1 /* 2 * QEMU AArch64 CPU 3 * 4 * Copyright (c) 2013 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #ifdef CONFIG_TCG 25 #include "hw/core/tcg-cpu-ops.h" 26 #endif /* CONFIG_TCG */ 27 #include "qemu/module.h" 28 #if !defined(CONFIG_USER_ONLY) 29 #include "hw/loader.h" 30 #endif 31 #include "sysemu/kvm.h" 32 #include "kvm_arm.h" 33 #include "qapi/visitor.h" 34 #include "hw/qdev-properties.h" 35 36 37 #ifndef CONFIG_USER_ONLY 38 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 ARMCPU *cpu = env_archcpu(env); 41 42 /* Number of cores is in [25:24]; otherwise we RAZ */ 43 return (cpu->core_count - 1) << 24; 44 } 45 #endif 46 47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { 48 #ifndef CONFIG_USER_ONLY 49 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, 50 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, 51 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 52 .writefn = arm_cp_write_ignore }, 53 { .name = "L2CTLR", 54 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, 55 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 56 .writefn = arm_cp_write_ignore }, 57 #endif 58 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, 59 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, 60 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 61 { .name = "L2ECTLR", 62 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, 63 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 64 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, 65 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, 66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 67 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, 68 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, 69 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 70 { .name = "CPUACTLR", 71 .cp = 15, .opc1 = 0, .crm = 15, 72 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 73 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, 74 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, 75 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 76 { .name = "CPUECTLR", 77 .cp = 15, .opc1 = 1, .crm = 15, 78 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 79 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, 80 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, 81 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 82 { .name = "CPUMERRSR", 83 .cp = 15, .opc1 = 2, .crm = 15, 84 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 85 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, 86 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, 87 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 88 { .name = "L2MERRSR", 89 .cp = 15, .opc1 = 3, .crm = 15, 90 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 91 REGINFO_SENTINEL 92 }; 93 94 static void aarch64_a57_initfn(Object *obj) 95 { 96 ARMCPU *cpu = ARM_CPU(obj); 97 98 cpu->dtb_compatible = "arm,cortex-a57"; 99 set_feature(&cpu->env, ARM_FEATURE_V8); 100 set_feature(&cpu->env, ARM_FEATURE_NEON); 101 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 102 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 103 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 104 set_feature(&cpu->env, ARM_FEATURE_EL2); 105 set_feature(&cpu->env, ARM_FEATURE_EL3); 106 set_feature(&cpu->env, ARM_FEATURE_PMU); 107 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; 108 cpu->midr = 0x411fd070; 109 cpu->revidr = 0x00000000; 110 cpu->reset_fpsid = 0x41034070; 111 cpu->isar.mvfr0 = 0x10110222; 112 cpu->isar.mvfr1 = 0x12111111; 113 cpu->isar.mvfr2 = 0x00000043; 114 cpu->ctr = 0x8444c004; 115 cpu->reset_sctlr = 0x00c50838; 116 cpu->isar.id_pfr0 = 0x00000131; 117 cpu->isar.id_pfr1 = 0x00011011; 118 cpu->isar.id_dfr0 = 0x03010066; 119 cpu->id_afr0 = 0x00000000; 120 cpu->isar.id_mmfr0 = 0x10101105; 121 cpu->isar.id_mmfr1 = 0x40000000; 122 cpu->isar.id_mmfr2 = 0x01260000; 123 cpu->isar.id_mmfr3 = 0x02102211; 124 cpu->isar.id_isar0 = 0x02101110; 125 cpu->isar.id_isar1 = 0x13112111; 126 cpu->isar.id_isar2 = 0x21232042; 127 cpu->isar.id_isar3 = 0x01112131; 128 cpu->isar.id_isar4 = 0x00011142; 129 cpu->isar.id_isar5 = 0x00011121; 130 cpu->isar.id_isar6 = 0; 131 cpu->isar.id_aa64pfr0 = 0x00002222; 132 cpu->isar.id_aa64dfr0 = 0x10305106; 133 cpu->isar.id_aa64isar0 = 0x00011120; 134 cpu->isar.id_aa64mmfr0 = 0x00001124; 135 cpu->isar.dbgdidr = 0x3516d000; 136 cpu->clidr = 0x0a200023; 137 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 138 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 139 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ 140 cpu->dcz_blocksize = 4; /* 64 bytes */ 141 cpu->gic_num_lrs = 4; 142 cpu->gic_vpribits = 5; 143 cpu->gic_vprebits = 5; 144 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 145 } 146 147 static void aarch64_a53_initfn(Object *obj) 148 { 149 ARMCPU *cpu = ARM_CPU(obj); 150 151 cpu->dtb_compatible = "arm,cortex-a53"; 152 set_feature(&cpu->env, ARM_FEATURE_V8); 153 set_feature(&cpu->env, ARM_FEATURE_NEON); 154 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 155 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 156 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 157 set_feature(&cpu->env, ARM_FEATURE_EL2); 158 set_feature(&cpu->env, ARM_FEATURE_EL3); 159 set_feature(&cpu->env, ARM_FEATURE_PMU); 160 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; 161 cpu->midr = 0x410fd034; 162 cpu->revidr = 0x00000000; 163 cpu->reset_fpsid = 0x41034070; 164 cpu->isar.mvfr0 = 0x10110222; 165 cpu->isar.mvfr1 = 0x12111111; 166 cpu->isar.mvfr2 = 0x00000043; 167 cpu->ctr = 0x84448004; /* L1Ip = VIPT */ 168 cpu->reset_sctlr = 0x00c50838; 169 cpu->isar.id_pfr0 = 0x00000131; 170 cpu->isar.id_pfr1 = 0x00011011; 171 cpu->isar.id_dfr0 = 0x03010066; 172 cpu->id_afr0 = 0x00000000; 173 cpu->isar.id_mmfr0 = 0x10101105; 174 cpu->isar.id_mmfr1 = 0x40000000; 175 cpu->isar.id_mmfr2 = 0x01260000; 176 cpu->isar.id_mmfr3 = 0x02102211; 177 cpu->isar.id_isar0 = 0x02101110; 178 cpu->isar.id_isar1 = 0x13112111; 179 cpu->isar.id_isar2 = 0x21232042; 180 cpu->isar.id_isar3 = 0x01112131; 181 cpu->isar.id_isar4 = 0x00011142; 182 cpu->isar.id_isar5 = 0x00011121; 183 cpu->isar.id_isar6 = 0; 184 cpu->isar.id_aa64pfr0 = 0x00002222; 185 cpu->isar.id_aa64dfr0 = 0x10305106; 186 cpu->isar.id_aa64isar0 = 0x00011120; 187 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ 188 cpu->isar.dbgdidr = 0x3516d000; 189 cpu->clidr = 0x0a200023; 190 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ 191 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ 192 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ 193 cpu->dcz_blocksize = 4; /* 64 bytes */ 194 cpu->gic_num_lrs = 4; 195 cpu->gic_vpribits = 5; 196 cpu->gic_vprebits = 5; 197 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 198 } 199 200 static void aarch64_a72_initfn(Object *obj) 201 { 202 ARMCPU *cpu = ARM_CPU(obj); 203 204 cpu->dtb_compatible = "arm,cortex-a72"; 205 set_feature(&cpu->env, ARM_FEATURE_V8); 206 set_feature(&cpu->env, ARM_FEATURE_NEON); 207 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 208 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 209 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 210 set_feature(&cpu->env, ARM_FEATURE_EL2); 211 set_feature(&cpu->env, ARM_FEATURE_EL3); 212 set_feature(&cpu->env, ARM_FEATURE_PMU); 213 cpu->midr = 0x410fd083; 214 cpu->revidr = 0x00000000; 215 cpu->reset_fpsid = 0x41034080; 216 cpu->isar.mvfr0 = 0x10110222; 217 cpu->isar.mvfr1 = 0x12111111; 218 cpu->isar.mvfr2 = 0x00000043; 219 cpu->ctr = 0x8444c004; 220 cpu->reset_sctlr = 0x00c50838; 221 cpu->isar.id_pfr0 = 0x00000131; 222 cpu->isar.id_pfr1 = 0x00011011; 223 cpu->isar.id_dfr0 = 0x03010066; 224 cpu->id_afr0 = 0x00000000; 225 cpu->isar.id_mmfr0 = 0x10201105; 226 cpu->isar.id_mmfr1 = 0x40000000; 227 cpu->isar.id_mmfr2 = 0x01260000; 228 cpu->isar.id_mmfr3 = 0x02102211; 229 cpu->isar.id_isar0 = 0x02101110; 230 cpu->isar.id_isar1 = 0x13112111; 231 cpu->isar.id_isar2 = 0x21232042; 232 cpu->isar.id_isar3 = 0x01112131; 233 cpu->isar.id_isar4 = 0x00011142; 234 cpu->isar.id_isar5 = 0x00011121; 235 cpu->isar.id_aa64pfr0 = 0x00002222; 236 cpu->isar.id_aa64dfr0 = 0x10305106; 237 cpu->isar.id_aa64isar0 = 0x00011120; 238 cpu->isar.id_aa64mmfr0 = 0x00001124; 239 cpu->isar.dbgdidr = 0x3516d000; 240 cpu->clidr = 0x0a200023; 241 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 242 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 243 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ 244 cpu->dcz_blocksize = 4; /* 64 bytes */ 245 cpu->gic_num_lrs = 4; 246 cpu->gic_vpribits = 5; 247 cpu->gic_vprebits = 5; 248 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 249 } 250 251 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) 252 { 253 /* 254 * If any vector lengths are explicitly enabled with sve<N> properties, 255 * then all other lengths are implicitly disabled. If sve-max-vq is 256 * specified then it is the same as explicitly enabling all lengths 257 * up to and including the specified maximum, which means all larger 258 * lengths will be implicitly disabled. If no sve<N> properties 259 * are enabled and sve-max-vq is not specified, then all lengths not 260 * explicitly disabled will be enabled. Additionally, all power-of-two 261 * vector lengths less than the maximum enabled length will be 262 * automatically enabled and all vector lengths larger than the largest 263 * disabled power-of-two vector length will be automatically disabled. 264 * Errors are generated if the user provided input that interferes with 265 * any of the above. Finally, if SVE is not disabled, then at least one 266 * vector length must be enabled. 267 */ 268 DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ); 269 DECLARE_BITMAP(tmp, ARM_MAX_VQ); 270 uint32_t vq, max_vq = 0; 271 272 /* Collect the set of vector lengths supported by KVM. */ 273 bitmap_zero(kvm_supported, ARM_MAX_VQ); 274 if (kvm_enabled() && kvm_arm_sve_supported()) { 275 kvm_arm_sve_get_vls(CPU(cpu), kvm_supported); 276 } else if (kvm_enabled()) { 277 assert(!cpu_isar_feature(aa64_sve, cpu)); 278 } 279 280 /* 281 * Process explicit sve<N> properties. 282 * From the properties, sve_vq_map<N> implies sve_vq_init<N>. 283 * Check first for any sve<N> enabled. 284 */ 285 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) { 286 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1; 287 288 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { 289 error_setg(errp, "cannot enable sve%d", max_vq * 128); 290 error_append_hint(errp, "sve%d is larger than the maximum vector " 291 "length, sve-max-vq=%d (%d bits)\n", 292 max_vq * 128, cpu->sve_max_vq, 293 cpu->sve_max_vq * 128); 294 return; 295 } 296 297 if (kvm_enabled()) { 298 /* 299 * For KVM we have to automatically enable all supported unitialized 300 * lengths, even when the smaller lengths are not all powers-of-two. 301 */ 302 bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq); 303 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 304 } else { 305 /* Propagate enabled bits down through required powers-of-two. */ 306 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 307 if (!test_bit(vq - 1, cpu->sve_vq_init)) { 308 set_bit(vq - 1, cpu->sve_vq_map); 309 } 310 } 311 } 312 } else if (cpu->sve_max_vq == 0) { 313 /* 314 * No explicit bits enabled, and no implicit bits from sve-max-vq. 315 */ 316 if (!cpu_isar_feature(aa64_sve, cpu)) { 317 /* SVE is disabled and so are all vector lengths. Good. */ 318 return; 319 } 320 321 if (kvm_enabled()) { 322 /* Disabling a supported length disables all larger lengths. */ 323 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 324 if (test_bit(vq - 1, cpu->sve_vq_init) && 325 test_bit(vq - 1, kvm_supported)) { 326 break; 327 } 328 } 329 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 330 bitmap_andnot(cpu->sve_vq_map, kvm_supported, 331 cpu->sve_vq_init, max_vq); 332 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) { 333 error_setg(errp, "cannot disable sve%d", vq * 128); 334 error_append_hint(errp, "Disabling sve%d results in all " 335 "vector lengths being disabled.\n", 336 vq * 128); 337 error_append_hint(errp, "With SVE enabled, at least one " 338 "vector length must be enabled.\n"); 339 return; 340 } 341 } else { 342 /* Disabling a power-of-two disables all larger lengths. */ 343 if (test_bit(0, cpu->sve_vq_init)) { 344 error_setg(errp, "cannot disable sve128"); 345 error_append_hint(errp, "Disabling sve128 results in all " 346 "vector lengths being disabled.\n"); 347 error_append_hint(errp, "With SVE enabled, at least one " 348 "vector length must be enabled.\n"); 349 return; 350 } 351 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) { 352 if (test_bit(vq - 1, cpu->sve_vq_init)) { 353 break; 354 } 355 } 356 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 357 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq); 358 } 359 360 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1; 361 } 362 363 /* 364 * Process the sve-max-vq property. 365 * Note that we know from the above that no bit above 366 * sve-max-vq is currently set. 367 */ 368 if (cpu->sve_max_vq != 0) { 369 max_vq = cpu->sve_max_vq; 370 371 if (!test_bit(max_vq - 1, cpu->sve_vq_map) && 372 test_bit(max_vq - 1, cpu->sve_vq_init)) { 373 error_setg(errp, "cannot disable sve%d", max_vq * 128); 374 error_append_hint(errp, "The maximum vector length must be " 375 "enabled, sve-max-vq=%d (%d bits)\n", 376 max_vq, max_vq * 128); 377 return; 378 } 379 380 /* Set all bits not explicitly set within sve-max-vq. */ 381 bitmap_complement(tmp, cpu->sve_vq_init, max_vq); 382 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 383 } 384 385 /* 386 * We should know what max-vq is now. Also, as we're done 387 * manipulating sve-vq-map, we ensure any bits above max-vq 388 * are clear, just in case anybody looks. 389 */ 390 assert(max_vq != 0); 391 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq); 392 393 if (kvm_enabled()) { 394 /* Ensure the set of lengths matches what KVM supports. */ 395 bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq); 396 if (!bitmap_empty(tmp, max_vq)) { 397 vq = find_last_bit(tmp, max_vq) + 1; 398 if (test_bit(vq - 1, cpu->sve_vq_map)) { 399 if (cpu->sve_max_vq) { 400 error_setg(errp, "cannot set sve-max-vq=%d", 401 cpu->sve_max_vq); 402 error_append_hint(errp, "This KVM host does not support " 403 "the vector length %d-bits.\n", 404 vq * 128); 405 error_append_hint(errp, "It may not be possible to use " 406 "sve-max-vq with this KVM host. Try " 407 "using only sve<N> properties.\n"); 408 } else { 409 error_setg(errp, "cannot enable sve%d", vq * 128); 410 error_append_hint(errp, "This KVM host does not support " 411 "the vector length %d-bits.\n", 412 vq * 128); 413 } 414 } else { 415 error_setg(errp, "cannot disable sve%d", vq * 128); 416 error_append_hint(errp, "The KVM host requires all " 417 "supported vector lengths smaller " 418 "than %d bits to also be enabled.\n", 419 max_vq * 128); 420 } 421 return; 422 } 423 } else { 424 /* Ensure all required powers-of-two are enabled. */ 425 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 426 if (!test_bit(vq - 1, cpu->sve_vq_map)) { 427 error_setg(errp, "cannot disable sve%d", vq * 128); 428 error_append_hint(errp, "sve%d is required as it " 429 "is a power-of-two length smaller than " 430 "the maximum, sve%d\n", 431 vq * 128, max_vq * 128); 432 return; 433 } 434 } 435 } 436 437 /* 438 * Now that we validated all our vector lengths, the only question 439 * left to answer is if we even want SVE at all. 440 */ 441 if (!cpu_isar_feature(aa64_sve, cpu)) { 442 error_setg(errp, "cannot enable sve%d", max_vq * 128); 443 error_append_hint(errp, "SVE must be enabled to enable vector " 444 "lengths.\n"); 445 error_append_hint(errp, "Add sve=on to the CPU property list.\n"); 446 return; 447 } 448 449 /* From now on sve_max_vq is the actual maximum supported length. */ 450 cpu->sve_max_vq = max_vq; 451 } 452 453 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, 454 void *opaque, Error **errp) 455 { 456 ARMCPU *cpu = ARM_CPU(obj); 457 uint32_t value; 458 459 /* All vector lengths are disabled when SVE is off. */ 460 if (!cpu_isar_feature(aa64_sve, cpu)) { 461 value = 0; 462 } else { 463 value = cpu->sve_max_vq; 464 } 465 visit_type_uint32(v, name, &value, errp); 466 } 467 468 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, 469 void *opaque, Error **errp) 470 { 471 ARMCPU *cpu = ARM_CPU(obj); 472 uint32_t max_vq; 473 474 if (!visit_type_uint32(v, name, &max_vq, errp)) { 475 return; 476 } 477 478 if (kvm_enabled() && !kvm_arm_sve_supported()) { 479 error_setg(errp, "cannot set sve-max-vq"); 480 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 481 return; 482 } 483 484 if (max_vq == 0 || max_vq > ARM_MAX_VQ) { 485 error_setg(errp, "unsupported SVE vector length"); 486 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", 487 ARM_MAX_VQ); 488 return; 489 } 490 491 cpu->sve_max_vq = max_vq; 492 } 493 494 /* 495 * Note that cpu_arm_get/set_sve_vq cannot use the simpler 496 * object_property_add_bool interface because they make use 497 * of the contents of "name" to determine which bit on which 498 * to operate. 499 */ 500 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name, 501 void *opaque, Error **errp) 502 { 503 ARMCPU *cpu = ARM_CPU(obj); 504 uint32_t vq = atoi(&name[3]) / 128; 505 bool value; 506 507 /* All vector lengths are disabled when SVE is off. */ 508 if (!cpu_isar_feature(aa64_sve, cpu)) { 509 value = false; 510 } else { 511 value = test_bit(vq - 1, cpu->sve_vq_map); 512 } 513 visit_type_bool(v, name, &value, errp); 514 } 515 516 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name, 517 void *opaque, Error **errp) 518 { 519 ARMCPU *cpu = ARM_CPU(obj); 520 uint32_t vq = atoi(&name[3]) / 128; 521 bool value; 522 523 if (!visit_type_bool(v, name, &value, errp)) { 524 return; 525 } 526 527 if (value && kvm_enabled() && !kvm_arm_sve_supported()) { 528 error_setg(errp, "cannot enable %s", name); 529 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 530 return; 531 } 532 533 if (value) { 534 set_bit(vq - 1, cpu->sve_vq_map); 535 } else { 536 clear_bit(vq - 1, cpu->sve_vq_map); 537 } 538 set_bit(vq - 1, cpu->sve_vq_init); 539 } 540 541 static bool cpu_arm_get_sve(Object *obj, Error **errp) 542 { 543 ARMCPU *cpu = ARM_CPU(obj); 544 return cpu_isar_feature(aa64_sve, cpu); 545 } 546 547 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp) 548 { 549 ARMCPU *cpu = ARM_CPU(obj); 550 uint64_t t; 551 552 if (value && kvm_enabled() && !kvm_arm_sve_supported()) { 553 error_setg(errp, "'sve' feature not supported by KVM on this host"); 554 return; 555 } 556 557 t = cpu->isar.id_aa64pfr0; 558 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); 559 cpu->isar.id_aa64pfr0 = t; 560 } 561 562 void aarch64_add_sve_properties(Object *obj) 563 { 564 uint32_t vq; 565 566 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve); 567 568 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 569 char name[8]; 570 sprintf(name, "sve%d", vq * 128); 571 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq, 572 cpu_arm_set_sve_vq, NULL, NULL); 573 } 574 } 575 576 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) 577 { 578 int arch_val = 0, impdef_val = 0; 579 uint64_t t; 580 581 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */ 582 if (cpu->prop_pauth) { 583 if (cpu->prop_pauth_impdef) { 584 impdef_val = 1; 585 } else { 586 arch_val = 1; 587 } 588 } else if (cpu->prop_pauth_impdef) { 589 error_setg(errp, "cannot enable pauth-impdef without pauth"); 590 error_append_hint(errp, "Add pauth=on to the CPU property list.\n"); 591 } 592 593 t = cpu->isar.id_aa64isar1; 594 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val); 595 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val); 596 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val); 597 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val); 598 cpu->isar.id_aa64isar1 = t; 599 } 600 601 static Property arm_cpu_pauth_property = 602 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true); 603 static Property arm_cpu_pauth_impdef_property = 604 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false); 605 606 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 607 * otherwise, a CPU with as many features enabled as our emulation supports. 608 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; 609 * this only needs to handle 64 bits. 610 */ 611 static void aarch64_max_initfn(Object *obj) 612 { 613 ARMCPU *cpu = ARM_CPU(obj); 614 615 if (kvm_enabled()) { 616 kvm_arm_set_cpu_features_from_host(cpu); 617 } else { 618 uint64_t t; 619 uint32_t u; 620 aarch64_a57_initfn(obj); 621 622 /* 623 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real 624 * one and try to apply errata workarounds or use impdef features we 625 * don't provide. 626 * An IMPLEMENTER field of 0 means "reserved for software use"; 627 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers 628 * to see which features are present"; 629 * the VARIANT, PARTNUM and REVISION fields are all implementation 630 * defined and we choose to define PARTNUM just in case guest 631 * code needs to distinguish this QEMU CPU from other software 632 * implementations, though this shouldn't be needed. 633 */ 634 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); 635 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); 636 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); 637 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); 638 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); 639 cpu->midr = t; 640 641 t = cpu->isar.id_aa64isar0; 642 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ 643 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); 644 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ 645 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); 646 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); 647 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); 648 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); 649 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); 650 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); 651 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); 652 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); 653 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ 654 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); 655 cpu->isar.id_aa64isar0 = t; 656 657 t = cpu->isar.id_aa64isar1; 658 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); 659 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); 660 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); 661 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); 662 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); 663 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); 664 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */ 665 cpu->isar.id_aa64isar1 = t; 666 667 t = cpu->isar.id_aa64pfr0; 668 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); 669 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); 670 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); 671 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); 672 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); 673 cpu->isar.id_aa64pfr0 = t; 674 675 t = cpu->isar.id_aa64pfr1; 676 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); 677 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); 678 /* 679 * Begin with full support for MTE. This will be downgraded to MTE=0 680 * during realize if the board provides no tag memory, much like 681 * we do for EL2 with the virtualization=on property. 682 */ 683 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2); 684 cpu->isar.id_aa64pfr1 = t; 685 686 t = cpu->isar.id_aa64mmfr0; 687 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */ 688 cpu->isar.id_aa64mmfr0 = t; 689 690 t = cpu->isar.id_aa64mmfr1; 691 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ 692 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); 693 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); 694 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */ 695 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */ 696 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */ 697 cpu->isar.id_aa64mmfr1 = t; 698 699 t = cpu->isar.id_aa64mmfr2; 700 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); 701 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */ 702 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */ 703 cpu->isar.id_aa64mmfr2 = t; 704 705 /* Replicate the same data to the 32-bit id registers. */ 706 u = cpu->isar.id_isar5; 707 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ 708 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); 709 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); 710 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); 711 u = FIELD_DP32(u, ID_ISAR5, RDM, 1); 712 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); 713 cpu->isar.id_isar5 = u; 714 715 u = cpu->isar.id_isar6; 716 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); 717 u = FIELD_DP32(u, ID_ISAR6, DP, 1); 718 u = FIELD_DP32(u, ID_ISAR6, FHM, 1); 719 u = FIELD_DP32(u, ID_ISAR6, SB, 1); 720 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); 721 cpu->isar.id_isar6 = u; 722 723 u = cpu->isar.id_pfr0; 724 u = FIELD_DP32(u, ID_PFR0, DIT, 1); 725 cpu->isar.id_pfr0 = u; 726 727 u = cpu->isar.id_pfr2; 728 u = FIELD_DP32(u, ID_PFR2, SSBS, 1); 729 cpu->isar.id_pfr2 = u; 730 731 u = cpu->isar.id_mmfr3; 732 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */ 733 cpu->isar.id_mmfr3 = u; 734 735 u = cpu->isar.id_mmfr4; 736 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */ 737 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ 738 u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */ 739 u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */ 740 cpu->isar.id_mmfr4 = u; 741 742 t = cpu->isar.id_aa64dfr0; 743 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */ 744 cpu->isar.id_aa64dfr0 = t; 745 746 u = cpu->isar.id_dfr0; 747 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */ 748 cpu->isar.id_dfr0 = u; 749 750 u = cpu->isar.mvfr1; 751 u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */ 752 u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */ 753 cpu->isar.mvfr1 = u; 754 755 #ifdef CONFIG_USER_ONLY 756 /* For usermode -cpu max we can use a larger and more efficient DCZ 757 * blocksize since we don't have to follow what the hardware does. 758 */ 759 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ 760 cpu->dcz_blocksize = 7; /* 512 bytes */ 761 #endif 762 763 /* Default to PAUTH on, with the architected algorithm. */ 764 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property); 765 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property); 766 } 767 768 aarch64_add_sve_properties(obj); 769 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, 770 cpu_max_set_sve_max_vq, NULL, NULL); 771 } 772 773 static const ARMCPUInfo aarch64_cpus[] = { 774 { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, 775 { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, 776 { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, 777 { .name = "max", .initfn = aarch64_max_initfn }, 778 }; 779 780 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) 781 { 782 ARMCPU *cpu = ARM_CPU(obj); 783 784 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); 785 } 786 787 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) 788 { 789 ARMCPU *cpu = ARM_CPU(obj); 790 791 /* At this time, this property is only allowed if KVM is enabled. This 792 * restriction allows us to avoid fixing up functionality that assumes a 793 * uniform execution state like do_interrupt. 794 */ 795 if (value == false) { 796 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) { 797 error_setg(errp, "'aarch64' feature cannot be disabled " 798 "unless KVM is enabled and 32-bit EL1 " 799 "is supported"); 800 return; 801 } 802 unset_feature(&cpu->env, ARM_FEATURE_AARCH64); 803 } else { 804 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 805 } 806 } 807 808 static void aarch64_cpu_finalizefn(Object *obj) 809 { 810 } 811 812 static gchar *aarch64_gdb_arch_name(CPUState *cs) 813 { 814 return g_strdup("aarch64"); 815 } 816 817 static void aarch64_cpu_class_init(ObjectClass *oc, void *data) 818 { 819 CPUClass *cc = CPU_CLASS(oc); 820 821 cc->gdb_read_register = aarch64_cpu_gdb_read_register; 822 cc->gdb_write_register = aarch64_cpu_gdb_write_register; 823 cc->gdb_num_core_regs = 34; 824 cc->gdb_core_xml_file = "aarch64-core.xml"; 825 cc->gdb_arch_name = aarch64_gdb_arch_name; 826 827 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64, 828 aarch64_cpu_set_aarch64); 829 object_class_property_set_description(oc, "aarch64", 830 "Set on/off to enable/disable aarch64 " 831 "execution state "); 832 } 833 834 static void aarch64_cpu_instance_init(Object *obj) 835 { 836 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 837 838 acc->info->initfn(obj); 839 arm_cpu_post_init(obj); 840 } 841 842 static void cpu_register_class_init(ObjectClass *oc, void *data) 843 { 844 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 845 846 acc->info = data; 847 } 848 849 void aarch64_cpu_register(const ARMCPUInfo *info) 850 { 851 TypeInfo type_info = { 852 .parent = TYPE_AARCH64_CPU, 853 .instance_size = sizeof(ARMCPU), 854 .instance_init = aarch64_cpu_instance_init, 855 .class_size = sizeof(ARMCPUClass), 856 .class_init = info->class_init ?: cpu_register_class_init, 857 .class_data = (void *)info, 858 }; 859 860 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 861 type_register(&type_info); 862 g_free((void *)type_info.name); 863 } 864 865 static const TypeInfo aarch64_cpu_type_info = { 866 .name = TYPE_AARCH64_CPU, 867 .parent = TYPE_ARM_CPU, 868 .instance_size = sizeof(ARMCPU), 869 .instance_finalize = aarch64_cpu_finalizefn, 870 .abstract = true, 871 .class_size = sizeof(AArch64CPUClass), 872 .class_init = aarch64_cpu_class_init, 873 }; 874 875 static void aarch64_cpu_register_types(void) 876 { 877 size_t i; 878 879 type_register_static(&aarch64_cpu_type_info); 880 881 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { 882 aarch64_cpu_register(&aarch64_cpus[i]); 883 } 884 } 885 886 type_init(aarch64_cpu_register_types) 887