xref: /openbmc/qemu/target/arm/cpu64.c (revision d6bafaf4)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "kvm_arm.h"
33 #include "qapi/visitor.h"
34 #include "hw/qdev-properties.h"
35 
36 
37 #ifndef CONFIG_USER_ONLY
38 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40     ARMCPU *cpu = env_archcpu(env);
41 
42     /* Number of cores is in [25:24]; otherwise we RAZ */
43     return (cpu->core_count - 1) << 24;
44 }
45 #endif
46 
47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
48 #ifndef CONFIG_USER_ONLY
49     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
50       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
51       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
52       .writefn = arm_cp_write_ignore },
53     { .name = "L2CTLR",
54       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
55       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
56       .writefn = arm_cp_write_ignore },
57 #endif
58     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
59       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
60       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
61     { .name = "L2ECTLR",
62       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
63       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
65       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
66       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
68       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
69       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70     { .name = "CPUACTLR",
71       .cp = 15, .opc1 = 0, .crm = 15,
72       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
73     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
74       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
75       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76     { .name = "CPUECTLR",
77       .cp = 15, .opc1 = 1, .crm = 15,
78       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
80       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
81       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82     { .name = "CPUMERRSR",
83       .cp = 15, .opc1 = 2, .crm = 15,
84       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
86       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
87       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88     { .name = "L2MERRSR",
89       .cp = 15, .opc1 = 3, .crm = 15,
90       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91     REGINFO_SENTINEL
92 };
93 
94 static void aarch64_a57_initfn(Object *obj)
95 {
96     ARMCPU *cpu = ARM_CPU(obj);
97 
98     cpu->dtb_compatible = "arm,cortex-a57";
99     set_feature(&cpu->env, ARM_FEATURE_V8);
100     set_feature(&cpu->env, ARM_FEATURE_NEON);
101     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
102     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
103     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
104     set_feature(&cpu->env, ARM_FEATURE_EL2);
105     set_feature(&cpu->env, ARM_FEATURE_EL3);
106     set_feature(&cpu->env, ARM_FEATURE_PMU);
107     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
108     cpu->midr = 0x411fd070;
109     cpu->revidr = 0x00000000;
110     cpu->reset_fpsid = 0x41034070;
111     cpu->isar.mvfr0 = 0x10110222;
112     cpu->isar.mvfr1 = 0x12111111;
113     cpu->isar.mvfr2 = 0x00000043;
114     cpu->ctr = 0x8444c004;
115     cpu->reset_sctlr = 0x00c50838;
116     cpu->isar.id_pfr0 = 0x00000131;
117     cpu->isar.id_pfr1 = 0x00011011;
118     cpu->isar.id_dfr0 = 0x03010066;
119     cpu->id_afr0 = 0x00000000;
120     cpu->isar.id_mmfr0 = 0x10101105;
121     cpu->isar.id_mmfr1 = 0x40000000;
122     cpu->isar.id_mmfr2 = 0x01260000;
123     cpu->isar.id_mmfr3 = 0x02102211;
124     cpu->isar.id_isar0 = 0x02101110;
125     cpu->isar.id_isar1 = 0x13112111;
126     cpu->isar.id_isar2 = 0x21232042;
127     cpu->isar.id_isar3 = 0x01112131;
128     cpu->isar.id_isar4 = 0x00011142;
129     cpu->isar.id_isar5 = 0x00011121;
130     cpu->isar.id_isar6 = 0;
131     cpu->isar.id_aa64pfr0 = 0x00002222;
132     cpu->isar.id_aa64dfr0 = 0x10305106;
133     cpu->isar.id_aa64isar0 = 0x00011120;
134     cpu->isar.id_aa64mmfr0 = 0x00001124;
135     cpu->isar.dbgdidr = 0x3516d000;
136     cpu->clidr = 0x0a200023;
137     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
138     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
139     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
140     cpu->dcz_blocksize = 4; /* 64 bytes */
141     cpu->gic_num_lrs = 4;
142     cpu->gic_vpribits = 5;
143     cpu->gic_vprebits = 5;
144     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
145 }
146 
147 static void aarch64_a53_initfn(Object *obj)
148 {
149     ARMCPU *cpu = ARM_CPU(obj);
150 
151     cpu->dtb_compatible = "arm,cortex-a53";
152     set_feature(&cpu->env, ARM_FEATURE_V8);
153     set_feature(&cpu->env, ARM_FEATURE_NEON);
154     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
155     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
156     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
157     set_feature(&cpu->env, ARM_FEATURE_EL2);
158     set_feature(&cpu->env, ARM_FEATURE_EL3);
159     set_feature(&cpu->env, ARM_FEATURE_PMU);
160     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
161     cpu->midr = 0x410fd034;
162     cpu->revidr = 0x00000000;
163     cpu->reset_fpsid = 0x41034070;
164     cpu->isar.mvfr0 = 0x10110222;
165     cpu->isar.mvfr1 = 0x12111111;
166     cpu->isar.mvfr2 = 0x00000043;
167     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
168     cpu->reset_sctlr = 0x00c50838;
169     cpu->isar.id_pfr0 = 0x00000131;
170     cpu->isar.id_pfr1 = 0x00011011;
171     cpu->isar.id_dfr0 = 0x03010066;
172     cpu->id_afr0 = 0x00000000;
173     cpu->isar.id_mmfr0 = 0x10101105;
174     cpu->isar.id_mmfr1 = 0x40000000;
175     cpu->isar.id_mmfr2 = 0x01260000;
176     cpu->isar.id_mmfr3 = 0x02102211;
177     cpu->isar.id_isar0 = 0x02101110;
178     cpu->isar.id_isar1 = 0x13112111;
179     cpu->isar.id_isar2 = 0x21232042;
180     cpu->isar.id_isar3 = 0x01112131;
181     cpu->isar.id_isar4 = 0x00011142;
182     cpu->isar.id_isar5 = 0x00011121;
183     cpu->isar.id_isar6 = 0;
184     cpu->isar.id_aa64pfr0 = 0x00002222;
185     cpu->isar.id_aa64dfr0 = 0x10305106;
186     cpu->isar.id_aa64isar0 = 0x00011120;
187     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
188     cpu->isar.dbgdidr = 0x3516d000;
189     cpu->clidr = 0x0a200023;
190     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
191     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
192     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
193     cpu->dcz_blocksize = 4; /* 64 bytes */
194     cpu->gic_num_lrs = 4;
195     cpu->gic_vpribits = 5;
196     cpu->gic_vprebits = 5;
197     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
198 }
199 
200 static void aarch64_a72_initfn(Object *obj)
201 {
202     ARMCPU *cpu = ARM_CPU(obj);
203 
204     cpu->dtb_compatible = "arm,cortex-a72";
205     set_feature(&cpu->env, ARM_FEATURE_V8);
206     set_feature(&cpu->env, ARM_FEATURE_NEON);
207     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
208     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
209     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
210     set_feature(&cpu->env, ARM_FEATURE_EL2);
211     set_feature(&cpu->env, ARM_FEATURE_EL3);
212     set_feature(&cpu->env, ARM_FEATURE_PMU);
213     cpu->midr = 0x410fd083;
214     cpu->revidr = 0x00000000;
215     cpu->reset_fpsid = 0x41034080;
216     cpu->isar.mvfr0 = 0x10110222;
217     cpu->isar.mvfr1 = 0x12111111;
218     cpu->isar.mvfr2 = 0x00000043;
219     cpu->ctr = 0x8444c004;
220     cpu->reset_sctlr = 0x00c50838;
221     cpu->isar.id_pfr0 = 0x00000131;
222     cpu->isar.id_pfr1 = 0x00011011;
223     cpu->isar.id_dfr0 = 0x03010066;
224     cpu->id_afr0 = 0x00000000;
225     cpu->isar.id_mmfr0 = 0x10201105;
226     cpu->isar.id_mmfr1 = 0x40000000;
227     cpu->isar.id_mmfr2 = 0x01260000;
228     cpu->isar.id_mmfr3 = 0x02102211;
229     cpu->isar.id_isar0 = 0x02101110;
230     cpu->isar.id_isar1 = 0x13112111;
231     cpu->isar.id_isar2 = 0x21232042;
232     cpu->isar.id_isar3 = 0x01112131;
233     cpu->isar.id_isar4 = 0x00011142;
234     cpu->isar.id_isar5 = 0x00011121;
235     cpu->isar.id_aa64pfr0 = 0x00002222;
236     cpu->isar.id_aa64dfr0 = 0x10305106;
237     cpu->isar.id_aa64isar0 = 0x00011120;
238     cpu->isar.id_aa64mmfr0 = 0x00001124;
239     cpu->isar.dbgdidr = 0x3516d000;
240     cpu->clidr = 0x0a200023;
241     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
242     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
243     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
244     cpu->dcz_blocksize = 4; /* 64 bytes */
245     cpu->gic_num_lrs = 4;
246     cpu->gic_vpribits = 5;
247     cpu->gic_vprebits = 5;
248     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
249 }
250 
251 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
252 {
253     /*
254      * If any vector lengths are explicitly enabled with sve<N> properties,
255      * then all other lengths are implicitly disabled.  If sve-max-vq is
256      * specified then it is the same as explicitly enabling all lengths
257      * up to and including the specified maximum, which means all larger
258      * lengths will be implicitly disabled.  If no sve<N> properties
259      * are enabled and sve-max-vq is not specified, then all lengths not
260      * explicitly disabled will be enabled.  Additionally, all power-of-two
261      * vector lengths less than the maximum enabled length will be
262      * automatically enabled and all vector lengths larger than the largest
263      * disabled power-of-two vector length will be automatically disabled.
264      * Errors are generated if the user provided input that interferes with
265      * any of the above.  Finally, if SVE is not disabled, then at least one
266      * vector length must be enabled.
267      */
268     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
269     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
270     uint32_t vq, max_vq = 0;
271 
272     /* Collect the set of vector lengths supported by KVM. */
273     bitmap_zero(kvm_supported, ARM_MAX_VQ);
274     if (kvm_enabled() && kvm_arm_sve_supported()) {
275         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
276     } else if (kvm_enabled()) {
277         assert(!cpu_isar_feature(aa64_sve, cpu));
278     }
279 
280     /*
281      * Process explicit sve<N> properties.
282      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
283      * Check first for any sve<N> enabled.
284      */
285     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
286         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
287 
288         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
289             error_setg(errp, "cannot enable sve%d", max_vq * 128);
290             error_append_hint(errp, "sve%d is larger than the maximum vector "
291                               "length, sve-max-vq=%d (%d bits)\n",
292                               max_vq * 128, cpu->sve_max_vq,
293                               cpu->sve_max_vq * 128);
294             return;
295         }
296 
297         if (kvm_enabled()) {
298             /*
299              * For KVM we have to automatically enable all supported unitialized
300              * lengths, even when the smaller lengths are not all powers-of-two.
301              */
302             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
303             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
304         } else {
305             /* Propagate enabled bits down through required powers-of-two. */
306             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
307                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
308                     set_bit(vq - 1, cpu->sve_vq_map);
309                 }
310             }
311         }
312     } else if (cpu->sve_max_vq == 0) {
313         /*
314          * No explicit bits enabled, and no implicit bits from sve-max-vq.
315          */
316         if (!cpu_isar_feature(aa64_sve, cpu)) {
317             /* SVE is disabled and so are all vector lengths.  Good. */
318             return;
319         }
320 
321         if (kvm_enabled()) {
322             /* Disabling a supported length disables all larger lengths. */
323             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
324                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
325                     test_bit(vq - 1, kvm_supported)) {
326                     break;
327                 }
328             }
329             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
330             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
331                           cpu->sve_vq_init, max_vq);
332             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
333                 error_setg(errp, "cannot disable sve%d", vq * 128);
334                 error_append_hint(errp, "Disabling sve%d results in all "
335                                   "vector lengths being disabled.\n",
336                                   vq * 128);
337                 error_append_hint(errp, "With SVE enabled, at least one "
338                                   "vector length must be enabled.\n");
339                 return;
340             }
341         } else {
342             /* Disabling a power-of-two disables all larger lengths. */
343             if (test_bit(0, cpu->sve_vq_init)) {
344                 error_setg(errp, "cannot disable sve128");
345                 error_append_hint(errp, "Disabling sve128 results in all "
346                                   "vector lengths being disabled.\n");
347                 error_append_hint(errp, "With SVE enabled, at least one "
348                                   "vector length must be enabled.\n");
349                 return;
350             }
351             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
352                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
353                     break;
354                 }
355             }
356             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
357             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
358         }
359 
360         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
361     }
362 
363     /*
364      * Process the sve-max-vq property.
365      * Note that we know from the above that no bit above
366      * sve-max-vq is currently set.
367      */
368     if (cpu->sve_max_vq != 0) {
369         max_vq = cpu->sve_max_vq;
370 
371         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
372             test_bit(max_vq - 1, cpu->sve_vq_init)) {
373             error_setg(errp, "cannot disable sve%d", max_vq * 128);
374             error_append_hint(errp, "The maximum vector length must be "
375                               "enabled, sve-max-vq=%d (%d bits)\n",
376                               max_vq, max_vq * 128);
377             return;
378         }
379 
380         /* Set all bits not explicitly set within sve-max-vq. */
381         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
382         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
383     }
384 
385     /*
386      * We should know what max-vq is now.  Also, as we're done
387      * manipulating sve-vq-map, we ensure any bits above max-vq
388      * are clear, just in case anybody looks.
389      */
390     assert(max_vq != 0);
391     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
392 
393     if (kvm_enabled()) {
394         /* Ensure the set of lengths matches what KVM supports. */
395         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
396         if (!bitmap_empty(tmp, max_vq)) {
397             vq = find_last_bit(tmp, max_vq) + 1;
398             if (test_bit(vq - 1, cpu->sve_vq_map)) {
399                 if (cpu->sve_max_vq) {
400                     error_setg(errp, "cannot set sve-max-vq=%d",
401                                cpu->sve_max_vq);
402                     error_append_hint(errp, "This KVM host does not support "
403                                       "the vector length %d-bits.\n",
404                                       vq * 128);
405                     error_append_hint(errp, "It may not be possible to use "
406                                       "sve-max-vq with this KVM host. Try "
407                                       "using only sve<N> properties.\n");
408                 } else {
409                     error_setg(errp, "cannot enable sve%d", vq * 128);
410                     error_append_hint(errp, "This KVM host does not support "
411                                       "the vector length %d-bits.\n",
412                                       vq * 128);
413                 }
414             } else {
415                 error_setg(errp, "cannot disable sve%d", vq * 128);
416                 error_append_hint(errp, "The KVM host requires all "
417                                   "supported vector lengths smaller "
418                                   "than %d bits to also be enabled.\n",
419                                   max_vq * 128);
420             }
421             return;
422         }
423     } else {
424         /* Ensure all required powers-of-two are enabled. */
425         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
426             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
427                 error_setg(errp, "cannot disable sve%d", vq * 128);
428                 error_append_hint(errp, "sve%d is required as it "
429                                   "is a power-of-two length smaller than "
430                                   "the maximum, sve%d\n",
431                                   vq * 128, max_vq * 128);
432                 return;
433             }
434         }
435     }
436 
437     /*
438      * Now that we validated all our vector lengths, the only question
439      * left to answer is if we even want SVE at all.
440      */
441     if (!cpu_isar_feature(aa64_sve, cpu)) {
442         error_setg(errp, "cannot enable sve%d", max_vq * 128);
443         error_append_hint(errp, "SVE must be enabled to enable vector "
444                           "lengths.\n");
445         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
446         return;
447     }
448 
449     /* From now on sve_max_vq is the actual maximum supported length. */
450     cpu->sve_max_vq = max_vq;
451 }
452 
453 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
454                                    void *opaque, Error **errp)
455 {
456     ARMCPU *cpu = ARM_CPU(obj);
457     uint32_t value;
458 
459     /* All vector lengths are disabled when SVE is off. */
460     if (!cpu_isar_feature(aa64_sve, cpu)) {
461         value = 0;
462     } else {
463         value = cpu->sve_max_vq;
464     }
465     visit_type_uint32(v, name, &value, errp);
466 }
467 
468 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
469                                    void *opaque, Error **errp)
470 {
471     ARMCPU *cpu = ARM_CPU(obj);
472     uint32_t max_vq;
473 
474     if (!visit_type_uint32(v, name, &max_vq, errp)) {
475         return;
476     }
477 
478     if (kvm_enabled() && !kvm_arm_sve_supported()) {
479         error_setg(errp, "cannot set sve-max-vq");
480         error_append_hint(errp, "SVE not supported by KVM on this host\n");
481         return;
482     }
483 
484     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
485         error_setg(errp, "unsupported SVE vector length");
486         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
487                           ARM_MAX_VQ);
488         return;
489     }
490 
491     cpu->sve_max_vq = max_vq;
492 }
493 
494 /*
495  * Note that cpu_arm_get/set_sve_vq cannot use the simpler
496  * object_property_add_bool interface because they make use
497  * of the contents of "name" to determine which bit on which
498  * to operate.
499  */
500 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
501                                void *opaque, Error **errp)
502 {
503     ARMCPU *cpu = ARM_CPU(obj);
504     uint32_t vq = atoi(&name[3]) / 128;
505     bool value;
506 
507     /* All vector lengths are disabled when SVE is off. */
508     if (!cpu_isar_feature(aa64_sve, cpu)) {
509         value = false;
510     } else {
511         value = test_bit(vq - 1, cpu->sve_vq_map);
512     }
513     visit_type_bool(v, name, &value, errp);
514 }
515 
516 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
517                                void *opaque, Error **errp)
518 {
519     ARMCPU *cpu = ARM_CPU(obj);
520     uint32_t vq = atoi(&name[3]) / 128;
521     bool value;
522 
523     if (!visit_type_bool(v, name, &value, errp)) {
524         return;
525     }
526 
527     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
528         error_setg(errp, "cannot enable %s", name);
529         error_append_hint(errp, "SVE not supported by KVM on this host\n");
530         return;
531     }
532 
533     if (value) {
534         set_bit(vq - 1, cpu->sve_vq_map);
535     } else {
536         clear_bit(vq - 1, cpu->sve_vq_map);
537     }
538     set_bit(vq - 1, cpu->sve_vq_init);
539 }
540 
541 static bool cpu_arm_get_sve(Object *obj, Error **errp)
542 {
543     ARMCPU *cpu = ARM_CPU(obj);
544     return cpu_isar_feature(aa64_sve, cpu);
545 }
546 
547 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
548 {
549     ARMCPU *cpu = ARM_CPU(obj);
550     uint64_t t;
551 
552     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
553         error_setg(errp, "'sve' feature not supported by KVM on this host");
554         return;
555     }
556 
557     t = cpu->isar.id_aa64pfr0;
558     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
559     cpu->isar.id_aa64pfr0 = t;
560 }
561 
562 void aarch64_add_sve_properties(Object *obj)
563 {
564     uint32_t vq;
565 
566     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
567 
568     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
569         char name[8];
570         sprintf(name, "sve%d", vq * 128);
571         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
572                             cpu_arm_set_sve_vq, NULL, NULL);
573     }
574 }
575 
576 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
577 {
578     int arch_val = 0, impdef_val = 0;
579     uint64_t t;
580 
581     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
582     if (cpu->prop_pauth) {
583         if (cpu->prop_pauth_impdef) {
584             impdef_val = 1;
585         } else {
586             arch_val = 1;
587         }
588     } else if (cpu->prop_pauth_impdef) {
589         error_setg(errp, "cannot enable pauth-impdef without pauth");
590         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
591     }
592 
593     t = cpu->isar.id_aa64isar1;
594     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
595     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
596     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
597     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
598     cpu->isar.id_aa64isar1 = t;
599 }
600 
601 static Property arm_cpu_pauth_property =
602     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
603 static Property arm_cpu_pauth_impdef_property =
604     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
605 
606 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
607  * otherwise, a CPU with as many features enabled as our emulation supports.
608  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
609  * this only needs to handle 64 bits.
610  */
611 static void aarch64_max_initfn(Object *obj)
612 {
613     ARMCPU *cpu = ARM_CPU(obj);
614 
615     if (kvm_enabled()) {
616         kvm_arm_set_cpu_features_from_host(cpu);
617     } else {
618         uint64_t t;
619         uint32_t u;
620         aarch64_a57_initfn(obj);
621 
622         /*
623          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
624          * one and try to apply errata workarounds or use impdef features we
625          * don't provide.
626          * An IMPLEMENTER field of 0 means "reserved for software use";
627          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
628          * to see which features are present";
629          * the VARIANT, PARTNUM and REVISION fields are all implementation
630          * defined and we choose to define PARTNUM just in case guest
631          * code needs to distinguish this QEMU CPU from other software
632          * implementations, though this shouldn't be needed.
633          */
634         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
635         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
636         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
637         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
638         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
639         cpu->midr = t;
640 
641         t = cpu->isar.id_aa64isar0;
642         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
643         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
644         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
645         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
646         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
647         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
648         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
649         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
650         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
651         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
652         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
653         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
654         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
655         cpu->isar.id_aa64isar0 = t;
656 
657         t = cpu->isar.id_aa64isar1;
658         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
659         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
660         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
661         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
662         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
663         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
664         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
665         cpu->isar.id_aa64isar1 = t;
666 
667         t = cpu->isar.id_aa64pfr0;
668         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
669         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
670         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
671         t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
672         t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
673         cpu->isar.id_aa64pfr0 = t;
674 
675         t = cpu->isar.id_aa64pfr1;
676         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
677         t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
678         /*
679          * Begin with full support for MTE. This will be downgraded to MTE=0
680          * during realize if the board provides no tag memory, much like
681          * we do for EL2 with the virtualization=on property.
682          */
683         t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
684         cpu->isar.id_aa64pfr1 = t;
685 
686         t = cpu->isar.id_aa64mmfr0;
687         t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
688         cpu->isar.id_aa64mmfr0 = t;
689 
690         t = cpu->isar.id_aa64mmfr1;
691         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
692         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
693         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
694         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
695         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
696         t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
697         cpu->isar.id_aa64mmfr1 = t;
698 
699         t = cpu->isar.id_aa64mmfr2;
700         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
701         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
702         t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
703         cpu->isar.id_aa64mmfr2 = t;
704 
705         /* Replicate the same data to the 32-bit id registers.  */
706         u = cpu->isar.id_isar5;
707         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
708         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
709         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
710         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
711         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
712         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
713         cpu->isar.id_isar5 = u;
714 
715         u = cpu->isar.id_isar6;
716         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
717         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
718         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
719         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
720         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
721         cpu->isar.id_isar6 = u;
722 
723         u = cpu->isar.id_pfr0;
724         u = FIELD_DP32(u, ID_PFR0, DIT, 1);
725         cpu->isar.id_pfr0 = u;
726 
727         u = cpu->isar.id_pfr2;
728         u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
729         cpu->isar.id_pfr2 = u;
730 
731         u = cpu->isar.id_mmfr3;
732         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
733         cpu->isar.id_mmfr3 = u;
734 
735         u = cpu->isar.id_mmfr4;
736         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
737         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
738         u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
739         u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
740         cpu->isar.id_mmfr4 = u;
741 
742         t = cpu->isar.id_aa64dfr0;
743         t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
744         cpu->isar.id_aa64dfr0 = t;
745 
746         u = cpu->isar.id_dfr0;
747         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
748         cpu->isar.id_dfr0 = u;
749 
750         u = cpu->isar.mvfr1;
751         u = FIELD_DP32(u, MVFR1, FPHP, 3);      /* v8.2-FP16 */
752         u = FIELD_DP32(u, MVFR1, SIMDHP, 2);    /* v8.2-FP16 */
753         cpu->isar.mvfr1 = u;
754 
755 #ifdef CONFIG_USER_ONLY
756         /* For usermode -cpu max we can use a larger and more efficient DCZ
757          * blocksize since we don't have to follow what the hardware does.
758          */
759         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
760         cpu->dcz_blocksize = 7; /*  512 bytes */
761 #endif
762 
763         /* Default to PAUTH on, with the architected algorithm. */
764         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
765         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
766     }
767 
768     aarch64_add_sve_properties(obj);
769     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
770                         cpu_max_set_sve_max_vq, NULL, NULL);
771 }
772 
773 static const ARMCPUInfo aarch64_cpus[] = {
774     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
775     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
776     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
777     { .name = "max",                .initfn = aarch64_max_initfn },
778 };
779 
780 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
781 {
782     ARMCPU *cpu = ARM_CPU(obj);
783 
784     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
785 }
786 
787 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
788 {
789     ARMCPU *cpu = ARM_CPU(obj);
790 
791     /* At this time, this property is only allowed if KVM is enabled.  This
792      * restriction allows us to avoid fixing up functionality that assumes a
793      * uniform execution state like do_interrupt.
794      */
795     if (value == false) {
796         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
797             error_setg(errp, "'aarch64' feature cannot be disabled "
798                              "unless KVM is enabled and 32-bit EL1 "
799                              "is supported");
800             return;
801         }
802         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
803     } else {
804         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
805     }
806 }
807 
808 static void aarch64_cpu_finalizefn(Object *obj)
809 {
810 }
811 
812 static gchar *aarch64_gdb_arch_name(CPUState *cs)
813 {
814     return g_strdup("aarch64");
815 }
816 
817 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
818 {
819     CPUClass *cc = CPU_CLASS(oc);
820 
821     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
822     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
823     cc->gdb_num_core_regs = 34;
824     cc->gdb_core_xml_file = "aarch64-core.xml";
825     cc->gdb_arch_name = aarch64_gdb_arch_name;
826 
827     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
828                                    aarch64_cpu_set_aarch64);
829     object_class_property_set_description(oc, "aarch64",
830                                           "Set on/off to enable/disable aarch64 "
831                                           "execution state ");
832 }
833 
834 static void aarch64_cpu_instance_init(Object *obj)
835 {
836     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
837 
838     acc->info->initfn(obj);
839     arm_cpu_post_init(obj);
840 }
841 
842 static void cpu_register_class_init(ObjectClass *oc, void *data)
843 {
844     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
845 
846     acc->info = data;
847 }
848 
849 void aarch64_cpu_register(const ARMCPUInfo *info)
850 {
851     TypeInfo type_info = {
852         .parent = TYPE_AARCH64_CPU,
853         .instance_size = sizeof(ARMCPU),
854         .instance_init = aarch64_cpu_instance_init,
855         .class_size = sizeof(ARMCPUClass),
856         .class_init = info->class_init ?: cpu_register_class_init,
857         .class_data = (void *)info,
858     };
859 
860     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
861     type_register(&type_info);
862     g_free((void *)type_info.name);
863 }
864 
865 static const TypeInfo aarch64_cpu_type_info = {
866     .name = TYPE_AARCH64_CPU,
867     .parent = TYPE_ARM_CPU,
868     .instance_size = sizeof(ARMCPU),
869     .instance_finalize = aarch64_cpu_finalizefn,
870     .abstract = true,
871     .class_size = sizeof(AArch64CPUClass),
872     .class_init = aarch64_cpu_class_init,
873 };
874 
875 static void aarch64_cpu_register_types(void)
876 {
877     size_t i;
878 
879     type_register_static(&aarch64_cpu_type_info);
880 
881     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
882         aarch64_cpu_register(&aarch64_cpus[i]);
883     }
884 }
885 
886 type_init(aarch64_cpu_register_types)
887