xref: /openbmc/qemu/target/arm/cpu64.c (revision f480f6e8)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31 
32 static inline void set_feature(CPUARMState *env, int feature)
33 {
34     env->features |= 1ULL << feature;
35 }
36 
37 static inline void unset_feature(CPUARMState *env, int feature)
38 {
39     env->features &= ~(1ULL << feature);
40 }
41 
42 #ifndef CONFIG_USER_ONLY
43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
44 {
45     ARMCPU *cpu = env_archcpu(env);
46 
47     /* Number of cores is in [25:24]; otherwise we RAZ */
48     return (cpu->core_count - 1) << 24;
49 }
50 #endif
51 
52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
53 #ifndef CONFIG_USER_ONLY
54     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
55       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
56       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
57       .writefn = arm_cp_write_ignore },
58     { .name = "L2CTLR",
59       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
60       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
61       .writefn = arm_cp_write_ignore },
62 #endif
63     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
64       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
65       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66     { .name = "L2ECTLR",
67       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
68       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
70       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
71       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
73       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
74       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
75     { .name = "CPUACTLR",
76       .cp = 15, .opc1 = 0, .crm = 15,
77       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
78     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
79       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
80       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
81     { .name = "CPUECTLR",
82       .cp = 15, .opc1 = 1, .crm = 15,
83       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
84     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
85       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
86       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
87     { .name = "CPUMERRSR",
88       .cp = 15, .opc1 = 2, .crm = 15,
89       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
90     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
91       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
92       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
93     { .name = "L2MERRSR",
94       .cp = 15, .opc1 = 3, .crm = 15,
95       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
96     REGINFO_SENTINEL
97 };
98 
99 static void aarch64_a57_initfn(Object *obj)
100 {
101     ARMCPU *cpu = ARM_CPU(obj);
102 
103     cpu->dtb_compatible = "arm,cortex-a57";
104     set_feature(&cpu->env, ARM_FEATURE_V8);
105     set_feature(&cpu->env, ARM_FEATURE_VFP4);
106     set_feature(&cpu->env, ARM_FEATURE_NEON);
107     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
108     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
109     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
110     set_feature(&cpu->env, ARM_FEATURE_EL2);
111     set_feature(&cpu->env, ARM_FEATURE_EL3);
112     set_feature(&cpu->env, ARM_FEATURE_PMU);
113     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
114     cpu->midr = 0x411fd070;
115     cpu->revidr = 0x00000000;
116     cpu->reset_fpsid = 0x41034070;
117     cpu->isar.mvfr0 = 0x10110222;
118     cpu->isar.mvfr1 = 0x12111111;
119     cpu->isar.mvfr2 = 0x00000043;
120     cpu->ctr = 0x8444c004;
121     cpu->reset_sctlr = 0x00c50838;
122     cpu->id_pfr0 = 0x00000131;
123     cpu->id_pfr1 = 0x00011011;
124     cpu->id_dfr0 = 0x03010066;
125     cpu->id_afr0 = 0x00000000;
126     cpu->id_mmfr0 = 0x10101105;
127     cpu->id_mmfr1 = 0x40000000;
128     cpu->id_mmfr2 = 0x01260000;
129     cpu->id_mmfr3 = 0x02102211;
130     cpu->isar.id_isar0 = 0x02101110;
131     cpu->isar.id_isar1 = 0x13112111;
132     cpu->isar.id_isar2 = 0x21232042;
133     cpu->isar.id_isar3 = 0x01112131;
134     cpu->isar.id_isar4 = 0x00011142;
135     cpu->isar.id_isar5 = 0x00011121;
136     cpu->isar.id_isar6 = 0;
137     cpu->isar.id_aa64pfr0 = 0x00002222;
138     cpu->id_aa64dfr0 = 0x10305106;
139     cpu->isar.id_aa64isar0 = 0x00011120;
140     cpu->isar.id_aa64mmfr0 = 0x00001124;
141     cpu->dbgdidr = 0x3516d000;
142     cpu->clidr = 0x0a200023;
143     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
144     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
145     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
146     cpu->dcz_blocksize = 4; /* 64 bytes */
147     cpu->gic_num_lrs = 4;
148     cpu->gic_vpribits = 5;
149     cpu->gic_vprebits = 5;
150     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
151 }
152 
153 static void aarch64_a53_initfn(Object *obj)
154 {
155     ARMCPU *cpu = ARM_CPU(obj);
156 
157     cpu->dtb_compatible = "arm,cortex-a53";
158     set_feature(&cpu->env, ARM_FEATURE_V8);
159     set_feature(&cpu->env, ARM_FEATURE_VFP4);
160     set_feature(&cpu->env, ARM_FEATURE_NEON);
161     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
162     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
163     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
164     set_feature(&cpu->env, ARM_FEATURE_EL2);
165     set_feature(&cpu->env, ARM_FEATURE_EL3);
166     set_feature(&cpu->env, ARM_FEATURE_PMU);
167     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
168     cpu->midr = 0x410fd034;
169     cpu->revidr = 0x00000000;
170     cpu->reset_fpsid = 0x41034070;
171     cpu->isar.mvfr0 = 0x10110222;
172     cpu->isar.mvfr1 = 0x12111111;
173     cpu->isar.mvfr2 = 0x00000043;
174     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
175     cpu->reset_sctlr = 0x00c50838;
176     cpu->id_pfr0 = 0x00000131;
177     cpu->id_pfr1 = 0x00011011;
178     cpu->id_dfr0 = 0x03010066;
179     cpu->id_afr0 = 0x00000000;
180     cpu->id_mmfr0 = 0x10101105;
181     cpu->id_mmfr1 = 0x40000000;
182     cpu->id_mmfr2 = 0x01260000;
183     cpu->id_mmfr3 = 0x02102211;
184     cpu->isar.id_isar0 = 0x02101110;
185     cpu->isar.id_isar1 = 0x13112111;
186     cpu->isar.id_isar2 = 0x21232042;
187     cpu->isar.id_isar3 = 0x01112131;
188     cpu->isar.id_isar4 = 0x00011142;
189     cpu->isar.id_isar5 = 0x00011121;
190     cpu->isar.id_isar6 = 0;
191     cpu->isar.id_aa64pfr0 = 0x00002222;
192     cpu->id_aa64dfr0 = 0x10305106;
193     cpu->isar.id_aa64isar0 = 0x00011120;
194     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
195     cpu->dbgdidr = 0x3516d000;
196     cpu->clidr = 0x0a200023;
197     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
198     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
199     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
200     cpu->dcz_blocksize = 4; /* 64 bytes */
201     cpu->gic_num_lrs = 4;
202     cpu->gic_vpribits = 5;
203     cpu->gic_vprebits = 5;
204     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
205 }
206 
207 static void aarch64_a72_initfn(Object *obj)
208 {
209     ARMCPU *cpu = ARM_CPU(obj);
210 
211     cpu->dtb_compatible = "arm,cortex-a72";
212     set_feature(&cpu->env, ARM_FEATURE_V8);
213     set_feature(&cpu->env, ARM_FEATURE_VFP4);
214     set_feature(&cpu->env, ARM_FEATURE_NEON);
215     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
216     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
217     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
218     set_feature(&cpu->env, ARM_FEATURE_EL2);
219     set_feature(&cpu->env, ARM_FEATURE_EL3);
220     set_feature(&cpu->env, ARM_FEATURE_PMU);
221     cpu->midr = 0x410fd083;
222     cpu->revidr = 0x00000000;
223     cpu->reset_fpsid = 0x41034080;
224     cpu->isar.mvfr0 = 0x10110222;
225     cpu->isar.mvfr1 = 0x12111111;
226     cpu->isar.mvfr2 = 0x00000043;
227     cpu->ctr = 0x8444c004;
228     cpu->reset_sctlr = 0x00c50838;
229     cpu->id_pfr0 = 0x00000131;
230     cpu->id_pfr1 = 0x00011011;
231     cpu->id_dfr0 = 0x03010066;
232     cpu->id_afr0 = 0x00000000;
233     cpu->id_mmfr0 = 0x10201105;
234     cpu->id_mmfr1 = 0x40000000;
235     cpu->id_mmfr2 = 0x01260000;
236     cpu->id_mmfr3 = 0x02102211;
237     cpu->isar.id_isar0 = 0x02101110;
238     cpu->isar.id_isar1 = 0x13112111;
239     cpu->isar.id_isar2 = 0x21232042;
240     cpu->isar.id_isar3 = 0x01112131;
241     cpu->isar.id_isar4 = 0x00011142;
242     cpu->isar.id_isar5 = 0x00011121;
243     cpu->isar.id_aa64pfr0 = 0x00002222;
244     cpu->id_aa64dfr0 = 0x10305106;
245     cpu->isar.id_aa64isar0 = 0x00011120;
246     cpu->isar.id_aa64mmfr0 = 0x00001124;
247     cpu->dbgdidr = 0x3516d000;
248     cpu->clidr = 0x0a200023;
249     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
250     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
251     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
252     cpu->dcz_blocksize = 4; /* 64 bytes */
253     cpu->gic_num_lrs = 4;
254     cpu->gic_vpribits = 5;
255     cpu->gic_vprebits = 5;
256     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
257 }
258 
259 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
260 {
261     /*
262      * If any vector lengths are explicitly enabled with sve<N> properties,
263      * then all other lengths are implicitly disabled.  If sve-max-vq is
264      * specified then it is the same as explicitly enabling all lengths
265      * up to and including the specified maximum, which means all larger
266      * lengths will be implicitly disabled.  If no sve<N> properties
267      * are enabled and sve-max-vq is not specified, then all lengths not
268      * explicitly disabled will be enabled.  Additionally, all power-of-two
269      * vector lengths less than the maximum enabled length will be
270      * automatically enabled and all vector lengths larger than the largest
271      * disabled power-of-two vector length will be automatically disabled.
272      * Errors are generated if the user provided input that interferes with
273      * any of the above.  Finally, if SVE is not disabled, then at least one
274      * vector length must be enabled.
275      */
276     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
277     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
278     uint32_t vq, max_vq = 0;
279 
280     /* Collect the set of vector lengths supported by KVM. */
281     bitmap_zero(kvm_supported, ARM_MAX_VQ);
282     if (kvm_enabled() && kvm_arm_sve_supported(CPU(cpu))) {
283         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
284     } else if (kvm_enabled()) {
285         assert(!cpu_isar_feature(aa64_sve, cpu));
286     }
287 
288     /*
289      * Process explicit sve<N> properties.
290      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
291      * Check first for any sve<N> enabled.
292      */
293     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
294         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
295 
296         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
297             error_setg(errp, "cannot enable sve%d", max_vq * 128);
298             error_append_hint(errp, "sve%d is larger than the maximum vector "
299                               "length, sve-max-vq=%d (%d bits)\n",
300                               max_vq * 128, cpu->sve_max_vq,
301                               cpu->sve_max_vq * 128);
302             return;
303         }
304 
305         if (kvm_enabled()) {
306             /*
307              * For KVM we have to automatically enable all supported unitialized
308              * lengths, even when the smaller lengths are not all powers-of-two.
309              */
310             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
311             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
312         } else {
313             /* Propagate enabled bits down through required powers-of-two. */
314             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
315                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
316                     set_bit(vq - 1, cpu->sve_vq_map);
317                 }
318             }
319         }
320     } else if (cpu->sve_max_vq == 0) {
321         /*
322          * No explicit bits enabled, and no implicit bits from sve-max-vq.
323          */
324         if (!cpu_isar_feature(aa64_sve, cpu)) {
325             /* SVE is disabled and so are all vector lengths.  Good. */
326             return;
327         }
328 
329         if (kvm_enabled()) {
330             /* Disabling a supported length disables all larger lengths. */
331             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
332                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
333                     test_bit(vq - 1, kvm_supported)) {
334                     break;
335                 }
336             }
337             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
338             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
339                           cpu->sve_vq_init, max_vq);
340             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
341                 error_setg(errp, "cannot disable sve%d", vq * 128);
342                 error_append_hint(errp, "Disabling sve%d results in all "
343                                   "vector lengths being disabled.\n",
344                                   vq * 128);
345                 error_append_hint(errp, "With SVE enabled, at least one "
346                                   "vector length must be enabled.\n");
347                 return;
348             }
349         } else {
350             /* Disabling a power-of-two disables all larger lengths. */
351             if (test_bit(0, cpu->sve_vq_init)) {
352                 error_setg(errp, "cannot disable sve128");
353                 error_append_hint(errp, "Disabling sve128 results in all "
354                                   "vector lengths being disabled.\n");
355                 error_append_hint(errp, "With SVE enabled, at least one "
356                                   "vector length must be enabled.\n");
357                 return;
358             }
359             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
360                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
361                     break;
362                 }
363             }
364             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
365             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
366         }
367 
368         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
369     }
370 
371     /*
372      * Process the sve-max-vq property.
373      * Note that we know from the above that no bit above
374      * sve-max-vq is currently set.
375      */
376     if (cpu->sve_max_vq != 0) {
377         max_vq = cpu->sve_max_vq;
378 
379         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
380             test_bit(max_vq - 1, cpu->sve_vq_init)) {
381             error_setg(errp, "cannot disable sve%d", max_vq * 128);
382             error_append_hint(errp, "The maximum vector length must be "
383                               "enabled, sve-max-vq=%d (%d bits)\n",
384                               max_vq, max_vq * 128);
385             return;
386         }
387 
388         /* Set all bits not explicitly set within sve-max-vq. */
389         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
390         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
391     }
392 
393     /*
394      * We should know what max-vq is now.  Also, as we're done
395      * manipulating sve-vq-map, we ensure any bits above max-vq
396      * are clear, just in case anybody looks.
397      */
398     assert(max_vq != 0);
399     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
400 
401     if (kvm_enabled()) {
402         /* Ensure the set of lengths matches what KVM supports. */
403         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
404         if (!bitmap_empty(tmp, max_vq)) {
405             vq = find_last_bit(tmp, max_vq) + 1;
406             if (test_bit(vq - 1, cpu->sve_vq_map)) {
407                 if (cpu->sve_max_vq) {
408                     error_setg(errp, "cannot set sve-max-vq=%d",
409                                cpu->sve_max_vq);
410                     error_append_hint(errp, "This KVM host does not support "
411                                       "the vector length %d-bits.\n",
412                                       vq * 128);
413                     error_append_hint(errp, "It may not be possible to use "
414                                       "sve-max-vq with this KVM host. Try "
415                                       "using only sve<N> properties.\n");
416                 } else {
417                     error_setg(errp, "cannot enable sve%d", vq * 128);
418                     error_append_hint(errp, "This KVM host does not support "
419                                       "the vector length %d-bits.\n",
420                                       vq * 128);
421                 }
422             } else {
423                 error_setg(errp, "cannot disable sve%d", vq * 128);
424                 error_append_hint(errp, "The KVM host requires all "
425                                   "supported vector lengths smaller "
426                                   "than %d bits to also be enabled.\n",
427                                   max_vq * 128);
428             }
429             return;
430         }
431     } else {
432         /* Ensure all required powers-of-two are enabled. */
433         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
434             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
435                 error_setg(errp, "cannot disable sve%d", vq * 128);
436                 error_append_hint(errp, "sve%d is required as it "
437                                   "is a power-of-two length smaller than "
438                                   "the maximum, sve%d\n",
439                                   vq * 128, max_vq * 128);
440                 return;
441             }
442         }
443     }
444 
445     /*
446      * Now that we validated all our vector lengths, the only question
447      * left to answer is if we even want SVE at all.
448      */
449     if (!cpu_isar_feature(aa64_sve, cpu)) {
450         error_setg(errp, "cannot enable sve%d", max_vq * 128);
451         error_append_hint(errp, "SVE must be enabled to enable vector "
452                           "lengths.\n");
453         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
454         return;
455     }
456 
457     /* From now on sve_max_vq is the actual maximum supported length. */
458     cpu->sve_max_vq = max_vq;
459 }
460 
461 uint32_t arm_cpu_vq_map_next_smaller(ARMCPU *cpu, uint32_t vq)
462 {
463     uint32_t bitnum;
464 
465     /*
466      * We allow vq == ARM_MAX_VQ + 1 to be input because the caller may want
467      * to find the maximum vq enabled, which may be ARM_MAX_VQ, but this
468      * function always returns the next smaller than the input.
469      */
470     assert(vq && vq <= ARM_MAX_VQ + 1);
471 
472     bitnum = find_last_bit(cpu->sve_vq_map, vq - 1);
473     return bitnum == vq - 1 ? 0 : bitnum + 1;
474 }
475 
476 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
477                                    void *opaque, Error **errp)
478 {
479     ARMCPU *cpu = ARM_CPU(obj);
480     uint32_t value;
481 
482     /* All vector lengths are disabled when SVE is off. */
483     if (!cpu_isar_feature(aa64_sve, cpu)) {
484         value = 0;
485     } else {
486         value = cpu->sve_max_vq;
487     }
488     visit_type_uint32(v, name, &value, errp);
489 }
490 
491 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
492                                    void *opaque, Error **errp)
493 {
494     ARMCPU *cpu = ARM_CPU(obj);
495     Error *err = NULL;
496     uint32_t max_vq;
497 
498     visit_type_uint32(v, name, &max_vq, &err);
499     if (err) {
500         error_propagate(errp, err);
501         return;
502     }
503 
504     if (kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
505         error_setg(errp, "cannot set sve-max-vq");
506         error_append_hint(errp, "SVE not supported by KVM on this host\n");
507         return;
508     }
509 
510     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
511         error_setg(errp, "unsupported SVE vector length");
512         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
513                           ARM_MAX_VQ);
514         return;
515     }
516 
517     cpu->sve_max_vq = max_vq;
518 }
519 
520 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
521                                void *opaque, Error **errp)
522 {
523     ARMCPU *cpu = ARM_CPU(obj);
524     uint32_t vq = atoi(&name[3]) / 128;
525     bool value;
526 
527     /* All vector lengths are disabled when SVE is off. */
528     if (!cpu_isar_feature(aa64_sve, cpu)) {
529         value = false;
530     } else {
531         value = test_bit(vq - 1, cpu->sve_vq_map);
532     }
533     visit_type_bool(v, name, &value, errp);
534 }
535 
536 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
537                                void *opaque, Error **errp)
538 {
539     ARMCPU *cpu = ARM_CPU(obj);
540     uint32_t vq = atoi(&name[3]) / 128;
541     Error *err = NULL;
542     bool value;
543 
544     visit_type_bool(v, name, &value, &err);
545     if (err) {
546         error_propagate(errp, err);
547         return;
548     }
549 
550     if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
551         error_setg(errp, "cannot enable %s", name);
552         error_append_hint(errp, "SVE not supported by KVM on this host\n");
553         return;
554     }
555 
556     if (value) {
557         set_bit(vq - 1, cpu->sve_vq_map);
558     } else {
559         clear_bit(vq - 1, cpu->sve_vq_map);
560     }
561     set_bit(vq - 1, cpu->sve_vq_init);
562 }
563 
564 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
565                             void *opaque, Error **errp)
566 {
567     ARMCPU *cpu = ARM_CPU(obj);
568     bool value = cpu_isar_feature(aa64_sve, cpu);
569 
570     visit_type_bool(v, name, &value, errp);
571 }
572 
573 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
574                             void *opaque, Error **errp)
575 {
576     ARMCPU *cpu = ARM_CPU(obj);
577     Error *err = NULL;
578     bool value;
579     uint64_t t;
580 
581     visit_type_bool(v, name, &value, &err);
582     if (err) {
583         error_propagate(errp, err);
584         return;
585     }
586 
587     if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
588         error_setg(errp, "'sve' feature not supported by KVM on this host");
589         return;
590     }
591 
592     t = cpu->isar.id_aa64pfr0;
593     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
594     cpu->isar.id_aa64pfr0 = t;
595 }
596 
597 void aarch64_add_sve_properties(Object *obj)
598 {
599     uint32_t vq;
600 
601     object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
602                         cpu_arm_set_sve, NULL, NULL, &error_fatal);
603 
604     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
605         char name[8];
606         sprintf(name, "sve%d", vq * 128);
607         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
608                             cpu_arm_set_sve_vq, NULL, NULL, &error_fatal);
609     }
610 }
611 
612 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
613  * otherwise, a CPU with as many features enabled as our emulation supports.
614  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
615  * this only needs to handle 64 bits.
616  */
617 static void aarch64_max_initfn(Object *obj)
618 {
619     ARMCPU *cpu = ARM_CPU(obj);
620 
621     if (kvm_enabled()) {
622         kvm_arm_set_cpu_features_from_host(cpu);
623     } else {
624         uint64_t t;
625         uint32_t u;
626         aarch64_a57_initfn(obj);
627 
628         /*
629          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
630          * one and try to apply errata workarounds or use impdef features we
631          * don't provide.
632          * An IMPLEMENTER field of 0 means "reserved for software use";
633          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
634          * to see which features are present";
635          * the VARIANT, PARTNUM and REVISION fields are all implementation
636          * defined and we choose to define PARTNUM just in case guest
637          * code needs to distinguish this QEMU CPU from other software
638          * implementations, though this shouldn't be needed.
639          */
640         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
641         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
642         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
643         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
644         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
645         cpu->midr = t;
646 
647         t = cpu->isar.id_aa64isar0;
648         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
649         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
650         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
651         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
652         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
653         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
654         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
655         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
656         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
657         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
658         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
659         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
660         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
661         cpu->isar.id_aa64isar0 = t;
662 
663         t = cpu->isar.id_aa64isar1;
664         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
665         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
666         t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
667         t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
668         t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
669         t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
670         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
671         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
672         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
673         cpu->isar.id_aa64isar1 = t;
674 
675         t = cpu->isar.id_aa64pfr0;
676         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
677         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
678         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
679         cpu->isar.id_aa64pfr0 = t;
680 
681         t = cpu->isar.id_aa64pfr1;
682         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
683         cpu->isar.id_aa64pfr1 = t;
684 
685         t = cpu->isar.id_aa64mmfr1;
686         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
687         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
688         cpu->isar.id_aa64mmfr1 = t;
689 
690         /* Replicate the same data to the 32-bit id registers.  */
691         u = cpu->isar.id_isar5;
692         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
693         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
694         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
695         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
696         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
697         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
698         cpu->isar.id_isar5 = u;
699 
700         u = cpu->isar.id_isar6;
701         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
702         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
703         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
704         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
705         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
706         cpu->isar.id_isar6 = u;
707 
708         /*
709          * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
710          * so do not set MVFR1.FPHP.  Strictly speaking this is not legal,
711          * but it is also not legal to enable SVE without support for FP16,
712          * and enabling SVE in system mode is more useful in the short term.
713          */
714 
715 #ifdef CONFIG_USER_ONLY
716         /* For usermode -cpu max we can use a larger and more efficient DCZ
717          * blocksize since we don't have to follow what the hardware does.
718          */
719         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
720         cpu->dcz_blocksize = 7; /*  512 bytes */
721 #endif
722     }
723 
724     aarch64_add_sve_properties(obj);
725     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
726                         cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal);
727 }
728 
729 struct ARMCPUInfo {
730     const char *name;
731     void (*initfn)(Object *obj);
732     void (*class_init)(ObjectClass *oc, void *data);
733 };
734 
735 static const ARMCPUInfo aarch64_cpus[] = {
736     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
737     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
738     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
739     { .name = "max",                .initfn = aarch64_max_initfn },
740     { .name = NULL }
741 };
742 
743 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
744 {
745     ARMCPU *cpu = ARM_CPU(obj);
746 
747     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
748 }
749 
750 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
751 {
752     ARMCPU *cpu = ARM_CPU(obj);
753 
754     /* At this time, this property is only allowed if KVM is enabled.  This
755      * restriction allows us to avoid fixing up functionality that assumes a
756      * uniform execution state like do_interrupt.
757      */
758     if (value == false) {
759         if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) {
760             error_setg(errp, "'aarch64' feature cannot be disabled "
761                              "unless KVM is enabled and 32-bit EL1 "
762                              "is supported");
763             return;
764         }
765         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
766     } else {
767         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
768     }
769 }
770 
771 static void aarch64_cpu_initfn(Object *obj)
772 {
773     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
774                              aarch64_cpu_set_aarch64, NULL);
775     object_property_set_description(obj, "aarch64",
776                                     "Set on/off to enable/disable aarch64 "
777                                     "execution state ",
778                                     NULL);
779 }
780 
781 static void aarch64_cpu_finalizefn(Object *obj)
782 {
783 }
784 
785 static gchar *aarch64_gdb_arch_name(CPUState *cs)
786 {
787     return g_strdup("aarch64");
788 }
789 
790 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
791 {
792     CPUClass *cc = CPU_CLASS(oc);
793 
794     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
795     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
796     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
797     cc->gdb_num_core_regs = 34;
798     cc->gdb_core_xml_file = "aarch64-core.xml";
799     cc->gdb_arch_name = aarch64_gdb_arch_name;
800 }
801 
802 static void aarch64_cpu_instance_init(Object *obj)
803 {
804     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
805 
806     acc->info->initfn(obj);
807     arm_cpu_post_init(obj);
808 }
809 
810 static void cpu_register_class_init(ObjectClass *oc, void *data)
811 {
812     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
813 
814     acc->info = data;
815 }
816 
817 static void aarch64_cpu_register(const ARMCPUInfo *info)
818 {
819     TypeInfo type_info = {
820         .parent = TYPE_AARCH64_CPU,
821         .instance_size = sizeof(ARMCPU),
822         .instance_init = aarch64_cpu_instance_init,
823         .class_size = sizeof(ARMCPUClass),
824         .class_init = info->class_init ?: cpu_register_class_init,
825         .class_data = (void *)info,
826     };
827 
828     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
829     type_register(&type_info);
830     g_free((void *)type_info.name);
831 }
832 
833 static const TypeInfo aarch64_cpu_type_info = {
834     .name = TYPE_AARCH64_CPU,
835     .parent = TYPE_ARM_CPU,
836     .instance_size = sizeof(ARMCPU),
837     .instance_init = aarch64_cpu_initfn,
838     .instance_finalize = aarch64_cpu_finalizefn,
839     .abstract = true,
840     .class_size = sizeof(AArch64CPUClass),
841     .class_init = aarch64_cpu_class_init,
842 };
843 
844 static void aarch64_cpu_register_types(void)
845 {
846     const ARMCPUInfo *info = aarch64_cpus;
847 
848     type_register_static(&aarch64_cpu_type_info);
849 
850     while (info->name) {
851         aarch64_cpu_register(info);
852         info++;
853     }
854 }
855 
856 type_init(aarch64_cpu_register_types)
857