xref: /openbmc/qemu/target/arm/cpu.h (revision ff68dacbc786d76a754b2c522cf70e22887bc8a6)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SVC     11
69 #define ARMV7M_EXCP_DEBUG   12
70 #define ARMV7M_EXCP_PENDSV  14
71 #define ARMV7M_EXCP_SYSTICK 15
72 
73 /* ARM-specific interrupt pending bits.  */
74 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
75 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
76 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
77 
78 /* The usual mapping for an AArch64 system register to its AArch32
79  * counterpart is for the 32 bit world to have access to the lower
80  * half only (with writes leaving the upper half untouched). It's
81  * therefore useful to be able to pass TCG the offset of the least
82  * significant half of a uint64_t struct member.
83  */
84 #ifdef HOST_WORDS_BIGENDIAN
85 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
86 #define offsetofhigh32(S, M) offsetof(S, M)
87 #else
88 #define offsetoflow32(S, M) offsetof(S, M)
89 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
90 #endif
91 
92 /* Meanings of the ARMCPU object's four inbound GPIO lines */
93 #define ARM_CPU_IRQ 0
94 #define ARM_CPU_FIQ 1
95 #define ARM_CPU_VIRQ 2
96 #define ARM_CPU_VFIQ 3
97 
98 #define NB_MMU_MODES 7
99 /* ARM-specific extra insn start words:
100  * 1: Conditional execution bits
101  * 2: Partial exception syndrome for data aborts
102  */
103 #define TARGET_INSN_START_EXTRA_WORDS 2
104 
105 /* The 2nd extra word holding syndrome info for data aborts does not use
106  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
107  * help the sleb128 encoder do a better job.
108  * When restoring the CPU state, we shift it back up.
109  */
110 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
111 #define ARM_INSN_START_WORD2_SHIFT 14
112 
113 /* We currently assume float and double are IEEE single and double
114    precision respectively.
115    Doing runtime conversions is tricky because VFP registers may contain
116    integer values (eg. as the result of a FTOSI instruction).
117    s<2n> maps to the least significant half of d<n>
118    s<2n+1> maps to the most significant half of d<n>
119  */
120 
121 /* CPU state for each instance of a generic timer (in cp15 c14) */
122 typedef struct ARMGenericTimer {
123     uint64_t cval; /* Timer CompareValue register */
124     uint64_t ctl; /* Timer Control register */
125 } ARMGenericTimer;
126 
127 #define GTIMER_PHYS 0
128 #define GTIMER_VIRT 1
129 #define GTIMER_HYP  2
130 #define GTIMER_SEC  3
131 #define NUM_GTIMERS 4
132 
133 typedef struct {
134     uint64_t raw_tcr;
135     uint32_t mask;
136     uint32_t base_mask;
137 } TCR;
138 
139 typedef struct CPUARMState {
140     /* Regs for current mode.  */
141     uint32_t regs[16];
142 
143     /* 32/64 switch only happens when taking and returning from
144      * exceptions so the overlap semantics are taken care of then
145      * instead of having a complicated union.
146      */
147     /* Regs for A64 mode.  */
148     uint64_t xregs[32];
149     uint64_t pc;
150     /* PSTATE isn't an architectural register for ARMv8. However, it is
151      * convenient for us to assemble the underlying state into a 32 bit format
152      * identical to the architectural format used for the SPSR. (This is also
153      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
154      * 'pstate' register are.) Of the PSTATE bits:
155      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
156      *    semantics as for AArch32, as described in the comments on each field)
157      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
158      *  DAIF (exception masks) are kept in env->daif
159      *  all other bits are stored in their correct places in env->pstate
160      */
161     uint32_t pstate;
162     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
163 
164     /* Frequently accessed CPSR bits are stored separately for efficiency.
165        This contains all the other bits.  Use cpsr_{read,write} to access
166        the whole CPSR.  */
167     uint32_t uncached_cpsr;
168     uint32_t spsr;
169 
170     /* Banked registers.  */
171     uint64_t banked_spsr[8];
172     uint32_t banked_r13[8];
173     uint32_t banked_r14[8];
174 
175     /* These hold r8-r12.  */
176     uint32_t usr_regs[5];
177     uint32_t fiq_regs[5];
178 
179     /* cpsr flag cache for faster execution */
180     uint32_t CF; /* 0 or 1 */
181     uint32_t VF; /* V is the bit 31. All other bits are undefined */
182     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
183     uint32_t ZF; /* Z set if zero.  */
184     uint32_t QF; /* 0 or 1 */
185     uint32_t GE; /* cpsr[19:16] */
186     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
187     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
188     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
189 
190     uint64_t elr_el[4]; /* AArch64 exception link regs  */
191     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
192 
193     /* System control coprocessor (cp15) */
194     struct {
195         uint32_t c0_cpuid;
196         union { /* Cache size selection */
197             struct {
198                 uint64_t _unused_csselr0;
199                 uint64_t csselr_ns;
200                 uint64_t _unused_csselr1;
201                 uint64_t csselr_s;
202             };
203             uint64_t csselr_el[4];
204         };
205         union { /* System control register. */
206             struct {
207                 uint64_t _unused_sctlr;
208                 uint64_t sctlr_ns;
209                 uint64_t hsctlr;
210                 uint64_t sctlr_s;
211             };
212             uint64_t sctlr_el[4];
213         };
214         uint64_t cpacr_el1; /* Architectural feature access control register */
215         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
216         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
217         uint64_t sder; /* Secure debug enable register. */
218         uint32_t nsacr; /* Non-secure access control register. */
219         union { /* MMU translation table base 0. */
220             struct {
221                 uint64_t _unused_ttbr0_0;
222                 uint64_t ttbr0_ns;
223                 uint64_t _unused_ttbr0_1;
224                 uint64_t ttbr0_s;
225             };
226             uint64_t ttbr0_el[4];
227         };
228         union { /* MMU translation table base 1. */
229             struct {
230                 uint64_t _unused_ttbr1_0;
231                 uint64_t ttbr1_ns;
232                 uint64_t _unused_ttbr1_1;
233                 uint64_t ttbr1_s;
234             };
235             uint64_t ttbr1_el[4];
236         };
237         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
238         /* MMU translation table base control. */
239         TCR tcr_el[4];
240         TCR vtcr_el2; /* Virtualization Translation Control.  */
241         uint32_t c2_data; /* MPU data cacheable bits.  */
242         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
243         union { /* MMU domain access control register
244                  * MPU write buffer control.
245                  */
246             struct {
247                 uint64_t dacr_ns;
248                 uint64_t dacr_s;
249             };
250             struct {
251                 uint64_t dacr32_el2;
252             };
253         };
254         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
255         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
256         uint64_t hcr_el2; /* Hypervisor configuration register */
257         uint64_t scr_el3; /* Secure configuration register.  */
258         union { /* Fault status registers.  */
259             struct {
260                 uint64_t ifsr_ns;
261                 uint64_t ifsr_s;
262             };
263             struct {
264                 uint64_t ifsr32_el2;
265             };
266         };
267         union {
268             struct {
269                 uint64_t _unused_dfsr;
270                 uint64_t dfsr_ns;
271                 uint64_t hsr;
272                 uint64_t dfsr_s;
273             };
274             uint64_t esr_el[4];
275         };
276         uint32_t c6_region[8]; /* MPU base/size registers.  */
277         union { /* Fault address registers. */
278             struct {
279                 uint64_t _unused_far0;
280 #ifdef HOST_WORDS_BIGENDIAN
281                 uint32_t ifar_ns;
282                 uint32_t dfar_ns;
283                 uint32_t ifar_s;
284                 uint32_t dfar_s;
285 #else
286                 uint32_t dfar_ns;
287                 uint32_t ifar_ns;
288                 uint32_t dfar_s;
289                 uint32_t ifar_s;
290 #endif
291                 uint64_t _unused_far3;
292             };
293             uint64_t far_el[4];
294         };
295         uint64_t hpfar_el2;
296         uint64_t hstr_el2;
297         union { /* Translation result. */
298             struct {
299                 uint64_t _unused_par_0;
300                 uint64_t par_ns;
301                 uint64_t _unused_par_1;
302                 uint64_t par_s;
303             };
304             uint64_t par_el[4];
305         };
306 
307         uint32_t c6_rgnr;
308 
309         uint32_t c9_insn; /* Cache lockdown registers.  */
310         uint32_t c9_data;
311         uint64_t c9_pmcr; /* performance monitor control register */
312         uint64_t c9_pmcnten; /* perf monitor counter enables */
313         uint32_t c9_pmovsr; /* perf monitor overflow status */
314         uint32_t c9_pmuserenr; /* perf monitor user enable */
315         uint64_t c9_pmselr; /* perf monitor counter selection register */
316         uint64_t c9_pminten; /* perf monitor interrupt enables */
317         union { /* Memory attribute redirection */
318             struct {
319 #ifdef HOST_WORDS_BIGENDIAN
320                 uint64_t _unused_mair_0;
321                 uint32_t mair1_ns;
322                 uint32_t mair0_ns;
323                 uint64_t _unused_mair_1;
324                 uint32_t mair1_s;
325                 uint32_t mair0_s;
326 #else
327                 uint64_t _unused_mair_0;
328                 uint32_t mair0_ns;
329                 uint32_t mair1_ns;
330                 uint64_t _unused_mair_1;
331                 uint32_t mair0_s;
332                 uint32_t mair1_s;
333 #endif
334             };
335             uint64_t mair_el[4];
336         };
337         union { /* vector base address register */
338             struct {
339                 uint64_t _unused_vbar;
340                 uint64_t vbar_ns;
341                 uint64_t hvbar;
342                 uint64_t vbar_s;
343             };
344             uint64_t vbar_el[4];
345         };
346         uint32_t mvbar; /* (monitor) vector base address register */
347         struct { /* FCSE PID. */
348             uint32_t fcseidr_ns;
349             uint32_t fcseidr_s;
350         };
351         union { /* Context ID. */
352             struct {
353                 uint64_t _unused_contextidr_0;
354                 uint64_t contextidr_ns;
355                 uint64_t _unused_contextidr_1;
356                 uint64_t contextidr_s;
357             };
358             uint64_t contextidr_el[4];
359         };
360         union { /* User RW Thread register. */
361             struct {
362                 uint64_t tpidrurw_ns;
363                 uint64_t tpidrprw_ns;
364                 uint64_t htpidr;
365                 uint64_t _tpidr_el3;
366             };
367             uint64_t tpidr_el[4];
368         };
369         /* The secure banks of these registers don't map anywhere */
370         uint64_t tpidrurw_s;
371         uint64_t tpidrprw_s;
372         uint64_t tpidruro_s;
373 
374         union { /* User RO Thread register. */
375             uint64_t tpidruro_ns;
376             uint64_t tpidrro_el[1];
377         };
378         uint64_t c14_cntfrq; /* Counter Frequency register */
379         uint64_t c14_cntkctl; /* Timer Control register */
380         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
381         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
382         ARMGenericTimer c14_timer[NUM_GTIMERS];
383         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
384         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
385         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
386         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
387         uint32_t c15_threadid; /* TI debugger thread-ID.  */
388         uint32_t c15_config_base_address; /* SCU base address.  */
389         uint32_t c15_diagnostic; /* diagnostic register */
390         uint32_t c15_power_diagnostic;
391         uint32_t c15_power_control; /* power control */
392         uint64_t dbgbvr[16]; /* breakpoint value registers */
393         uint64_t dbgbcr[16]; /* breakpoint control registers */
394         uint64_t dbgwvr[16]; /* watchpoint value registers */
395         uint64_t dbgwcr[16]; /* watchpoint control registers */
396         uint64_t mdscr_el1;
397         uint64_t oslsr_el1; /* OS Lock Status */
398         uint64_t mdcr_el2;
399         uint64_t mdcr_el3;
400         /* If the counter is enabled, this stores the last time the counter
401          * was reset. Otherwise it stores the counter value
402          */
403         uint64_t c15_ccnt;
404         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
405         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
406         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
407     } cp15;
408 
409     struct {
410         uint32_t other_sp;
411         uint32_t vecbase;
412         uint32_t basepri;
413         uint32_t control;
414         uint32_t ccr; /* Configuration and Control */
415         uint32_t cfsr; /* Configurable Fault Status */
416         uint32_t hfsr; /* HardFault Status */
417         uint32_t dfsr; /* Debug Fault Status Register */
418         uint32_t mmfar; /* MemManage Fault Address */
419         uint32_t bfar; /* BusFault Address */
420         int exception;
421     } v7m;
422 
423     /* Information associated with an exception about to be taken:
424      * code which raises an exception must set cs->exception_index and
425      * the relevant parts of this structure; the cpu_do_interrupt function
426      * will then set the guest-visible registers as part of the exception
427      * entry process.
428      */
429     struct {
430         uint32_t syndrome; /* AArch64 format syndrome register */
431         uint32_t fsr; /* AArch32 format fault status register info */
432         uint64_t vaddress; /* virtual addr associated with exception, if any */
433         uint32_t target_el; /* EL the exception should be targeted for */
434         /* If we implement EL2 we will also need to store information
435          * about the intermediate physical address for stage 2 faults.
436          */
437     } exception;
438 
439     /* Thumb-2 EE state.  */
440     uint32_t teecr;
441     uint32_t teehbr;
442 
443     /* VFP coprocessor state.  */
444     struct {
445         /* VFP/Neon register state. Note that the mapping between S, D and Q
446          * views of the register bank differs between AArch64 and AArch32:
447          * In AArch32:
448          *  Qn = regs[2n+1]:regs[2n]
449          *  Dn = regs[n]
450          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
451          * (and regs[32] to regs[63] are inaccessible)
452          * In AArch64:
453          *  Qn = regs[2n+1]:regs[2n]
454          *  Dn = regs[2n]
455          *  Sn = regs[2n] bits 31..0
456          * This corresponds to the architecturally defined mapping between
457          * the two execution states, and means we do not need to explicitly
458          * map these registers when changing states.
459          */
460         float64 regs[64];
461 
462         uint32_t xregs[16];
463         /* We store these fpcsr fields separately for convenience.  */
464         int vec_len;
465         int vec_stride;
466 
467         /* scratch space when Tn are not sufficient.  */
468         uint32_t scratch[8];
469 
470         /* fp_status is the "normal" fp status. standard_fp_status retains
471          * values corresponding to the ARM "Standard FPSCR Value", ie
472          * default-NaN, flush-to-zero, round-to-nearest and is used by
473          * any operations (generally Neon) which the architecture defines
474          * as controlled by the standard FPSCR value rather than the FPSCR.
475          *
476          * To avoid having to transfer exception bits around, we simply
477          * say that the FPSCR cumulative exception flags are the logical
478          * OR of the flags in the two fp statuses. This relies on the
479          * only thing which needs to read the exception flags being
480          * an explicit FPSCR read.
481          */
482         float_status fp_status;
483         float_status standard_fp_status;
484     } vfp;
485     uint64_t exclusive_addr;
486     uint64_t exclusive_val;
487     uint64_t exclusive_high;
488 
489     /* iwMMXt coprocessor state.  */
490     struct {
491         uint64_t regs[16];
492         uint64_t val;
493 
494         uint32_t cregs[16];
495     } iwmmxt;
496 
497 #if defined(CONFIG_USER_ONLY)
498     /* For usermode syscall translation.  */
499     int eabi;
500 #endif
501 
502     struct CPUBreakpoint *cpu_breakpoint[16];
503     struct CPUWatchpoint *cpu_watchpoint[16];
504 
505     /* Fields up to this point are cleared by a CPU reset */
506     struct {} end_reset_fields;
507 
508     CPU_COMMON
509 
510     /* Fields after CPU_COMMON are preserved across CPU reset. */
511 
512     /* Internal CPU feature flags.  */
513     uint64_t features;
514 
515     /* PMSAv7 MPU */
516     struct {
517         uint32_t *drbar;
518         uint32_t *drsr;
519         uint32_t *dracr;
520     } pmsav7;
521 
522     void *nvic;
523     const struct arm_boot_info *boot_info;
524 } CPUARMState;
525 
526 /**
527  * ARMELChangeHook:
528  * type of a function which can be registered via arm_register_el_change_hook()
529  * to get callbacks when the CPU changes its exception level or mode.
530  */
531 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
532 
533 
534 /* These values map onto the return values for
535  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
536 typedef enum ARMPSCIState {
537     PSCI_OFF = 0,
538     PSCI_ON = 1,
539     PSCI_ON_PENDING = 2
540 } ARMPSCIState;
541 
542 /**
543  * ARMCPU:
544  * @env: #CPUARMState
545  *
546  * An ARM CPU core.
547  */
548 struct ARMCPU {
549     /*< private >*/
550     CPUState parent_obj;
551     /*< public >*/
552 
553     CPUARMState env;
554 
555     /* Coprocessor information */
556     GHashTable *cp_regs;
557     /* For marshalling (mostly coprocessor) register state between the
558      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
559      * we use these arrays.
560      */
561     /* List of register indexes managed via these arrays; (full KVM style
562      * 64 bit indexes, not CPRegInfo 32 bit indexes)
563      */
564     uint64_t *cpreg_indexes;
565     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
566     uint64_t *cpreg_values;
567     /* Length of the indexes, values, reset_values arrays */
568     int32_t cpreg_array_len;
569     /* These are used only for migration: incoming data arrives in
570      * these fields and is sanity checked in post_load before copying
571      * to the working data structures above.
572      */
573     uint64_t *cpreg_vmstate_indexes;
574     uint64_t *cpreg_vmstate_values;
575     int32_t cpreg_vmstate_array_len;
576 
577     /* Timers used by the generic (architected) timer */
578     QEMUTimer *gt_timer[NUM_GTIMERS];
579     /* GPIO outputs for generic timer */
580     qemu_irq gt_timer_outputs[NUM_GTIMERS];
581     /* GPIO output for GICv3 maintenance interrupt signal */
582     qemu_irq gicv3_maintenance_interrupt;
583 
584     /* MemoryRegion to use for secure physical accesses */
585     MemoryRegion *secure_memory;
586 
587     /* 'compatible' string for this CPU for Linux device trees */
588     const char *dtb_compatible;
589 
590     /* PSCI version for this CPU
591      * Bits[31:16] = Major Version
592      * Bits[15:0] = Minor Version
593      */
594     uint32_t psci_version;
595 
596     /* Should CPU start in PSCI powered-off state? */
597     bool start_powered_off;
598 
599     /* Current power state, access guarded by BQL */
600     ARMPSCIState power_state;
601 
602     /* CPU has virtualization extension */
603     bool has_el2;
604     /* CPU has security extension */
605     bool has_el3;
606     /* CPU has PMU (Performance Monitor Unit) */
607     bool has_pmu;
608 
609     /* CPU has memory protection unit */
610     bool has_mpu;
611     /* PMSAv7 MPU number of supported regions */
612     uint32_t pmsav7_dregion;
613 
614     /* PSCI conduit used to invoke PSCI methods
615      * 0 - disabled, 1 - smc, 2 - hvc
616      */
617     uint32_t psci_conduit;
618 
619     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
620      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
621      */
622     uint32_t kvm_target;
623 
624     /* KVM init features for this CPU */
625     uint32_t kvm_init_features[7];
626 
627     /* Uniprocessor system with MP extensions */
628     bool mp_is_up;
629 
630     /* The instance init functions for implementation-specific subclasses
631      * set these fields to specify the implementation-dependent values of
632      * various constant registers and reset values of non-constant
633      * registers.
634      * Some of these might become QOM properties eventually.
635      * Field names match the official register names as defined in the
636      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
637      * is used for reset values of non-constant registers; no reset_
638      * prefix means a constant register.
639      */
640     uint32_t midr;
641     uint32_t revidr;
642     uint32_t reset_fpsid;
643     uint32_t mvfr0;
644     uint32_t mvfr1;
645     uint32_t mvfr2;
646     uint32_t ctr;
647     uint32_t reset_sctlr;
648     uint32_t id_pfr0;
649     uint32_t id_pfr1;
650     uint32_t id_dfr0;
651     uint32_t pmceid0;
652     uint32_t pmceid1;
653     uint32_t id_afr0;
654     uint32_t id_mmfr0;
655     uint32_t id_mmfr1;
656     uint32_t id_mmfr2;
657     uint32_t id_mmfr3;
658     uint32_t id_mmfr4;
659     uint32_t id_isar0;
660     uint32_t id_isar1;
661     uint32_t id_isar2;
662     uint32_t id_isar3;
663     uint32_t id_isar4;
664     uint32_t id_isar5;
665     uint64_t id_aa64pfr0;
666     uint64_t id_aa64pfr1;
667     uint64_t id_aa64dfr0;
668     uint64_t id_aa64dfr1;
669     uint64_t id_aa64afr0;
670     uint64_t id_aa64afr1;
671     uint64_t id_aa64isar0;
672     uint64_t id_aa64isar1;
673     uint64_t id_aa64mmfr0;
674     uint64_t id_aa64mmfr1;
675     uint32_t dbgdidr;
676     uint32_t clidr;
677     uint64_t mp_affinity; /* MP ID without feature bits */
678     /* The elements of this array are the CCSIDR values for each cache,
679      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
680      */
681     uint32_t ccsidr[16];
682     uint64_t reset_cbar;
683     uint32_t reset_auxcr;
684     bool reset_hivecs;
685     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
686     uint32_t dcz_blocksize;
687     uint64_t rvbar;
688 
689     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
690     int gic_num_lrs; /* number of list registers */
691     int gic_vpribits; /* number of virtual priority bits */
692     int gic_vprebits; /* number of virtual preemption bits */
693 
694     /* Whether the cfgend input is high (i.e. this CPU should reset into
695      * big-endian mode).  This setting isn't used directly: instead it modifies
696      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
697      * architecture version.
698      */
699     bool cfgend;
700 
701     ARMELChangeHook *el_change_hook;
702     void *el_change_hook_opaque;
703 };
704 
705 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
706 {
707     return container_of(env, ARMCPU, env);
708 }
709 
710 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
711 
712 #define ENV_OFFSET offsetof(ARMCPU, env)
713 
714 #ifndef CONFIG_USER_ONLY
715 extern const struct VMStateDescription vmstate_arm_cpu;
716 #endif
717 
718 void arm_cpu_do_interrupt(CPUState *cpu);
719 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
720 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
721 
722 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
723                         int flags);
724 
725 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
726                                          MemTxAttrs *attrs);
727 
728 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
729 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
730 
731 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
732                              int cpuid, void *opaque);
733 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
734                              int cpuid, void *opaque);
735 
736 #ifdef TARGET_AARCH64
737 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
738 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
739 #endif
740 
741 ARMCPU *cpu_arm_init(const char *cpu_model);
742 target_ulong do_arm_semihosting(CPUARMState *env);
743 void aarch64_sync_32_to_64(CPUARMState *env);
744 void aarch64_sync_64_to_32(CPUARMState *env);
745 
746 static inline bool is_a64(CPUARMState *env)
747 {
748     return env->aarch64;
749 }
750 
751 /* you can call this signal handler from your SIGBUS and SIGSEGV
752    signal handlers to inform the virtual CPU of exceptions. non zero
753    is returned if the signal was handled by the virtual CPU.  */
754 int cpu_arm_signal_handler(int host_signum, void *pinfo,
755                            void *puc);
756 
757 /**
758  * pmccntr_sync
759  * @env: CPUARMState
760  *
761  * Synchronises the counter in the PMCCNTR. This must always be called twice,
762  * once before any action that might affect the timer and again afterwards.
763  * The function is used to swap the state of the register if required.
764  * This only happens when not in user mode (!CONFIG_USER_ONLY)
765  */
766 void pmccntr_sync(CPUARMState *env);
767 
768 /* SCTLR bit meanings. Several bits have been reused in newer
769  * versions of the architecture; in that case we define constants
770  * for both old and new bit meanings. Code which tests against those
771  * bits should probably check or otherwise arrange that the CPU
772  * is the architectural version it expects.
773  */
774 #define SCTLR_M       (1U << 0)
775 #define SCTLR_A       (1U << 1)
776 #define SCTLR_C       (1U << 2)
777 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
778 #define SCTLR_SA      (1U << 3)
779 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
780 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
781 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
782 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
783 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
784 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
785 #define SCTLR_ITD     (1U << 7) /* v8 onward */
786 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
787 #define SCTLR_SED     (1U << 8) /* v8 onward */
788 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
789 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
790 #define SCTLR_F       (1U << 10) /* up to v6 */
791 #define SCTLR_SW      (1U << 10) /* v7 onward */
792 #define SCTLR_Z       (1U << 11)
793 #define SCTLR_I       (1U << 12)
794 #define SCTLR_V       (1U << 13)
795 #define SCTLR_RR      (1U << 14) /* up to v7 */
796 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
797 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
798 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
799 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
800 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
801 #define SCTLR_HA      (1U << 17)
802 #define SCTLR_BR      (1U << 17) /* PMSA only */
803 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
804 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
805 #define SCTLR_WXN     (1U << 19)
806 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
807 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
808 #define SCTLR_FI      (1U << 21)
809 #define SCTLR_U       (1U << 22)
810 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
811 #define SCTLR_VE      (1U << 24) /* up to v7 */
812 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
813 #define SCTLR_EE      (1U << 25)
814 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
815 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
816 #define SCTLR_NMFI    (1U << 27)
817 #define SCTLR_TRE     (1U << 28)
818 #define SCTLR_AFE     (1U << 29)
819 #define SCTLR_TE      (1U << 30)
820 
821 #define CPTR_TCPAC    (1U << 31)
822 #define CPTR_TTA      (1U << 20)
823 #define CPTR_TFP      (1U << 10)
824 
825 #define MDCR_EPMAD    (1U << 21)
826 #define MDCR_EDAD     (1U << 20)
827 #define MDCR_SPME     (1U << 17)
828 #define MDCR_SDD      (1U << 16)
829 #define MDCR_SPD      (3U << 14)
830 #define MDCR_TDRA     (1U << 11)
831 #define MDCR_TDOSA    (1U << 10)
832 #define MDCR_TDA      (1U << 9)
833 #define MDCR_TDE      (1U << 8)
834 #define MDCR_HPME     (1U << 7)
835 #define MDCR_TPM      (1U << 6)
836 #define MDCR_TPMCR    (1U << 5)
837 
838 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
839 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
840 
841 #define CPSR_M (0x1fU)
842 #define CPSR_T (1U << 5)
843 #define CPSR_F (1U << 6)
844 #define CPSR_I (1U << 7)
845 #define CPSR_A (1U << 8)
846 #define CPSR_E (1U << 9)
847 #define CPSR_IT_2_7 (0xfc00U)
848 #define CPSR_GE (0xfU << 16)
849 #define CPSR_IL (1U << 20)
850 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
851  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
852  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
853  * where it is live state but not accessible to the AArch32 code.
854  */
855 #define CPSR_RESERVED (0x7U << 21)
856 #define CPSR_J (1U << 24)
857 #define CPSR_IT_0_1 (3U << 25)
858 #define CPSR_Q (1U << 27)
859 #define CPSR_V (1U << 28)
860 #define CPSR_C (1U << 29)
861 #define CPSR_Z (1U << 30)
862 #define CPSR_N (1U << 31)
863 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
864 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
865 
866 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
867 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
868     | CPSR_NZCV)
869 /* Bits writable in user mode.  */
870 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
871 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
872 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
873 /* Mask of bits which may be set by exception return copying them from SPSR */
874 #define CPSR_ERET_MASK (~CPSR_RESERVED)
875 
876 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
877 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
878 #define TTBCR_PD0    (1U << 4)
879 #define TTBCR_PD1    (1U << 5)
880 #define TTBCR_EPD0   (1U << 7)
881 #define TTBCR_IRGN0  (3U << 8)
882 #define TTBCR_ORGN0  (3U << 10)
883 #define TTBCR_SH0    (3U << 12)
884 #define TTBCR_T1SZ   (3U << 16)
885 #define TTBCR_A1     (1U << 22)
886 #define TTBCR_EPD1   (1U << 23)
887 #define TTBCR_IRGN1  (3U << 24)
888 #define TTBCR_ORGN1  (3U << 26)
889 #define TTBCR_SH1    (1U << 28)
890 #define TTBCR_EAE    (1U << 31)
891 
892 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
893  * Only these are valid when in AArch64 mode; in
894  * AArch32 mode SPSRs are basically CPSR-format.
895  */
896 #define PSTATE_SP (1U)
897 #define PSTATE_M (0xFU)
898 #define PSTATE_nRW (1U << 4)
899 #define PSTATE_F (1U << 6)
900 #define PSTATE_I (1U << 7)
901 #define PSTATE_A (1U << 8)
902 #define PSTATE_D (1U << 9)
903 #define PSTATE_IL (1U << 20)
904 #define PSTATE_SS (1U << 21)
905 #define PSTATE_V (1U << 28)
906 #define PSTATE_C (1U << 29)
907 #define PSTATE_Z (1U << 30)
908 #define PSTATE_N (1U << 31)
909 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
910 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
911 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
912 /* Mode values for AArch64 */
913 #define PSTATE_MODE_EL3h 13
914 #define PSTATE_MODE_EL3t 12
915 #define PSTATE_MODE_EL2h 9
916 #define PSTATE_MODE_EL2t 8
917 #define PSTATE_MODE_EL1h 5
918 #define PSTATE_MODE_EL1t 4
919 #define PSTATE_MODE_EL0t 0
920 
921 /* Map EL and handler into a PSTATE_MODE.  */
922 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
923 {
924     return (el << 2) | handler;
925 }
926 
927 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
928  * interprocessing, so we don't attempt to sync with the cpsr state used by
929  * the 32 bit decoder.
930  */
931 static inline uint32_t pstate_read(CPUARMState *env)
932 {
933     int ZF;
934 
935     ZF = (env->ZF == 0);
936     return (env->NF & 0x80000000) | (ZF << 30)
937         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
938         | env->pstate | env->daif;
939 }
940 
941 static inline void pstate_write(CPUARMState *env, uint32_t val)
942 {
943     env->ZF = (~val) & PSTATE_Z;
944     env->NF = val;
945     env->CF = (val >> 29) & 1;
946     env->VF = (val << 3) & 0x80000000;
947     env->daif = val & PSTATE_DAIF;
948     env->pstate = val & ~CACHED_PSTATE_BITS;
949 }
950 
951 /* Return the current CPSR value.  */
952 uint32_t cpsr_read(CPUARMState *env);
953 
954 typedef enum CPSRWriteType {
955     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
956     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
957     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
958     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
959 } CPSRWriteType;
960 
961 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
962 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
963                 CPSRWriteType write_type);
964 
965 /* Return the current xPSR value.  */
966 static inline uint32_t xpsr_read(CPUARMState *env)
967 {
968     int ZF;
969     ZF = (env->ZF == 0);
970     return (env->NF & 0x80000000) | (ZF << 30)
971         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
972         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
973         | ((env->condexec_bits & 0xfc) << 8)
974         | env->v7m.exception;
975 }
976 
977 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
978 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
979 {
980     if (mask & CPSR_NZCV) {
981         env->ZF = (~val) & CPSR_Z;
982         env->NF = val;
983         env->CF = (val >> 29) & 1;
984         env->VF = (val << 3) & 0x80000000;
985     }
986     if (mask & CPSR_Q)
987         env->QF = ((val & CPSR_Q) != 0);
988     if (mask & (1 << 24))
989         env->thumb = ((val & (1 << 24)) != 0);
990     if (mask & CPSR_IT_0_1) {
991         env->condexec_bits &= ~3;
992         env->condexec_bits |= (val >> 25) & 3;
993     }
994     if (mask & CPSR_IT_2_7) {
995         env->condexec_bits &= 3;
996         env->condexec_bits |= (val >> 8) & 0xfc;
997     }
998     if (mask & 0x1ff) {
999         env->v7m.exception = val & 0x1ff;
1000     }
1001 }
1002 
1003 #define HCR_VM        (1ULL << 0)
1004 #define HCR_SWIO      (1ULL << 1)
1005 #define HCR_PTW       (1ULL << 2)
1006 #define HCR_FMO       (1ULL << 3)
1007 #define HCR_IMO       (1ULL << 4)
1008 #define HCR_AMO       (1ULL << 5)
1009 #define HCR_VF        (1ULL << 6)
1010 #define HCR_VI        (1ULL << 7)
1011 #define HCR_VSE       (1ULL << 8)
1012 #define HCR_FB        (1ULL << 9)
1013 #define HCR_BSU_MASK  (3ULL << 10)
1014 #define HCR_DC        (1ULL << 12)
1015 #define HCR_TWI       (1ULL << 13)
1016 #define HCR_TWE       (1ULL << 14)
1017 #define HCR_TID0      (1ULL << 15)
1018 #define HCR_TID1      (1ULL << 16)
1019 #define HCR_TID2      (1ULL << 17)
1020 #define HCR_TID3      (1ULL << 18)
1021 #define HCR_TSC       (1ULL << 19)
1022 #define HCR_TIDCP     (1ULL << 20)
1023 #define HCR_TACR      (1ULL << 21)
1024 #define HCR_TSW       (1ULL << 22)
1025 #define HCR_TPC       (1ULL << 23)
1026 #define HCR_TPU       (1ULL << 24)
1027 #define HCR_TTLB      (1ULL << 25)
1028 #define HCR_TVM       (1ULL << 26)
1029 #define HCR_TGE       (1ULL << 27)
1030 #define HCR_TDZ       (1ULL << 28)
1031 #define HCR_HCD       (1ULL << 29)
1032 #define HCR_TRVM      (1ULL << 30)
1033 #define HCR_RW        (1ULL << 31)
1034 #define HCR_CD        (1ULL << 32)
1035 #define HCR_ID        (1ULL << 33)
1036 #define HCR_MASK      ((1ULL << 34) - 1)
1037 
1038 #define SCR_NS                (1U << 0)
1039 #define SCR_IRQ               (1U << 1)
1040 #define SCR_FIQ               (1U << 2)
1041 #define SCR_EA                (1U << 3)
1042 #define SCR_FW                (1U << 4)
1043 #define SCR_AW                (1U << 5)
1044 #define SCR_NET               (1U << 6)
1045 #define SCR_SMD               (1U << 7)
1046 #define SCR_HCE               (1U << 8)
1047 #define SCR_SIF               (1U << 9)
1048 #define SCR_RW                (1U << 10)
1049 #define SCR_ST                (1U << 11)
1050 #define SCR_TWI               (1U << 12)
1051 #define SCR_TWE               (1U << 13)
1052 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1053 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1054 
1055 /* Return the current FPSCR value.  */
1056 uint32_t vfp_get_fpscr(CPUARMState *env);
1057 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1058 
1059 /* For A64 the FPSCR is split into two logically distinct registers,
1060  * FPCR and FPSR. However since they still use non-overlapping bits
1061  * we store the underlying state in fpscr and just mask on read/write.
1062  */
1063 #define FPSR_MASK 0xf800009f
1064 #define FPCR_MASK 0x07f79f00
1065 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1066 {
1067     return vfp_get_fpscr(env) & FPSR_MASK;
1068 }
1069 
1070 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1071 {
1072     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1073     vfp_set_fpscr(env, new_fpscr);
1074 }
1075 
1076 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1077 {
1078     return vfp_get_fpscr(env) & FPCR_MASK;
1079 }
1080 
1081 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1082 {
1083     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1084     vfp_set_fpscr(env, new_fpscr);
1085 }
1086 
1087 enum arm_cpu_mode {
1088   ARM_CPU_MODE_USR = 0x10,
1089   ARM_CPU_MODE_FIQ = 0x11,
1090   ARM_CPU_MODE_IRQ = 0x12,
1091   ARM_CPU_MODE_SVC = 0x13,
1092   ARM_CPU_MODE_MON = 0x16,
1093   ARM_CPU_MODE_ABT = 0x17,
1094   ARM_CPU_MODE_HYP = 0x1a,
1095   ARM_CPU_MODE_UND = 0x1b,
1096   ARM_CPU_MODE_SYS = 0x1f
1097 };
1098 
1099 /* VFP system registers.  */
1100 #define ARM_VFP_FPSID   0
1101 #define ARM_VFP_FPSCR   1
1102 #define ARM_VFP_MVFR2   5
1103 #define ARM_VFP_MVFR1   6
1104 #define ARM_VFP_MVFR0   7
1105 #define ARM_VFP_FPEXC   8
1106 #define ARM_VFP_FPINST  9
1107 #define ARM_VFP_FPINST2 10
1108 
1109 /* iwMMXt coprocessor control registers.  */
1110 #define ARM_IWMMXT_wCID		0
1111 #define ARM_IWMMXT_wCon		1
1112 #define ARM_IWMMXT_wCSSF	2
1113 #define ARM_IWMMXT_wCASF	3
1114 #define ARM_IWMMXT_wCGR0	8
1115 #define ARM_IWMMXT_wCGR1	9
1116 #define ARM_IWMMXT_wCGR2	10
1117 #define ARM_IWMMXT_wCGR3	11
1118 
1119 /* V7M CCR bits */
1120 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1121 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1122 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1123 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1124 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1125 FIELD(V7M_CCR, STKALIGN, 9, 1)
1126 FIELD(V7M_CCR, DC, 16, 1)
1127 FIELD(V7M_CCR, IC, 17, 1)
1128 
1129 /* V7M CFSR bits for MMFSR */
1130 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1131 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1132 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1133 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1134 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1135 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1136 
1137 /* V7M CFSR bits for BFSR */
1138 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1139 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1140 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1141 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1142 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1143 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1144 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1145 
1146 /* V7M CFSR bits for UFSR */
1147 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1148 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1149 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1150 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1151 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1152 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1153 
1154 /* V7M HFSR bits */
1155 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1156 FIELD(V7M_HFSR, FORCED, 30, 1)
1157 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1158 
1159 /* V7M DFSR bits */
1160 FIELD(V7M_DFSR, HALTED, 0, 1)
1161 FIELD(V7M_DFSR, BKPT, 1, 1)
1162 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1163 FIELD(V7M_DFSR, VCATCH, 3, 1)
1164 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1165 
1166 /* If adding a feature bit which corresponds to a Linux ELF
1167  * HWCAP bit, remember to update the feature-bit-to-hwcap
1168  * mapping in linux-user/elfload.c:get_elf_hwcap().
1169  */
1170 enum arm_features {
1171     ARM_FEATURE_VFP,
1172     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1173     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1174     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1175     ARM_FEATURE_V6,
1176     ARM_FEATURE_V6K,
1177     ARM_FEATURE_V7,
1178     ARM_FEATURE_THUMB2,
1179     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1180     ARM_FEATURE_VFP3,
1181     ARM_FEATURE_VFP_FP16,
1182     ARM_FEATURE_NEON,
1183     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1184     ARM_FEATURE_M, /* Microcontroller profile.  */
1185     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1186     ARM_FEATURE_THUMB2EE,
1187     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1188     ARM_FEATURE_V4T,
1189     ARM_FEATURE_V5,
1190     ARM_FEATURE_STRONGARM,
1191     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1192     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1193     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1194     ARM_FEATURE_GENERIC_TIMER,
1195     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1196     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1197     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1198     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1199     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1200     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1201     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1202     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1203     ARM_FEATURE_V8,
1204     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1205     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1206     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1207     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1208     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1209     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1210     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1211     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1212     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1213     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1214     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1215     ARM_FEATURE_PMU, /* has PMU support */
1216     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1217 };
1218 
1219 static inline int arm_feature(CPUARMState *env, int feature)
1220 {
1221     return (env->features & (1ULL << feature)) != 0;
1222 }
1223 
1224 #if !defined(CONFIG_USER_ONLY)
1225 /* Return true if exception levels below EL3 are in secure state,
1226  * or would be following an exception return to that level.
1227  * Unlike arm_is_secure() (which is always a question about the
1228  * _current_ state of the CPU) this doesn't care about the current
1229  * EL or mode.
1230  */
1231 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1232 {
1233     if (arm_feature(env, ARM_FEATURE_EL3)) {
1234         return !(env->cp15.scr_el3 & SCR_NS);
1235     } else {
1236         /* If EL3 is not supported then the secure state is implementation
1237          * defined, in which case QEMU defaults to non-secure.
1238          */
1239         return false;
1240     }
1241 }
1242 
1243 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1244 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1245 {
1246     if (arm_feature(env, ARM_FEATURE_EL3)) {
1247         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1248             /* CPU currently in AArch64 state and EL3 */
1249             return true;
1250         } else if (!is_a64(env) &&
1251                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1252             /* CPU currently in AArch32 state and monitor mode */
1253             return true;
1254         }
1255     }
1256     return false;
1257 }
1258 
1259 /* Return true if the processor is in secure state */
1260 static inline bool arm_is_secure(CPUARMState *env)
1261 {
1262     if (arm_is_el3_or_mon(env)) {
1263         return true;
1264     }
1265     return arm_is_secure_below_el3(env);
1266 }
1267 
1268 #else
1269 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1270 {
1271     return false;
1272 }
1273 
1274 static inline bool arm_is_secure(CPUARMState *env)
1275 {
1276     return false;
1277 }
1278 #endif
1279 
1280 /* Return true if the specified exception level is running in AArch64 state. */
1281 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1282 {
1283     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1284      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1285      */
1286     assert(el >= 1 && el <= 3);
1287     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1288 
1289     /* The highest exception level is always at the maximum supported
1290      * register width, and then lower levels have a register width controlled
1291      * by bits in the SCR or HCR registers.
1292      */
1293     if (el == 3) {
1294         return aa64;
1295     }
1296 
1297     if (arm_feature(env, ARM_FEATURE_EL3)) {
1298         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1299     }
1300 
1301     if (el == 2) {
1302         return aa64;
1303     }
1304 
1305     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1306         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1307     }
1308 
1309     return aa64;
1310 }
1311 
1312 /* Function for determing whether guest cp register reads and writes should
1313  * access the secure or non-secure bank of a cp register.  When EL3 is
1314  * operating in AArch32 state, the NS-bit determines whether the secure
1315  * instance of a cp register should be used. When EL3 is AArch64 (or if
1316  * it doesn't exist at all) then there is no register banking, and all
1317  * accesses are to the non-secure version.
1318  */
1319 static inline bool access_secure_reg(CPUARMState *env)
1320 {
1321     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1322                 !arm_el_is_aa64(env, 3) &&
1323                 !(env->cp15.scr_el3 & SCR_NS));
1324 
1325     return ret;
1326 }
1327 
1328 /* Macros for accessing a specified CP register bank */
1329 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1330     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1331 
1332 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1333     do {                                                \
1334         if (_secure) {                                   \
1335             (_env)->cp15._regname##_s = (_val);            \
1336         } else {                                        \
1337             (_env)->cp15._regname##_ns = (_val);           \
1338         }                                               \
1339     } while (0)
1340 
1341 /* Macros for automatically accessing a specific CP register bank depending on
1342  * the current secure state of the system.  These macros are not intended for
1343  * supporting instruction translation reads/writes as these are dependent
1344  * solely on the SCR.NS bit and not the mode.
1345  */
1346 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1347     A32_BANKED_REG_GET((_env), _regname,                \
1348                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1349 
1350 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1351     A32_BANKED_REG_SET((_env), _regname,                                    \
1352                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1353                        (_val))
1354 
1355 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1356 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1357                                  uint32_t cur_el, bool secure);
1358 
1359 /* Interface between CPU and Interrupt controller.  */
1360 #ifndef CONFIG_USER_ONLY
1361 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1362 #else
1363 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1364 {
1365     return true;
1366 }
1367 #endif
1368 void armv7m_nvic_set_pending(void *opaque, int irq);
1369 void armv7m_nvic_acknowledge_irq(void *opaque);
1370 /**
1371  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1372  * @opaque: the NVIC
1373  * @irq: the exception number to complete
1374  *
1375  * Returns: -1 if the irq was not active
1376  *           1 if completing this irq brought us back to base (no active irqs)
1377  *           0 if there is still an irq active after this one was completed
1378  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1379  */
1380 int armv7m_nvic_complete_irq(void *opaque, int irq);
1381 
1382 /* Interface for defining coprocessor registers.
1383  * Registers are defined in tables of arm_cp_reginfo structs
1384  * which are passed to define_arm_cp_regs().
1385  */
1386 
1387 /* When looking up a coprocessor register we look for it
1388  * via an integer which encodes all of:
1389  *  coprocessor number
1390  *  Crn, Crm, opc1, opc2 fields
1391  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1392  *    or via MRRC/MCRR?)
1393  *  non-secure/secure bank (AArch32 only)
1394  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1395  * (In this case crn and opc2 should be zero.)
1396  * For AArch64, there is no 32/64 bit size distinction;
1397  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1398  * and 4 bit CRn and CRm. The encoding patterns are chosen
1399  * to be easy to convert to and from the KVM encodings, and also
1400  * so that the hashtable can contain both AArch32 and AArch64
1401  * registers (to allow for interprocessing where we might run
1402  * 32 bit code on a 64 bit core).
1403  */
1404 /* This bit is private to our hashtable cpreg; in KVM register
1405  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1406  * in the upper bits of the 64 bit ID.
1407  */
1408 #define CP_REG_AA64_SHIFT 28
1409 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1410 
1411 /* To enable banking of coprocessor registers depending on ns-bit we
1412  * add a bit to distinguish between secure and non-secure cpregs in the
1413  * hashtable.
1414  */
1415 #define CP_REG_NS_SHIFT 29
1416 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1417 
1418 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1419     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1420      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1421 
1422 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1423     (CP_REG_AA64_MASK |                                 \
1424      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1425      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1426      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1427      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1428      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1429      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1430 
1431 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1432  * version used as a key for the coprocessor register hashtable
1433  */
1434 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1435 {
1436     uint32_t cpregid = kvmid;
1437     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1438         cpregid |= CP_REG_AA64_MASK;
1439     } else {
1440         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1441             cpregid |= (1 << 15);
1442         }
1443 
1444         /* KVM is always non-secure so add the NS flag on AArch32 register
1445          * entries.
1446          */
1447          cpregid |= 1 << CP_REG_NS_SHIFT;
1448     }
1449     return cpregid;
1450 }
1451 
1452 /* Convert a truncated 32 bit hashtable key into the full
1453  * 64 bit KVM register ID.
1454  */
1455 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1456 {
1457     uint64_t kvmid;
1458 
1459     if (cpregid & CP_REG_AA64_MASK) {
1460         kvmid = cpregid & ~CP_REG_AA64_MASK;
1461         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1462     } else {
1463         kvmid = cpregid & ~(1 << 15);
1464         if (cpregid & (1 << 15)) {
1465             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1466         } else {
1467             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1468         }
1469     }
1470     return kvmid;
1471 }
1472 
1473 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1474  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1475  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1476  * TCG can assume the value to be constant (ie load at translate time)
1477  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1478  * indicates that the TB should not be ended after a write to this register
1479  * (the default is that the TB ends after cp writes). OVERRIDE permits
1480  * a register definition to override a previous definition for the
1481  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1482  * old must have the OVERRIDE bit set.
1483  * ALIAS indicates that this register is an alias view of some underlying
1484  * state which is also visible via another register, and that the other
1485  * register is handling migration and reset; registers marked ALIAS will not be
1486  * migrated but may have their state set by syncing of register state from KVM.
1487  * NO_RAW indicates that this register has no underlying state and does not
1488  * support raw access for state saving/loading; it will not be used for either
1489  * migration or KVM state synchronization. (Typically this is for "registers"
1490  * which are actually used as instructions for cache maintenance and so on.)
1491  * IO indicates that this register does I/O and therefore its accesses
1492  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1493  * registers which implement clocks or timers require this.
1494  */
1495 #define ARM_CP_SPECIAL 1
1496 #define ARM_CP_CONST 2
1497 #define ARM_CP_64BIT 4
1498 #define ARM_CP_SUPPRESS_TB_END 8
1499 #define ARM_CP_OVERRIDE 16
1500 #define ARM_CP_ALIAS 32
1501 #define ARM_CP_IO 64
1502 #define ARM_CP_NO_RAW 128
1503 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1504 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1505 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1506 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1507 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1508 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1509 /* Used only as a terminator for ARMCPRegInfo lists */
1510 #define ARM_CP_SENTINEL 0xffff
1511 /* Mask of only the flag bits in a type field */
1512 #define ARM_CP_FLAG_MASK 0xff
1513 
1514 /* Valid values for ARMCPRegInfo state field, indicating which of
1515  * the AArch32 and AArch64 execution states this register is visible in.
1516  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1517  * If the reginfo is declared to be visible in both states then a second
1518  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1519  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1520  * Note that we rely on the values of these enums as we iterate through
1521  * the various states in some places.
1522  */
1523 enum {
1524     ARM_CP_STATE_AA32 = 0,
1525     ARM_CP_STATE_AA64 = 1,
1526     ARM_CP_STATE_BOTH = 2,
1527 };
1528 
1529 /* ARM CP register secure state flags.  These flags identify security state
1530  * attributes for a given CP register entry.
1531  * The existence of both or neither secure and non-secure flags indicates that
1532  * the register has both a secure and non-secure hash entry.  A single one of
1533  * these flags causes the register to only be hashed for the specified
1534  * security state.
1535  * Although definitions may have any combination of the S/NS bits, each
1536  * registered entry will only have one to identify whether the entry is secure
1537  * or non-secure.
1538  */
1539 enum {
1540     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1541     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1542 };
1543 
1544 /* Return true if cptype is a valid type field. This is used to try to
1545  * catch errors where the sentinel has been accidentally left off the end
1546  * of a list of registers.
1547  */
1548 static inline bool cptype_valid(int cptype)
1549 {
1550     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1551         || ((cptype & ARM_CP_SPECIAL) &&
1552             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1553 }
1554 
1555 /* Access rights:
1556  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1557  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1558  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1559  * (ie any of the privileged modes in Secure state, or Monitor mode).
1560  * If a register is accessible in one privilege level it's always accessible
1561  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1562  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1563  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1564  * terminology a little and call this PL3.
1565  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1566  * with the ELx exception levels.
1567  *
1568  * If access permissions for a register are more complex than can be
1569  * described with these bits, then use a laxer set of restrictions, and
1570  * do the more restrictive/complex check inside a helper function.
1571  */
1572 #define PL3_R 0x80
1573 #define PL3_W 0x40
1574 #define PL2_R (0x20 | PL3_R)
1575 #define PL2_W (0x10 | PL3_W)
1576 #define PL1_R (0x08 | PL2_R)
1577 #define PL1_W (0x04 | PL2_W)
1578 #define PL0_R (0x02 | PL1_R)
1579 #define PL0_W (0x01 | PL1_W)
1580 
1581 #define PL3_RW (PL3_R | PL3_W)
1582 #define PL2_RW (PL2_R | PL2_W)
1583 #define PL1_RW (PL1_R | PL1_W)
1584 #define PL0_RW (PL0_R | PL0_W)
1585 
1586 /* Return the highest implemented Exception Level */
1587 static inline int arm_highest_el(CPUARMState *env)
1588 {
1589     if (arm_feature(env, ARM_FEATURE_EL3)) {
1590         return 3;
1591     }
1592     if (arm_feature(env, ARM_FEATURE_EL2)) {
1593         return 2;
1594     }
1595     return 1;
1596 }
1597 
1598 /* Return the current Exception Level (as per ARMv8; note that this differs
1599  * from the ARMv7 Privilege Level).
1600  */
1601 static inline int arm_current_el(CPUARMState *env)
1602 {
1603     if (arm_feature(env, ARM_FEATURE_M)) {
1604         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1605     }
1606 
1607     if (is_a64(env)) {
1608         return extract32(env->pstate, 2, 2);
1609     }
1610 
1611     switch (env->uncached_cpsr & 0x1f) {
1612     case ARM_CPU_MODE_USR:
1613         return 0;
1614     case ARM_CPU_MODE_HYP:
1615         return 2;
1616     case ARM_CPU_MODE_MON:
1617         return 3;
1618     default:
1619         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1620             /* If EL3 is 32-bit then all secure privileged modes run in
1621              * EL3
1622              */
1623             return 3;
1624         }
1625 
1626         return 1;
1627     }
1628 }
1629 
1630 typedef struct ARMCPRegInfo ARMCPRegInfo;
1631 
1632 typedef enum CPAccessResult {
1633     /* Access is permitted */
1634     CP_ACCESS_OK = 0,
1635     /* Access fails due to a configurable trap or enable which would
1636      * result in a categorized exception syndrome giving information about
1637      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1638      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1639      * PL1 if in EL0, otherwise to the current EL).
1640      */
1641     CP_ACCESS_TRAP = 1,
1642     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1643      * Note that this is not a catch-all case -- the set of cases which may
1644      * result in this failure is specifically defined by the architecture.
1645      */
1646     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1647     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1648     CP_ACCESS_TRAP_EL2 = 3,
1649     CP_ACCESS_TRAP_EL3 = 4,
1650     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1651     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1652     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1653     /* Access fails and results in an exception syndrome for an FP access,
1654      * trapped directly to EL2 or EL3
1655      */
1656     CP_ACCESS_TRAP_FP_EL2 = 7,
1657     CP_ACCESS_TRAP_FP_EL3 = 8,
1658 } CPAccessResult;
1659 
1660 /* Access functions for coprocessor registers. These cannot fail and
1661  * may not raise exceptions.
1662  */
1663 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1664 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1665                        uint64_t value);
1666 /* Access permission check functions for coprocessor registers. */
1667 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1668                                   const ARMCPRegInfo *opaque,
1669                                   bool isread);
1670 /* Hook function for register reset */
1671 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1672 
1673 #define CP_ANY 0xff
1674 
1675 /* Definition of an ARM coprocessor register */
1676 struct ARMCPRegInfo {
1677     /* Name of register (useful mainly for debugging, need not be unique) */
1678     const char *name;
1679     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1680      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1681      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1682      * will be decoded to this register. The register read and write
1683      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1684      * used by the program, so it is possible to register a wildcard and
1685      * then behave differently on read/write if necessary.
1686      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1687      * must both be zero.
1688      * For AArch64-visible registers, opc0 is also used.
1689      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1690      * way to distinguish (for KVM's benefit) guest-visible system registers
1691      * from demuxed ones provided to preserve the "no side effects on
1692      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1693      * visible (to match KVM's encoding); cp==0 will be converted to
1694      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1695      */
1696     uint8_t cp;
1697     uint8_t crn;
1698     uint8_t crm;
1699     uint8_t opc0;
1700     uint8_t opc1;
1701     uint8_t opc2;
1702     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1703     int state;
1704     /* Register type: ARM_CP_* bits/values */
1705     int type;
1706     /* Access rights: PL*_[RW] */
1707     int access;
1708     /* Security state: ARM_CP_SECSTATE_* bits/values */
1709     int secure;
1710     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1711      * this register was defined: can be used to hand data through to the
1712      * register read/write functions, since they are passed the ARMCPRegInfo*.
1713      */
1714     void *opaque;
1715     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1716      * fieldoffset is non-zero, the reset value of the register.
1717      */
1718     uint64_t resetvalue;
1719     /* Offset of the field in CPUARMState for this register.
1720      *
1721      * This is not needed if either:
1722      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1723      *  2. both readfn and writefn are specified
1724      */
1725     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1726 
1727     /* Offsets of the secure and non-secure fields in CPUARMState for the
1728      * register if it is banked.  These fields are only used during the static
1729      * registration of a register.  During hashing the bank associated
1730      * with a given security state is copied to fieldoffset which is used from
1731      * there on out.
1732      *
1733      * It is expected that register definitions use either fieldoffset or
1734      * bank_fieldoffsets in the definition but not both.  It is also expected
1735      * that both bank offsets are set when defining a banked register.  This
1736      * use indicates that a register is banked.
1737      */
1738     ptrdiff_t bank_fieldoffsets[2];
1739 
1740     /* Function for making any access checks for this register in addition to
1741      * those specified by the 'access' permissions bits. If NULL, no extra
1742      * checks required. The access check is performed at runtime, not at
1743      * translate time.
1744      */
1745     CPAccessFn *accessfn;
1746     /* Function for handling reads of this register. If NULL, then reads
1747      * will be done by loading from the offset into CPUARMState specified
1748      * by fieldoffset.
1749      */
1750     CPReadFn *readfn;
1751     /* Function for handling writes of this register. If NULL, then writes
1752      * will be done by writing to the offset into CPUARMState specified
1753      * by fieldoffset.
1754      */
1755     CPWriteFn *writefn;
1756     /* Function for doing a "raw" read; used when we need to copy
1757      * coprocessor state to the kernel for KVM or out for
1758      * migration. This only needs to be provided if there is also a
1759      * readfn and it has side effects (for instance clear-on-read bits).
1760      */
1761     CPReadFn *raw_readfn;
1762     /* Function for doing a "raw" write; used when we need to copy KVM
1763      * kernel coprocessor state into userspace, or for inbound
1764      * migration. This only needs to be provided if there is also a
1765      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1766      * or similar behaviour.
1767      */
1768     CPWriteFn *raw_writefn;
1769     /* Function for resetting the register. If NULL, then reset will be done
1770      * by writing resetvalue to the field specified in fieldoffset. If
1771      * fieldoffset is 0 then no reset will be done.
1772      */
1773     CPResetFn *resetfn;
1774 };
1775 
1776 /* Macros which are lvalues for the field in CPUARMState for the
1777  * ARMCPRegInfo *ri.
1778  */
1779 #define CPREG_FIELD32(env, ri) \
1780     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1781 #define CPREG_FIELD64(env, ri) \
1782     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1783 
1784 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1785 
1786 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1787                                     const ARMCPRegInfo *regs, void *opaque);
1788 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1789                                        const ARMCPRegInfo *regs, void *opaque);
1790 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1791 {
1792     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1793 }
1794 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1795 {
1796     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1797 }
1798 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1799 
1800 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1801 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1802                          uint64_t value);
1803 /* CPReadFn that can be used for read-as-zero behaviour */
1804 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1805 
1806 /* CPResetFn that does nothing, for use if no reset is required even
1807  * if fieldoffset is non zero.
1808  */
1809 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1810 
1811 /* Return true if this reginfo struct's field in the cpu state struct
1812  * is 64 bits wide.
1813  */
1814 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1815 {
1816     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1817 }
1818 
1819 static inline bool cp_access_ok(int current_el,
1820                                 const ARMCPRegInfo *ri, int isread)
1821 {
1822     return (ri->access >> ((current_el * 2) + isread)) & 1;
1823 }
1824 
1825 /* Raw read of a coprocessor register (as needed for migration, etc) */
1826 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1827 
1828 /**
1829  * write_list_to_cpustate
1830  * @cpu: ARMCPU
1831  *
1832  * For each register listed in the ARMCPU cpreg_indexes list, write
1833  * its value from the cpreg_values list into the ARMCPUState structure.
1834  * This updates TCG's working data structures from KVM data or
1835  * from incoming migration state.
1836  *
1837  * Returns: true if all register values were updated correctly,
1838  * false if some register was unknown or could not be written.
1839  * Note that we do not stop early on failure -- we will attempt
1840  * writing all registers in the list.
1841  */
1842 bool write_list_to_cpustate(ARMCPU *cpu);
1843 
1844 /**
1845  * write_cpustate_to_list:
1846  * @cpu: ARMCPU
1847  *
1848  * For each register listed in the ARMCPU cpreg_indexes list, write
1849  * its value from the ARMCPUState structure into the cpreg_values list.
1850  * This is used to copy info from TCG's working data structures into
1851  * KVM or for outbound migration.
1852  *
1853  * Returns: true if all register values were read correctly,
1854  * false if some register was unknown or could not be read.
1855  * Note that we do not stop early on failure -- we will attempt
1856  * reading all registers in the list.
1857  */
1858 bool write_cpustate_to_list(ARMCPU *cpu);
1859 
1860 #define ARM_CPUID_TI915T      0x54029152
1861 #define ARM_CPUID_TI925T      0x54029252
1862 
1863 #if defined(CONFIG_USER_ONLY)
1864 #define TARGET_PAGE_BITS 12
1865 #else
1866 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1867  * have to support 1K tiny pages.
1868  */
1869 #define TARGET_PAGE_BITS_VARY
1870 #define TARGET_PAGE_BITS_MIN 10
1871 #endif
1872 
1873 #if defined(TARGET_AARCH64)
1874 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1875 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1876 #else
1877 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1878 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1879 #endif
1880 
1881 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1882                                      unsigned int target_el)
1883 {
1884     CPUARMState *env = cs->env_ptr;
1885     unsigned int cur_el = arm_current_el(env);
1886     bool secure = arm_is_secure(env);
1887     bool pstate_unmasked;
1888     int8_t unmasked = 0;
1889 
1890     /* Don't take exceptions if they target a lower EL.
1891      * This check should catch any exceptions that would not be taken but left
1892      * pending.
1893      */
1894     if (cur_el > target_el) {
1895         return false;
1896     }
1897 
1898     switch (excp_idx) {
1899     case EXCP_FIQ:
1900         pstate_unmasked = !(env->daif & PSTATE_F);
1901         break;
1902 
1903     case EXCP_IRQ:
1904         pstate_unmasked = !(env->daif & PSTATE_I);
1905         break;
1906 
1907     case EXCP_VFIQ:
1908         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1909             /* VFIQs are only taken when hypervized and non-secure.  */
1910             return false;
1911         }
1912         return !(env->daif & PSTATE_F);
1913     case EXCP_VIRQ:
1914         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1915             /* VIRQs are only taken when hypervized and non-secure.  */
1916             return false;
1917         }
1918         return !(env->daif & PSTATE_I);
1919     default:
1920         g_assert_not_reached();
1921     }
1922 
1923     /* Use the target EL, current execution state and SCR/HCR settings to
1924      * determine whether the corresponding CPSR bit is used to mask the
1925      * interrupt.
1926      */
1927     if ((target_el > cur_el) && (target_el != 1)) {
1928         /* Exceptions targeting a higher EL may not be maskable */
1929         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1930             /* 64-bit masking rules are simple: exceptions to EL3
1931              * can't be masked, and exceptions to EL2 can only be
1932              * masked from Secure state. The HCR and SCR settings
1933              * don't affect the masking logic, only the interrupt routing.
1934              */
1935             if (target_el == 3 || !secure) {
1936                 unmasked = 1;
1937             }
1938         } else {
1939             /* The old 32-bit-only environment has a more complicated
1940              * masking setup. HCR and SCR bits not only affect interrupt
1941              * routing but also change the behaviour of masking.
1942              */
1943             bool hcr, scr;
1944 
1945             switch (excp_idx) {
1946             case EXCP_FIQ:
1947                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1948                  * we override the CPSR.F in determining if the exception is
1949                  * masked or not. If neither of these are set then we fall back
1950                  * to the CPSR.F setting otherwise we further assess the state
1951                  * below.
1952                  */
1953                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1954                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1955 
1956                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1957                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1958                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1959                  * when non-secure but only when FIQs are only routed to EL3.
1960                  */
1961                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1962                 break;
1963             case EXCP_IRQ:
1964                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1965                  * we may override the CPSR.I masking when in non-secure state.
1966                  * The SCR.IRQ setting has already been taken into consideration
1967                  * when setting the target EL, so it does not have a further
1968                  * affect here.
1969                  */
1970                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1971                 scr = false;
1972                 break;
1973             default:
1974                 g_assert_not_reached();
1975             }
1976 
1977             if ((scr || hcr) && !secure) {
1978                 unmasked = 1;
1979             }
1980         }
1981     }
1982 
1983     /* The PSTATE bits only mask the interrupt if we have not overriden the
1984      * ability above.
1985      */
1986     return unmasked || pstate_unmasked;
1987 }
1988 
1989 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1990 
1991 #define cpu_signal_handler cpu_arm_signal_handler
1992 #define cpu_list arm_cpu_list
1993 
1994 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1995  *
1996  * If EL3 is 64-bit:
1997  *  + NonSecure EL1 & 0 stage 1
1998  *  + NonSecure EL1 & 0 stage 2
1999  *  + NonSecure EL2
2000  *  + Secure EL1 & EL0
2001  *  + Secure EL3
2002  * If EL3 is 32-bit:
2003  *  + NonSecure PL1 & 0 stage 1
2004  *  + NonSecure PL1 & 0 stage 2
2005  *  + NonSecure PL2
2006  *  + Secure PL0 & PL1
2007  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2008  *
2009  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2010  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2011  *     may differ in access permissions even if the VA->PA map is the same
2012  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2013  *     translation, which means that we have one mmu_idx that deals with two
2014  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2015  *     architecturally permitted]
2016  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2017  *     handling via the TLB. The only way to do a stage 1 translation without
2018  *     the immediate stage 2 translation is via the ATS or AT system insns,
2019  *     which can be slow-pathed and always do a page table walk.
2020  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2021  *     translation regimes, because they map reasonably well to each other
2022  *     and they can't both be active at the same time.
2023  * This gives us the following list of mmu_idx values:
2024  *
2025  * NS EL0 (aka NS PL0) stage 1+2
2026  * NS EL1 (aka NS PL1) stage 1+2
2027  * NS EL2 (aka NS PL2)
2028  * S EL3 (aka S PL1)
2029  * S EL0 (aka S PL0)
2030  * S EL1 (not used if EL3 is 32 bit)
2031  * NS EL0+1 stage 2
2032  *
2033  * (The last of these is an mmu_idx because we want to be able to use the TLB
2034  * for the accesses done as part of a stage 1 page table walk, rather than
2035  * having to walk the stage 2 page table over and over.)
2036  *
2037  * Our enumeration includes at the end some entries which are not "true"
2038  * mmu_idx values in that they don't have corresponding TLBs and are only
2039  * valid for doing slow path page table walks.
2040  *
2041  * The constant names here are patterned after the general style of the names
2042  * of the AT/ATS operations.
2043  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2044  */
2045 typedef enum ARMMMUIdx {
2046     ARMMMUIdx_S12NSE0 = 0,
2047     ARMMMUIdx_S12NSE1 = 1,
2048     ARMMMUIdx_S1E2 = 2,
2049     ARMMMUIdx_S1E3 = 3,
2050     ARMMMUIdx_S1SE0 = 4,
2051     ARMMMUIdx_S1SE1 = 5,
2052     ARMMMUIdx_S2NS = 6,
2053     /* Indexes below here don't have TLBs and are used only for AT system
2054      * instructions or for the first stage of an S12 page table walk.
2055      */
2056     ARMMMUIdx_S1NSE0 = 7,
2057     ARMMMUIdx_S1NSE1 = 8,
2058 } ARMMMUIdx;
2059 
2060 #define MMU_USER_IDX 0
2061 
2062 /* Return the exception level we're running at if this is our mmu_idx */
2063 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2064 {
2065     assert(mmu_idx < ARMMMUIdx_S2NS);
2066     return mmu_idx & 3;
2067 }
2068 
2069 /* Determine the current mmu_idx to use for normal loads/stores */
2070 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2071 {
2072     int el = arm_current_el(env);
2073 
2074     if (el < 2 && arm_is_secure_below_el3(env)) {
2075         return ARMMMUIdx_S1SE0 + el;
2076     }
2077     return el;
2078 }
2079 
2080 /* Indexes used when registering address spaces with cpu_address_space_init */
2081 typedef enum ARMASIdx {
2082     ARMASIdx_NS = 0,
2083     ARMASIdx_S = 1,
2084 } ARMASIdx;
2085 
2086 /* Return the Exception Level targeted by debug exceptions. */
2087 static inline int arm_debug_target_el(CPUARMState *env)
2088 {
2089     bool secure = arm_is_secure(env);
2090     bool route_to_el2 = false;
2091 
2092     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2093         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2094                        env->cp15.mdcr_el2 & (1 << 8);
2095     }
2096 
2097     if (route_to_el2) {
2098         return 2;
2099     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2100                !arm_el_is_aa64(env, 3) && secure) {
2101         return 3;
2102     } else {
2103         return 1;
2104     }
2105 }
2106 
2107 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2108 {
2109     if (arm_is_secure(env)) {
2110         /* MDCR_EL3.SDD disables debug events from Secure state */
2111         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2112             || arm_current_el(env) == 3) {
2113             return false;
2114         }
2115     }
2116 
2117     if (arm_current_el(env) == arm_debug_target_el(env)) {
2118         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2119             || (env->daif & PSTATE_D)) {
2120             return false;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2127 {
2128     int el = arm_current_el(env);
2129 
2130     if (el == 0 && arm_el_is_aa64(env, 1)) {
2131         return aa64_generate_debug_exceptions(env);
2132     }
2133 
2134     if (arm_is_secure(env)) {
2135         int spd;
2136 
2137         if (el == 0 && (env->cp15.sder & 1)) {
2138             /* SDER.SUIDEN means debug exceptions from Secure EL0
2139              * are always enabled. Otherwise they are controlled by
2140              * SDCR.SPD like those from other Secure ELs.
2141              */
2142             return true;
2143         }
2144 
2145         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2146         switch (spd) {
2147         case 1:
2148             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2149         case 0:
2150             /* For 0b00 we return true if external secure invasive debug
2151              * is enabled. On real hardware this is controlled by external
2152              * signals to the core. QEMU always permits debug, and behaves
2153              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2154              */
2155             return true;
2156         case 2:
2157             return false;
2158         case 3:
2159             return true;
2160         }
2161     }
2162 
2163     return el != 2;
2164 }
2165 
2166 /* Return true if debugging exceptions are currently enabled.
2167  * This corresponds to what in ARM ARM pseudocode would be
2168  *    if UsingAArch32() then
2169  *        return AArch32.GenerateDebugExceptions()
2170  *    else
2171  *        return AArch64.GenerateDebugExceptions()
2172  * We choose to push the if() down into this function for clarity,
2173  * since the pseudocode has it at all callsites except for the one in
2174  * CheckSoftwareStep(), where it is elided because both branches would
2175  * always return the same value.
2176  *
2177  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2178  * don't yet implement those exception levels or their associated trap bits.
2179  */
2180 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2181 {
2182     if (env->aarch64) {
2183         return aa64_generate_debug_exceptions(env);
2184     } else {
2185         return aa32_generate_debug_exceptions(env);
2186     }
2187 }
2188 
2189 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2190  * implicitly means this always returns false in pre-v8 CPUs.)
2191  */
2192 static inline bool arm_singlestep_active(CPUARMState *env)
2193 {
2194     return extract32(env->cp15.mdscr_el1, 0, 1)
2195         && arm_el_is_aa64(env, arm_debug_target_el(env))
2196         && arm_generate_debug_exceptions(env);
2197 }
2198 
2199 static inline bool arm_sctlr_b(CPUARMState *env)
2200 {
2201     return
2202         /* We need not implement SCTLR.ITD in user-mode emulation, so
2203          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2204          * This lets people run BE32 binaries with "-cpu any".
2205          */
2206 #ifndef CONFIG_USER_ONLY
2207         !arm_feature(env, ARM_FEATURE_V7) &&
2208 #endif
2209         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2210 }
2211 
2212 /* Return true if the processor is in big-endian mode. */
2213 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2214 {
2215     int cur_el;
2216 
2217     /* In 32bit endianness is determined by looking at CPSR's E bit */
2218     if (!is_a64(env)) {
2219         return
2220 #ifdef CONFIG_USER_ONLY
2221             /* In system mode, BE32 is modelled in line with the
2222              * architecture (as word-invariant big-endianness), where loads
2223              * and stores are done little endian but from addresses which
2224              * are adjusted by XORing with the appropriate constant. So the
2225              * endianness to use for the raw data access is not affected by
2226              * SCTLR.B.
2227              * In user mode, however, we model BE32 as byte-invariant
2228              * big-endianness (because user-only code cannot tell the
2229              * difference), and so we need to use a data access endianness
2230              * that depends on SCTLR.B.
2231              */
2232             arm_sctlr_b(env) ||
2233 #endif
2234                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2235     }
2236 
2237     cur_el = arm_current_el(env);
2238 
2239     if (cur_el == 0) {
2240         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2241     }
2242 
2243     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2244 }
2245 
2246 #include "exec/cpu-all.h"
2247 
2248 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2249  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2250  * We put flags which are shared between 32 and 64 bit mode at the top
2251  * of the word, and flags which apply to only one mode at the bottom.
2252  */
2253 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2254 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2255 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2256 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2257 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2258 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2259 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2260 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2261 /* Target EL if we take a floating-point-disabled exception */
2262 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2263 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2264 
2265 /* Bit usage when in AArch32 state: */
2266 #define ARM_TBFLAG_THUMB_SHIFT      0
2267 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2268 #define ARM_TBFLAG_VECLEN_SHIFT     1
2269 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2270 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2271 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2272 #define ARM_TBFLAG_VFPEN_SHIFT      7
2273 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2274 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2275 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2276 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2277 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2278 /* We store the bottom two bits of the CPAR as TB flags and handle
2279  * checks on the other bits at runtime
2280  */
2281 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2282 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2283 /* Indicates whether cp register reads and writes by guest code should access
2284  * the secure or nonsecure bank of banked registers; note that this is not
2285  * the same thing as the current security state of the processor!
2286  */
2287 #define ARM_TBFLAG_NS_SHIFT         19
2288 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2289 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2290 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2291 
2292 /* Bit usage when in AArch64 state */
2293 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2294 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2295 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2296 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2297 
2298 /* some convenience accessor macros */
2299 #define ARM_TBFLAG_AARCH64_STATE(F) \
2300     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2301 #define ARM_TBFLAG_MMUIDX(F) \
2302     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2303 #define ARM_TBFLAG_SS_ACTIVE(F) \
2304     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2305 #define ARM_TBFLAG_PSTATE_SS(F) \
2306     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2307 #define ARM_TBFLAG_FPEXC_EL(F) \
2308     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2309 #define ARM_TBFLAG_THUMB(F) \
2310     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2311 #define ARM_TBFLAG_VECLEN(F) \
2312     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2313 #define ARM_TBFLAG_VECSTRIDE(F) \
2314     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2315 #define ARM_TBFLAG_VFPEN(F) \
2316     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2317 #define ARM_TBFLAG_CONDEXEC(F) \
2318     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2319 #define ARM_TBFLAG_SCTLR_B(F) \
2320     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2321 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2322     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2323 #define ARM_TBFLAG_NS(F) \
2324     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2325 #define ARM_TBFLAG_BE_DATA(F) \
2326     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2327 #define ARM_TBFLAG_TBI0(F) \
2328     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2329 #define ARM_TBFLAG_TBI1(F) \
2330     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2331 
2332 static inline bool bswap_code(bool sctlr_b)
2333 {
2334 #ifdef CONFIG_USER_ONLY
2335     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2336      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2337      * would also end up as a mixed-endian mode with BE code, LE data.
2338      */
2339     return
2340 #ifdef TARGET_WORDS_BIGENDIAN
2341         1 ^
2342 #endif
2343         sctlr_b;
2344 #else
2345     /* All code access in ARM is little endian, and there are no loaders
2346      * doing swaps that need to be reversed
2347      */
2348     return 0;
2349 #endif
2350 }
2351 
2352 /* Return the exception level to which FP-disabled exceptions should
2353  * be taken, or 0 if FP is enabled.
2354  */
2355 static inline int fp_exception_el(CPUARMState *env)
2356 {
2357     int fpen;
2358     int cur_el = arm_current_el(env);
2359 
2360     /* CPACR and the CPTR registers don't exist before v6, so FP is
2361      * always accessible
2362      */
2363     if (!arm_feature(env, ARM_FEATURE_V6)) {
2364         return 0;
2365     }
2366 
2367     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2368      * 0, 2 : trap EL0 and EL1/PL1 accesses
2369      * 1    : trap only EL0 accesses
2370      * 3    : trap no accesses
2371      */
2372     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2373     switch (fpen) {
2374     case 0:
2375     case 2:
2376         if (cur_el == 0 || cur_el == 1) {
2377             /* Trap to PL1, which might be EL1 or EL3 */
2378             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2379                 return 3;
2380             }
2381             return 1;
2382         }
2383         if (cur_el == 3 && !is_a64(env)) {
2384             /* Secure PL1 running at EL3 */
2385             return 3;
2386         }
2387         break;
2388     case 1:
2389         if (cur_el == 0) {
2390             return 1;
2391         }
2392         break;
2393     case 3:
2394         break;
2395     }
2396 
2397     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2398      * check because zero bits in the registers mean "don't trap".
2399      */
2400 
2401     /* CPTR_EL2 : present in v7VE or v8 */
2402     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2403         && !arm_is_secure_below_el3(env)) {
2404         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2405         return 2;
2406     }
2407 
2408     /* CPTR_EL3 : present in v8 */
2409     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2410         /* Trap all FP ops to EL3 */
2411         return 3;
2412     }
2413 
2414     return 0;
2415 }
2416 
2417 #ifdef CONFIG_USER_ONLY
2418 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2419 {
2420     return
2421 #ifdef TARGET_WORDS_BIGENDIAN
2422        1 ^
2423 #endif
2424        arm_cpu_data_is_big_endian(env);
2425 }
2426 #endif
2427 
2428 #ifndef CONFIG_USER_ONLY
2429 /**
2430  * arm_regime_tbi0:
2431  * @env: CPUARMState
2432  * @mmu_idx: MMU index indicating required translation regime
2433  *
2434  * Extracts the TBI0 value from the appropriate TCR for the current EL
2435  *
2436  * Returns: the TBI0 value.
2437  */
2438 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2439 
2440 /**
2441  * arm_regime_tbi1:
2442  * @env: CPUARMState
2443  * @mmu_idx: MMU index indicating required translation regime
2444  *
2445  * Extracts the TBI1 value from the appropriate TCR for the current EL
2446  *
2447  * Returns: the TBI1 value.
2448  */
2449 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2450 #else
2451 /* We can't handle tagged addresses properly in user-only mode */
2452 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2453 {
2454     return 0;
2455 }
2456 
2457 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2458 {
2459     return 0;
2460 }
2461 #endif
2462 
2463 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2464                                         target_ulong *cs_base, uint32_t *flags)
2465 {
2466     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2467     if (is_a64(env)) {
2468         *pc = env->pc;
2469         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2470         /* Get control bits for tagged addresses */
2471         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2472         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2473     } else {
2474         *pc = env->regs[15];
2475         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2476             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2477             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2478             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2479             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2480         if (!(access_secure_reg(env))) {
2481             *flags |= ARM_TBFLAG_NS_MASK;
2482         }
2483         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2484             || arm_el_is_aa64(env, 1)) {
2485             *flags |= ARM_TBFLAG_VFPEN_MASK;
2486         }
2487         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2488                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2489     }
2490 
2491     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2492 
2493     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2494      * states defined in the ARM ARM for software singlestep:
2495      *  SS_ACTIVE   PSTATE.SS   State
2496      *     0            x       Inactive (the TB flag for SS is always 0)
2497      *     1            0       Active-pending
2498      *     1            1       Active-not-pending
2499      */
2500     if (arm_singlestep_active(env)) {
2501         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2502         if (is_a64(env)) {
2503             if (env->pstate & PSTATE_SS) {
2504                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2505             }
2506         } else {
2507             if (env->uncached_cpsr & PSTATE_SS) {
2508                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2509             }
2510         }
2511     }
2512     if (arm_cpu_data_is_big_endian(env)) {
2513         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2514     }
2515     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2516 
2517     *cs_base = 0;
2518 }
2519 
2520 enum {
2521     QEMU_PSCI_CONDUIT_DISABLED = 0,
2522     QEMU_PSCI_CONDUIT_SMC = 1,
2523     QEMU_PSCI_CONDUIT_HVC = 2,
2524 };
2525 
2526 #ifndef CONFIG_USER_ONLY
2527 /* Return the address space index to use for a memory access */
2528 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2529 {
2530     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2531 }
2532 
2533 /* Return the AddressSpace to use for a memory access
2534  * (which depends on whether the access is S or NS, and whether
2535  * the board gave us a separate AddressSpace for S accesses).
2536  */
2537 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2538 {
2539     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2540 }
2541 #endif
2542 
2543 /**
2544  * arm_register_el_change_hook:
2545  * Register a hook function which will be called back whenever this
2546  * CPU changes exception level or mode. The hook function will be
2547  * passed a pointer to the ARMCPU and the opaque data pointer passed
2548  * to this function when the hook was registered.
2549  *
2550  * Note that we currently only support registering a single hook function,
2551  * and will assert if this function is called twice.
2552  * This facility is intended for the use of the GICv3 emulation.
2553  */
2554 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2555                                  void *opaque);
2556 
2557 /**
2558  * arm_get_el_change_hook_opaque:
2559  * Return the opaque data that will be used by the el_change_hook
2560  * for this CPU.
2561  */
2562 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2563 {
2564     return cpu->el_change_hook_opaque;
2565 }
2566 
2567 #endif
2568