1 /* 2 * QEMU AArch64 CPU 3 * 4 * Copyright (c) 2013 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #include "qemu/module.h" 25 #if !defined(CONFIG_USER_ONLY) 26 #include "hw/loader.h" 27 #endif 28 #include "sysemu/kvm.h" 29 #include "kvm_arm.h" 30 #include "qapi/visitor.h" 31 32 static inline void set_feature(CPUARMState *env, int feature) 33 { 34 env->features |= 1ULL << feature; 35 } 36 37 static inline void unset_feature(CPUARMState *env, int feature) 38 { 39 env->features &= ~(1ULL << feature); 40 } 41 42 #ifndef CONFIG_USER_ONLY 43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 44 { 45 ARMCPU *cpu = env_archcpu(env); 46 47 /* Number of cores is in [25:24]; otherwise we RAZ */ 48 return (cpu->core_count - 1) << 24; 49 } 50 #endif 51 52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { 53 #ifndef CONFIG_USER_ONLY 54 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, 55 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, 56 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 57 .writefn = arm_cp_write_ignore }, 58 { .name = "L2CTLR", 59 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, 60 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 61 .writefn = arm_cp_write_ignore }, 62 #endif 63 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, 64 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, 65 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 66 { .name = "L2ECTLR", 67 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, 68 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 69 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, 70 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, 71 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 72 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, 73 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, 74 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 75 { .name = "CPUACTLR", 76 .cp = 15, .opc1 = 0, .crm = 15, 77 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 78 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, 79 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, 80 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 81 { .name = "CPUECTLR", 82 .cp = 15, .opc1 = 1, .crm = 15, 83 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 84 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, 85 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, 86 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 87 { .name = "CPUMERRSR", 88 .cp = 15, .opc1 = 2, .crm = 15, 89 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 90 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, 91 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, 92 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 93 { .name = "L2MERRSR", 94 .cp = 15, .opc1 = 3, .crm = 15, 95 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 96 REGINFO_SENTINEL 97 }; 98 99 static void aarch64_a57_initfn(Object *obj) 100 { 101 ARMCPU *cpu = ARM_CPU(obj); 102 103 cpu->dtb_compatible = "arm,cortex-a57"; 104 set_feature(&cpu->env, ARM_FEATURE_V8); 105 set_feature(&cpu->env, ARM_FEATURE_VFP4); 106 set_feature(&cpu->env, ARM_FEATURE_NEON); 107 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 108 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 109 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 110 set_feature(&cpu->env, ARM_FEATURE_EL2); 111 set_feature(&cpu->env, ARM_FEATURE_EL3); 112 set_feature(&cpu->env, ARM_FEATURE_PMU); 113 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; 114 cpu->midr = 0x411fd070; 115 cpu->revidr = 0x00000000; 116 cpu->reset_fpsid = 0x41034070; 117 cpu->isar.mvfr0 = 0x10110222; 118 cpu->isar.mvfr1 = 0x12111111; 119 cpu->isar.mvfr2 = 0x00000043; 120 cpu->ctr = 0x8444c004; 121 cpu->reset_sctlr = 0x00c50838; 122 cpu->id_pfr0 = 0x00000131; 123 cpu->id_pfr1 = 0x00011011; 124 cpu->id_dfr0 = 0x03010066; 125 cpu->id_afr0 = 0x00000000; 126 cpu->id_mmfr0 = 0x10101105; 127 cpu->id_mmfr1 = 0x40000000; 128 cpu->id_mmfr2 = 0x01260000; 129 cpu->id_mmfr3 = 0x02102211; 130 cpu->isar.id_isar0 = 0x02101110; 131 cpu->isar.id_isar1 = 0x13112111; 132 cpu->isar.id_isar2 = 0x21232042; 133 cpu->isar.id_isar3 = 0x01112131; 134 cpu->isar.id_isar4 = 0x00011142; 135 cpu->isar.id_isar5 = 0x00011121; 136 cpu->isar.id_isar6 = 0; 137 cpu->isar.id_aa64pfr0 = 0x00002222; 138 cpu->id_aa64dfr0 = 0x10305106; 139 cpu->isar.id_aa64isar0 = 0x00011120; 140 cpu->isar.id_aa64mmfr0 = 0x00001124; 141 cpu->dbgdidr = 0x3516d000; 142 cpu->clidr = 0x0a200023; 143 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 144 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 145 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ 146 cpu->dcz_blocksize = 4; /* 64 bytes */ 147 cpu->gic_num_lrs = 4; 148 cpu->gic_vpribits = 5; 149 cpu->gic_vprebits = 5; 150 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 151 } 152 153 static void aarch64_a53_initfn(Object *obj) 154 { 155 ARMCPU *cpu = ARM_CPU(obj); 156 157 cpu->dtb_compatible = "arm,cortex-a53"; 158 set_feature(&cpu->env, ARM_FEATURE_V8); 159 set_feature(&cpu->env, ARM_FEATURE_VFP4); 160 set_feature(&cpu->env, ARM_FEATURE_NEON); 161 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 162 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 163 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 164 set_feature(&cpu->env, ARM_FEATURE_EL2); 165 set_feature(&cpu->env, ARM_FEATURE_EL3); 166 set_feature(&cpu->env, ARM_FEATURE_PMU); 167 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; 168 cpu->midr = 0x410fd034; 169 cpu->revidr = 0x00000000; 170 cpu->reset_fpsid = 0x41034070; 171 cpu->isar.mvfr0 = 0x10110222; 172 cpu->isar.mvfr1 = 0x12111111; 173 cpu->isar.mvfr2 = 0x00000043; 174 cpu->ctr = 0x84448004; /* L1Ip = VIPT */ 175 cpu->reset_sctlr = 0x00c50838; 176 cpu->id_pfr0 = 0x00000131; 177 cpu->id_pfr1 = 0x00011011; 178 cpu->id_dfr0 = 0x03010066; 179 cpu->id_afr0 = 0x00000000; 180 cpu->id_mmfr0 = 0x10101105; 181 cpu->id_mmfr1 = 0x40000000; 182 cpu->id_mmfr2 = 0x01260000; 183 cpu->id_mmfr3 = 0x02102211; 184 cpu->isar.id_isar0 = 0x02101110; 185 cpu->isar.id_isar1 = 0x13112111; 186 cpu->isar.id_isar2 = 0x21232042; 187 cpu->isar.id_isar3 = 0x01112131; 188 cpu->isar.id_isar4 = 0x00011142; 189 cpu->isar.id_isar5 = 0x00011121; 190 cpu->isar.id_isar6 = 0; 191 cpu->isar.id_aa64pfr0 = 0x00002222; 192 cpu->id_aa64dfr0 = 0x10305106; 193 cpu->isar.id_aa64isar0 = 0x00011120; 194 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ 195 cpu->dbgdidr = 0x3516d000; 196 cpu->clidr = 0x0a200023; 197 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ 198 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ 199 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ 200 cpu->dcz_blocksize = 4; /* 64 bytes */ 201 cpu->gic_num_lrs = 4; 202 cpu->gic_vpribits = 5; 203 cpu->gic_vprebits = 5; 204 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 205 } 206 207 static void aarch64_a72_initfn(Object *obj) 208 { 209 ARMCPU *cpu = ARM_CPU(obj); 210 211 cpu->dtb_compatible = "arm,cortex-a72"; 212 set_feature(&cpu->env, ARM_FEATURE_V8); 213 set_feature(&cpu->env, ARM_FEATURE_VFP4); 214 set_feature(&cpu->env, ARM_FEATURE_NEON); 215 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 216 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 217 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 218 set_feature(&cpu->env, ARM_FEATURE_EL2); 219 set_feature(&cpu->env, ARM_FEATURE_EL3); 220 set_feature(&cpu->env, ARM_FEATURE_PMU); 221 cpu->midr = 0x410fd083; 222 cpu->revidr = 0x00000000; 223 cpu->reset_fpsid = 0x41034080; 224 cpu->isar.mvfr0 = 0x10110222; 225 cpu->isar.mvfr1 = 0x12111111; 226 cpu->isar.mvfr2 = 0x00000043; 227 cpu->ctr = 0x8444c004; 228 cpu->reset_sctlr = 0x00c50838; 229 cpu->id_pfr0 = 0x00000131; 230 cpu->id_pfr1 = 0x00011011; 231 cpu->id_dfr0 = 0x03010066; 232 cpu->id_afr0 = 0x00000000; 233 cpu->id_mmfr0 = 0x10201105; 234 cpu->id_mmfr1 = 0x40000000; 235 cpu->id_mmfr2 = 0x01260000; 236 cpu->id_mmfr3 = 0x02102211; 237 cpu->isar.id_isar0 = 0x02101110; 238 cpu->isar.id_isar1 = 0x13112111; 239 cpu->isar.id_isar2 = 0x21232042; 240 cpu->isar.id_isar3 = 0x01112131; 241 cpu->isar.id_isar4 = 0x00011142; 242 cpu->isar.id_isar5 = 0x00011121; 243 cpu->isar.id_aa64pfr0 = 0x00002222; 244 cpu->id_aa64dfr0 = 0x10305106; 245 cpu->isar.id_aa64isar0 = 0x00011120; 246 cpu->isar.id_aa64mmfr0 = 0x00001124; 247 cpu->dbgdidr = 0x3516d000; 248 cpu->clidr = 0x0a200023; 249 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 250 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 251 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ 252 cpu->dcz_blocksize = 4; /* 64 bytes */ 253 cpu->gic_num_lrs = 4; 254 cpu->gic_vpribits = 5; 255 cpu->gic_vprebits = 5; 256 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 257 } 258 259 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) 260 { 261 /* 262 * If any vector lengths are explicitly enabled with sve<N> properties, 263 * then all other lengths are implicitly disabled. If sve-max-vq is 264 * specified then it is the same as explicitly enabling all lengths 265 * up to and including the specified maximum, which means all larger 266 * lengths will be implicitly disabled. If no sve<N> properties 267 * are enabled and sve-max-vq is not specified, then all lengths not 268 * explicitly disabled will be enabled. Additionally, all power-of-two 269 * vector lengths less than the maximum enabled length will be 270 * automatically enabled and all vector lengths larger than the largest 271 * disabled power-of-two vector length will be automatically disabled. 272 * Errors are generated if the user provided input that interferes with 273 * any of the above. Finally, if SVE is not disabled, then at least one 274 * vector length must be enabled. 275 */ 276 DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ); 277 DECLARE_BITMAP(tmp, ARM_MAX_VQ); 278 uint32_t vq, max_vq = 0; 279 280 /* Collect the set of vector lengths supported by KVM. */ 281 bitmap_zero(kvm_supported, ARM_MAX_VQ); 282 if (kvm_enabled() && kvm_arm_sve_supported(CPU(cpu))) { 283 kvm_arm_sve_get_vls(CPU(cpu), kvm_supported); 284 } else if (kvm_enabled()) { 285 assert(!cpu_isar_feature(aa64_sve, cpu)); 286 } 287 288 /* 289 * Process explicit sve<N> properties. 290 * From the properties, sve_vq_map<N> implies sve_vq_init<N>. 291 * Check first for any sve<N> enabled. 292 */ 293 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) { 294 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1; 295 296 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { 297 error_setg(errp, "cannot enable sve%d", max_vq * 128); 298 error_append_hint(errp, "sve%d is larger than the maximum vector " 299 "length, sve-max-vq=%d (%d bits)\n", 300 max_vq * 128, cpu->sve_max_vq, 301 cpu->sve_max_vq * 128); 302 return; 303 } 304 305 if (kvm_enabled()) { 306 /* 307 * For KVM we have to automatically enable all supported unitialized 308 * lengths, even when the smaller lengths are not all powers-of-two. 309 */ 310 bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq); 311 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 312 } else { 313 /* Propagate enabled bits down through required powers-of-two. */ 314 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 315 if (!test_bit(vq - 1, cpu->sve_vq_init)) { 316 set_bit(vq - 1, cpu->sve_vq_map); 317 } 318 } 319 } 320 } else if (cpu->sve_max_vq == 0) { 321 /* 322 * No explicit bits enabled, and no implicit bits from sve-max-vq. 323 */ 324 if (!cpu_isar_feature(aa64_sve, cpu)) { 325 /* SVE is disabled and so are all vector lengths. Good. */ 326 return; 327 } 328 329 if (kvm_enabled()) { 330 /* Disabling a supported length disables all larger lengths. */ 331 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 332 if (test_bit(vq - 1, cpu->sve_vq_init) && 333 test_bit(vq - 1, kvm_supported)) { 334 break; 335 } 336 } 337 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 338 bitmap_andnot(cpu->sve_vq_map, kvm_supported, 339 cpu->sve_vq_init, max_vq); 340 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) { 341 error_setg(errp, "cannot disable sve%d", vq * 128); 342 error_append_hint(errp, "Disabling sve%d results in all " 343 "vector lengths being disabled.\n", 344 vq * 128); 345 error_append_hint(errp, "With SVE enabled, at least one " 346 "vector length must be enabled.\n"); 347 return; 348 } 349 } else { 350 /* Disabling a power-of-two disables all larger lengths. */ 351 if (test_bit(0, cpu->sve_vq_init)) { 352 error_setg(errp, "cannot disable sve128"); 353 error_append_hint(errp, "Disabling sve128 results in all " 354 "vector lengths being disabled.\n"); 355 error_append_hint(errp, "With SVE enabled, at least one " 356 "vector length must be enabled.\n"); 357 return; 358 } 359 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) { 360 if (test_bit(vq - 1, cpu->sve_vq_init)) { 361 break; 362 } 363 } 364 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 365 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq); 366 } 367 368 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1; 369 } 370 371 /* 372 * Process the sve-max-vq property. 373 * Note that we know from the above that no bit above 374 * sve-max-vq is currently set. 375 */ 376 if (cpu->sve_max_vq != 0) { 377 max_vq = cpu->sve_max_vq; 378 379 if (!test_bit(max_vq - 1, cpu->sve_vq_map) && 380 test_bit(max_vq - 1, cpu->sve_vq_init)) { 381 error_setg(errp, "cannot disable sve%d", max_vq * 128); 382 error_append_hint(errp, "The maximum vector length must be " 383 "enabled, sve-max-vq=%d (%d bits)\n", 384 max_vq, max_vq * 128); 385 return; 386 } 387 388 /* Set all bits not explicitly set within sve-max-vq. */ 389 bitmap_complement(tmp, cpu->sve_vq_init, max_vq); 390 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 391 } 392 393 /* 394 * We should know what max-vq is now. Also, as we're done 395 * manipulating sve-vq-map, we ensure any bits above max-vq 396 * are clear, just in case anybody looks. 397 */ 398 assert(max_vq != 0); 399 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq); 400 401 if (kvm_enabled()) { 402 /* Ensure the set of lengths matches what KVM supports. */ 403 bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq); 404 if (!bitmap_empty(tmp, max_vq)) { 405 vq = find_last_bit(tmp, max_vq) + 1; 406 if (test_bit(vq - 1, cpu->sve_vq_map)) { 407 if (cpu->sve_max_vq) { 408 error_setg(errp, "cannot set sve-max-vq=%d", 409 cpu->sve_max_vq); 410 error_append_hint(errp, "This KVM host does not support " 411 "the vector length %d-bits.\n", 412 vq * 128); 413 error_append_hint(errp, "It may not be possible to use " 414 "sve-max-vq with this KVM host. Try " 415 "using only sve<N> properties.\n"); 416 } else { 417 error_setg(errp, "cannot enable sve%d", vq * 128); 418 error_append_hint(errp, "This KVM host does not support " 419 "the vector length %d-bits.\n", 420 vq * 128); 421 } 422 } else { 423 error_setg(errp, "cannot disable sve%d", vq * 128); 424 error_append_hint(errp, "The KVM host requires all " 425 "supported vector lengths smaller " 426 "than %d bits to also be enabled.\n", 427 max_vq * 128); 428 } 429 return; 430 } 431 } else { 432 /* Ensure all required powers-of-two are enabled. */ 433 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 434 if (!test_bit(vq - 1, cpu->sve_vq_map)) { 435 error_setg(errp, "cannot disable sve%d", vq * 128); 436 error_append_hint(errp, "sve%d is required as it " 437 "is a power-of-two length smaller than " 438 "the maximum, sve%d\n", 439 vq * 128, max_vq * 128); 440 return; 441 } 442 } 443 } 444 445 /* 446 * Now that we validated all our vector lengths, the only question 447 * left to answer is if we even want SVE at all. 448 */ 449 if (!cpu_isar_feature(aa64_sve, cpu)) { 450 error_setg(errp, "cannot enable sve%d", max_vq * 128); 451 error_append_hint(errp, "SVE must be enabled to enable vector " 452 "lengths.\n"); 453 error_append_hint(errp, "Add sve=on to the CPU property list.\n"); 454 return; 455 } 456 457 /* From now on sve_max_vq is the actual maximum supported length. */ 458 cpu->sve_max_vq = max_vq; 459 } 460 461 uint32_t arm_cpu_vq_map_next_smaller(ARMCPU *cpu, uint32_t vq) 462 { 463 uint32_t bitnum; 464 465 /* 466 * We allow vq == ARM_MAX_VQ + 1 to be input because the caller may want 467 * to find the maximum vq enabled, which may be ARM_MAX_VQ, but this 468 * function always returns the next smaller than the input. 469 */ 470 assert(vq && vq <= ARM_MAX_VQ + 1); 471 472 bitnum = find_last_bit(cpu->sve_vq_map, vq - 1); 473 return bitnum == vq - 1 ? 0 : bitnum + 1; 474 } 475 476 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, 477 void *opaque, Error **errp) 478 { 479 ARMCPU *cpu = ARM_CPU(obj); 480 uint32_t value; 481 482 /* All vector lengths are disabled when SVE is off. */ 483 if (!cpu_isar_feature(aa64_sve, cpu)) { 484 value = 0; 485 } else { 486 value = cpu->sve_max_vq; 487 } 488 visit_type_uint32(v, name, &value, errp); 489 } 490 491 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, 492 void *opaque, Error **errp) 493 { 494 ARMCPU *cpu = ARM_CPU(obj); 495 Error *err = NULL; 496 uint32_t max_vq; 497 498 visit_type_uint32(v, name, &max_vq, &err); 499 if (err) { 500 error_propagate(errp, err); 501 return; 502 } 503 504 if (kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) { 505 error_setg(errp, "cannot set sve-max-vq"); 506 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 507 return; 508 } 509 510 if (max_vq == 0 || max_vq > ARM_MAX_VQ) { 511 error_setg(errp, "unsupported SVE vector length"); 512 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", 513 ARM_MAX_VQ); 514 return; 515 } 516 517 cpu->sve_max_vq = max_vq; 518 } 519 520 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name, 521 void *opaque, Error **errp) 522 { 523 ARMCPU *cpu = ARM_CPU(obj); 524 uint32_t vq = atoi(&name[3]) / 128; 525 bool value; 526 527 /* All vector lengths are disabled when SVE is off. */ 528 if (!cpu_isar_feature(aa64_sve, cpu)) { 529 value = false; 530 } else { 531 value = test_bit(vq - 1, cpu->sve_vq_map); 532 } 533 visit_type_bool(v, name, &value, errp); 534 } 535 536 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name, 537 void *opaque, Error **errp) 538 { 539 ARMCPU *cpu = ARM_CPU(obj); 540 uint32_t vq = atoi(&name[3]) / 128; 541 Error *err = NULL; 542 bool value; 543 544 visit_type_bool(v, name, &value, &err); 545 if (err) { 546 error_propagate(errp, err); 547 return; 548 } 549 550 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) { 551 error_setg(errp, "cannot enable %s", name); 552 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 553 return; 554 } 555 556 if (value) { 557 set_bit(vq - 1, cpu->sve_vq_map); 558 } else { 559 clear_bit(vq - 1, cpu->sve_vq_map); 560 } 561 set_bit(vq - 1, cpu->sve_vq_init); 562 } 563 564 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name, 565 void *opaque, Error **errp) 566 { 567 ARMCPU *cpu = ARM_CPU(obj); 568 bool value = cpu_isar_feature(aa64_sve, cpu); 569 570 visit_type_bool(v, name, &value, errp); 571 } 572 573 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name, 574 void *opaque, Error **errp) 575 { 576 ARMCPU *cpu = ARM_CPU(obj); 577 Error *err = NULL; 578 bool value; 579 uint64_t t; 580 581 visit_type_bool(v, name, &value, &err); 582 if (err) { 583 error_propagate(errp, err); 584 return; 585 } 586 587 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) { 588 error_setg(errp, "'sve' feature not supported by KVM on this host"); 589 return; 590 } 591 592 t = cpu->isar.id_aa64pfr0; 593 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); 594 cpu->isar.id_aa64pfr0 = t; 595 } 596 597 void aarch64_add_sve_properties(Object *obj) 598 { 599 uint32_t vq; 600 601 object_property_add(obj, "sve", "bool", cpu_arm_get_sve, 602 cpu_arm_set_sve, NULL, NULL, &error_fatal); 603 604 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 605 char name[8]; 606 sprintf(name, "sve%d", vq * 128); 607 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq, 608 cpu_arm_set_sve_vq, NULL, NULL, &error_fatal); 609 } 610 } 611 612 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 613 * otherwise, a CPU with as many features enabled as our emulation supports. 614 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; 615 * this only needs to handle 64 bits. 616 */ 617 static void aarch64_max_initfn(Object *obj) 618 { 619 ARMCPU *cpu = ARM_CPU(obj); 620 621 if (kvm_enabled()) { 622 kvm_arm_set_cpu_features_from_host(cpu); 623 } else { 624 uint64_t t; 625 uint32_t u; 626 aarch64_a57_initfn(obj); 627 628 /* 629 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real 630 * one and try to apply errata workarounds or use impdef features we 631 * don't provide. 632 * An IMPLEMENTER field of 0 means "reserved for software use"; 633 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers 634 * to see which features are present"; 635 * the VARIANT, PARTNUM and REVISION fields are all implementation 636 * defined and we choose to define PARTNUM just in case guest 637 * code needs to distinguish this QEMU CPU from other software 638 * implementations, though this shouldn't be needed. 639 */ 640 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); 641 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); 642 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); 643 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); 644 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); 645 cpu->midr = t; 646 647 t = cpu->isar.id_aa64isar0; 648 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ 649 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); 650 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ 651 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); 652 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); 653 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); 654 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); 655 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); 656 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); 657 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); 658 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); 659 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ 660 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); 661 cpu->isar.id_aa64isar0 = t; 662 663 t = cpu->isar.id_aa64isar1; 664 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); 665 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); 666 t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */ 667 t = FIELD_DP64(t, ID_AA64ISAR1, API, 0); 668 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1); 669 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0); 670 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); 671 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); 672 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); 673 cpu->isar.id_aa64isar1 = t; 674 675 t = cpu->isar.id_aa64pfr0; 676 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); 677 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); 678 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); 679 cpu->isar.id_aa64pfr0 = t; 680 681 t = cpu->isar.id_aa64pfr1; 682 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); 683 cpu->isar.id_aa64pfr1 = t; 684 685 t = cpu->isar.id_aa64mmfr1; 686 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ 687 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); 688 cpu->isar.id_aa64mmfr1 = t; 689 690 /* Replicate the same data to the 32-bit id registers. */ 691 u = cpu->isar.id_isar5; 692 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ 693 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); 694 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); 695 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); 696 u = FIELD_DP32(u, ID_ISAR5, RDM, 1); 697 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); 698 cpu->isar.id_isar5 = u; 699 700 u = cpu->isar.id_isar6; 701 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); 702 u = FIELD_DP32(u, ID_ISAR6, DP, 1); 703 u = FIELD_DP32(u, ID_ISAR6, FHM, 1); 704 u = FIELD_DP32(u, ID_ISAR6, SB, 1); 705 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); 706 cpu->isar.id_isar6 = u; 707 708 /* 709 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet, 710 * so do not set MVFR1.FPHP. Strictly speaking this is not legal, 711 * but it is also not legal to enable SVE without support for FP16, 712 * and enabling SVE in system mode is more useful in the short term. 713 */ 714 715 #ifdef CONFIG_USER_ONLY 716 /* For usermode -cpu max we can use a larger and more efficient DCZ 717 * blocksize since we don't have to follow what the hardware does. 718 */ 719 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ 720 cpu->dcz_blocksize = 7; /* 512 bytes */ 721 #endif 722 } 723 724 aarch64_add_sve_properties(obj); 725 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, 726 cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal); 727 } 728 729 struct ARMCPUInfo { 730 const char *name; 731 void (*initfn)(Object *obj); 732 void (*class_init)(ObjectClass *oc, void *data); 733 }; 734 735 static const ARMCPUInfo aarch64_cpus[] = { 736 { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, 737 { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, 738 { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, 739 { .name = "max", .initfn = aarch64_max_initfn }, 740 { .name = NULL } 741 }; 742 743 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) 744 { 745 ARMCPU *cpu = ARM_CPU(obj); 746 747 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); 748 } 749 750 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) 751 { 752 ARMCPU *cpu = ARM_CPU(obj); 753 754 /* At this time, this property is only allowed if KVM is enabled. This 755 * restriction allows us to avoid fixing up functionality that assumes a 756 * uniform execution state like do_interrupt. 757 */ 758 if (value == false) { 759 if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) { 760 error_setg(errp, "'aarch64' feature cannot be disabled " 761 "unless KVM is enabled and 32-bit EL1 " 762 "is supported"); 763 return; 764 } 765 unset_feature(&cpu->env, ARM_FEATURE_AARCH64); 766 } else { 767 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 768 } 769 } 770 771 static void aarch64_cpu_initfn(Object *obj) 772 { 773 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64, 774 aarch64_cpu_set_aarch64, NULL); 775 object_property_set_description(obj, "aarch64", 776 "Set on/off to enable/disable aarch64 " 777 "execution state ", 778 NULL); 779 } 780 781 static void aarch64_cpu_finalizefn(Object *obj) 782 { 783 } 784 785 static gchar *aarch64_gdb_arch_name(CPUState *cs) 786 { 787 return g_strdup("aarch64"); 788 } 789 790 static void aarch64_cpu_class_init(ObjectClass *oc, void *data) 791 { 792 CPUClass *cc = CPU_CLASS(oc); 793 794 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 795 cc->gdb_read_register = aarch64_cpu_gdb_read_register; 796 cc->gdb_write_register = aarch64_cpu_gdb_write_register; 797 cc->gdb_num_core_regs = 34; 798 cc->gdb_core_xml_file = "aarch64-core.xml"; 799 cc->gdb_arch_name = aarch64_gdb_arch_name; 800 } 801 802 static void aarch64_cpu_instance_init(Object *obj) 803 { 804 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 805 806 acc->info->initfn(obj); 807 arm_cpu_post_init(obj); 808 } 809 810 static void cpu_register_class_init(ObjectClass *oc, void *data) 811 { 812 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 813 814 acc->info = data; 815 } 816 817 static void aarch64_cpu_register(const ARMCPUInfo *info) 818 { 819 TypeInfo type_info = { 820 .parent = TYPE_AARCH64_CPU, 821 .instance_size = sizeof(ARMCPU), 822 .instance_init = aarch64_cpu_instance_init, 823 .class_size = sizeof(ARMCPUClass), 824 .class_init = info->class_init ?: cpu_register_class_init, 825 .class_data = (void *)info, 826 }; 827 828 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 829 type_register(&type_info); 830 g_free((void *)type_info.name); 831 } 832 833 static const TypeInfo aarch64_cpu_type_info = { 834 .name = TYPE_AARCH64_CPU, 835 .parent = TYPE_ARM_CPU, 836 .instance_size = sizeof(ARMCPU), 837 .instance_init = aarch64_cpu_initfn, 838 .instance_finalize = aarch64_cpu_finalizefn, 839 .abstract = true, 840 .class_size = sizeof(AArch64CPUClass), 841 .class_init = aarch64_cpu_class_init, 842 }; 843 844 static void aarch64_cpu_register_types(void) 845 { 846 const ARMCPUInfo *info = aarch64_cpus; 847 848 type_register_static(&aarch64_cpu_type_info); 849 850 while (info->name) { 851 aarch64_cpu_register(info); 852 info++; 853 } 854 } 855 856 type_init(aarch64_cpu_register_types) 857