1 /* 2 * QEMU AArch64 CPU 3 * 4 * Copyright (c) 2013 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #ifdef CONFIG_TCG 25 #include "hw/core/tcg-cpu-ops.h" 26 #endif /* CONFIG_TCG */ 27 #include "qemu/module.h" 28 #if !defined(CONFIG_USER_ONLY) 29 #include "hw/loader.h" 30 #endif 31 #include "sysemu/kvm.h" 32 #include "kvm_arm.h" 33 #include "qapi/visitor.h" 34 #include "hw/qdev-properties.h" 35 36 37 #ifndef CONFIG_USER_ONLY 38 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 ARMCPU *cpu = env_archcpu(env); 41 42 /* Number of cores is in [25:24]; otherwise we RAZ */ 43 return (cpu->core_count - 1) << 24; 44 } 45 #endif 46 47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { 48 #ifndef CONFIG_USER_ONLY 49 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, 50 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, 51 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 52 .writefn = arm_cp_write_ignore }, 53 { .name = "L2CTLR", 54 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, 55 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 56 .writefn = arm_cp_write_ignore }, 57 #endif 58 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, 59 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, 60 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 61 { .name = "L2ECTLR", 62 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, 63 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 64 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, 65 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, 66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 67 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, 68 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, 69 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 70 { .name = "CPUACTLR", 71 .cp = 15, .opc1 = 0, .crm = 15, 72 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 73 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, 74 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, 75 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 76 { .name = "CPUECTLR", 77 .cp = 15, .opc1 = 1, .crm = 15, 78 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 79 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, 80 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, 81 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 82 { .name = "CPUMERRSR", 83 .cp = 15, .opc1 = 2, .crm = 15, 84 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 85 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, 86 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, 87 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 88 { .name = "L2MERRSR", 89 .cp = 15, .opc1 = 3, .crm = 15, 90 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 91 REGINFO_SENTINEL 92 }; 93 94 static void aarch64_a57_initfn(Object *obj) 95 { 96 ARMCPU *cpu = ARM_CPU(obj); 97 98 cpu->dtb_compatible = "arm,cortex-a57"; 99 set_feature(&cpu->env, ARM_FEATURE_V8); 100 set_feature(&cpu->env, ARM_FEATURE_NEON); 101 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 102 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 103 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 104 set_feature(&cpu->env, ARM_FEATURE_EL2); 105 set_feature(&cpu->env, ARM_FEATURE_EL3); 106 set_feature(&cpu->env, ARM_FEATURE_PMU); 107 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; 108 cpu->midr = 0x411fd070; 109 cpu->revidr = 0x00000000; 110 cpu->reset_fpsid = 0x41034070; 111 cpu->isar.mvfr0 = 0x10110222; 112 cpu->isar.mvfr1 = 0x12111111; 113 cpu->isar.mvfr2 = 0x00000043; 114 cpu->ctr = 0x8444c004; 115 cpu->reset_sctlr = 0x00c50838; 116 cpu->isar.id_pfr0 = 0x00000131; 117 cpu->isar.id_pfr1 = 0x00011011; 118 cpu->isar.id_dfr0 = 0x03010066; 119 cpu->id_afr0 = 0x00000000; 120 cpu->isar.id_mmfr0 = 0x10101105; 121 cpu->isar.id_mmfr1 = 0x40000000; 122 cpu->isar.id_mmfr2 = 0x01260000; 123 cpu->isar.id_mmfr3 = 0x02102211; 124 cpu->isar.id_isar0 = 0x02101110; 125 cpu->isar.id_isar1 = 0x13112111; 126 cpu->isar.id_isar2 = 0x21232042; 127 cpu->isar.id_isar3 = 0x01112131; 128 cpu->isar.id_isar4 = 0x00011142; 129 cpu->isar.id_isar5 = 0x00011121; 130 cpu->isar.id_isar6 = 0; 131 cpu->isar.id_aa64pfr0 = 0x00002222; 132 cpu->isar.id_aa64dfr0 = 0x10305106; 133 cpu->isar.id_aa64isar0 = 0x00011120; 134 cpu->isar.id_aa64mmfr0 = 0x00001124; 135 cpu->isar.dbgdidr = 0x3516d000; 136 cpu->clidr = 0x0a200023; 137 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 138 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 139 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ 140 cpu->dcz_blocksize = 4; /* 64 bytes */ 141 cpu->gic_num_lrs = 4; 142 cpu->gic_vpribits = 5; 143 cpu->gic_vprebits = 5; 144 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 145 } 146 147 static void aarch64_a53_initfn(Object *obj) 148 { 149 ARMCPU *cpu = ARM_CPU(obj); 150 151 cpu->dtb_compatible = "arm,cortex-a53"; 152 set_feature(&cpu->env, ARM_FEATURE_V8); 153 set_feature(&cpu->env, ARM_FEATURE_NEON); 154 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 155 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 156 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 157 set_feature(&cpu->env, ARM_FEATURE_EL2); 158 set_feature(&cpu->env, ARM_FEATURE_EL3); 159 set_feature(&cpu->env, ARM_FEATURE_PMU); 160 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; 161 cpu->midr = 0x410fd034; 162 cpu->revidr = 0x00000000; 163 cpu->reset_fpsid = 0x41034070; 164 cpu->isar.mvfr0 = 0x10110222; 165 cpu->isar.mvfr1 = 0x12111111; 166 cpu->isar.mvfr2 = 0x00000043; 167 cpu->ctr = 0x84448004; /* L1Ip = VIPT */ 168 cpu->reset_sctlr = 0x00c50838; 169 cpu->isar.id_pfr0 = 0x00000131; 170 cpu->isar.id_pfr1 = 0x00011011; 171 cpu->isar.id_dfr0 = 0x03010066; 172 cpu->id_afr0 = 0x00000000; 173 cpu->isar.id_mmfr0 = 0x10101105; 174 cpu->isar.id_mmfr1 = 0x40000000; 175 cpu->isar.id_mmfr2 = 0x01260000; 176 cpu->isar.id_mmfr3 = 0x02102211; 177 cpu->isar.id_isar0 = 0x02101110; 178 cpu->isar.id_isar1 = 0x13112111; 179 cpu->isar.id_isar2 = 0x21232042; 180 cpu->isar.id_isar3 = 0x01112131; 181 cpu->isar.id_isar4 = 0x00011142; 182 cpu->isar.id_isar5 = 0x00011121; 183 cpu->isar.id_isar6 = 0; 184 cpu->isar.id_aa64pfr0 = 0x00002222; 185 cpu->isar.id_aa64dfr0 = 0x10305106; 186 cpu->isar.id_aa64isar0 = 0x00011120; 187 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ 188 cpu->isar.dbgdidr = 0x3516d000; 189 cpu->clidr = 0x0a200023; 190 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ 191 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ 192 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ 193 cpu->dcz_blocksize = 4; /* 64 bytes */ 194 cpu->gic_num_lrs = 4; 195 cpu->gic_vpribits = 5; 196 cpu->gic_vprebits = 5; 197 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 198 } 199 200 static void aarch64_a72_initfn(Object *obj) 201 { 202 ARMCPU *cpu = ARM_CPU(obj); 203 204 cpu->dtb_compatible = "arm,cortex-a72"; 205 set_feature(&cpu->env, ARM_FEATURE_V8); 206 set_feature(&cpu->env, ARM_FEATURE_NEON); 207 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 208 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 209 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 210 set_feature(&cpu->env, ARM_FEATURE_EL2); 211 set_feature(&cpu->env, ARM_FEATURE_EL3); 212 set_feature(&cpu->env, ARM_FEATURE_PMU); 213 cpu->midr = 0x410fd083; 214 cpu->revidr = 0x00000000; 215 cpu->reset_fpsid = 0x41034080; 216 cpu->isar.mvfr0 = 0x10110222; 217 cpu->isar.mvfr1 = 0x12111111; 218 cpu->isar.mvfr2 = 0x00000043; 219 cpu->ctr = 0x8444c004; 220 cpu->reset_sctlr = 0x00c50838; 221 cpu->isar.id_pfr0 = 0x00000131; 222 cpu->isar.id_pfr1 = 0x00011011; 223 cpu->isar.id_dfr0 = 0x03010066; 224 cpu->id_afr0 = 0x00000000; 225 cpu->isar.id_mmfr0 = 0x10201105; 226 cpu->isar.id_mmfr1 = 0x40000000; 227 cpu->isar.id_mmfr2 = 0x01260000; 228 cpu->isar.id_mmfr3 = 0x02102211; 229 cpu->isar.id_isar0 = 0x02101110; 230 cpu->isar.id_isar1 = 0x13112111; 231 cpu->isar.id_isar2 = 0x21232042; 232 cpu->isar.id_isar3 = 0x01112131; 233 cpu->isar.id_isar4 = 0x00011142; 234 cpu->isar.id_isar5 = 0x00011121; 235 cpu->isar.id_aa64pfr0 = 0x00002222; 236 cpu->isar.id_aa64dfr0 = 0x10305106; 237 cpu->isar.id_aa64isar0 = 0x00011120; 238 cpu->isar.id_aa64mmfr0 = 0x00001124; 239 cpu->isar.dbgdidr = 0x3516d000; 240 cpu->clidr = 0x0a200023; 241 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 242 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 243 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ 244 cpu->dcz_blocksize = 4; /* 64 bytes */ 245 cpu->gic_num_lrs = 4; 246 cpu->gic_vpribits = 5; 247 cpu->gic_vprebits = 5; 248 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 249 } 250 251 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) 252 { 253 /* 254 * If any vector lengths are explicitly enabled with sve<N> properties, 255 * then all other lengths are implicitly disabled. If sve-max-vq is 256 * specified then it is the same as explicitly enabling all lengths 257 * up to and including the specified maximum, which means all larger 258 * lengths will be implicitly disabled. If no sve<N> properties 259 * are enabled and sve-max-vq is not specified, then all lengths not 260 * explicitly disabled will be enabled. Additionally, all power-of-two 261 * vector lengths less than the maximum enabled length will be 262 * automatically enabled and all vector lengths larger than the largest 263 * disabled power-of-two vector length will be automatically disabled. 264 * Errors are generated if the user provided input that interferes with 265 * any of the above. Finally, if SVE is not disabled, then at least one 266 * vector length must be enabled. 267 */ 268 DECLARE_BITMAP(tmp, ARM_MAX_VQ); 269 uint32_t vq, max_vq = 0; 270 271 /* 272 * CPU models specify a set of supported vector lengths which are 273 * enabled by default. Attempting to enable any vector length not set 274 * in the supported bitmap results in an error. When KVM is enabled we 275 * fetch the supported bitmap from the host. 276 */ 277 if (kvm_enabled() && kvm_arm_sve_supported()) { 278 kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported); 279 } else if (kvm_enabled()) { 280 assert(!cpu_isar_feature(aa64_sve, cpu)); 281 } 282 283 /* 284 * Process explicit sve<N> properties. 285 * From the properties, sve_vq_map<N> implies sve_vq_init<N>. 286 * Check first for any sve<N> enabled. 287 */ 288 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) { 289 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1; 290 291 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { 292 error_setg(errp, "cannot enable sve%d", max_vq * 128); 293 error_append_hint(errp, "sve%d is larger than the maximum vector " 294 "length, sve-max-vq=%d (%d bits)\n", 295 max_vq * 128, cpu->sve_max_vq, 296 cpu->sve_max_vq * 128); 297 return; 298 } 299 300 if (kvm_enabled()) { 301 /* 302 * For KVM we have to automatically enable all supported unitialized 303 * lengths, even when the smaller lengths are not all powers-of-two. 304 */ 305 bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq); 306 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 307 } else { 308 /* Propagate enabled bits down through required powers-of-two. */ 309 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 310 if (!test_bit(vq - 1, cpu->sve_vq_init)) { 311 set_bit(vq - 1, cpu->sve_vq_map); 312 } 313 } 314 } 315 } else if (cpu->sve_max_vq == 0) { 316 /* 317 * No explicit bits enabled, and no implicit bits from sve-max-vq. 318 */ 319 if (!cpu_isar_feature(aa64_sve, cpu)) { 320 /* SVE is disabled and so are all vector lengths. Good. */ 321 return; 322 } 323 324 if (kvm_enabled()) { 325 /* Disabling a supported length disables all larger lengths. */ 326 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 327 if (test_bit(vq - 1, cpu->sve_vq_init) && 328 test_bit(vq - 1, cpu->sve_vq_supported)) { 329 break; 330 } 331 } 332 } else { 333 /* Disabling a power-of-two disables all larger lengths. */ 334 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) { 335 if (test_bit(vq - 1, cpu->sve_vq_init)) { 336 break; 337 } 338 } 339 } 340 341 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; 342 bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported, 343 cpu->sve_vq_init, max_vq); 344 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) { 345 error_setg(errp, "cannot disable sve%d", vq * 128); 346 error_append_hint(errp, "Disabling sve%d results in all " 347 "vector lengths being disabled.\n", 348 vq * 128); 349 error_append_hint(errp, "With SVE enabled, at least one " 350 "vector length must be enabled.\n"); 351 return; 352 } 353 354 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1; 355 } 356 357 /* 358 * Process the sve-max-vq property. 359 * Note that we know from the above that no bit above 360 * sve-max-vq is currently set. 361 */ 362 if (cpu->sve_max_vq != 0) { 363 max_vq = cpu->sve_max_vq; 364 365 if (!test_bit(max_vq - 1, cpu->sve_vq_map) && 366 test_bit(max_vq - 1, cpu->sve_vq_init)) { 367 error_setg(errp, "cannot disable sve%d", max_vq * 128); 368 error_append_hint(errp, "The maximum vector length must be " 369 "enabled, sve-max-vq=%d (%d bits)\n", 370 max_vq, max_vq * 128); 371 return; 372 } 373 374 /* Set all bits not explicitly set within sve-max-vq. */ 375 bitmap_complement(tmp, cpu->sve_vq_init, max_vq); 376 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); 377 } 378 379 /* 380 * We should know what max-vq is now. Also, as we're done 381 * manipulating sve-vq-map, we ensure any bits above max-vq 382 * are clear, just in case anybody looks. 383 */ 384 assert(max_vq != 0); 385 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq); 386 387 /* Ensure the set of lengths matches what is supported. */ 388 bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq); 389 if (!bitmap_empty(tmp, max_vq)) { 390 vq = find_last_bit(tmp, max_vq) + 1; 391 if (test_bit(vq - 1, cpu->sve_vq_map)) { 392 if (cpu->sve_max_vq) { 393 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq); 394 error_append_hint(errp, "This CPU does not support " 395 "the vector length %d-bits.\n", vq * 128); 396 error_append_hint(errp, "It may not be possible to use " 397 "sve-max-vq with this CPU. Try " 398 "using only sve<N> properties.\n"); 399 } else { 400 error_setg(errp, "cannot enable sve%d", vq * 128); 401 error_append_hint(errp, "This CPU does not support " 402 "the vector length %d-bits.\n", vq * 128); 403 } 404 return; 405 } else { 406 if (kvm_enabled()) { 407 error_setg(errp, "cannot disable sve%d", vq * 128); 408 error_append_hint(errp, "The KVM host requires all " 409 "supported vector lengths smaller " 410 "than %d bits to also be enabled.\n", 411 max_vq * 128); 412 return; 413 } else { 414 /* Ensure all required powers-of-two are enabled. */ 415 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { 416 if (!test_bit(vq - 1, cpu->sve_vq_map)) { 417 error_setg(errp, "cannot disable sve%d", vq * 128); 418 error_append_hint(errp, "sve%d is required as it " 419 "is a power-of-two length smaller " 420 "than the maximum, sve%d\n", 421 vq * 128, max_vq * 128); 422 return; 423 } 424 } 425 } 426 } 427 } 428 429 /* 430 * Now that we validated all our vector lengths, the only question 431 * left to answer is if we even want SVE at all. 432 */ 433 if (!cpu_isar_feature(aa64_sve, cpu)) { 434 error_setg(errp, "cannot enable sve%d", max_vq * 128); 435 error_append_hint(errp, "SVE must be enabled to enable vector " 436 "lengths.\n"); 437 error_append_hint(errp, "Add sve=on to the CPU property list.\n"); 438 return; 439 } 440 441 /* From now on sve_max_vq is the actual maximum supported length. */ 442 cpu->sve_max_vq = max_vq; 443 } 444 445 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, 446 void *opaque, Error **errp) 447 { 448 ARMCPU *cpu = ARM_CPU(obj); 449 uint32_t value; 450 451 /* All vector lengths are disabled when SVE is off. */ 452 if (!cpu_isar_feature(aa64_sve, cpu)) { 453 value = 0; 454 } else { 455 value = cpu->sve_max_vq; 456 } 457 visit_type_uint32(v, name, &value, errp); 458 } 459 460 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, 461 void *opaque, Error **errp) 462 { 463 ARMCPU *cpu = ARM_CPU(obj); 464 uint32_t max_vq; 465 466 if (!visit_type_uint32(v, name, &max_vq, errp)) { 467 return; 468 } 469 470 if (kvm_enabled() && !kvm_arm_sve_supported()) { 471 error_setg(errp, "cannot set sve-max-vq"); 472 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 473 return; 474 } 475 476 if (max_vq == 0 || max_vq > ARM_MAX_VQ) { 477 error_setg(errp, "unsupported SVE vector length"); 478 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", 479 ARM_MAX_VQ); 480 return; 481 } 482 483 cpu->sve_max_vq = max_vq; 484 } 485 486 /* 487 * Note that cpu_arm_get/set_sve_vq cannot use the simpler 488 * object_property_add_bool interface because they make use 489 * of the contents of "name" to determine which bit on which 490 * to operate. 491 */ 492 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name, 493 void *opaque, Error **errp) 494 { 495 ARMCPU *cpu = ARM_CPU(obj); 496 uint32_t vq = atoi(&name[3]) / 128; 497 bool value; 498 499 /* All vector lengths are disabled when SVE is off. */ 500 if (!cpu_isar_feature(aa64_sve, cpu)) { 501 value = false; 502 } else { 503 value = test_bit(vq - 1, cpu->sve_vq_map); 504 } 505 visit_type_bool(v, name, &value, errp); 506 } 507 508 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name, 509 void *opaque, Error **errp) 510 { 511 ARMCPU *cpu = ARM_CPU(obj); 512 uint32_t vq = atoi(&name[3]) / 128; 513 bool value; 514 515 if (!visit_type_bool(v, name, &value, errp)) { 516 return; 517 } 518 519 if (value && kvm_enabled() && !kvm_arm_sve_supported()) { 520 error_setg(errp, "cannot enable %s", name); 521 error_append_hint(errp, "SVE not supported by KVM on this host\n"); 522 return; 523 } 524 525 if (value) { 526 set_bit(vq - 1, cpu->sve_vq_map); 527 } else { 528 clear_bit(vq - 1, cpu->sve_vq_map); 529 } 530 set_bit(vq - 1, cpu->sve_vq_init); 531 } 532 533 static bool cpu_arm_get_sve(Object *obj, Error **errp) 534 { 535 ARMCPU *cpu = ARM_CPU(obj); 536 return cpu_isar_feature(aa64_sve, cpu); 537 } 538 539 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp) 540 { 541 ARMCPU *cpu = ARM_CPU(obj); 542 uint64_t t; 543 544 if (value && kvm_enabled() && !kvm_arm_sve_supported()) { 545 error_setg(errp, "'sve' feature not supported by KVM on this host"); 546 return; 547 } 548 549 t = cpu->isar.id_aa64pfr0; 550 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); 551 cpu->isar.id_aa64pfr0 = t; 552 } 553 554 #ifdef CONFIG_USER_ONLY 555 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */ 556 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v, 557 const char *name, void *opaque, 558 Error **errp) 559 { 560 ARMCPU *cpu = ARM_CPU(obj); 561 int32_t default_len, default_vq, remainder; 562 563 if (!visit_type_int32(v, name, &default_len, errp)) { 564 return; 565 } 566 567 /* Undocumented, but the kernel allows -1 to indicate "maximum". */ 568 if (default_len == -1) { 569 cpu->sve_default_vq = ARM_MAX_VQ; 570 return; 571 } 572 573 default_vq = default_len / 16; 574 remainder = default_len % 16; 575 576 /* 577 * Note that the 512 max comes from include/uapi/asm/sve_context.h 578 * and is the maximum architectural width of ZCR_ELx.LEN. 579 */ 580 if (remainder || default_vq < 1 || default_vq > 512) { 581 error_setg(errp, "cannot set sve-default-vector-length"); 582 if (remainder) { 583 error_append_hint(errp, "Vector length not a multiple of 16\n"); 584 } else if (default_vq < 1) { 585 error_append_hint(errp, "Vector length smaller than 16\n"); 586 } else { 587 error_append_hint(errp, "Vector length larger than %d\n", 588 512 * 16); 589 } 590 return; 591 } 592 593 cpu->sve_default_vq = default_vq; 594 } 595 596 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v, 597 const char *name, void *opaque, 598 Error **errp) 599 { 600 ARMCPU *cpu = ARM_CPU(obj); 601 int32_t value = cpu->sve_default_vq * 16; 602 603 visit_type_int32(v, name, &value, errp); 604 } 605 #endif 606 607 void aarch64_add_sve_properties(Object *obj) 608 { 609 uint32_t vq; 610 611 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve); 612 613 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { 614 char name[8]; 615 sprintf(name, "sve%d", vq * 128); 616 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq, 617 cpu_arm_set_sve_vq, NULL, NULL); 618 } 619 620 #ifdef CONFIG_USER_ONLY 621 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */ 622 object_property_add(obj, "sve-default-vector-length", "int32", 623 cpu_arm_get_sve_default_vec_len, 624 cpu_arm_set_sve_default_vec_len, NULL, NULL); 625 #endif 626 } 627 628 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) 629 { 630 int arch_val = 0, impdef_val = 0; 631 uint64_t t; 632 633 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */ 634 if (cpu->prop_pauth) { 635 if (cpu->prop_pauth_impdef) { 636 impdef_val = 1; 637 } else { 638 arch_val = 1; 639 } 640 } else if (cpu->prop_pauth_impdef) { 641 error_setg(errp, "cannot enable pauth-impdef without pauth"); 642 error_append_hint(errp, "Add pauth=on to the CPU property list.\n"); 643 } 644 645 t = cpu->isar.id_aa64isar1; 646 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val); 647 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val); 648 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val); 649 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val); 650 cpu->isar.id_aa64isar1 = t; 651 } 652 653 static Property arm_cpu_pauth_property = 654 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true); 655 static Property arm_cpu_pauth_impdef_property = 656 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false); 657 658 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 659 * otherwise, a CPU with as many features enabled as our emulation supports. 660 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; 661 * this only needs to handle 64 bits. 662 */ 663 static void aarch64_max_initfn(Object *obj) 664 { 665 ARMCPU *cpu = ARM_CPU(obj); 666 667 if (kvm_enabled()) { 668 kvm_arm_set_cpu_features_from_host(cpu); 669 } else { 670 uint64_t t; 671 uint32_t u; 672 aarch64_a57_initfn(obj); 673 674 /* 675 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real 676 * one and try to apply errata workarounds or use impdef features we 677 * don't provide. 678 * An IMPLEMENTER field of 0 means "reserved for software use"; 679 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers 680 * to see which features are present"; 681 * the VARIANT, PARTNUM and REVISION fields are all implementation 682 * defined and we choose to define PARTNUM just in case guest 683 * code needs to distinguish this QEMU CPU from other software 684 * implementations, though this shouldn't be needed. 685 */ 686 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); 687 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); 688 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); 689 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); 690 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); 691 cpu->midr = t; 692 693 t = cpu->isar.id_aa64isar0; 694 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ 695 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); 696 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ 697 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); 698 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); 699 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); 700 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); 701 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); 702 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); 703 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); 704 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); 705 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ 706 t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */ 707 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); 708 cpu->isar.id_aa64isar0 = t; 709 710 t = cpu->isar.id_aa64isar1; 711 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); 712 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); 713 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); 714 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); 715 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); 716 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); 717 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); 718 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */ 719 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); 720 cpu->isar.id_aa64isar1 = t; 721 722 t = cpu->isar.id_aa64pfr0; 723 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); 724 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); 725 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); 726 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); 727 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); 728 cpu->isar.id_aa64pfr0 = t; 729 730 t = cpu->isar.id_aa64pfr1; 731 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); 732 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); 733 /* 734 * Begin with full support for MTE. This will be downgraded to MTE=0 735 * during realize if the board provides no tag memory, much like 736 * we do for EL2 with the virtualization=on property. 737 */ 738 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); 739 cpu->isar.id_aa64pfr1 = t; 740 741 t = cpu->isar.id_aa64mmfr0; 742 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */ 743 cpu->isar.id_aa64mmfr0 = t; 744 745 t = cpu->isar.id_aa64mmfr1; 746 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ 747 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); 748 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); 749 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */ 750 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */ 751 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */ 752 cpu->isar.id_aa64mmfr1 = t; 753 754 t = cpu->isar.id_aa64mmfr2; 755 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); 756 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */ 757 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */ 758 cpu->isar.id_aa64mmfr2 = t; 759 760 t = cpu->isar.id_aa64zfr0; 761 t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1); 762 t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* PMULL */ 763 t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); 764 t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); 765 t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); 766 t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); 767 t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); 768 t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); 769 t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); 770 cpu->isar.id_aa64zfr0 = t; 771 772 /* Replicate the same data to the 32-bit id registers. */ 773 u = cpu->isar.id_isar5; 774 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ 775 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); 776 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); 777 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); 778 u = FIELD_DP32(u, ID_ISAR5, RDM, 1); 779 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); 780 cpu->isar.id_isar5 = u; 781 782 u = cpu->isar.id_isar6; 783 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); 784 u = FIELD_DP32(u, ID_ISAR6, DP, 1); 785 u = FIELD_DP32(u, ID_ISAR6, FHM, 1); 786 u = FIELD_DP32(u, ID_ISAR6, SB, 1); 787 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); 788 u = FIELD_DP32(u, ID_ISAR6, BF16, 1); 789 u = FIELD_DP32(u, ID_ISAR6, I8MM, 1); 790 cpu->isar.id_isar6 = u; 791 792 u = cpu->isar.id_pfr0; 793 u = FIELD_DP32(u, ID_PFR0, DIT, 1); 794 cpu->isar.id_pfr0 = u; 795 796 u = cpu->isar.id_pfr2; 797 u = FIELD_DP32(u, ID_PFR2, SSBS, 1); 798 cpu->isar.id_pfr2 = u; 799 800 u = cpu->isar.id_mmfr3; 801 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */ 802 cpu->isar.id_mmfr3 = u; 803 804 u = cpu->isar.id_mmfr4; 805 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */ 806 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ 807 u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */ 808 u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */ 809 cpu->isar.id_mmfr4 = u; 810 811 t = cpu->isar.id_aa64dfr0; 812 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */ 813 cpu->isar.id_aa64dfr0 = t; 814 815 u = cpu->isar.id_dfr0; 816 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */ 817 cpu->isar.id_dfr0 = u; 818 819 u = cpu->isar.mvfr1; 820 u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */ 821 u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */ 822 cpu->isar.mvfr1 = u; 823 824 #ifdef CONFIG_USER_ONLY 825 /* For usermode -cpu max we can use a larger and more efficient DCZ 826 * blocksize since we don't have to follow what the hardware does. 827 */ 828 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ 829 cpu->dcz_blocksize = 7; /* 512 bytes */ 830 #endif 831 832 /* Default to PAUTH on, with the architected algorithm. */ 833 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property); 834 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property); 835 836 bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ); 837 } 838 839 aarch64_add_sve_properties(obj); 840 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, 841 cpu_max_set_sve_max_vq, NULL, NULL); 842 } 843 844 static const ARMCPUInfo aarch64_cpus[] = { 845 { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, 846 { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, 847 { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, 848 { .name = "max", .initfn = aarch64_max_initfn }, 849 }; 850 851 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) 852 { 853 ARMCPU *cpu = ARM_CPU(obj); 854 855 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); 856 } 857 858 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) 859 { 860 ARMCPU *cpu = ARM_CPU(obj); 861 862 /* At this time, this property is only allowed if KVM is enabled. This 863 * restriction allows us to avoid fixing up functionality that assumes a 864 * uniform execution state like do_interrupt. 865 */ 866 if (value == false) { 867 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) { 868 error_setg(errp, "'aarch64' feature cannot be disabled " 869 "unless KVM is enabled and 32-bit EL1 " 870 "is supported"); 871 return; 872 } 873 unset_feature(&cpu->env, ARM_FEATURE_AARCH64); 874 } else { 875 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 876 } 877 } 878 879 static void aarch64_cpu_finalizefn(Object *obj) 880 { 881 } 882 883 static gchar *aarch64_gdb_arch_name(CPUState *cs) 884 { 885 return g_strdup("aarch64"); 886 } 887 888 static void aarch64_cpu_class_init(ObjectClass *oc, void *data) 889 { 890 CPUClass *cc = CPU_CLASS(oc); 891 892 cc->gdb_read_register = aarch64_cpu_gdb_read_register; 893 cc->gdb_write_register = aarch64_cpu_gdb_write_register; 894 cc->gdb_num_core_regs = 34; 895 cc->gdb_core_xml_file = "aarch64-core.xml"; 896 cc->gdb_arch_name = aarch64_gdb_arch_name; 897 898 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64, 899 aarch64_cpu_set_aarch64); 900 object_class_property_set_description(oc, "aarch64", 901 "Set on/off to enable/disable aarch64 " 902 "execution state "); 903 } 904 905 static void aarch64_cpu_instance_init(Object *obj) 906 { 907 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 908 909 acc->info->initfn(obj); 910 arm_cpu_post_init(obj); 911 } 912 913 static void cpu_register_class_init(ObjectClass *oc, void *data) 914 { 915 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 916 917 acc->info = data; 918 } 919 920 void aarch64_cpu_register(const ARMCPUInfo *info) 921 { 922 TypeInfo type_info = { 923 .parent = TYPE_AARCH64_CPU, 924 .instance_size = sizeof(ARMCPU), 925 .instance_init = aarch64_cpu_instance_init, 926 .class_size = sizeof(ARMCPUClass), 927 .class_init = info->class_init ?: cpu_register_class_init, 928 .class_data = (void *)info, 929 }; 930 931 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 932 type_register(&type_info); 933 g_free((void *)type_info.name); 934 } 935 936 static const TypeInfo aarch64_cpu_type_info = { 937 .name = TYPE_AARCH64_CPU, 938 .parent = TYPE_ARM_CPU, 939 .instance_size = sizeof(ARMCPU), 940 .instance_finalize = aarch64_cpu_finalizefn, 941 .abstract = true, 942 .class_size = sizeof(AArch64CPUClass), 943 .class_init = aarch64_cpu_class_init, 944 }; 945 946 static void aarch64_cpu_register_types(void) 947 { 948 size_t i; 949 950 type_register_static(&aarch64_cpu_type_info); 951 952 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { 953 aarch64_cpu_register(&aarch64_cpus[i]); 954 } 955 } 956 957 type_init(aarch64_cpu_register_types) 958