xref: /openbmc/qemu/target/arm/cpu64.c (revision 4011a686)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "kvm_arm.h"
33 #include "qapi/visitor.h"
34 #include "hw/qdev-properties.h"
35 
36 
37 #ifndef CONFIG_USER_ONLY
38 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40     ARMCPU *cpu = env_archcpu(env);
41 
42     /* Number of cores is in [25:24]; otherwise we RAZ */
43     return (cpu->core_count - 1) << 24;
44 }
45 #endif
46 
47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
48 #ifndef CONFIG_USER_ONLY
49     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
50       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
51       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
52       .writefn = arm_cp_write_ignore },
53     { .name = "L2CTLR",
54       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
55       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
56       .writefn = arm_cp_write_ignore },
57 #endif
58     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
59       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
60       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
61     { .name = "L2ECTLR",
62       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
63       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
65       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
66       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
68       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
69       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70     { .name = "CPUACTLR",
71       .cp = 15, .opc1 = 0, .crm = 15,
72       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
73     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
74       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
75       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76     { .name = "CPUECTLR",
77       .cp = 15, .opc1 = 1, .crm = 15,
78       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
80       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
81       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82     { .name = "CPUMERRSR",
83       .cp = 15, .opc1 = 2, .crm = 15,
84       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
86       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
87       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88     { .name = "L2MERRSR",
89       .cp = 15, .opc1 = 3, .crm = 15,
90       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91     REGINFO_SENTINEL
92 };
93 
94 static void aarch64_a57_initfn(Object *obj)
95 {
96     ARMCPU *cpu = ARM_CPU(obj);
97 
98     cpu->dtb_compatible = "arm,cortex-a57";
99     set_feature(&cpu->env, ARM_FEATURE_V8);
100     set_feature(&cpu->env, ARM_FEATURE_NEON);
101     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
102     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
103     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
104     set_feature(&cpu->env, ARM_FEATURE_EL2);
105     set_feature(&cpu->env, ARM_FEATURE_EL3);
106     set_feature(&cpu->env, ARM_FEATURE_PMU);
107     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
108     cpu->midr = 0x411fd070;
109     cpu->revidr = 0x00000000;
110     cpu->reset_fpsid = 0x41034070;
111     cpu->isar.mvfr0 = 0x10110222;
112     cpu->isar.mvfr1 = 0x12111111;
113     cpu->isar.mvfr2 = 0x00000043;
114     cpu->ctr = 0x8444c004;
115     cpu->reset_sctlr = 0x00c50838;
116     cpu->isar.id_pfr0 = 0x00000131;
117     cpu->isar.id_pfr1 = 0x00011011;
118     cpu->isar.id_dfr0 = 0x03010066;
119     cpu->id_afr0 = 0x00000000;
120     cpu->isar.id_mmfr0 = 0x10101105;
121     cpu->isar.id_mmfr1 = 0x40000000;
122     cpu->isar.id_mmfr2 = 0x01260000;
123     cpu->isar.id_mmfr3 = 0x02102211;
124     cpu->isar.id_isar0 = 0x02101110;
125     cpu->isar.id_isar1 = 0x13112111;
126     cpu->isar.id_isar2 = 0x21232042;
127     cpu->isar.id_isar3 = 0x01112131;
128     cpu->isar.id_isar4 = 0x00011142;
129     cpu->isar.id_isar5 = 0x00011121;
130     cpu->isar.id_isar6 = 0;
131     cpu->isar.id_aa64pfr0 = 0x00002222;
132     cpu->isar.id_aa64dfr0 = 0x10305106;
133     cpu->isar.id_aa64isar0 = 0x00011120;
134     cpu->isar.id_aa64mmfr0 = 0x00001124;
135     cpu->isar.dbgdidr = 0x3516d000;
136     cpu->clidr = 0x0a200023;
137     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
138     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
139     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
140     cpu->dcz_blocksize = 4; /* 64 bytes */
141     cpu->gic_num_lrs = 4;
142     cpu->gic_vpribits = 5;
143     cpu->gic_vprebits = 5;
144     cpu->isar.reset_pmcr_el0 = 0x41013000;
145     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
146 }
147 
148 static void aarch64_a53_initfn(Object *obj)
149 {
150     ARMCPU *cpu = ARM_CPU(obj);
151 
152     cpu->dtb_compatible = "arm,cortex-a53";
153     set_feature(&cpu->env, ARM_FEATURE_V8);
154     set_feature(&cpu->env, ARM_FEATURE_NEON);
155     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
156     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
157     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
158     set_feature(&cpu->env, ARM_FEATURE_EL2);
159     set_feature(&cpu->env, ARM_FEATURE_EL3);
160     set_feature(&cpu->env, ARM_FEATURE_PMU);
161     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
162     cpu->midr = 0x410fd034;
163     cpu->revidr = 0x00000000;
164     cpu->reset_fpsid = 0x41034070;
165     cpu->isar.mvfr0 = 0x10110222;
166     cpu->isar.mvfr1 = 0x12111111;
167     cpu->isar.mvfr2 = 0x00000043;
168     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
169     cpu->reset_sctlr = 0x00c50838;
170     cpu->isar.id_pfr0 = 0x00000131;
171     cpu->isar.id_pfr1 = 0x00011011;
172     cpu->isar.id_dfr0 = 0x03010066;
173     cpu->id_afr0 = 0x00000000;
174     cpu->isar.id_mmfr0 = 0x10101105;
175     cpu->isar.id_mmfr1 = 0x40000000;
176     cpu->isar.id_mmfr2 = 0x01260000;
177     cpu->isar.id_mmfr3 = 0x02102211;
178     cpu->isar.id_isar0 = 0x02101110;
179     cpu->isar.id_isar1 = 0x13112111;
180     cpu->isar.id_isar2 = 0x21232042;
181     cpu->isar.id_isar3 = 0x01112131;
182     cpu->isar.id_isar4 = 0x00011142;
183     cpu->isar.id_isar5 = 0x00011121;
184     cpu->isar.id_isar6 = 0;
185     cpu->isar.id_aa64pfr0 = 0x00002222;
186     cpu->isar.id_aa64dfr0 = 0x10305106;
187     cpu->isar.id_aa64isar0 = 0x00011120;
188     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
189     cpu->isar.dbgdidr = 0x3516d000;
190     cpu->clidr = 0x0a200023;
191     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
192     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
193     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
194     cpu->dcz_blocksize = 4; /* 64 bytes */
195     cpu->gic_num_lrs = 4;
196     cpu->gic_vpribits = 5;
197     cpu->gic_vprebits = 5;
198     cpu->isar.reset_pmcr_el0 = 0x41033000;
199     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
200 }
201 
202 static void aarch64_a72_initfn(Object *obj)
203 {
204     ARMCPU *cpu = ARM_CPU(obj);
205 
206     cpu->dtb_compatible = "arm,cortex-a72";
207     set_feature(&cpu->env, ARM_FEATURE_V8);
208     set_feature(&cpu->env, ARM_FEATURE_NEON);
209     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
210     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
211     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
212     set_feature(&cpu->env, ARM_FEATURE_EL2);
213     set_feature(&cpu->env, ARM_FEATURE_EL3);
214     set_feature(&cpu->env, ARM_FEATURE_PMU);
215     cpu->midr = 0x410fd083;
216     cpu->revidr = 0x00000000;
217     cpu->reset_fpsid = 0x41034080;
218     cpu->isar.mvfr0 = 0x10110222;
219     cpu->isar.mvfr1 = 0x12111111;
220     cpu->isar.mvfr2 = 0x00000043;
221     cpu->ctr = 0x8444c004;
222     cpu->reset_sctlr = 0x00c50838;
223     cpu->isar.id_pfr0 = 0x00000131;
224     cpu->isar.id_pfr1 = 0x00011011;
225     cpu->isar.id_dfr0 = 0x03010066;
226     cpu->id_afr0 = 0x00000000;
227     cpu->isar.id_mmfr0 = 0x10201105;
228     cpu->isar.id_mmfr1 = 0x40000000;
229     cpu->isar.id_mmfr2 = 0x01260000;
230     cpu->isar.id_mmfr3 = 0x02102211;
231     cpu->isar.id_isar0 = 0x02101110;
232     cpu->isar.id_isar1 = 0x13112111;
233     cpu->isar.id_isar2 = 0x21232042;
234     cpu->isar.id_isar3 = 0x01112131;
235     cpu->isar.id_isar4 = 0x00011142;
236     cpu->isar.id_isar5 = 0x00011121;
237     cpu->isar.id_aa64pfr0 = 0x00002222;
238     cpu->isar.id_aa64dfr0 = 0x10305106;
239     cpu->isar.id_aa64isar0 = 0x00011120;
240     cpu->isar.id_aa64mmfr0 = 0x00001124;
241     cpu->isar.dbgdidr = 0x3516d000;
242     cpu->clidr = 0x0a200023;
243     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
244     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
245     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
246     cpu->dcz_blocksize = 4; /* 64 bytes */
247     cpu->gic_num_lrs = 4;
248     cpu->gic_vpribits = 5;
249     cpu->gic_vprebits = 5;
250     cpu->isar.reset_pmcr_el0 = 0x41023000;
251     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
252 }
253 
254 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
255 {
256     /*
257      * If any vector lengths are explicitly enabled with sve<N> properties,
258      * then all other lengths are implicitly disabled.  If sve-max-vq is
259      * specified then it is the same as explicitly enabling all lengths
260      * up to and including the specified maximum, which means all larger
261      * lengths will be implicitly disabled.  If no sve<N> properties
262      * are enabled and sve-max-vq is not specified, then all lengths not
263      * explicitly disabled will be enabled.  Additionally, all power-of-two
264      * vector lengths less than the maximum enabled length will be
265      * automatically enabled and all vector lengths larger than the largest
266      * disabled power-of-two vector length will be automatically disabled.
267      * Errors are generated if the user provided input that interferes with
268      * any of the above.  Finally, if SVE is not disabled, then at least one
269      * vector length must be enabled.
270      */
271     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
272     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
273     uint32_t vq, max_vq = 0;
274 
275     /* Collect the set of vector lengths supported by KVM. */
276     bitmap_zero(kvm_supported, ARM_MAX_VQ);
277     if (kvm_enabled() && kvm_arm_sve_supported()) {
278         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
279     } else if (kvm_enabled()) {
280         assert(!cpu_isar_feature(aa64_sve, cpu));
281     }
282 
283     /*
284      * Process explicit sve<N> properties.
285      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
286      * Check first for any sve<N> enabled.
287      */
288     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
289         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
290 
291         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
292             error_setg(errp, "cannot enable sve%d", max_vq * 128);
293             error_append_hint(errp, "sve%d is larger than the maximum vector "
294                               "length, sve-max-vq=%d (%d bits)\n",
295                               max_vq * 128, cpu->sve_max_vq,
296                               cpu->sve_max_vq * 128);
297             return;
298         }
299 
300         if (kvm_enabled()) {
301             /*
302              * For KVM we have to automatically enable all supported unitialized
303              * lengths, even when the smaller lengths are not all powers-of-two.
304              */
305             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
306             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
307         } else {
308             /* Propagate enabled bits down through required powers-of-two. */
309             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
310                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
311                     set_bit(vq - 1, cpu->sve_vq_map);
312                 }
313             }
314         }
315     } else if (cpu->sve_max_vq == 0) {
316         /*
317          * No explicit bits enabled, and no implicit bits from sve-max-vq.
318          */
319         if (!cpu_isar_feature(aa64_sve, cpu)) {
320             /* SVE is disabled and so are all vector lengths.  Good. */
321             return;
322         }
323 
324         if (kvm_enabled()) {
325             /* Disabling a supported length disables all larger lengths. */
326             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
327                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
328                     test_bit(vq - 1, kvm_supported)) {
329                     break;
330                 }
331             }
332             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
333             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
334                           cpu->sve_vq_init, max_vq);
335             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
336                 error_setg(errp, "cannot disable sve%d", vq * 128);
337                 error_append_hint(errp, "Disabling sve%d results in all "
338                                   "vector lengths being disabled.\n",
339                                   vq * 128);
340                 error_append_hint(errp, "With SVE enabled, at least one "
341                                   "vector length must be enabled.\n");
342                 return;
343             }
344         } else {
345             /* Disabling a power-of-two disables all larger lengths. */
346             if (test_bit(0, cpu->sve_vq_init)) {
347                 error_setg(errp, "cannot disable sve128");
348                 error_append_hint(errp, "Disabling sve128 results in all "
349                                   "vector lengths being disabled.\n");
350                 error_append_hint(errp, "With SVE enabled, at least one "
351                                   "vector length must be enabled.\n");
352                 return;
353             }
354             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
355                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
356                     break;
357                 }
358             }
359             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
360             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
361         }
362 
363         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
364     }
365 
366     /*
367      * Process the sve-max-vq property.
368      * Note that we know from the above that no bit above
369      * sve-max-vq is currently set.
370      */
371     if (cpu->sve_max_vq != 0) {
372         max_vq = cpu->sve_max_vq;
373 
374         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
375             test_bit(max_vq - 1, cpu->sve_vq_init)) {
376             error_setg(errp, "cannot disable sve%d", max_vq * 128);
377             error_append_hint(errp, "The maximum vector length must be "
378                               "enabled, sve-max-vq=%d (%d bits)\n",
379                               max_vq, max_vq * 128);
380             return;
381         }
382 
383         /* Set all bits not explicitly set within sve-max-vq. */
384         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
385         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
386     }
387 
388     /*
389      * We should know what max-vq is now.  Also, as we're done
390      * manipulating sve-vq-map, we ensure any bits above max-vq
391      * are clear, just in case anybody looks.
392      */
393     assert(max_vq != 0);
394     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
395 
396     if (kvm_enabled()) {
397         /* Ensure the set of lengths matches what KVM supports. */
398         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
399         if (!bitmap_empty(tmp, max_vq)) {
400             vq = find_last_bit(tmp, max_vq) + 1;
401             if (test_bit(vq - 1, cpu->sve_vq_map)) {
402                 if (cpu->sve_max_vq) {
403                     error_setg(errp, "cannot set sve-max-vq=%d",
404                                cpu->sve_max_vq);
405                     error_append_hint(errp, "This KVM host does not support "
406                                       "the vector length %d-bits.\n",
407                                       vq * 128);
408                     error_append_hint(errp, "It may not be possible to use "
409                                       "sve-max-vq with this KVM host. Try "
410                                       "using only sve<N> properties.\n");
411                 } else {
412                     error_setg(errp, "cannot enable sve%d", vq * 128);
413                     error_append_hint(errp, "This KVM host does not support "
414                                       "the vector length %d-bits.\n",
415                                       vq * 128);
416                 }
417             } else {
418                 error_setg(errp, "cannot disable sve%d", vq * 128);
419                 error_append_hint(errp, "The KVM host requires all "
420                                   "supported vector lengths smaller "
421                                   "than %d bits to also be enabled.\n",
422                                   max_vq * 128);
423             }
424             return;
425         }
426     } else {
427         /* Ensure all required powers-of-two are enabled. */
428         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
429             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
430                 error_setg(errp, "cannot disable sve%d", vq * 128);
431                 error_append_hint(errp, "sve%d is required as it "
432                                   "is a power-of-two length smaller than "
433                                   "the maximum, sve%d\n",
434                                   vq * 128, max_vq * 128);
435                 return;
436             }
437         }
438     }
439 
440     /*
441      * Now that we validated all our vector lengths, the only question
442      * left to answer is if we even want SVE at all.
443      */
444     if (!cpu_isar_feature(aa64_sve, cpu)) {
445         error_setg(errp, "cannot enable sve%d", max_vq * 128);
446         error_append_hint(errp, "SVE must be enabled to enable vector "
447                           "lengths.\n");
448         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
449         return;
450     }
451 
452     /* From now on sve_max_vq is the actual maximum supported length. */
453     cpu->sve_max_vq = max_vq;
454 }
455 
456 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
457                                    void *opaque, Error **errp)
458 {
459     ARMCPU *cpu = ARM_CPU(obj);
460     uint32_t value;
461 
462     /* All vector lengths are disabled when SVE is off. */
463     if (!cpu_isar_feature(aa64_sve, cpu)) {
464         value = 0;
465     } else {
466         value = cpu->sve_max_vq;
467     }
468     visit_type_uint32(v, name, &value, errp);
469 }
470 
471 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
472                                    void *opaque, Error **errp)
473 {
474     ARMCPU *cpu = ARM_CPU(obj);
475     uint32_t max_vq;
476 
477     if (!visit_type_uint32(v, name, &max_vq, errp)) {
478         return;
479     }
480 
481     if (kvm_enabled() && !kvm_arm_sve_supported()) {
482         error_setg(errp, "cannot set sve-max-vq");
483         error_append_hint(errp, "SVE not supported by KVM on this host\n");
484         return;
485     }
486 
487     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
488         error_setg(errp, "unsupported SVE vector length");
489         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
490                           ARM_MAX_VQ);
491         return;
492     }
493 
494     cpu->sve_max_vq = max_vq;
495 }
496 
497 /*
498  * Note that cpu_arm_get/set_sve_vq cannot use the simpler
499  * object_property_add_bool interface because they make use
500  * of the contents of "name" to determine which bit on which
501  * to operate.
502  */
503 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
504                                void *opaque, Error **errp)
505 {
506     ARMCPU *cpu = ARM_CPU(obj);
507     uint32_t vq = atoi(&name[3]) / 128;
508     bool value;
509 
510     /* All vector lengths are disabled when SVE is off. */
511     if (!cpu_isar_feature(aa64_sve, cpu)) {
512         value = false;
513     } else {
514         value = test_bit(vq - 1, cpu->sve_vq_map);
515     }
516     visit_type_bool(v, name, &value, errp);
517 }
518 
519 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
520                                void *opaque, Error **errp)
521 {
522     ARMCPU *cpu = ARM_CPU(obj);
523     uint32_t vq = atoi(&name[3]) / 128;
524     bool value;
525 
526     if (!visit_type_bool(v, name, &value, errp)) {
527         return;
528     }
529 
530     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
531         error_setg(errp, "cannot enable %s", name);
532         error_append_hint(errp, "SVE not supported by KVM on this host\n");
533         return;
534     }
535 
536     if (value) {
537         set_bit(vq - 1, cpu->sve_vq_map);
538     } else {
539         clear_bit(vq - 1, cpu->sve_vq_map);
540     }
541     set_bit(vq - 1, cpu->sve_vq_init);
542 }
543 
544 static bool cpu_arm_get_sve(Object *obj, Error **errp)
545 {
546     ARMCPU *cpu = ARM_CPU(obj);
547     return cpu_isar_feature(aa64_sve, cpu);
548 }
549 
550 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
551 {
552     ARMCPU *cpu = ARM_CPU(obj);
553     uint64_t t;
554 
555     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
556         error_setg(errp, "'sve' feature not supported by KVM on this host");
557         return;
558     }
559 
560     t = cpu->isar.id_aa64pfr0;
561     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
562     cpu->isar.id_aa64pfr0 = t;
563 }
564 
565 void aarch64_add_sve_properties(Object *obj)
566 {
567     uint32_t vq;
568 
569     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
570 
571     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
572         char name[8];
573         sprintf(name, "sve%d", vq * 128);
574         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
575                             cpu_arm_set_sve_vq, NULL, NULL);
576     }
577 }
578 
579 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
580 {
581     int arch_val = 0, impdef_val = 0;
582     uint64_t t;
583 
584     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
585     if (cpu->prop_pauth) {
586         if (cpu->prop_pauth_impdef) {
587             impdef_val = 1;
588         } else {
589             arch_val = 1;
590         }
591     } else if (cpu->prop_pauth_impdef) {
592         error_setg(errp, "cannot enable pauth-impdef without pauth");
593         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
594     }
595 
596     t = cpu->isar.id_aa64isar1;
597     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
598     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
599     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
600     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
601     cpu->isar.id_aa64isar1 = t;
602 }
603 
604 static Property arm_cpu_pauth_property =
605     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
606 static Property arm_cpu_pauth_impdef_property =
607     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
608 
609 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
610  * otherwise, a CPU with as many features enabled as our emulation supports.
611  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
612  * this only needs to handle 64 bits.
613  */
614 static void aarch64_max_initfn(Object *obj)
615 {
616     ARMCPU *cpu = ARM_CPU(obj);
617 
618     if (kvm_enabled()) {
619         kvm_arm_set_cpu_features_from_host(cpu);
620     } else {
621         uint64_t t;
622         uint32_t u;
623         aarch64_a57_initfn(obj);
624 
625         /*
626          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
627          * one and try to apply errata workarounds or use impdef features we
628          * don't provide.
629          * An IMPLEMENTER field of 0 means "reserved for software use";
630          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
631          * to see which features are present";
632          * the VARIANT, PARTNUM and REVISION fields are all implementation
633          * defined and we choose to define PARTNUM just in case guest
634          * code needs to distinguish this QEMU CPU from other software
635          * implementations, though this shouldn't be needed.
636          */
637         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
638         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
639         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
640         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
641         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
642         cpu->midr = t;
643 
644         t = cpu->isar.id_aa64isar0;
645         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
646         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
647         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
648         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
649         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
650         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
651         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
652         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
653         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
654         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
655         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
656         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
657         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
658         cpu->isar.id_aa64isar0 = t;
659 
660         t = cpu->isar.id_aa64isar1;
661         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
662         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
663         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
664         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
665         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
666         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
667         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
668         cpu->isar.id_aa64isar1 = t;
669 
670         t = cpu->isar.id_aa64pfr0;
671         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
672         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
673         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
674         t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
675         t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
676         cpu->isar.id_aa64pfr0 = t;
677 
678         t = cpu->isar.id_aa64pfr1;
679         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
680         t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
681         /*
682          * Begin with full support for MTE. This will be downgraded to MTE=0
683          * during realize if the board provides no tag memory, much like
684          * we do for EL2 with the virtualization=on property.
685          */
686         t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
687         cpu->isar.id_aa64pfr1 = t;
688 
689         t = cpu->isar.id_aa64mmfr0;
690         t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
691         cpu->isar.id_aa64mmfr0 = t;
692 
693         t = cpu->isar.id_aa64mmfr1;
694         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
695         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
696         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
697         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
698         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
699         t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
700         cpu->isar.id_aa64mmfr1 = t;
701 
702         t = cpu->isar.id_aa64mmfr2;
703         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
704         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
705         t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
706         cpu->isar.id_aa64mmfr2 = t;
707 
708         /* Replicate the same data to the 32-bit id registers.  */
709         u = cpu->isar.id_isar5;
710         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
711         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
712         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
713         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
714         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
715         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
716         cpu->isar.id_isar5 = u;
717 
718         u = cpu->isar.id_isar6;
719         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
720         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
721         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
722         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
723         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
724         cpu->isar.id_isar6 = u;
725 
726         u = cpu->isar.id_pfr0;
727         u = FIELD_DP32(u, ID_PFR0, DIT, 1);
728         cpu->isar.id_pfr0 = u;
729 
730         u = cpu->isar.id_pfr2;
731         u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
732         cpu->isar.id_pfr2 = u;
733 
734         u = cpu->isar.id_mmfr3;
735         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
736         cpu->isar.id_mmfr3 = u;
737 
738         u = cpu->isar.id_mmfr4;
739         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
740         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
741         u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
742         u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
743         cpu->isar.id_mmfr4 = u;
744 
745         t = cpu->isar.id_aa64dfr0;
746         t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
747         cpu->isar.id_aa64dfr0 = t;
748 
749         u = cpu->isar.id_dfr0;
750         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
751         cpu->isar.id_dfr0 = u;
752 
753         u = cpu->isar.mvfr1;
754         u = FIELD_DP32(u, MVFR1, FPHP, 3);      /* v8.2-FP16 */
755         u = FIELD_DP32(u, MVFR1, SIMDHP, 2);    /* v8.2-FP16 */
756         cpu->isar.mvfr1 = u;
757 
758 #ifdef CONFIG_USER_ONLY
759         /* For usermode -cpu max we can use a larger and more efficient DCZ
760          * blocksize since we don't have to follow what the hardware does.
761          */
762         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
763         cpu->dcz_blocksize = 7; /*  512 bytes */
764 #endif
765 
766         /* Default to PAUTH on, with the architected algorithm. */
767         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
768         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
769     }
770 
771     aarch64_add_sve_properties(obj);
772     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
773                         cpu_max_set_sve_max_vq, NULL, NULL);
774 }
775 
776 static const ARMCPUInfo aarch64_cpus[] = {
777     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
778     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
779     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
780     { .name = "max",                .initfn = aarch64_max_initfn },
781 };
782 
783 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
784 {
785     ARMCPU *cpu = ARM_CPU(obj);
786 
787     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
788 }
789 
790 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
791 {
792     ARMCPU *cpu = ARM_CPU(obj);
793 
794     /* At this time, this property is only allowed if KVM is enabled.  This
795      * restriction allows us to avoid fixing up functionality that assumes a
796      * uniform execution state like do_interrupt.
797      */
798     if (value == false) {
799         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
800             error_setg(errp, "'aarch64' feature cannot be disabled "
801                              "unless KVM is enabled and 32-bit EL1 "
802                              "is supported");
803             return;
804         }
805         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
806     } else {
807         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
808     }
809 }
810 
811 static void aarch64_cpu_finalizefn(Object *obj)
812 {
813 }
814 
815 static gchar *aarch64_gdb_arch_name(CPUState *cs)
816 {
817     return g_strdup("aarch64");
818 }
819 
820 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
821 {
822     CPUClass *cc = CPU_CLASS(oc);
823 
824     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
825     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
826     cc->gdb_num_core_regs = 34;
827     cc->gdb_core_xml_file = "aarch64-core.xml";
828     cc->gdb_arch_name = aarch64_gdb_arch_name;
829 
830     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
831                                    aarch64_cpu_set_aarch64);
832     object_class_property_set_description(oc, "aarch64",
833                                           "Set on/off to enable/disable aarch64 "
834                                           "execution state ");
835 }
836 
837 static void aarch64_cpu_instance_init(Object *obj)
838 {
839     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
840 
841     acc->info->initfn(obj);
842     arm_cpu_post_init(obj);
843 }
844 
845 static void cpu_register_class_init(ObjectClass *oc, void *data)
846 {
847     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
848 
849     acc->info = data;
850 }
851 
852 void aarch64_cpu_register(const ARMCPUInfo *info)
853 {
854     TypeInfo type_info = {
855         .parent = TYPE_AARCH64_CPU,
856         .instance_size = sizeof(ARMCPU),
857         .instance_init = aarch64_cpu_instance_init,
858         .class_size = sizeof(ARMCPUClass),
859         .class_init = info->class_init ?: cpu_register_class_init,
860         .class_data = (void *)info,
861     };
862 
863     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
864     type_register(&type_info);
865     g_free((void *)type_info.name);
866 }
867 
868 static const TypeInfo aarch64_cpu_type_info = {
869     .name = TYPE_AARCH64_CPU,
870     .parent = TYPE_ARM_CPU,
871     .instance_size = sizeof(ARMCPU),
872     .instance_finalize = aarch64_cpu_finalizefn,
873     .abstract = true,
874     .class_size = sizeof(AArch64CPUClass),
875     .class_init = aarch64_cpu_class_init,
876 };
877 
878 static void aarch64_cpu_register_types(void)
879 {
880     size_t i;
881 
882     type_register_static(&aarch64_cpu_type_info);
883 
884     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
885         aarch64_cpu_register(&aarch64_cpus[i]);
886     }
887 }
888 
889 type_init(aarch64_cpu_register_types)
890