xref: /openbmc/qemu/target/arm/cpu64.c (revision d1fd31f8)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
32 
33 static inline void set_feature(CPUARMState *env, int feature)
34 {
35     env->features |= 1ULL << feature;
36 }
37 
38 static inline void unset_feature(CPUARMState *env, int feature)
39 {
40     env->features &= ~(1ULL << feature);
41 }
42 
43 #ifndef CONFIG_USER_ONLY
44 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
45 {
46     ARMCPU *cpu = arm_env_get_cpu(env);
47 
48     /* Number of cores is in [25:24]; otherwise we RAZ */
49     return (cpu->core_count - 1) << 24;
50 }
51 #endif
52 
53 static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
54 #ifndef CONFIG_USER_ONLY
55     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
56       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
57       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
58       .writefn = arm_cp_write_ignore },
59     { .name = "L2CTLR",
60       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
61       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
62       .writefn = arm_cp_write_ignore },
63 #endif
64     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
65       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
66       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67     { .name = "L2ECTLR",
68       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
69       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
71       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
72       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
73     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
74       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
75       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76     { .name = "CPUACTLR",
77       .cp = 15, .opc1 = 0, .crm = 15,
78       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
80       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
81       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82     { .name = "CPUECTLR",
83       .cp = 15, .opc1 = 1, .crm = 15,
84       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
86       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
87       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88     { .name = "CPUMERRSR",
89       .cp = 15, .opc1 = 2, .crm = 15,
90       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
92       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
93       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
94     { .name = "L2MERRSR",
95       .cp = 15, .opc1 = 3, .crm = 15,
96       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
97     REGINFO_SENTINEL
98 };
99 
100 static void aarch64_a57_initfn(Object *obj)
101 {
102     ARMCPU *cpu = ARM_CPU(obj);
103 
104     cpu->dtb_compatible = "arm,cortex-a57";
105     set_feature(&cpu->env, ARM_FEATURE_V8);
106     set_feature(&cpu->env, ARM_FEATURE_VFP4);
107     set_feature(&cpu->env, ARM_FEATURE_NEON);
108     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
109     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
110     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
111     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
112     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
113     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
114     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
115     set_feature(&cpu->env, ARM_FEATURE_CRC);
116     set_feature(&cpu->env, ARM_FEATURE_EL2);
117     set_feature(&cpu->env, ARM_FEATURE_EL3);
118     set_feature(&cpu->env, ARM_FEATURE_PMU);
119     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
120     cpu->midr = 0x411fd070;
121     cpu->revidr = 0x00000000;
122     cpu->reset_fpsid = 0x41034070;
123     cpu->mvfr0 = 0x10110222;
124     cpu->mvfr1 = 0x12111111;
125     cpu->mvfr2 = 0x00000043;
126     cpu->ctr = 0x8444c004;
127     cpu->reset_sctlr = 0x00c50838;
128     cpu->id_pfr0 = 0x00000131;
129     cpu->id_pfr1 = 0x00011011;
130     cpu->id_dfr0 = 0x03010066;
131     cpu->id_afr0 = 0x00000000;
132     cpu->id_mmfr0 = 0x10101105;
133     cpu->id_mmfr1 = 0x40000000;
134     cpu->id_mmfr2 = 0x01260000;
135     cpu->id_mmfr3 = 0x02102211;
136     cpu->id_isar0 = 0x02101110;
137     cpu->id_isar1 = 0x13112111;
138     cpu->id_isar2 = 0x21232042;
139     cpu->id_isar3 = 0x01112131;
140     cpu->id_isar4 = 0x00011142;
141     cpu->id_isar5 = 0x00011121;
142     cpu->id_aa64pfr0 = 0x00002222;
143     cpu->id_aa64dfr0 = 0x10305106;
144     cpu->pmceid0 = 0x00000000;
145     cpu->pmceid1 = 0x00000000;
146     cpu->id_aa64isar0 = 0x00011120;
147     cpu->id_aa64mmfr0 = 0x00001124;
148     cpu->dbgdidr = 0x3516d000;
149     cpu->clidr = 0x0a200023;
150     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
151     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
152     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
153     cpu->dcz_blocksize = 4; /* 64 bytes */
154     cpu->gic_num_lrs = 4;
155     cpu->gic_vpribits = 5;
156     cpu->gic_vprebits = 5;
157     define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
158 }
159 
160 static void aarch64_a53_initfn(Object *obj)
161 {
162     ARMCPU *cpu = ARM_CPU(obj);
163 
164     cpu->dtb_compatible = "arm,cortex-a53";
165     set_feature(&cpu->env, ARM_FEATURE_V8);
166     set_feature(&cpu->env, ARM_FEATURE_VFP4);
167     set_feature(&cpu->env, ARM_FEATURE_NEON);
168     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
169     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
170     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
171     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
172     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
173     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
174     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
175     set_feature(&cpu->env, ARM_FEATURE_CRC);
176     set_feature(&cpu->env, ARM_FEATURE_EL2);
177     set_feature(&cpu->env, ARM_FEATURE_EL3);
178     set_feature(&cpu->env, ARM_FEATURE_PMU);
179     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
180     cpu->midr = 0x410fd034;
181     cpu->revidr = 0x00000000;
182     cpu->reset_fpsid = 0x41034070;
183     cpu->mvfr0 = 0x10110222;
184     cpu->mvfr1 = 0x12111111;
185     cpu->mvfr2 = 0x00000043;
186     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
187     cpu->reset_sctlr = 0x00c50838;
188     cpu->id_pfr0 = 0x00000131;
189     cpu->id_pfr1 = 0x00011011;
190     cpu->id_dfr0 = 0x03010066;
191     cpu->id_afr0 = 0x00000000;
192     cpu->id_mmfr0 = 0x10101105;
193     cpu->id_mmfr1 = 0x40000000;
194     cpu->id_mmfr2 = 0x01260000;
195     cpu->id_mmfr3 = 0x02102211;
196     cpu->id_isar0 = 0x02101110;
197     cpu->id_isar1 = 0x13112111;
198     cpu->id_isar2 = 0x21232042;
199     cpu->id_isar3 = 0x01112131;
200     cpu->id_isar4 = 0x00011142;
201     cpu->id_isar5 = 0x00011121;
202     cpu->id_aa64pfr0 = 0x00002222;
203     cpu->id_aa64dfr0 = 0x10305106;
204     cpu->id_aa64isar0 = 0x00011120;
205     cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
206     cpu->dbgdidr = 0x3516d000;
207     cpu->clidr = 0x0a200023;
208     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
209     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
210     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
211     cpu->dcz_blocksize = 4; /* 64 bytes */
212     cpu->gic_num_lrs = 4;
213     cpu->gic_vpribits = 5;
214     cpu->gic_vprebits = 5;
215     define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
216 }
217 
218 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
219  * otherwise, a CPU with as many features enabled as our emulation supports.
220  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
221  * this only needs to handle 64 bits.
222  */
223 static void aarch64_max_initfn(Object *obj)
224 {
225     ARMCPU *cpu = ARM_CPU(obj);
226 
227     if (kvm_enabled()) {
228         kvm_arm_set_cpu_features_from_host(cpu);
229     } else {
230         aarch64_a57_initfn(obj);
231 #ifdef CONFIG_USER_ONLY
232         /* We don't set these in system emulation mode for the moment,
233          * since we don't correctly set the ID registers to advertise them,
234          * and in some cases they're only available in AArch64 and not AArch32,
235          * whereas the architecture requires them to be present in both if
236          * present in either.
237          */
238         set_feature(&cpu->env, ARM_FEATURE_V8);
239         set_feature(&cpu->env, ARM_FEATURE_VFP4);
240         set_feature(&cpu->env, ARM_FEATURE_NEON);
241         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
242         set_feature(&cpu->env, ARM_FEATURE_V8_AES);
243         set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
244         set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
245         set_feature(&cpu->env, ARM_FEATURE_V8_SHA512);
246         set_feature(&cpu->env, ARM_FEATURE_V8_SHA3);
247         set_feature(&cpu->env, ARM_FEATURE_V8_SM3);
248         set_feature(&cpu->env, ARM_FEATURE_V8_SM4);
249         set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
250         set_feature(&cpu->env, ARM_FEATURE_CRC);
251         set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
252         set_feature(&cpu->env, ARM_FEATURE_V8_FP16);
253         set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
254         /* For usermode -cpu max we can use a larger and more efficient DCZ
255          * blocksize since we don't have to follow what the hardware does.
256          */
257         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
258         cpu->dcz_blocksize = 7; /*  512 bytes */
259 #endif
260     }
261 }
262 
263 typedef struct ARMCPUInfo {
264     const char *name;
265     void (*initfn)(Object *obj);
266     void (*class_init)(ObjectClass *oc, void *data);
267 } ARMCPUInfo;
268 
269 static const ARMCPUInfo aarch64_cpus[] = {
270     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
271     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
272     { .name = "max",                .initfn = aarch64_max_initfn },
273     { .name = NULL }
274 };
275 
276 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
277 {
278     ARMCPU *cpu = ARM_CPU(obj);
279 
280     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
281 }
282 
283 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
284 {
285     ARMCPU *cpu = ARM_CPU(obj);
286 
287     /* At this time, this property is only allowed if KVM is enabled.  This
288      * restriction allows us to avoid fixing up functionality that assumes a
289      * uniform execution state like do_interrupt.
290      */
291     if (!kvm_enabled()) {
292         error_setg(errp, "'aarch64' feature cannot be disabled "
293                          "unless KVM is enabled");
294         return;
295     }
296 
297     if (value == false) {
298         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
299     } else {
300         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
301     }
302 }
303 
304 static void aarch64_cpu_initfn(Object *obj)
305 {
306     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
307                              aarch64_cpu_set_aarch64, NULL);
308     object_property_set_description(obj, "aarch64",
309                                     "Set on/off to enable/disable aarch64 "
310                                     "execution state ",
311                                     NULL);
312 }
313 
314 static void aarch64_cpu_finalizefn(Object *obj)
315 {
316 }
317 
318 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
319 {
320     ARMCPU *cpu = ARM_CPU(cs);
321     /* It's OK to look at env for the current mode here, because it's
322      * never possible for an AArch64 TB to chain to an AArch32 TB.
323      * (Otherwise we would need to use synchronize_from_tb instead.)
324      */
325     if (is_a64(&cpu->env)) {
326         cpu->env.pc = value;
327     } else {
328         cpu->env.regs[15] = value;
329     }
330 }
331 
332 static gchar *aarch64_gdb_arch_name(CPUState *cs)
333 {
334     return g_strdup("aarch64");
335 }
336 
337 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
338 {
339     CPUClass *cc = CPU_CLASS(oc);
340 
341     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
342     cc->set_pc = aarch64_cpu_set_pc;
343     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
344     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
345     cc->gdb_num_core_regs = 34;
346     cc->gdb_core_xml_file = "aarch64-core.xml";
347     cc->gdb_arch_name = aarch64_gdb_arch_name;
348 }
349 
350 static void aarch64_cpu_register(const ARMCPUInfo *info)
351 {
352     TypeInfo type_info = {
353         .parent = TYPE_AARCH64_CPU,
354         .instance_size = sizeof(ARMCPU),
355         .instance_init = info->initfn,
356         .class_size = sizeof(ARMCPUClass),
357         .class_init = info->class_init,
358     };
359 
360     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
361     type_register(&type_info);
362     g_free((void *)type_info.name);
363 }
364 
365 static const TypeInfo aarch64_cpu_type_info = {
366     .name = TYPE_AARCH64_CPU,
367     .parent = TYPE_ARM_CPU,
368     .instance_size = sizeof(ARMCPU),
369     .instance_init = aarch64_cpu_initfn,
370     .instance_finalize = aarch64_cpu_finalizefn,
371     .abstract = true,
372     .class_size = sizeof(AArch64CPUClass),
373     .class_init = aarch64_cpu_class_init,
374 };
375 
376 static void aarch64_cpu_register_types(void)
377 {
378     const ARMCPUInfo *info = aarch64_cpus;
379 
380     type_register_static(&aarch64_cpu_type_info);
381 
382     while (info->name) {
383         aarch64_cpu_register(info);
384         info++;
385     }
386 }
387 
388 type_init(aarch64_cpu_register_types)
389 
390 /* The manual says that when SVE is enabled and VQ is widened the
391  * implementation is allowed to zero the previously inaccessible
392  * portion of the registers.  The corollary to that is that when
393  * SVE is enabled and VQ is narrowed we are also allowed to zero
394  * the now inaccessible portion of the registers.
395  *
396  * The intent of this is that no predicate bit beyond VQ is ever set.
397  * Which means that some operations on predicate registers themselves
398  * may operate on full uint64_t or even unrolled across the maximum
399  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
400  * may well be cheaper than conditionals to restrict the operation
401  * to the relevant portion of a uint16_t[16].
402  *
403  * TODO: Need to call this for changes to the real system registers
404  * and EL state changes.
405  */
406 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
407 {
408     int i, j;
409     uint64_t pmask;
410 
411     assert(vq >= 1 && vq <= ARM_MAX_VQ);
412 
413     /* Zap the high bits of the zregs.  */
414     for (i = 0; i < 32; i++) {
415         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
416     }
417 
418     /* Zap the high bits of the pregs and ffr.  */
419     pmask = 0;
420     if (vq & 3) {
421         pmask = ~(-1ULL << (16 * (vq & 3)));
422     }
423     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
424         for (i = 0; i < 17; ++i) {
425             env->vfp.pregs[i].p[j] &= pmask;
426         }
427         pmask = 0;
428     }
429 }
430