xref: /openbmc/qemu/target/arm/cpu64.c (revision d6cd3ae0)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 #include "internals.h"
38 
39 
40 static void aarch64_a57_initfn(Object *obj)
41 {
42     ARMCPU *cpu = ARM_CPU(obj);
43 
44     cpu->dtb_compatible = "arm,cortex-a57";
45     set_feature(&cpu->env, ARM_FEATURE_V8);
46     set_feature(&cpu->env, ARM_FEATURE_NEON);
47     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
48     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
49     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
50     set_feature(&cpu->env, ARM_FEATURE_EL2);
51     set_feature(&cpu->env, ARM_FEATURE_EL3);
52     set_feature(&cpu->env, ARM_FEATURE_PMU);
53     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
54     cpu->midr = 0x411fd070;
55     cpu->revidr = 0x00000000;
56     cpu->reset_fpsid = 0x41034070;
57     cpu->isar.mvfr0 = 0x10110222;
58     cpu->isar.mvfr1 = 0x12111111;
59     cpu->isar.mvfr2 = 0x00000043;
60     cpu->ctr = 0x8444c004;
61     cpu->reset_sctlr = 0x00c50838;
62     cpu->isar.id_pfr0 = 0x00000131;
63     cpu->isar.id_pfr1 = 0x00011011;
64     cpu->isar.id_dfr0 = 0x03010066;
65     cpu->id_afr0 = 0x00000000;
66     cpu->isar.id_mmfr0 = 0x10101105;
67     cpu->isar.id_mmfr1 = 0x40000000;
68     cpu->isar.id_mmfr2 = 0x01260000;
69     cpu->isar.id_mmfr3 = 0x02102211;
70     cpu->isar.id_isar0 = 0x02101110;
71     cpu->isar.id_isar1 = 0x13112111;
72     cpu->isar.id_isar2 = 0x21232042;
73     cpu->isar.id_isar3 = 0x01112131;
74     cpu->isar.id_isar4 = 0x00011142;
75     cpu->isar.id_isar5 = 0x00011121;
76     cpu->isar.id_isar6 = 0;
77     cpu->isar.id_aa64pfr0 = 0x00002222;
78     cpu->isar.id_aa64dfr0 = 0x10305106;
79     cpu->isar.id_aa64isar0 = 0x00011120;
80     cpu->isar.id_aa64mmfr0 = 0x00001124;
81     cpu->isar.dbgdidr = 0x3516d000;
82     cpu->isar.reset_pmcr_el0 = 0x41013000;
83     cpu->clidr = 0x0a200023;
84     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
85     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
86     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
87     cpu->dcz_blocksize = 4; /* 64 bytes */
88     cpu->gic_num_lrs = 4;
89     cpu->gic_vpribits = 5;
90     cpu->gic_vprebits = 5;
91     cpu->gic_pribits = 5;
92     define_cortex_a72_a57_a53_cp_reginfo(cpu);
93 }
94 
95 static void aarch64_a53_initfn(Object *obj)
96 {
97     ARMCPU *cpu = ARM_CPU(obj);
98 
99     cpu->dtb_compatible = "arm,cortex-a53";
100     set_feature(&cpu->env, ARM_FEATURE_V8);
101     set_feature(&cpu->env, ARM_FEATURE_NEON);
102     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
103     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
104     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
105     set_feature(&cpu->env, ARM_FEATURE_EL2);
106     set_feature(&cpu->env, ARM_FEATURE_EL3);
107     set_feature(&cpu->env, ARM_FEATURE_PMU);
108     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
109     cpu->midr = 0x410fd034;
110     cpu->revidr = 0x00000000;
111     cpu->reset_fpsid = 0x41034070;
112     cpu->isar.mvfr0 = 0x10110222;
113     cpu->isar.mvfr1 = 0x12111111;
114     cpu->isar.mvfr2 = 0x00000043;
115     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
116     cpu->reset_sctlr = 0x00c50838;
117     cpu->isar.id_pfr0 = 0x00000131;
118     cpu->isar.id_pfr1 = 0x00011011;
119     cpu->isar.id_dfr0 = 0x03010066;
120     cpu->id_afr0 = 0x00000000;
121     cpu->isar.id_mmfr0 = 0x10101105;
122     cpu->isar.id_mmfr1 = 0x40000000;
123     cpu->isar.id_mmfr2 = 0x01260000;
124     cpu->isar.id_mmfr3 = 0x02102211;
125     cpu->isar.id_isar0 = 0x02101110;
126     cpu->isar.id_isar1 = 0x13112111;
127     cpu->isar.id_isar2 = 0x21232042;
128     cpu->isar.id_isar3 = 0x01112131;
129     cpu->isar.id_isar4 = 0x00011142;
130     cpu->isar.id_isar5 = 0x00011121;
131     cpu->isar.id_isar6 = 0;
132     cpu->isar.id_aa64pfr0 = 0x00002222;
133     cpu->isar.id_aa64dfr0 = 0x10305106;
134     cpu->isar.id_aa64isar0 = 0x00011120;
135     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
136     cpu->isar.dbgdidr = 0x3516d000;
137     cpu->isar.reset_pmcr_el0 = 0x41033000;
138     cpu->clidr = 0x0a200023;
139     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
140     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
141     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
142     cpu->dcz_blocksize = 4; /* 64 bytes */
143     cpu->gic_num_lrs = 4;
144     cpu->gic_vpribits = 5;
145     cpu->gic_vprebits = 5;
146     cpu->gic_pribits = 5;
147     define_cortex_a72_a57_a53_cp_reginfo(cpu);
148 }
149 
150 static void aarch64_a72_initfn(Object *obj)
151 {
152     ARMCPU *cpu = ARM_CPU(obj);
153 
154     cpu->dtb_compatible = "arm,cortex-a72";
155     set_feature(&cpu->env, ARM_FEATURE_V8);
156     set_feature(&cpu->env, ARM_FEATURE_NEON);
157     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
158     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
159     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
160     set_feature(&cpu->env, ARM_FEATURE_EL2);
161     set_feature(&cpu->env, ARM_FEATURE_EL3);
162     set_feature(&cpu->env, ARM_FEATURE_PMU);
163     cpu->midr = 0x410fd083;
164     cpu->revidr = 0x00000000;
165     cpu->reset_fpsid = 0x41034080;
166     cpu->isar.mvfr0 = 0x10110222;
167     cpu->isar.mvfr1 = 0x12111111;
168     cpu->isar.mvfr2 = 0x00000043;
169     cpu->ctr = 0x8444c004;
170     cpu->reset_sctlr = 0x00c50838;
171     cpu->isar.id_pfr0 = 0x00000131;
172     cpu->isar.id_pfr1 = 0x00011011;
173     cpu->isar.id_dfr0 = 0x03010066;
174     cpu->id_afr0 = 0x00000000;
175     cpu->isar.id_mmfr0 = 0x10201105;
176     cpu->isar.id_mmfr1 = 0x40000000;
177     cpu->isar.id_mmfr2 = 0x01260000;
178     cpu->isar.id_mmfr3 = 0x02102211;
179     cpu->isar.id_isar0 = 0x02101110;
180     cpu->isar.id_isar1 = 0x13112111;
181     cpu->isar.id_isar2 = 0x21232042;
182     cpu->isar.id_isar3 = 0x01112131;
183     cpu->isar.id_isar4 = 0x00011142;
184     cpu->isar.id_isar5 = 0x00011121;
185     cpu->isar.id_aa64pfr0 = 0x00002222;
186     cpu->isar.id_aa64dfr0 = 0x10305106;
187     cpu->isar.id_aa64isar0 = 0x00011120;
188     cpu->isar.id_aa64mmfr0 = 0x00001124;
189     cpu->isar.dbgdidr = 0x3516d000;
190     cpu->isar.reset_pmcr_el0 = 0x41023000;
191     cpu->clidr = 0x0a200023;
192     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
193     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
194     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
195     cpu->dcz_blocksize = 4; /* 64 bytes */
196     cpu->gic_num_lrs = 4;
197     cpu->gic_vpribits = 5;
198     cpu->gic_vprebits = 5;
199     cpu->gic_pribits = 5;
200     define_cortex_a72_a57_a53_cp_reginfo(cpu);
201 }
202 
203 static void aarch64_a76_initfn(Object *obj)
204 {
205     ARMCPU *cpu = ARM_CPU(obj);
206 
207     cpu->dtb_compatible = "arm,cortex-a76";
208     set_feature(&cpu->env, ARM_FEATURE_V8);
209     set_feature(&cpu->env, ARM_FEATURE_NEON);
210     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
211     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
212     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
213     set_feature(&cpu->env, ARM_FEATURE_EL2);
214     set_feature(&cpu->env, ARM_FEATURE_EL3);
215     set_feature(&cpu->env, ARM_FEATURE_PMU);
216 
217     /* Ordered by B2.4 AArch64 registers by functional group */
218     cpu->clidr = 0x82000023;
219     cpu->ctr = 0x8444C004;
220     cpu->dcz_blocksize = 4;
221     cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
222     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
223     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
224     cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
225     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
226     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
227     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
228     cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
229     cpu->id_afr0       = 0x00000000;
230     cpu->isar.id_dfr0  = 0x04010088;
231     cpu->isar.id_isar0 = 0x02101110;
232     cpu->isar.id_isar1 = 0x13112111;
233     cpu->isar.id_isar2 = 0x21232042;
234     cpu->isar.id_isar3 = 0x01112131;
235     cpu->isar.id_isar4 = 0x00010142;
236     cpu->isar.id_isar5 = 0x01011121;
237     cpu->isar.id_isar6 = 0x00000010;
238     cpu->isar.id_mmfr0 = 0x10201105;
239     cpu->isar.id_mmfr1 = 0x40000000;
240     cpu->isar.id_mmfr2 = 0x01260000;
241     cpu->isar.id_mmfr3 = 0x02122211;
242     cpu->isar.id_mmfr4 = 0x00021110;
243     cpu->isar.id_pfr0  = 0x10010131;
244     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
245     cpu->isar.id_pfr2  = 0x00000011;
246     cpu->midr = 0x414fd0b1;          /* r4p1 */
247     cpu->revidr = 0;
248 
249     /* From B2.18 CCSIDR_EL1 */
250     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
251     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
252     cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
253 
254     /* From B2.93 SCTLR_EL3 */
255     cpu->reset_sctlr = 0x30c50838;
256 
257     /* From B4.23 ICH_VTR_EL2 */
258     cpu->gic_num_lrs = 4;
259     cpu->gic_vpribits = 5;
260     cpu->gic_vprebits = 5;
261     cpu->gic_pribits = 5;
262 
263     /* From B5.1 AdvSIMD AArch64 register summary */
264     cpu->isar.mvfr0 = 0x10110222;
265     cpu->isar.mvfr1 = 0x13211111;
266     cpu->isar.mvfr2 = 0x00000043;
267 
268     /* From D5.1 AArch64 PMU register summary */
269     cpu->isar.reset_pmcr_el0 = 0x410b3000;
270 }
271 
272 static void aarch64_neoverse_n1_initfn(Object *obj)
273 {
274     ARMCPU *cpu = ARM_CPU(obj);
275 
276     cpu->dtb_compatible = "arm,neoverse-n1";
277     set_feature(&cpu->env, ARM_FEATURE_V8);
278     set_feature(&cpu->env, ARM_FEATURE_NEON);
279     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
280     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
281     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
282     set_feature(&cpu->env, ARM_FEATURE_EL2);
283     set_feature(&cpu->env, ARM_FEATURE_EL3);
284     set_feature(&cpu->env, ARM_FEATURE_PMU);
285 
286     /* Ordered by B2.4 AArch64 registers by functional group */
287     cpu->clidr = 0x82000023;
288     cpu->ctr = 0x8444c004;
289     cpu->dcz_blocksize = 4;
290     cpu->isar.id_aa64dfr0  = 0x0000000110305408ull;
291     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
292     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
293     cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
294     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
295     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
296     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
297     cpu->isar.id_aa64pfr1  = 0x0000000000000020ull;
298     cpu->id_afr0       = 0x00000000;
299     cpu->isar.id_dfr0  = 0x04010088;
300     cpu->isar.id_isar0 = 0x02101110;
301     cpu->isar.id_isar1 = 0x13112111;
302     cpu->isar.id_isar2 = 0x21232042;
303     cpu->isar.id_isar3 = 0x01112131;
304     cpu->isar.id_isar4 = 0x00010142;
305     cpu->isar.id_isar5 = 0x01011121;
306     cpu->isar.id_isar6 = 0x00000010;
307     cpu->isar.id_mmfr0 = 0x10201105;
308     cpu->isar.id_mmfr1 = 0x40000000;
309     cpu->isar.id_mmfr2 = 0x01260000;
310     cpu->isar.id_mmfr3 = 0x02122211;
311     cpu->isar.id_mmfr4 = 0x00021110;
312     cpu->isar.id_pfr0  = 0x10010131;
313     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
314     cpu->isar.id_pfr2  = 0x00000011;
315     cpu->midr = 0x414fd0c1;          /* r4p1 */
316     cpu->revidr = 0;
317 
318     /* From B2.23 CCSIDR_EL1 */
319     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
320     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
321     cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
322 
323     /* From B2.98 SCTLR_EL3 */
324     cpu->reset_sctlr = 0x30c50838;
325 
326     /* From B4.23 ICH_VTR_EL2 */
327     cpu->gic_num_lrs = 4;
328     cpu->gic_vpribits = 5;
329     cpu->gic_vprebits = 5;
330     cpu->gic_pribits = 5;
331 
332     /* From B5.1 AdvSIMD AArch64 register summary */
333     cpu->isar.mvfr0 = 0x10110222;
334     cpu->isar.mvfr1 = 0x13211111;
335     cpu->isar.mvfr2 = 0x00000043;
336 
337     /* From D5.1 AArch64 PMU register summary */
338     cpu->isar.reset_pmcr_el0 = 0x410c3000;
339 }
340 
341 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
342 {
343     /*
344      * If any vector lengths are explicitly enabled with sve<N> properties,
345      * then all other lengths are implicitly disabled.  If sve-max-vq is
346      * specified then it is the same as explicitly enabling all lengths
347      * up to and including the specified maximum, which means all larger
348      * lengths will be implicitly disabled.  If no sve<N> properties
349      * are enabled and sve-max-vq is not specified, then all lengths not
350      * explicitly disabled will be enabled.  Additionally, all power-of-two
351      * vector lengths less than the maximum enabled length will be
352      * automatically enabled and all vector lengths larger than the largest
353      * disabled power-of-two vector length will be automatically disabled.
354      * Errors are generated if the user provided input that interferes with
355      * any of the above.  Finally, if SVE is not disabled, then at least one
356      * vector length must be enabled.
357      */
358     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
359     uint32_t vq, max_vq = 0;
360 
361     /*
362      * CPU models specify a set of supported vector lengths which are
363      * enabled by default.  Attempting to enable any vector length not set
364      * in the supported bitmap results in an error.  When KVM is enabled we
365      * fetch the supported bitmap from the host.
366      */
367     if (kvm_enabled() && kvm_arm_sve_supported()) {
368         kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported);
369     } else if (kvm_enabled()) {
370         assert(!cpu_isar_feature(aa64_sve, cpu));
371     }
372 
373     /*
374      * Process explicit sve<N> properties.
375      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
376      * Check first for any sve<N> enabled.
377      */
378     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
379         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
380 
381         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
382             error_setg(errp, "cannot enable sve%d", max_vq * 128);
383             error_append_hint(errp, "sve%d is larger than the maximum vector "
384                               "length, sve-max-vq=%d (%d bits)\n",
385                               max_vq * 128, cpu->sve_max_vq,
386                               cpu->sve_max_vq * 128);
387             return;
388         }
389 
390         if (kvm_enabled()) {
391             /*
392              * For KVM we have to automatically enable all supported unitialized
393              * lengths, even when the smaller lengths are not all powers-of-two.
394              */
395             bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq);
396             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
397         } else {
398             /* Propagate enabled bits down through required powers-of-two. */
399             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
400                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
401                     set_bit(vq - 1, cpu->sve_vq_map);
402                 }
403             }
404         }
405     } else if (cpu->sve_max_vq == 0) {
406         /*
407          * No explicit bits enabled, and no implicit bits from sve-max-vq.
408          */
409         if (!cpu_isar_feature(aa64_sve, cpu)) {
410             /* SVE is disabled and so are all vector lengths.  Good. */
411             return;
412         }
413 
414         if (kvm_enabled()) {
415             /* Disabling a supported length disables all larger lengths. */
416             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
417                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
418                     test_bit(vq - 1, cpu->sve_vq_supported)) {
419                     break;
420                 }
421             }
422         } else {
423             /* Disabling a power-of-two disables all larger lengths. */
424             for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
425                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
426                     break;
427                 }
428             }
429         }
430 
431         max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
432         bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported,
433                       cpu->sve_vq_init, max_vq);
434         if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
435             error_setg(errp, "cannot disable sve%d", vq * 128);
436             error_append_hint(errp, "Disabling sve%d results in all "
437                               "vector lengths being disabled.\n",
438                               vq * 128);
439             error_append_hint(errp, "With SVE enabled, at least one "
440                               "vector length must be enabled.\n");
441             return;
442         }
443 
444         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
445     }
446 
447     /*
448      * Process the sve-max-vq property.
449      * Note that we know from the above that no bit above
450      * sve-max-vq is currently set.
451      */
452     if (cpu->sve_max_vq != 0) {
453         max_vq = cpu->sve_max_vq;
454 
455         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
456             test_bit(max_vq - 1, cpu->sve_vq_init)) {
457             error_setg(errp, "cannot disable sve%d", max_vq * 128);
458             error_append_hint(errp, "The maximum vector length must be "
459                               "enabled, sve-max-vq=%d (%d bits)\n",
460                               max_vq, max_vq * 128);
461             return;
462         }
463 
464         /* Set all bits not explicitly set within sve-max-vq. */
465         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
466         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
467     }
468 
469     /*
470      * We should know what max-vq is now.  Also, as we're done
471      * manipulating sve-vq-map, we ensure any bits above max-vq
472      * are clear, just in case anybody looks.
473      */
474     assert(max_vq != 0);
475     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
476 
477     /* Ensure the set of lengths matches what is supported. */
478     bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq);
479     if (!bitmap_empty(tmp, max_vq)) {
480         vq = find_last_bit(tmp, max_vq) + 1;
481         if (test_bit(vq - 1, cpu->sve_vq_map)) {
482             if (cpu->sve_max_vq) {
483                 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
484                 error_append_hint(errp, "This CPU does not support "
485                                   "the vector length %d-bits.\n", vq * 128);
486                 error_append_hint(errp, "It may not be possible to use "
487                                   "sve-max-vq with this CPU. Try "
488                                   "using only sve<N> properties.\n");
489             } else {
490                 error_setg(errp, "cannot enable sve%d", vq * 128);
491                 error_append_hint(errp, "This CPU does not support "
492                                   "the vector length %d-bits.\n", vq * 128);
493             }
494             return;
495         } else {
496             if (kvm_enabled()) {
497                 error_setg(errp, "cannot disable sve%d", vq * 128);
498                 error_append_hint(errp, "The KVM host requires all "
499                                   "supported vector lengths smaller "
500                                   "than %d bits to also be enabled.\n",
501                                   max_vq * 128);
502                 return;
503             } else {
504                 /* Ensure all required powers-of-two are enabled. */
505                 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
506                     if (!test_bit(vq - 1, cpu->sve_vq_map)) {
507                         error_setg(errp, "cannot disable sve%d", vq * 128);
508                         error_append_hint(errp, "sve%d is required as it "
509                                           "is a power-of-two length smaller "
510                                           "than the maximum, sve%d\n",
511                                           vq * 128, max_vq * 128);
512                         return;
513                     }
514                 }
515             }
516         }
517     }
518 
519     /*
520      * Now that we validated all our vector lengths, the only question
521      * left to answer is if we even want SVE at all.
522      */
523     if (!cpu_isar_feature(aa64_sve, cpu)) {
524         error_setg(errp, "cannot enable sve%d", max_vq * 128);
525         error_append_hint(errp, "SVE must be enabled to enable vector "
526                           "lengths.\n");
527         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
528         return;
529     }
530 
531     /* From now on sve_max_vq is the actual maximum supported length. */
532     cpu->sve_max_vq = max_vq;
533 }
534 
535 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
536                                    void *opaque, Error **errp)
537 {
538     ARMCPU *cpu = ARM_CPU(obj);
539     uint32_t value;
540 
541     /* All vector lengths are disabled when SVE is off. */
542     if (!cpu_isar_feature(aa64_sve, cpu)) {
543         value = 0;
544     } else {
545         value = cpu->sve_max_vq;
546     }
547     visit_type_uint32(v, name, &value, errp);
548 }
549 
550 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
551                                    void *opaque, Error **errp)
552 {
553     ARMCPU *cpu = ARM_CPU(obj);
554     uint32_t max_vq;
555 
556     if (!visit_type_uint32(v, name, &max_vq, errp)) {
557         return;
558     }
559 
560     if (kvm_enabled() && !kvm_arm_sve_supported()) {
561         error_setg(errp, "cannot set sve-max-vq");
562         error_append_hint(errp, "SVE not supported by KVM on this host\n");
563         return;
564     }
565 
566     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
567         error_setg(errp, "unsupported SVE vector length");
568         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
569                           ARM_MAX_VQ);
570         return;
571     }
572 
573     cpu->sve_max_vq = max_vq;
574 }
575 
576 /*
577  * Note that cpu_arm_get/set_sve_vq cannot use the simpler
578  * object_property_add_bool interface because they make use
579  * of the contents of "name" to determine which bit on which
580  * to operate.
581  */
582 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
583                                void *opaque, Error **errp)
584 {
585     ARMCPU *cpu = ARM_CPU(obj);
586     uint32_t vq = atoi(&name[3]) / 128;
587     bool value;
588 
589     /* All vector lengths are disabled when SVE is off. */
590     if (!cpu_isar_feature(aa64_sve, cpu)) {
591         value = false;
592     } else {
593         value = test_bit(vq - 1, cpu->sve_vq_map);
594     }
595     visit_type_bool(v, name, &value, errp);
596 }
597 
598 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
599                                void *opaque, Error **errp)
600 {
601     ARMCPU *cpu = ARM_CPU(obj);
602     uint32_t vq = atoi(&name[3]) / 128;
603     bool value;
604 
605     if (!visit_type_bool(v, name, &value, errp)) {
606         return;
607     }
608 
609     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
610         error_setg(errp, "cannot enable %s", name);
611         error_append_hint(errp, "SVE not supported by KVM on this host\n");
612         return;
613     }
614 
615     if (value) {
616         set_bit(vq - 1, cpu->sve_vq_map);
617     } else {
618         clear_bit(vq - 1, cpu->sve_vq_map);
619     }
620     set_bit(vq - 1, cpu->sve_vq_init);
621 }
622 
623 static bool cpu_arm_get_sve(Object *obj, Error **errp)
624 {
625     ARMCPU *cpu = ARM_CPU(obj);
626     return cpu_isar_feature(aa64_sve, cpu);
627 }
628 
629 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
630 {
631     ARMCPU *cpu = ARM_CPU(obj);
632     uint64_t t;
633 
634     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
635         error_setg(errp, "'sve' feature not supported by KVM on this host");
636         return;
637     }
638 
639     t = cpu->isar.id_aa64pfr0;
640     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
641     cpu->isar.id_aa64pfr0 = t;
642 }
643 
644 #ifdef CONFIG_USER_ONLY
645 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
646 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
647                                             const char *name, void *opaque,
648                                             Error **errp)
649 {
650     ARMCPU *cpu = ARM_CPU(obj);
651     int32_t default_len, default_vq, remainder;
652 
653     if (!visit_type_int32(v, name, &default_len, errp)) {
654         return;
655     }
656 
657     /* Undocumented, but the kernel allows -1 to indicate "maximum". */
658     if (default_len == -1) {
659         cpu->sve_default_vq = ARM_MAX_VQ;
660         return;
661     }
662 
663     default_vq = default_len / 16;
664     remainder = default_len % 16;
665 
666     /*
667      * Note that the 512 max comes from include/uapi/asm/sve_context.h
668      * and is the maximum architectural width of ZCR_ELx.LEN.
669      */
670     if (remainder || default_vq < 1 || default_vq > 512) {
671         error_setg(errp, "cannot set sve-default-vector-length");
672         if (remainder) {
673             error_append_hint(errp, "Vector length not a multiple of 16\n");
674         } else if (default_vq < 1) {
675             error_append_hint(errp, "Vector length smaller than 16\n");
676         } else {
677             error_append_hint(errp, "Vector length larger than %d\n",
678                               512 * 16);
679         }
680         return;
681     }
682 
683     cpu->sve_default_vq = default_vq;
684 }
685 
686 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
687                                             const char *name, void *opaque,
688                                             Error **errp)
689 {
690     ARMCPU *cpu = ARM_CPU(obj);
691     int32_t value = cpu->sve_default_vq * 16;
692 
693     visit_type_int32(v, name, &value, errp);
694 }
695 #endif
696 
697 void aarch64_add_sve_properties(Object *obj)
698 {
699     uint32_t vq;
700 
701     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
702 
703     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
704         char name[8];
705         sprintf(name, "sve%d", vq * 128);
706         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
707                             cpu_arm_set_sve_vq, NULL, NULL);
708     }
709 
710 #ifdef CONFIG_USER_ONLY
711     /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
712     object_property_add(obj, "sve-default-vector-length", "int32",
713                         cpu_arm_get_sve_default_vec_len,
714                         cpu_arm_set_sve_default_vec_len, NULL, NULL);
715 #endif
716 }
717 
718 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
719 {
720     int arch_val = 0, impdef_val = 0;
721     uint64_t t;
722 
723     /* Exit early if PAuth is enabled, and fall through to disable it */
724     if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
725         if (!cpu_isar_feature(aa64_pauth, cpu)) {
726             error_setg(errp, "'pauth' feature not supported by %s on this host",
727                        kvm_enabled() ? "KVM" : "hvf");
728         }
729 
730         return;
731     }
732 
733     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
734     if (cpu->prop_pauth) {
735         if (cpu->prop_pauth_impdef) {
736             impdef_val = 1;
737         } else {
738             arch_val = 1;
739         }
740     } else if (cpu->prop_pauth_impdef) {
741         error_setg(errp, "cannot enable pauth-impdef without pauth");
742         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
743     }
744 
745     t = cpu->isar.id_aa64isar1;
746     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
747     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
748     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
749     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
750     cpu->isar.id_aa64isar1 = t;
751 }
752 
753 static Property arm_cpu_pauth_property =
754     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
755 static Property arm_cpu_pauth_impdef_property =
756     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
757 
758 void aarch64_add_pauth_properties(Object *obj)
759 {
760     ARMCPU *cpu = ARM_CPU(obj);
761 
762     /* Default to PAUTH on, with the architected algorithm on TCG. */
763     qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
764     if (kvm_enabled() || hvf_enabled()) {
765         /*
766          * Mirror PAuth support from the probed sysregs back into the
767          * property for KVM or hvf. Is it just a bit backward? Yes it is!
768          * Note that prop_pauth is true whether the host CPU supports the
769          * architected QARMA5 algorithm or the IMPDEF one. We don't
770          * provide the separate pauth-impdef property for KVM or hvf,
771          * only for TCG.
772          */
773         cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
774     } else {
775         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
776     }
777 }
778 
779 static Property arm_cpu_lpa2_property =
780     DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
781 
782 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
783 {
784     uint64_t t;
785 
786     /*
787      * We only install the property for tcg -cpu max; this is the
788      * only situation in which the cpu field can be true.
789      */
790     if (!cpu->prop_lpa2) {
791         return;
792     }
793 
794     t = cpu->isar.id_aa64mmfr0;
795     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2);   /* 16k pages w/ LPA2 */
796     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1);    /*  4k pages w/ LPA2 */
797     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
798     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3);  /*  4k stage2 w/ LPA2 */
799     cpu->isar.id_aa64mmfr0 = t;
800 }
801 
802 static void aarch64_host_initfn(Object *obj)
803 {
804 #if defined(CONFIG_KVM)
805     ARMCPU *cpu = ARM_CPU(obj);
806     kvm_arm_set_cpu_features_from_host(cpu);
807     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
808         aarch64_add_sve_properties(obj);
809         aarch64_add_pauth_properties(obj);
810     }
811 #elif defined(CONFIG_HVF)
812     ARMCPU *cpu = ARM_CPU(obj);
813     hvf_arm_set_cpu_features_from_host(cpu);
814     aarch64_add_pauth_properties(obj);
815 #else
816     g_assert_not_reached();
817 #endif
818 }
819 
820 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
821  * otherwise, a CPU with as many features enabled as our emulation supports.
822  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
823  * this only needs to handle 64 bits.
824  */
825 static void aarch64_max_initfn(Object *obj)
826 {
827     ARMCPU *cpu = ARM_CPU(obj);
828     uint64_t t;
829     uint32_t u;
830 
831     if (kvm_enabled() || hvf_enabled()) {
832         /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
833         aarch64_host_initfn(obj);
834         return;
835     }
836 
837     /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
838 
839     aarch64_a57_initfn(obj);
840 
841     /*
842      * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
843      * one and try to apply errata workarounds or use impdef features we
844      * don't provide.
845      * An IMPLEMENTER field of 0 means "reserved for software use";
846      * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
847      * to see which features are present";
848      * the VARIANT, PARTNUM and REVISION fields are all implementation
849      * defined and we choose to define PARTNUM just in case guest
850      * code needs to distinguish this QEMU CPU from other software
851      * implementations, though this shouldn't be needed.
852      */
853     t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
854     t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
855     t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
856     t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
857     t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
858     cpu->midr = t;
859 
860     /*
861      * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
862      * are zero.
863      */
864     u = cpu->clidr;
865     u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
866     u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
867     cpu->clidr = u;
868 
869     t = cpu->isar.id_aa64isar0;
870     t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2);      /* FEAT_PMULL */
871     t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);     /* FEAT_SHA1 */
872     t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2);     /* FEAT_SHA512 */
873     t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
874     t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);   /* FEAT_LSE */
875     t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);      /* FEAT_RDM */
876     t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);     /* FEAT_SHA3 */
877     t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);      /* FEAT_SM3 */
878     t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);      /* FEAT_SM4 */
879     t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);       /* FEAT_DotProd */
880     t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);      /* FEAT_FHM */
881     t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2);       /* FEAT_FlagM2 */
882     t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2);      /* FEAT_TLBIRANGE */
883     t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);     /* FEAT_RNG */
884     cpu->isar.id_aa64isar0 = t;
885 
886     t = cpu->isar.id_aa64isar1;
887     t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);      /* FEAT_DPB2 */
888     t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);    /* FEAT_JSCVT */
889     t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);     /* FEAT_FCMA */
890     t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2);    /* FEAT_LRCPC2 */
891     t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);  /* FEAT_FRINTTS */
892     t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);       /* FEAT_SB */
893     t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);  /* FEAT_SPECRES */
894     t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);     /* FEAT_BF16 */
895     t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1);      /* FEAT_DGH */
896     t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);     /* FEAT_I8MM */
897     cpu->isar.id_aa64isar1 = t;
898 
899     t = cpu->isar.id_aa64pfr0;
900     t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);        /* FEAT_FP16 */
901     t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);   /* FEAT_FP16 */
902     t = FIELD_DP64(t, ID_AA64PFR0, RAS, 1);       /* FEAT_RAS */
903     t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
904     t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);      /* FEAT_SEL2 */
905     t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);       /* FEAT_DIT */
906     t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2);      /* FEAT_CSV2_2 */
907     t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1);      /* FEAT_CSV3 */
908     cpu->isar.id_aa64pfr0 = t;
909 
910     t = cpu->isar.id_aa64pfr1;
911     t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);        /* FEAT_BTI */
912     t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);      /* FEAT_SSBS2 */
913     /*
914      * Begin with full support for MTE. This will be downgraded to MTE=0
915      * during realize if the board provides no tag memory, much like
916      * we do for EL2 with the virtualization=on property.
917      */
918     t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);       /* FEAT_MTE3 */
919     t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
920     cpu->isar.id_aa64pfr1 = t;
921 
922     t = cpu->isar.id_aa64mmfr0;
923     t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
924     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1);   /* 16k pages supported */
925     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
926     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
927     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2);  /*  4k stage2 supported */
928     cpu->isar.id_aa64mmfr0 = t;
929 
930     t = cpu->isar.id_aa64mmfr1;
931     t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
932     t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);       /* FEAT_VHE */
933     t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1);     /* FEAT_HPDS */
934     t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);       /* FEAT_LOR */
935     t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2);      /* FEAT_PAN2 */
936     t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1);      /* FEAT_XNX */
937     t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1);      /* FEAT_HCX */
938     cpu->isar.id_aa64mmfr1 = t;
939 
940     t = cpu->isar.id_aa64mmfr2;
941     t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1);      /* FEAT_TTCNP */
942     t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);      /* FEAT_UAO */
943     t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1);     /* FEAT_IESB */
944     t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1);  /* FEAT_LVA */
945     t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1);       /* FEAT_TTST */
946     t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1);      /* FEAT_IDST */
947     t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1);      /* FEAT_S2FWB */
948     t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1);      /* FEAT_TTL */
949     t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2);      /* FEAT_BBM at level 2 */
950     cpu->isar.id_aa64mmfr2 = t;
951 
952     t = cpu->isar.id_aa64zfr0;
953     t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
954     t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);       /* FEAT_SVE_PMULL128 */
955     t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);   /* FEAT_SVE_BitPerm */
956     t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);  /* FEAT_BF16 */
957     t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);      /* FEAT_SVE_SHA3 */
958     t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);       /* FEAT_SVE_SM4 */
959     t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);      /* FEAT_I8MM */
960     t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);     /* FEAT_F32MM */
961     t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);     /* FEAT_F64MM */
962     cpu->isar.id_aa64zfr0 = t;
963 
964     t = cpu->isar.id_aa64dfr0;
965     t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9);  /* FEAT_Debugv8p4 */
966     t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5);    /* FEAT_PMUv3p4 */
967     cpu->isar.id_aa64dfr0 = t;
968 
969     /* Replicate the same data to the 32-bit id registers.  */
970     aa32_max_features(cpu);
971 
972 #ifdef CONFIG_USER_ONLY
973     /*
974      * For usermode -cpu max we can use a larger and more efficient DCZ
975      * blocksize since we don't have to follow what the hardware does.
976      */
977     cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
978     cpu->dcz_blocksize = 7; /*  512 bytes */
979 #endif
980 
981     bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ);
982 
983     aarch64_add_pauth_properties(obj);
984     aarch64_add_sve_properties(obj);
985     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
986                         cpu_max_set_sve_max_vq, NULL, NULL);
987     qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
988 }
989 
990 static void aarch64_a64fx_initfn(Object *obj)
991 {
992     ARMCPU *cpu = ARM_CPU(obj);
993 
994     cpu->dtb_compatible = "arm,a64fx";
995     set_feature(&cpu->env, ARM_FEATURE_V8);
996     set_feature(&cpu->env, ARM_FEATURE_NEON);
997     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
998     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
999     set_feature(&cpu->env, ARM_FEATURE_EL2);
1000     set_feature(&cpu->env, ARM_FEATURE_EL3);
1001     set_feature(&cpu->env, ARM_FEATURE_PMU);
1002     cpu->midr = 0x461f0010;
1003     cpu->revidr = 0x00000000;
1004     cpu->ctr = 0x86668006;
1005     cpu->reset_sctlr = 0x30000180;
1006     cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
1007     cpu->isar.id_aa64pfr1 = 0x0000000000000000;
1008     cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1009     cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1010     cpu->id_aa64afr0 = 0x0000000000000000;
1011     cpu->id_aa64afr1 = 0x0000000000000000;
1012     cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1013     cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1014     cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1015     cpu->isar.id_aa64isar0 = 0x0000000010211120;
1016     cpu->isar.id_aa64isar1 = 0x0000000000010001;
1017     cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1018     cpu->clidr = 0x0000000080000023;
1019     cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1020     cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1021     cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1022     cpu->dcz_blocksize = 6; /* 256 bytes */
1023     cpu->gic_num_lrs = 4;
1024     cpu->gic_vpribits = 5;
1025     cpu->gic_vprebits = 5;
1026     cpu->gic_pribits = 5;
1027 
1028     /* Suppport of A64FX's vector length are 128,256 and 512bit only */
1029     aarch64_add_sve_properties(obj);
1030     bitmap_zero(cpu->sve_vq_supported, ARM_MAX_VQ);
1031     set_bit(0, cpu->sve_vq_supported); /* 128bit */
1032     set_bit(1, cpu->sve_vq_supported); /* 256bit */
1033     set_bit(3, cpu->sve_vq_supported); /* 512bit */
1034 
1035     cpu->isar.reset_pmcr_el0 = 0x46014040;
1036 
1037     /* TODO:  Add A64FX specific HPC extension registers */
1038 }
1039 
1040 static const ARMCPUInfo aarch64_cpus[] = {
1041     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
1042     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
1043     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
1044     { .name = "cortex-a76",         .initfn = aarch64_a76_initfn },
1045     { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
1046     { .name = "neoverse-n1",        .initfn = aarch64_neoverse_n1_initfn },
1047     { .name = "max",                .initfn = aarch64_max_initfn },
1048 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1049     { .name = "host",               .initfn = aarch64_host_initfn },
1050 #endif
1051 };
1052 
1053 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1054 {
1055     ARMCPU *cpu = ARM_CPU(obj);
1056 
1057     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1058 }
1059 
1060 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1061 {
1062     ARMCPU *cpu = ARM_CPU(obj);
1063 
1064     /* At this time, this property is only allowed if KVM is enabled.  This
1065      * restriction allows us to avoid fixing up functionality that assumes a
1066      * uniform execution state like do_interrupt.
1067      */
1068     if (value == false) {
1069         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1070             error_setg(errp, "'aarch64' feature cannot be disabled "
1071                              "unless KVM is enabled and 32-bit EL1 "
1072                              "is supported");
1073             return;
1074         }
1075         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1076     } else {
1077         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1078     }
1079 }
1080 
1081 static void aarch64_cpu_finalizefn(Object *obj)
1082 {
1083 }
1084 
1085 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1086 {
1087     return g_strdup("aarch64");
1088 }
1089 
1090 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1091 {
1092     CPUClass *cc = CPU_CLASS(oc);
1093 
1094     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1095     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1096     cc->gdb_num_core_regs = 34;
1097     cc->gdb_core_xml_file = "aarch64-core.xml";
1098     cc->gdb_arch_name = aarch64_gdb_arch_name;
1099 
1100     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1101                                    aarch64_cpu_set_aarch64);
1102     object_class_property_set_description(oc, "aarch64",
1103                                           "Set on/off to enable/disable aarch64 "
1104                                           "execution state ");
1105 }
1106 
1107 static void aarch64_cpu_instance_init(Object *obj)
1108 {
1109     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1110 
1111     acc->info->initfn(obj);
1112     arm_cpu_post_init(obj);
1113 }
1114 
1115 static void cpu_register_class_init(ObjectClass *oc, void *data)
1116 {
1117     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1118 
1119     acc->info = data;
1120 }
1121 
1122 void aarch64_cpu_register(const ARMCPUInfo *info)
1123 {
1124     TypeInfo type_info = {
1125         .parent = TYPE_AARCH64_CPU,
1126         .instance_size = sizeof(ARMCPU),
1127         .instance_init = aarch64_cpu_instance_init,
1128         .class_size = sizeof(ARMCPUClass),
1129         .class_init = info->class_init ?: cpu_register_class_init,
1130         .class_data = (void *)info,
1131     };
1132 
1133     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1134     type_register(&type_info);
1135     g_free((void *)type_info.name);
1136 }
1137 
1138 static const TypeInfo aarch64_cpu_type_info = {
1139     .name = TYPE_AARCH64_CPU,
1140     .parent = TYPE_ARM_CPU,
1141     .instance_size = sizeof(ARMCPU),
1142     .instance_finalize = aarch64_cpu_finalizefn,
1143     .abstract = true,
1144     .class_size = sizeof(AArch64CPUClass),
1145     .class_init = aarch64_cpu_class_init,
1146 };
1147 
1148 static void aarch64_cpu_register_types(void)
1149 {
1150     size_t i;
1151 
1152     type_register_static(&aarch64_cpu_type_info);
1153 
1154     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1155         aarch64_cpu_register(&aarch64_cpus[i]);
1156     }
1157 }
1158 
1159 type_init(aarch64_cpu_register_types)
1160