1 /* 2 * QEMU AArch64 CPU 3 * 4 * Copyright (c) 2013 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #include "qemu-common.h" 25 #if !defined(CONFIG_USER_ONLY) 26 #include "hw/loader.h" 27 #endif 28 #include "sysemu/sysemu.h" 29 #include "sysemu/kvm.h" 30 #include "kvm_arm.h" 31 #include "qapi/visitor.h" 32 33 static inline void set_feature(CPUARMState *env, int feature) 34 { 35 env->features |= 1ULL << feature; 36 } 37 38 static inline void unset_feature(CPUARMState *env, int feature) 39 { 40 env->features &= ~(1ULL << feature); 41 } 42 43 #ifndef CONFIG_USER_ONLY 44 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 ARMCPU *cpu = env_archcpu(env); 47 48 /* Number of cores is in [25:24]; otherwise we RAZ */ 49 return (cpu->core_count - 1) << 24; 50 } 51 #endif 52 53 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { 54 #ifndef CONFIG_USER_ONLY 55 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, 56 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, 57 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 58 .writefn = arm_cp_write_ignore }, 59 { .name = "L2CTLR", 60 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, 61 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, 62 .writefn = arm_cp_write_ignore }, 63 #endif 64 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, 65 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, 66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 67 { .name = "L2ECTLR", 68 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, 69 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 70 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, 71 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, 72 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 73 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, 74 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, 75 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 76 { .name = "CPUACTLR", 77 .cp = 15, .opc1 = 0, .crm = 15, 78 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 79 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, 80 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, 81 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 82 { .name = "CPUECTLR", 83 .cp = 15, .opc1 = 1, .crm = 15, 84 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 85 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, 86 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, 87 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 88 { .name = "CPUMERRSR", 89 .cp = 15, .opc1 = 2, .crm = 15, 90 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 91 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, 92 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, 93 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 94 { .name = "L2MERRSR", 95 .cp = 15, .opc1 = 3, .crm = 15, 96 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 97 REGINFO_SENTINEL 98 }; 99 100 static void aarch64_a57_initfn(Object *obj) 101 { 102 ARMCPU *cpu = ARM_CPU(obj); 103 104 cpu->dtb_compatible = "arm,cortex-a57"; 105 set_feature(&cpu->env, ARM_FEATURE_V8); 106 set_feature(&cpu->env, ARM_FEATURE_VFP4); 107 set_feature(&cpu->env, ARM_FEATURE_NEON); 108 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 109 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 110 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 111 set_feature(&cpu->env, ARM_FEATURE_EL2); 112 set_feature(&cpu->env, ARM_FEATURE_EL3); 113 set_feature(&cpu->env, ARM_FEATURE_PMU); 114 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; 115 cpu->midr = 0x411fd070; 116 cpu->revidr = 0x00000000; 117 cpu->reset_fpsid = 0x41034070; 118 cpu->isar.mvfr0 = 0x10110222; 119 cpu->isar.mvfr1 = 0x12111111; 120 cpu->isar.mvfr2 = 0x00000043; 121 cpu->ctr = 0x8444c004; 122 cpu->reset_sctlr = 0x00c50838; 123 cpu->id_pfr0 = 0x00000131; 124 cpu->id_pfr1 = 0x00011011; 125 cpu->id_dfr0 = 0x03010066; 126 cpu->id_afr0 = 0x00000000; 127 cpu->id_mmfr0 = 0x10101105; 128 cpu->id_mmfr1 = 0x40000000; 129 cpu->id_mmfr2 = 0x01260000; 130 cpu->id_mmfr3 = 0x02102211; 131 cpu->isar.id_isar0 = 0x02101110; 132 cpu->isar.id_isar1 = 0x13112111; 133 cpu->isar.id_isar2 = 0x21232042; 134 cpu->isar.id_isar3 = 0x01112131; 135 cpu->isar.id_isar4 = 0x00011142; 136 cpu->isar.id_isar5 = 0x00011121; 137 cpu->isar.id_isar6 = 0; 138 cpu->isar.id_aa64pfr0 = 0x00002222; 139 cpu->id_aa64dfr0 = 0x10305106; 140 cpu->isar.id_aa64isar0 = 0x00011120; 141 cpu->isar.id_aa64mmfr0 = 0x00001124; 142 cpu->dbgdidr = 0x3516d000; 143 cpu->clidr = 0x0a200023; 144 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 145 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 146 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ 147 cpu->dcz_blocksize = 4; /* 64 bytes */ 148 cpu->gic_num_lrs = 4; 149 cpu->gic_vpribits = 5; 150 cpu->gic_vprebits = 5; 151 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 152 } 153 154 static void aarch64_a53_initfn(Object *obj) 155 { 156 ARMCPU *cpu = ARM_CPU(obj); 157 158 cpu->dtb_compatible = "arm,cortex-a53"; 159 set_feature(&cpu->env, ARM_FEATURE_V8); 160 set_feature(&cpu->env, ARM_FEATURE_VFP4); 161 set_feature(&cpu->env, ARM_FEATURE_NEON); 162 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 163 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 164 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 165 set_feature(&cpu->env, ARM_FEATURE_EL2); 166 set_feature(&cpu->env, ARM_FEATURE_EL3); 167 set_feature(&cpu->env, ARM_FEATURE_PMU); 168 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; 169 cpu->midr = 0x410fd034; 170 cpu->revidr = 0x00000000; 171 cpu->reset_fpsid = 0x41034070; 172 cpu->isar.mvfr0 = 0x10110222; 173 cpu->isar.mvfr1 = 0x12111111; 174 cpu->isar.mvfr2 = 0x00000043; 175 cpu->ctr = 0x84448004; /* L1Ip = VIPT */ 176 cpu->reset_sctlr = 0x00c50838; 177 cpu->id_pfr0 = 0x00000131; 178 cpu->id_pfr1 = 0x00011011; 179 cpu->id_dfr0 = 0x03010066; 180 cpu->id_afr0 = 0x00000000; 181 cpu->id_mmfr0 = 0x10101105; 182 cpu->id_mmfr1 = 0x40000000; 183 cpu->id_mmfr2 = 0x01260000; 184 cpu->id_mmfr3 = 0x02102211; 185 cpu->isar.id_isar0 = 0x02101110; 186 cpu->isar.id_isar1 = 0x13112111; 187 cpu->isar.id_isar2 = 0x21232042; 188 cpu->isar.id_isar3 = 0x01112131; 189 cpu->isar.id_isar4 = 0x00011142; 190 cpu->isar.id_isar5 = 0x00011121; 191 cpu->isar.id_isar6 = 0; 192 cpu->isar.id_aa64pfr0 = 0x00002222; 193 cpu->id_aa64dfr0 = 0x10305106; 194 cpu->isar.id_aa64isar0 = 0x00011120; 195 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ 196 cpu->dbgdidr = 0x3516d000; 197 cpu->clidr = 0x0a200023; 198 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ 199 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ 200 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ 201 cpu->dcz_blocksize = 4; /* 64 bytes */ 202 cpu->gic_num_lrs = 4; 203 cpu->gic_vpribits = 5; 204 cpu->gic_vprebits = 5; 205 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 206 } 207 208 static void aarch64_a72_initfn(Object *obj) 209 { 210 ARMCPU *cpu = ARM_CPU(obj); 211 212 cpu->dtb_compatible = "arm,cortex-a72"; 213 set_feature(&cpu->env, ARM_FEATURE_V8); 214 set_feature(&cpu->env, ARM_FEATURE_VFP4); 215 set_feature(&cpu->env, ARM_FEATURE_NEON); 216 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 217 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 218 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 219 set_feature(&cpu->env, ARM_FEATURE_EL2); 220 set_feature(&cpu->env, ARM_FEATURE_EL3); 221 set_feature(&cpu->env, ARM_FEATURE_PMU); 222 cpu->midr = 0x410fd083; 223 cpu->revidr = 0x00000000; 224 cpu->reset_fpsid = 0x41034080; 225 cpu->isar.mvfr0 = 0x10110222; 226 cpu->isar.mvfr1 = 0x12111111; 227 cpu->isar.mvfr2 = 0x00000043; 228 cpu->ctr = 0x8444c004; 229 cpu->reset_sctlr = 0x00c50838; 230 cpu->id_pfr0 = 0x00000131; 231 cpu->id_pfr1 = 0x00011011; 232 cpu->id_dfr0 = 0x03010066; 233 cpu->id_afr0 = 0x00000000; 234 cpu->id_mmfr0 = 0x10201105; 235 cpu->id_mmfr1 = 0x40000000; 236 cpu->id_mmfr2 = 0x01260000; 237 cpu->id_mmfr3 = 0x02102211; 238 cpu->isar.id_isar0 = 0x02101110; 239 cpu->isar.id_isar1 = 0x13112111; 240 cpu->isar.id_isar2 = 0x21232042; 241 cpu->isar.id_isar3 = 0x01112131; 242 cpu->isar.id_isar4 = 0x00011142; 243 cpu->isar.id_isar5 = 0x00011121; 244 cpu->isar.id_aa64pfr0 = 0x00002222; 245 cpu->id_aa64dfr0 = 0x10305106; 246 cpu->isar.id_aa64isar0 = 0x00011120; 247 cpu->isar.id_aa64mmfr0 = 0x00001124; 248 cpu->dbgdidr = 0x3516d000; 249 cpu->clidr = 0x0a200023; 250 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ 251 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ 252 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ 253 cpu->dcz_blocksize = 4; /* 64 bytes */ 254 cpu->gic_num_lrs = 4; 255 cpu->gic_vpribits = 5; 256 cpu->gic_vprebits = 5; 257 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); 258 } 259 260 static void cpu_max_get_sve_vq(Object *obj, Visitor *v, const char *name, 261 void *opaque, Error **errp) 262 { 263 ARMCPU *cpu = ARM_CPU(obj); 264 visit_type_uint32(v, name, &cpu->sve_max_vq, errp); 265 } 266 267 static void cpu_max_set_sve_vq(Object *obj, Visitor *v, const char *name, 268 void *opaque, Error **errp) 269 { 270 ARMCPU *cpu = ARM_CPU(obj); 271 Error *err = NULL; 272 273 visit_type_uint32(v, name, &cpu->sve_max_vq, &err); 274 275 if (!err && (cpu->sve_max_vq == 0 || cpu->sve_max_vq > ARM_MAX_VQ)) { 276 error_setg(&err, "unsupported SVE vector length"); 277 error_append_hint(&err, "Valid sve-max-vq in range [1-%d]\n", 278 ARM_MAX_VQ); 279 } 280 error_propagate(errp, err); 281 } 282 283 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 284 * otherwise, a CPU with as many features enabled as our emulation supports. 285 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; 286 * this only needs to handle 64 bits. 287 */ 288 static void aarch64_max_initfn(Object *obj) 289 { 290 ARMCPU *cpu = ARM_CPU(obj); 291 292 if (kvm_enabled()) { 293 kvm_arm_set_cpu_features_from_host(cpu); 294 } else { 295 uint64_t t; 296 uint32_t u; 297 aarch64_a57_initfn(obj); 298 299 t = cpu->isar.id_aa64isar0; 300 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ 301 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); 302 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ 303 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); 304 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); 305 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); 306 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); 307 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); 308 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); 309 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); 310 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); 311 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ 312 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); 313 cpu->isar.id_aa64isar0 = t; 314 315 t = cpu->isar.id_aa64isar1; 316 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); 317 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); 318 t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */ 319 t = FIELD_DP64(t, ID_AA64ISAR1, API, 0); 320 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1); 321 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0); 322 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); 323 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); 324 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); 325 cpu->isar.id_aa64isar1 = t; 326 327 t = cpu->isar.id_aa64pfr0; 328 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); 329 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); 330 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); 331 cpu->isar.id_aa64pfr0 = t; 332 333 t = cpu->isar.id_aa64pfr1; 334 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); 335 cpu->isar.id_aa64pfr1 = t; 336 337 t = cpu->isar.id_aa64mmfr1; 338 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ 339 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); 340 cpu->isar.id_aa64mmfr1 = t; 341 342 /* Replicate the same data to the 32-bit id registers. */ 343 u = cpu->isar.id_isar5; 344 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ 345 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); 346 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); 347 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); 348 u = FIELD_DP32(u, ID_ISAR5, RDM, 1); 349 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); 350 cpu->isar.id_isar5 = u; 351 352 u = cpu->isar.id_isar6; 353 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); 354 u = FIELD_DP32(u, ID_ISAR6, DP, 1); 355 u = FIELD_DP32(u, ID_ISAR6, FHM, 1); 356 u = FIELD_DP32(u, ID_ISAR6, SB, 1); 357 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); 358 cpu->isar.id_isar6 = u; 359 360 /* 361 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet, 362 * so do not set MVFR1.FPHP. Strictly speaking this is not legal, 363 * but it is also not legal to enable SVE without support for FP16, 364 * and enabling SVE in system mode is more useful in the short term. 365 */ 366 367 #ifdef CONFIG_USER_ONLY 368 /* For usermode -cpu max we can use a larger and more efficient DCZ 369 * blocksize since we don't have to follow what the hardware does. 370 */ 371 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ 372 cpu->dcz_blocksize = 7; /* 512 bytes */ 373 #endif 374 375 cpu->sve_max_vq = ARM_MAX_VQ; 376 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_vq, 377 cpu_max_set_sve_vq, NULL, NULL, &error_fatal); 378 } 379 } 380 381 struct ARMCPUInfo { 382 const char *name; 383 void (*initfn)(Object *obj); 384 void (*class_init)(ObjectClass *oc, void *data); 385 }; 386 387 static const ARMCPUInfo aarch64_cpus[] = { 388 { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, 389 { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, 390 { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, 391 { .name = "max", .initfn = aarch64_max_initfn }, 392 { .name = NULL } 393 }; 394 395 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) 396 { 397 ARMCPU *cpu = ARM_CPU(obj); 398 399 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); 400 } 401 402 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) 403 { 404 ARMCPU *cpu = ARM_CPU(obj); 405 406 /* At this time, this property is only allowed if KVM is enabled. This 407 * restriction allows us to avoid fixing up functionality that assumes a 408 * uniform execution state like do_interrupt. 409 */ 410 if (!kvm_enabled()) { 411 error_setg(errp, "'aarch64' feature cannot be disabled " 412 "unless KVM is enabled"); 413 return; 414 } 415 416 if (value == false) { 417 unset_feature(&cpu->env, ARM_FEATURE_AARCH64); 418 } else { 419 set_feature(&cpu->env, ARM_FEATURE_AARCH64); 420 } 421 } 422 423 static void aarch64_cpu_initfn(Object *obj) 424 { 425 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64, 426 aarch64_cpu_set_aarch64, NULL); 427 object_property_set_description(obj, "aarch64", 428 "Set on/off to enable/disable aarch64 " 429 "execution state ", 430 NULL); 431 } 432 433 static void aarch64_cpu_finalizefn(Object *obj) 434 { 435 } 436 437 static gchar *aarch64_gdb_arch_name(CPUState *cs) 438 { 439 return g_strdup("aarch64"); 440 } 441 442 static void aarch64_cpu_class_init(ObjectClass *oc, void *data) 443 { 444 CPUClass *cc = CPU_CLASS(oc); 445 446 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 447 cc->gdb_read_register = aarch64_cpu_gdb_read_register; 448 cc->gdb_write_register = aarch64_cpu_gdb_write_register; 449 cc->gdb_num_core_regs = 34; 450 cc->gdb_core_xml_file = "aarch64-core.xml"; 451 cc->gdb_arch_name = aarch64_gdb_arch_name; 452 } 453 454 static void aarch64_cpu_instance_init(Object *obj) 455 { 456 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 457 458 acc->info->initfn(obj); 459 arm_cpu_post_init(obj); 460 } 461 462 static void cpu_register_class_init(ObjectClass *oc, void *data) 463 { 464 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 465 466 acc->info = data; 467 } 468 469 static void aarch64_cpu_register(const ARMCPUInfo *info) 470 { 471 TypeInfo type_info = { 472 .parent = TYPE_AARCH64_CPU, 473 .instance_size = sizeof(ARMCPU), 474 .instance_init = aarch64_cpu_instance_init, 475 .class_size = sizeof(ARMCPUClass), 476 .class_init = info->class_init ?: cpu_register_class_init, 477 .class_data = (void *)info, 478 }; 479 480 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 481 type_register(&type_info); 482 g_free((void *)type_info.name); 483 } 484 485 static const TypeInfo aarch64_cpu_type_info = { 486 .name = TYPE_AARCH64_CPU, 487 .parent = TYPE_ARM_CPU, 488 .instance_size = sizeof(ARMCPU), 489 .instance_init = aarch64_cpu_initfn, 490 .instance_finalize = aarch64_cpu_finalizefn, 491 .abstract = true, 492 .class_size = sizeof(AArch64CPUClass), 493 .class_init = aarch64_cpu_class_init, 494 }; 495 496 static void aarch64_cpu_register_types(void) 497 { 498 const ARMCPUInfo *info = aarch64_cpus; 499 500 type_register_static(&aarch64_cpu_type_info); 501 502 while (info->name) { 503 aarch64_cpu_register(info); 504 info++; 505 } 506 } 507 508 type_init(aarch64_cpu_register_types) 509