* From B2.29 Cache ID registers */
89     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
90     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
91     cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */
92 
93     /* From B3.5 VGIC Type register */
94     cpu->gic_num_lrs = 4;
95     cpu->gic_vpribits = 5;
96     cpu->gic_vprebits = 5;
97     cpu->gic_pribits = 5;
98 
99     /* From C6.4 Debug ID Register */
100     cpu->isar.dbgdidr = 0x3516d000;
101     /* From C6.5 Debug Device ID Register */
102     cpu->isar.dbgdevid = 0x00110f13;
103     /* From C6.6 Debug Device ID Register 1 */
104     cpu->isar.dbgdevid1 = 0x2;
105 
106     /* From Cortex-A35 SIMD and Floating-point Support r1p0 */
107     /* From 3.2 AArch32 register summary */
108     cpu->reset_fpsid = 0x41034043;
109 
110     /* From 2.2 AArch64 register summary */
111     cpu->isar.mvfr0 = 0x10110222;
112     cpu->isar.mvfr1 = 0x12111111;
113     cpu->isar.mvfr2 = 0x00000043;
114 
115     /* These values are the same with A53/A57/A72. */
116     define_cortex_a72_a57_a53_cp_reginfo(cpu);
117 }
118 
119 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
120 {
121     /*
122      * If any vector lengths are explicitly enabled with sve<N> properties,
123      * then all other lengths are implicitly disabled.  If sve-max-vq is
124      * specified then it is the same as explicitly enabling all lengths
125      * up to and including the specified maximum, which means all larger
126      * lengths will be implicitly disabled.  If no sve<N> properties
127      * are enabled and sve-max-vq is not specified, then all lengths not
128      * explicitly disabled will be enabled.  Additionally, all power-of-two
129      * vector lengths less than the maximum enabled length will be
130      * automatically enabled and all vector lengths larger than the largest
131      * disabled power-of-two vector length will be automatically disabled.
132      * Errors are generated if the user provided input that interferes with
133      * any of the above.  Finally, if SVE is not disabled, then at least one
134      * vector length must be enabled.
135      */
136     uint32_t vq_map = cpu->sve_vq.map;
137     uint32_t vq_init = cpu->sve_vq.init;
138     uint32_t vq_supported;
139     uint32_t vq_mask = 0;
140     uint32_t tmp, vq, max_vq = 0;
141 
142     /*
143      * CPU models specify a set of supported vector lengths which are
144      * enabled by default.  Attempting to enable any vector length not set
145      * in the supported bitmap results in an error.  When KVM is enabled we
146      * fetch the supported bitmap from the host.
147      */
148     if (kvm_enabled()) {
149         if (kvm_arm_sve_supported()) {
150             cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
151             vq_supported = cpu->sve_vq.supported;
152         } else {
153             assert(!cpu_isar_feature(aa64_sve, cpu));
154             vq_supported = 0;
155         }
156     } else {
157         vq_supported = cpu->sve_vq.supported;
158     }
159 
160     /*
161      * Process explicit sve<N> properties.
162      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
163      * Check first for any sve<N> enabled.
164      */
165     if (vq_map != 0) {
166         max_vq = 32 - clz32(vq_map);
167         vq_mask = MAKE_64BIT_MASK(0, max_vq);
168 
169         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
170             error_setg(errp, "cannot enable sve%d", max_vq * 128);
171             error_append_hint(errp, "sve%d is larger than the maximum vector "
172                               "length, sve-max-vq=%d (%d bits)\n",
173                               max_vq * 128, cpu->sve_max_vq,
174                               cpu->sve_max_vq * 128);
175             return;
176         }
177 
178         if (kvm_enabled()) {
179             /*
180              * For KVM we have to automatically enable all supported unitialized
181              * lengths, even when the smaller lengths are not all powers-of-two.
182              */
183             vq_map |= vq_supported & ~vq_init & vq_mask;
184         } else {
185             /* Propagate enabled bits down through required powers-of-two. */
186             vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
187         }
188     } else if (cpu->sve_max_vq == 0) {
189         /*
190          * No explicit bits enabled, and no implicit bits from sve-max-vq.
191          */
192         if (!cpu_isar_feature(aa64_sve, cpu)) {
193             /* SVE is disabled and so are all vector lengths.  Good. */
194             return;
195         }
196 
197         if (kvm_enabled()) {
198             /* Disabling a supported length disables all larger lengths. */
199             tmp = vq_init & vq_supported;
200         } else {
201             /* Disabling a power-of-two disables all larger lengths. */
202             tmp = vq_init & SVE_VQ_POW2_MAP;
203         }
204         vq = ctz32(tmp) + 1;
205 
206         max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
207         vq_mask = MAKE_64BIT_MASK(0, max_vq);
208         vq_map = vq_supported & ~vq_init & vq_mask;
209 
210         if (max_vq == 0 || vq_map == 0) {
211             error_setg(errp, "cannot disable sve%d", vq * 128);
212             error_append_hint(errp, "Disabling sve%d results in all "
213                               "vector lengths being disabled.\n",
214                               vq * 128);
215             error_append_hint(errp, "With SVE enabled, at least one "
216                               "vector length must be enabled.\n");
217             return;
218         }
219 
220         max_vq = 32 - clz32(vq_map);
221         vq_mask = MAKE_64BIT_MASK(0, max_vq);
222     }
223 
224     /*
225      * Process the sve-max-vq property.
226      * Note that we know from the above that no bit above
227      * sve-max-vq is currently set.
228      */
229     if (cpu->sve_max_vq != 0) {
230         max_vq = cpu->sve_max_vq;
231         vq_mask = MAKE_64BIT_MASK(0, max_vq);
232 
233         if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
234             error_setg(errp, "cannot disable sve%d", max_vq * 128);
235             error_append_hint(errp, "The maximum vector length must be "
236                               "enabled, sve-max-vq=%d (%d bits)\n",
237                               max_vq, max_vq * 128);
238             return;
239         }
240 
241         /* Set all bits not explicitly set within sve-max-vq. */
242         vq_map |= ~vq_init & vq_mask;
243     }
244 
245     /*
246      * We should know what max-vq is now.  Also, as we're done
247      * manipulating sve-vq-map, we ensure any bits above max-vq
248      * are clear, just in case anybody looks.
249      */
250     assert(max_vq != 0);
251     assert(vq_mask != 0);
252     vq_map &= vq_mask;
253 
254     /* Ensure the set of lengths matches what is supported. */
255     tmp = vq_map ^ (vq_supported & vq_mask);
256     if (tmp) {
257         vq = 32 - clz32(tmp);
258         if (vq_map & (1 << (vq - 1))) {
259             if (cpu->sve_max_vq) {
260                 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
261                 error_append_hint(errp, "This CPU does not support "
262                                   "the vector length %d-bits.\n", vq * 128);
263                 error_append_hint(errp, "It may not be possible to use "
264                                   "sve-max-vq with this CPU. Try "
265                                   "using only sve<N> properties.\n");
266             } else {
267                 error_setg(errp, "cannot enable sve%d", vq * 128);
268                 if (vq_supported) {
269                     error_append_hint(errp, "This CPU does not support "
270                                       "the vector length %d-bits.\n", vq * 128);
271                 } else {
272                     error_append_hint(errp, "SVE not supported by KVM "
273                                       "on this host\n");
274                 }
275             }
276             return;
277         } else {
278             if (kvm_enabled()) {
279                 error_setg(errp, "cannot disable sve%d", vq * 128);
280                 error_append_hint(errp, "The KVM host requires all "
281                                   "supported vector lengths smaller "
282                                   "than %d bits to also be enabled.\n",
283                                   max_vq * 128);
284                 return;
285             } else {
286                 /* Ensure all required powers-of-two are enabled. */
287                 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
288                 if (tmp) {
289                     vq = 32 - clz32(tmp);
290                     error_setg(errp, "cannot disable sve%d", vq * 128);
291                     error_append_hint(errp, "sve%d is required as it "
292                                       "is a power-of-two length smaller "
293                                       "than the maximum, sve%d\n",
294                                       vq * 128, max_vq * 128);
295                     return;
296                 }
297             }
298         }
299     }
300 
301     /*
302      * Now that we validated all our vector lengths, the only question
303      * left to answer is if we even want SVE at all.
304      */
305     if (!cpu_isar_feature(aa64_sve, cpu)) {
306         error_setg(errp, "cannot enable sve%d", max_vq * 128);
307         error_append_hint(errp, "SVE must be enabled to enable vector "
308                           "lengths.\n");
309         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
310         return;
311     }
312 
313     /* From now on sve_max_vq is the actual maximum supported length. */
314     cpu->sve_max_vq = max_vq;
315     cpu->sve_vq.map = vq_map;
316 }
317 
318 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
319                                    void *opaque, Error **errp)
320 {
321     ARMCPU *cpu = ARM_CPU(obj);
322     uint32_t value;
323 
324     /* All vector lengths are disabled when SVE is off. */
325     if (!cpu_isar_feature(aa64_sve, cpu)) {
326         value = 0;
327     } else {
328         value = cpu->sve_max_vq;
329     }
330     visit_type_uint32(v, name, &value, errp);
331 }
332 
333 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
334                                    void *opaque, Error **errp)
335 {
336     ARMCPU *cpu = ARM_CPU(obj);
337     uint32_t max_vq;
338 
339     if (!visit_type_uint32(v, name, &max_vq, errp)) {
340         return;
341     }
342 
343     if (kvm_enabled() && !kvm_arm_sve_supported()) {
344         error_setg(errp, "cannot set sve-max-vq");
345         error_append_hint(errp, "SVE not supported by KVM on this host\n");
346         return;
347     }
348 
349     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
350         error_setg(errp, "unsupported SVE vector length");
351         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
352                           ARM_MAX_VQ);
353         return;
354     }
355 
356     cpu->sve_max_vq = max_vq;
357 }
358 
359 /*
360  * Note that cpu_arm_{get,set}_vq cannot use the simpler
361  * object_property_add_bool interface because they make use of the
362  * contents of "name" to determine which bit on which to operate.
363  */
364 static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
365                            void *opaque, Error **errp)
366 {
367     ARMCPU *cpu = ARM_CPU(obj);
368     ARMVQMap *vq_map = opaque;
369     uint32_t vq = atoi(&name[3]) / 128;
370     bool sve = vq_map == &cpu->sve_vq;
371     bool value;
372 
373     /* All vector lengths are disabled when feature is off. */
374     if (sve
375         ? !cpu_isar_feature(aa64_sve, cpu)
376         : !cpu_isar_feature(aa64_sme, cpu)) {
377         value = false;
378     } else {
379         value = extract32(vq_map->map, vq - 1, 1);
380     }
381     visit_type_bool(v, name, &value, errp);
382 }
383 
384 static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
385                            void *opaque, Error **errp)
386 {
387     ARMVQMap *vq_map = opaque;
388     uint32_t vq = atoi(&name[3]) / 128;
389     bool value;
390 
391     if (!visit_type_bool(v, name, &value, errp)) {
392         return;
393     }
394 
395     vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
396     vq_map->init |= 1 << (vq - 1);
397 }
398 
399 static bool cpu_arm_get_sve(Object *obj, Error **errp)
400 {
401     ARMCPU *cpu = ARM_CPU(obj);
402     return cpu_isar_feature(aa64_sve, cpu);
403 }
404 
405 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
406 {
407     ARMCPU *cpu = ARM_CPU(obj);
408     uint64_t t;
409 
410     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
411         error_setg(errp, "'sve' feature not supported by KVM on this host");
412         return;
413     }
414 
415     t = cpu->isar.id_aa64pfr0;
416     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
417     cpu->isar.id_aa64pfr0 = t;
418 }
419 
420 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
421 {
422     uint32_t vq_map = cpu->sme_vq.map;
423     uint32_t vq_init = cpu->sme_vq.init;
424     uint32_t vq_supported = cpu->sme_vq.supported;
425     uint32_t vq;
426 
427     if (vq_map == 0) {
428         if (!cpu_isar_feature(aa64_sme, cpu)) {
429             cpu->isar.id_aa64smfr0 = 0;
430             return;
431         }
432 
433         /* TODO: KVM will require limitations via SMCR_EL2. */
434         vq_map = vq_supported & ~vq_init;
435 
436         if (vq_map == 0) {
437             vq = ctz32(vq_supported) + 1;
438             error_setg(errp, "cannot disable sme%d", vq * 128);
439             error_append_hint(errp, "All SME vector lengths are disabled.\n");
440             error_append_hint(errp, "With SME enabled, at least one "
441                               "vector length must be enabled.\n");
442             return;
443         }
444     } else {
445         if (!cpu_isar_feature(aa64_sme, cpu)) {
446             vq = 32 - clz32(vq_map);
447             error_setg(errp, "cannot enable sme%d", vq * 128);
448             error_append_hint(errp, "SME must be enabled to enable "
449                               "vector lengths.\n");
450             error_append_hint(errp, "Add sme=on to the CPU property list.\n");
451             return;
452         }
453         /* TODO: KVM will require limitations via SMCR_EL2. */
454     }
455 
456     cpu->sme_vq.map = vq_map;
457 }
458 
459 static bool cpu_arm_get_sme(Object *obj, Error **errp)
460 {
461     ARMCPU *cpu = ARM_CPU(obj);
462     return cpu_isar_feature(aa64_sme, cpu);
463 }
464 
465 static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
466 {
467     ARMCPU *cpu = ARM_CPU(obj);
468     uint64_t t;
469 
470     t = cpu->isar.id_aa64pfr1;
471     t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
472     cpu->isar.id_aa64pfr1 = t;
473 }
474 
475 static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
476 {
477     ARMCPU *cpu = ARM_CPU(obj);
478     return cpu_isar_feature(aa64_sme, cpu) &&
479            cpu_isar_feature(aa64_sme_fa64, cpu);
480 }
481 
482 static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
483 {
484     ARMCPU *cpu = ARM_CPU(obj);
485     uint64_t t;
486 
487     t = cpu->isar.id_aa64smfr0;
488     t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
489     cpu->isar.id_aa64smfr0 = t;
490 }
491 
492 #ifdef CONFIG_USER_ONLY
493 /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
494 static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
495                                         const char *name, void *opaque,
496                                         Error **errp)
497 {
498     uint32_t *ptr_default_vq = opaque;
499     int32_t default_len, default_vq, remainder;
500 
501     if (!visit_type_int32(v, name, &default_len, errp)) {
502         return;
503     }
504 
505     /* Undocumented, but the kernel allows -1 to indicate "maximum". */
506     if (default_len == -1) {
507         *ptr_default_vq = ARM_MAX_VQ;
508         return;
509     }
510 
511     default_vq = default_len / 16;
512     remainder = default_len % 16;
513 
514     /*
515      * Note that the 512 max comes from include/uapi/asm/sve_context.h
516      * and is the maximum architectural width of ZCR_ELx.LEN.
517      */
518     if (remainder || default_vq < 1 || default_vq > 512) {
519         ARMCPU *cpu = ARM_CPU(obj);
520         const char *which =
521             (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
522 
523         error_setg(errp, "cannot set %s-default-vector-length", which);
524         if (remainder) {
525             error_append_hint(errp, "Vector length not a multiple of 16\n");
526         } else if (default_vq < 1) {
527             error_append_hint(errp, "Vector length smaller than 16\n");
528         } else {
529             error_append_hint(errp, "Vector length larger than %d\n",
530                               512 * 16);
531         }
532         return;
533     }
534 
535     *ptr_default_vq = default_vq;
536 }
537 
538 static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
539                                         const char *name, void *opaque,
540                                         Error **errp)
541 {
542     uint32_t *ptr_default_vq = opaque;
543     int32_t value = *ptr_default_vq * 16;
544 
545     visit_type_int32(v, name, &value, errp);
546 }
547 #endif
548 
549 static void aarch64_add_sve_properties(Object *obj)
550 {
551     ARMCPU *cpu = ARM_CPU(obj);
552     uint32_t vq;
553 
554     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
555 
556     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
557         char name[8];
558         sprintf(name, "sve%d", vq * 128);
559         object_property_add(obj, name, "bool", cpu_arm_get_vq,
560                             cpu_arm_set_vq, NULL, &cpu->sve_vq);
561     }
562 
563 #ifdef CONFIG_USER_ONLY
564     /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
565     object_property_add(obj, "sve-default-vector-length", "int32",
566                         cpu_arm_get_default_vec_len,
567                         cpu_arm_set_default_vec_len, NULL,
568                         &cpu->sve_default_vq);
569 #endif
570 }
571 
572 static void aarch64_add_sme_properties(Object *obj)
573 {
574     ARMCPU *cpu = ARM_CPU(obj);
575     uint32_t vq;
576 
577     object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
578     object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
579                              cpu_arm_set_sme_fa64);
580 
581     for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
582         char name[8];
583         sprintf(name, "sme%d", vq * 128);
584         object_property_add(obj, name, "bool", cpu_arm_get_vq,
585                             cpu_arm_set_vq, NULL, &cpu->sme_vq);
586     }
587 
588 #ifdef CONFIG_USER_ONLY
589     /* Mirror linux /proc/sys/abi/sme_default_vector_length. */
590     object_property_add(obj, "sme-default-vector-length", "int32",
591                         cpu_arm_get_default_vec_len,
592                         cpu_arm_set_default_vec_len, NULL,
593                         &cpu->sme_default_vq);
594 #endif
595 }
596 
597 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
598 {
599     int arch_val = 0, impdef_val = 0;
600     uint64_t t;
601 
602     /* Exit early if PAuth is enabled, and fall through to disable it */
603     if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
604         if (!cpu_isar_feature(aa64_pauth, cpu)) {
605             error_setg(errp, "'pauth' feature not supported by %s on this host",
606                        kvm_enabled() ? "KVM" : "hvf");
607         }
608 
609         return;
610     }
611 
612     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
613     if (cpu->prop_pauth) {
614         if (cpu->prop_pauth_impdef) {
615             impdef_val = 1;
616         } else {
617             arch_val = 1;
618         }
619     } else if (cpu->prop_pauth_impdef) {
620         error_setg(errp, "cannot enable pauth-impdef without pauth");
621         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
622     }
623 
624     t = cpu->isar.id_aa64isar1;
625     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
626     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
627     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
628     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
629     cpu->isar.id_aa64isar1 = t;
630 }
631 
632 static Property arm_cpu_pauth_property =
633     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
634 static Property arm_cpu_pauth_impdef_property =
635     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
636 
637 static void aarch64_add_pauth_properties(Object *obj)
638 {
639     ARMCPU *cpu = ARM_CPU(obj);
640 
641     /* Default to PAUTH on, with the architected algorithm on TCG. */
642     qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
643     if (kvm_enabled() || hvf_enabled()) {
644         /*
645          * Mirror PAuth support from the probed sysregs back into the
646          * property for KVM or hvf. Is it just a bit backward? Yes it is!
647          * Note that prop_pauth is true whether the host CPU supports the
648          * architected QARMA5 algorithm or the IMPDEF one. We don't
649          * provide the separate pauth-impdef property for KVM or hvf,
650          * only for TCG.
651          */
652         cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
653     } else {
654         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
655     }
656 }
657 
658 static Property arm_cpu_lpa2_property =
659     DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
660 
661 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
662 {
663     uint64_t t;
664 
665     /*
666      * We only install the property for tcg -cpu max; this is the
667      * only situation in which the cpu field can be true.
668      */
669     if (!cpu->prop_lpa2) {
670         return;
671     }
672 
673     t = cpu->isar.id_aa64mmfr0;
674     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2);   /* 16k pages w/ LPA2 */
675     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1);    /*  4k pages w/ LPA2 */
676     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
677     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3);  /*  4k stage2 w/ LPA2 */
678     cpu->isar.id_aa64mmfr0 = t;
679 }
680 
681 static void aarch64_a57_initfn(Object *obj)
682 {
683     ARMCPU *cpu = ARM_CPU(obj);
684 
685     cpu->dtb_compatible = "arm,cortex-a57";
686     set_feature(&cpu->env, ARM_FEATURE_V8);
687     set_feature(&cpu->env, ARM_FEATURE_NEON);
688     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
689     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
690     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
691     set_feature(&cpu->env, ARM_FEATURE_EL2);
692     set_feature(&cpu->env, ARM_FEATURE_EL3);
693     set_feature(&cpu->env, ARM_FEATURE_PMU);
694     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
695     cpu->midr = 0x411fd070;
696     cpu->revidr = 0x00000000;
697     cpu->reset_fpsid = 0x41034070;
698     cpu->isar.mvfr0 = 0x10110222;
699     cpu->isar.mvfr1 = 0x12111111;
700     cpu->isar.mvfr2 = 0x00000043;
701     cpu->ctr = 0x8444c004;
702     cpu->reset_sctlr = 0x00c50838;
703     cpu->isar.id_pfr0 = 0x00000131;
704     cpu->isar.id_pfr1 = 0x00011011;
705     cpu->isar.id_dfr0 = 0x03010066;
706     cpu->id_afr0 = 0x00000000;
707     cpu->isar.id_mmfr0 = 0x10101105;
708     cpu->isar.id_mmfr1 = 0x40000000;
709     cpu->isar.id_mmfr2 = 0x01260000;
710     cpu->isar.id_mmfr3 = 0x02102211;
711     cpu->isar.id_isar0 = 0x02101110;
712     cpu->isar.id_isar1 = 0x13112111;
713     cpu->isar.id_isar2 = 0x21232042;
714     cpu->isar.id_isar3 = 0x01112131;
715     cpu->isar.id_isar4 = 0x00011142;
716     cpu->isar.id_isar5 = 0x00011121;
717     cpu->isar.id_isar6 = 0;
718     cpu->isar.id_aa64pfr0 = 0x00002222;
719     cpu->isar.id_aa64dfr0 = 0x10305106;
720     cpu->isar.id_aa64isar0 = 0x00011120;
721     cpu->isar.id_aa64mmfr0 = 0x00001124;
722     cpu->isar.dbgdidr = 0x3516d000;
723     cpu->isar.dbgdevid = 0x01110f13;
724     cpu->isar.dbgdevid1 = 0x2;
725     cpu->isar.reset_pmcr_el0 = 0x41013000;
726     cpu->clidr = 0x0a200023;
727     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
728     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
729     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
730     cpu->dcz_blocksize = 4; /* 64 bytes */
731     cpu->gic_num_lrs = 4;
732     cpu->gic_vpribits = 5;
733     cpu->gic_vprebits = 5;
734     cpu->gic_pribits = 5;
735     define_cortex_a72_a57_a53_cp_reginfo(cpu);
736 }
737 
738 static void aarch64_a53_initfn(Object *obj)
739 {
740     ARMCPU *cpu = ARM_CPU(obj);
741 
742     cpu->dtb_compatible = "arm,cortex-a53";
743     set_feature(&cpu->env, ARM_FEATURE_V8);
744     set_feature(&cpu->env, ARM_FEATURE_NEON);
745     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
746     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
747     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
748     set_feature(&cpu->env, ARM_FEATURE_EL2);
749     set_feature(&cpu->env, ARM_FEATURE_EL3);
750     set_feature(&cpu->env, ARM_FEATURE_PMU);
751     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
752     cpu->midr = 0x410fd034;
753     cpu->revidr = 0x00000000;
754     cpu->reset_fpsid = 0x41034070;
755     cpu->isar.mvfr0 = 0x10110222;
756     cpu->isar.mvfr1 = 0x12111111;
757     cpu->isar.mvfr2 = 0x00000043;
758     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
759     cpu->reset_sctlr = 0x00c50838;
760     cpu->isar.id_pfr0 = 0x00000131;
761     cpu->isar.id_pfr1 = 0x00011011;
762     cpu->isar.id_dfr0 = 0x03010066;
763     cpu->id_afr0 = 0x00000000;
764     cpu->isar.id_mmfr0 = 0x10101105;
765     cpu->isar.id_mmfr1 = 0x40000000;
766     cpu->isar.id_mmfr2 = 0x01260000;
767     cpu->isar.id_mmfr3 = 0x02102211;
768     cpu->isar.id_isar0 = 0x02101110;
769     cpu->isar.id_isar1 = 0x13112111;
770     cpu->isar.id_isar2 = 0x21232042;
771     cpu->isar.id_isar3 = 0x01112131;
772     cpu->isar.id_isar4 = 0x00011142;
773     cpu->isar.id_isar5 = 0x00011121;
774     cpu->isar.id_isar6 = 0;
775     cpu->isar.id_aa64pfr0 = 0x00002222;
776     cpu->isar.id_aa64dfr0 = 0x10305106;
777     cpu->isar.id_aa64isar0 = 0x00011120;
778     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
779     cpu->isar.dbgdidr = 0x3516d000;
780     cpu->isar.dbgdevid = 0x00110f13;
781     cpu->isar.dbgdevid1 = 0x1;
782     cpu->isar.reset_pmcr_el0 = 0x41033000;
783     cpu->clidr = 0x0a200023;
784     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
785     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
786     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
787     cpu->dcz_blocksize = 4; /* 64 bytes */
788     cpu->gic_num_lrs = 4;
789     cpu->gic_vpribits = 5;
790     cpu->gic_vprebits = 5;
791     cpu->gic_pribits = 5;
792     define_cortex_a72_a57_a53_cp_reginfo(cpu);
793 }
794 
795 static void aarch64_a55_initfn(Object *obj)
796 {
797     ARMCPU *cpu = ARM_CPU(obj);
798 
799     cpu->dtb_compatible = "arm,cortex-a55";
800     set_feature(&cpu->env, ARM_FEATURE_V8);
801     set_feature(&cpu->env, ARM_FEATURE_NEON);
802     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
803     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
804     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
805     set_feature(&cpu->env, ARM_FEATURE_EL2);
806     set_feature(&cpu->env, ARM_FEATURE_EL3);
807     set_feature(&cpu->env, ARM_FEATURE_PMU);
808 
809     /* Ordered by B2.4 AArch64 registers by functional group */
810     cpu->clidr = 0x82000023;
811     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
812     cpu->dcz_blocksize = 4; /* 64 bytes */
813     cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
814     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
815     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
816     cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
817     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
818     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
819     cpu->isar.id_aa64pfr0  = 0x0000000010112222ull;
820     cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
821     cpu->id_afr0       = 0x00000000;
822     cpu->isar.id_dfr0  = 0x04010088;
823     cpu->isar.id_isar0 = 0x02101110;
824     cpu->isar.id_isar1 = 0x13112111;
825     cpu->isar.id_isar2 = 0x21232042;
826     cpu->isar.id_isar3 = 0x01112131;
827     cpu->isar.id_isar4 = 0x00011142;
828     cpu->isar.id_isar5 = 0x01011121;
829     cpu->isar.id_isar6 = 0x00000010;
830     cpu->isar.id_mmfr0 = 0x10201105;
831     cpu->isar.id_mmfr1 = 0x40000000;
832     cpu->isar.id_mmfr2 = 0x01260000;
833     cpu->isar.id_mmfr3 = 0x02122211;
834     cpu->isar.id_mmfr4 = 0x00021110;
835     cpu->isar.id_pfr0  = 0x10010131;
836     cpu->isar.id_pfr1  = 0x00011011;
837     cpu->isar.id_pfr2  = 0x00000011;
838     cpu->midr = 0x412FD050;          /* r2p0 */
839     cpu->revidr = 0;
840 
841     /* From B2.23 CCSIDR_EL1 */
842     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
843     cpu->ccsidr[1] = 0x200fe01a; /* 32KB L1 icache */
844     cpu->ccsidr[2] = 0x703fe07a; /* 512KB L2 cache */
845 
846     /* From B2.96 SCTLR_EL3 */
847     cpu->reset_sctlr = 0x30c50838;
848 
849     /* From B4.45 ICH_VTR_EL2 */
850     cpu->gic_num_lrs = 4;
851     cpu->gic_vpribits = 5;
852     cpu->gic_vprebits = 5;
853     cpu->gic_pribits = 5;
854 
855     cpu->isar.mvfr0 = 0x10110222;
856     cpu->isar.mvfr1 = 0x13211111;
857     cpu->isar.mvfr2 = 0x00000043;
858 
859     /* From D5.4 AArch64 PMU register summary */
860     cpu->isar.reset_pmcr_el0 = 0x410b3000;
861 }
862 
863 static void aarch64_a72_initfn(Object *obj)
864 {
865     ARMCPU *cpu = ARM_CPU(obj);
866 
867     cpu->dtb_compatible = "arm,cortex-a72";
868     set_feature(&cpu->env, ARM_FEATURE_V8);
869     set_feature(&cpu->env, ARM_FEATURE_NEON);
870     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
871     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
872     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
873     set_feature(&cpu->env, ARM_FEATURE_EL2);
874     set_feature(&cpu->env, ARM_FEATURE_EL3);
875     set_feature(&cpu->env, ARM_FEATURE_PMU);
876     cpu->midr = 0x410fd083;
877     cpu->revidr = 0x00000000;
878     cpu->reset_fpsid = 0x41034080;
879     cpu->isar.mvfr0 = 0x10110222;
880     cpu->isar.mvfr1 = 0x12111111;
881     cpu->isar.mvfr2 = 0x00000043;
882     cpu->ctr = 0x8444c004;
883     cpu->reset_sctlr = 0x00c50838;
884     cpu->isar.id_pfr0 = 0x00000131;
885     cpu->isar.id_pfr1 = 0x00011011;
886     cpu->isar.id_dfr0 = 0x03010066;
887     cpu->id_afr0 = 0x00000000;
888     cpu->isar.id_mmfr0 = 0x10201105;
889     cpu->isar.id_mmfr1 = 0x40000000;
890     cpu->isar.id_mmfr2 = 0x01260000;
891     cpu->isar.id_mmfr3 = 0x02102211;
892     cpu->isar.id_isar0 = 0x02101110;
893     cpu->isar.id_isar1 = 0x13112111;
894     cpu->isar.id_isar2 = 0x21232042;
895     cpu->isar.id_isar3 = 0x01112131;
896     cpu->isar.id_isar4 = 0x00011142;
897     cpu->isar.id_isar5 = 0x00011121;
898     cpu->isar.id_aa64pfr0 = 0x00002222;
899     cpu->isar.id_aa64dfr0 = 0x10305106;
900     cpu->isar.id_aa64isar0 = 0x00011120;
901     cpu->isar.id_aa64mmfr0 = 0x00001124;
902     cpu->isar.dbgdidr = 0x3516d000;
903     cpu->isar.dbgdevid = 0x01110f13;
904     cpu->isar.dbgdevid1 = 0x2;
905     cpu->isar.reset_pmcr_el0 = 0x41023000;
906     cpu->clidr = 0x0a200023;
907     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
908     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
909     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
910     cpu->dcz_blocksize = 4; /* 64 bytes */
911     cpu->gic_num_lrs = 4;
912     cpu->gic_vpribits = 5;
913     cpu->gic_vprebits = 5;
914     cpu->gic_pribits = 5;
915     define_cortex_a72_a57_a53_cp_reginfo(cpu);
916 }
917 
918 static void aarch64_a76_initfn(Object *obj)
919 {
920     ARMCPU *cpu = ARM_CPU(obj);
921 
922     cpu->dtb_compatible = "arm,cortex-a76";
923     set_feature(&cpu->env, ARM_FEATURE_V8);
924     set_feature(&cpu->env, ARM_FEATURE_NEON);
925     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
926     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
927     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
928     set_feature(&cpu->env, ARM_FEATURE_EL2);
929     set_feature(&cpu->env, ARM_FEATURE_EL3);
930     set_feature(&cpu->env, ARM_FEATURE_PMU);
931 
932     /* Ordered by B2.4 AArch64 registers by functional group */
933     cpu->clidr = 0x82000023;
934     cpu->ctr = 0x8444C004;
935     cpu->dcz_blocksize = 4;
936     cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
937     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
938     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
939     cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
940     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
941     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
942     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
943     cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
944     cpu->id_afr0       = 0x00000000;
945     cpu->isar.id_dfr0  = 0x04010088;
946     cpu->isar.id_isar0 = 0x02101110;
947     cpu->isar.id_isar1 = 0x13112111;
948     cpu->isar.id_isar2 = 0x21232042;
949     cpu->isar.id_isar3 = 0x01112131;
950     cpu->isar.id_isar4 = 0x00010142;
951     cpu->isar.id_isar5 = 0x01011121;
952     cpu->isar.id_isar6 = 0x00000010;
953     cpu->isar.id_mmfr0 = 0x10201105;
954     cpu->isar.id_mmfr1 = 0x40000000;
955     cpu->isar.id_mmfr2 = 0x01260000;
956     cpu->isar.id_mmfr3 = 0x02122211;
957     cpu->isar.id_mmfr4 = 0x00021110;
958     cpu->isar.id_pfr0  = 0x10010131;
959     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
960     cpu->isar.id_pfr2  = 0x00000011;
961     cpu->midr = 0x414fd0b1;          /* r4p1 */
962     cpu->revidr = 0;
963 
964     /* From B2.18 CCSIDR_EL1 */
965     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
966     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
967     cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
968 
969     /* From B2.93 SCTLR_EL3 */
970     cpu->reset_sctlr = 0x30c50838;
971 
972     /* From B4.23 ICH_VTR_EL2 */
973     cpu->gic_num_lrs = 4;
974     cpu->gic_vpribits = 5;
975     cpu->gic_vprebits = 5;
976     cpu->gic_pribits = 5;
977 
978     /* From B5.1 AdvSIMD AArch64 register summary */
979     cpu->isar.mvfr0 = 0x10110222;
980     cpu->isar.mvfr1 = 0x13211111;
981     cpu->isar.mvfr2 = 0x00000043;
982 
983     /* From D5.1 AArch64 PMU register summary */
984     cpu->isar.reset_pmcr_el0 = 0x410b3000;
985 }
986 
987 static void aarch64_a64fx_initfn(Object *obj)
988 {
989     ARMCPU *cpu = ARM_CPU(obj);
990 
991     cpu->dtb_compatible = "arm,a64fx";
992     set_feature(&cpu->env, ARM_FEATURE_V8);
993     set_feature(&cpu->env, ARM_FEATURE_NEON);
994     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
995     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
996     set_feature(&cpu->env, ARM_FEATURE_EL2);
997     set_feature(&cpu->env, ARM_FEATURE_EL3);
998     set_feature(&cpu->env, ARM_FEATURE_PMU);
999     cpu->midr = 0x461f0010;
1000     cpu->revidr = 0x00000000;
1001     cpu->ctr = 0x86668006;
1002     cpu->reset_sctlr = 0x30000180;
1003     cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
1004     cpu->isar.id_aa64pfr1 = 0x0000000000000000;
1005     cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1006     cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1007     cpu->id_aa64afr0 = 0x0000000000000000;
1008     cpu->id_aa64afr1 = 0x0000000000000000;
1009     cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1010     cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1011     cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1012     cpu->isar.id_aa64isar0 = 0x0000000010211120;
1013     cpu->isar.id_aa64isar1 = 0x0000000000010001;
1014     cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1015     cpu->clidr = 0x0000000080000023;
1016     cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1017     cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1018     cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1019     cpu->dcz_blocksize = 6; /* 256 bytes */
1020     cpu->gic_num_lrs = 4;
1021     cpu->gic_vpribits = 5;
1022     cpu->gic_vprebits = 5;
1023     cpu->gic_pribits = 5;
1024 
1025     /* The A64FX supports only 128, 256 and 512 bit vector lengths */
1026     aarch64_add_sve_properties(obj);
1027     cpu->sve_vq.supported = (1 << 0)  /* 128bit */
1028                           | (1 << 1)  /* 256bit */
1029                           | (1 << 3); /* 512bit */
1030 
1031     cpu->isar.reset_pmcr_el0 = 0x46014040;
1032 
1033     /* TODO:  Add A64FX specific HPC extension registers */
1034 }
1035 
1036 static void aarch64_neoverse_n1_initfn(Object *obj)
1037 {
1038     ARMCPU *cpu = ARM_CPU(obj);
1039 
1040     cpu->dtb_compatible = "arm,neoverse-n1";
1041     set_feature(&cpu->env, ARM_FEATURE_V8);
1042     set_feature(&cpu->env, ARM_FEATURE_NEON);
1043     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1044     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1045     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1046     set_feature(&cpu->env, ARM_FEATURE_EL2);
1047     set_feature(&cpu->env, ARM_FEATURE_EL3);
1048     set_feature(&cpu->env, ARM_FEATURE_PMU);
1049 
1050     /* Ordered by B2.4 AArch64 registers by functional group */
1051     cpu->clidr = 0x82000023;
1052     cpu->ctr = 0x8444c004;
1053     cpu->dcz_blocksize = 4;
1054     cpu->isar.id_aa64dfr0  = 0x0000000110305408ull;
1055     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
1056     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
1057     cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
1058     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
1059     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
1060     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
1061     cpu->isar.id_aa64pfr1  = 0x0000000000000020ull;
1062     cpu->id_afr0       = 0x00000000;
1063     cpu->isar.id_dfr0  = 0x04010088;
1064     cpu->isar.id_isar0 = 0x02101110;
1065     cpu->isar.id_isar1 = 0x13112111;
1066     cpu->isar.id_isar2 = 0x21232042;
1067     cpu->isar.id_isar3 = 0x01112131;
1068     cpu->isar.id_isar4 = 0x00010142;
1069     cpu->isar.id_isar5 = 0x01011121;
1070     cpu->isar.id_isar6 = 0x00000010;
1071     cpu->isar.id_mmfr0 = 0x10201105;
1072     cpu->isar.id_mmfr1 = 0x40000000;
1073     cpu->isar.id_mmfr2 = 0x01260000;
1074     cpu->isar.id_mmfr3 = 0x02122211;
1075     cpu->isar.id_mmfr4 = 0x00021110;
1076     cpu->isar.id_pfr0  = 0x10010131;
1077     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
1078     cpu->isar.id_pfr2  = 0x00000011;
1079     cpu->midr = 0x414fd0c1;          /* r4p1 */
1080     cpu->revidr = 0;
1081 
1082     /* From B2.23 CCSIDR_EL1 */
1083     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
1084     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
1085     cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
1086 
1087     /* From B2.98 SCTLR_EL3 */
1088     cpu->reset_sctlr = 0x30c50838;
1089 
1090     /* From B4.23 ICH_VTR_EL2 */
1091     cpu->gic_num_lrs = 4;
1092     cpu->gic_vpribits = 5;
1093     cpu->gic_vprebits = 5;
1094     cpu->gic_pribits = 5;
1095 
1096     /* From B5.1 AdvSIMD AArch64 register summary */
1097     cpu->isar.mvfr0 = 0x10110222;
1098     cpu->isar.mvfr1 = 0x13211111;
1099     cpu->isar.mvfr2 = 0x00000043;
1100 
1101     /* From D5.1 AArch64 PMU register summary */
1102     cpu->isar.reset_pmcr_el0 = 0x410c3000;
1103 }
1104 
1105 static void aarch64_host_initfn(Object *obj)
1106 {
1107 #if defined(CONFIG_KVM)
1108     ARMCPU *cpu = ARM_CPU(obj);
1109     kvm_arm_set_cpu_features_from_host(cpu);
1110     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1111         aarch64_add_sve_properties(obj);
1112         aarch64_add_pauth_properties(obj);
1113     }
1114 #elif defined(CONFIG_HVF)
1115     ARMCPU *cpu = ARM_CPU(obj);
1116     hvf_arm_set_cpu_features_from_host(cpu);
1117     aarch64_add_pauth_properties(obj);
1118 #else
1119     g_assert_not_reached();
1120 #endif
1121 }
1122 
1123 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1124  * otherwise, a CPU with as many features enabled as our emulation supports.
1125  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
1126  * this only needs to handle 64 bits.
1127  */
1128 static void aarch64_max_initfn(Object *obj)
1129 {
1130     ARMCPU *cpu = ARM_CPU(obj);
1131     uint64_t t;
1132     uint32_t u;
1133 
1134     if (kvm_enabled() || hvf_enabled()) {
1135         /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
1136         aarch64_host_initfn(obj);
1137         return;
1138     }
1139 
1140     /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
1141 
1142     aarch64_a57_initfn(obj);
1143 
1144     /*
1145      * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
1146      * one and try to apply errata workarounds or use impdef features we
1147      * don't provide.
1148      * An IMPLEMENTER field of 0 means "reserved for software use";
1149      * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
1150      * to see which features are present";
1151      * the VARIANT, PARTNUM and REVISION fields are all implementation
1152      * defined and we choose to define PARTNUM just in case guest
1153      * code needs to distinguish this QEMU CPU from other software
1154      * implementations, though this shouldn't be needed.
1155      */
1156     t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
1157     t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
1158     t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
1159     t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
1160     t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
1161     cpu->midr = t;
1162 
1163     /*
1164      * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
1165      * are zero.
1166      */
1167     u = cpu->clidr;
1168     u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
1169     u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
1170     cpu->clidr = u;
1171 
1172     t = cpu->isar.id_aa64isar0;
1173     t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2);      /* FEAT_PMULL */
1174     t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);     /* FEAT_SHA1 */
1175     t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2);     /* FEAT_SHA512 */
1176     t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
1177     t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);   /* FEAT_LSE */
1178     t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);      /* FEAT_RDM */
1179     t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);     /* FEAT_SHA3 */
1180     t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);      /* FEAT_SM3 */
1181     t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);      /* FEAT_SM4 */
1182     t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);       /* FEAT_DotProd */
1183     t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);      /* FEAT_FHM */
1184     t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2);       /* FEAT_FlagM2 */
1185     t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2);      /* FEAT_TLBIRANGE */
1186     t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);     /* FEAT_RNG */
1187     cpu->isar.id_aa64isar0 = t;
1188 
1189     t = cpu->isar.id_aa64isar1;
1190     t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);      /* FEAT_DPB2 */
1191     t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);    /* FEAT_JSCVT */
1192     t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);     /* FEAT_FCMA */
1193     t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2);    /* FEAT_LRCPC2 */
1194     t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);  /* FEAT_FRINTTS */
1195     t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);       /* FEAT_SB */
1196     t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);  /* FEAT_SPECRES */
1197     t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);     /* FEAT_BF16 */
1198     t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1);      /* FEAT_DGH */
1199     t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);     /* FEAT_I8MM */
1200     cpu->isar.id_aa64isar1 = t;
1201 
1202     t = cpu->isar.id_aa64pfr0;
1203     t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);        /* FEAT_FP16 */
1204     t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);   /* FEAT_FP16 */
1205     t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2);       /* FEAT_RASv1p1 + FEAT_DoubleFault */
1206     t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
1207     t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);      /* FEAT_SEL2 */
1208     t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);       /* FEAT_DIT */
1209     t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2);      /* FEAT_CSV2_2 */
1210     t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1);      /* FEAT_CSV3 */
1211     cpu->isar.id_aa64pfr0 = t;
1212 
1213     t = cpu->isar.id_aa64pfr1;
1214     t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);        /* FEAT_BTI */
1215     t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);      /* FEAT_SSBS2 */
1216     /*
1217      * Begin with full support for MTE. This will be downgraded to MTE=0
1218      * during realize if the board provides no tag memory, much like
1219      * we do for EL2 with the virtualization=on property.
1220      */
1221     t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);       /* FEAT_MTE3 */
1222     t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0);  /* FEAT_RASv1p1 + FEAT_DoubleFault */
1223     t = FIELD_DP64(t, ID_AA64PFR1, SME, 1);       /* FEAT_SME */
1224     t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
1225     cpu->isar.id_aa64pfr1 = t;
1226 
1227     t = cpu->isar.id_aa64mmfr0;
1228     t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
1229     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1);   /* 16k pages supported */
1230     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
1231     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
1232     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2);  /*  4k stage2 supported */
1233     cpu->isar.id_aa64mmfr0 = t;
1234 
1235     t = cpu->isar.id_aa64mmfr1;
1236     t = FIELD_DP64(t, ID_AA64MMFR1, HAFDBS, 2);   /* FEAT_HAFDBS */
1237     t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
1238     t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);       /* FEAT_VHE */
1239     t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1);     /* FEAT_HPDS */
1240     t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);       /* FEAT_LOR */
1241     t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2);      /* FEAT_PAN2 */
1242     t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1);      /* FEAT_XNX */
1243     t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1);      /* FEAT_ETS */
1244     t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1);      /* FEAT_HCX */
1245     cpu->isar.id_aa64mmfr1 = t;
1246 
1247     t = cpu->isar.id_aa64mmfr2;
1248     t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1);      /* FEAT_TTCNP */
1249     t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);      /* FEAT_UAO */
1250     t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1);     /* FEAT_IESB */
1251     t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1);  /* FEAT_LVA */
1252     t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1);       /* FEAT_TTST */
1253     t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1);      /* FEAT_IDST */
1254     t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1);      /* FEAT_S2FWB */
1255     t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1);      /* FEAT_TTL */
1256     t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2);      /* FEAT_BBM at level 2 */
1257     t = FIELD_DP64(t, ID_AA64MMFR2, EVT, 2);      /* FEAT_EVT */
1258     t = FIELD_DP64(t, ID_AA64MMFR2, E0PD, 1);     /* FEAT_E0PD */
1259     cpu->isar.id_aa64mmfr2 = t;
1260 
1261     t = cpu->isar.id_aa64zfr0;
1262     t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
1263     t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);       /* FEAT_SVE_PMULL128 */
1264     t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);   /* FEAT_SVE_BitPerm */
1265     t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);  /* FEAT_BF16 */
1266     t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);      /* FEAT_SVE_SHA3 */
1267     t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);       /* FEAT_SVE_SM4 */
1268     t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);      /* FEAT_I8MM */
1269     t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);     /* FEAT_F32MM */
1270     t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);     /* FEAT_F64MM */
1271     cpu->isar.id_aa64zfr0 = t;
1272 
1273     t = cpu->isar.id_aa64dfr0;
1274     t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9);  /* FEAT_Debugv8p4 */
1275     t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6);    /* FEAT_PMUv3p5 */
1276     cpu->isar.id_aa64dfr0 = t;
1277 
1278     t = cpu->isar.id_aa64smfr0;
1279     t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1);   /* FEAT_SME */
1280     t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1);   /* FEAT_SME */
1281     t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1);   /* FEAT_SME */
1282     t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf);  /* FEAT_SME */
1283     t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1);   /* FEAT_SME_F64F64 */
1284     t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
1285     t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1);     /* FEAT_SME_FA64 */
1286     cpu->isar.id_aa64smfr0 = t;
1287 
1288     /* Replicate the same data to the 32-bit id registers.  */
1289     aa32_max_features(cpu);
1290 
1291 #ifdef CONFIG_USER_ONLY
1292     /*
1293      * For usermode -cpu max we can use a larger and more efficient DCZ
1294      * blocksize since we don't have to follow what the hardware does.
1295      */
1296     cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
1297     cpu->dcz_blocksize = 7; /*  512 bytes */
1298 #endif
1299 
1300     cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1301     cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
1302 
1303     aarch64_add_pauth_properties(obj);
1304     aarch64_add_sve_properties(obj);
1305     aarch64_add_sme_properties(obj);
1306     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
1307                         cpu_max_set_sve_max_vq, NULL, NULL);
1308     qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
1309 }
1310 
1311 static const ARMCPUInfo aarch64_cpus[] = {
1312     { .name = "cortex-a35",         .initfn = aarch64_a35_initfn },
1313     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
1314     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
1315     { .name = "cortex-a55",         .initfn = aarch64_a55_initfn },
1316     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
1317     { .name = "cortex-a76",         .initfn = aarch64_a76_initfn },
1318     { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
1319     { .name = "neoverse-n1",        .initfn = aarch64_neoverse_n1_initfn },
1320     { .name = "max",                .initfn = aarch64_max_initfn },
1321 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1322     { .name = "host",               .initfn = aarch64_host_initfn },
1323 #endif
1324 };
1325 
1326 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1327 {
1328     ARMCPU *cpu = ARM_CPU(obj);
1329 
1330     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1331 }
1332 
1333 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1334 {
1335     ARMCPU *cpu = ARM_CPU(obj);
1336 
1337     /* At this time, this property is only allowed if KVM is enabled.  This
1338      * restriction allows us to avoid fixing up functionality that assumes a
1339      * uniform execution state like do_interrupt.
1340      */
1341     if (value == false) {
1342         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1343             error_setg(errp, "'aarch64' feature cannot be disabled "
1344                              "unless KVM is enabled and 32-bit EL1 "
1345                              "is supported");
1346             return;
1347         }
1348         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1349     } else {
1350         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1351     }
1352 }
1353 
1354 static void aarch64_cpu_finalizefn(Object *obj)
1355 {
1356 }
1357 
1358 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1359 {
1360     return g_strdup("aarch64");
1361 }
1362 
1363 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1364 {
1365     CPUClass *cc = CPU_CLASS(oc);
1366 
1367     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1368     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1369     cc->gdb_num_core_regs = 34;
1370     cc->gdb_core_xml_file = "aarch64-core.xml";
1371     cc->gdb_arch_name = aarch64_gdb_arch_name;
1372 
1373     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1374                                    aarch64_cpu_set_aarch64);
1375     object_class_property_set_description(oc, "aarch64",
1376                                           "Set on/off to enable/disable aarch64 "
1377                                           "execution state ");
1378 }
1379 
1380 static void aarch64_cpu_instance_init(Object *obj)
1381 {
1382     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1383 
1384     acc->info->initfn(obj);
1385     arm_cpu_post_init(obj);
1386 }
1387 
1388 static void cpu_register_class_init(ObjectClass *oc, void *data)
1389 {
1390     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1391 
1392     acc->info = data;
1393 }
1394 
1395 void aarch64_cpu_register(const ARMCPUInfo *info)
1396 {
1397     TypeInfo type_info = {
1398         .parent = TYPE_AARCH64_CPU,
1399         .instance_size = sizeof(ARMCPU),
1400         .instance_init = aarch64_cpu_instance_init,
1401         .class_size = sizeof(ARMCPUClass),
1402         .class_init = info->class_init ?: cpu_register_class_init,
1403         .class_data = (void *)info,
1404     };
1405 
1406     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1407     type_register(&type_info);
1408     g_free((void *)type_info.name);
1409 }
1410 
1411 static const TypeInfo aarch64_cpu_type_info = {
1412     .name = TYPE_AARCH64_CPU,
1413     .parent = TYPE_ARM_CPU,
1414     .instance_size = sizeof(ARMCPU),
1415     .instance_finalize = aarch64_cpu_finalizefn,
1416     .abstract = true,
1417     .class_size = sizeof(AArch64CPUClass),
1418     .class_init = aarch64_cpu_class_init,
1419 };
1420 
1421 static void aarch64_cpu_register_types(void)
1422 {
1423     size_t i;
1424 
1425     type_register_static(&aarch64_cpu_type_info);
1426 
1427     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1428         aarch64_cpu_register(&aarch64_cpus[i]);
1429     }
1430 }
1431 
1432 type_init(aarch64_cpu_register_types)
1433