1 /* 2 * QEMU AArch64 CPU 3 * 4 * Copyright (c) 2013 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #include "cpregs.h" 25 #include "qemu/module.h" 26 #include "sysemu/kvm.h" 27 #include "sysemu/hvf.h" 28 #include "sysemu/qtest.h" 29 #include "sysemu/tcg.h" 30 #include "kvm_arm.h" 31 #include "hvf_arm.h" 32 #include "qapi/visitor.h" 33 #include "hw/qdev-properties.h" 34 #include "internals.h" 35 #include "cpu-features.h" 36 #include "cpregs.h" 37 38 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) 39 { 40 /* 41 * If any vector lengths are explicitly enabled with sve<N> properties, 42 * then all other lengths are implicitly disabled. If sve-max-vq is 43 * specified then it is the same as explicitly enabling all lengths 44 * up to and including the specified maximum, which means all larger 45 * lengths will be implicitly disabled. If no sve<N> properties 46 * are enabled and sve-max-vq is not specified, then all lengths not 47 * explicitly disabled will be enabled. Additionally, all power-of-two 48 * vector lengths less than the maximum enabled length will be 49 * automatically enabled and all vector lengths larger than the largest 50 * disabled power-of-two vector length will be automatically disabled. 51 * Errors are generated if the user provided input that interferes with 52 * any of the above. Finally, if SVE is not disabled, then at least one 53 * vector length must be enabled. 54 */ 55 uint32_t vq_map = cpu->sve_vq.map; 56 uint32_t vq_init = cpu->sve_vq.init; 57 uint32_t vq_supported; 58 uint32_t vq_mask = 0; 59 uint32_t tmp, vq, max_vq = 0; 60 61 /* 62 * CPU models specify a set of supported vector lengths which are 63 * enabled by default. Attempting to enable any vector length not set 64 * in the supported bitmap results in an error. When KVM is enabled we 65 * fetch the supported bitmap from the host. 66 */ 67 if (kvm_enabled()) { 68 if (kvm_arm_sve_supported()) { 69 cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu)); 70 vq_supported = cpu->sve_vq.supported; 71 } else { 72 assert(!cpu_isar_feature(aa64_sve, cpu)); 73 vq_supported = 0; 74 } 75 } else { 76 vq_supported = cpu->sve_vq.supported; 77 } 78 79 /* 80 * Process explicit sve<N> properties. 81 * From the properties, sve_vq_map<N> implies sve_vq_init<N>. 82 * Check first for any sve<N> enabled. 83 */ 84 if (vq_map != 0) { 85 max_vq = 32 - clz32(vq_map); 86 vq_mask = MAKE_64BIT_MASK(0, max_vq); 87 88 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { 89 error_setg(errp, "cannot enable sve%d", max_vq * 128); 90 error_append_hint(errp, "sve%d is larger than the maximum vector " 91 "length, sve-max-vq=%d (%d bits)\n", 92 max_vq * 128, cpu->sve_max_vq, 93 cpu->sve_max_vq * 128); 94 return; 95 } 96 97 if (kvm_enabled()) { 98 /* 99 * For KVM we have to automatically enable all supported uninitialized 100 * lengths, even when the smaller lengths are not all powers-of-two. 101 */ 102 vq_map |= vq_supported & ~vq_init & vq_mask; 103 } else { 104 /* Propagate enabled bits down through required powers-of-two. */ 105 vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask; 106 } 107 } else if (cpu->sve_max_vq == 0) { 108 /* 109 * No explicit bits enabled, and no implicit bits from sve-max-vq. 110 */ 111 if (!cpu_isar_feature(aa64_sve, cpu)) { 112 /* SVE is disabled and so are all vector lengths. Good. */ 113 return; 114 } 115 116 if (kvm_enabled()) { 117 /* Disabling a supported length disables all larger lengths. */ 118 tmp = vq_init & vq_supported; 119 } else { 120 /* Disabling a power-of-two disables all larger lengths. */ 121 tmp = vq_init & SVE_VQ_POW2_MAP; 122 } 123 vq = ctz32(tmp) + 1; 124 125 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 126 vq_mask = max_vq > 0 ? MAKE_64BIT_MASK(0, max_vq) : 0; 127 vq_map = vq_supported & ~vq_init & vq_mask; 128 129 if (vq_map == 0) { 130 error_setg(errp, "cannot disable sve%d", vq * 128); 131 error_append_hint(errp, "Disabling sve%d results in all " 132 "vector lengths being disabled.\n", 133 vq * 128); 134 error_append_hint(errp, "With SVE enabled, at least one " 135 "vector length must be enabled.\n"); 136 return; 137 } 138 139 max_vq = 32 - clz32(vq_map); 140 vq_mask = MAKE_64BIT_MASK(0, max_vq); 141 } 142 143 /* 144 * Process the sve-max-vq property. 145 * Note that we know from the above that no bit above 146 * sve-max-vq is currently set. 147 */ 148 if (cpu->sve_max_vq != 0) { 149 max_vq = cpu->sve_max_vq; 150 vq_mask = MAKE_64BIT_MASK(0, max_vq); 151 152 if (vq_init & ~vq_map & (1 << (max_vq - 1))) { 153 error_setg(errp, "cannot disable sve%d", max_vq * 128); 154 error_append_hint(errp, "The maximum vector length must be " 155 "enabled, sve-max-vq=%d (%d bits)\n", 156 max_vq, max_vq * 128); 157 return; 158 } 159 160 /* Set all bits not explicitly set within sve-max-vq. */ 161 vq_map |= ~vq_init & vq_mask; 162 } 163 164 /* 165 * We should know what max-vq is now. Also, as we're done 166 * manipulating sve-vq-map, we ensure any bits above max-vq 167 * are clear, just in case anybody looks. 168 */ 169 assert(max_vq != 0); 170 assert(vq_mask != 0); 171 vq_map &= vq_mask; 172 173 /* Ensure the set of lengths matches what is supported. */ 174 tmp = vq_map ^ (vq_supported & vq_mask); 175 if (tmp) { 176 vq = 32 - clz32(tmp); 177 if (vq_map & (1 << (vq - 1))) { 178 if (cpu->sve_max_vq) { 179 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq); 180 error_append_hint(errp, "This CPU does not support " 181 "the vector length %d-bits.\n", vq * 128); 182 error_append_hint(errp, "It may not be possible to use " 183 "sve-max-vq with this CPU. Try " 184 "using only sve<N> properties.\n"); 185 } else { 186 error_setg(errp, "cannot enable sve%d", vq * 128); 187 if (vq_supported) { 188 error_append_hint(errp, "This CPU does not support " 189 "the vector length %d-bits.\n", vq * 128); 190 } else { 191 error_append_hint(errp, "SVE not supported by KVM " 192 "on this host\n"); 193 } 194 } 195 return; 196 } else { 197 if (kvm_enabled()) { 198 error_setg(errp, "cannot disable sve%d", vq * 128); 199 error_append_hint(errp, "The KVM host requires all " 200 "supported vector lengths smaller " 201 "than %d bits to also be enabled.\n", 202 max_vq * 128); 203 return; 204 } else { 205 /* Ensure all required powers-of-two are enabled. */ 206 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map; 207 if (tmp) { 208 vq = 32 - clz32(tmp); 209 error_setg(errp, "cannot disable sve%d", vq * 128); 210 error_append_hint(errp, "sve%d is required as it " 211 "is a power-of-two length smaller " 212 "than the maximum, sve%d\n", 213 vq * 128, max_vq * 128); 214 return; 215 } 216 } 217 } 218 } 219 220 /* 221 * Now that we validated all our vector lengths, the only question 222 * left to answer is if we even want SVE at all. 223 */ 224 if (!cpu_isar_feature(aa64_sve, cpu)) { 225 error_setg(errp, "cannot enable sve%d", max_vq * 128); 226 error_append_hint(errp, "SVE must be enabled to enable vector " 227 "lengths.\n"); 228 error_append_hint(errp, "Add sve=on to the CPU property list.\n"); 229 return; 230 } 231 232 /* From now on sve_max_vq is the actual maximum supported length. */ 233 cpu->sve_max_vq = max_vq; 234 cpu->sve_vq.map = vq_map; 235 } 236 237 /* 238 * Note that cpu_arm_{get,set}_vq cannot use the simpler 239 * object_property_add_bool interface because they make use of the 240 * contents of "name" to determine which bit on which to operate. 241 */ 242 static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name, 243 void *opaque, Error **errp) 244 { 245 ARMCPU *cpu = ARM_CPU(obj); 246 ARMVQMap *vq_map = opaque; 247 uint32_t vq = atoi(&name[3]) / 128; 248 bool sve = vq_map == &cpu->sve_vq; 249 bool value; 250 251 /* All vector lengths are disabled when feature is off. */ 252 if (sve 253 ? !cpu_isar_feature(aa64_sve, cpu) 254 : !cpu_isar_feature(aa64_sme, cpu)) { 255 value = false; 256 } else { 257 value = extract32(vq_map->map, vq - 1, 1); 258 } 259 visit_type_bool(v, name, &value, errp); 260 } 261 262 static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name, 263 void *opaque, Error **errp) 264 { 265 ARMVQMap *vq_map = opaque; 266 uint32_t vq = atoi(&name[3]) / 128; 267 bool value; 268 269 if (!visit_type_bool(v, name, &value, errp)) { 270 return; 271 } 272 273 vq_map->map = deposit32(vq_map->map, vq - 1, 1, value); 274 vq_map->init |= 1 << (vq - 1); 275 } 276 277 static bool cpu_arm_get_sve(Object *obj, Error **errp) 278 { 279 ARMCPU *cpu = ARM_CPU(obj); 280 return cpu_isar_feature(aa64_sve, cpu); 281 } 282 283 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp) 284 { 285 ARMCPU *cpu = ARM_CPU(obj); 286 uint64_t t; 287 288 if (value && kvm_enabled() && !kvm_arm_sve_supported()) { 289 error_setg(errp, "'sve' feature not supported by KVM on this host"); 290 return; 291 } 292 293 t = cpu->isar.id_aa64pfr0; 294 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); 295 cpu->isar.id_aa64pfr0 = t; 296 } 297 298 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp) 299 { 300 uint32_t vq_map = cpu->sme_vq.map; 301 uint32_t vq_init = cpu->sme_vq.init; 302 uint32_t vq_supported = cpu->sme_vq.supported; 303 uint32_t vq; 304 305 if (vq_map == 0) { 306 if (!cpu_isar_feature(aa64_sme, cpu)) { 307 cpu->isar.id_aa64smfr0 = 0; 308 return; 309 } 310 311 /* TODO: KVM will require limitations via SMCR_EL2. */ 312 vq_map = vq_supported & ~vq_init; 313 314 if (vq_map == 0) { 315 vq = ctz32(vq_supported) + 1; 316 error_setg(errp, "cannot disable sme%d", vq * 128); 317 error_append_hint(errp, "All SME vector lengths are disabled.\n"); 318 error_append_hint(errp, "With SME enabled, at least one " 319 "vector length must be enabled.\n"); 320 return; 321 } 322 } else { 323 if (!cpu_isar_feature(aa64_sme, cpu)) { 324 vq = 32 - clz32(vq_map); 325 error_setg(errp, "cannot enable sme%d", vq * 128); 326 error_append_hint(errp, "SME must be enabled to enable " 327 "vector lengths.\n"); 328 error_append_hint(errp, "Add sme=on to the CPU property list.\n"); 329 return; 330 } 331 /* TODO: KVM will require limitations via SMCR_EL2. */ 332 } 333 334 cpu->sme_vq.map = vq_map; 335 } 336 337 static bool cpu_arm_get_sme(Object *obj, Error **errp) 338 { 339 ARMCPU *cpu = ARM_CPU(obj); 340 return cpu_isar_feature(aa64_sme, cpu); 341 } 342 343 static void cpu_arm_set_sme(Object *obj, bool value, Error **errp) 344 { 345 ARMCPU *cpu = ARM_CPU(obj); 346 uint64_t t; 347 348 t = cpu->isar.id_aa64pfr1; 349 t = FIELD_DP64(t, ID_AA64PFR1, SME, value); 350 cpu->isar.id_aa64pfr1 = t; 351 } 352 353 static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp) 354 { 355 ARMCPU *cpu = ARM_CPU(obj); 356 return cpu_isar_feature(aa64_sme, cpu) && 357 cpu_isar_feature(aa64_sme_fa64, cpu); 358 } 359 360 static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp) 361 { 362 ARMCPU *cpu = ARM_CPU(obj); 363 uint64_t t; 364 365 t = cpu->isar.id_aa64smfr0; 366 t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value); 367 cpu->isar.id_aa64smfr0 = t; 368 } 369 370 #ifdef CONFIG_USER_ONLY 371 /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */ 372 static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v, 373 const char *name, void *opaque, 374 Error **errp) 375 { 376 uint32_t *ptr_default_vq = opaque; 377 int32_t default_len, default_vq, remainder; 378 379 if (!visit_type_int32(v, name, &default_len, errp)) { 380 return; 381 } 382 383 /* Undocumented, but the kernel allows -1 to indicate "maximum". */ 384 if (default_len == -1) { 385 *ptr_default_vq = ARM_MAX_VQ; 386 return; 387 } 388 389 default_vq = default_len / 16; 390 remainder = default_len % 16; 391 392 /* 393 * Note that the 512 max comes from include/uapi/asm/sve_context.h 394 * and is the maximum architectural width of ZCR_ELx.LEN. 395 */ 396 if (remainder || default_vq < 1 || default_vq > 512) { 397 ARMCPU *cpu = ARM_CPU(obj); 398 const char *which = 399 (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme"); 400 401 error_setg(errp, "cannot set %s-default-vector-length", which); 402 if (remainder) { 403 error_append_hint(errp, "Vector length not a multiple of 16\n"); 404 } else if (default_vq < 1) { 405 error_append_hint(errp, "Vector length smaller than 16\n"); 406 } else { 407 error_append_hint(errp, "Vector length larger than %d\n", 408 512 * 16); 409 } 410 return; 411 } 412 413 *ptr_default_vq = default_vq; 414 } 415 416 static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v, 417 const char *name, void *opaque, 418 Error **errp) 419 { 420 uint32_t *ptr_default_vq = opaque; 421 int32_t value = *ptr_default_vq * 16; 422 423 visit_type_int32(v, name, &value, errp); 424 } 425 #endif 426 427 void aarch64_add_sve_properties(Object *obj) 428 { 429 ARMCPU *cpu = ARM_CPU(obj); 430 uint32_t vq; 431 432 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve); 433 434 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 435 char name[8]; 436 sprintf(name, "sve%d", vq * 128); 437 object_property_add(obj, name, "bool", cpu_arm_get_vq, 438 cpu_arm_set_vq, NULL, &cpu->sve_vq); 439 } 440 441 #ifdef CONFIG_USER_ONLY 442 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */ 443 object_property_add(obj, "sve-default-vector-length", "int32", 444 cpu_arm_get_default_vec_len, 445 cpu_arm_set_default_vec_len, NULL, 446 &cpu->sve_default_vq); 447 #endif 448 } 449 450 void aarch64_add_sme_properties(Object *obj) 451 { 452 ARMCPU *cpu = ARM_CPU(obj); 453 uint32_t vq; 454 455 object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme); 456 object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64, 457 cpu_arm_set_sme_fa64); 458 459 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) { 460 char name[8]; 461 sprintf(name, "sme%d", vq * 128); 462 object_property_add(obj, name, "bool", cpu_arm_get_vq, 463 cpu_arm_set_vq, NULL, &cpu->sme_vq); 464 } 465 466 #ifdef CONFIG_USER_ONLY 467 /* Mirror linux /proc/sys/abi/sme_default_vector_length. */ 468 object_property_add(obj, "sme-default-vector-length", "int32", 469 cpu_arm_get_default_vec_len, 470 cpu_arm_set_default_vec_len, NULL, 471 &cpu->sme_default_vq); 472 #endif 473 } 474 475 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) 476 { 477 ARMPauthFeature features = cpu_isar_feature(pauth_feature, cpu); 478 uint64_t isar1, isar2; 479 480 /* 481 * These properties enable or disable Pauth as a whole, or change 482 * the pauth algorithm, but do not change the set of features that 483 * are present. We have saved a copy of those features above and 484 * will now place it into the field that chooses the algorithm. 485 * 486 * Begin by disabling all fields. 487 */ 488 isar1 = cpu->isar.id_aa64isar1; 489 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, APA, 0); 490 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, GPA, 0); 491 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, API, 0); 492 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, GPI, 0); 493 494 isar2 = cpu->isar.id_aa64isar2; 495 isar2 = FIELD_DP64(isar2, ID_AA64ISAR2, APA3, 0); 496 isar2 = FIELD_DP64(isar2, ID_AA64ISAR2, GPA3, 0); 497 498 if (kvm_enabled() || hvf_enabled()) { 499 /* 500 * Exit early if PAuth is enabled and fall through to disable it. 501 * The algorithm selection properties are not present. 502 */ 503 if (cpu->prop_pauth) { 504 if (features == 0) { 505 error_setg(errp, "'pauth' feature not supported by " 506 "%s on this host", current_accel_name()); 507 } 508 return; 509 } 510 } else { 511 /* Pauth properties are only present when the model supports it. */ 512 if (features == 0) { 513 assert(!cpu->prop_pauth); 514 return; 515 } 516 517 if (cpu->prop_pauth) { 518 if (cpu->prop_pauth_impdef && cpu->prop_pauth_qarma3) { 519 error_setg(errp, 520 "cannot enable both pauth-impdef and pauth-qarma3"); 521 return; 522 } 523 524 if (cpu->prop_pauth_impdef) { 525 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, API, features); 526 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, GPI, 1); 527 } else if (cpu->prop_pauth_qarma3) { 528 isar2 = FIELD_DP64(isar2, ID_AA64ISAR2, APA3, features); 529 isar2 = FIELD_DP64(isar2, ID_AA64ISAR2, GPA3, 1); 530 } else { 531 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, APA, features); 532 isar1 = FIELD_DP64(isar1, ID_AA64ISAR1, GPA, 1); 533 } 534 } else if (cpu->prop_pauth_impdef || cpu->prop_pauth_qarma3) { 535 error_setg(errp, "cannot enable pauth-impdef or " 536 "pauth-qarma3 without pauth"); 537 error_append_hint(errp, "Add pauth=on to the CPU property list.\n"); 538 } 539 } 540 541 cpu->isar.id_aa64isar1 = isar1; 542 cpu->isar.id_aa64isar2 = isar2; 543 } 544 545 static Property arm_cpu_pauth_property = 546 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true); 547 static Property arm_cpu_pauth_impdef_property = 548 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false); 549 static Property arm_cpu_pauth_qarma3_property = 550 DEFINE_PROP_BOOL("pauth-qarma3", ARMCPU, prop_pauth_qarma3, false); 551 552 void aarch64_add_pauth_properties(Object *obj) 553 { 554 ARMCPU *cpu = ARM_CPU(obj); 555 556 /* Default to PAUTH on, with the architected algorithm on TCG. */ 557 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property); 558 if (kvm_enabled() || hvf_enabled()) { 559 /* 560 * Mirror PAuth support from the probed sysregs back into the 561 * property for KVM or hvf. Is it just a bit backward? Yes it is! 562 * Note that prop_pauth is true whether the host CPU supports the 563 * architected QARMA5 algorithm or the IMPDEF one. We don't 564 * provide the separate pauth-impdef property for KVM or hvf, 565 * only for TCG. 566 */ 567 cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu); 568 } else { 569 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property); 570 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_qarma3_property); 571 } 572 } 573 574 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) 575 { 576 uint64_t t; 577 578 /* 579 * We only install the property for tcg -cpu max; this is the 580 * only situation in which the cpu field can be true. 581 */ 582 if (!cpu->prop_lpa2) { 583 return; 584 } 585 586 t = cpu->isar.id_aa64mmfr0; 587 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2); /* 16k pages w/ LPA2 */ 588 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1); /* 4k pages w/ LPA2 */ 589 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */ 590 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3); /* 4k stage2 w/ LPA2 */ 591 cpu->isar.id_aa64mmfr0 = t; 592 } 593 594 static void aarch64_a57_initfn(Object *obj) 595 { 596 ARMCPU *cpu = ARM_CPU(obj); 597 598 cpu->dtb_compatible = "arm,cortex-a57"; 599 set_feature(&cpu->env, ARM_FEATURE_V8); 600 set_feature(&cpu->env, ARM_FEATURE_NEON); 601 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 602 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 603 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 604 set_feature(&cpu->env, ARM_FEATURE_EL2); 605 set_feature(&cpu->env, ARM_FEATURE_EL3); 606 set_feature(&cpu->env, ARM_FEATURE_PMU); 607 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; 608 cpu->midr = 0x411fd070; 609 cpu->revidr = 0x00000000; 610 cpu->reset_fpsid = 0x41034070; 611 cpu->isar.mvfr0 = 0x10110222; 612 cpu->isar.mvfr1 = 0x12111111; 613 cpu->isar.mvfr2 = 0x00000043; 614 cpu->ctr = 0x8444c004; 615 cpu->reset_sctlr = 0x00c50838; 616 cpu->isar.id_pfr0 = 0x00000131; 617 cpu->isar.id_pfr1 = 0x00011011; 618 cpu->isar.id_dfr0 = 0x03010066; 619 cpu->id_afr0 = 0x00000000; 620 cpu->isar.id_mmfr0 = 0x10101105; 621 cpu->isar.id_mmfr1 = 0x40000000; 622 cpu->isar.id_mmfr2 = 0x01260000; 623 cpu->isar.id_mmfr3 = 0x02102211; 624 cpu->isar.id_isar0 = 0x02101110; 625 cpu->isar.id_isar1 = 0x13112111; 626 cpu->isar.id_isar2 = 0x21232042; 627 cpu->isar.id_isar3 = 0x01112131; 628 cpu->isar.id_isar4 = 0x00011142; 629 cpu->isar.id_isar5 = 0x00011121; 630 cpu->isar.id_isar6 = 0; 631 cpu->isar.id_aa64pfr0 = 0x00002222; 632 cpu->isar.id_aa64dfr0 = 0x10305106; 633 cpu->isar.id_aa64isar0 = 0x00011120; 634 cpu->isar.id_aa64mmfr0 = 0x00001124; 635 cpu->isar.dbgdidr = 0x3516d000; 636 cpu->isar.dbgdevid = 0x01110f13; 637 cpu->isar.dbgdevid1 = 0x2; 638 cpu->isar.reset_pmcr_el0 = 0x41013000; 639 cpu->clidr = 0x0a200023; 640 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 641 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 642 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ 643 cpu->dcz_blocksize = 4; /* 64 bytes */ 644 cpu->gic_num_lrs = 4; 645 cpu->gic_vpribits = 5; 646 cpu->gic_vprebits = 5; 647 cpu->gic_pribits = 5; 648 define_cortex_a72_a57_a53_cp_reginfo(cpu); 649 } 650 651 static void aarch64_a53_initfn(Object *obj) 652 { 653 ARMCPU *cpu = ARM_CPU(obj); 654 655 cpu->dtb_compatible = "arm,cortex-a53"; 656 set_feature(&cpu->env, ARM_FEATURE_V8); 657 set_feature(&cpu->env, ARM_FEATURE_NEON); 658 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 659 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 660 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 661 set_feature(&cpu->env, ARM_FEATURE_EL2); 662 set_feature(&cpu->env, ARM_FEATURE_EL3); 663 set_feature(&cpu->env, ARM_FEATURE_PMU); 664 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; 665 cpu->midr = 0x410fd034; 666 cpu->revidr = 0x00000000; 667 cpu->reset_fpsid = 0x41034070; 668 cpu->isar.mvfr0 = 0x10110222; 669 cpu->isar.mvfr1 = 0x12111111; 670 cpu->isar.mvfr2 = 0x00000043; 671 cpu->ctr = 0x84448004; /* L1Ip = VIPT */ 672 cpu->reset_sctlr = 0x00c50838; 673 cpu->isar.id_pfr0 = 0x00000131; 674 cpu->isar.id_pfr1 = 0x00011011; 675 cpu->isar.id_dfr0 = 0x03010066; 676 cpu->id_afr0 = 0x00000000; 677 cpu->isar.id_mmfr0 = 0x10101105; 678 cpu->isar.id_mmfr1 = 0x40000000; 679 cpu->isar.id_mmfr2 = 0x01260000; 680 cpu->isar.id_mmfr3 = 0x02102211; 681 cpu->isar.id_isar0 = 0x02101110; 682 cpu->isar.id_isar1 = 0x13112111; 683 cpu->isar.id_isar2 = 0x21232042; 684 cpu->isar.id_isar3 = 0x01112131; 685 cpu->isar.id_isar4 = 0x00011142; 686 cpu->isar.id_isar5 = 0x00011121; 687 cpu->isar.id_isar6 = 0; 688 cpu->isar.id_aa64pfr0 = 0x00002222; 689 cpu->isar.id_aa64dfr0 = 0x10305106; 690 cpu->isar.id_aa64isar0 = 0x00011120; 691 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ 692 cpu->isar.dbgdidr = 0x3516d000; 693 cpu->isar.dbgdevid = 0x00110f13; 694 cpu->isar.dbgdevid1 = 0x1; 695 cpu->isar.reset_pmcr_el0 = 0x41033000; 696 cpu->clidr = 0x0a200023; 697 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ 698 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ 699 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ 700 cpu->dcz_blocksize = 4; /* 64 bytes */ 701 cpu->gic_num_lrs = 4; 702 cpu->gic_vpribits = 5; 703 cpu->gic_vprebits = 5; 704 cpu->gic_pribits = 5; 705 define_cortex_a72_a57_a53_cp_reginfo(cpu); 706 } 707 708 static void aarch64_host_initfn(Object *obj) 709 { 710 #if defined(CONFIG_KVM) 711 ARMCPU *cpu = ARM_CPU(obj); 712 kvm_arm_set_cpu_features_from_host(cpu); 713 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 714 aarch64_add_sve_properties(obj); 715 aarch64_add_pauth_properties(obj); 716 } 717 #elif defined(CONFIG_HVF) 718 ARMCPU *cpu = ARM_CPU(obj); 719 hvf_arm_set_cpu_features_from_host(cpu); 720 aarch64_add_pauth_properties(obj); 721 #else 722 g_assert_not_reached(); 723 #endif 724 } 725 726 static void aarch64_max_initfn(Object *obj) 727 { 728 if (kvm_enabled() || hvf_enabled()) { 729 /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */ 730 aarch64_host_initfn(obj); 731 return; 732 } 733 734 if (tcg_enabled() || qtest_enabled()) { 735 aarch64_a57_initfn(obj); 736 } 737 738 /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */ 739 if (tcg_enabled()) { 740 aarch64_max_tcg_initfn(obj); 741 } 742 } 743 744 static const ARMCPUInfo aarch64_cpus[] = { 745 { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, 746 { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, 747 { .name = "max", .initfn = aarch64_max_initfn }, 748 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 749 { .name = "host", .initfn = aarch64_host_initfn }, 750 #endif 751 }; 752 753 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) 754 { 755 ARMCPU *cpu = ARM_CPU(obj); 756 757 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); 758 } 759 760 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) 761 { 762 ARMCPU *cpu = ARM_CPU(obj); 763 764 /* At this time, this property is only allowed if KVM is enabled. This 765 * restriction allows us to avoid fixing up functionality that assumes a 766 * uniform execution state like do_interrupt. 767 */ 768 if (value == false) { 769 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) { 770 error_setg(errp, "'aarch64' feature cannot be disabled " 771 "unless KVM is enabled and 32-bit EL1 " 772 "is supported"); 773 return; 774 } 775 unset_feature(&cpu->env, ARM_FEATURE_AARCH64); 776 } else { 777 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 778 } 779 } 780 781 static void aarch64_cpu_finalizefn(Object *obj) 782 { 783 } 784 785 static const gchar *aarch64_gdb_arch_name(CPUState *cs) 786 { 787 return "aarch64"; 788 } 789 790 static void aarch64_cpu_class_init(ObjectClass *oc, void *data) 791 { 792 CPUClass *cc = CPU_CLASS(oc); 793 794 cc->gdb_read_register = aarch64_cpu_gdb_read_register; 795 cc->gdb_write_register = aarch64_cpu_gdb_write_register; 796 cc->gdb_num_core_regs = 34; 797 cc->gdb_core_xml_file = "aarch64-core.xml"; 798 cc->gdb_arch_name = aarch64_gdb_arch_name; 799 800 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64, 801 aarch64_cpu_set_aarch64); 802 object_class_property_set_description(oc, "aarch64", 803 "Set on/off to enable/disable aarch64 " 804 "execution state "); 805 } 806 807 static void aarch64_cpu_instance_init(Object *obj) 808 { 809 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 810 811 acc->info->initfn(obj); 812 arm_cpu_post_init(obj); 813 } 814 815 static void cpu_register_class_init(ObjectClass *oc, void *data) 816 { 817 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 818 819 acc->info = data; 820 } 821 822 void aarch64_cpu_register(const ARMCPUInfo *info) 823 { 824 TypeInfo type_info = { 825 .parent = TYPE_AARCH64_CPU, 826 .instance_init = aarch64_cpu_instance_init, 827 .class_init = info->class_init ?: cpu_register_class_init, 828 .class_data = (void *)info, 829 }; 830 831 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 832 type_register(&type_info); 833 g_free((void *)type_info.name); 834 } 835 836 static const TypeInfo aarch64_cpu_type_info = { 837 .name = TYPE_AARCH64_CPU, 838 .parent = TYPE_ARM_CPU, 839 .instance_finalize = aarch64_cpu_finalizefn, 840 .abstract = true, 841 .class_init = aarch64_cpu_class_init, 842 }; 843 844 static void aarch64_cpu_register_types(void) 845 { 846 size_t i; 847 848 type_register_static(&aarch64_cpu_type_info); 849 850 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { 851 aarch64_cpu_register(&aarch64_cpus[i]); 852 } 853 } 854 855 type_init(aarch64_cpu_register_types) 856