1 /* 2 * QEMU AArch64 CPU 3 * 4 * Copyright (c) 2013 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #include "qemu-common.h" 25 #if !defined(CONFIG_USER_ONLY) 26 #include "hw/loader.h" 27 #endif 28 #include "hw/arm/arm.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/kvm.h" 31 #include "kvm_arm.h" 32 #include "qapi/visitor.h" 33 34 static inline void set_feature(CPUARMState *env, int feature) 35 { 36 env->features |= 1ULL << feature; 37 } 38 39 static inline void unset_feature(CPUARMState *env, int feature) 40 { 41 env->features &= ~(1ULL << feature); 42 } 43 44 #ifndef CONFIG_USER_ONLY 45 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 46 { 47 ARMCPU *cpu = arm_env_get_cpu(env); 48 49 /* Number of cores is in [25:24]; otherwise we RAZ */ 50 return (cpu->core_count - 1) << 24; 51 } 52 #endif 53 54 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { 55 #ifndef CONFIG_USER_ONLY 56 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, 57 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, 58 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 59 .writefn = arm_cp_write_ignore }, 60 { .name = "L2CTLR", 61 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, 62 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 63 .writefn = arm_cp_write_ignore }, 64 #endif 65 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, 66 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, 67 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 68 { .name = "L2ECTLR", 69 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, 70 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 71 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, 72 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, 73 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 74 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, 75 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, 76 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 77 { .name = "CPUACTLR", 78 .cp = 15, .opc1 = 0, .crm = 15, 79 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 80 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, 81 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, 82 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 83 { .name = "CPUECTLR", 84 .cp = 15, .opc1 = 1, .crm = 15, 85 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 86 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, 87 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, 88 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 89 { .name = "CPUMERRSR", 90 .cp = 15, .opc1 = 2, .crm = 15, 91 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 92 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, 93 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, 94 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 95 { .name = "L2MERRSR", 96 .cp = 15, .opc1 = 3, .crm = 15, 97 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 98 REGINFO_SENTINEL 99 }; 100 101 static void aarch64_a57_initfn(Object *obj) 102 { 103 ARMCPU *cpu = ARM_CPU(obj); 104 105 cpu->dtb_compatible = "arm,cortex-a57"; 106 set_feature(&cpu->env, ARM_FEATURE_V8); 107 set_feature(&cpu->env, ARM_FEATURE_VFP4); 108 set_feature(&cpu->env, ARM_FEATURE_NEON); 109 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 110 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 111 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 112 set_feature(&cpu->env, ARM_FEATURE_EL2); 113 set_feature(&cpu->env, ARM_FEATURE_EL3); 114 set_feature(&cpu->env, ARM_FEATURE_PMU); 115 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; 116 cpu->midr = 0x411fd070; 117 cpu->revidr = 0x00000000; 118 cpu->reset_fpsid = 0x41034070; 119 cpu->isar.mvfr0 = 0x10110222; 120 cpu->isar.mvfr1 = 0x12111111; 121 cpu->isar.mvfr2 = 0x00000043; 122 cpu->ctr = 0x8444c004; 123 cpu->reset_sctlr = 0x00c50838; 124 cpu->id_pfr0 = 0x00000131; 125 cpu->id_pfr1 = 0x00011011; 126 cpu->id_dfr0 = 0x03010066; 127 cpu->id_afr0 = 0x00000000; 128 cpu->id_mmfr0 = 0x10101105; 129 cpu->id_mmfr1 = 0x40000000; 130 cpu->id_mmfr2 = 0x01260000; 131 cpu->id_mmfr3 = 0x02102211; 132 cpu->isar.id_isar0 = 0x02101110; 133 cpu->isar.id_isar1 = 0x13112111; 134 cpu->isar.id_isar2 = 0x21232042; 135 cpu->isar.id_isar3 = 0x01112131; 136 cpu->isar.id_isar4 = 0x00011142; 137 cpu->isar.id_isar5 = 0x00011121; 138 cpu->isar.id_isar6 = 0; 139 cpu->isar.id_aa64pfr0 = 0x00002222; 140 cpu->id_aa64dfr0 = 0x10305106; 141 cpu->pmceid0 = 0x00000000; 142 cpu->pmceid1 = 0x00000000; 143 cpu->isar.id_aa64isar0 = 0x00011120; 144 cpu->isar.id_aa64mmfr0 = 0x00001124; 145 cpu->dbgdidr = 0x3516d000; 146 cpu->clidr = 0x0a200023; 147 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 148 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 149 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ 150 cpu->dcz_blocksize = 4; /* 64 bytes */ 151 cpu->gic_num_lrs = 4; 152 cpu->gic_vpribits = 5; 153 cpu->gic_vprebits = 5; 154 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 155 } 156 157 static void aarch64_a53_initfn(Object *obj) 158 { 159 ARMCPU *cpu = ARM_CPU(obj); 160 161 cpu->dtb_compatible = "arm,cortex-a53"; 162 set_feature(&cpu->env, ARM_FEATURE_V8); 163 set_feature(&cpu->env, ARM_FEATURE_VFP4); 164 set_feature(&cpu->env, ARM_FEATURE_NEON); 165 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 166 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 167 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 168 set_feature(&cpu->env, ARM_FEATURE_EL2); 169 set_feature(&cpu->env, ARM_FEATURE_EL3); 170 set_feature(&cpu->env, ARM_FEATURE_PMU); 171 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; 172 cpu->midr = 0x410fd034; 173 cpu->revidr = 0x00000000; 174 cpu->reset_fpsid = 0x41034070; 175 cpu->isar.mvfr0 = 0x10110222; 176 cpu->isar.mvfr1 = 0x12111111; 177 cpu->isar.mvfr2 = 0x00000043; 178 cpu->ctr = 0x84448004; /* L1Ip = VIPT */ 179 cpu->reset_sctlr = 0x00c50838; 180 cpu->id_pfr0 = 0x00000131; 181 cpu->id_pfr1 = 0x00011011; 182 cpu->id_dfr0 = 0x03010066; 183 cpu->id_afr0 = 0x00000000; 184 cpu->id_mmfr0 = 0x10101105; 185 cpu->id_mmfr1 = 0x40000000; 186 cpu->id_mmfr2 = 0x01260000; 187 cpu->id_mmfr3 = 0x02102211; 188 cpu->isar.id_isar0 = 0x02101110; 189 cpu->isar.id_isar1 = 0x13112111; 190 cpu->isar.id_isar2 = 0x21232042; 191 cpu->isar.id_isar3 = 0x01112131; 192 cpu->isar.id_isar4 = 0x00011142; 193 cpu->isar.id_isar5 = 0x00011121; 194 cpu->isar.id_isar6 = 0; 195 cpu->isar.id_aa64pfr0 = 0x00002222; 196 cpu->id_aa64dfr0 = 0x10305106; 197 cpu->isar.id_aa64isar0 = 0x00011120; 198 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ 199 cpu->dbgdidr = 0x3516d000; 200 cpu->clidr = 0x0a200023; 201 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ 202 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ 203 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ 204 cpu->dcz_blocksize = 4; /* 64 bytes */ 205 cpu->gic_num_lrs = 4; 206 cpu->gic_vpribits = 5; 207 cpu->gic_vprebits = 5; 208 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 209 } 210 211 static void aarch64_a72_initfn(Object *obj) 212 { 213 ARMCPU *cpu = ARM_CPU(obj); 214 215 cpu->dtb_compatible = "arm,cortex-a72"; 216 set_feature(&cpu->env, ARM_FEATURE_V8); 217 set_feature(&cpu->env, ARM_FEATURE_VFP4); 218 set_feature(&cpu->env, ARM_FEATURE_NEON); 219 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 220 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 221 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 222 set_feature(&cpu->env, ARM_FEATURE_EL2); 223 set_feature(&cpu->env, ARM_FEATURE_EL3); 224 set_feature(&cpu->env, ARM_FEATURE_PMU); 225 cpu->midr = 0x410fd083; 226 cpu->revidr = 0x00000000; 227 cpu->reset_fpsid = 0x41034080; 228 cpu->isar.mvfr0 = 0x10110222; 229 cpu->isar.mvfr1 = 0x12111111; 230 cpu->isar.mvfr2 = 0x00000043; 231 cpu->ctr = 0x8444c004; 232 cpu->reset_sctlr = 0x00c50838; 233 cpu->id_pfr0 = 0x00000131; 234 cpu->id_pfr1 = 0x00011011; 235 cpu->id_dfr0 = 0x03010066; 236 cpu->id_afr0 = 0x00000000; 237 cpu->id_mmfr0 = 0x10201105; 238 cpu->id_mmfr1 = 0x40000000; 239 cpu->id_mmfr2 = 0x01260000; 240 cpu->id_mmfr3 = 0x02102211; 241 cpu->isar.id_isar0 = 0x02101110; 242 cpu->isar.id_isar1 = 0x13112111; 243 cpu->isar.id_isar2 = 0x21232042; 244 cpu->isar.id_isar3 = 0x01112131; 245 cpu->isar.id_isar4 = 0x00011142; 246 cpu->isar.id_isar5 = 0x00011121; 247 cpu->isar.id_aa64pfr0 = 0x00002222; 248 cpu->id_aa64dfr0 = 0x10305106; 249 cpu->pmceid0 = 0x00000000; 250 cpu->pmceid1 = 0x00000000; 251 cpu->isar.id_aa64isar0 = 0x00011120; 252 cpu->isar.id_aa64mmfr0 = 0x00001124; 253 cpu->dbgdidr = 0x3516d000; 254 cpu->clidr = 0x0a200023; 255 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 256 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 257 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ 258 cpu->dcz_blocksize = 4; /* 64 bytes */ 259 cpu->gic_num_lrs = 4; 260 cpu->gic_vpribits = 5; 261 cpu->gic_vprebits = 5; 262 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 263 } 264 265 static void cpu_max_get_sve_vq(Object *obj, Visitor *v, const char *name, 266 void *opaque, Error **errp) 267 { 268 ARMCPU *cpu = ARM_CPU(obj); 269 visit_type_uint32(v, name, &cpu->sve_max_vq, errp); 270 } 271 272 static void cpu_max_set_sve_vq(Object *obj, Visitor *v, const char *name, 273 void *opaque, Error **errp) 274 { 275 ARMCPU *cpu = ARM_CPU(obj); 276 Error *err = NULL; 277 278 visit_type_uint32(v, name, &cpu->sve_max_vq, &err); 279 280 if (!err && (cpu->sve_max_vq == 0 || cpu->sve_max_vq > ARM_MAX_VQ)) { 281 error_setg(&err, "unsupported SVE vector length"); 282 error_append_hint(&err, "Valid sve-max-vq in range [1-%d]\n", 283 ARM_MAX_VQ); 284 } 285 error_propagate(errp, err); 286 } 287 288 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 289 * otherwise, a CPU with as many features enabled as our emulation supports. 290 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; 291 * this only needs to handle 64 bits. 292 */ 293 static void aarch64_max_initfn(Object *obj) 294 { 295 ARMCPU *cpu = ARM_CPU(obj); 296 297 if (kvm_enabled()) { 298 kvm_arm_set_cpu_features_from_host(cpu); 299 } else { 300 uint64_t t; 301 uint32_t u; 302 aarch64_a57_initfn(obj); 303 304 t = cpu->isar.id_aa64isar0; 305 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ 306 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); 307 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ 308 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); 309 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); 310 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); 311 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); 312 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); 313 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); 314 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); 315 cpu->isar.id_aa64isar0 = t; 316 317 t = cpu->isar.id_aa64isar1; 318 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); 319 cpu->isar.id_aa64isar1 = t; 320 321 t = cpu->isar.id_aa64pfr0; 322 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); 323 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); 324 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); 325 cpu->isar.id_aa64pfr0 = t; 326 327 t = cpu->isar.id_aa64mmfr1; 328 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ 329 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); 330 cpu->isar.id_aa64mmfr1 = t; 331 332 /* Replicate the same data to the 32-bit id registers. */ 333 u = cpu->isar.id_isar5; 334 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ 335 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); 336 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); 337 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); 338 u = FIELD_DP32(u, ID_ISAR5, RDM, 1); 339 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); 340 cpu->isar.id_isar5 = u; 341 342 u = cpu->isar.id_isar6; 343 u = FIELD_DP32(u, ID_ISAR6, DP, 1); 344 cpu->isar.id_isar6 = u; 345 346 /* 347 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet, 348 * so do not set MVFR1.FPHP. Strictly speaking this is not legal, 349 * but it is also not legal to enable SVE without support for FP16, 350 * and enabling SVE in system mode is more useful in the short term. 351 */ 352 353 #ifdef CONFIG_USER_ONLY 354 /* For usermode -cpu max we can use a larger and more efficient DCZ 355 * blocksize since we don't have to follow what the hardware does. 356 */ 357 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ 358 cpu->dcz_blocksize = 7; /* 512 bytes */ 359 #endif 360 361 cpu->sve_max_vq = ARM_MAX_VQ; 362 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_vq, 363 cpu_max_set_sve_vq, NULL, NULL, &error_fatal); 364 } 365 } 366 367 typedef struct ARMCPUInfo { 368 const char *name; 369 void (*initfn)(Object *obj); 370 void (*class_init)(ObjectClass *oc, void *data); 371 } ARMCPUInfo; 372 373 static const ARMCPUInfo aarch64_cpus[] = { 374 { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, 375 { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, 376 { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, 377 { .name = "max", .initfn = aarch64_max_initfn }, 378 { .name = NULL } 379 }; 380 381 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) 382 { 383 ARMCPU *cpu = ARM_CPU(obj); 384 385 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); 386 } 387 388 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) 389 { 390 ARMCPU *cpu = ARM_CPU(obj); 391 392 /* At this time, this property is only allowed if KVM is enabled. This 393 * restriction allows us to avoid fixing up functionality that assumes a 394 * uniform execution state like do_interrupt. 395 */ 396 if (!kvm_enabled()) { 397 error_setg(errp, "'aarch64' feature cannot be disabled " 398 "unless KVM is enabled"); 399 return; 400 } 401 402 if (value == false) { 403 unset_feature(&cpu->env, ARM_FEATURE_AARCH64); 404 } else { 405 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 406 } 407 } 408 409 static void aarch64_cpu_initfn(Object *obj) 410 { 411 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64, 412 aarch64_cpu_set_aarch64, NULL); 413 object_property_set_description(obj, "aarch64", 414 "Set on/off to enable/disable aarch64 " 415 "execution state ", 416 NULL); 417 } 418 419 static void aarch64_cpu_finalizefn(Object *obj) 420 { 421 } 422 423 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value) 424 { 425 ARMCPU *cpu = ARM_CPU(cs); 426 /* It's OK to look at env for the current mode here, because it's 427 * never possible for an AArch64 TB to chain to an AArch32 TB. 428 * (Otherwise we would need to use synchronize_from_tb instead.) 429 */ 430 if (is_a64(&cpu->env)) { 431 cpu->env.pc = value; 432 } else { 433 cpu->env.regs[15] = value; 434 } 435 } 436 437 static gchar *aarch64_gdb_arch_name(CPUState *cs) 438 { 439 return g_strdup("aarch64"); 440 } 441 442 static void aarch64_cpu_class_init(ObjectClass *oc, void *data) 443 { 444 CPUClass *cc = CPU_CLASS(oc); 445 446 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 447 cc->set_pc = aarch64_cpu_set_pc; 448 cc->gdb_read_register = aarch64_cpu_gdb_read_register; 449 cc->gdb_write_register = aarch64_cpu_gdb_write_register; 450 cc->gdb_num_core_regs = 34; 451 cc->gdb_core_xml_file = "aarch64-core.xml"; 452 cc->gdb_arch_name = aarch64_gdb_arch_name; 453 } 454 455 static void aarch64_cpu_register(const ARMCPUInfo *info) 456 { 457 TypeInfo type_info = { 458 .parent = TYPE_AARCH64_CPU, 459 .instance_size = sizeof(ARMCPU), 460 .instance_init = info->initfn, 461 .class_size = sizeof(ARMCPUClass), 462 .class_init = info->class_init, 463 }; 464 465 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 466 type_register(&type_info); 467 g_free((void *)type_info.name); 468 } 469 470 static const TypeInfo aarch64_cpu_type_info = { 471 .name = TYPE_AARCH64_CPU, 472 .parent = TYPE_ARM_CPU, 473 .instance_size = sizeof(ARMCPU), 474 .instance_init = aarch64_cpu_initfn, 475 .instance_finalize = aarch64_cpu_finalizefn, 476 .abstract = true, 477 .class_size = sizeof(AArch64CPUClass), 478 .class_init = aarch64_cpu_class_init, 479 }; 480 481 static void aarch64_cpu_register_types(void) 482 { 483 const ARMCPUInfo *info = aarch64_cpus; 484 485 type_register_static(&aarch64_cpu_type_info); 486 487 while (info->name) { 488 aarch64_cpu_register(info); 489 info++; 490 } 491 } 492 493 type_init(aarch64_cpu_register_types) 494