xref: /openbmc/qemu/target/arm/cpu64.c (revision 7f6c3d1a)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31 
32 #ifndef CONFIG_USER_ONLY
33 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
34 {
35     ARMCPU *cpu = env_archcpu(env);
36 
37     /* Number of cores is in [25:24]; otherwise we RAZ */
38     return (cpu->core_count - 1) << 24;
39 }
40 #endif
41 
42 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
43 #ifndef CONFIG_USER_ONLY
44     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
45       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
46       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
47       .writefn = arm_cp_write_ignore },
48     { .name = "L2CTLR",
49       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
50       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
51       .writefn = arm_cp_write_ignore },
52 #endif
53     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
54       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
55       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
56     { .name = "L2ECTLR",
57       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
58       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
59     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
60       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
61       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
62     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
63       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
64       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
65     { .name = "CPUACTLR",
66       .cp = 15, .opc1 = 0, .crm = 15,
67       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
68     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
69       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
70       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
71     { .name = "CPUECTLR",
72       .cp = 15, .opc1 = 1, .crm = 15,
73       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
74     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
75       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
76       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
77     { .name = "CPUMERRSR",
78       .cp = 15, .opc1 = 2, .crm = 15,
79       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
80     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
81       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
82       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
83     { .name = "L2MERRSR",
84       .cp = 15, .opc1 = 3, .crm = 15,
85       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
86     REGINFO_SENTINEL
87 };
88 
89 static void aarch64_a57_initfn(Object *obj)
90 {
91     ARMCPU *cpu = ARM_CPU(obj);
92 
93     cpu->dtb_compatible = "arm,cortex-a57";
94     set_feature(&cpu->env, ARM_FEATURE_V8);
95     set_feature(&cpu->env, ARM_FEATURE_NEON);
96     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
97     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
98     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
99     set_feature(&cpu->env, ARM_FEATURE_EL2);
100     set_feature(&cpu->env, ARM_FEATURE_EL3);
101     set_feature(&cpu->env, ARM_FEATURE_PMU);
102     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
103     cpu->midr = 0x411fd070;
104     cpu->revidr = 0x00000000;
105     cpu->reset_fpsid = 0x41034070;
106     cpu->isar.mvfr0 = 0x10110222;
107     cpu->isar.mvfr1 = 0x12111111;
108     cpu->isar.mvfr2 = 0x00000043;
109     cpu->ctr = 0x8444c004;
110     cpu->reset_sctlr = 0x00c50838;
111     cpu->id_pfr0 = 0x00000131;
112     cpu->id_pfr1 = 0x00011011;
113     cpu->isar.id_dfr0 = 0x03010066;
114     cpu->id_afr0 = 0x00000000;
115     cpu->isar.id_mmfr0 = 0x10101105;
116     cpu->isar.id_mmfr1 = 0x40000000;
117     cpu->isar.id_mmfr2 = 0x01260000;
118     cpu->isar.id_mmfr3 = 0x02102211;
119     cpu->isar.id_isar0 = 0x02101110;
120     cpu->isar.id_isar1 = 0x13112111;
121     cpu->isar.id_isar2 = 0x21232042;
122     cpu->isar.id_isar3 = 0x01112131;
123     cpu->isar.id_isar4 = 0x00011142;
124     cpu->isar.id_isar5 = 0x00011121;
125     cpu->isar.id_isar6 = 0;
126     cpu->isar.id_aa64pfr0 = 0x00002222;
127     cpu->isar.id_aa64dfr0 = 0x10305106;
128     cpu->isar.id_aa64isar0 = 0x00011120;
129     cpu->isar.id_aa64mmfr0 = 0x00001124;
130     cpu->isar.dbgdidr = 0x3516d000;
131     cpu->clidr = 0x0a200023;
132     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
133     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
134     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
135     cpu->dcz_blocksize = 4; /* 64 bytes */
136     cpu->gic_num_lrs = 4;
137     cpu->gic_vpribits = 5;
138     cpu->gic_vprebits = 5;
139     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
140 }
141 
142 static void aarch64_a53_initfn(Object *obj)
143 {
144     ARMCPU *cpu = ARM_CPU(obj);
145 
146     cpu->dtb_compatible = "arm,cortex-a53";
147     set_feature(&cpu->env, ARM_FEATURE_V8);
148     set_feature(&cpu->env, ARM_FEATURE_NEON);
149     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
150     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
151     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
152     set_feature(&cpu->env, ARM_FEATURE_EL2);
153     set_feature(&cpu->env, ARM_FEATURE_EL3);
154     set_feature(&cpu->env, ARM_FEATURE_PMU);
155     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
156     cpu->midr = 0x410fd034;
157     cpu->revidr = 0x00000000;
158     cpu->reset_fpsid = 0x41034070;
159     cpu->isar.mvfr0 = 0x10110222;
160     cpu->isar.mvfr1 = 0x12111111;
161     cpu->isar.mvfr2 = 0x00000043;
162     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
163     cpu->reset_sctlr = 0x00c50838;
164     cpu->id_pfr0 = 0x00000131;
165     cpu->id_pfr1 = 0x00011011;
166     cpu->isar.id_dfr0 = 0x03010066;
167     cpu->id_afr0 = 0x00000000;
168     cpu->isar.id_mmfr0 = 0x10101105;
169     cpu->isar.id_mmfr1 = 0x40000000;
170     cpu->isar.id_mmfr2 = 0x01260000;
171     cpu->isar.id_mmfr3 = 0x02102211;
172     cpu->isar.id_isar0 = 0x02101110;
173     cpu->isar.id_isar1 = 0x13112111;
174     cpu->isar.id_isar2 = 0x21232042;
175     cpu->isar.id_isar3 = 0x01112131;
176     cpu->isar.id_isar4 = 0x00011142;
177     cpu->isar.id_isar5 = 0x00011121;
178     cpu->isar.id_isar6 = 0;
179     cpu->isar.id_aa64pfr0 = 0x00002222;
180     cpu->isar.id_aa64dfr0 = 0x10305106;
181     cpu->isar.id_aa64isar0 = 0x00011120;
182     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
183     cpu->isar.dbgdidr = 0x3516d000;
184     cpu->clidr = 0x0a200023;
185     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
186     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
187     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
188     cpu->dcz_blocksize = 4; /* 64 bytes */
189     cpu->gic_num_lrs = 4;
190     cpu->gic_vpribits = 5;
191     cpu->gic_vprebits = 5;
192     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
193 }
194 
195 static void aarch64_a72_initfn(Object *obj)
196 {
197     ARMCPU *cpu = ARM_CPU(obj);
198 
199     cpu->dtb_compatible = "arm,cortex-a72";
200     set_feature(&cpu->env, ARM_FEATURE_V8);
201     set_feature(&cpu->env, ARM_FEATURE_NEON);
202     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
203     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
204     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
205     set_feature(&cpu->env, ARM_FEATURE_EL2);
206     set_feature(&cpu->env, ARM_FEATURE_EL3);
207     set_feature(&cpu->env, ARM_FEATURE_PMU);
208     cpu->midr = 0x410fd083;
209     cpu->revidr = 0x00000000;
210     cpu->reset_fpsid = 0x41034080;
211     cpu->isar.mvfr0 = 0x10110222;
212     cpu->isar.mvfr1 = 0x12111111;
213     cpu->isar.mvfr2 = 0x00000043;
214     cpu->ctr = 0x8444c004;
215     cpu->reset_sctlr = 0x00c50838;
216     cpu->id_pfr0 = 0x00000131;
217     cpu->id_pfr1 = 0x00011011;
218     cpu->isar.id_dfr0 = 0x03010066;
219     cpu->id_afr0 = 0x00000000;
220     cpu->isar.id_mmfr0 = 0x10201105;
221     cpu->isar.id_mmfr1 = 0x40000000;
222     cpu->isar.id_mmfr2 = 0x01260000;
223     cpu->isar.id_mmfr3 = 0x02102211;
224     cpu->isar.id_isar0 = 0x02101110;
225     cpu->isar.id_isar1 = 0x13112111;
226     cpu->isar.id_isar2 = 0x21232042;
227     cpu->isar.id_isar3 = 0x01112131;
228     cpu->isar.id_isar4 = 0x00011142;
229     cpu->isar.id_isar5 = 0x00011121;
230     cpu->isar.id_aa64pfr0 = 0x00002222;
231     cpu->isar.id_aa64dfr0 = 0x10305106;
232     cpu->isar.id_aa64isar0 = 0x00011120;
233     cpu->isar.id_aa64mmfr0 = 0x00001124;
234     cpu->isar.dbgdidr = 0x3516d000;
235     cpu->clidr = 0x0a200023;
236     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
237     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
238     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
239     cpu->dcz_blocksize = 4; /* 64 bytes */
240     cpu->gic_num_lrs = 4;
241     cpu->gic_vpribits = 5;
242     cpu->gic_vprebits = 5;
243     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
244 }
245 
246 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
247 {
248     /*
249      * If any vector lengths are explicitly enabled with sve<N> properties,
250      * then all other lengths are implicitly disabled.  If sve-max-vq is
251      * specified then it is the same as explicitly enabling all lengths
252      * up to and including the specified maximum, which means all larger
253      * lengths will be implicitly disabled.  If no sve<N> properties
254      * are enabled and sve-max-vq is not specified, then all lengths not
255      * explicitly disabled will be enabled.  Additionally, all power-of-two
256      * vector lengths less than the maximum enabled length will be
257      * automatically enabled and all vector lengths larger than the largest
258      * disabled power-of-two vector length will be automatically disabled.
259      * Errors are generated if the user provided input that interferes with
260      * any of the above.  Finally, if SVE is not disabled, then at least one
261      * vector length must be enabled.
262      */
263     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
264     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
265     uint32_t vq, max_vq = 0;
266 
267     /* Collect the set of vector lengths supported by KVM. */
268     bitmap_zero(kvm_supported, ARM_MAX_VQ);
269     if (kvm_enabled() && kvm_arm_sve_supported()) {
270         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
271     } else if (kvm_enabled()) {
272         assert(!cpu_isar_feature(aa64_sve, cpu));
273     }
274 
275     /*
276      * Process explicit sve<N> properties.
277      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
278      * Check first for any sve<N> enabled.
279      */
280     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
281         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
282 
283         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
284             error_setg(errp, "cannot enable sve%d", max_vq * 128);
285             error_append_hint(errp, "sve%d is larger than the maximum vector "
286                               "length, sve-max-vq=%d (%d bits)\n",
287                               max_vq * 128, cpu->sve_max_vq,
288                               cpu->sve_max_vq * 128);
289             return;
290         }
291 
292         if (kvm_enabled()) {
293             /*
294              * For KVM we have to automatically enable all supported unitialized
295              * lengths, even when the smaller lengths are not all powers-of-two.
296              */
297             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
298             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
299         } else {
300             /* Propagate enabled bits down through required powers-of-two. */
301             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
302                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
303                     set_bit(vq - 1, cpu->sve_vq_map);
304                 }
305             }
306         }
307     } else if (cpu->sve_max_vq == 0) {
308         /*
309          * No explicit bits enabled, and no implicit bits from sve-max-vq.
310          */
311         if (!cpu_isar_feature(aa64_sve, cpu)) {
312             /* SVE is disabled and so are all vector lengths.  Good. */
313             return;
314         }
315 
316         if (kvm_enabled()) {
317             /* Disabling a supported length disables all larger lengths. */
318             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
319                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
320                     test_bit(vq - 1, kvm_supported)) {
321                     break;
322                 }
323             }
324             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
325             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
326                           cpu->sve_vq_init, max_vq);
327             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
328                 error_setg(errp, "cannot disable sve%d", vq * 128);
329                 error_append_hint(errp, "Disabling sve%d results in all "
330                                   "vector lengths being disabled.\n",
331                                   vq * 128);
332                 error_append_hint(errp, "With SVE enabled, at least one "
333                                   "vector length must be enabled.\n");
334                 return;
335             }
336         } else {
337             /* Disabling a power-of-two disables all larger lengths. */
338             if (test_bit(0, cpu->sve_vq_init)) {
339                 error_setg(errp, "cannot disable sve128");
340                 error_append_hint(errp, "Disabling sve128 results in all "
341                                   "vector lengths being disabled.\n");
342                 error_append_hint(errp, "With SVE enabled, at least one "
343                                   "vector length must be enabled.\n");
344                 return;
345             }
346             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
347                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
348                     break;
349                 }
350             }
351             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
352             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
353         }
354 
355         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
356     }
357 
358     /*
359      * Process the sve-max-vq property.
360      * Note that we know from the above that no bit above
361      * sve-max-vq is currently set.
362      */
363     if (cpu->sve_max_vq != 0) {
364         max_vq = cpu->sve_max_vq;
365 
366         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
367             test_bit(max_vq - 1, cpu->sve_vq_init)) {
368             error_setg(errp, "cannot disable sve%d", max_vq * 128);
369             error_append_hint(errp, "The maximum vector length must be "
370                               "enabled, sve-max-vq=%d (%d bits)\n",
371                               max_vq, max_vq * 128);
372             return;
373         }
374 
375         /* Set all bits not explicitly set within sve-max-vq. */
376         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
377         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
378     }
379 
380     /*
381      * We should know what max-vq is now.  Also, as we're done
382      * manipulating sve-vq-map, we ensure any bits above max-vq
383      * are clear, just in case anybody looks.
384      */
385     assert(max_vq != 0);
386     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
387 
388     if (kvm_enabled()) {
389         /* Ensure the set of lengths matches what KVM supports. */
390         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
391         if (!bitmap_empty(tmp, max_vq)) {
392             vq = find_last_bit(tmp, max_vq) + 1;
393             if (test_bit(vq - 1, cpu->sve_vq_map)) {
394                 if (cpu->sve_max_vq) {
395                     error_setg(errp, "cannot set sve-max-vq=%d",
396                                cpu->sve_max_vq);
397                     error_append_hint(errp, "This KVM host does not support "
398                                       "the vector length %d-bits.\n",
399                                       vq * 128);
400                     error_append_hint(errp, "It may not be possible to use "
401                                       "sve-max-vq with this KVM host. Try "
402                                       "using only sve<N> properties.\n");
403                 } else {
404                     error_setg(errp, "cannot enable sve%d", vq * 128);
405                     error_append_hint(errp, "This KVM host does not support "
406                                       "the vector length %d-bits.\n",
407                                       vq * 128);
408                 }
409             } else {
410                 error_setg(errp, "cannot disable sve%d", vq * 128);
411                 error_append_hint(errp, "The KVM host requires all "
412                                   "supported vector lengths smaller "
413                                   "than %d bits to also be enabled.\n",
414                                   max_vq * 128);
415             }
416             return;
417         }
418     } else {
419         /* Ensure all required powers-of-two are enabled. */
420         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
421             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
422                 error_setg(errp, "cannot disable sve%d", vq * 128);
423                 error_append_hint(errp, "sve%d is required as it "
424                                   "is a power-of-two length smaller than "
425                                   "the maximum, sve%d\n",
426                                   vq * 128, max_vq * 128);
427                 return;
428             }
429         }
430     }
431 
432     /*
433      * Now that we validated all our vector lengths, the only question
434      * left to answer is if we even want SVE at all.
435      */
436     if (!cpu_isar_feature(aa64_sve, cpu)) {
437         error_setg(errp, "cannot enable sve%d", max_vq * 128);
438         error_append_hint(errp, "SVE must be enabled to enable vector "
439                           "lengths.\n");
440         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
441         return;
442     }
443 
444     /* From now on sve_max_vq is the actual maximum supported length. */
445     cpu->sve_max_vq = max_vq;
446 }
447 
448 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
449                                    void *opaque, Error **errp)
450 {
451     ARMCPU *cpu = ARM_CPU(obj);
452     uint32_t value;
453 
454     /* All vector lengths are disabled when SVE is off. */
455     if (!cpu_isar_feature(aa64_sve, cpu)) {
456         value = 0;
457     } else {
458         value = cpu->sve_max_vq;
459     }
460     visit_type_uint32(v, name, &value, errp);
461 }
462 
463 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
464                                    void *opaque, Error **errp)
465 {
466     ARMCPU *cpu = ARM_CPU(obj);
467     uint32_t max_vq;
468 
469     if (!visit_type_uint32(v, name, &max_vq, errp)) {
470         return;
471     }
472 
473     if (kvm_enabled() && !kvm_arm_sve_supported()) {
474         error_setg(errp, "cannot set sve-max-vq");
475         error_append_hint(errp, "SVE not supported by KVM on this host\n");
476         return;
477     }
478 
479     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
480         error_setg(errp, "unsupported SVE vector length");
481         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
482                           ARM_MAX_VQ);
483         return;
484     }
485 
486     cpu->sve_max_vq = max_vq;
487 }
488 
489 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
490                                void *opaque, Error **errp)
491 {
492     ARMCPU *cpu = ARM_CPU(obj);
493     uint32_t vq = atoi(&name[3]) / 128;
494     bool value;
495 
496     /* All vector lengths are disabled when SVE is off. */
497     if (!cpu_isar_feature(aa64_sve, cpu)) {
498         value = false;
499     } else {
500         value = test_bit(vq - 1, cpu->sve_vq_map);
501     }
502     visit_type_bool(v, name, &value, errp);
503 }
504 
505 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
506                                void *opaque, Error **errp)
507 {
508     ARMCPU *cpu = ARM_CPU(obj);
509     uint32_t vq = atoi(&name[3]) / 128;
510     bool value;
511 
512     if (!visit_type_bool(v, name, &value, errp)) {
513         return;
514     }
515 
516     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
517         error_setg(errp, "cannot enable %s", name);
518         error_append_hint(errp, "SVE not supported by KVM on this host\n");
519         return;
520     }
521 
522     if (value) {
523         set_bit(vq - 1, cpu->sve_vq_map);
524     } else {
525         clear_bit(vq - 1, cpu->sve_vq_map);
526     }
527     set_bit(vq - 1, cpu->sve_vq_init);
528 }
529 
530 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
531                             void *opaque, Error **errp)
532 {
533     ARMCPU *cpu = ARM_CPU(obj);
534     bool value = cpu_isar_feature(aa64_sve, cpu);
535 
536     visit_type_bool(v, name, &value, errp);
537 }
538 
539 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
540                             void *opaque, Error **errp)
541 {
542     ARMCPU *cpu = ARM_CPU(obj);
543     bool value;
544     uint64_t t;
545 
546     if (!visit_type_bool(v, name, &value, errp)) {
547         return;
548     }
549 
550     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
551         error_setg(errp, "'sve' feature not supported by KVM on this host");
552         return;
553     }
554 
555     t = cpu->isar.id_aa64pfr0;
556     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
557     cpu->isar.id_aa64pfr0 = t;
558 }
559 
560 void aarch64_add_sve_properties(Object *obj)
561 {
562     uint32_t vq;
563 
564     object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
565                         cpu_arm_set_sve, NULL, NULL);
566 
567     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
568         char name[8];
569         sprintf(name, "sve%d", vq * 128);
570         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
571                             cpu_arm_set_sve_vq, NULL, NULL);
572     }
573 }
574 
575 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
576  * otherwise, a CPU with as many features enabled as our emulation supports.
577  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
578  * this only needs to handle 64 bits.
579  */
580 static void aarch64_max_initfn(Object *obj)
581 {
582     ARMCPU *cpu = ARM_CPU(obj);
583 
584     if (kvm_enabled()) {
585         kvm_arm_set_cpu_features_from_host(cpu);
586     } else {
587         uint64_t t;
588         uint32_t u;
589         aarch64_a57_initfn(obj);
590 
591         /*
592          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
593          * one and try to apply errata workarounds or use impdef features we
594          * don't provide.
595          * An IMPLEMENTER field of 0 means "reserved for software use";
596          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
597          * to see which features are present";
598          * the VARIANT, PARTNUM and REVISION fields are all implementation
599          * defined and we choose to define PARTNUM just in case guest
600          * code needs to distinguish this QEMU CPU from other software
601          * implementations, though this shouldn't be needed.
602          */
603         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
604         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
605         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
606         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
607         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
608         cpu->midr = t;
609 
610         t = cpu->isar.id_aa64isar0;
611         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
612         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
613         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
614         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
615         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
616         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
617         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
618         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
619         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
620         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
621         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
622         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
623         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
624         cpu->isar.id_aa64isar0 = t;
625 
626         t = cpu->isar.id_aa64isar1;
627         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
628         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
629         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
630         t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
631         t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
632         t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
633         t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
634         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
635         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
636         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
637         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
638         cpu->isar.id_aa64isar1 = t;
639 
640         t = cpu->isar.id_aa64pfr0;
641         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
642         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
643         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
644         cpu->isar.id_aa64pfr0 = t;
645 
646         t = cpu->isar.id_aa64pfr1;
647         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
648         /*
649          * Begin with full support for MTE. This will be downgraded to MTE=0
650          * during realize if the board provides no tag memory, much like
651          * we do for EL2 with the virtualization=on property.
652          */
653         t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
654         cpu->isar.id_aa64pfr1 = t;
655 
656         t = cpu->isar.id_aa64mmfr1;
657         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
658         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
659         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
660         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
661         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
662         t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
663         cpu->isar.id_aa64mmfr1 = t;
664 
665         t = cpu->isar.id_aa64mmfr2;
666         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
667         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
668         cpu->isar.id_aa64mmfr2 = t;
669 
670         /* Replicate the same data to the 32-bit id registers.  */
671         u = cpu->isar.id_isar5;
672         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
673         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
674         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
675         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
676         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
677         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
678         cpu->isar.id_isar5 = u;
679 
680         u = cpu->isar.id_isar6;
681         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
682         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
683         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
684         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
685         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
686         cpu->isar.id_isar6 = u;
687 
688         u = cpu->isar.id_mmfr3;
689         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
690         cpu->isar.id_mmfr3 = u;
691 
692         u = cpu->isar.id_mmfr4;
693         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
694         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
695         u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
696         u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
697         cpu->isar.id_mmfr4 = u;
698 
699         t = cpu->isar.id_aa64dfr0;
700         t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
701         cpu->isar.id_aa64dfr0 = t;
702 
703         u = cpu->isar.id_dfr0;
704         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
705         cpu->isar.id_dfr0 = u;
706 
707         u = cpu->isar.mvfr1;
708         u = FIELD_DP32(u, MVFR1, FPHP, 3);      /* v8.2-FP16 */
709         u = FIELD_DP32(u, MVFR1, SIMDHP, 2);    /* v8.2-FP16 */
710         cpu->isar.mvfr1 = u;
711 
712 #ifdef CONFIG_USER_ONLY
713         /* For usermode -cpu max we can use a larger and more efficient DCZ
714          * blocksize since we don't have to follow what the hardware does.
715          */
716         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
717         cpu->dcz_blocksize = 7; /*  512 bytes */
718 #endif
719     }
720 
721     aarch64_add_sve_properties(obj);
722     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
723                         cpu_max_set_sve_max_vq, NULL, NULL);
724 }
725 
726 static const ARMCPUInfo aarch64_cpus[] = {
727     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
728     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
729     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
730     { .name = "max",                .initfn = aarch64_max_initfn },
731 };
732 
733 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
734 {
735     ARMCPU *cpu = ARM_CPU(obj);
736 
737     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
738 }
739 
740 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
741 {
742     ARMCPU *cpu = ARM_CPU(obj);
743 
744     /* At this time, this property is only allowed if KVM is enabled.  This
745      * restriction allows us to avoid fixing up functionality that assumes a
746      * uniform execution state like do_interrupt.
747      */
748     if (value == false) {
749         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
750             error_setg(errp, "'aarch64' feature cannot be disabled "
751                              "unless KVM is enabled and 32-bit EL1 "
752                              "is supported");
753             return;
754         }
755         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
756     } else {
757         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
758     }
759 }
760 
761 static void aarch64_cpu_initfn(Object *obj)
762 {
763     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
764                              aarch64_cpu_set_aarch64);
765     object_property_set_description(obj, "aarch64",
766                                     "Set on/off to enable/disable aarch64 "
767                                     "execution state ");
768 }
769 
770 static void aarch64_cpu_finalizefn(Object *obj)
771 {
772 }
773 
774 static gchar *aarch64_gdb_arch_name(CPUState *cs)
775 {
776     return g_strdup("aarch64");
777 }
778 
779 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
780 {
781     CPUClass *cc = CPU_CLASS(oc);
782 
783     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
784     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
785     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
786     cc->gdb_num_core_regs = 34;
787     cc->gdb_core_xml_file = "aarch64-core.xml";
788     cc->gdb_arch_name = aarch64_gdb_arch_name;
789 }
790 
791 static void aarch64_cpu_instance_init(Object *obj)
792 {
793     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
794 
795     acc->info->initfn(obj);
796     arm_cpu_post_init(obj);
797 }
798 
799 static void cpu_register_class_init(ObjectClass *oc, void *data)
800 {
801     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
802 
803     acc->info = data;
804 }
805 
806 void aarch64_cpu_register(const ARMCPUInfo *info)
807 {
808     TypeInfo type_info = {
809         .parent = TYPE_AARCH64_CPU,
810         .instance_size = sizeof(ARMCPU),
811         .instance_init = aarch64_cpu_instance_init,
812         .class_size = sizeof(ARMCPUClass),
813         .class_init = info->class_init ?: cpu_register_class_init,
814         .class_data = (void *)info,
815     };
816 
817     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
818     type_register(&type_info);
819     g_free((void *)type_info.name);
820 }
821 
822 static const TypeInfo aarch64_cpu_type_info = {
823     .name = TYPE_AARCH64_CPU,
824     .parent = TYPE_ARM_CPU,
825     .instance_size = sizeof(ARMCPU),
826     .instance_init = aarch64_cpu_initfn,
827     .instance_finalize = aarch64_cpu_finalizefn,
828     .abstract = true,
829     .class_size = sizeof(AArch64CPUClass),
830     .class_init = aarch64_cpu_class_init,
831 };
832 
833 static void aarch64_cpu_register_types(void)
834 {
835     size_t i;
836 
837     type_register_static(&aarch64_cpu_type_info);
838 
839     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
840         aarch64_cpu_register(&aarch64_cpus[i]);
841     }
842 }
843 
844 type_init(aarch64_cpu_register_types)
845