xref: /openbmc/qemu/target/arm/cpu64.c (revision 8f3cd250)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
32 #include "qapi/visitor.h"
33 
34 static inline void set_feature(CPUARMState *env, int feature)
35 {
36     env->features |= 1ULL << feature;
37 }
38 
39 static inline void unset_feature(CPUARMState *env, int feature)
40 {
41     env->features &= ~(1ULL << feature);
42 }
43 
44 #ifndef CONFIG_USER_ONLY
45 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
46 {
47     ARMCPU *cpu = arm_env_get_cpu(env);
48 
49     /* Number of cores is in [25:24]; otherwise we RAZ */
50     return (cpu->core_count - 1) << 24;
51 }
52 #endif
53 
54 static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
55 #ifndef CONFIG_USER_ONLY
56     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
57       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
58       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
59       .writefn = arm_cp_write_ignore },
60     { .name = "L2CTLR",
61       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
62       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
63       .writefn = arm_cp_write_ignore },
64 #endif
65     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
66       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
67       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68     { .name = "L2ECTLR",
69       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
70       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
71     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
72       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
73       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
74     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
75       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
76       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
77     { .name = "CPUACTLR",
78       .cp = 15, .opc1 = 0, .crm = 15,
79       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
80     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
81       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
82       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
83     { .name = "CPUECTLR",
84       .cp = 15, .opc1 = 1, .crm = 15,
85       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
86     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
87       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
88       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
89     { .name = "CPUMERRSR",
90       .cp = 15, .opc1 = 2, .crm = 15,
91       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
92     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
93       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
94       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95     { .name = "L2MERRSR",
96       .cp = 15, .opc1 = 3, .crm = 15,
97       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
98     REGINFO_SENTINEL
99 };
100 
101 static void aarch64_a57_initfn(Object *obj)
102 {
103     ARMCPU *cpu = ARM_CPU(obj);
104 
105     cpu->dtb_compatible = "arm,cortex-a57";
106     set_feature(&cpu->env, ARM_FEATURE_V8);
107     set_feature(&cpu->env, ARM_FEATURE_VFP4);
108     set_feature(&cpu->env, ARM_FEATURE_NEON);
109     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
110     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
111     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
112     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
113     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
114     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
115     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
116     set_feature(&cpu->env, ARM_FEATURE_CRC);
117     set_feature(&cpu->env, ARM_FEATURE_EL2);
118     set_feature(&cpu->env, ARM_FEATURE_EL3);
119     set_feature(&cpu->env, ARM_FEATURE_PMU);
120     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
121     cpu->midr = 0x411fd070;
122     cpu->revidr = 0x00000000;
123     cpu->reset_fpsid = 0x41034070;
124     cpu->mvfr0 = 0x10110222;
125     cpu->mvfr1 = 0x12111111;
126     cpu->mvfr2 = 0x00000043;
127     cpu->ctr = 0x8444c004;
128     cpu->reset_sctlr = 0x00c50838;
129     cpu->id_pfr0 = 0x00000131;
130     cpu->id_pfr1 = 0x00011011;
131     cpu->id_dfr0 = 0x03010066;
132     cpu->id_afr0 = 0x00000000;
133     cpu->id_mmfr0 = 0x10101105;
134     cpu->id_mmfr1 = 0x40000000;
135     cpu->id_mmfr2 = 0x01260000;
136     cpu->id_mmfr3 = 0x02102211;
137     cpu->id_isar0 = 0x02101110;
138     cpu->id_isar1 = 0x13112111;
139     cpu->id_isar2 = 0x21232042;
140     cpu->id_isar3 = 0x01112131;
141     cpu->id_isar4 = 0x00011142;
142     cpu->id_isar5 = 0x00011121;
143     cpu->id_isar6 = 0;
144     cpu->id_aa64pfr0 = 0x00002222;
145     cpu->id_aa64dfr0 = 0x10305106;
146     cpu->pmceid0 = 0x00000000;
147     cpu->pmceid1 = 0x00000000;
148     cpu->id_aa64isar0 = 0x00011120;
149     cpu->id_aa64mmfr0 = 0x00001124;
150     cpu->dbgdidr = 0x3516d000;
151     cpu->clidr = 0x0a200023;
152     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
153     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
154     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
155     cpu->dcz_blocksize = 4; /* 64 bytes */
156     cpu->gic_num_lrs = 4;
157     cpu->gic_vpribits = 5;
158     cpu->gic_vprebits = 5;
159     define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
160 }
161 
162 static void aarch64_a53_initfn(Object *obj)
163 {
164     ARMCPU *cpu = ARM_CPU(obj);
165 
166     cpu->dtb_compatible = "arm,cortex-a53";
167     set_feature(&cpu->env, ARM_FEATURE_V8);
168     set_feature(&cpu->env, ARM_FEATURE_VFP4);
169     set_feature(&cpu->env, ARM_FEATURE_NEON);
170     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
171     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
172     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
173     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
174     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
175     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
176     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
177     set_feature(&cpu->env, ARM_FEATURE_CRC);
178     set_feature(&cpu->env, ARM_FEATURE_EL2);
179     set_feature(&cpu->env, ARM_FEATURE_EL3);
180     set_feature(&cpu->env, ARM_FEATURE_PMU);
181     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
182     cpu->midr = 0x410fd034;
183     cpu->revidr = 0x00000000;
184     cpu->reset_fpsid = 0x41034070;
185     cpu->mvfr0 = 0x10110222;
186     cpu->mvfr1 = 0x12111111;
187     cpu->mvfr2 = 0x00000043;
188     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
189     cpu->reset_sctlr = 0x00c50838;
190     cpu->id_pfr0 = 0x00000131;
191     cpu->id_pfr1 = 0x00011011;
192     cpu->id_dfr0 = 0x03010066;
193     cpu->id_afr0 = 0x00000000;
194     cpu->id_mmfr0 = 0x10101105;
195     cpu->id_mmfr1 = 0x40000000;
196     cpu->id_mmfr2 = 0x01260000;
197     cpu->id_mmfr3 = 0x02102211;
198     cpu->id_isar0 = 0x02101110;
199     cpu->id_isar1 = 0x13112111;
200     cpu->id_isar2 = 0x21232042;
201     cpu->id_isar3 = 0x01112131;
202     cpu->id_isar4 = 0x00011142;
203     cpu->id_isar5 = 0x00011121;
204     cpu->id_isar6 = 0;
205     cpu->id_aa64pfr0 = 0x00002222;
206     cpu->id_aa64dfr0 = 0x10305106;
207     cpu->id_aa64isar0 = 0x00011120;
208     cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
209     cpu->dbgdidr = 0x3516d000;
210     cpu->clidr = 0x0a200023;
211     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
212     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
213     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
214     cpu->dcz_blocksize = 4; /* 64 bytes */
215     cpu->gic_num_lrs = 4;
216     cpu->gic_vpribits = 5;
217     cpu->gic_vprebits = 5;
218     define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
219 }
220 
221 static void cpu_max_get_sve_vq(Object *obj, Visitor *v, const char *name,
222                                void *opaque, Error **errp)
223 {
224     ARMCPU *cpu = ARM_CPU(obj);
225     visit_type_uint32(v, name, &cpu->sve_max_vq, errp);
226 }
227 
228 static void cpu_max_set_sve_vq(Object *obj, Visitor *v, const char *name,
229                                void *opaque, Error **errp)
230 {
231     ARMCPU *cpu = ARM_CPU(obj);
232     Error *err = NULL;
233 
234     visit_type_uint32(v, name, &cpu->sve_max_vq, &err);
235 
236     if (!err && (cpu->sve_max_vq == 0 || cpu->sve_max_vq > ARM_MAX_VQ)) {
237         error_setg(&err, "unsupported SVE vector length");
238         error_append_hint(&err, "Valid sve-max-vq in range [1-%d]\n",
239                           ARM_MAX_VQ);
240     }
241     error_propagate(errp, err);
242 }
243 
244 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
245  * otherwise, a CPU with as many features enabled as our emulation supports.
246  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
247  * this only needs to handle 64 bits.
248  */
249 static void aarch64_max_initfn(Object *obj)
250 {
251     ARMCPU *cpu = ARM_CPU(obj);
252 
253     if (kvm_enabled()) {
254         kvm_arm_set_cpu_features_from_host(cpu);
255     } else {
256         aarch64_a57_initfn(obj);
257 #ifdef CONFIG_USER_ONLY
258         /* We don't set these in system emulation mode for the moment,
259          * since we don't correctly set the ID registers to advertise them,
260          * and in some cases they're only available in AArch64 and not AArch32,
261          * whereas the architecture requires them to be present in both if
262          * present in either.
263          */
264         set_feature(&cpu->env, ARM_FEATURE_V8_SHA512);
265         set_feature(&cpu->env, ARM_FEATURE_V8_SHA3);
266         set_feature(&cpu->env, ARM_FEATURE_V8_SM3);
267         set_feature(&cpu->env, ARM_FEATURE_V8_SM4);
268         set_feature(&cpu->env, ARM_FEATURE_V8_ATOMICS);
269         set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
270         set_feature(&cpu->env, ARM_FEATURE_V8_DOTPROD);
271         set_feature(&cpu->env, ARM_FEATURE_V8_FP16);
272         set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
273         set_feature(&cpu->env, ARM_FEATURE_SVE);
274         /* For usermode -cpu max we can use a larger and more efficient DCZ
275          * blocksize since we don't have to follow what the hardware does.
276          */
277         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
278         cpu->dcz_blocksize = 7; /*  512 bytes */
279 #endif
280 
281         cpu->sve_max_vq = ARM_MAX_VQ;
282         object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_vq,
283                             cpu_max_set_sve_vq, NULL, NULL, &error_fatal);
284     }
285 }
286 
287 typedef struct ARMCPUInfo {
288     const char *name;
289     void (*initfn)(Object *obj);
290     void (*class_init)(ObjectClass *oc, void *data);
291 } ARMCPUInfo;
292 
293 static const ARMCPUInfo aarch64_cpus[] = {
294     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
295     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
296     { .name = "max",                .initfn = aarch64_max_initfn },
297     { .name = NULL }
298 };
299 
300 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
301 {
302     ARMCPU *cpu = ARM_CPU(obj);
303 
304     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
305 }
306 
307 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
308 {
309     ARMCPU *cpu = ARM_CPU(obj);
310 
311     /* At this time, this property is only allowed if KVM is enabled.  This
312      * restriction allows us to avoid fixing up functionality that assumes a
313      * uniform execution state like do_interrupt.
314      */
315     if (!kvm_enabled()) {
316         error_setg(errp, "'aarch64' feature cannot be disabled "
317                          "unless KVM is enabled");
318         return;
319     }
320 
321     if (value == false) {
322         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
323     } else {
324         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
325     }
326 }
327 
328 static void aarch64_cpu_initfn(Object *obj)
329 {
330     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
331                              aarch64_cpu_set_aarch64, NULL);
332     object_property_set_description(obj, "aarch64",
333                                     "Set on/off to enable/disable aarch64 "
334                                     "execution state ",
335                                     NULL);
336 }
337 
338 static void aarch64_cpu_finalizefn(Object *obj)
339 {
340 }
341 
342 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
343 {
344     ARMCPU *cpu = ARM_CPU(cs);
345     /* It's OK to look at env for the current mode here, because it's
346      * never possible for an AArch64 TB to chain to an AArch32 TB.
347      * (Otherwise we would need to use synchronize_from_tb instead.)
348      */
349     if (is_a64(&cpu->env)) {
350         cpu->env.pc = value;
351     } else {
352         cpu->env.regs[15] = value;
353     }
354 }
355 
356 static gchar *aarch64_gdb_arch_name(CPUState *cs)
357 {
358     return g_strdup("aarch64");
359 }
360 
361 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
362 {
363     CPUClass *cc = CPU_CLASS(oc);
364 
365     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
366     cc->set_pc = aarch64_cpu_set_pc;
367     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
368     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
369     cc->gdb_num_core_regs = 34;
370     cc->gdb_core_xml_file = "aarch64-core.xml";
371     cc->gdb_arch_name = aarch64_gdb_arch_name;
372 }
373 
374 static void aarch64_cpu_register(const ARMCPUInfo *info)
375 {
376     TypeInfo type_info = {
377         .parent = TYPE_AARCH64_CPU,
378         .instance_size = sizeof(ARMCPU),
379         .instance_init = info->initfn,
380         .class_size = sizeof(ARMCPUClass),
381         .class_init = info->class_init,
382     };
383 
384     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
385     type_register(&type_info);
386     g_free((void *)type_info.name);
387 }
388 
389 static const TypeInfo aarch64_cpu_type_info = {
390     .name = TYPE_AARCH64_CPU,
391     .parent = TYPE_ARM_CPU,
392     .instance_size = sizeof(ARMCPU),
393     .instance_init = aarch64_cpu_initfn,
394     .instance_finalize = aarch64_cpu_finalizefn,
395     .abstract = true,
396     .class_size = sizeof(AArch64CPUClass),
397     .class_init = aarch64_cpu_class_init,
398 };
399 
400 static void aarch64_cpu_register_types(void)
401 {
402     const ARMCPUInfo *info = aarch64_cpus;
403 
404     type_register_static(&aarch64_cpu_type_info);
405 
406     while (info->name) {
407         aarch64_cpu_register(info);
408         info++;
409     }
410 }
411 
412 type_init(aarch64_cpu_register_types)
413