xref: /openbmc/qemu/target/arm/cpu64.c (revision 93dd625f)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31 
32 #ifndef CONFIG_USER_ONLY
33 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
34 {
35     ARMCPU *cpu = env_archcpu(env);
36 
37     /* Number of cores is in [25:24]; otherwise we RAZ */
38     return (cpu->core_count - 1) << 24;
39 }
40 #endif
41 
42 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
43 #ifndef CONFIG_USER_ONLY
44     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
45       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
46       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
47       .writefn = arm_cp_write_ignore },
48     { .name = "L2CTLR",
49       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
50       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
51       .writefn = arm_cp_write_ignore },
52 #endif
53     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
54       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
55       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
56     { .name = "L2ECTLR",
57       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
58       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
59     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
60       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
61       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
62     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
63       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
64       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
65     { .name = "CPUACTLR",
66       .cp = 15, .opc1 = 0, .crm = 15,
67       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
68     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
69       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
70       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
71     { .name = "CPUECTLR",
72       .cp = 15, .opc1 = 1, .crm = 15,
73       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
74     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
75       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
76       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
77     { .name = "CPUMERRSR",
78       .cp = 15, .opc1 = 2, .crm = 15,
79       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
80     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
81       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
82       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
83     { .name = "L2MERRSR",
84       .cp = 15, .opc1 = 3, .crm = 15,
85       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
86     REGINFO_SENTINEL
87 };
88 
89 static void aarch64_a57_initfn(Object *obj)
90 {
91     ARMCPU *cpu = ARM_CPU(obj);
92 
93     cpu->dtb_compatible = "arm,cortex-a57";
94     set_feature(&cpu->env, ARM_FEATURE_V8);
95     set_feature(&cpu->env, ARM_FEATURE_NEON);
96     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
97     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
98     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
99     set_feature(&cpu->env, ARM_FEATURE_EL2);
100     set_feature(&cpu->env, ARM_FEATURE_EL3);
101     set_feature(&cpu->env, ARM_FEATURE_PMU);
102     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
103     cpu->midr = 0x411fd070;
104     cpu->revidr = 0x00000000;
105     cpu->reset_fpsid = 0x41034070;
106     cpu->isar.mvfr0 = 0x10110222;
107     cpu->isar.mvfr1 = 0x12111111;
108     cpu->isar.mvfr2 = 0x00000043;
109     cpu->ctr = 0x8444c004;
110     cpu->reset_sctlr = 0x00c50838;
111     cpu->id_pfr0 = 0x00000131;
112     cpu->id_pfr1 = 0x00011011;
113     cpu->isar.id_dfr0 = 0x03010066;
114     cpu->id_afr0 = 0x00000000;
115     cpu->isar.id_mmfr0 = 0x10101105;
116     cpu->isar.id_mmfr1 = 0x40000000;
117     cpu->isar.id_mmfr2 = 0x01260000;
118     cpu->isar.id_mmfr3 = 0x02102211;
119     cpu->isar.id_isar0 = 0x02101110;
120     cpu->isar.id_isar1 = 0x13112111;
121     cpu->isar.id_isar2 = 0x21232042;
122     cpu->isar.id_isar3 = 0x01112131;
123     cpu->isar.id_isar4 = 0x00011142;
124     cpu->isar.id_isar5 = 0x00011121;
125     cpu->isar.id_isar6 = 0;
126     cpu->isar.id_aa64pfr0 = 0x00002222;
127     cpu->isar.id_aa64dfr0 = 0x10305106;
128     cpu->isar.id_aa64isar0 = 0x00011120;
129     cpu->isar.id_aa64mmfr0 = 0x00001124;
130     cpu->isar.dbgdidr = 0x3516d000;
131     cpu->clidr = 0x0a200023;
132     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
133     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
134     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
135     cpu->dcz_blocksize = 4; /* 64 bytes */
136     cpu->gic_num_lrs = 4;
137     cpu->gic_vpribits = 5;
138     cpu->gic_vprebits = 5;
139     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
140 }
141 
142 static void aarch64_a53_initfn(Object *obj)
143 {
144     ARMCPU *cpu = ARM_CPU(obj);
145 
146     cpu->dtb_compatible = "arm,cortex-a53";
147     set_feature(&cpu->env, ARM_FEATURE_V8);
148     set_feature(&cpu->env, ARM_FEATURE_NEON);
149     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
150     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
151     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
152     set_feature(&cpu->env, ARM_FEATURE_EL2);
153     set_feature(&cpu->env, ARM_FEATURE_EL3);
154     set_feature(&cpu->env, ARM_FEATURE_PMU);
155     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
156     cpu->midr = 0x410fd034;
157     cpu->revidr = 0x00000000;
158     cpu->reset_fpsid = 0x41034070;
159     cpu->isar.mvfr0 = 0x10110222;
160     cpu->isar.mvfr1 = 0x12111111;
161     cpu->isar.mvfr2 = 0x00000043;
162     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
163     cpu->reset_sctlr = 0x00c50838;
164     cpu->id_pfr0 = 0x00000131;
165     cpu->id_pfr1 = 0x00011011;
166     cpu->isar.id_dfr0 = 0x03010066;
167     cpu->id_afr0 = 0x00000000;
168     cpu->isar.id_mmfr0 = 0x10101105;
169     cpu->isar.id_mmfr1 = 0x40000000;
170     cpu->isar.id_mmfr2 = 0x01260000;
171     cpu->isar.id_mmfr3 = 0x02102211;
172     cpu->isar.id_isar0 = 0x02101110;
173     cpu->isar.id_isar1 = 0x13112111;
174     cpu->isar.id_isar2 = 0x21232042;
175     cpu->isar.id_isar3 = 0x01112131;
176     cpu->isar.id_isar4 = 0x00011142;
177     cpu->isar.id_isar5 = 0x00011121;
178     cpu->isar.id_isar6 = 0;
179     cpu->isar.id_aa64pfr0 = 0x00002222;
180     cpu->isar.id_aa64dfr0 = 0x10305106;
181     cpu->isar.id_aa64isar0 = 0x00011120;
182     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
183     cpu->isar.dbgdidr = 0x3516d000;
184     cpu->clidr = 0x0a200023;
185     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
186     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
187     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
188     cpu->dcz_blocksize = 4; /* 64 bytes */
189     cpu->gic_num_lrs = 4;
190     cpu->gic_vpribits = 5;
191     cpu->gic_vprebits = 5;
192     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
193 }
194 
195 static void aarch64_a72_initfn(Object *obj)
196 {
197     ARMCPU *cpu = ARM_CPU(obj);
198 
199     cpu->dtb_compatible = "arm,cortex-a72";
200     set_feature(&cpu->env, ARM_FEATURE_V8);
201     set_feature(&cpu->env, ARM_FEATURE_NEON);
202     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
203     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
204     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
205     set_feature(&cpu->env, ARM_FEATURE_EL2);
206     set_feature(&cpu->env, ARM_FEATURE_EL3);
207     set_feature(&cpu->env, ARM_FEATURE_PMU);
208     cpu->midr = 0x410fd083;
209     cpu->revidr = 0x00000000;
210     cpu->reset_fpsid = 0x41034080;
211     cpu->isar.mvfr0 = 0x10110222;
212     cpu->isar.mvfr1 = 0x12111111;
213     cpu->isar.mvfr2 = 0x00000043;
214     cpu->ctr = 0x8444c004;
215     cpu->reset_sctlr = 0x00c50838;
216     cpu->id_pfr0 = 0x00000131;
217     cpu->id_pfr1 = 0x00011011;
218     cpu->isar.id_dfr0 = 0x03010066;
219     cpu->id_afr0 = 0x00000000;
220     cpu->isar.id_mmfr0 = 0x10201105;
221     cpu->isar.id_mmfr1 = 0x40000000;
222     cpu->isar.id_mmfr2 = 0x01260000;
223     cpu->isar.id_mmfr3 = 0x02102211;
224     cpu->isar.id_isar0 = 0x02101110;
225     cpu->isar.id_isar1 = 0x13112111;
226     cpu->isar.id_isar2 = 0x21232042;
227     cpu->isar.id_isar3 = 0x01112131;
228     cpu->isar.id_isar4 = 0x00011142;
229     cpu->isar.id_isar5 = 0x00011121;
230     cpu->isar.id_aa64pfr0 = 0x00002222;
231     cpu->isar.id_aa64dfr0 = 0x10305106;
232     cpu->isar.id_aa64isar0 = 0x00011120;
233     cpu->isar.id_aa64mmfr0 = 0x00001124;
234     cpu->isar.dbgdidr = 0x3516d000;
235     cpu->clidr = 0x0a200023;
236     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
237     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
238     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
239     cpu->dcz_blocksize = 4; /* 64 bytes */
240     cpu->gic_num_lrs = 4;
241     cpu->gic_vpribits = 5;
242     cpu->gic_vprebits = 5;
243     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
244 }
245 
246 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
247 {
248     /*
249      * If any vector lengths are explicitly enabled with sve<N> properties,
250      * then all other lengths are implicitly disabled.  If sve-max-vq is
251      * specified then it is the same as explicitly enabling all lengths
252      * up to and including the specified maximum, which means all larger
253      * lengths will be implicitly disabled.  If no sve<N> properties
254      * are enabled and sve-max-vq is not specified, then all lengths not
255      * explicitly disabled will be enabled.  Additionally, all power-of-two
256      * vector lengths less than the maximum enabled length will be
257      * automatically enabled and all vector lengths larger than the largest
258      * disabled power-of-two vector length will be automatically disabled.
259      * Errors are generated if the user provided input that interferes with
260      * any of the above.  Finally, if SVE is not disabled, then at least one
261      * vector length must be enabled.
262      */
263     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
264     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
265     uint32_t vq, max_vq = 0;
266 
267     /* Collect the set of vector lengths supported by KVM. */
268     bitmap_zero(kvm_supported, ARM_MAX_VQ);
269     if (kvm_enabled() && kvm_arm_sve_supported()) {
270         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
271     } else if (kvm_enabled()) {
272         assert(!cpu_isar_feature(aa64_sve, cpu));
273     }
274 
275     /*
276      * Process explicit sve<N> properties.
277      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
278      * Check first for any sve<N> enabled.
279      */
280     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
281         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
282 
283         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
284             error_setg(errp, "cannot enable sve%d", max_vq * 128);
285             error_append_hint(errp, "sve%d is larger than the maximum vector "
286                               "length, sve-max-vq=%d (%d bits)\n",
287                               max_vq * 128, cpu->sve_max_vq,
288                               cpu->sve_max_vq * 128);
289             return;
290         }
291 
292         if (kvm_enabled()) {
293             /*
294              * For KVM we have to automatically enable all supported unitialized
295              * lengths, even when the smaller lengths are not all powers-of-two.
296              */
297             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
298             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
299         } else {
300             /* Propagate enabled bits down through required powers-of-two. */
301             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
302                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
303                     set_bit(vq - 1, cpu->sve_vq_map);
304                 }
305             }
306         }
307     } else if (cpu->sve_max_vq == 0) {
308         /*
309          * No explicit bits enabled, and no implicit bits from sve-max-vq.
310          */
311         if (!cpu_isar_feature(aa64_sve, cpu)) {
312             /* SVE is disabled and so are all vector lengths.  Good. */
313             return;
314         }
315 
316         if (kvm_enabled()) {
317             /* Disabling a supported length disables all larger lengths. */
318             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
319                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
320                     test_bit(vq - 1, kvm_supported)) {
321                     break;
322                 }
323             }
324             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
325             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
326                           cpu->sve_vq_init, max_vq);
327             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
328                 error_setg(errp, "cannot disable sve%d", vq * 128);
329                 error_append_hint(errp, "Disabling sve%d results in all "
330                                   "vector lengths being disabled.\n",
331                                   vq * 128);
332                 error_append_hint(errp, "With SVE enabled, at least one "
333                                   "vector length must be enabled.\n");
334                 return;
335             }
336         } else {
337             /* Disabling a power-of-two disables all larger lengths. */
338             if (test_bit(0, cpu->sve_vq_init)) {
339                 error_setg(errp, "cannot disable sve128");
340                 error_append_hint(errp, "Disabling sve128 results in all "
341                                   "vector lengths being disabled.\n");
342                 error_append_hint(errp, "With SVE enabled, at least one "
343                                   "vector length must be enabled.\n");
344                 return;
345             }
346             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
347                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
348                     break;
349                 }
350             }
351             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
352             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
353         }
354 
355         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
356     }
357 
358     /*
359      * Process the sve-max-vq property.
360      * Note that we know from the above that no bit above
361      * sve-max-vq is currently set.
362      */
363     if (cpu->sve_max_vq != 0) {
364         max_vq = cpu->sve_max_vq;
365 
366         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
367             test_bit(max_vq - 1, cpu->sve_vq_init)) {
368             error_setg(errp, "cannot disable sve%d", max_vq * 128);
369             error_append_hint(errp, "The maximum vector length must be "
370                               "enabled, sve-max-vq=%d (%d bits)\n",
371                               max_vq, max_vq * 128);
372             return;
373         }
374 
375         /* Set all bits not explicitly set within sve-max-vq. */
376         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
377         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
378     }
379 
380     /*
381      * We should know what max-vq is now.  Also, as we're done
382      * manipulating sve-vq-map, we ensure any bits above max-vq
383      * are clear, just in case anybody looks.
384      */
385     assert(max_vq != 0);
386     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
387 
388     if (kvm_enabled()) {
389         /* Ensure the set of lengths matches what KVM supports. */
390         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
391         if (!bitmap_empty(tmp, max_vq)) {
392             vq = find_last_bit(tmp, max_vq) + 1;
393             if (test_bit(vq - 1, cpu->sve_vq_map)) {
394                 if (cpu->sve_max_vq) {
395                     error_setg(errp, "cannot set sve-max-vq=%d",
396                                cpu->sve_max_vq);
397                     error_append_hint(errp, "This KVM host does not support "
398                                       "the vector length %d-bits.\n",
399                                       vq * 128);
400                     error_append_hint(errp, "It may not be possible to use "
401                                       "sve-max-vq with this KVM host. Try "
402                                       "using only sve<N> properties.\n");
403                 } else {
404                     error_setg(errp, "cannot enable sve%d", vq * 128);
405                     error_append_hint(errp, "This KVM host does not support "
406                                       "the vector length %d-bits.\n",
407                                       vq * 128);
408                 }
409             } else {
410                 error_setg(errp, "cannot disable sve%d", vq * 128);
411                 error_append_hint(errp, "The KVM host requires all "
412                                   "supported vector lengths smaller "
413                                   "than %d bits to also be enabled.\n",
414                                   max_vq * 128);
415             }
416             return;
417         }
418     } else {
419         /* Ensure all required powers-of-two are enabled. */
420         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
421             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
422                 error_setg(errp, "cannot disable sve%d", vq * 128);
423                 error_append_hint(errp, "sve%d is required as it "
424                                   "is a power-of-two length smaller than "
425                                   "the maximum, sve%d\n",
426                                   vq * 128, max_vq * 128);
427                 return;
428             }
429         }
430     }
431 
432     /*
433      * Now that we validated all our vector lengths, the only question
434      * left to answer is if we even want SVE at all.
435      */
436     if (!cpu_isar_feature(aa64_sve, cpu)) {
437         error_setg(errp, "cannot enable sve%d", max_vq * 128);
438         error_append_hint(errp, "SVE must be enabled to enable vector "
439                           "lengths.\n");
440         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
441         return;
442     }
443 
444     /* From now on sve_max_vq is the actual maximum supported length. */
445     cpu->sve_max_vq = max_vq;
446 }
447 
448 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
449                                    void *opaque, Error **errp)
450 {
451     ARMCPU *cpu = ARM_CPU(obj);
452     uint32_t value;
453 
454     /* All vector lengths are disabled when SVE is off. */
455     if (!cpu_isar_feature(aa64_sve, cpu)) {
456         value = 0;
457     } else {
458         value = cpu->sve_max_vq;
459     }
460     visit_type_uint32(v, name, &value, errp);
461 }
462 
463 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
464                                    void *opaque, Error **errp)
465 {
466     ARMCPU *cpu = ARM_CPU(obj);
467     Error *err = NULL;
468     uint32_t max_vq;
469 
470     visit_type_uint32(v, name, &max_vq, &err);
471     if (err) {
472         error_propagate(errp, err);
473         return;
474     }
475 
476     if (kvm_enabled() && !kvm_arm_sve_supported()) {
477         error_setg(errp, "cannot set sve-max-vq");
478         error_append_hint(errp, "SVE not supported by KVM on this host\n");
479         return;
480     }
481 
482     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
483         error_setg(errp, "unsupported SVE vector length");
484         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
485                           ARM_MAX_VQ);
486         return;
487     }
488 
489     cpu->sve_max_vq = max_vq;
490 }
491 
492 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
493                                void *opaque, Error **errp)
494 {
495     ARMCPU *cpu = ARM_CPU(obj);
496     uint32_t vq = atoi(&name[3]) / 128;
497     bool value;
498 
499     /* All vector lengths are disabled when SVE is off. */
500     if (!cpu_isar_feature(aa64_sve, cpu)) {
501         value = false;
502     } else {
503         value = test_bit(vq - 1, cpu->sve_vq_map);
504     }
505     visit_type_bool(v, name, &value, errp);
506 }
507 
508 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
509                                void *opaque, Error **errp)
510 {
511     ARMCPU *cpu = ARM_CPU(obj);
512     uint32_t vq = atoi(&name[3]) / 128;
513     Error *err = NULL;
514     bool value;
515 
516     visit_type_bool(v, name, &value, &err);
517     if (err) {
518         error_propagate(errp, err);
519         return;
520     }
521 
522     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
523         error_setg(errp, "cannot enable %s", name);
524         error_append_hint(errp, "SVE not supported by KVM on this host\n");
525         return;
526     }
527 
528     if (value) {
529         set_bit(vq - 1, cpu->sve_vq_map);
530     } else {
531         clear_bit(vq - 1, cpu->sve_vq_map);
532     }
533     set_bit(vq - 1, cpu->sve_vq_init);
534 }
535 
536 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
537                             void *opaque, Error **errp)
538 {
539     ARMCPU *cpu = ARM_CPU(obj);
540     bool value = cpu_isar_feature(aa64_sve, cpu);
541 
542     visit_type_bool(v, name, &value, errp);
543 }
544 
545 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
546                             void *opaque, Error **errp)
547 {
548     ARMCPU *cpu = ARM_CPU(obj);
549     Error *err = NULL;
550     bool value;
551     uint64_t t;
552 
553     visit_type_bool(v, name, &value, &err);
554     if (err) {
555         error_propagate(errp, err);
556         return;
557     }
558 
559     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
560         error_setg(errp, "'sve' feature not supported by KVM on this host");
561         return;
562     }
563 
564     t = cpu->isar.id_aa64pfr0;
565     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
566     cpu->isar.id_aa64pfr0 = t;
567 }
568 
569 void aarch64_add_sve_properties(Object *obj)
570 {
571     uint32_t vq;
572 
573     object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
574                         cpu_arm_set_sve, NULL, NULL);
575 
576     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
577         char name[8];
578         sprintf(name, "sve%d", vq * 128);
579         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
580                             cpu_arm_set_sve_vq, NULL, NULL);
581     }
582 }
583 
584 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
585  * otherwise, a CPU with as many features enabled as our emulation supports.
586  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
587  * this only needs to handle 64 bits.
588  */
589 static void aarch64_max_initfn(Object *obj)
590 {
591     ARMCPU *cpu = ARM_CPU(obj);
592 
593     if (kvm_enabled()) {
594         kvm_arm_set_cpu_features_from_host(cpu);
595     } else {
596         uint64_t t;
597         uint32_t u;
598         aarch64_a57_initfn(obj);
599 
600         /*
601          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
602          * one and try to apply errata workarounds or use impdef features we
603          * don't provide.
604          * An IMPLEMENTER field of 0 means "reserved for software use";
605          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
606          * to see which features are present";
607          * the VARIANT, PARTNUM and REVISION fields are all implementation
608          * defined and we choose to define PARTNUM just in case guest
609          * code needs to distinguish this QEMU CPU from other software
610          * implementations, though this shouldn't be needed.
611          */
612         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
613         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
614         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
615         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
616         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
617         cpu->midr = t;
618 
619         t = cpu->isar.id_aa64isar0;
620         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
621         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
622         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
623         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
624         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
625         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
626         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
627         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
628         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
629         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
630         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
631         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
632         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
633         cpu->isar.id_aa64isar0 = t;
634 
635         t = cpu->isar.id_aa64isar1;
636         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
637         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
638         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
639         t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
640         t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
641         t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
642         t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
643         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
644         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
645         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
646         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
647         cpu->isar.id_aa64isar1 = t;
648 
649         t = cpu->isar.id_aa64pfr0;
650         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
651         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
652         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
653         cpu->isar.id_aa64pfr0 = t;
654 
655         t = cpu->isar.id_aa64pfr1;
656         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
657         cpu->isar.id_aa64pfr1 = t;
658 
659         t = cpu->isar.id_aa64mmfr1;
660         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
661         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
662         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
663         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
664         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
665         t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
666         cpu->isar.id_aa64mmfr1 = t;
667 
668         t = cpu->isar.id_aa64mmfr2;
669         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
670         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
671         cpu->isar.id_aa64mmfr2 = t;
672 
673         /* Replicate the same data to the 32-bit id registers.  */
674         u = cpu->isar.id_isar5;
675         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
676         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
677         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
678         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
679         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
680         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
681         cpu->isar.id_isar5 = u;
682 
683         u = cpu->isar.id_isar6;
684         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
685         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
686         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
687         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
688         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
689         cpu->isar.id_isar6 = u;
690 
691         u = cpu->isar.id_mmfr3;
692         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
693         cpu->isar.id_mmfr3 = u;
694 
695         u = cpu->isar.id_mmfr4;
696         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
697         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
698         u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
699         u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
700         cpu->isar.id_mmfr4 = u;
701 
702         t = cpu->isar.id_aa64dfr0;
703         t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
704         cpu->isar.id_aa64dfr0 = t;
705 
706         u = cpu->isar.id_dfr0;
707         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
708         cpu->isar.id_dfr0 = u;
709 
710         /*
711          * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
712          * so do not set MVFR1.FPHP.  Strictly speaking this is not legal,
713          * but it is also not legal to enable SVE without support for FP16,
714          * and enabling SVE in system mode is more useful in the short term.
715          */
716 
717 #ifdef CONFIG_USER_ONLY
718         /* For usermode -cpu max we can use a larger and more efficient DCZ
719          * blocksize since we don't have to follow what the hardware does.
720          */
721         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
722         cpu->dcz_blocksize = 7; /*  512 bytes */
723 #endif
724     }
725 
726     aarch64_add_sve_properties(obj);
727     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
728                         cpu_max_set_sve_max_vq, NULL, NULL);
729 }
730 
731 static const ARMCPUInfo aarch64_cpus[] = {
732     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
733     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
734     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
735     { .name = "max",                .initfn = aarch64_max_initfn },
736 };
737 
738 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
739 {
740     ARMCPU *cpu = ARM_CPU(obj);
741 
742     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
743 }
744 
745 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
746 {
747     ARMCPU *cpu = ARM_CPU(obj);
748 
749     /* At this time, this property is only allowed if KVM is enabled.  This
750      * restriction allows us to avoid fixing up functionality that assumes a
751      * uniform execution state like do_interrupt.
752      */
753     if (value == false) {
754         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
755             error_setg(errp, "'aarch64' feature cannot be disabled "
756                              "unless KVM is enabled and 32-bit EL1 "
757                              "is supported");
758             return;
759         }
760         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
761     } else {
762         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
763     }
764 }
765 
766 static void aarch64_cpu_initfn(Object *obj)
767 {
768     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
769                              aarch64_cpu_set_aarch64);
770     object_property_set_description(obj, "aarch64",
771                                     "Set on/off to enable/disable aarch64 "
772                                     "execution state ");
773 }
774 
775 static void aarch64_cpu_finalizefn(Object *obj)
776 {
777 }
778 
779 static gchar *aarch64_gdb_arch_name(CPUState *cs)
780 {
781     return g_strdup("aarch64");
782 }
783 
784 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
785 {
786     CPUClass *cc = CPU_CLASS(oc);
787 
788     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
789     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
790     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
791     cc->gdb_num_core_regs = 34;
792     cc->gdb_core_xml_file = "aarch64-core.xml";
793     cc->gdb_arch_name = aarch64_gdb_arch_name;
794 }
795 
796 static void aarch64_cpu_instance_init(Object *obj)
797 {
798     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
799 
800     acc->info->initfn(obj);
801     arm_cpu_post_init(obj);
802 }
803 
804 static void cpu_register_class_init(ObjectClass *oc, void *data)
805 {
806     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
807 
808     acc->info = data;
809 }
810 
811 void aarch64_cpu_register(const ARMCPUInfo *info)
812 {
813     TypeInfo type_info = {
814         .parent = TYPE_AARCH64_CPU,
815         .instance_size = sizeof(ARMCPU),
816         .instance_init = aarch64_cpu_instance_init,
817         .class_size = sizeof(ARMCPUClass),
818         .class_init = info->class_init ?: cpu_register_class_init,
819         .class_data = (void *)info,
820     };
821 
822     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
823     type_register(&type_info);
824     g_free((void *)type_info.name);
825 }
826 
827 static const TypeInfo aarch64_cpu_type_info = {
828     .name = TYPE_AARCH64_CPU,
829     .parent = TYPE_ARM_CPU,
830     .instance_size = sizeof(ARMCPU),
831     .instance_init = aarch64_cpu_initfn,
832     .instance_finalize = aarch64_cpu_finalizefn,
833     .abstract = true,
834     .class_size = sizeof(AArch64CPUClass),
835     .class_init = aarch64_cpu_class_init,
836 };
837 
838 static void aarch64_cpu_register_types(void)
839 {
840     size_t i;
841 
842     type_register_static(&aarch64_cpu_type_info);
843 
844     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
845         aarch64_cpu_register(&aarch64_cpus[i]);
846     }
847 }
848 
849 type_init(aarch64_cpu_register_types)
850