xref: /openbmc/qemu/target/arm/cpu64.c (revision 0d04c4c9)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "kvm_arm.h"
33 #include "qapi/visitor.h"
34 #include "hw/qdev-properties.h"
35 
36 
37 #ifndef CONFIG_USER_ONLY
38 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40     ARMCPU *cpu = env_archcpu(env);
41 
42     /* Number of cores is in [25:24]; otherwise we RAZ */
43     return (cpu->core_count - 1) << 24;
44 }
45 #endif
46 
47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
48 #ifndef CONFIG_USER_ONLY
49     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
50       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
51       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
52       .writefn = arm_cp_write_ignore },
53     { .name = "L2CTLR",
54       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
55       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
56       .writefn = arm_cp_write_ignore },
57 #endif
58     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
59       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
60       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
61     { .name = "L2ECTLR",
62       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
63       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
65       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
66       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
68       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
69       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70     { .name = "CPUACTLR",
71       .cp = 15, .opc1 = 0, .crm = 15,
72       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
73     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
74       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
75       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76     { .name = "CPUECTLR",
77       .cp = 15, .opc1 = 1, .crm = 15,
78       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
80       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
81       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82     { .name = "CPUMERRSR",
83       .cp = 15, .opc1 = 2, .crm = 15,
84       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
86       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
87       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88     { .name = "L2MERRSR",
89       .cp = 15, .opc1 = 3, .crm = 15,
90       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91     REGINFO_SENTINEL
92 };
93 
94 static void aarch64_a57_initfn(Object *obj)
95 {
96     ARMCPU *cpu = ARM_CPU(obj);
97 
98     cpu->dtb_compatible = "arm,cortex-a57";
99     set_feature(&cpu->env, ARM_FEATURE_V8);
100     set_feature(&cpu->env, ARM_FEATURE_NEON);
101     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
102     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
103     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
104     set_feature(&cpu->env, ARM_FEATURE_EL2);
105     set_feature(&cpu->env, ARM_FEATURE_EL3);
106     set_feature(&cpu->env, ARM_FEATURE_PMU);
107     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
108     cpu->midr = 0x411fd070;
109     cpu->revidr = 0x00000000;
110     cpu->reset_fpsid = 0x41034070;
111     cpu->isar.mvfr0 = 0x10110222;
112     cpu->isar.mvfr1 = 0x12111111;
113     cpu->isar.mvfr2 = 0x00000043;
114     cpu->ctr = 0x8444c004;
115     cpu->reset_sctlr = 0x00c50838;
116     cpu->isar.id_pfr0 = 0x00000131;
117     cpu->isar.id_pfr1 = 0x00011011;
118     cpu->isar.id_dfr0 = 0x03010066;
119     cpu->id_afr0 = 0x00000000;
120     cpu->isar.id_mmfr0 = 0x10101105;
121     cpu->isar.id_mmfr1 = 0x40000000;
122     cpu->isar.id_mmfr2 = 0x01260000;
123     cpu->isar.id_mmfr3 = 0x02102211;
124     cpu->isar.id_isar0 = 0x02101110;
125     cpu->isar.id_isar1 = 0x13112111;
126     cpu->isar.id_isar2 = 0x21232042;
127     cpu->isar.id_isar3 = 0x01112131;
128     cpu->isar.id_isar4 = 0x00011142;
129     cpu->isar.id_isar5 = 0x00011121;
130     cpu->isar.id_isar6 = 0;
131     cpu->isar.id_aa64pfr0 = 0x00002222;
132     cpu->isar.id_aa64dfr0 = 0x10305106;
133     cpu->isar.id_aa64isar0 = 0x00011120;
134     cpu->isar.id_aa64mmfr0 = 0x00001124;
135     cpu->isar.dbgdidr = 0x3516d000;
136     cpu->clidr = 0x0a200023;
137     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
138     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
139     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
140     cpu->dcz_blocksize = 4; /* 64 bytes */
141     cpu->gic_num_lrs = 4;
142     cpu->gic_vpribits = 5;
143     cpu->gic_vprebits = 5;
144     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
145 }
146 
147 static void aarch64_a53_initfn(Object *obj)
148 {
149     ARMCPU *cpu = ARM_CPU(obj);
150 
151     cpu->dtb_compatible = "arm,cortex-a53";
152     set_feature(&cpu->env, ARM_FEATURE_V8);
153     set_feature(&cpu->env, ARM_FEATURE_NEON);
154     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
155     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
156     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
157     set_feature(&cpu->env, ARM_FEATURE_EL2);
158     set_feature(&cpu->env, ARM_FEATURE_EL3);
159     set_feature(&cpu->env, ARM_FEATURE_PMU);
160     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
161     cpu->midr = 0x410fd034;
162     cpu->revidr = 0x00000000;
163     cpu->reset_fpsid = 0x41034070;
164     cpu->isar.mvfr0 = 0x10110222;
165     cpu->isar.mvfr1 = 0x12111111;
166     cpu->isar.mvfr2 = 0x00000043;
167     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
168     cpu->reset_sctlr = 0x00c50838;
169     cpu->isar.id_pfr0 = 0x00000131;
170     cpu->isar.id_pfr1 = 0x00011011;
171     cpu->isar.id_dfr0 = 0x03010066;
172     cpu->id_afr0 = 0x00000000;
173     cpu->isar.id_mmfr0 = 0x10101105;
174     cpu->isar.id_mmfr1 = 0x40000000;
175     cpu->isar.id_mmfr2 = 0x01260000;
176     cpu->isar.id_mmfr3 = 0x02102211;
177     cpu->isar.id_isar0 = 0x02101110;
178     cpu->isar.id_isar1 = 0x13112111;
179     cpu->isar.id_isar2 = 0x21232042;
180     cpu->isar.id_isar3 = 0x01112131;
181     cpu->isar.id_isar4 = 0x00011142;
182     cpu->isar.id_isar5 = 0x00011121;
183     cpu->isar.id_isar6 = 0;
184     cpu->isar.id_aa64pfr0 = 0x00002222;
185     cpu->isar.id_aa64dfr0 = 0x10305106;
186     cpu->isar.id_aa64isar0 = 0x00011120;
187     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
188     cpu->isar.dbgdidr = 0x3516d000;
189     cpu->clidr = 0x0a200023;
190     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
191     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
192     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
193     cpu->dcz_blocksize = 4; /* 64 bytes */
194     cpu->gic_num_lrs = 4;
195     cpu->gic_vpribits = 5;
196     cpu->gic_vprebits = 5;
197     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
198 }
199 
200 static void aarch64_a72_initfn(Object *obj)
201 {
202     ARMCPU *cpu = ARM_CPU(obj);
203 
204     cpu->dtb_compatible = "arm,cortex-a72";
205     set_feature(&cpu->env, ARM_FEATURE_V8);
206     set_feature(&cpu->env, ARM_FEATURE_NEON);
207     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
208     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
209     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
210     set_feature(&cpu->env, ARM_FEATURE_EL2);
211     set_feature(&cpu->env, ARM_FEATURE_EL3);
212     set_feature(&cpu->env, ARM_FEATURE_PMU);
213     cpu->midr = 0x410fd083;
214     cpu->revidr = 0x00000000;
215     cpu->reset_fpsid = 0x41034080;
216     cpu->isar.mvfr0 = 0x10110222;
217     cpu->isar.mvfr1 = 0x12111111;
218     cpu->isar.mvfr2 = 0x00000043;
219     cpu->ctr = 0x8444c004;
220     cpu->reset_sctlr = 0x00c50838;
221     cpu->isar.id_pfr0 = 0x00000131;
222     cpu->isar.id_pfr1 = 0x00011011;
223     cpu->isar.id_dfr0 = 0x03010066;
224     cpu->id_afr0 = 0x00000000;
225     cpu->isar.id_mmfr0 = 0x10201105;
226     cpu->isar.id_mmfr1 = 0x40000000;
227     cpu->isar.id_mmfr2 = 0x01260000;
228     cpu->isar.id_mmfr3 = 0x02102211;
229     cpu->isar.id_isar0 = 0x02101110;
230     cpu->isar.id_isar1 = 0x13112111;
231     cpu->isar.id_isar2 = 0x21232042;
232     cpu->isar.id_isar3 = 0x01112131;
233     cpu->isar.id_isar4 = 0x00011142;
234     cpu->isar.id_isar5 = 0x00011121;
235     cpu->isar.id_aa64pfr0 = 0x00002222;
236     cpu->isar.id_aa64dfr0 = 0x10305106;
237     cpu->isar.id_aa64isar0 = 0x00011120;
238     cpu->isar.id_aa64mmfr0 = 0x00001124;
239     cpu->isar.dbgdidr = 0x3516d000;
240     cpu->clidr = 0x0a200023;
241     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
242     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
243     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
244     cpu->dcz_blocksize = 4; /* 64 bytes */
245     cpu->gic_num_lrs = 4;
246     cpu->gic_vpribits = 5;
247     cpu->gic_vprebits = 5;
248     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
249 }
250 
251 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
252 {
253     /*
254      * If any vector lengths are explicitly enabled with sve<N> properties,
255      * then all other lengths are implicitly disabled.  If sve-max-vq is
256      * specified then it is the same as explicitly enabling all lengths
257      * up to and including the specified maximum, which means all larger
258      * lengths will be implicitly disabled.  If no sve<N> properties
259      * are enabled and sve-max-vq is not specified, then all lengths not
260      * explicitly disabled will be enabled.  Additionally, all power-of-two
261      * vector lengths less than the maximum enabled length will be
262      * automatically enabled and all vector lengths larger than the largest
263      * disabled power-of-two vector length will be automatically disabled.
264      * Errors are generated if the user provided input that interferes with
265      * any of the above.  Finally, if SVE is not disabled, then at least one
266      * vector length must be enabled.
267      */
268     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
269     uint32_t vq, max_vq = 0;
270 
271     /*
272      * CPU models specify a set of supported vector lengths which are
273      * enabled by default.  Attempting to enable any vector length not set
274      * in the supported bitmap results in an error.  When KVM is enabled we
275      * fetch the supported bitmap from the host.
276      */
277     if (kvm_enabled() && kvm_arm_sve_supported()) {
278         kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported);
279     } else if (kvm_enabled()) {
280         assert(!cpu_isar_feature(aa64_sve, cpu));
281     }
282 
283     /*
284      * Process explicit sve<N> properties.
285      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
286      * Check first for any sve<N> enabled.
287      */
288     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
289         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
290 
291         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
292             error_setg(errp, "cannot enable sve%d", max_vq * 128);
293             error_append_hint(errp, "sve%d is larger than the maximum vector "
294                               "length, sve-max-vq=%d (%d bits)\n",
295                               max_vq * 128, cpu->sve_max_vq,
296                               cpu->sve_max_vq * 128);
297             return;
298         }
299 
300         if (kvm_enabled()) {
301             /*
302              * For KVM we have to automatically enable all supported unitialized
303              * lengths, even when the smaller lengths are not all powers-of-two.
304              */
305             bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq);
306             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
307         } else {
308             /* Propagate enabled bits down through required powers-of-two. */
309             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
310                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
311                     set_bit(vq - 1, cpu->sve_vq_map);
312                 }
313             }
314         }
315     } else if (cpu->sve_max_vq == 0) {
316         /*
317          * No explicit bits enabled, and no implicit bits from sve-max-vq.
318          */
319         if (!cpu_isar_feature(aa64_sve, cpu)) {
320             /* SVE is disabled and so are all vector lengths.  Good. */
321             return;
322         }
323 
324         if (kvm_enabled()) {
325             /* Disabling a supported length disables all larger lengths. */
326             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
327                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
328                     test_bit(vq - 1, cpu->sve_vq_supported)) {
329                     break;
330                 }
331             }
332         } else {
333             /* Disabling a power-of-two disables all larger lengths. */
334             for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
335                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
336                     break;
337                 }
338             }
339         }
340 
341         max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
342         bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported,
343                       cpu->sve_vq_init, max_vq);
344         if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
345             error_setg(errp, "cannot disable sve%d", vq * 128);
346             error_append_hint(errp, "Disabling sve%d results in all "
347                               "vector lengths being disabled.\n",
348                               vq * 128);
349             error_append_hint(errp, "With SVE enabled, at least one "
350                               "vector length must be enabled.\n");
351             return;
352         }
353 
354         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
355     }
356 
357     /*
358      * Process the sve-max-vq property.
359      * Note that we know from the above that no bit above
360      * sve-max-vq is currently set.
361      */
362     if (cpu->sve_max_vq != 0) {
363         max_vq = cpu->sve_max_vq;
364 
365         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
366             test_bit(max_vq - 1, cpu->sve_vq_init)) {
367             error_setg(errp, "cannot disable sve%d", max_vq * 128);
368             error_append_hint(errp, "The maximum vector length must be "
369                               "enabled, sve-max-vq=%d (%d bits)\n",
370                               max_vq, max_vq * 128);
371             return;
372         }
373 
374         /* Set all bits not explicitly set within sve-max-vq. */
375         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
376         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
377     }
378 
379     /*
380      * We should know what max-vq is now.  Also, as we're done
381      * manipulating sve-vq-map, we ensure any bits above max-vq
382      * are clear, just in case anybody looks.
383      */
384     assert(max_vq != 0);
385     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
386 
387     /* Ensure the set of lengths matches what is supported. */
388     bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq);
389     if (!bitmap_empty(tmp, max_vq)) {
390         vq = find_last_bit(tmp, max_vq) + 1;
391         if (test_bit(vq - 1, cpu->sve_vq_map)) {
392             if (cpu->sve_max_vq) {
393                 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
394                 error_append_hint(errp, "This CPU does not support "
395                                   "the vector length %d-bits.\n", vq * 128);
396                 error_append_hint(errp, "It may not be possible to use "
397                                   "sve-max-vq with this CPU. Try "
398                                   "using only sve<N> properties.\n");
399             } else {
400                 error_setg(errp, "cannot enable sve%d", vq * 128);
401                 error_append_hint(errp, "This CPU does not support "
402                                   "the vector length %d-bits.\n", vq * 128);
403             }
404             return;
405         } else {
406             if (kvm_enabled()) {
407                 error_setg(errp, "cannot disable sve%d", vq * 128);
408                 error_append_hint(errp, "The KVM host requires all "
409                                   "supported vector lengths smaller "
410                                   "than %d bits to also be enabled.\n",
411                                   max_vq * 128);
412                 return;
413             } else {
414                 /* Ensure all required powers-of-two are enabled. */
415                 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
416                     if (!test_bit(vq - 1, cpu->sve_vq_map)) {
417                         error_setg(errp, "cannot disable sve%d", vq * 128);
418                         error_append_hint(errp, "sve%d is required as it "
419                                           "is a power-of-two length smaller "
420                                           "than the maximum, sve%d\n",
421                                           vq * 128, max_vq * 128);
422                         return;
423                     }
424                 }
425             }
426         }
427     }
428 
429     /*
430      * Now that we validated all our vector lengths, the only question
431      * left to answer is if we even want SVE at all.
432      */
433     if (!cpu_isar_feature(aa64_sve, cpu)) {
434         error_setg(errp, "cannot enable sve%d", max_vq * 128);
435         error_append_hint(errp, "SVE must be enabled to enable vector "
436                           "lengths.\n");
437         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
438         return;
439     }
440 
441     /* From now on sve_max_vq is the actual maximum supported length. */
442     cpu->sve_max_vq = max_vq;
443 }
444 
445 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
446                                    void *opaque, Error **errp)
447 {
448     ARMCPU *cpu = ARM_CPU(obj);
449     uint32_t value;
450 
451     /* All vector lengths are disabled when SVE is off. */
452     if (!cpu_isar_feature(aa64_sve, cpu)) {
453         value = 0;
454     } else {
455         value = cpu->sve_max_vq;
456     }
457     visit_type_uint32(v, name, &value, errp);
458 }
459 
460 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
461                                    void *opaque, Error **errp)
462 {
463     ARMCPU *cpu = ARM_CPU(obj);
464     uint32_t max_vq;
465 
466     if (!visit_type_uint32(v, name, &max_vq, errp)) {
467         return;
468     }
469 
470     if (kvm_enabled() && !kvm_arm_sve_supported()) {
471         error_setg(errp, "cannot set sve-max-vq");
472         error_append_hint(errp, "SVE not supported by KVM on this host\n");
473         return;
474     }
475 
476     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
477         error_setg(errp, "unsupported SVE vector length");
478         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
479                           ARM_MAX_VQ);
480         return;
481     }
482 
483     cpu->sve_max_vq = max_vq;
484 }
485 
486 /*
487  * Note that cpu_arm_get/set_sve_vq cannot use the simpler
488  * object_property_add_bool interface because they make use
489  * of the contents of "name" to determine which bit on which
490  * to operate.
491  */
492 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
493                                void *opaque, Error **errp)
494 {
495     ARMCPU *cpu = ARM_CPU(obj);
496     uint32_t vq = atoi(&name[3]) / 128;
497     bool value;
498 
499     /* All vector lengths are disabled when SVE is off. */
500     if (!cpu_isar_feature(aa64_sve, cpu)) {
501         value = false;
502     } else {
503         value = test_bit(vq - 1, cpu->sve_vq_map);
504     }
505     visit_type_bool(v, name, &value, errp);
506 }
507 
508 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
509                                void *opaque, Error **errp)
510 {
511     ARMCPU *cpu = ARM_CPU(obj);
512     uint32_t vq = atoi(&name[3]) / 128;
513     bool value;
514 
515     if (!visit_type_bool(v, name, &value, errp)) {
516         return;
517     }
518 
519     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
520         error_setg(errp, "cannot enable %s", name);
521         error_append_hint(errp, "SVE not supported by KVM on this host\n");
522         return;
523     }
524 
525     if (value) {
526         set_bit(vq - 1, cpu->sve_vq_map);
527     } else {
528         clear_bit(vq - 1, cpu->sve_vq_map);
529     }
530     set_bit(vq - 1, cpu->sve_vq_init);
531 }
532 
533 static bool cpu_arm_get_sve(Object *obj, Error **errp)
534 {
535     ARMCPU *cpu = ARM_CPU(obj);
536     return cpu_isar_feature(aa64_sve, cpu);
537 }
538 
539 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
540 {
541     ARMCPU *cpu = ARM_CPU(obj);
542     uint64_t t;
543 
544     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
545         error_setg(errp, "'sve' feature not supported by KVM on this host");
546         return;
547     }
548 
549     t = cpu->isar.id_aa64pfr0;
550     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
551     cpu->isar.id_aa64pfr0 = t;
552 }
553 
554 #ifdef CONFIG_USER_ONLY
555 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
556 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
557                                             const char *name, void *opaque,
558                                             Error **errp)
559 {
560     ARMCPU *cpu = ARM_CPU(obj);
561     int32_t default_len, default_vq, remainder;
562 
563     if (!visit_type_int32(v, name, &default_len, errp)) {
564         return;
565     }
566 
567     /* Undocumented, but the kernel allows -1 to indicate "maximum". */
568     if (default_len == -1) {
569         cpu->sve_default_vq = ARM_MAX_VQ;
570         return;
571     }
572 
573     default_vq = default_len / 16;
574     remainder = default_len % 16;
575 
576     /*
577      * Note that the 512 max comes from include/uapi/asm/sve_context.h
578      * and is the maximum architectural width of ZCR_ELx.LEN.
579      */
580     if (remainder || default_vq < 1 || default_vq > 512) {
581         error_setg(errp, "cannot set sve-default-vector-length");
582         if (remainder) {
583             error_append_hint(errp, "Vector length not a multiple of 16\n");
584         } else if (default_vq < 1) {
585             error_append_hint(errp, "Vector length smaller than 16\n");
586         } else {
587             error_append_hint(errp, "Vector length larger than %d\n",
588                               512 * 16);
589         }
590         return;
591     }
592 
593     cpu->sve_default_vq = default_vq;
594 }
595 
596 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
597                                             const char *name, void *opaque,
598                                             Error **errp)
599 {
600     ARMCPU *cpu = ARM_CPU(obj);
601     int32_t value = cpu->sve_default_vq * 16;
602 
603     visit_type_int32(v, name, &value, errp);
604 }
605 #endif
606 
607 void aarch64_add_sve_properties(Object *obj)
608 {
609     uint32_t vq;
610 
611     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
612 
613     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
614         char name[8];
615         sprintf(name, "sve%d", vq * 128);
616         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
617                             cpu_arm_set_sve_vq, NULL, NULL);
618     }
619 
620 #ifdef CONFIG_USER_ONLY
621     /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
622     object_property_add(obj, "sve-default-vector-length", "int32",
623                         cpu_arm_get_sve_default_vec_len,
624                         cpu_arm_set_sve_default_vec_len, NULL, NULL);
625 #endif
626 }
627 
628 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
629 {
630     int arch_val = 0, impdef_val = 0;
631     uint64_t t;
632 
633     /* Exit early if PAuth is enabled, and fall through to disable it */
634     if (kvm_enabled() && cpu->prop_pauth) {
635         if (!cpu_isar_feature(aa64_pauth, cpu)) {
636             error_setg(errp, "'pauth' feature not supported by KVM on this host");
637         }
638 
639         return;
640     }
641 
642     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
643     if (cpu->prop_pauth) {
644         if (cpu->prop_pauth_impdef) {
645             impdef_val = 1;
646         } else {
647             arch_val = 1;
648         }
649     } else if (cpu->prop_pauth_impdef) {
650         error_setg(errp, "cannot enable pauth-impdef without pauth");
651         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
652     }
653 
654     t = cpu->isar.id_aa64isar1;
655     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
656     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
657     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
658     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
659     cpu->isar.id_aa64isar1 = t;
660 }
661 
662 static Property arm_cpu_pauth_property =
663     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
664 static Property arm_cpu_pauth_impdef_property =
665     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
666 
667 void aarch64_add_pauth_properties(Object *obj)
668 {
669     ARMCPU *cpu = ARM_CPU(obj);
670 
671     /* Default to PAUTH on, with the architected algorithm on TCG. */
672     qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
673     if (kvm_enabled()) {
674         /*
675          * Mirror PAuth support from the probed sysregs back into the
676          * property for KVM. Is it just a bit backward? Yes it is!
677          */
678         cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
679     } else {
680         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
681     }
682 }
683 
684 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
685  * otherwise, a CPU with as many features enabled as our emulation supports.
686  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
687  * this only needs to handle 64 bits.
688  */
689 static void aarch64_max_initfn(Object *obj)
690 {
691     ARMCPU *cpu = ARM_CPU(obj);
692 
693     if (kvm_enabled()) {
694         kvm_arm_set_cpu_features_from_host(cpu);
695     } else {
696         uint64_t t;
697         uint32_t u;
698         aarch64_a57_initfn(obj);
699 
700         /*
701          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
702          * one and try to apply errata workarounds or use impdef features we
703          * don't provide.
704          * An IMPLEMENTER field of 0 means "reserved for software use";
705          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
706          * to see which features are present";
707          * the VARIANT, PARTNUM and REVISION fields are all implementation
708          * defined and we choose to define PARTNUM just in case guest
709          * code needs to distinguish this QEMU CPU from other software
710          * implementations, though this shouldn't be needed.
711          */
712         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
713         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
714         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
715         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
716         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
717         cpu->midr = t;
718 
719         t = cpu->isar.id_aa64isar0;
720         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
721         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
722         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
723         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
724         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
725         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
726         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
727         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
728         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
729         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
730         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
731         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
732         t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
733         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
734         cpu->isar.id_aa64isar0 = t;
735 
736         t = cpu->isar.id_aa64isar1;
737         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
738         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
739         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
740         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
741         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
742         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);
743         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
744         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
745         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);
746         cpu->isar.id_aa64isar1 = t;
747 
748         t = cpu->isar.id_aa64pfr0;
749         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
750         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
751         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
752         t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
753         t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
754         cpu->isar.id_aa64pfr0 = t;
755 
756         t = cpu->isar.id_aa64pfr1;
757         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
758         t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
759         /*
760          * Begin with full support for MTE. This will be downgraded to MTE=0
761          * during realize if the board provides no tag memory, much like
762          * we do for EL2 with the virtualization=on property.
763          */
764         t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);
765         cpu->isar.id_aa64pfr1 = t;
766 
767         t = cpu->isar.id_aa64mmfr0;
768         t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
769         cpu->isar.id_aa64mmfr0 = t;
770 
771         t = cpu->isar.id_aa64mmfr1;
772         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
773         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
774         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
775         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
776         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
777         t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
778         cpu->isar.id_aa64mmfr1 = t;
779 
780         t = cpu->isar.id_aa64mmfr2;
781         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
782         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
783         t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
784         cpu->isar.id_aa64mmfr2 = t;
785 
786         t = cpu->isar.id_aa64zfr0;
787         t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
788         t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);  /* PMULL */
789         t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);
790         t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);
791         t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);
792         t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);
793         t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);
794         t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);
795         t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);
796         cpu->isar.id_aa64zfr0 = t;
797 
798         /* Replicate the same data to the 32-bit id registers.  */
799         u = cpu->isar.id_isar5;
800         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
801         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
802         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
803         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
804         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
805         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
806         cpu->isar.id_isar5 = u;
807 
808         u = cpu->isar.id_isar6;
809         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
810         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
811         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
812         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
813         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
814         u = FIELD_DP32(u, ID_ISAR6, BF16, 1);
815         u = FIELD_DP32(u, ID_ISAR6, I8MM, 1);
816         cpu->isar.id_isar6 = u;
817 
818         u = cpu->isar.id_pfr0;
819         u = FIELD_DP32(u, ID_PFR0, DIT, 1);
820         cpu->isar.id_pfr0 = u;
821 
822         u = cpu->isar.id_pfr2;
823         u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
824         cpu->isar.id_pfr2 = u;
825 
826         u = cpu->isar.id_mmfr3;
827         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
828         cpu->isar.id_mmfr3 = u;
829 
830         u = cpu->isar.id_mmfr4;
831         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
832         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
833         u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
834         u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
835         cpu->isar.id_mmfr4 = u;
836 
837         t = cpu->isar.id_aa64dfr0;
838         t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
839         cpu->isar.id_aa64dfr0 = t;
840 
841         u = cpu->isar.id_dfr0;
842         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
843         cpu->isar.id_dfr0 = u;
844 
845         u = cpu->isar.mvfr1;
846         u = FIELD_DP32(u, MVFR1, FPHP, 3);      /* v8.2-FP16 */
847         u = FIELD_DP32(u, MVFR1, SIMDHP, 2);    /* v8.2-FP16 */
848         cpu->isar.mvfr1 = u;
849 
850 #ifdef CONFIG_USER_ONLY
851         /* For usermode -cpu max we can use a larger and more efficient DCZ
852          * blocksize since we don't have to follow what the hardware does.
853          */
854         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
855         cpu->dcz_blocksize = 7; /*  512 bytes */
856 #endif
857 
858         bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ);
859     }
860 
861     aarch64_add_pauth_properties(obj);
862     aarch64_add_sve_properties(obj);
863     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
864                         cpu_max_set_sve_max_vq, NULL, NULL);
865 }
866 
867 static void aarch64_a64fx_initfn(Object *obj)
868 {
869     ARMCPU *cpu = ARM_CPU(obj);
870 
871     cpu->dtb_compatible = "arm,a64fx";
872     set_feature(&cpu->env, ARM_FEATURE_V8);
873     set_feature(&cpu->env, ARM_FEATURE_NEON);
874     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
875     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
876     set_feature(&cpu->env, ARM_FEATURE_EL2);
877     set_feature(&cpu->env, ARM_FEATURE_EL3);
878     set_feature(&cpu->env, ARM_FEATURE_PMU);
879     cpu->midr = 0x461f0010;
880     cpu->revidr = 0x00000000;
881     cpu->ctr = 0x86668006;
882     cpu->reset_sctlr = 0x30000180;
883     cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
884     cpu->isar.id_aa64pfr1 = 0x0000000000000000;
885     cpu->isar.id_aa64dfr0 = 0x0000000010305408;
886     cpu->isar.id_aa64dfr1 = 0x0000000000000000;
887     cpu->id_aa64afr0 = 0x0000000000000000;
888     cpu->id_aa64afr1 = 0x0000000000000000;
889     cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
890     cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
891     cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
892     cpu->isar.id_aa64isar0 = 0x0000000010211120;
893     cpu->isar.id_aa64isar1 = 0x0000000000010001;
894     cpu->isar.id_aa64zfr0 = 0x0000000000000000;
895     cpu->clidr = 0x0000000080000023;
896     cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
897     cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
898     cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
899     cpu->dcz_blocksize = 6; /* 256 bytes */
900     cpu->gic_num_lrs = 4;
901     cpu->gic_vpribits = 5;
902     cpu->gic_vprebits = 5;
903 
904     /* Suppport of A64FX's vector length are 128,256 and 512bit only */
905     aarch64_add_sve_properties(obj);
906     bitmap_zero(cpu->sve_vq_supported, ARM_MAX_VQ);
907     set_bit(0, cpu->sve_vq_supported); /* 128bit */
908     set_bit(1, cpu->sve_vq_supported); /* 256bit */
909     set_bit(3, cpu->sve_vq_supported); /* 512bit */
910 
911     /* TODO:  Add A64FX specific HPC extension registers */
912 }
913 
914 static const ARMCPUInfo aarch64_cpus[] = {
915     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
916     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
917     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
918     { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
919     { .name = "max",                .initfn = aarch64_max_initfn },
920 };
921 
922 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
923 {
924     ARMCPU *cpu = ARM_CPU(obj);
925 
926     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
927 }
928 
929 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
930 {
931     ARMCPU *cpu = ARM_CPU(obj);
932 
933     /* At this time, this property is only allowed if KVM is enabled.  This
934      * restriction allows us to avoid fixing up functionality that assumes a
935      * uniform execution state like do_interrupt.
936      */
937     if (value == false) {
938         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
939             error_setg(errp, "'aarch64' feature cannot be disabled "
940                              "unless KVM is enabled and 32-bit EL1 "
941                              "is supported");
942             return;
943         }
944         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
945     } else {
946         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
947     }
948 }
949 
950 static void aarch64_cpu_finalizefn(Object *obj)
951 {
952 }
953 
954 static gchar *aarch64_gdb_arch_name(CPUState *cs)
955 {
956     return g_strdup("aarch64");
957 }
958 
959 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
960 {
961     CPUClass *cc = CPU_CLASS(oc);
962 
963     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
964     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
965     cc->gdb_num_core_regs = 34;
966     cc->gdb_core_xml_file = "aarch64-core.xml";
967     cc->gdb_arch_name = aarch64_gdb_arch_name;
968 
969     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
970                                    aarch64_cpu_set_aarch64);
971     object_class_property_set_description(oc, "aarch64",
972                                           "Set on/off to enable/disable aarch64 "
973                                           "execution state ");
974 }
975 
976 static void aarch64_cpu_instance_init(Object *obj)
977 {
978     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
979 
980     acc->info->initfn(obj);
981     arm_cpu_post_init(obj);
982 }
983 
984 static void cpu_register_class_init(ObjectClass *oc, void *data)
985 {
986     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
987 
988     acc->info = data;
989 }
990 
991 void aarch64_cpu_register(const ARMCPUInfo *info)
992 {
993     TypeInfo type_info = {
994         .parent = TYPE_AARCH64_CPU,
995         .instance_size = sizeof(ARMCPU),
996         .instance_init = aarch64_cpu_instance_init,
997         .class_size = sizeof(ARMCPUClass),
998         .class_init = info->class_init ?: cpu_register_class_init,
999         .class_data = (void *)info,
1000     };
1001 
1002     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1003     type_register(&type_info);
1004     g_free((void *)type_info.name);
1005 }
1006 
1007 static const TypeInfo aarch64_cpu_type_info = {
1008     .name = TYPE_AARCH64_CPU,
1009     .parent = TYPE_ARM_CPU,
1010     .instance_size = sizeof(ARMCPU),
1011     .instance_finalize = aarch64_cpu_finalizefn,
1012     .abstract = true,
1013     .class_size = sizeof(AArch64CPUClass),
1014     .class_init = aarch64_cpu_class_init,
1015 };
1016 
1017 static void aarch64_cpu_register_types(void)
1018 {
1019     size_t i;
1020 
1021     type_register_static(&aarch64_cpu_type_info);
1022 
1023     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1024         aarch64_cpu_register(&aarch64_cpus[i]);
1025     }
1026 }
1027 
1028 type_init(aarch64_cpu_register_types)
1029