xref: /openbmc/qemu/target/arm/cpu64.c (revision 5dd0be53e89acfc367944489a364b0ec835dee9a)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 
38 
39 #ifndef CONFIG_USER_ONLY
40 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
41 {
42     ARMCPU *cpu = env_archcpu(env);
43 
44     /* Number of cores is in [25:24]; otherwise we RAZ */
45     return (cpu->core_count - 1) << 24;
46 }
47 #endif
48 
49 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
50 #ifndef CONFIG_USER_ONLY
51     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
52       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
53       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
54       .writefn = arm_cp_write_ignore },
55     { .name = "L2CTLR",
56       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
57       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
58       .writefn = arm_cp_write_ignore },
59 #endif
60     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
61       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
62       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
63     { .name = "L2ECTLR",
64       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
65       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
67       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
68       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
70       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
71       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72     { .name = "CPUACTLR",
73       .cp = 15, .opc1 = 0, .crm = 15,
74       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
75     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
76       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
77       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
78     { .name = "CPUECTLR",
79       .cp = 15, .opc1 = 1, .crm = 15,
80       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
81     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
82       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
83       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
84     { .name = "CPUMERRSR",
85       .cp = 15, .opc1 = 2, .crm = 15,
86       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
87     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
88       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
89       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
90     { .name = "L2MERRSR",
91       .cp = 15, .opc1 = 3, .crm = 15,
92       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
93     REGINFO_SENTINEL
94 };
95 
96 static void aarch64_a57_initfn(Object *obj)
97 {
98     ARMCPU *cpu = ARM_CPU(obj);
99 
100     cpu->dtb_compatible = "arm,cortex-a57";
101     set_feature(&cpu->env, ARM_FEATURE_V8);
102     set_feature(&cpu->env, ARM_FEATURE_NEON);
103     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
104     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
105     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
106     set_feature(&cpu->env, ARM_FEATURE_EL2);
107     set_feature(&cpu->env, ARM_FEATURE_EL3);
108     set_feature(&cpu->env, ARM_FEATURE_PMU);
109     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
110     cpu->midr = 0x411fd070;
111     cpu->revidr = 0x00000000;
112     cpu->reset_fpsid = 0x41034070;
113     cpu->isar.mvfr0 = 0x10110222;
114     cpu->isar.mvfr1 = 0x12111111;
115     cpu->isar.mvfr2 = 0x00000043;
116     cpu->ctr = 0x8444c004;
117     cpu->reset_sctlr = 0x00c50838;
118     cpu->isar.id_pfr0 = 0x00000131;
119     cpu->isar.id_pfr1 = 0x00011011;
120     cpu->isar.id_dfr0 = 0x03010066;
121     cpu->id_afr0 = 0x00000000;
122     cpu->isar.id_mmfr0 = 0x10101105;
123     cpu->isar.id_mmfr1 = 0x40000000;
124     cpu->isar.id_mmfr2 = 0x01260000;
125     cpu->isar.id_mmfr3 = 0x02102211;
126     cpu->isar.id_isar0 = 0x02101110;
127     cpu->isar.id_isar1 = 0x13112111;
128     cpu->isar.id_isar2 = 0x21232042;
129     cpu->isar.id_isar3 = 0x01112131;
130     cpu->isar.id_isar4 = 0x00011142;
131     cpu->isar.id_isar5 = 0x00011121;
132     cpu->isar.id_isar6 = 0;
133     cpu->isar.id_aa64pfr0 = 0x00002222;
134     cpu->isar.id_aa64dfr0 = 0x10305106;
135     cpu->isar.id_aa64isar0 = 0x00011120;
136     cpu->isar.id_aa64mmfr0 = 0x00001124;
137     cpu->isar.dbgdidr = 0x3516d000;
138     cpu->clidr = 0x0a200023;
139     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
140     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
141     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
142     cpu->dcz_blocksize = 4; /* 64 bytes */
143     cpu->gic_num_lrs = 4;
144     cpu->gic_vpribits = 5;
145     cpu->gic_vprebits = 5;
146     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
147 }
148 
149 static void aarch64_a53_initfn(Object *obj)
150 {
151     ARMCPU *cpu = ARM_CPU(obj);
152 
153     cpu->dtb_compatible = "arm,cortex-a53";
154     set_feature(&cpu->env, ARM_FEATURE_V8);
155     set_feature(&cpu->env, ARM_FEATURE_NEON);
156     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
157     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
158     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
159     set_feature(&cpu->env, ARM_FEATURE_EL2);
160     set_feature(&cpu->env, ARM_FEATURE_EL3);
161     set_feature(&cpu->env, ARM_FEATURE_PMU);
162     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
163     cpu->midr = 0x410fd034;
164     cpu->revidr = 0x00000000;
165     cpu->reset_fpsid = 0x41034070;
166     cpu->isar.mvfr0 = 0x10110222;
167     cpu->isar.mvfr1 = 0x12111111;
168     cpu->isar.mvfr2 = 0x00000043;
169     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
170     cpu->reset_sctlr = 0x00c50838;
171     cpu->isar.id_pfr0 = 0x00000131;
172     cpu->isar.id_pfr1 = 0x00011011;
173     cpu->isar.id_dfr0 = 0x03010066;
174     cpu->id_afr0 = 0x00000000;
175     cpu->isar.id_mmfr0 = 0x10101105;
176     cpu->isar.id_mmfr1 = 0x40000000;
177     cpu->isar.id_mmfr2 = 0x01260000;
178     cpu->isar.id_mmfr3 = 0x02102211;
179     cpu->isar.id_isar0 = 0x02101110;
180     cpu->isar.id_isar1 = 0x13112111;
181     cpu->isar.id_isar2 = 0x21232042;
182     cpu->isar.id_isar3 = 0x01112131;
183     cpu->isar.id_isar4 = 0x00011142;
184     cpu->isar.id_isar5 = 0x00011121;
185     cpu->isar.id_isar6 = 0;
186     cpu->isar.id_aa64pfr0 = 0x00002222;
187     cpu->isar.id_aa64dfr0 = 0x10305106;
188     cpu->isar.id_aa64isar0 = 0x00011120;
189     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
190     cpu->isar.dbgdidr = 0x3516d000;
191     cpu->clidr = 0x0a200023;
192     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
193     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
194     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
195     cpu->dcz_blocksize = 4; /* 64 bytes */
196     cpu->gic_num_lrs = 4;
197     cpu->gic_vpribits = 5;
198     cpu->gic_vprebits = 5;
199     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
200 }
201 
202 static void aarch64_a72_initfn(Object *obj)
203 {
204     ARMCPU *cpu = ARM_CPU(obj);
205 
206     cpu->dtb_compatible = "arm,cortex-a72";
207     set_feature(&cpu->env, ARM_FEATURE_V8);
208     set_feature(&cpu->env, ARM_FEATURE_NEON);
209     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
210     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
211     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
212     set_feature(&cpu->env, ARM_FEATURE_EL2);
213     set_feature(&cpu->env, ARM_FEATURE_EL3);
214     set_feature(&cpu->env, ARM_FEATURE_PMU);
215     cpu->midr = 0x410fd083;
216     cpu->revidr = 0x00000000;
217     cpu->reset_fpsid = 0x41034080;
218     cpu->isar.mvfr0 = 0x10110222;
219     cpu->isar.mvfr1 = 0x12111111;
220     cpu->isar.mvfr2 = 0x00000043;
221     cpu->ctr = 0x8444c004;
222     cpu->reset_sctlr = 0x00c50838;
223     cpu->isar.id_pfr0 = 0x00000131;
224     cpu->isar.id_pfr1 = 0x00011011;
225     cpu->isar.id_dfr0 = 0x03010066;
226     cpu->id_afr0 = 0x00000000;
227     cpu->isar.id_mmfr0 = 0x10201105;
228     cpu->isar.id_mmfr1 = 0x40000000;
229     cpu->isar.id_mmfr2 = 0x01260000;
230     cpu->isar.id_mmfr3 = 0x02102211;
231     cpu->isar.id_isar0 = 0x02101110;
232     cpu->isar.id_isar1 = 0x13112111;
233     cpu->isar.id_isar2 = 0x21232042;
234     cpu->isar.id_isar3 = 0x01112131;
235     cpu->isar.id_isar4 = 0x00011142;
236     cpu->isar.id_isar5 = 0x00011121;
237     cpu->isar.id_aa64pfr0 = 0x00002222;
238     cpu->isar.id_aa64dfr0 = 0x10305106;
239     cpu->isar.id_aa64isar0 = 0x00011120;
240     cpu->isar.id_aa64mmfr0 = 0x00001124;
241     cpu->isar.dbgdidr = 0x3516d000;
242     cpu->clidr = 0x0a200023;
243     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
244     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
245     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
246     cpu->dcz_blocksize = 4; /* 64 bytes */
247     cpu->gic_num_lrs = 4;
248     cpu->gic_vpribits = 5;
249     cpu->gic_vprebits = 5;
250     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
251 }
252 
253 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
254 {
255     /*
256      * If any vector lengths are explicitly enabled with sve<N> properties,
257      * then all other lengths are implicitly disabled.  If sve-max-vq is
258      * specified then it is the same as explicitly enabling all lengths
259      * up to and including the specified maximum, which means all larger
260      * lengths will be implicitly disabled.  If no sve<N> properties
261      * are enabled and sve-max-vq is not specified, then all lengths not
262      * explicitly disabled will be enabled.  Additionally, all power-of-two
263      * vector lengths less than the maximum enabled length will be
264      * automatically enabled and all vector lengths larger than the largest
265      * disabled power-of-two vector length will be automatically disabled.
266      * Errors are generated if the user provided input that interferes with
267      * any of the above.  Finally, if SVE is not disabled, then at least one
268      * vector length must be enabled.
269      */
270     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
271     uint32_t vq, max_vq = 0;
272 
273     /*
274      * CPU models specify a set of supported vector lengths which are
275      * enabled by default.  Attempting to enable any vector length not set
276      * in the supported bitmap results in an error.  When KVM is enabled we
277      * fetch the supported bitmap from the host.
278      */
279     if (kvm_enabled() && kvm_arm_sve_supported()) {
280         kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported);
281     } else if (kvm_enabled()) {
282         assert(!cpu_isar_feature(aa64_sve, cpu));
283     }
284 
285     /*
286      * Process explicit sve<N> properties.
287      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
288      * Check first for any sve<N> enabled.
289      */
290     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
291         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
292 
293         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
294             error_setg(errp, "cannot enable sve%d", max_vq * 128);
295             error_append_hint(errp, "sve%d is larger than the maximum vector "
296                               "length, sve-max-vq=%d (%d bits)\n",
297                               max_vq * 128, cpu->sve_max_vq,
298                               cpu->sve_max_vq * 128);
299             return;
300         }
301 
302         if (kvm_enabled()) {
303             /*
304              * For KVM we have to automatically enable all supported unitialized
305              * lengths, even when the smaller lengths are not all powers-of-two.
306              */
307             bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq);
308             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
309         } else {
310             /* Propagate enabled bits down through required powers-of-two. */
311             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
312                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
313                     set_bit(vq - 1, cpu->sve_vq_map);
314                 }
315             }
316         }
317     } else if (cpu->sve_max_vq == 0) {
318         /*
319          * No explicit bits enabled, and no implicit bits from sve-max-vq.
320          */
321         if (!cpu_isar_feature(aa64_sve, cpu)) {
322             /* SVE is disabled and so are all vector lengths.  Good. */
323             return;
324         }
325 
326         if (kvm_enabled()) {
327             /* Disabling a supported length disables all larger lengths. */
328             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
329                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
330                     test_bit(vq - 1, cpu->sve_vq_supported)) {
331                     break;
332                 }
333             }
334         } else {
335             /* Disabling a power-of-two disables all larger lengths. */
336             for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
337                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
338                     break;
339                 }
340             }
341         }
342 
343         max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
344         bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported,
345                       cpu->sve_vq_init, max_vq);
346         if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
347             error_setg(errp, "cannot disable sve%d", vq * 128);
348             error_append_hint(errp, "Disabling sve%d results in all "
349                               "vector lengths being disabled.\n",
350                               vq * 128);
351             error_append_hint(errp, "With SVE enabled, at least one "
352                               "vector length must be enabled.\n");
353             return;
354         }
355 
356         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
357     }
358 
359     /*
360      * Process the sve-max-vq property.
361      * Note that we know from the above that no bit above
362      * sve-max-vq is currently set.
363      */
364     if (cpu->sve_max_vq != 0) {
365         max_vq = cpu->sve_max_vq;
366 
367         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
368             test_bit(max_vq - 1, cpu->sve_vq_init)) {
369             error_setg(errp, "cannot disable sve%d", max_vq * 128);
370             error_append_hint(errp, "The maximum vector length must be "
371                               "enabled, sve-max-vq=%d (%d bits)\n",
372                               max_vq, max_vq * 128);
373             return;
374         }
375 
376         /* Set all bits not explicitly set within sve-max-vq. */
377         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
378         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
379     }
380 
381     /*
382      * We should know what max-vq is now.  Also, as we're done
383      * manipulating sve-vq-map, we ensure any bits above max-vq
384      * are clear, just in case anybody looks.
385      */
386     assert(max_vq != 0);
387     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
388 
389     /* Ensure the set of lengths matches what is supported. */
390     bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq);
391     if (!bitmap_empty(tmp, max_vq)) {
392         vq = find_last_bit(tmp, max_vq) + 1;
393         if (test_bit(vq - 1, cpu->sve_vq_map)) {
394             if (cpu->sve_max_vq) {
395                 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
396                 error_append_hint(errp, "This CPU does not support "
397                                   "the vector length %d-bits.\n", vq * 128);
398                 error_append_hint(errp, "It may not be possible to use "
399                                   "sve-max-vq with this CPU. Try "
400                                   "using only sve<N> properties.\n");
401             } else {
402                 error_setg(errp, "cannot enable sve%d", vq * 128);
403                 error_append_hint(errp, "This CPU does not support "
404                                   "the vector length %d-bits.\n", vq * 128);
405             }
406             return;
407         } else {
408             if (kvm_enabled()) {
409                 error_setg(errp, "cannot disable sve%d", vq * 128);
410                 error_append_hint(errp, "The KVM host requires all "
411                                   "supported vector lengths smaller "
412                                   "than %d bits to also be enabled.\n",
413                                   max_vq * 128);
414                 return;
415             } else {
416                 /* Ensure all required powers-of-two are enabled. */
417                 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
418                     if (!test_bit(vq - 1, cpu->sve_vq_map)) {
419                         error_setg(errp, "cannot disable sve%d", vq * 128);
420                         error_append_hint(errp, "sve%d is required as it "
421                                           "is a power-of-two length smaller "
422                                           "than the maximum, sve%d\n",
423                                           vq * 128, max_vq * 128);
424                         return;
425                     }
426                 }
427             }
428         }
429     }
430 
431     /*
432      * Now that we validated all our vector lengths, the only question
433      * left to answer is if we even want SVE at all.
434      */
435     if (!cpu_isar_feature(aa64_sve, cpu)) {
436         error_setg(errp, "cannot enable sve%d", max_vq * 128);
437         error_append_hint(errp, "SVE must be enabled to enable vector "
438                           "lengths.\n");
439         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
440         return;
441     }
442 
443     /* From now on sve_max_vq is the actual maximum supported length. */
444     cpu->sve_max_vq = max_vq;
445 }
446 
447 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
448                                    void *opaque, Error **errp)
449 {
450     ARMCPU *cpu = ARM_CPU(obj);
451     uint32_t value;
452 
453     /* All vector lengths are disabled when SVE is off. */
454     if (!cpu_isar_feature(aa64_sve, cpu)) {
455         value = 0;
456     } else {
457         value = cpu->sve_max_vq;
458     }
459     visit_type_uint32(v, name, &value, errp);
460 }
461 
462 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
463                                    void *opaque, Error **errp)
464 {
465     ARMCPU *cpu = ARM_CPU(obj);
466     uint32_t max_vq;
467 
468     if (!visit_type_uint32(v, name, &max_vq, errp)) {
469         return;
470     }
471 
472     if (kvm_enabled() && !kvm_arm_sve_supported()) {
473         error_setg(errp, "cannot set sve-max-vq");
474         error_append_hint(errp, "SVE not supported by KVM on this host\n");
475         return;
476     }
477 
478     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
479         error_setg(errp, "unsupported SVE vector length");
480         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
481                           ARM_MAX_VQ);
482         return;
483     }
484 
485     cpu->sve_max_vq = max_vq;
486 }
487 
488 /*
489  * Note that cpu_arm_get/set_sve_vq cannot use the simpler
490  * object_property_add_bool interface because they make use
491  * of the contents of "name" to determine which bit on which
492  * to operate.
493  */
494 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
495                                void *opaque, Error **errp)
496 {
497     ARMCPU *cpu = ARM_CPU(obj);
498     uint32_t vq = atoi(&name[3]) / 128;
499     bool value;
500 
501     /* All vector lengths are disabled when SVE is off. */
502     if (!cpu_isar_feature(aa64_sve, cpu)) {
503         value = false;
504     } else {
505         value = test_bit(vq - 1, cpu->sve_vq_map);
506     }
507     visit_type_bool(v, name, &value, errp);
508 }
509 
510 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
511                                void *opaque, Error **errp)
512 {
513     ARMCPU *cpu = ARM_CPU(obj);
514     uint32_t vq = atoi(&name[3]) / 128;
515     bool value;
516 
517     if (!visit_type_bool(v, name, &value, errp)) {
518         return;
519     }
520 
521     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
522         error_setg(errp, "cannot enable %s", name);
523         error_append_hint(errp, "SVE not supported by KVM on this host\n");
524         return;
525     }
526 
527     if (value) {
528         set_bit(vq - 1, cpu->sve_vq_map);
529     } else {
530         clear_bit(vq - 1, cpu->sve_vq_map);
531     }
532     set_bit(vq - 1, cpu->sve_vq_init);
533 }
534 
535 static bool cpu_arm_get_sve(Object *obj, Error **errp)
536 {
537     ARMCPU *cpu = ARM_CPU(obj);
538     return cpu_isar_feature(aa64_sve, cpu);
539 }
540 
541 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
542 {
543     ARMCPU *cpu = ARM_CPU(obj);
544     uint64_t t;
545 
546     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
547         error_setg(errp, "'sve' feature not supported by KVM on this host");
548         return;
549     }
550 
551     t = cpu->isar.id_aa64pfr0;
552     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
553     cpu->isar.id_aa64pfr0 = t;
554 }
555 
556 #ifdef CONFIG_USER_ONLY
557 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
558 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
559                                             const char *name, void *opaque,
560                                             Error **errp)
561 {
562     ARMCPU *cpu = ARM_CPU(obj);
563     int32_t default_len, default_vq, remainder;
564 
565     if (!visit_type_int32(v, name, &default_len, errp)) {
566         return;
567     }
568 
569     /* Undocumented, but the kernel allows -1 to indicate "maximum". */
570     if (default_len == -1) {
571         cpu->sve_default_vq = ARM_MAX_VQ;
572         return;
573     }
574 
575     default_vq = default_len / 16;
576     remainder = default_len % 16;
577 
578     /*
579      * Note that the 512 max comes from include/uapi/asm/sve_context.h
580      * and is the maximum architectural width of ZCR_ELx.LEN.
581      */
582     if (remainder || default_vq < 1 || default_vq > 512) {
583         error_setg(errp, "cannot set sve-default-vector-length");
584         if (remainder) {
585             error_append_hint(errp, "Vector length not a multiple of 16\n");
586         } else if (default_vq < 1) {
587             error_append_hint(errp, "Vector length smaller than 16\n");
588         } else {
589             error_append_hint(errp, "Vector length larger than %d\n",
590                               512 * 16);
591         }
592         return;
593     }
594 
595     cpu->sve_default_vq = default_vq;
596 }
597 
598 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
599                                             const char *name, void *opaque,
600                                             Error **errp)
601 {
602     ARMCPU *cpu = ARM_CPU(obj);
603     int32_t value = cpu->sve_default_vq * 16;
604 
605     visit_type_int32(v, name, &value, errp);
606 }
607 #endif
608 
609 void aarch64_add_sve_properties(Object *obj)
610 {
611     uint32_t vq;
612 
613     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
614 
615     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
616         char name[8];
617         sprintf(name, "sve%d", vq * 128);
618         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
619                             cpu_arm_set_sve_vq, NULL, NULL);
620     }
621 
622 #ifdef CONFIG_USER_ONLY
623     /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
624     object_property_add(obj, "sve-default-vector-length", "int32",
625                         cpu_arm_get_sve_default_vec_len,
626                         cpu_arm_set_sve_default_vec_len, NULL, NULL);
627 #endif
628 }
629 
630 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
631 {
632     int arch_val = 0, impdef_val = 0;
633     uint64_t t;
634 
635     /* Exit early if PAuth is enabled, and fall through to disable it */
636     if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
637         if (!cpu_isar_feature(aa64_pauth, cpu)) {
638             error_setg(errp, "'pauth' feature not supported by %s on this host",
639                        kvm_enabled() ? "KVM" : "hvf");
640         }
641 
642         return;
643     }
644 
645     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
646     if (cpu->prop_pauth) {
647         if (cpu->prop_pauth_impdef) {
648             impdef_val = 1;
649         } else {
650             arch_val = 1;
651         }
652     } else if (cpu->prop_pauth_impdef) {
653         error_setg(errp, "cannot enable pauth-impdef without pauth");
654         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
655     }
656 
657     t = cpu->isar.id_aa64isar1;
658     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
659     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
660     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
661     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
662     cpu->isar.id_aa64isar1 = t;
663 }
664 
665 static Property arm_cpu_pauth_property =
666     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
667 static Property arm_cpu_pauth_impdef_property =
668     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
669 
670 void aarch64_add_pauth_properties(Object *obj)
671 {
672     ARMCPU *cpu = ARM_CPU(obj);
673 
674     /* Default to PAUTH on, with the architected algorithm on TCG. */
675     qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
676     if (kvm_enabled() || hvf_enabled()) {
677         /*
678          * Mirror PAuth support from the probed sysregs back into the
679          * property for KVM or hvf. Is it just a bit backward? Yes it is!
680          * Note that prop_pauth is true whether the host CPU supports the
681          * architected QARMA5 algorithm or the IMPDEF one. We don't
682          * provide the separate pauth-impdef property for KVM or hvf,
683          * only for TCG.
684          */
685         cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
686     } else {
687         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
688     }
689 }
690 
691 static Property arm_cpu_lpa2_property =
692     DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
693 
694 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
695 {
696     uint64_t t;
697 
698     /*
699      * We only install the property for tcg -cpu max; this is the
700      * only situation in which the cpu field can be true.
701      */
702     if (!cpu->prop_lpa2) {
703         return;
704     }
705 
706     t = cpu->isar.id_aa64mmfr0;
707     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2);   /* 16k pages w/ LPA2 */
708     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1);    /*  4k pages w/ LPA2 */
709     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
710     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3);  /*  4k stage2 w/ LPA2 */
711     cpu->isar.id_aa64mmfr0 = t;
712 }
713 
714 static void aarch64_host_initfn(Object *obj)
715 {
716 #if defined(CONFIG_KVM)
717     ARMCPU *cpu = ARM_CPU(obj);
718     kvm_arm_set_cpu_features_from_host(cpu);
719     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
720         aarch64_add_sve_properties(obj);
721         aarch64_add_pauth_properties(obj);
722     }
723 #elif defined(CONFIG_HVF)
724     ARMCPU *cpu = ARM_CPU(obj);
725     hvf_arm_set_cpu_features_from_host(cpu);
726     aarch64_add_pauth_properties(obj);
727 #else
728     g_assert_not_reached();
729 #endif
730 }
731 
732 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
733  * otherwise, a CPU with as many features enabled as our emulation supports.
734  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
735  * this only needs to handle 64 bits.
736  */
737 static void aarch64_max_initfn(Object *obj)
738 {
739     ARMCPU *cpu = ARM_CPU(obj);
740     uint64_t t;
741     uint32_t u;
742 
743     if (kvm_enabled() || hvf_enabled()) {
744         /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
745         aarch64_host_initfn(obj);
746         return;
747     }
748 
749     /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
750 
751     aarch64_a57_initfn(obj);
752 
753     /*
754      * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
755      * one and try to apply errata workarounds or use impdef features we
756      * don't provide.
757      * An IMPLEMENTER field of 0 means "reserved for software use";
758      * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
759      * to see which features are present";
760      * the VARIANT, PARTNUM and REVISION fields are all implementation
761      * defined and we choose to define PARTNUM just in case guest
762      * code needs to distinguish this QEMU CPU from other software
763      * implementations, though this shouldn't be needed.
764      */
765     t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
766     t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
767     t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
768     t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
769     t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
770     cpu->midr = t;
771 
772     t = cpu->isar.id_aa64isar0;
773     t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
774     t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
775     t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
776     t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
777     t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
778     t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
779     t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
780     t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
781     t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
782     t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
783     t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
784     t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
785     t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
786     t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
787     cpu->isar.id_aa64isar0 = t;
788 
789     t = cpu->isar.id_aa64isar1;
790     t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
791     t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
792     t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
793     t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
794     t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
795     t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);
796     t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
797     t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
798     t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);
799     cpu->isar.id_aa64isar1 = t;
800 
801     t = cpu->isar.id_aa64pfr0;
802     t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
803     t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
804     t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
805     t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
806     t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
807     cpu->isar.id_aa64pfr0 = t;
808 
809     t = cpu->isar.id_aa64pfr1;
810     t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
811     t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
812     /*
813      * Begin with full support for MTE. This will be downgraded to MTE=0
814      * during realize if the board provides no tag memory, much like
815      * we do for EL2 with the virtualization=on property.
816      */
817     t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);
818     cpu->isar.id_aa64pfr1 = t;
819 
820     t = cpu->isar.id_aa64mmfr0;
821     t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
822     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1);   /* 16k pages supported */
823     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
824     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
825     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2);  /*  4k stage2 supported */
826     cpu->isar.id_aa64mmfr0 = t;
827 
828     t = cpu->isar.id_aa64mmfr1;
829     t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
830     t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
831     t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
832     t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
833     t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
834     t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
835     cpu->isar.id_aa64mmfr1 = t;
836 
837     t = cpu->isar.id_aa64mmfr2;
838     t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
839     t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
840     t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
841     t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */
842     cpu->isar.id_aa64mmfr2 = t;
843 
844     t = cpu->isar.id_aa64zfr0;
845     t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
846     t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);  /* PMULL */
847     t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);
848     t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);
849     t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);
850     t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);
851     t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);
852     t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);
853     t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);
854     cpu->isar.id_aa64zfr0 = t;
855 
856     /* Replicate the same data to the 32-bit id registers.  */
857     u = cpu->isar.id_isar5;
858     u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
859     u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
860     u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
861     u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
862     u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
863     u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
864     cpu->isar.id_isar5 = u;
865 
866     u = cpu->isar.id_isar6;
867     u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
868     u = FIELD_DP32(u, ID_ISAR6, DP, 1);
869     u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
870     u = FIELD_DP32(u, ID_ISAR6, SB, 1);
871     u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
872     u = FIELD_DP32(u, ID_ISAR6, BF16, 1);
873     u = FIELD_DP32(u, ID_ISAR6, I8MM, 1);
874     cpu->isar.id_isar6 = u;
875 
876     u = cpu->isar.id_pfr0;
877     u = FIELD_DP32(u, ID_PFR0, DIT, 1);
878     cpu->isar.id_pfr0 = u;
879 
880     u = cpu->isar.id_pfr2;
881     u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
882     cpu->isar.id_pfr2 = u;
883 
884     u = cpu->isar.id_mmfr3;
885     u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
886     cpu->isar.id_mmfr3 = u;
887 
888     u = cpu->isar.id_mmfr4;
889     u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
890     u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
891     u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
892     u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
893     cpu->isar.id_mmfr4 = u;
894 
895     t = cpu->isar.id_aa64dfr0;
896     t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
897     cpu->isar.id_aa64dfr0 = t;
898 
899     u = cpu->isar.id_dfr0;
900     u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
901     cpu->isar.id_dfr0 = u;
902 
903     u = cpu->isar.mvfr1;
904     u = FIELD_DP32(u, MVFR1, FPHP, 3);      /* v8.2-FP16 */
905     u = FIELD_DP32(u, MVFR1, SIMDHP, 2);    /* v8.2-FP16 */
906     cpu->isar.mvfr1 = u;
907 
908 #ifdef CONFIG_USER_ONLY
909     /*
910      * For usermode -cpu max we can use a larger and more efficient DCZ
911      * blocksize since we don't have to follow what the hardware does.
912      */
913     cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
914     cpu->dcz_blocksize = 7; /*  512 bytes */
915 #endif
916 
917     bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ);
918 
919     aarch64_add_pauth_properties(obj);
920     aarch64_add_sve_properties(obj);
921     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
922                         cpu_max_set_sve_max_vq, NULL, NULL);
923     qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
924 }
925 
926 static void aarch64_a64fx_initfn(Object *obj)
927 {
928     ARMCPU *cpu = ARM_CPU(obj);
929 
930     cpu->dtb_compatible = "arm,a64fx";
931     set_feature(&cpu->env, ARM_FEATURE_V8);
932     set_feature(&cpu->env, ARM_FEATURE_NEON);
933     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
934     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
935     set_feature(&cpu->env, ARM_FEATURE_EL2);
936     set_feature(&cpu->env, ARM_FEATURE_EL3);
937     set_feature(&cpu->env, ARM_FEATURE_PMU);
938     cpu->midr = 0x461f0010;
939     cpu->revidr = 0x00000000;
940     cpu->ctr = 0x86668006;
941     cpu->reset_sctlr = 0x30000180;
942     cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
943     cpu->isar.id_aa64pfr1 = 0x0000000000000000;
944     cpu->isar.id_aa64dfr0 = 0x0000000010305408;
945     cpu->isar.id_aa64dfr1 = 0x0000000000000000;
946     cpu->id_aa64afr0 = 0x0000000000000000;
947     cpu->id_aa64afr1 = 0x0000000000000000;
948     cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
949     cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
950     cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
951     cpu->isar.id_aa64isar0 = 0x0000000010211120;
952     cpu->isar.id_aa64isar1 = 0x0000000000010001;
953     cpu->isar.id_aa64zfr0 = 0x0000000000000000;
954     cpu->clidr = 0x0000000080000023;
955     cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
956     cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
957     cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
958     cpu->dcz_blocksize = 6; /* 256 bytes */
959     cpu->gic_num_lrs = 4;
960     cpu->gic_vpribits = 5;
961     cpu->gic_vprebits = 5;
962 
963     /* Suppport of A64FX's vector length are 128,256 and 512bit only */
964     aarch64_add_sve_properties(obj);
965     bitmap_zero(cpu->sve_vq_supported, ARM_MAX_VQ);
966     set_bit(0, cpu->sve_vq_supported); /* 128bit */
967     set_bit(1, cpu->sve_vq_supported); /* 256bit */
968     set_bit(3, cpu->sve_vq_supported); /* 512bit */
969 
970     /* TODO:  Add A64FX specific HPC extension registers */
971 }
972 
973 static const ARMCPUInfo aarch64_cpus[] = {
974     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
975     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
976     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
977     { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
978     { .name = "max",                .initfn = aarch64_max_initfn },
979 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
980     { .name = "host",               .initfn = aarch64_host_initfn },
981 #endif
982 };
983 
984 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
985 {
986     ARMCPU *cpu = ARM_CPU(obj);
987 
988     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
989 }
990 
991 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
992 {
993     ARMCPU *cpu = ARM_CPU(obj);
994 
995     /* At this time, this property is only allowed if KVM is enabled.  This
996      * restriction allows us to avoid fixing up functionality that assumes a
997      * uniform execution state like do_interrupt.
998      */
999     if (value == false) {
1000         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1001             error_setg(errp, "'aarch64' feature cannot be disabled "
1002                              "unless KVM is enabled and 32-bit EL1 "
1003                              "is supported");
1004             return;
1005         }
1006         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1007     } else {
1008         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1009     }
1010 }
1011 
1012 static void aarch64_cpu_finalizefn(Object *obj)
1013 {
1014 }
1015 
1016 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1017 {
1018     return g_strdup("aarch64");
1019 }
1020 
1021 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1022 {
1023     CPUClass *cc = CPU_CLASS(oc);
1024 
1025     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1026     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1027     cc->gdb_num_core_regs = 34;
1028     cc->gdb_core_xml_file = "aarch64-core.xml";
1029     cc->gdb_arch_name = aarch64_gdb_arch_name;
1030 
1031     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1032                                    aarch64_cpu_set_aarch64);
1033     object_class_property_set_description(oc, "aarch64",
1034                                           "Set on/off to enable/disable aarch64 "
1035                                           "execution state ");
1036 }
1037 
1038 static void aarch64_cpu_instance_init(Object *obj)
1039 {
1040     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1041 
1042     acc->info->initfn(obj);
1043     arm_cpu_post_init(obj);
1044 }
1045 
1046 static void cpu_register_class_init(ObjectClass *oc, void *data)
1047 {
1048     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1049 
1050     acc->info = data;
1051 }
1052 
1053 void aarch64_cpu_register(const ARMCPUInfo *info)
1054 {
1055     TypeInfo type_info = {
1056         .parent = TYPE_AARCH64_CPU,
1057         .instance_size = sizeof(ARMCPU),
1058         .instance_init = aarch64_cpu_instance_init,
1059         .class_size = sizeof(ARMCPUClass),
1060         .class_init = info->class_init ?: cpu_register_class_init,
1061         .class_data = (void *)info,
1062     };
1063 
1064     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1065     type_register(&type_info);
1066     g_free((void *)type_info.name);
1067 }
1068 
1069 static const TypeInfo aarch64_cpu_type_info = {
1070     .name = TYPE_AARCH64_CPU,
1071     .parent = TYPE_ARM_CPU,
1072     .instance_size = sizeof(ARMCPU),
1073     .instance_finalize = aarch64_cpu_finalizefn,
1074     .abstract = true,
1075     .class_size = sizeof(AArch64CPUClass),
1076     .class_init = aarch64_cpu_class_init,
1077 };
1078 
1079 static void aarch64_cpu_register_types(void)
1080 {
1081     size_t i;
1082 
1083     type_register_static(&aarch64_cpu_type_info);
1084 
1085     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1086         aarch64_cpu_register(&aarch64_cpus[i]);
1087     }
1088 }
1089 
1090 type_init(aarch64_cpu_register_types)
1091