xref: /openbmc/qemu/target/arm/cpu.h (revision fd990e86)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS     0
148 #define GTIMER_VIRT     1
149 #define GTIMER_HYP      2
150 #define GTIMER_SEC      3
151 #define GTIMER_HYPVIRT  4
152 #define NUM_GTIMERS     5
153 
154 typedef struct {
155     uint64_t raw_tcr;
156     uint32_t mask;
157     uint32_t base_mask;
158 } TCR;
159 
160 /* Define a maximum sized vector register.
161  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162  * For 64-bit, this is a 2048-bit SVE register.
163  *
164  * Note that the mapping between S, D, and Q views of the register bank
165  * differs between AArch64 and AArch32.
166  * In AArch32:
167  *  Qn = regs[n].d[1]:regs[n].d[0]
168  *  Dn = regs[n / 2].d[n & 1]
169  *  Sn = regs[n / 4].d[n % 4 / 2],
170  *       bits 31..0 for even n, and bits 63..32 for odd n
171  *       (and regs[16] to regs[31] are inaccessible)
172  * In AArch64:
173  *  Zn = regs[n].d[*]
174  *  Qn = regs[n].d[1]:regs[n].d[0]
175  *  Dn = regs[n].d[0]
176  *  Sn = regs[n].d[0] bits 31..0
177  *  Hn = regs[n].d[0] bits 15..0
178  *
179  * This corresponds to the architecturally defined mapping between
180  * the two execution states, and means we do not need to explicitly
181  * map these registers when changing states.
182  *
183  * Align the data for use with TCG host vector operations.
184  */
185 
186 #ifdef TARGET_AARCH64
187 # define ARM_MAX_VQ    16
188 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
189 #else
190 # define ARM_MAX_VQ    1
191 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
192 #endif
193 
194 typedef struct ARMVectorReg {
195     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
196 } ARMVectorReg;
197 
198 #ifdef TARGET_AARCH64
199 /* In AArch32 mode, predicate registers do not exist at all.  */
200 typedef struct ARMPredicateReg {
201     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
202 } ARMPredicateReg;
203 
204 /* In AArch32 mode, PAC keys do not exist at all.  */
205 typedef struct ARMPACKey {
206     uint64_t lo, hi;
207 } ARMPACKey;
208 #endif
209 
210 
211 typedef struct CPUARMState {
212     /* Regs for current mode.  */
213     uint32_t regs[16];
214 
215     /* 32/64 switch only happens when taking and returning from
216      * exceptions so the overlap semantics are taken care of then
217      * instead of having a complicated union.
218      */
219     /* Regs for A64 mode.  */
220     uint64_t xregs[32];
221     uint64_t pc;
222     /* PSTATE isn't an architectural register for ARMv8. However, it is
223      * convenient for us to assemble the underlying state into a 32 bit format
224      * identical to the architectural format used for the SPSR. (This is also
225      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
226      * 'pstate' register are.) Of the PSTATE bits:
227      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
228      *    semantics as for AArch32, as described in the comments on each field)
229      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
230      *  DAIF (exception masks) are kept in env->daif
231      *  BTYPE is kept in env->btype
232      *  all other bits are stored in their correct places in env->pstate
233      */
234     uint32_t pstate;
235     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236 
237     /* Cached TBFLAGS state.  See below for which bits are included.  */
238     uint32_t hflags;
239 
240     /* Frequently accessed CPSR bits are stored separately for efficiency.
241        This contains all the other bits.  Use cpsr_{read,write} to access
242        the whole CPSR.  */
243     uint32_t uncached_cpsr;
244     uint32_t spsr;
245 
246     /* Banked registers.  */
247     uint64_t banked_spsr[8];
248     uint32_t banked_r13[8];
249     uint32_t banked_r14[8];
250 
251     /* These hold r8-r12.  */
252     uint32_t usr_regs[5];
253     uint32_t fiq_regs[5];
254 
255     /* cpsr flag cache for faster execution */
256     uint32_t CF; /* 0 or 1 */
257     uint32_t VF; /* V is the bit 31. All other bits are undefined */
258     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
259     uint32_t ZF; /* Z set if zero.  */
260     uint32_t QF; /* 0 or 1 */
261     uint32_t GE; /* cpsr[19:16] */
262     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
263     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
264     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
265     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
266 
267     uint64_t elr_el[4]; /* AArch64 exception link regs  */
268     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
269 
270     /* System control coprocessor (cp15) */
271     struct {
272         uint32_t c0_cpuid;
273         union { /* Cache size selection */
274             struct {
275                 uint64_t _unused_csselr0;
276                 uint64_t csselr_ns;
277                 uint64_t _unused_csselr1;
278                 uint64_t csselr_s;
279             };
280             uint64_t csselr_el[4];
281         };
282         union { /* System control register. */
283             struct {
284                 uint64_t _unused_sctlr;
285                 uint64_t sctlr_ns;
286                 uint64_t hsctlr;
287                 uint64_t sctlr_s;
288             };
289             uint64_t sctlr_el[4];
290         };
291         uint64_t cpacr_el1; /* Architectural feature access control register */
292         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
293         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
294         uint64_t sder; /* Secure debug enable register. */
295         uint32_t nsacr; /* Non-secure access control register. */
296         union { /* MMU translation table base 0. */
297             struct {
298                 uint64_t _unused_ttbr0_0;
299                 uint64_t ttbr0_ns;
300                 uint64_t _unused_ttbr0_1;
301                 uint64_t ttbr0_s;
302             };
303             uint64_t ttbr0_el[4];
304         };
305         union { /* MMU translation table base 1. */
306             struct {
307                 uint64_t _unused_ttbr1_0;
308                 uint64_t ttbr1_ns;
309                 uint64_t _unused_ttbr1_1;
310                 uint64_t ttbr1_s;
311             };
312             uint64_t ttbr1_el[4];
313         };
314         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
315         /* MMU translation table base control. */
316         TCR tcr_el[4];
317         TCR vtcr_el2; /* Virtualization Translation Control.  */
318         uint32_t c2_data; /* MPU data cacheable bits.  */
319         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
320         union { /* MMU domain access control register
321                  * MPU write buffer control.
322                  */
323             struct {
324                 uint64_t dacr_ns;
325                 uint64_t dacr_s;
326             };
327             struct {
328                 uint64_t dacr32_el2;
329             };
330         };
331         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
332         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
333         uint64_t hcr_el2; /* Hypervisor configuration register */
334         uint64_t scr_el3; /* Secure configuration register.  */
335         union { /* Fault status registers.  */
336             struct {
337                 uint64_t ifsr_ns;
338                 uint64_t ifsr_s;
339             };
340             struct {
341                 uint64_t ifsr32_el2;
342             };
343         };
344         union {
345             struct {
346                 uint64_t _unused_dfsr;
347                 uint64_t dfsr_ns;
348                 uint64_t hsr;
349                 uint64_t dfsr_s;
350             };
351             uint64_t esr_el[4];
352         };
353         uint32_t c6_region[8]; /* MPU base/size registers.  */
354         union { /* Fault address registers. */
355             struct {
356                 uint64_t _unused_far0;
357 #ifdef HOST_WORDS_BIGENDIAN
358                 uint32_t ifar_ns;
359                 uint32_t dfar_ns;
360                 uint32_t ifar_s;
361                 uint32_t dfar_s;
362 #else
363                 uint32_t dfar_ns;
364                 uint32_t ifar_ns;
365                 uint32_t dfar_s;
366                 uint32_t ifar_s;
367 #endif
368                 uint64_t _unused_far3;
369             };
370             uint64_t far_el[4];
371         };
372         uint64_t hpfar_el2;
373         uint64_t hstr_el2;
374         union { /* Translation result. */
375             struct {
376                 uint64_t _unused_par_0;
377                 uint64_t par_ns;
378                 uint64_t _unused_par_1;
379                 uint64_t par_s;
380             };
381             uint64_t par_el[4];
382         };
383 
384         uint32_t c9_insn; /* Cache lockdown registers.  */
385         uint32_t c9_data;
386         uint64_t c9_pmcr; /* performance monitor control register */
387         uint64_t c9_pmcnten; /* perf monitor counter enables */
388         uint64_t c9_pmovsr; /* perf monitor overflow status */
389         uint64_t c9_pmuserenr; /* perf monitor user enable */
390         uint64_t c9_pmselr; /* perf monitor counter selection register */
391         uint64_t c9_pminten; /* perf monitor interrupt enables */
392         union { /* Memory attribute redirection */
393             struct {
394 #ifdef HOST_WORDS_BIGENDIAN
395                 uint64_t _unused_mair_0;
396                 uint32_t mair1_ns;
397                 uint32_t mair0_ns;
398                 uint64_t _unused_mair_1;
399                 uint32_t mair1_s;
400                 uint32_t mair0_s;
401 #else
402                 uint64_t _unused_mair_0;
403                 uint32_t mair0_ns;
404                 uint32_t mair1_ns;
405                 uint64_t _unused_mair_1;
406                 uint32_t mair0_s;
407                 uint32_t mair1_s;
408 #endif
409             };
410             uint64_t mair_el[4];
411         };
412         union { /* vector base address register */
413             struct {
414                 uint64_t _unused_vbar;
415                 uint64_t vbar_ns;
416                 uint64_t hvbar;
417                 uint64_t vbar_s;
418             };
419             uint64_t vbar_el[4];
420         };
421         uint32_t mvbar; /* (monitor) vector base address register */
422         struct { /* FCSE PID. */
423             uint32_t fcseidr_ns;
424             uint32_t fcseidr_s;
425         };
426         union { /* Context ID. */
427             struct {
428                 uint64_t _unused_contextidr_0;
429                 uint64_t contextidr_ns;
430                 uint64_t _unused_contextidr_1;
431                 uint64_t contextidr_s;
432             };
433             uint64_t contextidr_el[4];
434         };
435         union { /* User RW Thread register. */
436             struct {
437                 uint64_t tpidrurw_ns;
438                 uint64_t tpidrprw_ns;
439                 uint64_t htpidr;
440                 uint64_t _tpidr_el3;
441             };
442             uint64_t tpidr_el[4];
443         };
444         /* The secure banks of these registers don't map anywhere */
445         uint64_t tpidrurw_s;
446         uint64_t tpidrprw_s;
447         uint64_t tpidruro_s;
448 
449         union { /* User RO Thread register. */
450             uint64_t tpidruro_ns;
451             uint64_t tpidrro_el[1];
452         };
453         uint64_t c14_cntfrq; /* Counter Frequency register */
454         uint64_t c14_cntkctl; /* Timer Control register */
455         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
456         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
457         ARMGenericTimer c14_timer[NUM_GTIMERS];
458         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
459         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
460         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
461         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
462         uint32_t c15_threadid; /* TI debugger thread-ID.  */
463         uint32_t c15_config_base_address; /* SCU base address.  */
464         uint32_t c15_diagnostic; /* diagnostic register */
465         uint32_t c15_power_diagnostic;
466         uint32_t c15_power_control; /* power control */
467         uint64_t dbgbvr[16]; /* breakpoint value registers */
468         uint64_t dbgbcr[16]; /* breakpoint control registers */
469         uint64_t dbgwvr[16]; /* watchpoint value registers */
470         uint64_t dbgwcr[16]; /* watchpoint control registers */
471         uint64_t mdscr_el1;
472         uint64_t oslsr_el1; /* OS Lock Status */
473         uint64_t mdcr_el2;
474         uint64_t mdcr_el3;
475         /* Stores the architectural value of the counter *the last time it was
476          * updated* by pmccntr_op_start. Accesses should always be surrounded
477          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
478          * architecturally-correct value is being read/set.
479          */
480         uint64_t c15_ccnt;
481         /* Stores the delta between the architectural value and the underlying
482          * cycle count during normal operation. It is used to update c15_ccnt
483          * to be the correct architectural value before accesses. During
484          * accesses, c15_ccnt_delta contains the underlying count being used
485          * for the access, after which it reverts to the delta value in
486          * pmccntr_op_finish.
487          */
488         uint64_t c15_ccnt_delta;
489         uint64_t c14_pmevcntr[31];
490         uint64_t c14_pmevcntr_delta[31];
491         uint64_t c14_pmevtyper[31];
492         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
493         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
494         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
495     } cp15;
496 
497     struct {
498         /* M profile has up to 4 stack pointers:
499          * a Main Stack Pointer and a Process Stack Pointer for each
500          * of the Secure and Non-Secure states. (If the CPU doesn't support
501          * the security extension then it has only two SPs.)
502          * In QEMU we always store the currently active SP in regs[13],
503          * and the non-active SP for the current security state in
504          * v7m.other_sp. The stack pointers for the inactive security state
505          * are stored in other_ss_msp and other_ss_psp.
506          * switch_v7m_security_state() is responsible for rearranging them
507          * when we change security state.
508          */
509         uint32_t other_sp;
510         uint32_t other_ss_msp;
511         uint32_t other_ss_psp;
512         uint32_t vecbase[M_REG_NUM_BANKS];
513         uint32_t basepri[M_REG_NUM_BANKS];
514         uint32_t control[M_REG_NUM_BANKS];
515         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
516         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
517         uint32_t hfsr; /* HardFault Status */
518         uint32_t dfsr; /* Debug Fault Status Register */
519         uint32_t sfsr; /* Secure Fault Status Register */
520         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
521         uint32_t bfar; /* BusFault Address */
522         uint32_t sfar; /* Secure Fault Address Register */
523         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
524         int exception;
525         uint32_t primask[M_REG_NUM_BANKS];
526         uint32_t faultmask[M_REG_NUM_BANKS];
527         uint32_t aircr; /* only holds r/w state if security extn implemented */
528         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
529         uint32_t csselr[M_REG_NUM_BANKS];
530         uint32_t scr[M_REG_NUM_BANKS];
531         uint32_t msplim[M_REG_NUM_BANKS];
532         uint32_t psplim[M_REG_NUM_BANKS];
533         uint32_t fpcar[M_REG_NUM_BANKS];
534         uint32_t fpccr[M_REG_NUM_BANKS];
535         uint32_t fpdscr[M_REG_NUM_BANKS];
536         uint32_t cpacr[M_REG_NUM_BANKS];
537         uint32_t nsacr;
538     } v7m;
539 
540     /* Information associated with an exception about to be taken:
541      * code which raises an exception must set cs->exception_index and
542      * the relevant parts of this structure; the cpu_do_interrupt function
543      * will then set the guest-visible registers as part of the exception
544      * entry process.
545      */
546     struct {
547         uint32_t syndrome; /* AArch64 format syndrome register */
548         uint32_t fsr; /* AArch32 format fault status register info */
549         uint64_t vaddress; /* virtual addr associated with exception, if any */
550         uint32_t target_el; /* EL the exception should be targeted for */
551         /* If we implement EL2 we will also need to store information
552          * about the intermediate physical address for stage 2 faults.
553          */
554     } exception;
555 
556     /* Information associated with an SError */
557     struct {
558         uint8_t pending;
559         uint8_t has_esr;
560         uint64_t esr;
561     } serror;
562 
563     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
564     uint32_t irq_line_state;
565 
566     /* Thumb-2 EE state.  */
567     uint32_t teecr;
568     uint32_t teehbr;
569 
570     /* VFP coprocessor state.  */
571     struct {
572         ARMVectorReg zregs[32];
573 
574 #ifdef TARGET_AARCH64
575         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
576 #define FFR_PRED_NUM 16
577         ARMPredicateReg pregs[17];
578         /* Scratch space for aa64 sve predicate temporary.  */
579         ARMPredicateReg preg_tmp;
580 #endif
581 
582         /* We store these fpcsr fields separately for convenience.  */
583         uint32_t qc[4] QEMU_ALIGNED(16);
584         int vec_len;
585         int vec_stride;
586 
587         uint32_t xregs[16];
588 
589         /* Scratch space for aa32 neon expansion.  */
590         uint32_t scratch[8];
591 
592         /* There are a number of distinct float control structures:
593          *
594          *  fp_status: is the "normal" fp status.
595          *  fp_status_fp16: used for half-precision calculations
596          *  standard_fp_status : the ARM "Standard FPSCR Value"
597          *
598          * Half-precision operations are governed by a separate
599          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
600          * status structure to control this.
601          *
602          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
603          * round-to-nearest and is used by any operations (generally
604          * Neon) which the architecture defines as controlled by the
605          * standard FPSCR value rather than the FPSCR.
606          *
607          * To avoid having to transfer exception bits around, we simply
608          * say that the FPSCR cumulative exception flags are the logical
609          * OR of the flags in the three fp statuses. This relies on the
610          * only thing which needs to read the exception flags being
611          * an explicit FPSCR read.
612          */
613         float_status fp_status;
614         float_status fp_status_f16;
615         float_status standard_fp_status;
616 
617         /* ZCR_EL[1-3] */
618         uint64_t zcr_el[4];
619     } vfp;
620     uint64_t exclusive_addr;
621     uint64_t exclusive_val;
622     uint64_t exclusive_high;
623 
624     /* iwMMXt coprocessor state.  */
625     struct {
626         uint64_t regs[16];
627         uint64_t val;
628 
629         uint32_t cregs[16];
630     } iwmmxt;
631 
632 #ifdef TARGET_AARCH64
633     struct {
634         ARMPACKey apia;
635         ARMPACKey apib;
636         ARMPACKey apda;
637         ARMPACKey apdb;
638         ARMPACKey apga;
639     } keys;
640 #endif
641 
642 #if defined(CONFIG_USER_ONLY)
643     /* For usermode syscall translation.  */
644     int eabi;
645 #endif
646 
647     struct CPUBreakpoint *cpu_breakpoint[16];
648     struct CPUWatchpoint *cpu_watchpoint[16];
649 
650     /* Fields up to this point are cleared by a CPU reset */
651     struct {} end_reset_fields;
652 
653     /* Fields after this point are preserved across CPU reset. */
654 
655     /* Internal CPU feature flags.  */
656     uint64_t features;
657 
658     /* PMSAv7 MPU */
659     struct {
660         uint32_t *drbar;
661         uint32_t *drsr;
662         uint32_t *dracr;
663         uint32_t rnr[M_REG_NUM_BANKS];
664     } pmsav7;
665 
666     /* PMSAv8 MPU */
667     struct {
668         /* The PMSAv8 implementation also shares some PMSAv7 config
669          * and state:
670          *  pmsav7.rnr (region number register)
671          *  pmsav7_dregion (number of configured regions)
672          */
673         uint32_t *rbar[M_REG_NUM_BANKS];
674         uint32_t *rlar[M_REG_NUM_BANKS];
675         uint32_t mair0[M_REG_NUM_BANKS];
676         uint32_t mair1[M_REG_NUM_BANKS];
677     } pmsav8;
678 
679     /* v8M SAU */
680     struct {
681         uint32_t *rbar;
682         uint32_t *rlar;
683         uint32_t rnr;
684         uint32_t ctrl;
685     } sau;
686 
687     void *nvic;
688     const struct arm_boot_info *boot_info;
689     /* Store GICv3CPUState to access from this struct */
690     void *gicv3state;
691 } CPUARMState;
692 
693 /**
694  * ARMELChangeHookFn:
695  * type of a function which can be registered via arm_register_el_change_hook()
696  * to get callbacks when the CPU changes its exception level or mode.
697  */
698 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
699 typedef struct ARMELChangeHook ARMELChangeHook;
700 struct ARMELChangeHook {
701     ARMELChangeHookFn *hook;
702     void *opaque;
703     QLIST_ENTRY(ARMELChangeHook) node;
704 };
705 
706 /* These values map onto the return values for
707  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
708 typedef enum ARMPSCIState {
709     PSCI_ON = 0,
710     PSCI_OFF = 1,
711     PSCI_ON_PENDING = 2
712 } ARMPSCIState;
713 
714 typedef struct ARMISARegisters ARMISARegisters;
715 
716 /**
717  * ARMCPU:
718  * @env: #CPUARMState
719  *
720  * An ARM CPU core.
721  */
722 struct ARMCPU {
723     /*< private >*/
724     CPUState parent_obj;
725     /*< public >*/
726 
727     CPUNegativeOffsetState neg;
728     CPUARMState env;
729 
730     /* Coprocessor information */
731     GHashTable *cp_regs;
732     /* For marshalling (mostly coprocessor) register state between the
733      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
734      * we use these arrays.
735      */
736     /* List of register indexes managed via these arrays; (full KVM style
737      * 64 bit indexes, not CPRegInfo 32 bit indexes)
738      */
739     uint64_t *cpreg_indexes;
740     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
741     uint64_t *cpreg_values;
742     /* Length of the indexes, values, reset_values arrays */
743     int32_t cpreg_array_len;
744     /* These are used only for migration: incoming data arrives in
745      * these fields and is sanity checked in post_load before copying
746      * to the working data structures above.
747      */
748     uint64_t *cpreg_vmstate_indexes;
749     uint64_t *cpreg_vmstate_values;
750     int32_t cpreg_vmstate_array_len;
751 
752     DynamicGDBXMLInfo dyn_xml;
753 
754     /* Timers used by the generic (architected) timer */
755     QEMUTimer *gt_timer[NUM_GTIMERS];
756     /*
757      * Timer used by the PMU. Its state is restored after migration by
758      * pmu_op_finish() - it does not need other handling during migration
759      */
760     QEMUTimer *pmu_timer;
761     /* GPIO outputs for generic timer */
762     qemu_irq gt_timer_outputs[NUM_GTIMERS];
763     /* GPIO output for GICv3 maintenance interrupt signal */
764     qemu_irq gicv3_maintenance_interrupt;
765     /* GPIO output for the PMU interrupt */
766     qemu_irq pmu_interrupt;
767 
768     /* MemoryRegion to use for secure physical accesses */
769     MemoryRegion *secure_memory;
770 
771     /* For v8M, pointer to the IDAU interface provided by board/SoC */
772     Object *idau;
773 
774     /* 'compatible' string for this CPU for Linux device trees */
775     const char *dtb_compatible;
776 
777     /* PSCI version for this CPU
778      * Bits[31:16] = Major Version
779      * Bits[15:0] = Minor Version
780      */
781     uint32_t psci_version;
782 
783     /* Should CPU start in PSCI powered-off state? */
784     bool start_powered_off;
785 
786     /* Current power state, access guarded by BQL */
787     ARMPSCIState power_state;
788 
789     /* CPU has virtualization extension */
790     bool has_el2;
791     /* CPU has security extension */
792     bool has_el3;
793     /* CPU has PMU (Performance Monitor Unit) */
794     bool has_pmu;
795     /* CPU has VFP */
796     bool has_vfp;
797     /* CPU has Neon */
798     bool has_neon;
799     /* CPU has M-profile DSP extension */
800     bool has_dsp;
801 
802     /* CPU has memory protection unit */
803     bool has_mpu;
804     /* PMSAv7 MPU number of supported regions */
805     uint32_t pmsav7_dregion;
806     /* v8M SAU number of supported regions */
807     uint32_t sau_sregion;
808 
809     /* PSCI conduit used to invoke PSCI methods
810      * 0 - disabled, 1 - smc, 2 - hvc
811      */
812     uint32_t psci_conduit;
813 
814     /* For v8M, initial value of the Secure VTOR */
815     uint32_t init_svtor;
816 
817     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
818      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
819      */
820     uint32_t kvm_target;
821 
822     /* KVM init features for this CPU */
823     uint32_t kvm_init_features[7];
824 
825     /* KVM CPU state */
826 
827     /* KVM virtual time adjustment */
828     bool kvm_adjvtime;
829     bool kvm_vtime_dirty;
830     uint64_t kvm_vtime;
831 
832     /* Uniprocessor system with MP extensions */
833     bool mp_is_up;
834 
835     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
836      * and the probe failed (so we need to report the error in realize)
837      */
838     bool host_cpu_probe_failed;
839 
840     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
841      * register.
842      */
843     int32_t core_count;
844 
845     /* The instance init functions for implementation-specific subclasses
846      * set these fields to specify the implementation-dependent values of
847      * various constant registers and reset values of non-constant
848      * registers.
849      * Some of these might become QOM properties eventually.
850      * Field names match the official register names as defined in the
851      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
852      * is used for reset values of non-constant registers; no reset_
853      * prefix means a constant register.
854      * Some of these registers are split out into a substructure that
855      * is shared with the translators to control the ISA.
856      *
857      * Note that if you add an ID register to the ARMISARegisters struct
858      * you need to also update the 32-bit and 64-bit versions of the
859      * kvm_arm_get_host_cpu_features() function to correctly populate the
860      * field by reading the value from the KVM vCPU.
861      */
862     struct ARMISARegisters {
863         uint32_t id_isar0;
864         uint32_t id_isar1;
865         uint32_t id_isar2;
866         uint32_t id_isar3;
867         uint32_t id_isar4;
868         uint32_t id_isar5;
869         uint32_t id_isar6;
870         uint32_t id_mmfr0;
871         uint32_t id_mmfr1;
872         uint32_t id_mmfr2;
873         uint32_t id_mmfr3;
874         uint32_t id_mmfr4;
875         uint32_t mvfr0;
876         uint32_t mvfr1;
877         uint32_t mvfr2;
878         uint32_t id_dfr0;
879         uint32_t dbgdidr;
880         uint64_t id_aa64isar0;
881         uint64_t id_aa64isar1;
882         uint64_t id_aa64pfr0;
883         uint64_t id_aa64pfr1;
884         uint64_t id_aa64mmfr0;
885         uint64_t id_aa64mmfr1;
886         uint64_t id_aa64mmfr2;
887         uint64_t id_aa64dfr0;
888         uint64_t id_aa64dfr1;
889     } isar;
890     uint32_t midr;
891     uint32_t revidr;
892     uint32_t reset_fpsid;
893     uint32_t ctr;
894     uint32_t reset_sctlr;
895     uint32_t id_pfr0;
896     uint32_t id_pfr1;
897     uint64_t pmceid0;
898     uint64_t pmceid1;
899     uint32_t id_afr0;
900     uint64_t id_aa64afr0;
901     uint64_t id_aa64afr1;
902     uint32_t clidr;
903     uint64_t mp_affinity; /* MP ID without feature bits */
904     /* The elements of this array are the CCSIDR values for each cache,
905      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
906      */
907     uint64_t ccsidr[16];
908     uint64_t reset_cbar;
909     uint32_t reset_auxcr;
910     bool reset_hivecs;
911     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
912     uint32_t dcz_blocksize;
913     uint64_t rvbar;
914 
915     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
916     int gic_num_lrs; /* number of list registers */
917     int gic_vpribits; /* number of virtual priority bits */
918     int gic_vprebits; /* number of virtual preemption bits */
919 
920     /* Whether the cfgend input is high (i.e. this CPU should reset into
921      * big-endian mode).  This setting isn't used directly: instead it modifies
922      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
923      * architecture version.
924      */
925     bool cfgend;
926 
927     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
928     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
929 
930     int32_t node_id; /* NUMA node this CPU belongs to */
931 
932     /* Used to synchronize KVM and QEMU in-kernel device levels */
933     uint8_t device_irq_level;
934 
935     /* Used to set the maximum vector length the cpu will support.  */
936     uint32_t sve_max_vq;
937 
938     /*
939      * In sve_vq_map each set bit is a supported vector length of
940      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
941      * length in quadwords.
942      *
943      * While processing properties during initialization, corresponding
944      * sve_vq_init bits are set for bits in sve_vq_map that have been
945      * set by properties.
946      */
947     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
948     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
949 
950     /* Generic timer counter frequency, in Hz */
951     uint64_t gt_cntfrq_hz;
952 };
953 
954 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
955 
956 void arm_cpu_post_init(Object *obj);
957 
958 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
959 
960 #ifndef CONFIG_USER_ONLY
961 extern const VMStateDescription vmstate_arm_cpu;
962 #endif
963 
964 void arm_cpu_do_interrupt(CPUState *cpu);
965 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
966 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
967 
968 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
969                                          MemTxAttrs *attrs);
970 
971 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
972 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
973 
974 /* Dynamically generates for gdb stub an XML description of the sysregs from
975  * the cp_regs hashtable. Returns the registered sysregs number.
976  */
977 int arm_gen_dynamic_xml(CPUState *cpu);
978 
979 /* Returns the dynamically generated XML for the gdb stub.
980  * Returns a pointer to the XML contents for the specified XML file or NULL
981  * if the XML name doesn't match the predefined one.
982  */
983 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
984 
985 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
986                              int cpuid, void *opaque);
987 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
988                              int cpuid, void *opaque);
989 
990 #ifdef TARGET_AARCH64
991 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
992 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
993 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
994 void aarch64_sve_change_el(CPUARMState *env, int old_el,
995                            int new_el, bool el0_a64);
996 void aarch64_add_sve_properties(Object *obj);
997 
998 /*
999  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1000  * The byte at offset i from the start of the in-memory representation contains
1001  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1002  * lowest offsets are stored in the lowest memory addresses, then that nearly
1003  * matches QEMU's representation, which is to use an array of host-endian
1004  * uint64_t's, where the lower offsets are at the lower indices. To complete
1005  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1006  */
1007 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1008 {
1009 #ifdef HOST_WORDS_BIGENDIAN
1010     int i;
1011 
1012     for (i = 0; i < nr; ++i) {
1013         dst[i] = bswap64(src[i]);
1014     }
1015 
1016     return dst;
1017 #else
1018     return src;
1019 #endif
1020 }
1021 
1022 #else
1023 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1024 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1025                                          int n, bool a)
1026 { }
1027 static inline void aarch64_add_sve_properties(Object *obj) { }
1028 #endif
1029 
1030 #if !defined(CONFIG_TCG)
1031 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1032 {
1033     g_assert_not_reached();
1034 }
1035 #else
1036 target_ulong do_arm_semihosting(CPUARMState *env);
1037 #endif
1038 void aarch64_sync_32_to_64(CPUARMState *env);
1039 void aarch64_sync_64_to_32(CPUARMState *env);
1040 
1041 int fp_exception_el(CPUARMState *env, int cur_el);
1042 int sve_exception_el(CPUARMState *env, int cur_el);
1043 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1044 
1045 static inline bool is_a64(CPUARMState *env)
1046 {
1047     return env->aarch64;
1048 }
1049 
1050 /* you can call this signal handler from your SIGBUS and SIGSEGV
1051    signal handlers to inform the virtual CPU of exceptions. non zero
1052    is returned if the signal was handled by the virtual CPU.  */
1053 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1054                            void *puc);
1055 
1056 /**
1057  * pmu_op_start/finish
1058  * @env: CPUARMState
1059  *
1060  * Convert all PMU counters between their delta form (the typical mode when
1061  * they are enabled) and the guest-visible values. These two calls must
1062  * surround any action which might affect the counters.
1063  */
1064 void pmu_op_start(CPUARMState *env);
1065 void pmu_op_finish(CPUARMState *env);
1066 
1067 /*
1068  * Called when a PMU counter is due to overflow
1069  */
1070 void arm_pmu_timer_cb(void *opaque);
1071 
1072 /**
1073  * Functions to register as EL change hooks for PMU mode filtering
1074  */
1075 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1076 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1077 
1078 /*
1079  * pmu_init
1080  * @cpu: ARMCPU
1081  *
1082  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1083  * for the current configuration
1084  */
1085 void pmu_init(ARMCPU *cpu);
1086 
1087 /* SCTLR bit meanings. Several bits have been reused in newer
1088  * versions of the architecture; in that case we define constants
1089  * for both old and new bit meanings. Code which tests against those
1090  * bits should probably check or otherwise arrange that the CPU
1091  * is the architectural version it expects.
1092  */
1093 #define SCTLR_M       (1U << 0)
1094 #define SCTLR_A       (1U << 1)
1095 #define SCTLR_C       (1U << 2)
1096 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1097 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1098 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1099 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1100 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1101 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1102 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1103 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1104 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1105 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1106 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1107 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1108 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1109 #define SCTLR_SED     (1U << 8) /* v8 onward */
1110 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1111 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1112 #define SCTLR_F       (1U << 10) /* up to v6 */
1113 #define SCTLR_SW      (1U << 10) /* v7 */
1114 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1115 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1116 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1117 #define SCTLR_I       (1U << 12)
1118 #define SCTLR_V       (1U << 13) /* AArch32 only */
1119 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1120 #define SCTLR_RR      (1U << 14) /* up to v7 */
1121 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1122 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1123 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1124 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1125 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1126 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1127 #define SCTLR_BR      (1U << 17) /* PMSA only */
1128 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1129 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1130 #define SCTLR_WXN     (1U << 19)
1131 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1132 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1133 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1134 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1135 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1136 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1137 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1138 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1139 #define SCTLR_VE      (1U << 24) /* up to v7 */
1140 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1141 #define SCTLR_EE      (1U << 25)
1142 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1143 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1144 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1145 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1146 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1147 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1148 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1149 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1150 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1151 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1152 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1153 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1154 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1155 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1156 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1157 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1158 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1159 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1160 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1161 
1162 #define CPTR_TCPAC    (1U << 31)
1163 #define CPTR_TTA      (1U << 20)
1164 #define CPTR_TFP      (1U << 10)
1165 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1166 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1167 
1168 #define MDCR_EPMAD    (1U << 21)
1169 #define MDCR_EDAD     (1U << 20)
1170 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1171 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1172 #define MDCR_SDD      (1U << 16)
1173 #define MDCR_SPD      (3U << 14)
1174 #define MDCR_TDRA     (1U << 11)
1175 #define MDCR_TDOSA    (1U << 10)
1176 #define MDCR_TDA      (1U << 9)
1177 #define MDCR_TDE      (1U << 8)
1178 #define MDCR_HPME     (1U << 7)
1179 #define MDCR_TPM      (1U << 6)
1180 #define MDCR_TPMCR    (1U << 5)
1181 #define MDCR_HPMN     (0x1fU)
1182 
1183 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1184 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1185 
1186 #define CPSR_M (0x1fU)
1187 #define CPSR_T (1U << 5)
1188 #define CPSR_F (1U << 6)
1189 #define CPSR_I (1U << 7)
1190 #define CPSR_A (1U << 8)
1191 #define CPSR_E (1U << 9)
1192 #define CPSR_IT_2_7 (0xfc00U)
1193 #define CPSR_GE (0xfU << 16)
1194 #define CPSR_IL (1U << 20)
1195 #define CPSR_PAN (1U << 22)
1196 #define CPSR_J (1U << 24)
1197 #define CPSR_IT_0_1 (3U << 25)
1198 #define CPSR_Q (1U << 27)
1199 #define CPSR_V (1U << 28)
1200 #define CPSR_C (1U << 29)
1201 #define CPSR_Z (1U << 30)
1202 #define CPSR_N (1U << 31)
1203 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1204 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1205 
1206 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1207 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1208     | CPSR_NZCV)
1209 /* Bits writable in user mode.  */
1210 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1211 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1212 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1213 
1214 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1215 #define XPSR_EXCP 0x1ffU
1216 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1217 #define XPSR_IT_2_7 CPSR_IT_2_7
1218 #define XPSR_GE CPSR_GE
1219 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1220 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1221 #define XPSR_IT_0_1 CPSR_IT_0_1
1222 #define XPSR_Q CPSR_Q
1223 #define XPSR_V CPSR_V
1224 #define XPSR_C CPSR_C
1225 #define XPSR_Z CPSR_Z
1226 #define XPSR_N CPSR_N
1227 #define XPSR_NZCV CPSR_NZCV
1228 #define XPSR_IT CPSR_IT
1229 
1230 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1231 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1232 #define TTBCR_PD0    (1U << 4)
1233 #define TTBCR_PD1    (1U << 5)
1234 #define TTBCR_EPD0   (1U << 7)
1235 #define TTBCR_IRGN0  (3U << 8)
1236 #define TTBCR_ORGN0  (3U << 10)
1237 #define TTBCR_SH0    (3U << 12)
1238 #define TTBCR_T1SZ   (3U << 16)
1239 #define TTBCR_A1     (1U << 22)
1240 #define TTBCR_EPD1   (1U << 23)
1241 #define TTBCR_IRGN1  (3U << 24)
1242 #define TTBCR_ORGN1  (3U << 26)
1243 #define TTBCR_SH1    (1U << 28)
1244 #define TTBCR_EAE    (1U << 31)
1245 
1246 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1247  * Only these are valid when in AArch64 mode; in
1248  * AArch32 mode SPSRs are basically CPSR-format.
1249  */
1250 #define PSTATE_SP (1U)
1251 #define PSTATE_M (0xFU)
1252 #define PSTATE_nRW (1U << 4)
1253 #define PSTATE_F (1U << 6)
1254 #define PSTATE_I (1U << 7)
1255 #define PSTATE_A (1U << 8)
1256 #define PSTATE_D (1U << 9)
1257 #define PSTATE_BTYPE (3U << 10)
1258 #define PSTATE_IL (1U << 20)
1259 #define PSTATE_SS (1U << 21)
1260 #define PSTATE_PAN (1U << 22)
1261 #define PSTATE_UAO (1U << 23)
1262 #define PSTATE_V (1U << 28)
1263 #define PSTATE_C (1U << 29)
1264 #define PSTATE_Z (1U << 30)
1265 #define PSTATE_N (1U << 31)
1266 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1267 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1268 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1269 /* Mode values for AArch64 */
1270 #define PSTATE_MODE_EL3h 13
1271 #define PSTATE_MODE_EL3t 12
1272 #define PSTATE_MODE_EL2h 9
1273 #define PSTATE_MODE_EL2t 8
1274 #define PSTATE_MODE_EL1h 5
1275 #define PSTATE_MODE_EL1t 4
1276 #define PSTATE_MODE_EL0t 0
1277 
1278 /* Write a new value to v7m.exception, thus transitioning into or out
1279  * of Handler mode; this may result in a change of active stack pointer.
1280  */
1281 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1282 
1283 /* Map EL and handler into a PSTATE_MODE.  */
1284 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1285 {
1286     return (el << 2) | handler;
1287 }
1288 
1289 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1290  * interprocessing, so we don't attempt to sync with the cpsr state used by
1291  * the 32 bit decoder.
1292  */
1293 static inline uint32_t pstate_read(CPUARMState *env)
1294 {
1295     int ZF;
1296 
1297     ZF = (env->ZF == 0);
1298     return (env->NF & 0x80000000) | (ZF << 30)
1299         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1300         | env->pstate | env->daif | (env->btype << 10);
1301 }
1302 
1303 static inline void pstate_write(CPUARMState *env, uint32_t val)
1304 {
1305     env->ZF = (~val) & PSTATE_Z;
1306     env->NF = val;
1307     env->CF = (val >> 29) & 1;
1308     env->VF = (val << 3) & 0x80000000;
1309     env->daif = val & PSTATE_DAIF;
1310     env->btype = (val >> 10) & 3;
1311     env->pstate = val & ~CACHED_PSTATE_BITS;
1312 }
1313 
1314 /* Return the current CPSR value.  */
1315 uint32_t cpsr_read(CPUARMState *env);
1316 
1317 typedef enum CPSRWriteType {
1318     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1319     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1320     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1321     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1322 } CPSRWriteType;
1323 
1324 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1325 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1326                 CPSRWriteType write_type);
1327 
1328 /* Return the current xPSR value.  */
1329 static inline uint32_t xpsr_read(CPUARMState *env)
1330 {
1331     int ZF;
1332     ZF = (env->ZF == 0);
1333     return (env->NF & 0x80000000) | (ZF << 30)
1334         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1335         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1336         | ((env->condexec_bits & 0xfc) << 8)
1337         | (env->GE << 16)
1338         | env->v7m.exception;
1339 }
1340 
1341 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1342 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1343 {
1344     if (mask & XPSR_NZCV) {
1345         env->ZF = (~val) & XPSR_Z;
1346         env->NF = val;
1347         env->CF = (val >> 29) & 1;
1348         env->VF = (val << 3) & 0x80000000;
1349     }
1350     if (mask & XPSR_Q) {
1351         env->QF = ((val & XPSR_Q) != 0);
1352     }
1353     if (mask & XPSR_GE) {
1354         env->GE = (val & XPSR_GE) >> 16;
1355     }
1356 #ifndef CONFIG_USER_ONLY
1357     if (mask & XPSR_T) {
1358         env->thumb = ((val & XPSR_T) != 0);
1359     }
1360     if (mask & XPSR_IT_0_1) {
1361         env->condexec_bits &= ~3;
1362         env->condexec_bits |= (val >> 25) & 3;
1363     }
1364     if (mask & XPSR_IT_2_7) {
1365         env->condexec_bits &= 3;
1366         env->condexec_bits |= (val >> 8) & 0xfc;
1367     }
1368     if (mask & XPSR_EXCP) {
1369         /* Note that this only happens on exception exit */
1370         write_v7m_exception(env, val & XPSR_EXCP);
1371     }
1372 #endif
1373 }
1374 
1375 #define HCR_VM        (1ULL << 0)
1376 #define HCR_SWIO      (1ULL << 1)
1377 #define HCR_PTW       (1ULL << 2)
1378 #define HCR_FMO       (1ULL << 3)
1379 #define HCR_IMO       (1ULL << 4)
1380 #define HCR_AMO       (1ULL << 5)
1381 #define HCR_VF        (1ULL << 6)
1382 #define HCR_VI        (1ULL << 7)
1383 #define HCR_VSE       (1ULL << 8)
1384 #define HCR_FB        (1ULL << 9)
1385 #define HCR_BSU_MASK  (3ULL << 10)
1386 #define HCR_DC        (1ULL << 12)
1387 #define HCR_TWI       (1ULL << 13)
1388 #define HCR_TWE       (1ULL << 14)
1389 #define HCR_TID0      (1ULL << 15)
1390 #define HCR_TID1      (1ULL << 16)
1391 #define HCR_TID2      (1ULL << 17)
1392 #define HCR_TID3      (1ULL << 18)
1393 #define HCR_TSC       (1ULL << 19)
1394 #define HCR_TIDCP     (1ULL << 20)
1395 #define HCR_TACR      (1ULL << 21)
1396 #define HCR_TSW       (1ULL << 22)
1397 #define HCR_TPCP      (1ULL << 23)
1398 #define HCR_TPU       (1ULL << 24)
1399 #define HCR_TTLB      (1ULL << 25)
1400 #define HCR_TVM       (1ULL << 26)
1401 #define HCR_TGE       (1ULL << 27)
1402 #define HCR_TDZ       (1ULL << 28)
1403 #define HCR_HCD       (1ULL << 29)
1404 #define HCR_TRVM      (1ULL << 30)
1405 #define HCR_RW        (1ULL << 31)
1406 #define HCR_CD        (1ULL << 32)
1407 #define HCR_ID        (1ULL << 33)
1408 #define HCR_E2H       (1ULL << 34)
1409 #define HCR_TLOR      (1ULL << 35)
1410 #define HCR_TERR      (1ULL << 36)
1411 #define HCR_TEA       (1ULL << 37)
1412 #define HCR_MIOCNCE   (1ULL << 38)
1413 /* RES0 bit 39 */
1414 #define HCR_APK       (1ULL << 40)
1415 #define HCR_API       (1ULL << 41)
1416 #define HCR_NV        (1ULL << 42)
1417 #define HCR_NV1       (1ULL << 43)
1418 #define HCR_AT        (1ULL << 44)
1419 #define HCR_NV2       (1ULL << 45)
1420 #define HCR_FWB       (1ULL << 46)
1421 #define HCR_FIEN      (1ULL << 47)
1422 /* RES0 bit 48 */
1423 #define HCR_TID4      (1ULL << 49)
1424 #define HCR_TICAB     (1ULL << 50)
1425 #define HCR_AMVOFFEN  (1ULL << 51)
1426 #define HCR_TOCU      (1ULL << 52)
1427 #define HCR_ENSCXT    (1ULL << 53)
1428 #define HCR_TTLBIS    (1ULL << 54)
1429 #define HCR_TTLBOS    (1ULL << 55)
1430 #define HCR_ATA       (1ULL << 56)
1431 #define HCR_DCT       (1ULL << 57)
1432 #define HCR_TID5      (1ULL << 58)
1433 #define HCR_TWEDEN    (1ULL << 59)
1434 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1435 
1436 #define SCR_NS                (1U << 0)
1437 #define SCR_IRQ               (1U << 1)
1438 #define SCR_FIQ               (1U << 2)
1439 #define SCR_EA                (1U << 3)
1440 #define SCR_FW                (1U << 4)
1441 #define SCR_AW                (1U << 5)
1442 #define SCR_NET               (1U << 6)
1443 #define SCR_SMD               (1U << 7)
1444 #define SCR_HCE               (1U << 8)
1445 #define SCR_SIF               (1U << 9)
1446 #define SCR_RW                (1U << 10)
1447 #define SCR_ST                (1U << 11)
1448 #define SCR_TWI               (1U << 12)
1449 #define SCR_TWE               (1U << 13)
1450 #define SCR_TLOR              (1U << 14)
1451 #define SCR_TERR              (1U << 15)
1452 #define SCR_APK               (1U << 16)
1453 #define SCR_API               (1U << 17)
1454 #define SCR_EEL2              (1U << 18)
1455 #define SCR_EASE              (1U << 19)
1456 #define SCR_NMEA              (1U << 20)
1457 #define SCR_FIEN              (1U << 21)
1458 #define SCR_ENSCXT            (1U << 25)
1459 #define SCR_ATA               (1U << 26)
1460 
1461 /* Return the current FPSCR value.  */
1462 uint32_t vfp_get_fpscr(CPUARMState *env);
1463 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1464 
1465 /* FPCR, Floating Point Control Register
1466  * FPSR, Floating Poiht Status Register
1467  *
1468  * For A64 the FPSCR is split into two logically distinct registers,
1469  * FPCR and FPSR. However since they still use non-overlapping bits
1470  * we store the underlying state in fpscr and just mask on read/write.
1471  */
1472 #define FPSR_MASK 0xf800009f
1473 #define FPCR_MASK 0x07ff9f00
1474 
1475 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1476 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1477 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1478 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1479 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1480 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1481 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1482 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1483 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1484 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1485 
1486 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1487 {
1488     return vfp_get_fpscr(env) & FPSR_MASK;
1489 }
1490 
1491 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1492 {
1493     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1494     vfp_set_fpscr(env, new_fpscr);
1495 }
1496 
1497 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1498 {
1499     return vfp_get_fpscr(env) & FPCR_MASK;
1500 }
1501 
1502 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1503 {
1504     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1505     vfp_set_fpscr(env, new_fpscr);
1506 }
1507 
1508 enum arm_cpu_mode {
1509   ARM_CPU_MODE_USR = 0x10,
1510   ARM_CPU_MODE_FIQ = 0x11,
1511   ARM_CPU_MODE_IRQ = 0x12,
1512   ARM_CPU_MODE_SVC = 0x13,
1513   ARM_CPU_MODE_MON = 0x16,
1514   ARM_CPU_MODE_ABT = 0x17,
1515   ARM_CPU_MODE_HYP = 0x1a,
1516   ARM_CPU_MODE_UND = 0x1b,
1517   ARM_CPU_MODE_SYS = 0x1f
1518 };
1519 
1520 /* VFP system registers.  */
1521 #define ARM_VFP_FPSID   0
1522 #define ARM_VFP_FPSCR   1
1523 #define ARM_VFP_MVFR2   5
1524 #define ARM_VFP_MVFR1   6
1525 #define ARM_VFP_MVFR0   7
1526 #define ARM_VFP_FPEXC   8
1527 #define ARM_VFP_FPINST  9
1528 #define ARM_VFP_FPINST2 10
1529 
1530 /* iwMMXt coprocessor control registers.  */
1531 #define ARM_IWMMXT_wCID  0
1532 #define ARM_IWMMXT_wCon  1
1533 #define ARM_IWMMXT_wCSSF 2
1534 #define ARM_IWMMXT_wCASF 3
1535 #define ARM_IWMMXT_wCGR0 8
1536 #define ARM_IWMMXT_wCGR1 9
1537 #define ARM_IWMMXT_wCGR2 10
1538 #define ARM_IWMMXT_wCGR3 11
1539 
1540 /* V7M CCR bits */
1541 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1542 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1543 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1544 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1545 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1546 FIELD(V7M_CCR, STKALIGN, 9, 1)
1547 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1548 FIELD(V7M_CCR, DC, 16, 1)
1549 FIELD(V7M_CCR, IC, 17, 1)
1550 FIELD(V7M_CCR, BP, 18, 1)
1551 
1552 /* V7M SCR bits */
1553 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1554 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1555 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1556 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1557 
1558 /* V7M AIRCR bits */
1559 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1560 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1561 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1562 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1563 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1564 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1565 FIELD(V7M_AIRCR, PRIS, 14, 1)
1566 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1567 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1568 
1569 /* V7M CFSR bits for MMFSR */
1570 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1571 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1572 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1573 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1574 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1575 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1576 
1577 /* V7M CFSR bits for BFSR */
1578 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1579 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1580 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1581 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1582 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1583 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1584 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1585 
1586 /* V7M CFSR bits for UFSR */
1587 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1588 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1589 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1590 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1591 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1592 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1593 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1594 
1595 /* V7M CFSR bit masks covering all of the subregister bits */
1596 FIELD(V7M_CFSR, MMFSR, 0, 8)
1597 FIELD(V7M_CFSR, BFSR, 8, 8)
1598 FIELD(V7M_CFSR, UFSR, 16, 16)
1599 
1600 /* V7M HFSR bits */
1601 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1602 FIELD(V7M_HFSR, FORCED, 30, 1)
1603 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1604 
1605 /* V7M DFSR bits */
1606 FIELD(V7M_DFSR, HALTED, 0, 1)
1607 FIELD(V7M_DFSR, BKPT, 1, 1)
1608 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1609 FIELD(V7M_DFSR, VCATCH, 3, 1)
1610 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1611 
1612 /* V7M SFSR bits */
1613 FIELD(V7M_SFSR, INVEP, 0, 1)
1614 FIELD(V7M_SFSR, INVIS, 1, 1)
1615 FIELD(V7M_SFSR, INVER, 2, 1)
1616 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1617 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1618 FIELD(V7M_SFSR, LSPERR, 5, 1)
1619 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1620 FIELD(V7M_SFSR, LSERR, 7, 1)
1621 
1622 /* v7M MPU_CTRL bits */
1623 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1624 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1625 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1626 
1627 /* v7M CLIDR bits */
1628 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1629 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1630 FIELD(V7M_CLIDR, LOC, 24, 3)
1631 FIELD(V7M_CLIDR, LOUU, 27, 3)
1632 FIELD(V7M_CLIDR, ICB, 30, 2)
1633 
1634 FIELD(V7M_CSSELR, IND, 0, 1)
1635 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1636 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1637  * define a mask for this and check that it doesn't permit running off
1638  * the end of the array.
1639  */
1640 FIELD(V7M_CSSELR, INDEX, 0, 4)
1641 
1642 /* v7M FPCCR bits */
1643 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1644 FIELD(V7M_FPCCR, USER, 1, 1)
1645 FIELD(V7M_FPCCR, S, 2, 1)
1646 FIELD(V7M_FPCCR, THREAD, 3, 1)
1647 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1648 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1649 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1650 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1651 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1652 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1653 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1654 FIELD(V7M_FPCCR, RES0, 11, 15)
1655 FIELD(V7M_FPCCR, TS, 26, 1)
1656 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1657 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1658 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1659 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1660 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1661 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1662 #define R_V7M_FPCCR_BANKED_MASK                 \
1663     (R_V7M_FPCCR_LSPACT_MASK |                  \
1664      R_V7M_FPCCR_USER_MASK |                    \
1665      R_V7M_FPCCR_THREAD_MASK |                  \
1666      R_V7M_FPCCR_MMRDY_MASK |                   \
1667      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1668      R_V7M_FPCCR_UFRDY_MASK |                   \
1669      R_V7M_FPCCR_ASPEN_MASK)
1670 
1671 /*
1672  * System register ID fields.
1673  */
1674 FIELD(MIDR_EL1, REVISION, 0, 4)
1675 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1676 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1677 FIELD(MIDR_EL1, VARIANT, 20, 4)
1678 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1679 
1680 FIELD(ID_ISAR0, SWAP, 0, 4)
1681 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1682 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1683 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1684 FIELD(ID_ISAR0, COPROC, 16, 4)
1685 FIELD(ID_ISAR0, DEBUG, 20, 4)
1686 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1687 
1688 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1689 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1690 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1691 FIELD(ID_ISAR1, EXTEND, 12, 4)
1692 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1693 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1694 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1695 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1696 
1697 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1698 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1699 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1700 FIELD(ID_ISAR2, MULT, 12, 4)
1701 FIELD(ID_ISAR2, MULTS, 16, 4)
1702 FIELD(ID_ISAR2, MULTU, 20, 4)
1703 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1704 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1705 
1706 FIELD(ID_ISAR3, SATURATE, 0, 4)
1707 FIELD(ID_ISAR3, SIMD, 4, 4)
1708 FIELD(ID_ISAR3, SVC, 8, 4)
1709 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1710 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1711 FIELD(ID_ISAR3, T32COPY, 20, 4)
1712 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1713 FIELD(ID_ISAR3, T32EE, 28, 4)
1714 
1715 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1716 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1717 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1718 FIELD(ID_ISAR4, SMC, 12, 4)
1719 FIELD(ID_ISAR4, BARRIER, 16, 4)
1720 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1721 FIELD(ID_ISAR4, PSR_M, 24, 4)
1722 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1723 
1724 FIELD(ID_ISAR5, SEVL, 0, 4)
1725 FIELD(ID_ISAR5, AES, 4, 4)
1726 FIELD(ID_ISAR5, SHA1, 8, 4)
1727 FIELD(ID_ISAR5, SHA2, 12, 4)
1728 FIELD(ID_ISAR5, CRC32, 16, 4)
1729 FIELD(ID_ISAR5, RDM, 24, 4)
1730 FIELD(ID_ISAR5, VCMA, 28, 4)
1731 
1732 FIELD(ID_ISAR6, JSCVT, 0, 4)
1733 FIELD(ID_ISAR6, DP, 4, 4)
1734 FIELD(ID_ISAR6, FHM, 8, 4)
1735 FIELD(ID_ISAR6, SB, 12, 4)
1736 FIELD(ID_ISAR6, SPECRES, 16, 4)
1737 
1738 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1739 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1740 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1741 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1742 FIELD(ID_MMFR3, PAN, 16, 4)
1743 FIELD(ID_MMFR3, COHWALK, 20, 4)
1744 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1745 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1746 
1747 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1748 FIELD(ID_MMFR4, AC2, 4, 4)
1749 FIELD(ID_MMFR4, XNX, 8, 4)
1750 FIELD(ID_MMFR4, CNP, 12, 4)
1751 FIELD(ID_MMFR4, HPDS, 16, 4)
1752 FIELD(ID_MMFR4, LSM, 20, 4)
1753 FIELD(ID_MMFR4, CCIDX, 24, 4)
1754 FIELD(ID_MMFR4, EVT, 28, 4)
1755 
1756 FIELD(ID_AA64ISAR0, AES, 4, 4)
1757 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1758 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1759 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1760 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1761 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1762 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1763 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1764 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1765 FIELD(ID_AA64ISAR0, DP, 44, 4)
1766 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1767 FIELD(ID_AA64ISAR0, TS, 52, 4)
1768 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1769 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1770 
1771 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1772 FIELD(ID_AA64ISAR1, APA, 4, 4)
1773 FIELD(ID_AA64ISAR1, API, 8, 4)
1774 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1775 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1776 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1777 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1778 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1779 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1780 FIELD(ID_AA64ISAR1, SB, 36, 4)
1781 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1782 
1783 FIELD(ID_AA64PFR0, EL0, 0, 4)
1784 FIELD(ID_AA64PFR0, EL1, 4, 4)
1785 FIELD(ID_AA64PFR0, EL2, 8, 4)
1786 FIELD(ID_AA64PFR0, EL3, 12, 4)
1787 FIELD(ID_AA64PFR0, FP, 16, 4)
1788 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1789 FIELD(ID_AA64PFR0, GIC, 24, 4)
1790 FIELD(ID_AA64PFR0, RAS, 28, 4)
1791 FIELD(ID_AA64PFR0, SVE, 32, 4)
1792 
1793 FIELD(ID_AA64PFR1, BT, 0, 4)
1794 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1795 FIELD(ID_AA64PFR1, MTE, 8, 4)
1796 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1797 
1798 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1799 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1800 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1801 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1802 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1803 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1804 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1805 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1806 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1807 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1808 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1809 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1810 
1811 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1812 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1813 FIELD(ID_AA64MMFR1, VH, 8, 4)
1814 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1815 FIELD(ID_AA64MMFR1, LO, 16, 4)
1816 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1817 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1818 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1819 
1820 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1821 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1822 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1823 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1824 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1825 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1826 FIELD(ID_AA64MMFR2, NV, 24, 4)
1827 FIELD(ID_AA64MMFR2, ST, 28, 4)
1828 FIELD(ID_AA64MMFR2, AT, 32, 4)
1829 FIELD(ID_AA64MMFR2, IDS, 36, 4)
1830 FIELD(ID_AA64MMFR2, FWB, 40, 4)
1831 FIELD(ID_AA64MMFR2, TTL, 48, 4)
1832 FIELD(ID_AA64MMFR2, BBM, 52, 4)
1833 FIELD(ID_AA64MMFR2, EVT, 56, 4)
1834 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1835 
1836 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1837 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1838 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1839 FIELD(ID_AA64DFR0, BRPS, 12, 4)
1840 FIELD(ID_AA64DFR0, WRPS, 20, 4)
1841 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1842 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1843 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1844 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1845 
1846 FIELD(ID_DFR0, COPDBG, 0, 4)
1847 FIELD(ID_DFR0, COPSDBG, 4, 4)
1848 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1849 FIELD(ID_DFR0, COPTRC, 12, 4)
1850 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1851 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1852 FIELD(ID_DFR0, PERFMON, 24, 4)
1853 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1854 
1855 FIELD(DBGDIDR, SE_IMP, 12, 1)
1856 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1857 FIELD(DBGDIDR, VERSION, 16, 4)
1858 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1859 FIELD(DBGDIDR, BRPS, 24, 4)
1860 FIELD(DBGDIDR, WRPS, 28, 4)
1861 
1862 FIELD(MVFR0, SIMDREG, 0, 4)
1863 FIELD(MVFR0, FPSP, 4, 4)
1864 FIELD(MVFR0, FPDP, 8, 4)
1865 FIELD(MVFR0, FPTRAP, 12, 4)
1866 FIELD(MVFR0, FPDIVIDE, 16, 4)
1867 FIELD(MVFR0, FPSQRT, 20, 4)
1868 FIELD(MVFR0, FPSHVEC, 24, 4)
1869 FIELD(MVFR0, FPROUND, 28, 4)
1870 
1871 FIELD(MVFR1, FPFTZ, 0, 4)
1872 FIELD(MVFR1, FPDNAN, 4, 4)
1873 FIELD(MVFR1, SIMDLS, 8, 4)
1874 FIELD(MVFR1, SIMDINT, 12, 4)
1875 FIELD(MVFR1, SIMDSP, 16, 4)
1876 FIELD(MVFR1, SIMDHP, 20, 4)
1877 FIELD(MVFR1, FPHP, 24, 4)
1878 FIELD(MVFR1, SIMDFMAC, 28, 4)
1879 
1880 FIELD(MVFR2, SIMDMISC, 0, 4)
1881 FIELD(MVFR2, FPMISC, 4, 4)
1882 
1883 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1884 
1885 /* If adding a feature bit which corresponds to a Linux ELF
1886  * HWCAP bit, remember to update the feature-bit-to-hwcap
1887  * mapping in linux-user/elfload.c:get_elf_hwcap().
1888  */
1889 enum arm_features {
1890     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1891     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1892     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1893     ARM_FEATURE_V6,
1894     ARM_FEATURE_V6K,
1895     ARM_FEATURE_V7,
1896     ARM_FEATURE_THUMB2,
1897     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1898     ARM_FEATURE_NEON,
1899     ARM_FEATURE_M, /* Microcontroller profile.  */
1900     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1901     ARM_FEATURE_THUMB2EE,
1902     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1903     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1904     ARM_FEATURE_V4T,
1905     ARM_FEATURE_V5,
1906     ARM_FEATURE_STRONGARM,
1907     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1908     ARM_FEATURE_GENERIC_TIMER,
1909     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1910     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1911     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1912     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1913     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1914     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1915     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1916     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1917     ARM_FEATURE_V8,
1918     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1919     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1920     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1921     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1922     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1923     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1924     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1925     ARM_FEATURE_PMU, /* has PMU support */
1926     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1927     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1928     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1929 };
1930 
1931 static inline int arm_feature(CPUARMState *env, int feature)
1932 {
1933     return (env->features & (1ULL << feature)) != 0;
1934 }
1935 
1936 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1937 
1938 #if !defined(CONFIG_USER_ONLY)
1939 /* Return true if exception levels below EL3 are in secure state,
1940  * or would be following an exception return to that level.
1941  * Unlike arm_is_secure() (which is always a question about the
1942  * _current_ state of the CPU) this doesn't care about the current
1943  * EL or mode.
1944  */
1945 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1946 {
1947     if (arm_feature(env, ARM_FEATURE_EL3)) {
1948         return !(env->cp15.scr_el3 & SCR_NS);
1949     } else {
1950         /* If EL3 is not supported then the secure state is implementation
1951          * defined, in which case QEMU defaults to non-secure.
1952          */
1953         return false;
1954     }
1955 }
1956 
1957 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1958 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1959 {
1960     if (arm_feature(env, ARM_FEATURE_EL3)) {
1961         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1962             /* CPU currently in AArch64 state and EL3 */
1963             return true;
1964         } else if (!is_a64(env) &&
1965                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1966             /* CPU currently in AArch32 state and monitor mode */
1967             return true;
1968         }
1969     }
1970     return false;
1971 }
1972 
1973 /* Return true if the processor is in secure state */
1974 static inline bool arm_is_secure(CPUARMState *env)
1975 {
1976     if (arm_is_el3_or_mon(env)) {
1977         return true;
1978     }
1979     return arm_is_secure_below_el3(env);
1980 }
1981 
1982 #else
1983 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1984 {
1985     return false;
1986 }
1987 
1988 static inline bool arm_is_secure(CPUARMState *env)
1989 {
1990     return false;
1991 }
1992 #endif
1993 
1994 /**
1995  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1996  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1997  * "for all purposes other than a direct read or write access of HCR_EL2."
1998  * Not included here is HCR_RW.
1999  */
2000 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2001 
2002 /* Return true if the specified exception level is running in AArch64 state. */
2003 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2004 {
2005     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2006      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2007      */
2008     assert(el >= 1 && el <= 3);
2009     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2010 
2011     /* The highest exception level is always at the maximum supported
2012      * register width, and then lower levels have a register width controlled
2013      * by bits in the SCR or HCR registers.
2014      */
2015     if (el == 3) {
2016         return aa64;
2017     }
2018 
2019     if (arm_feature(env, ARM_FEATURE_EL3)) {
2020         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2021     }
2022 
2023     if (el == 2) {
2024         return aa64;
2025     }
2026 
2027     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2028         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2029     }
2030 
2031     return aa64;
2032 }
2033 
2034 /* Function for determing whether guest cp register reads and writes should
2035  * access the secure or non-secure bank of a cp register.  When EL3 is
2036  * operating in AArch32 state, the NS-bit determines whether the secure
2037  * instance of a cp register should be used. When EL3 is AArch64 (or if
2038  * it doesn't exist at all) then there is no register banking, and all
2039  * accesses are to the non-secure version.
2040  */
2041 static inline bool access_secure_reg(CPUARMState *env)
2042 {
2043     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2044                 !arm_el_is_aa64(env, 3) &&
2045                 !(env->cp15.scr_el3 & SCR_NS));
2046 
2047     return ret;
2048 }
2049 
2050 /* Macros for accessing a specified CP register bank */
2051 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2052     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2053 
2054 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2055     do {                                                \
2056         if (_secure) {                                   \
2057             (_env)->cp15._regname##_s = (_val);            \
2058         } else {                                        \
2059             (_env)->cp15._regname##_ns = (_val);           \
2060         }                                               \
2061     } while (0)
2062 
2063 /* Macros for automatically accessing a specific CP register bank depending on
2064  * the current secure state of the system.  These macros are not intended for
2065  * supporting instruction translation reads/writes as these are dependent
2066  * solely on the SCR.NS bit and not the mode.
2067  */
2068 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2069     A32_BANKED_REG_GET((_env), _regname,                \
2070                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2071 
2072 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2073     A32_BANKED_REG_SET((_env), _regname,                                    \
2074                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2075                        (_val))
2076 
2077 void arm_cpu_list(void);
2078 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2079                                  uint32_t cur_el, bool secure);
2080 
2081 /* Interface between CPU and Interrupt controller.  */
2082 #ifndef CONFIG_USER_ONLY
2083 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2084 #else
2085 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2086 {
2087     return true;
2088 }
2089 #endif
2090 /**
2091  * armv7m_nvic_set_pending: mark the specified exception as pending
2092  * @opaque: the NVIC
2093  * @irq: the exception number to mark pending
2094  * @secure: false for non-banked exceptions or for the nonsecure
2095  * version of a banked exception, true for the secure version of a banked
2096  * exception.
2097  *
2098  * Marks the specified exception as pending. Note that we will assert()
2099  * if @secure is true and @irq does not specify one of the fixed set
2100  * of architecturally banked exceptions.
2101  */
2102 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2103 /**
2104  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2105  * @opaque: the NVIC
2106  * @irq: the exception number to mark pending
2107  * @secure: false for non-banked exceptions or for the nonsecure
2108  * version of a banked exception, true for the secure version of a banked
2109  * exception.
2110  *
2111  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2112  * exceptions (exceptions generated in the course of trying to take
2113  * a different exception).
2114  */
2115 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2116 /**
2117  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2118  * @opaque: the NVIC
2119  * @irq: the exception number to mark pending
2120  * @secure: false for non-banked exceptions or for the nonsecure
2121  * version of a banked exception, true for the secure version of a banked
2122  * exception.
2123  *
2124  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2125  * generated in the course of lazy stacking of FP registers.
2126  */
2127 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2128 /**
2129  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2130  *    exception, and whether it targets Secure state
2131  * @opaque: the NVIC
2132  * @pirq: set to pending exception number
2133  * @ptargets_secure: set to whether pending exception targets Secure
2134  *
2135  * This function writes the number of the highest priority pending
2136  * exception (the one which would be made active by
2137  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2138  * to true if the current highest priority pending exception should
2139  * be taken to Secure state, false for NS.
2140  */
2141 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2142                                       bool *ptargets_secure);
2143 /**
2144  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2145  * @opaque: the NVIC
2146  *
2147  * Move the current highest priority pending exception from the pending
2148  * state to the active state, and update v7m.exception to indicate that
2149  * it is the exception currently being handled.
2150  */
2151 void armv7m_nvic_acknowledge_irq(void *opaque);
2152 /**
2153  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2154  * @opaque: the NVIC
2155  * @irq: the exception number to complete
2156  * @secure: true if this exception was secure
2157  *
2158  * Returns: -1 if the irq was not active
2159  *           1 if completing this irq brought us back to base (no active irqs)
2160  *           0 if there is still an irq active after this one was completed
2161  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2162  */
2163 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2164 /**
2165  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2166  * @opaque: the NVIC
2167  * @irq: the exception number to mark pending
2168  * @secure: false for non-banked exceptions or for the nonsecure
2169  * version of a banked exception, true for the secure version of a banked
2170  * exception.
2171  *
2172  * Return whether an exception is "ready", i.e. whether the exception is
2173  * enabled and is configured at a priority which would allow it to
2174  * interrupt the current execution priority. This controls whether the
2175  * RDY bit for it in the FPCCR is set.
2176  */
2177 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2178 /**
2179  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2180  * @opaque: the NVIC
2181  *
2182  * Returns: the raw execution priority as defined by the v8M architecture.
2183  * This is the execution priority minus the effects of AIRCR.PRIS,
2184  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2185  * (v8M ARM ARM I_PKLD.)
2186  */
2187 int armv7m_nvic_raw_execution_priority(void *opaque);
2188 /**
2189  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2190  * priority is negative for the specified security state.
2191  * @opaque: the NVIC
2192  * @secure: the security state to test
2193  * This corresponds to the pseudocode IsReqExecPriNeg().
2194  */
2195 #ifndef CONFIG_USER_ONLY
2196 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2197 #else
2198 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2199 {
2200     return false;
2201 }
2202 #endif
2203 
2204 /* Interface for defining coprocessor registers.
2205  * Registers are defined in tables of arm_cp_reginfo structs
2206  * which are passed to define_arm_cp_regs().
2207  */
2208 
2209 /* When looking up a coprocessor register we look for it
2210  * via an integer which encodes all of:
2211  *  coprocessor number
2212  *  Crn, Crm, opc1, opc2 fields
2213  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2214  *    or via MRRC/MCRR?)
2215  *  non-secure/secure bank (AArch32 only)
2216  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2217  * (In this case crn and opc2 should be zero.)
2218  * For AArch64, there is no 32/64 bit size distinction;
2219  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2220  * and 4 bit CRn and CRm. The encoding patterns are chosen
2221  * to be easy to convert to and from the KVM encodings, and also
2222  * so that the hashtable can contain both AArch32 and AArch64
2223  * registers (to allow for interprocessing where we might run
2224  * 32 bit code on a 64 bit core).
2225  */
2226 /* This bit is private to our hashtable cpreg; in KVM register
2227  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2228  * in the upper bits of the 64 bit ID.
2229  */
2230 #define CP_REG_AA64_SHIFT 28
2231 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2232 
2233 /* To enable banking of coprocessor registers depending on ns-bit we
2234  * add a bit to distinguish between secure and non-secure cpregs in the
2235  * hashtable.
2236  */
2237 #define CP_REG_NS_SHIFT 29
2238 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2239 
2240 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2241     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2242      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2243 
2244 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2245     (CP_REG_AA64_MASK |                                 \
2246      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2247      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2248      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2249      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2250      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2251      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2252 
2253 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2254  * version used as a key for the coprocessor register hashtable
2255  */
2256 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2257 {
2258     uint32_t cpregid = kvmid;
2259     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2260         cpregid |= CP_REG_AA64_MASK;
2261     } else {
2262         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2263             cpregid |= (1 << 15);
2264         }
2265 
2266         /* KVM is always non-secure so add the NS flag on AArch32 register
2267          * entries.
2268          */
2269          cpregid |= 1 << CP_REG_NS_SHIFT;
2270     }
2271     return cpregid;
2272 }
2273 
2274 /* Convert a truncated 32 bit hashtable key into the full
2275  * 64 bit KVM register ID.
2276  */
2277 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2278 {
2279     uint64_t kvmid;
2280 
2281     if (cpregid & CP_REG_AA64_MASK) {
2282         kvmid = cpregid & ~CP_REG_AA64_MASK;
2283         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2284     } else {
2285         kvmid = cpregid & ~(1 << 15);
2286         if (cpregid & (1 << 15)) {
2287             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2288         } else {
2289             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2290         }
2291     }
2292     return kvmid;
2293 }
2294 
2295 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2296  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2297  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2298  * TCG can assume the value to be constant (ie load at translate time)
2299  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2300  * indicates that the TB should not be ended after a write to this register
2301  * (the default is that the TB ends after cp writes). OVERRIDE permits
2302  * a register definition to override a previous definition for the
2303  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2304  * old must have the OVERRIDE bit set.
2305  * ALIAS indicates that this register is an alias view of some underlying
2306  * state which is also visible via another register, and that the other
2307  * register is handling migration and reset; registers marked ALIAS will not be
2308  * migrated but may have their state set by syncing of register state from KVM.
2309  * NO_RAW indicates that this register has no underlying state and does not
2310  * support raw access for state saving/loading; it will not be used for either
2311  * migration or KVM state synchronization. (Typically this is for "registers"
2312  * which are actually used as instructions for cache maintenance and so on.)
2313  * IO indicates that this register does I/O and therefore its accesses
2314  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2315  * registers which implement clocks or timers require this.
2316  * RAISES_EXC is for when the read or write hook might raise an exception;
2317  * the generated code will synchronize the CPU state before calling the hook
2318  * so that it is safe for the hook to call raise_exception().
2319  * NEWEL is for writes to registers that might change the exception
2320  * level - typically on older ARM chips. For those cases we need to
2321  * re-read the new el when recomputing the translation flags.
2322  */
2323 #define ARM_CP_SPECIAL           0x0001
2324 #define ARM_CP_CONST             0x0002
2325 #define ARM_CP_64BIT             0x0004
2326 #define ARM_CP_SUPPRESS_TB_END   0x0008
2327 #define ARM_CP_OVERRIDE          0x0010
2328 #define ARM_CP_ALIAS             0x0020
2329 #define ARM_CP_IO                0x0040
2330 #define ARM_CP_NO_RAW            0x0080
2331 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2332 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2333 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2334 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2335 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2336 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2337 #define ARM_CP_FPU               0x1000
2338 #define ARM_CP_SVE               0x2000
2339 #define ARM_CP_NO_GDB            0x4000
2340 #define ARM_CP_RAISES_EXC        0x8000
2341 #define ARM_CP_NEWEL             0x10000
2342 /* Used only as a terminator for ARMCPRegInfo lists */
2343 #define ARM_CP_SENTINEL          0xfffff
2344 /* Mask of only the flag bits in a type field */
2345 #define ARM_CP_FLAG_MASK         0x1f0ff
2346 
2347 /* Valid values for ARMCPRegInfo state field, indicating which of
2348  * the AArch32 and AArch64 execution states this register is visible in.
2349  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2350  * If the reginfo is declared to be visible in both states then a second
2351  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2352  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2353  * Note that we rely on the values of these enums as we iterate through
2354  * the various states in some places.
2355  */
2356 enum {
2357     ARM_CP_STATE_AA32 = 0,
2358     ARM_CP_STATE_AA64 = 1,
2359     ARM_CP_STATE_BOTH = 2,
2360 };
2361 
2362 /* ARM CP register secure state flags.  These flags identify security state
2363  * attributes for a given CP register entry.
2364  * The existence of both or neither secure and non-secure flags indicates that
2365  * the register has both a secure and non-secure hash entry.  A single one of
2366  * these flags causes the register to only be hashed for the specified
2367  * security state.
2368  * Although definitions may have any combination of the S/NS bits, each
2369  * registered entry will only have one to identify whether the entry is secure
2370  * or non-secure.
2371  */
2372 enum {
2373     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2374     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2375 };
2376 
2377 /* Return true if cptype is a valid type field. This is used to try to
2378  * catch errors where the sentinel has been accidentally left off the end
2379  * of a list of registers.
2380  */
2381 static inline bool cptype_valid(int cptype)
2382 {
2383     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2384         || ((cptype & ARM_CP_SPECIAL) &&
2385             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2386 }
2387 
2388 /* Access rights:
2389  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2390  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2391  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2392  * (ie any of the privileged modes in Secure state, or Monitor mode).
2393  * If a register is accessible in one privilege level it's always accessible
2394  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2395  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2396  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2397  * terminology a little and call this PL3.
2398  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2399  * with the ELx exception levels.
2400  *
2401  * If access permissions for a register are more complex than can be
2402  * described with these bits, then use a laxer set of restrictions, and
2403  * do the more restrictive/complex check inside a helper function.
2404  */
2405 #define PL3_R 0x80
2406 #define PL3_W 0x40
2407 #define PL2_R (0x20 | PL3_R)
2408 #define PL2_W (0x10 | PL3_W)
2409 #define PL1_R (0x08 | PL2_R)
2410 #define PL1_W (0x04 | PL2_W)
2411 #define PL0_R (0x02 | PL1_R)
2412 #define PL0_W (0x01 | PL1_W)
2413 
2414 /*
2415  * For user-mode some registers are accessible to EL0 via a kernel
2416  * trap-and-emulate ABI. In this case we define the read permissions
2417  * as actually being PL0_R. However some bits of any given register
2418  * may still be masked.
2419  */
2420 #ifdef CONFIG_USER_ONLY
2421 #define PL0U_R PL0_R
2422 #else
2423 #define PL0U_R PL1_R
2424 #endif
2425 
2426 #define PL3_RW (PL3_R | PL3_W)
2427 #define PL2_RW (PL2_R | PL2_W)
2428 #define PL1_RW (PL1_R | PL1_W)
2429 #define PL0_RW (PL0_R | PL0_W)
2430 
2431 /* Return the highest implemented Exception Level */
2432 static inline int arm_highest_el(CPUARMState *env)
2433 {
2434     if (arm_feature(env, ARM_FEATURE_EL3)) {
2435         return 3;
2436     }
2437     if (arm_feature(env, ARM_FEATURE_EL2)) {
2438         return 2;
2439     }
2440     return 1;
2441 }
2442 
2443 /* Return true if a v7M CPU is in Handler mode */
2444 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2445 {
2446     return env->v7m.exception != 0;
2447 }
2448 
2449 /* Return the current Exception Level (as per ARMv8; note that this differs
2450  * from the ARMv7 Privilege Level).
2451  */
2452 static inline int arm_current_el(CPUARMState *env)
2453 {
2454     if (arm_feature(env, ARM_FEATURE_M)) {
2455         return arm_v7m_is_handler_mode(env) ||
2456             !(env->v7m.control[env->v7m.secure] & 1);
2457     }
2458 
2459     if (is_a64(env)) {
2460         return extract32(env->pstate, 2, 2);
2461     }
2462 
2463     switch (env->uncached_cpsr & 0x1f) {
2464     case ARM_CPU_MODE_USR:
2465         return 0;
2466     case ARM_CPU_MODE_HYP:
2467         return 2;
2468     case ARM_CPU_MODE_MON:
2469         return 3;
2470     default:
2471         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2472             /* If EL3 is 32-bit then all secure privileged modes run in
2473              * EL3
2474              */
2475             return 3;
2476         }
2477 
2478         return 1;
2479     }
2480 }
2481 
2482 typedef struct ARMCPRegInfo ARMCPRegInfo;
2483 
2484 typedef enum CPAccessResult {
2485     /* Access is permitted */
2486     CP_ACCESS_OK = 0,
2487     /* Access fails due to a configurable trap or enable which would
2488      * result in a categorized exception syndrome giving information about
2489      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2490      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2491      * PL1 if in EL0, otherwise to the current EL).
2492      */
2493     CP_ACCESS_TRAP = 1,
2494     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2495      * Note that this is not a catch-all case -- the set of cases which may
2496      * result in this failure is specifically defined by the architecture.
2497      */
2498     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2499     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2500     CP_ACCESS_TRAP_EL2 = 3,
2501     CP_ACCESS_TRAP_EL3 = 4,
2502     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2503     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2504     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2505     /* Access fails and results in an exception syndrome for an FP access,
2506      * trapped directly to EL2 or EL3
2507      */
2508     CP_ACCESS_TRAP_FP_EL2 = 7,
2509     CP_ACCESS_TRAP_FP_EL3 = 8,
2510 } CPAccessResult;
2511 
2512 /* Access functions for coprocessor registers. These cannot fail and
2513  * may not raise exceptions.
2514  */
2515 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2516 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2517                        uint64_t value);
2518 /* Access permission check functions for coprocessor registers. */
2519 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2520                                   const ARMCPRegInfo *opaque,
2521                                   bool isread);
2522 /* Hook function for register reset */
2523 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2524 
2525 #define CP_ANY 0xff
2526 
2527 /* Definition of an ARM coprocessor register */
2528 struct ARMCPRegInfo {
2529     /* Name of register (useful mainly for debugging, need not be unique) */
2530     const char *name;
2531     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2532      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2533      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2534      * will be decoded to this register. The register read and write
2535      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2536      * used by the program, so it is possible to register a wildcard and
2537      * then behave differently on read/write if necessary.
2538      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2539      * must both be zero.
2540      * For AArch64-visible registers, opc0 is also used.
2541      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2542      * way to distinguish (for KVM's benefit) guest-visible system registers
2543      * from demuxed ones provided to preserve the "no side effects on
2544      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2545      * visible (to match KVM's encoding); cp==0 will be converted to
2546      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2547      */
2548     uint8_t cp;
2549     uint8_t crn;
2550     uint8_t crm;
2551     uint8_t opc0;
2552     uint8_t opc1;
2553     uint8_t opc2;
2554     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2555     int state;
2556     /* Register type: ARM_CP_* bits/values */
2557     int type;
2558     /* Access rights: PL*_[RW] */
2559     int access;
2560     /* Security state: ARM_CP_SECSTATE_* bits/values */
2561     int secure;
2562     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2563      * this register was defined: can be used to hand data through to the
2564      * register read/write functions, since they are passed the ARMCPRegInfo*.
2565      */
2566     void *opaque;
2567     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2568      * fieldoffset is non-zero, the reset value of the register.
2569      */
2570     uint64_t resetvalue;
2571     /* Offset of the field in CPUARMState for this register.
2572      *
2573      * This is not needed if either:
2574      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2575      *  2. both readfn and writefn are specified
2576      */
2577     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2578 
2579     /* Offsets of the secure and non-secure fields in CPUARMState for the
2580      * register if it is banked.  These fields are only used during the static
2581      * registration of a register.  During hashing the bank associated
2582      * with a given security state is copied to fieldoffset which is used from
2583      * there on out.
2584      *
2585      * It is expected that register definitions use either fieldoffset or
2586      * bank_fieldoffsets in the definition but not both.  It is also expected
2587      * that both bank offsets are set when defining a banked register.  This
2588      * use indicates that a register is banked.
2589      */
2590     ptrdiff_t bank_fieldoffsets[2];
2591 
2592     /* Function for making any access checks for this register in addition to
2593      * those specified by the 'access' permissions bits. If NULL, no extra
2594      * checks required. The access check is performed at runtime, not at
2595      * translate time.
2596      */
2597     CPAccessFn *accessfn;
2598     /* Function for handling reads of this register. If NULL, then reads
2599      * will be done by loading from the offset into CPUARMState specified
2600      * by fieldoffset.
2601      */
2602     CPReadFn *readfn;
2603     /* Function for handling writes of this register. If NULL, then writes
2604      * will be done by writing to the offset into CPUARMState specified
2605      * by fieldoffset.
2606      */
2607     CPWriteFn *writefn;
2608     /* Function for doing a "raw" read; used when we need to copy
2609      * coprocessor state to the kernel for KVM or out for
2610      * migration. This only needs to be provided if there is also a
2611      * readfn and it has side effects (for instance clear-on-read bits).
2612      */
2613     CPReadFn *raw_readfn;
2614     /* Function for doing a "raw" write; used when we need to copy KVM
2615      * kernel coprocessor state into userspace, or for inbound
2616      * migration. This only needs to be provided if there is also a
2617      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2618      * or similar behaviour.
2619      */
2620     CPWriteFn *raw_writefn;
2621     /* Function for resetting the register. If NULL, then reset will be done
2622      * by writing resetvalue to the field specified in fieldoffset. If
2623      * fieldoffset is 0 then no reset will be done.
2624      */
2625     CPResetFn *resetfn;
2626 
2627     /*
2628      * "Original" writefn and readfn.
2629      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2630      * accessor functions of various EL1/EL0 to perform the runtime
2631      * check for which sysreg should actually be modified, and then
2632      * forwards the operation.  Before overwriting the accessors,
2633      * the original function is copied here, so that accesses that
2634      * really do go to the EL1/EL0 version proceed normally.
2635      * (The corresponding EL2 register is linked via opaque.)
2636      */
2637     CPReadFn *orig_readfn;
2638     CPWriteFn *orig_writefn;
2639 };
2640 
2641 /* Macros which are lvalues for the field in CPUARMState for the
2642  * ARMCPRegInfo *ri.
2643  */
2644 #define CPREG_FIELD32(env, ri) \
2645     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2646 #define CPREG_FIELD64(env, ri) \
2647     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2648 
2649 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2650 
2651 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2652                                     const ARMCPRegInfo *regs, void *opaque);
2653 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2654                                        const ARMCPRegInfo *regs, void *opaque);
2655 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2656 {
2657     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2658 }
2659 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2660 {
2661     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2662 }
2663 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2664 
2665 /*
2666  * Definition of an ARM co-processor register as viewed from
2667  * userspace. This is used for presenting sanitised versions of
2668  * registers to userspace when emulating the Linux AArch64 CPU
2669  * ID/feature ABI (advertised as HWCAP_CPUID).
2670  */
2671 typedef struct ARMCPRegUserSpaceInfo {
2672     /* Name of register */
2673     const char *name;
2674 
2675     /* Is the name actually a glob pattern */
2676     bool is_glob;
2677 
2678     /* Only some bits are exported to user space */
2679     uint64_t exported_bits;
2680 
2681     /* Fixed bits are applied after the mask */
2682     uint64_t fixed_bits;
2683 } ARMCPRegUserSpaceInfo;
2684 
2685 #define REGUSERINFO_SENTINEL { .name = NULL }
2686 
2687 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2688 
2689 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2690 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2691                          uint64_t value);
2692 /* CPReadFn that can be used for read-as-zero behaviour */
2693 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2694 
2695 /* CPResetFn that does nothing, for use if no reset is required even
2696  * if fieldoffset is non zero.
2697  */
2698 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2699 
2700 /* Return true if this reginfo struct's field in the cpu state struct
2701  * is 64 bits wide.
2702  */
2703 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2704 {
2705     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2706 }
2707 
2708 static inline bool cp_access_ok(int current_el,
2709                                 const ARMCPRegInfo *ri, int isread)
2710 {
2711     return (ri->access >> ((current_el * 2) + isread)) & 1;
2712 }
2713 
2714 /* Raw read of a coprocessor register (as needed for migration, etc) */
2715 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2716 
2717 /**
2718  * write_list_to_cpustate
2719  * @cpu: ARMCPU
2720  *
2721  * For each register listed in the ARMCPU cpreg_indexes list, write
2722  * its value from the cpreg_values list into the ARMCPUState structure.
2723  * This updates TCG's working data structures from KVM data or
2724  * from incoming migration state.
2725  *
2726  * Returns: true if all register values were updated correctly,
2727  * false if some register was unknown or could not be written.
2728  * Note that we do not stop early on failure -- we will attempt
2729  * writing all registers in the list.
2730  */
2731 bool write_list_to_cpustate(ARMCPU *cpu);
2732 
2733 /**
2734  * write_cpustate_to_list:
2735  * @cpu: ARMCPU
2736  * @kvm_sync: true if this is for syncing back to KVM
2737  *
2738  * For each register listed in the ARMCPU cpreg_indexes list, write
2739  * its value from the ARMCPUState structure into the cpreg_values list.
2740  * This is used to copy info from TCG's working data structures into
2741  * KVM or for outbound migration.
2742  *
2743  * @kvm_sync is true if we are doing this in order to sync the
2744  * register state back to KVM. In this case we will only update
2745  * values in the list if the previous list->cpustate sync actually
2746  * successfully wrote the CPU state. Otherwise we will keep the value
2747  * that is in the list.
2748  *
2749  * Returns: true if all register values were read correctly,
2750  * false if some register was unknown or could not be read.
2751  * Note that we do not stop early on failure -- we will attempt
2752  * reading all registers in the list.
2753  */
2754 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2755 
2756 #define ARM_CPUID_TI915T      0x54029152
2757 #define ARM_CPUID_TI925T      0x54029252
2758 
2759 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2760 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2761 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2762 
2763 #define cpu_signal_handler cpu_arm_signal_handler
2764 #define cpu_list arm_cpu_list
2765 
2766 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2767  *
2768  * If EL3 is 64-bit:
2769  *  + NonSecure EL1 & 0 stage 1
2770  *  + NonSecure EL1 & 0 stage 2
2771  *  + NonSecure EL2
2772  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2773  *  + Secure EL1 & 0
2774  *  + Secure EL3
2775  * If EL3 is 32-bit:
2776  *  + NonSecure PL1 & 0 stage 1
2777  *  + NonSecure PL1 & 0 stage 2
2778  *  + NonSecure PL2
2779  *  + Secure PL0
2780  *  + Secure PL1
2781  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2782  *
2783  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2784  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2785  *     because they may differ in access permissions even if the VA->PA map is
2786  *     the same
2787  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2788  *     translation, which means that we have one mmu_idx that deals with two
2789  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2790  *     architecturally permitted]
2791  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2792  *     handling via the TLB. The only way to do a stage 1 translation without
2793  *     the immediate stage 2 translation is via the ATS or AT system insns,
2794  *     which can be slow-pathed and always do a page table walk.
2795  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2796  *     translation regimes, because they map reasonably well to each other
2797  *     and they can't both be active at the same time.
2798  *  5. we want to be able to use the TLB for accesses done as part of a
2799  *     stage1 page table walk, rather than having to walk the stage2 page
2800  *     table over and over.
2801  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2802  *     Never (PAN) bit within PSTATE.
2803  *
2804  * This gives us the following list of cases:
2805  *
2806  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2807  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2808  * NS EL1 EL1&0 stage 1+2 +PAN
2809  * NS EL0 EL2&0
2810  * NS EL2 EL2&0 +PAN
2811  * NS EL2 (aka NS PL2)
2812  * S EL0 EL1&0 (aka S PL0)
2813  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2814  * S EL1 EL1&0 +PAN
2815  * S EL3 (aka S PL1)
2816  * NS EL1&0 stage 2
2817  *
2818  * for a total of 12 different mmu_idx.
2819  *
2820  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2821  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2822  * NS EL2 if we ever model a Cortex-R52).
2823  *
2824  * M profile CPUs are rather different as they do not have a true MMU.
2825  * They have the following different MMU indexes:
2826  *  User
2827  *  Privileged
2828  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2829  *  Privileged, execution priority negative (ditto)
2830  * If the CPU supports the v8M Security Extension then there are also:
2831  *  Secure User
2832  *  Secure Privileged
2833  *  Secure User, execution priority negative
2834  *  Secure Privileged, execution priority negative
2835  *
2836  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2837  * are not quite the same -- different CPU types (most notably M profile
2838  * vs A/R profile) would like to use MMU indexes with different semantics,
2839  * but since we don't ever need to use all of those in a single CPU we
2840  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2841  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2842  * the same for any particular CPU.
2843  * Variables of type ARMMUIdx are always full values, and the core
2844  * index values are in variables of type 'int'.
2845  *
2846  * Our enumeration includes at the end some entries which are not "true"
2847  * mmu_idx values in that they don't have corresponding TLBs and are only
2848  * valid for doing slow path page table walks.
2849  *
2850  * The constant names here are patterned after the general style of the names
2851  * of the AT/ATS operations.
2852  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2853  * For M profile we arrange them to have a bit for priv, a bit for negpri
2854  * and a bit for secure.
2855  */
2856 #define ARM_MMU_IDX_A     0x10  /* A profile */
2857 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2858 #define ARM_MMU_IDX_M     0x40  /* M profile */
2859 
2860 /* Meanings of the bits for M profile mmu idx values */
2861 #define ARM_MMU_IDX_M_PRIV   0x1
2862 #define ARM_MMU_IDX_M_NEGPRI 0x2
2863 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2864 
2865 #define ARM_MMU_IDX_TYPE_MASK \
2866     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2867 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2868 
2869 typedef enum ARMMMUIdx {
2870     /*
2871      * A-profile.
2872      */
2873     ARMMMUIdx_E10_0      =  0 | ARM_MMU_IDX_A,
2874     ARMMMUIdx_E20_0      =  1 | ARM_MMU_IDX_A,
2875 
2876     ARMMMUIdx_E10_1      =  2 | ARM_MMU_IDX_A,
2877     ARMMMUIdx_E10_1_PAN  =  3 | ARM_MMU_IDX_A,
2878 
2879     ARMMMUIdx_E2         =  4 | ARM_MMU_IDX_A,
2880     ARMMMUIdx_E20_2      =  5 | ARM_MMU_IDX_A,
2881     ARMMMUIdx_E20_2_PAN  =  6 | ARM_MMU_IDX_A,
2882 
2883     ARMMMUIdx_SE10_0     = 7 | ARM_MMU_IDX_A,
2884     ARMMMUIdx_SE10_1     = 8 | ARM_MMU_IDX_A,
2885     ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2886     ARMMMUIdx_SE3        = 10 | ARM_MMU_IDX_A,
2887 
2888     ARMMMUIdx_Stage2     = 11 | ARM_MMU_IDX_A,
2889 
2890     /*
2891      * These are not allocated TLBs and are used only for AT system
2892      * instructions or for the first stage of an S12 page table walk.
2893      */
2894     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2895     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2896     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2897 
2898     /*
2899      * M-profile.
2900      */
2901     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2902     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2903     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2904     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2905     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2906     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2907     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2908     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2909 } ARMMMUIdx;
2910 
2911 /*
2912  * Bit macros for the core-mmu-index values for each index,
2913  * for use when calling tlb_flush_by_mmuidx() and friends.
2914  */
2915 #define TO_CORE_BIT(NAME) \
2916     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2917 
2918 typedef enum ARMMMUIdxBit {
2919     TO_CORE_BIT(E10_0),
2920     TO_CORE_BIT(E20_0),
2921     TO_CORE_BIT(E10_1),
2922     TO_CORE_BIT(E10_1_PAN),
2923     TO_CORE_BIT(E2),
2924     TO_CORE_BIT(E20_2),
2925     TO_CORE_BIT(E20_2_PAN),
2926     TO_CORE_BIT(SE10_0),
2927     TO_CORE_BIT(SE10_1),
2928     TO_CORE_BIT(SE10_1_PAN),
2929     TO_CORE_BIT(SE3),
2930     TO_CORE_BIT(Stage2),
2931 
2932     TO_CORE_BIT(MUser),
2933     TO_CORE_BIT(MPriv),
2934     TO_CORE_BIT(MUserNegPri),
2935     TO_CORE_BIT(MPrivNegPri),
2936     TO_CORE_BIT(MSUser),
2937     TO_CORE_BIT(MSPriv),
2938     TO_CORE_BIT(MSUserNegPri),
2939     TO_CORE_BIT(MSPrivNegPri),
2940 } ARMMMUIdxBit;
2941 
2942 #undef TO_CORE_BIT
2943 
2944 #define MMU_USER_IDX 0
2945 
2946 /* Indexes used when registering address spaces with cpu_address_space_init */
2947 typedef enum ARMASIdx {
2948     ARMASIdx_NS = 0,
2949     ARMASIdx_S = 1,
2950 } ARMASIdx;
2951 
2952 /* Return the Exception Level targeted by debug exceptions. */
2953 static inline int arm_debug_target_el(CPUARMState *env)
2954 {
2955     bool secure = arm_is_secure(env);
2956     bool route_to_el2 = false;
2957 
2958     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2959         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2960                        env->cp15.mdcr_el2 & MDCR_TDE;
2961     }
2962 
2963     if (route_to_el2) {
2964         return 2;
2965     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2966                !arm_el_is_aa64(env, 3) && secure) {
2967         return 3;
2968     } else {
2969         return 1;
2970     }
2971 }
2972 
2973 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2974 {
2975     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2976      * CSSELR is RAZ/WI.
2977      */
2978     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2979 }
2980 
2981 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2982 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2983 {
2984     int cur_el = arm_current_el(env);
2985     int debug_el;
2986 
2987     if (cur_el == 3) {
2988         return false;
2989     }
2990 
2991     /* MDCR_EL3.SDD disables debug events from Secure state */
2992     if (arm_is_secure_below_el3(env)
2993         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2994         return false;
2995     }
2996 
2997     /*
2998      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2999      * while not masking the (D)ebug bit in DAIF.
3000      */
3001     debug_el = arm_debug_target_el(env);
3002 
3003     if (cur_el == debug_el) {
3004         return extract32(env->cp15.mdscr_el1, 13, 1)
3005             && !(env->daif & PSTATE_D);
3006     }
3007 
3008     /* Otherwise the debug target needs to be a higher EL */
3009     return debug_el > cur_el;
3010 }
3011 
3012 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3013 {
3014     int el = arm_current_el(env);
3015 
3016     if (el == 0 && arm_el_is_aa64(env, 1)) {
3017         return aa64_generate_debug_exceptions(env);
3018     }
3019 
3020     if (arm_is_secure(env)) {
3021         int spd;
3022 
3023         if (el == 0 && (env->cp15.sder & 1)) {
3024             /* SDER.SUIDEN means debug exceptions from Secure EL0
3025              * are always enabled. Otherwise they are controlled by
3026              * SDCR.SPD like those from other Secure ELs.
3027              */
3028             return true;
3029         }
3030 
3031         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3032         switch (spd) {
3033         case 1:
3034             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3035         case 0:
3036             /* For 0b00 we return true if external secure invasive debug
3037              * is enabled. On real hardware this is controlled by external
3038              * signals to the core. QEMU always permits debug, and behaves
3039              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3040              */
3041             return true;
3042         case 2:
3043             return false;
3044         case 3:
3045             return true;
3046         }
3047     }
3048 
3049     return el != 2;
3050 }
3051 
3052 /* Return true if debugging exceptions are currently enabled.
3053  * This corresponds to what in ARM ARM pseudocode would be
3054  *    if UsingAArch32() then
3055  *        return AArch32.GenerateDebugExceptions()
3056  *    else
3057  *        return AArch64.GenerateDebugExceptions()
3058  * We choose to push the if() down into this function for clarity,
3059  * since the pseudocode has it at all callsites except for the one in
3060  * CheckSoftwareStep(), where it is elided because both branches would
3061  * always return the same value.
3062  */
3063 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3064 {
3065     if (env->aarch64) {
3066         return aa64_generate_debug_exceptions(env);
3067     } else {
3068         return aa32_generate_debug_exceptions(env);
3069     }
3070 }
3071 
3072 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3073  * implicitly means this always returns false in pre-v8 CPUs.)
3074  */
3075 static inline bool arm_singlestep_active(CPUARMState *env)
3076 {
3077     return extract32(env->cp15.mdscr_el1, 0, 1)
3078         && arm_el_is_aa64(env, arm_debug_target_el(env))
3079         && arm_generate_debug_exceptions(env);
3080 }
3081 
3082 static inline bool arm_sctlr_b(CPUARMState *env)
3083 {
3084     return
3085         /* We need not implement SCTLR.ITD in user-mode emulation, so
3086          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3087          * This lets people run BE32 binaries with "-cpu any".
3088          */
3089 #ifndef CONFIG_USER_ONLY
3090         !arm_feature(env, ARM_FEATURE_V7) &&
3091 #endif
3092         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3093 }
3094 
3095 uint64_t arm_sctlr(CPUARMState *env, int el);
3096 
3097 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3098                                                   bool sctlr_b)
3099 {
3100 #ifdef CONFIG_USER_ONLY
3101     /*
3102      * In system mode, BE32 is modelled in line with the
3103      * architecture (as word-invariant big-endianness), where loads
3104      * and stores are done little endian but from addresses which
3105      * are adjusted by XORing with the appropriate constant. So the
3106      * endianness to use for the raw data access is not affected by
3107      * SCTLR.B.
3108      * In user mode, however, we model BE32 as byte-invariant
3109      * big-endianness (because user-only code cannot tell the
3110      * difference), and so we need to use a data access endianness
3111      * that depends on SCTLR.B.
3112      */
3113     if (sctlr_b) {
3114         return true;
3115     }
3116 #endif
3117     /* In 32bit endianness is determined by looking at CPSR's E bit */
3118     return env->uncached_cpsr & CPSR_E;
3119 }
3120 
3121 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3122 {
3123     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3124 }
3125 
3126 /* Return true if the processor is in big-endian mode. */
3127 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3128 {
3129     if (!is_a64(env)) {
3130         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3131     } else {
3132         int cur_el = arm_current_el(env);
3133         uint64_t sctlr = arm_sctlr(env, cur_el);
3134         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3135     }
3136 }
3137 
3138 typedef CPUARMState CPUArchState;
3139 typedef ARMCPU ArchCPU;
3140 
3141 #include "exec/cpu-all.h"
3142 
3143 /*
3144  * Bit usage in the TB flags field: bit 31 indicates whether we are
3145  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3146  * We put flags which are shared between 32 and 64 bit mode at the top
3147  * of the word, and flags which apply to only one mode at the bottom.
3148  *
3149  *  31          20    18    14          9              0
3150  * +--------------+-----+-----+----------+--------------+
3151  * |              |     |   TBFLAG_A32   |              |
3152  * |              |     +-----+----------+  TBFLAG_AM32 |
3153  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3154  * |              |         +-+----------+--------------|
3155  * |              |         |         TBFLAG_A64        |
3156  * +--------------+---------+---------------------------+
3157  *  31          20        15                           0
3158  *
3159  * Unless otherwise noted, these bits are cached in env->hflags.
3160  */
3161 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3162 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3163 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3164 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3165 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3166 /* Target EL if we take a floating-point-disabled exception */
3167 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3168 /* For A-profile only, target EL for debug exceptions.  */
3169 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3170 
3171 /*
3172  * Bit usage when in AArch32 state, both A- and M-profile.
3173  */
3174 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3175 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3176 
3177 /*
3178  * Bit usage when in AArch32 state, for A-profile only.
3179  */
3180 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3181 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3182 /*
3183  * We store the bottom two bits of the CPAR as TB flags and handle
3184  * checks on the other bits at runtime. This shares the same bits as
3185  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3186  * Not cached, because VECLEN+VECSTRIDE are not cached.
3187  */
3188 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3189 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3190 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3191 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3192 /*
3193  * Indicates whether cp register reads and writes by guest code should access
3194  * the secure or nonsecure bank of banked registers; note that this is not
3195  * the same thing as the current security state of the processor!
3196  */
3197 FIELD(TBFLAG_A32, NS, 17, 1)
3198 
3199 /*
3200  * Bit usage when in AArch32 state, for M-profile only.
3201  */
3202 /* Handler (ie not Thread) mode */
3203 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3204 /* Whether we should generate stack-limit checks */
3205 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3206 /* Set if FPCCR.LSPACT is set */
3207 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3208 /* Set if we must create a new FP context */
3209 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3210 /* Set if FPCCR.S does not match current security state */
3211 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3212 
3213 /*
3214  * Bit usage when in AArch64 state
3215  */
3216 FIELD(TBFLAG_A64, TBII, 0, 2)
3217 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3218 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3219 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3220 FIELD(TBFLAG_A64, BT, 9, 1)
3221 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3222 FIELD(TBFLAG_A64, TBID, 12, 2)
3223 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3224 
3225 /**
3226  * cpu_mmu_index:
3227  * @env: The cpu environment
3228  * @ifetch: True for code access, false for data access.
3229  *
3230  * Return the core mmu index for the current translation regime.
3231  * This function is used by generic TCG code paths.
3232  */
3233 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3234 {
3235     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3236 }
3237 
3238 static inline bool bswap_code(bool sctlr_b)
3239 {
3240 #ifdef CONFIG_USER_ONLY
3241     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3242      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3243      * would also end up as a mixed-endian mode with BE code, LE data.
3244      */
3245     return
3246 #ifdef TARGET_WORDS_BIGENDIAN
3247         1 ^
3248 #endif
3249         sctlr_b;
3250 #else
3251     /* All code access in ARM is little endian, and there are no loaders
3252      * doing swaps that need to be reversed
3253      */
3254     return 0;
3255 #endif
3256 }
3257 
3258 #ifdef CONFIG_USER_ONLY
3259 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3260 {
3261     return
3262 #ifdef TARGET_WORDS_BIGENDIAN
3263        1 ^
3264 #endif
3265        arm_cpu_data_is_big_endian(env);
3266 }
3267 #endif
3268 
3269 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3270                           target_ulong *cs_base, uint32_t *flags);
3271 
3272 enum {
3273     QEMU_PSCI_CONDUIT_DISABLED = 0,
3274     QEMU_PSCI_CONDUIT_SMC = 1,
3275     QEMU_PSCI_CONDUIT_HVC = 2,
3276 };
3277 
3278 #ifndef CONFIG_USER_ONLY
3279 /* Return the address space index to use for a memory access */
3280 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3281 {
3282     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3283 }
3284 
3285 /* Return the AddressSpace to use for a memory access
3286  * (which depends on whether the access is S or NS, and whether
3287  * the board gave us a separate AddressSpace for S accesses).
3288  */
3289 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3290 {
3291     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3292 }
3293 #endif
3294 
3295 /**
3296  * arm_register_pre_el_change_hook:
3297  * Register a hook function which will be called immediately before this
3298  * CPU changes exception level or mode. The hook function will be
3299  * passed a pointer to the ARMCPU and the opaque data pointer passed
3300  * to this function when the hook was registered.
3301  *
3302  * Note that if a pre-change hook is called, any registered post-change hooks
3303  * are guaranteed to subsequently be called.
3304  */
3305 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3306                                  void *opaque);
3307 /**
3308  * arm_register_el_change_hook:
3309  * Register a hook function which will be called immediately after this
3310  * CPU changes exception level or mode. The hook function will be
3311  * passed a pointer to the ARMCPU and the opaque data pointer passed
3312  * to this function when the hook was registered.
3313  *
3314  * Note that any registered hooks registered here are guaranteed to be called
3315  * if pre-change hooks have been.
3316  */
3317 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3318         *opaque);
3319 
3320 /**
3321  * arm_rebuild_hflags:
3322  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3323  */
3324 void arm_rebuild_hflags(CPUARMState *env);
3325 
3326 /**
3327  * aa32_vfp_dreg:
3328  * Return a pointer to the Dn register within env in 32-bit mode.
3329  */
3330 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3331 {
3332     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3333 }
3334 
3335 /**
3336  * aa32_vfp_qreg:
3337  * Return a pointer to the Qn register within env in 32-bit mode.
3338  */
3339 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3340 {
3341     return &env->vfp.zregs[regno].d[0];
3342 }
3343 
3344 /**
3345  * aa64_vfp_qreg:
3346  * Return a pointer to the Qn register within env in 64-bit mode.
3347  */
3348 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3349 {
3350     return &env->vfp.zregs[regno].d[0];
3351 }
3352 
3353 /* Shared between translate-sve.c and sve_helper.c.  */
3354 extern const uint64_t pred_esz_masks[4];
3355 
3356 /*
3357  * Naming convention for isar_feature functions:
3358  * Functions which test 32-bit ID registers should have _aa32_ in
3359  * their name. Functions which test 64-bit ID registers should have
3360  * _aa64_ in their name. These must only be used in code where we
3361  * know for certain that the CPU has AArch32 or AArch64 respectively
3362  * or where the correct answer for a CPU which doesn't implement that
3363  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3364  * system registers that are specific to that CPU state, for "should
3365  * we let this system register bit be set" tests where the 32-bit
3366  * flavour of the register doesn't have the bit, and so on).
3367  * Functions which simply ask "does this feature exist at all" have
3368  * _any_ in their name, and always return the logical OR of the _aa64_
3369  * and the _aa32_ function.
3370  */
3371 
3372 /*
3373  * 32-bit feature tests via id registers.
3374  */
3375 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3376 {
3377     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3378 }
3379 
3380 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3381 {
3382     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3383 }
3384 
3385 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3386 {
3387     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3388 }
3389 
3390 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3391 {
3392     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3393 }
3394 
3395 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3396 {
3397     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3398 }
3399 
3400 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3401 {
3402     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3403 }
3404 
3405 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3406 {
3407     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3408 }
3409 
3410 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3411 {
3412     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3413 }
3414 
3415 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3416 {
3417     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3418 }
3419 
3420 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3421 {
3422     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3423 }
3424 
3425 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3426 {
3427     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3428 }
3429 
3430 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3431 {
3432     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3433 }
3434 
3435 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3436 {
3437     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3438 }
3439 
3440 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3441 {
3442     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3443 }
3444 
3445 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3446 {
3447     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3448 }
3449 
3450 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3451 {
3452     /*
3453      * This is a placeholder for use by VCMA until the rest of
3454      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3455      * At which point we can properly set and check MVFR1.FPHP.
3456      */
3457     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3458 }
3459 
3460 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3461 {
3462     /*
3463      * Return true if either VFP or SIMD is implemented.
3464      * In this case, a minimum of VFP w/ D0-D15.
3465      */
3466     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3467 }
3468 
3469 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3470 {
3471     /* Return true if D16-D31 are implemented */
3472     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3473 }
3474 
3475 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3476 {
3477     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3478 }
3479 
3480 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3481 {
3482     /* Return true if CPU supports single precision floating point, VFPv2 */
3483     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3484 }
3485 
3486 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3487 {
3488     /* Return true if CPU supports single precision floating point, VFPv3 */
3489     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3490 }
3491 
3492 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3493 {
3494     /* Return true if CPU supports double precision floating point, VFPv2 */
3495     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3496 }
3497 
3498 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3499 {
3500     /* Return true if CPU supports double precision floating point, VFPv3 */
3501     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3502 }
3503 
3504 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3505 {
3506     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3507 }
3508 
3509 /*
3510  * We always set the FP and SIMD FP16 fields to indicate identical
3511  * levels of support (assuming SIMD is implemented at all), so
3512  * we only need one set of accessors.
3513  */
3514 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3515 {
3516     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3517 }
3518 
3519 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3520 {
3521     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3522 }
3523 
3524 /*
3525  * Note that this ID register field covers both VFP and Neon FMAC,
3526  * so should usually be tested in combination with some other
3527  * check that confirms the presence of whichever of VFP or Neon is
3528  * relevant, to avoid accidentally enabling a Neon feature on
3529  * a VFP-no-Neon core or vice-versa.
3530  */
3531 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3532 {
3533     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3534 }
3535 
3536 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3537 {
3538     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3539 }
3540 
3541 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3542 {
3543     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3544 }
3545 
3546 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3547 {
3548     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3549 }
3550 
3551 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3552 {
3553     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3554 }
3555 
3556 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3557 {
3558     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3559 }
3560 
3561 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3562 {
3563     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3564 }
3565 
3566 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3567 {
3568     /* 0xf means "non-standard IMPDEF PMU" */
3569     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3570         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3571 }
3572 
3573 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3574 {
3575     /* 0xf means "non-standard IMPDEF PMU" */
3576     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3577         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3578 }
3579 
3580 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3581 {
3582     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3583 }
3584 
3585 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3586 {
3587     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3588 }
3589 
3590 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3591 {
3592     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3593 }
3594 
3595 /*
3596  * 64-bit feature tests via id registers.
3597  */
3598 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3599 {
3600     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3601 }
3602 
3603 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3604 {
3605     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3606 }
3607 
3608 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3609 {
3610     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3611 }
3612 
3613 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3614 {
3615     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3616 }
3617 
3618 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3619 {
3620     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3621 }
3622 
3623 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3624 {
3625     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3626 }
3627 
3628 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3629 {
3630     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3631 }
3632 
3633 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3634 {
3635     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3636 }
3637 
3638 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3639 {
3640     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3641 }
3642 
3643 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3644 {
3645     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3646 }
3647 
3648 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3649 {
3650     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3651 }
3652 
3653 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3654 {
3655     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3656 }
3657 
3658 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3659 {
3660     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3661 }
3662 
3663 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3664 {
3665     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3666 }
3667 
3668 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3669 {
3670     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3671 }
3672 
3673 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3674 {
3675     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3676 }
3677 
3678 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3679 {
3680     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3681 }
3682 
3683 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3684 {
3685     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3686 }
3687 
3688 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3689 {
3690     /*
3691      * Note that while QEMU will only implement the architected algorithm
3692      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3693      * defined algorithms, and thus API+GPI, and this predicate controls
3694      * migration of the 128-bit keys.
3695      */
3696     return (id->id_aa64isar1 &
3697             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3698              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3699              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3700              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3701 }
3702 
3703 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3704 {
3705     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3706 }
3707 
3708 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3709 {
3710     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3711 }
3712 
3713 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3714 {
3715     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3716 }
3717 
3718 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3719 {
3720     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3721 }
3722 
3723 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3724 {
3725     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3726 }
3727 
3728 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3729 {
3730     /* We always set the AdvSIMD and FP fields identically.  */
3731     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3732 }
3733 
3734 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3735 {
3736     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3737     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3738 }
3739 
3740 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3741 {
3742     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3743 }
3744 
3745 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3746 {
3747     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3748 }
3749 
3750 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3751 {
3752     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3753 }
3754 
3755 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3756 {
3757     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3758 }
3759 
3760 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3761 {
3762     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3763 }
3764 
3765 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3766 {
3767     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3768 }
3769 
3770 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3771 {
3772     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3773 }
3774 
3775 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3778 }
3779 
3780 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3783         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3784 }
3785 
3786 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3787 {
3788     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3789         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3790 }
3791 
3792 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3793 {
3794     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3795 }
3796 
3797 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3798 {
3799     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3800 }
3801 
3802 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3803 {
3804     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3805 }
3806 
3807 /*
3808  * Feature tests for "does this exist in either 32-bit or 64-bit?"
3809  */
3810 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3811 {
3812     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3813 }
3814 
3815 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3816 {
3817     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3818 }
3819 
3820 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3821 {
3822     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3823 }
3824 
3825 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3826 {
3827     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3828 }
3829 
3830 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3831 {
3832     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3833 }
3834 
3835 /*
3836  * Forward to the above feature tests given an ARMCPU pointer.
3837  */
3838 #define cpu_isar_feature(name, cpu) \
3839     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3840 
3841 #endif
3842