xref: /openbmc/qemu/target/arm/cpu.h (revision fbf32752)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
60 
61 #define ARMV7M_EXCP_RESET   1
62 #define ARMV7M_EXCP_NMI     2
63 #define ARMV7M_EXCP_HARD    3
64 #define ARMV7M_EXCP_MEM     4
65 #define ARMV7M_EXCP_BUS     5
66 #define ARMV7M_EXCP_USAGE   6
67 #define ARMV7M_EXCP_SECURE  7
68 #define ARMV7M_EXCP_SVC     11
69 #define ARMV7M_EXCP_DEBUG   12
70 #define ARMV7M_EXCP_PENDSV  14
71 #define ARMV7M_EXCP_SYSTICK 15
72 
73 /* For M profile, some registers are banked secure vs non-secure;
74  * these are represented as a 2-element array where the first element
75  * is the non-secure copy and the second is the secure copy.
76  * When the CPU does not have implement the security extension then
77  * only the first element is used.
78  * This means that the copy for the current security state can be
79  * accessed via env->registerfield[env->v7m.secure] (whether the security
80  * extension is implemented or not).
81  */
82 enum {
83     M_REG_NS = 0,
84     M_REG_S = 1,
85     M_REG_NUM_BANKS = 2,
86 };
87 
88 /* ARM-specific interrupt pending bits.  */
89 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
90 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
91 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
92 
93 /* The usual mapping for an AArch64 system register to its AArch32
94  * counterpart is for the 32 bit world to have access to the lower
95  * half only (with writes leaving the upper half untouched). It's
96  * therefore useful to be able to pass TCG the offset of the least
97  * significant half of a uint64_t struct member.
98  */
99 #ifdef HOST_WORDS_BIGENDIAN
100 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #define offsetofhigh32(S, M) offsetof(S, M)
102 #else
103 #define offsetoflow32(S, M) offsetof(S, M)
104 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #endif
106 
107 /* Meanings of the ARMCPU object's four inbound GPIO lines */
108 #define ARM_CPU_IRQ 0
109 #define ARM_CPU_FIQ 1
110 #define ARM_CPU_VIRQ 2
111 #define ARM_CPU_VFIQ 3
112 
113 #define NB_MMU_MODES 8
114 /* ARM-specific extra insn start words:
115  * 1: Conditional execution bits
116  * 2: Partial exception syndrome for data aborts
117  */
118 #define TARGET_INSN_START_EXTRA_WORDS 2
119 
120 /* The 2nd extra word holding syndrome info for data aborts does not use
121  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122  * help the sleb128 encoder do a better job.
123  * When restoring the CPU state, we shift it back up.
124  */
125 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126 #define ARM_INSN_START_WORD2_SHIFT 14
127 
128 /* We currently assume float and double are IEEE single and double
129    precision respectively.
130    Doing runtime conversions is tricky because VFP registers may contain
131    integer values (eg. as the result of a FTOSI instruction).
132    s<2n> maps to the least significant half of d<n>
133    s<2n+1> maps to the most significant half of d<n>
134  */
135 
136 /* CPU state for each instance of a generic timer (in cp15 c14) */
137 typedef struct ARMGenericTimer {
138     uint64_t cval; /* Timer CompareValue register */
139     uint64_t ctl; /* Timer Control register */
140 } ARMGenericTimer;
141 
142 #define GTIMER_PHYS 0
143 #define GTIMER_VIRT 1
144 #define GTIMER_HYP  2
145 #define GTIMER_SEC  3
146 #define NUM_GTIMERS 4
147 
148 typedef struct {
149     uint64_t raw_tcr;
150     uint32_t mask;
151     uint32_t base_mask;
152 } TCR;
153 
154 /* Define a maximum sized vector register.
155  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
156  * For 64-bit, this is a 2048-bit SVE register.
157  *
158  * Note that the mapping between S, D, and Q views of the register bank
159  * differs between AArch64 and AArch32.
160  * In AArch32:
161  *  Qn = regs[n].d[1]:regs[n].d[0]
162  *  Dn = regs[n / 2].d[n & 1]
163  *  Sn = regs[n / 4].d[n % 4 / 2],
164  *       bits 31..0 for even n, and bits 63..32 for odd n
165  *       (and regs[16] to regs[31] are inaccessible)
166  * In AArch64:
167  *  Zn = regs[n].d[*]
168  *  Qn = regs[n].d[1]:regs[n].d[0]
169  *  Dn = regs[n].d[0]
170  *  Sn = regs[n].d[0] bits 31..0
171  *  Hn = regs[n].d[0] bits 15..0
172  *
173  * This corresponds to the architecturally defined mapping between
174  * the two execution states, and means we do not need to explicitly
175  * map these registers when changing states.
176  *
177  * Align the data for use with TCG host vector operations.
178  */
179 
180 #ifdef TARGET_AARCH64
181 # define ARM_MAX_VQ    16
182 #else
183 # define ARM_MAX_VQ    1
184 #endif
185 
186 typedef struct ARMVectorReg {
187     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
188 } ARMVectorReg;
189 
190 /* In AArch32 mode, predicate registers do not exist at all.  */
191 #ifdef TARGET_AARCH64
192 typedef struct ARMPredicateReg {
193     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
194 } ARMPredicateReg;
195 #endif
196 
197 
198 typedef struct CPUARMState {
199     /* Regs for current mode.  */
200     uint32_t regs[16];
201 
202     /* 32/64 switch only happens when taking and returning from
203      * exceptions so the overlap semantics are taken care of then
204      * instead of having a complicated union.
205      */
206     /* Regs for A64 mode.  */
207     uint64_t xregs[32];
208     uint64_t pc;
209     /* PSTATE isn't an architectural register for ARMv8. However, it is
210      * convenient for us to assemble the underlying state into a 32 bit format
211      * identical to the architectural format used for the SPSR. (This is also
212      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
213      * 'pstate' register are.) Of the PSTATE bits:
214      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
215      *    semantics as for AArch32, as described in the comments on each field)
216      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
217      *  DAIF (exception masks) are kept in env->daif
218      *  all other bits are stored in their correct places in env->pstate
219      */
220     uint32_t pstate;
221     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
222 
223     /* Frequently accessed CPSR bits are stored separately for efficiency.
224        This contains all the other bits.  Use cpsr_{read,write} to access
225        the whole CPSR.  */
226     uint32_t uncached_cpsr;
227     uint32_t spsr;
228 
229     /* Banked registers.  */
230     uint64_t banked_spsr[8];
231     uint32_t banked_r13[8];
232     uint32_t banked_r14[8];
233 
234     /* These hold r8-r12.  */
235     uint32_t usr_regs[5];
236     uint32_t fiq_regs[5];
237 
238     /* cpsr flag cache for faster execution */
239     uint32_t CF; /* 0 or 1 */
240     uint32_t VF; /* V is the bit 31. All other bits are undefined */
241     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
242     uint32_t ZF; /* Z set if zero.  */
243     uint32_t QF; /* 0 or 1 */
244     uint32_t GE; /* cpsr[19:16] */
245     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
246     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
247     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
248 
249     uint64_t elr_el[4]; /* AArch64 exception link regs  */
250     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
251 
252     /* System control coprocessor (cp15) */
253     struct {
254         uint32_t c0_cpuid;
255         union { /* Cache size selection */
256             struct {
257                 uint64_t _unused_csselr0;
258                 uint64_t csselr_ns;
259                 uint64_t _unused_csselr1;
260                 uint64_t csselr_s;
261             };
262             uint64_t csselr_el[4];
263         };
264         union { /* System control register. */
265             struct {
266                 uint64_t _unused_sctlr;
267                 uint64_t sctlr_ns;
268                 uint64_t hsctlr;
269                 uint64_t sctlr_s;
270             };
271             uint64_t sctlr_el[4];
272         };
273         uint64_t cpacr_el1; /* Architectural feature access control register */
274         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
275         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
276         uint64_t sder; /* Secure debug enable register. */
277         uint32_t nsacr; /* Non-secure access control register. */
278         union { /* MMU translation table base 0. */
279             struct {
280                 uint64_t _unused_ttbr0_0;
281                 uint64_t ttbr0_ns;
282                 uint64_t _unused_ttbr0_1;
283                 uint64_t ttbr0_s;
284             };
285             uint64_t ttbr0_el[4];
286         };
287         union { /* MMU translation table base 1. */
288             struct {
289                 uint64_t _unused_ttbr1_0;
290                 uint64_t ttbr1_ns;
291                 uint64_t _unused_ttbr1_1;
292                 uint64_t ttbr1_s;
293             };
294             uint64_t ttbr1_el[4];
295         };
296         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
297         /* MMU translation table base control. */
298         TCR tcr_el[4];
299         TCR vtcr_el2; /* Virtualization Translation Control.  */
300         uint32_t c2_data; /* MPU data cacheable bits.  */
301         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
302         union { /* MMU domain access control register
303                  * MPU write buffer control.
304                  */
305             struct {
306                 uint64_t dacr_ns;
307                 uint64_t dacr_s;
308             };
309             struct {
310                 uint64_t dacr32_el2;
311             };
312         };
313         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
314         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
315         uint64_t hcr_el2; /* Hypervisor configuration register */
316         uint64_t scr_el3; /* Secure configuration register.  */
317         union { /* Fault status registers.  */
318             struct {
319                 uint64_t ifsr_ns;
320                 uint64_t ifsr_s;
321             };
322             struct {
323                 uint64_t ifsr32_el2;
324             };
325         };
326         union {
327             struct {
328                 uint64_t _unused_dfsr;
329                 uint64_t dfsr_ns;
330                 uint64_t hsr;
331                 uint64_t dfsr_s;
332             };
333             uint64_t esr_el[4];
334         };
335         uint32_t c6_region[8]; /* MPU base/size registers.  */
336         union { /* Fault address registers. */
337             struct {
338                 uint64_t _unused_far0;
339 #ifdef HOST_WORDS_BIGENDIAN
340                 uint32_t ifar_ns;
341                 uint32_t dfar_ns;
342                 uint32_t ifar_s;
343                 uint32_t dfar_s;
344 #else
345                 uint32_t dfar_ns;
346                 uint32_t ifar_ns;
347                 uint32_t dfar_s;
348                 uint32_t ifar_s;
349 #endif
350                 uint64_t _unused_far3;
351             };
352             uint64_t far_el[4];
353         };
354         uint64_t hpfar_el2;
355         uint64_t hstr_el2;
356         union { /* Translation result. */
357             struct {
358                 uint64_t _unused_par_0;
359                 uint64_t par_ns;
360                 uint64_t _unused_par_1;
361                 uint64_t par_s;
362             };
363             uint64_t par_el[4];
364         };
365 
366         uint32_t c9_insn; /* Cache lockdown registers.  */
367         uint32_t c9_data;
368         uint64_t c9_pmcr; /* performance monitor control register */
369         uint64_t c9_pmcnten; /* perf monitor counter enables */
370         uint64_t c9_pmovsr; /* perf monitor overflow status */
371         uint64_t c9_pmuserenr; /* perf monitor user enable */
372         uint64_t c9_pmselr; /* perf monitor counter selection register */
373         uint64_t c9_pminten; /* perf monitor interrupt enables */
374         union { /* Memory attribute redirection */
375             struct {
376 #ifdef HOST_WORDS_BIGENDIAN
377                 uint64_t _unused_mair_0;
378                 uint32_t mair1_ns;
379                 uint32_t mair0_ns;
380                 uint64_t _unused_mair_1;
381                 uint32_t mair1_s;
382                 uint32_t mair0_s;
383 #else
384                 uint64_t _unused_mair_0;
385                 uint32_t mair0_ns;
386                 uint32_t mair1_ns;
387                 uint64_t _unused_mair_1;
388                 uint32_t mair0_s;
389                 uint32_t mair1_s;
390 #endif
391             };
392             uint64_t mair_el[4];
393         };
394         union { /* vector base address register */
395             struct {
396                 uint64_t _unused_vbar;
397                 uint64_t vbar_ns;
398                 uint64_t hvbar;
399                 uint64_t vbar_s;
400             };
401             uint64_t vbar_el[4];
402         };
403         uint32_t mvbar; /* (monitor) vector base address register */
404         struct { /* FCSE PID. */
405             uint32_t fcseidr_ns;
406             uint32_t fcseidr_s;
407         };
408         union { /* Context ID. */
409             struct {
410                 uint64_t _unused_contextidr_0;
411                 uint64_t contextidr_ns;
412                 uint64_t _unused_contextidr_1;
413                 uint64_t contextidr_s;
414             };
415             uint64_t contextidr_el[4];
416         };
417         union { /* User RW Thread register. */
418             struct {
419                 uint64_t tpidrurw_ns;
420                 uint64_t tpidrprw_ns;
421                 uint64_t htpidr;
422                 uint64_t _tpidr_el3;
423             };
424             uint64_t tpidr_el[4];
425         };
426         /* The secure banks of these registers don't map anywhere */
427         uint64_t tpidrurw_s;
428         uint64_t tpidrprw_s;
429         uint64_t tpidruro_s;
430 
431         union { /* User RO Thread register. */
432             uint64_t tpidruro_ns;
433             uint64_t tpidrro_el[1];
434         };
435         uint64_t c14_cntfrq; /* Counter Frequency register */
436         uint64_t c14_cntkctl; /* Timer Control register */
437         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
438         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
439         ARMGenericTimer c14_timer[NUM_GTIMERS];
440         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
441         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
442         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
443         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
444         uint32_t c15_threadid; /* TI debugger thread-ID.  */
445         uint32_t c15_config_base_address; /* SCU base address.  */
446         uint32_t c15_diagnostic; /* diagnostic register */
447         uint32_t c15_power_diagnostic;
448         uint32_t c15_power_control; /* power control */
449         uint64_t dbgbvr[16]; /* breakpoint value registers */
450         uint64_t dbgbcr[16]; /* breakpoint control registers */
451         uint64_t dbgwvr[16]; /* watchpoint value registers */
452         uint64_t dbgwcr[16]; /* watchpoint control registers */
453         uint64_t mdscr_el1;
454         uint64_t oslsr_el1; /* OS Lock Status */
455         uint64_t mdcr_el2;
456         uint64_t mdcr_el3;
457         /* If the counter is enabled, this stores the last time the counter
458          * was reset. Otherwise it stores the counter value
459          */
460         uint64_t c15_ccnt;
461         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
462         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
463         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
464     } cp15;
465 
466     struct {
467         /* M profile has up to 4 stack pointers:
468          * a Main Stack Pointer and a Process Stack Pointer for each
469          * of the Secure and Non-Secure states. (If the CPU doesn't support
470          * the security extension then it has only two SPs.)
471          * In QEMU we always store the currently active SP in regs[13],
472          * and the non-active SP for the current security state in
473          * v7m.other_sp. The stack pointers for the inactive security state
474          * are stored in other_ss_msp and other_ss_psp.
475          * switch_v7m_security_state() is responsible for rearranging them
476          * when we change security state.
477          */
478         uint32_t other_sp;
479         uint32_t other_ss_msp;
480         uint32_t other_ss_psp;
481         uint32_t vecbase[M_REG_NUM_BANKS];
482         uint32_t basepri[M_REG_NUM_BANKS];
483         uint32_t control[M_REG_NUM_BANKS];
484         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
485         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
486         uint32_t hfsr; /* HardFault Status */
487         uint32_t dfsr; /* Debug Fault Status Register */
488         uint32_t sfsr; /* Secure Fault Status Register */
489         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
490         uint32_t bfar; /* BusFault Address */
491         uint32_t sfar; /* Secure Fault Address Register */
492         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
493         int exception;
494         uint32_t primask[M_REG_NUM_BANKS];
495         uint32_t faultmask[M_REG_NUM_BANKS];
496         uint32_t aircr; /* only holds r/w state if security extn implemented */
497         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
498         uint32_t csselr[M_REG_NUM_BANKS];
499         uint32_t scr[M_REG_NUM_BANKS];
500         uint32_t msplim[M_REG_NUM_BANKS];
501         uint32_t psplim[M_REG_NUM_BANKS];
502     } v7m;
503 
504     /* Information associated with an exception about to be taken:
505      * code which raises an exception must set cs->exception_index and
506      * the relevant parts of this structure; the cpu_do_interrupt function
507      * will then set the guest-visible registers as part of the exception
508      * entry process.
509      */
510     struct {
511         uint32_t syndrome; /* AArch64 format syndrome register */
512         uint32_t fsr; /* AArch32 format fault status register info */
513         uint64_t vaddress; /* virtual addr associated with exception, if any */
514         uint32_t target_el; /* EL the exception should be targeted for */
515         /* If we implement EL2 we will also need to store information
516          * about the intermediate physical address for stage 2 faults.
517          */
518     } exception;
519 
520     /* Thumb-2 EE state.  */
521     uint32_t teecr;
522     uint32_t teehbr;
523 
524     /* VFP coprocessor state.  */
525     struct {
526         ARMVectorReg zregs[32];
527 
528 #ifdef TARGET_AARCH64
529         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
530         ARMPredicateReg pregs[17];
531 #endif
532 
533         uint32_t xregs[16];
534         /* We store these fpcsr fields separately for convenience.  */
535         int vec_len;
536         int vec_stride;
537 
538         /* scratch space when Tn are not sufficient.  */
539         uint32_t scratch[8];
540 
541         /* There are a number of distinct float control structures:
542          *
543          *  fp_status: is the "normal" fp status.
544          *  fp_status_fp16: used for half-precision calculations
545          *  standard_fp_status : the ARM "Standard FPSCR Value"
546          *
547          * Half-precision operations are governed by a separate
548          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
549          * status structure to control this.
550          *
551          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
552          * round-to-nearest and is used by any operations (generally
553          * Neon) which the architecture defines as controlled by the
554          * standard FPSCR value rather than the FPSCR.
555          *
556          * To avoid having to transfer exception bits around, we simply
557          * say that the FPSCR cumulative exception flags are the logical
558          * OR of the flags in the three fp statuses. This relies on the
559          * only thing which needs to read the exception flags being
560          * an explicit FPSCR read.
561          */
562         float_status fp_status;
563         float_status fp_status_f16;
564         float_status standard_fp_status;
565 
566         /* ZCR_EL[1-3] */
567         uint64_t zcr_el[4];
568     } vfp;
569     uint64_t exclusive_addr;
570     uint64_t exclusive_val;
571     uint64_t exclusive_high;
572 
573     /* iwMMXt coprocessor state.  */
574     struct {
575         uint64_t regs[16];
576         uint64_t val;
577 
578         uint32_t cregs[16];
579     } iwmmxt;
580 
581 #if defined(CONFIG_USER_ONLY)
582     /* For usermode syscall translation.  */
583     int eabi;
584 #endif
585 
586     struct CPUBreakpoint *cpu_breakpoint[16];
587     struct CPUWatchpoint *cpu_watchpoint[16];
588 
589     /* Fields up to this point are cleared by a CPU reset */
590     struct {} end_reset_fields;
591 
592     CPU_COMMON
593 
594     /* Fields after CPU_COMMON are preserved across CPU reset. */
595 
596     /* Internal CPU feature flags.  */
597     uint64_t features;
598 
599     /* PMSAv7 MPU */
600     struct {
601         uint32_t *drbar;
602         uint32_t *drsr;
603         uint32_t *dracr;
604         uint32_t rnr[M_REG_NUM_BANKS];
605     } pmsav7;
606 
607     /* PMSAv8 MPU */
608     struct {
609         /* The PMSAv8 implementation also shares some PMSAv7 config
610          * and state:
611          *  pmsav7.rnr (region number register)
612          *  pmsav7_dregion (number of configured regions)
613          */
614         uint32_t *rbar[M_REG_NUM_BANKS];
615         uint32_t *rlar[M_REG_NUM_BANKS];
616         uint32_t mair0[M_REG_NUM_BANKS];
617         uint32_t mair1[M_REG_NUM_BANKS];
618     } pmsav8;
619 
620     /* v8M SAU */
621     struct {
622         uint32_t *rbar;
623         uint32_t *rlar;
624         uint32_t rnr;
625         uint32_t ctrl;
626     } sau;
627 
628     void *nvic;
629     const struct arm_boot_info *boot_info;
630     /* Store GICv3CPUState to access from this struct */
631     void *gicv3state;
632 } CPUARMState;
633 
634 /**
635  * ARMELChangeHookFn:
636  * type of a function which can be registered via arm_register_el_change_hook()
637  * to get callbacks when the CPU changes its exception level or mode.
638  */
639 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
640 typedef struct ARMELChangeHook ARMELChangeHook;
641 struct ARMELChangeHook {
642     ARMELChangeHookFn *hook;
643     void *opaque;
644     QLIST_ENTRY(ARMELChangeHook) node;
645 };
646 
647 /* These values map onto the return values for
648  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
649 typedef enum ARMPSCIState {
650     PSCI_ON = 0,
651     PSCI_OFF = 1,
652     PSCI_ON_PENDING = 2
653 } ARMPSCIState;
654 
655 /**
656  * ARMCPU:
657  * @env: #CPUARMState
658  *
659  * An ARM CPU core.
660  */
661 struct ARMCPU {
662     /*< private >*/
663     CPUState parent_obj;
664     /*< public >*/
665 
666     CPUARMState env;
667 
668     /* Coprocessor information */
669     GHashTable *cp_regs;
670     /* For marshalling (mostly coprocessor) register state between the
671      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
672      * we use these arrays.
673      */
674     /* List of register indexes managed via these arrays; (full KVM style
675      * 64 bit indexes, not CPRegInfo 32 bit indexes)
676      */
677     uint64_t *cpreg_indexes;
678     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
679     uint64_t *cpreg_values;
680     /* Length of the indexes, values, reset_values arrays */
681     int32_t cpreg_array_len;
682     /* These are used only for migration: incoming data arrives in
683      * these fields and is sanity checked in post_load before copying
684      * to the working data structures above.
685      */
686     uint64_t *cpreg_vmstate_indexes;
687     uint64_t *cpreg_vmstate_values;
688     int32_t cpreg_vmstate_array_len;
689 
690     /* Timers used by the generic (architected) timer */
691     QEMUTimer *gt_timer[NUM_GTIMERS];
692     /* GPIO outputs for generic timer */
693     qemu_irq gt_timer_outputs[NUM_GTIMERS];
694     /* GPIO output for GICv3 maintenance interrupt signal */
695     qemu_irq gicv3_maintenance_interrupt;
696     /* GPIO output for the PMU interrupt */
697     qemu_irq pmu_interrupt;
698 
699     /* MemoryRegion to use for secure physical accesses */
700     MemoryRegion *secure_memory;
701 
702     /* For v8M, pointer to the IDAU interface provided by board/SoC */
703     Object *idau;
704 
705     /* 'compatible' string for this CPU for Linux device trees */
706     const char *dtb_compatible;
707 
708     /* PSCI version for this CPU
709      * Bits[31:16] = Major Version
710      * Bits[15:0] = Minor Version
711      */
712     uint32_t psci_version;
713 
714     /* Should CPU start in PSCI powered-off state? */
715     bool start_powered_off;
716 
717     /* Current power state, access guarded by BQL */
718     ARMPSCIState power_state;
719 
720     /* CPU has virtualization extension */
721     bool has_el2;
722     /* CPU has security extension */
723     bool has_el3;
724     /* CPU has PMU (Performance Monitor Unit) */
725     bool has_pmu;
726 
727     /* CPU has memory protection unit */
728     bool has_mpu;
729     /* PMSAv7 MPU number of supported regions */
730     uint32_t pmsav7_dregion;
731     /* v8M SAU number of supported regions */
732     uint32_t sau_sregion;
733 
734     /* PSCI conduit used to invoke PSCI methods
735      * 0 - disabled, 1 - smc, 2 - hvc
736      */
737     uint32_t psci_conduit;
738 
739     /* For v8M, initial value of the Secure VTOR */
740     uint32_t init_svtor;
741 
742     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
743      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
744      */
745     uint32_t kvm_target;
746 
747     /* KVM init features for this CPU */
748     uint32_t kvm_init_features[7];
749 
750     /* Uniprocessor system with MP extensions */
751     bool mp_is_up;
752 
753     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
754      * and the probe failed (so we need to report the error in realize)
755      */
756     bool host_cpu_probe_failed;
757 
758     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
759      * register.
760      */
761     int32_t core_count;
762 
763     /* The instance init functions for implementation-specific subclasses
764      * set these fields to specify the implementation-dependent values of
765      * various constant registers and reset values of non-constant
766      * registers.
767      * Some of these might become QOM properties eventually.
768      * Field names match the official register names as defined in the
769      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
770      * is used for reset values of non-constant registers; no reset_
771      * prefix means a constant register.
772      */
773     uint32_t midr;
774     uint32_t revidr;
775     uint32_t reset_fpsid;
776     uint32_t mvfr0;
777     uint32_t mvfr1;
778     uint32_t mvfr2;
779     uint32_t ctr;
780     uint32_t reset_sctlr;
781     uint32_t id_pfr0;
782     uint32_t id_pfr1;
783     uint32_t id_dfr0;
784     uint32_t pmceid0;
785     uint32_t pmceid1;
786     uint32_t id_afr0;
787     uint32_t id_mmfr0;
788     uint32_t id_mmfr1;
789     uint32_t id_mmfr2;
790     uint32_t id_mmfr3;
791     uint32_t id_mmfr4;
792     uint32_t id_isar0;
793     uint32_t id_isar1;
794     uint32_t id_isar2;
795     uint32_t id_isar3;
796     uint32_t id_isar4;
797     uint32_t id_isar5;
798     uint64_t id_aa64pfr0;
799     uint64_t id_aa64pfr1;
800     uint64_t id_aa64dfr0;
801     uint64_t id_aa64dfr1;
802     uint64_t id_aa64afr0;
803     uint64_t id_aa64afr1;
804     uint64_t id_aa64isar0;
805     uint64_t id_aa64isar1;
806     uint64_t id_aa64mmfr0;
807     uint64_t id_aa64mmfr1;
808     uint32_t dbgdidr;
809     uint32_t clidr;
810     uint64_t mp_affinity; /* MP ID without feature bits */
811     /* The elements of this array are the CCSIDR values for each cache,
812      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
813      */
814     uint32_t ccsidr[16];
815     uint64_t reset_cbar;
816     uint32_t reset_auxcr;
817     bool reset_hivecs;
818     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
819     uint32_t dcz_blocksize;
820     uint64_t rvbar;
821 
822     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
823     int gic_num_lrs; /* number of list registers */
824     int gic_vpribits; /* number of virtual priority bits */
825     int gic_vprebits; /* number of virtual preemption bits */
826 
827     /* Whether the cfgend input is high (i.e. this CPU should reset into
828      * big-endian mode).  This setting isn't used directly: instead it modifies
829      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
830      * architecture version.
831      */
832     bool cfgend;
833 
834     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
835     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
836 
837     int32_t node_id; /* NUMA node this CPU belongs to */
838 
839     /* Used to synchronize KVM and QEMU in-kernel device levels */
840     uint8_t device_irq_level;
841 };
842 
843 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
844 {
845     return container_of(env, ARMCPU, env);
846 }
847 
848 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
849 
850 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
851 
852 #define ENV_OFFSET offsetof(ARMCPU, env)
853 
854 #ifndef CONFIG_USER_ONLY
855 extern const struct VMStateDescription vmstate_arm_cpu;
856 #endif
857 
858 void arm_cpu_do_interrupt(CPUState *cpu);
859 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
860 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
861 
862 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
863                         int flags);
864 
865 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
866                                          MemTxAttrs *attrs);
867 
868 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
869 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
870 
871 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
872                              int cpuid, void *opaque);
873 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
874                              int cpuid, void *opaque);
875 
876 #ifdef TARGET_AARCH64
877 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
878 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
879 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
880 #endif
881 
882 target_ulong do_arm_semihosting(CPUARMState *env);
883 void aarch64_sync_32_to_64(CPUARMState *env);
884 void aarch64_sync_64_to_32(CPUARMState *env);
885 
886 static inline bool is_a64(CPUARMState *env)
887 {
888     return env->aarch64;
889 }
890 
891 /* you can call this signal handler from your SIGBUS and SIGSEGV
892    signal handlers to inform the virtual CPU of exceptions. non zero
893    is returned if the signal was handled by the virtual CPU.  */
894 int cpu_arm_signal_handler(int host_signum, void *pinfo,
895                            void *puc);
896 
897 /**
898  * pmccntr_sync
899  * @env: CPUARMState
900  *
901  * Synchronises the counter in the PMCCNTR. This must always be called twice,
902  * once before any action that might affect the timer and again afterwards.
903  * The function is used to swap the state of the register if required.
904  * This only happens when not in user mode (!CONFIG_USER_ONLY)
905  */
906 void pmccntr_sync(CPUARMState *env);
907 
908 /* SCTLR bit meanings. Several bits have been reused in newer
909  * versions of the architecture; in that case we define constants
910  * for both old and new bit meanings. Code which tests against those
911  * bits should probably check or otherwise arrange that the CPU
912  * is the architectural version it expects.
913  */
914 #define SCTLR_M       (1U << 0)
915 #define SCTLR_A       (1U << 1)
916 #define SCTLR_C       (1U << 2)
917 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
918 #define SCTLR_SA      (1U << 3)
919 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
920 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
921 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
922 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
923 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
924 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
925 #define SCTLR_ITD     (1U << 7) /* v8 onward */
926 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
927 #define SCTLR_SED     (1U << 8) /* v8 onward */
928 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
929 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
930 #define SCTLR_F       (1U << 10) /* up to v6 */
931 #define SCTLR_SW      (1U << 10) /* v7 onward */
932 #define SCTLR_Z       (1U << 11)
933 #define SCTLR_I       (1U << 12)
934 #define SCTLR_V       (1U << 13)
935 #define SCTLR_RR      (1U << 14) /* up to v7 */
936 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
937 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
938 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
939 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
940 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
941 #define SCTLR_HA      (1U << 17)
942 #define SCTLR_BR      (1U << 17) /* PMSA only */
943 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
944 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
945 #define SCTLR_WXN     (1U << 19)
946 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
947 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
948 #define SCTLR_FI      (1U << 21)
949 #define SCTLR_U       (1U << 22)
950 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
951 #define SCTLR_VE      (1U << 24) /* up to v7 */
952 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
953 #define SCTLR_EE      (1U << 25)
954 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
955 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
956 #define SCTLR_NMFI    (1U << 27)
957 #define SCTLR_TRE     (1U << 28)
958 #define SCTLR_AFE     (1U << 29)
959 #define SCTLR_TE      (1U << 30)
960 
961 #define CPTR_TCPAC    (1U << 31)
962 #define CPTR_TTA      (1U << 20)
963 #define CPTR_TFP      (1U << 10)
964 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
965 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
966 
967 #define MDCR_EPMAD    (1U << 21)
968 #define MDCR_EDAD     (1U << 20)
969 #define MDCR_SPME     (1U << 17)
970 #define MDCR_SDD      (1U << 16)
971 #define MDCR_SPD      (3U << 14)
972 #define MDCR_TDRA     (1U << 11)
973 #define MDCR_TDOSA    (1U << 10)
974 #define MDCR_TDA      (1U << 9)
975 #define MDCR_TDE      (1U << 8)
976 #define MDCR_HPME     (1U << 7)
977 #define MDCR_TPM      (1U << 6)
978 #define MDCR_TPMCR    (1U << 5)
979 
980 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
981 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
982 
983 #define CPSR_M (0x1fU)
984 #define CPSR_T (1U << 5)
985 #define CPSR_F (1U << 6)
986 #define CPSR_I (1U << 7)
987 #define CPSR_A (1U << 8)
988 #define CPSR_E (1U << 9)
989 #define CPSR_IT_2_7 (0xfc00U)
990 #define CPSR_GE (0xfU << 16)
991 #define CPSR_IL (1U << 20)
992 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
993  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
994  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
995  * where it is live state but not accessible to the AArch32 code.
996  */
997 #define CPSR_RESERVED (0x7U << 21)
998 #define CPSR_J (1U << 24)
999 #define CPSR_IT_0_1 (3U << 25)
1000 #define CPSR_Q (1U << 27)
1001 #define CPSR_V (1U << 28)
1002 #define CPSR_C (1U << 29)
1003 #define CPSR_Z (1U << 30)
1004 #define CPSR_N (1U << 31)
1005 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1006 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1007 
1008 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1009 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1010     | CPSR_NZCV)
1011 /* Bits writable in user mode.  */
1012 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1013 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1014 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1015 /* Mask of bits which may be set by exception return copying them from SPSR */
1016 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1017 
1018 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1019 #define XPSR_EXCP 0x1ffU
1020 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1021 #define XPSR_IT_2_7 CPSR_IT_2_7
1022 #define XPSR_GE CPSR_GE
1023 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1024 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1025 #define XPSR_IT_0_1 CPSR_IT_0_1
1026 #define XPSR_Q CPSR_Q
1027 #define XPSR_V CPSR_V
1028 #define XPSR_C CPSR_C
1029 #define XPSR_Z CPSR_Z
1030 #define XPSR_N CPSR_N
1031 #define XPSR_NZCV CPSR_NZCV
1032 #define XPSR_IT CPSR_IT
1033 
1034 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1035 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1036 #define TTBCR_PD0    (1U << 4)
1037 #define TTBCR_PD1    (1U << 5)
1038 #define TTBCR_EPD0   (1U << 7)
1039 #define TTBCR_IRGN0  (3U << 8)
1040 #define TTBCR_ORGN0  (3U << 10)
1041 #define TTBCR_SH0    (3U << 12)
1042 #define TTBCR_T1SZ   (3U << 16)
1043 #define TTBCR_A1     (1U << 22)
1044 #define TTBCR_EPD1   (1U << 23)
1045 #define TTBCR_IRGN1  (3U << 24)
1046 #define TTBCR_ORGN1  (3U << 26)
1047 #define TTBCR_SH1    (1U << 28)
1048 #define TTBCR_EAE    (1U << 31)
1049 
1050 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1051  * Only these are valid when in AArch64 mode; in
1052  * AArch32 mode SPSRs are basically CPSR-format.
1053  */
1054 #define PSTATE_SP (1U)
1055 #define PSTATE_M (0xFU)
1056 #define PSTATE_nRW (1U << 4)
1057 #define PSTATE_F (1U << 6)
1058 #define PSTATE_I (1U << 7)
1059 #define PSTATE_A (1U << 8)
1060 #define PSTATE_D (1U << 9)
1061 #define PSTATE_IL (1U << 20)
1062 #define PSTATE_SS (1U << 21)
1063 #define PSTATE_V (1U << 28)
1064 #define PSTATE_C (1U << 29)
1065 #define PSTATE_Z (1U << 30)
1066 #define PSTATE_N (1U << 31)
1067 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1068 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1069 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1070 /* Mode values for AArch64 */
1071 #define PSTATE_MODE_EL3h 13
1072 #define PSTATE_MODE_EL3t 12
1073 #define PSTATE_MODE_EL2h 9
1074 #define PSTATE_MODE_EL2t 8
1075 #define PSTATE_MODE_EL1h 5
1076 #define PSTATE_MODE_EL1t 4
1077 #define PSTATE_MODE_EL0t 0
1078 
1079 /* Write a new value to v7m.exception, thus transitioning into or out
1080  * of Handler mode; this may result in a change of active stack pointer.
1081  */
1082 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1083 
1084 /* Map EL and handler into a PSTATE_MODE.  */
1085 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1086 {
1087     return (el << 2) | handler;
1088 }
1089 
1090 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1091  * interprocessing, so we don't attempt to sync with the cpsr state used by
1092  * the 32 bit decoder.
1093  */
1094 static inline uint32_t pstate_read(CPUARMState *env)
1095 {
1096     int ZF;
1097 
1098     ZF = (env->ZF == 0);
1099     return (env->NF & 0x80000000) | (ZF << 30)
1100         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1101         | env->pstate | env->daif;
1102 }
1103 
1104 static inline void pstate_write(CPUARMState *env, uint32_t val)
1105 {
1106     env->ZF = (~val) & PSTATE_Z;
1107     env->NF = val;
1108     env->CF = (val >> 29) & 1;
1109     env->VF = (val << 3) & 0x80000000;
1110     env->daif = val & PSTATE_DAIF;
1111     env->pstate = val & ~CACHED_PSTATE_BITS;
1112 }
1113 
1114 /* Return the current CPSR value.  */
1115 uint32_t cpsr_read(CPUARMState *env);
1116 
1117 typedef enum CPSRWriteType {
1118     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1119     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1120     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1121     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1122 } CPSRWriteType;
1123 
1124 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1125 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1126                 CPSRWriteType write_type);
1127 
1128 /* Return the current xPSR value.  */
1129 static inline uint32_t xpsr_read(CPUARMState *env)
1130 {
1131     int ZF;
1132     ZF = (env->ZF == 0);
1133     return (env->NF & 0x80000000) | (ZF << 30)
1134         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1135         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1136         | ((env->condexec_bits & 0xfc) << 8)
1137         | env->v7m.exception;
1138 }
1139 
1140 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1141 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1142 {
1143     if (mask & XPSR_NZCV) {
1144         env->ZF = (~val) & XPSR_Z;
1145         env->NF = val;
1146         env->CF = (val >> 29) & 1;
1147         env->VF = (val << 3) & 0x80000000;
1148     }
1149     if (mask & XPSR_Q) {
1150         env->QF = ((val & XPSR_Q) != 0);
1151     }
1152     if (mask & XPSR_T) {
1153         env->thumb = ((val & XPSR_T) != 0);
1154     }
1155     if (mask & XPSR_IT_0_1) {
1156         env->condexec_bits &= ~3;
1157         env->condexec_bits |= (val >> 25) & 3;
1158     }
1159     if (mask & XPSR_IT_2_7) {
1160         env->condexec_bits &= 3;
1161         env->condexec_bits |= (val >> 8) & 0xfc;
1162     }
1163     if (mask & XPSR_EXCP) {
1164         /* Note that this only happens on exception exit */
1165         write_v7m_exception(env, val & XPSR_EXCP);
1166     }
1167 }
1168 
1169 #define HCR_VM        (1ULL << 0)
1170 #define HCR_SWIO      (1ULL << 1)
1171 #define HCR_PTW       (1ULL << 2)
1172 #define HCR_FMO       (1ULL << 3)
1173 #define HCR_IMO       (1ULL << 4)
1174 #define HCR_AMO       (1ULL << 5)
1175 #define HCR_VF        (1ULL << 6)
1176 #define HCR_VI        (1ULL << 7)
1177 #define HCR_VSE       (1ULL << 8)
1178 #define HCR_FB        (1ULL << 9)
1179 #define HCR_BSU_MASK  (3ULL << 10)
1180 #define HCR_DC        (1ULL << 12)
1181 #define HCR_TWI       (1ULL << 13)
1182 #define HCR_TWE       (1ULL << 14)
1183 #define HCR_TID0      (1ULL << 15)
1184 #define HCR_TID1      (1ULL << 16)
1185 #define HCR_TID2      (1ULL << 17)
1186 #define HCR_TID3      (1ULL << 18)
1187 #define HCR_TSC       (1ULL << 19)
1188 #define HCR_TIDCP     (1ULL << 20)
1189 #define HCR_TACR      (1ULL << 21)
1190 #define HCR_TSW       (1ULL << 22)
1191 #define HCR_TPC       (1ULL << 23)
1192 #define HCR_TPU       (1ULL << 24)
1193 #define HCR_TTLB      (1ULL << 25)
1194 #define HCR_TVM       (1ULL << 26)
1195 #define HCR_TGE       (1ULL << 27)
1196 #define HCR_TDZ       (1ULL << 28)
1197 #define HCR_HCD       (1ULL << 29)
1198 #define HCR_TRVM      (1ULL << 30)
1199 #define HCR_RW        (1ULL << 31)
1200 #define HCR_CD        (1ULL << 32)
1201 #define HCR_ID        (1ULL << 33)
1202 #define HCR_MASK      ((1ULL << 34) - 1)
1203 
1204 #define SCR_NS                (1U << 0)
1205 #define SCR_IRQ               (1U << 1)
1206 #define SCR_FIQ               (1U << 2)
1207 #define SCR_EA                (1U << 3)
1208 #define SCR_FW                (1U << 4)
1209 #define SCR_AW                (1U << 5)
1210 #define SCR_NET               (1U << 6)
1211 #define SCR_SMD               (1U << 7)
1212 #define SCR_HCE               (1U << 8)
1213 #define SCR_SIF               (1U << 9)
1214 #define SCR_RW                (1U << 10)
1215 #define SCR_ST                (1U << 11)
1216 #define SCR_TWI               (1U << 12)
1217 #define SCR_TWE               (1U << 13)
1218 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1219 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1220 
1221 /* Return the current FPSCR value.  */
1222 uint32_t vfp_get_fpscr(CPUARMState *env);
1223 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1224 
1225 /* FPCR, Floating Point Control Register
1226  * FPSR, Floating Poiht Status Register
1227  *
1228  * For A64 the FPSCR is split into two logically distinct registers,
1229  * FPCR and FPSR. However since they still use non-overlapping bits
1230  * we store the underlying state in fpscr and just mask on read/write.
1231  */
1232 #define FPSR_MASK 0xf800009f
1233 #define FPCR_MASK 0x07f79f00
1234 
1235 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1236 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1237 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1238 
1239 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1240 {
1241     return vfp_get_fpscr(env) & FPSR_MASK;
1242 }
1243 
1244 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1245 {
1246     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1247     vfp_set_fpscr(env, new_fpscr);
1248 }
1249 
1250 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1251 {
1252     return vfp_get_fpscr(env) & FPCR_MASK;
1253 }
1254 
1255 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1256 {
1257     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1258     vfp_set_fpscr(env, new_fpscr);
1259 }
1260 
1261 enum arm_cpu_mode {
1262   ARM_CPU_MODE_USR = 0x10,
1263   ARM_CPU_MODE_FIQ = 0x11,
1264   ARM_CPU_MODE_IRQ = 0x12,
1265   ARM_CPU_MODE_SVC = 0x13,
1266   ARM_CPU_MODE_MON = 0x16,
1267   ARM_CPU_MODE_ABT = 0x17,
1268   ARM_CPU_MODE_HYP = 0x1a,
1269   ARM_CPU_MODE_UND = 0x1b,
1270   ARM_CPU_MODE_SYS = 0x1f
1271 };
1272 
1273 /* VFP system registers.  */
1274 #define ARM_VFP_FPSID   0
1275 #define ARM_VFP_FPSCR   1
1276 #define ARM_VFP_MVFR2   5
1277 #define ARM_VFP_MVFR1   6
1278 #define ARM_VFP_MVFR0   7
1279 #define ARM_VFP_FPEXC   8
1280 #define ARM_VFP_FPINST  9
1281 #define ARM_VFP_FPINST2 10
1282 
1283 /* iwMMXt coprocessor control registers.  */
1284 #define ARM_IWMMXT_wCID		0
1285 #define ARM_IWMMXT_wCon		1
1286 #define ARM_IWMMXT_wCSSF	2
1287 #define ARM_IWMMXT_wCASF	3
1288 #define ARM_IWMMXT_wCGR0	8
1289 #define ARM_IWMMXT_wCGR1	9
1290 #define ARM_IWMMXT_wCGR2	10
1291 #define ARM_IWMMXT_wCGR3	11
1292 
1293 /* V7M CCR bits */
1294 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1295 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1296 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1297 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1298 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1299 FIELD(V7M_CCR, STKALIGN, 9, 1)
1300 FIELD(V7M_CCR, DC, 16, 1)
1301 FIELD(V7M_CCR, IC, 17, 1)
1302 
1303 /* V7M SCR bits */
1304 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1305 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1306 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1307 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1308 
1309 /* V7M AIRCR bits */
1310 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1311 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1312 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1313 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1314 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1315 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1316 FIELD(V7M_AIRCR, PRIS, 14, 1)
1317 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1318 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1319 
1320 /* V7M CFSR bits for MMFSR */
1321 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1322 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1323 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1324 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1325 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1326 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1327 
1328 /* V7M CFSR bits for BFSR */
1329 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1330 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1331 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1332 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1333 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1334 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1335 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1336 
1337 /* V7M CFSR bits for UFSR */
1338 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1339 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1340 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1341 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1342 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1343 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1344 
1345 /* V7M CFSR bit masks covering all of the subregister bits */
1346 FIELD(V7M_CFSR, MMFSR, 0, 8)
1347 FIELD(V7M_CFSR, BFSR, 8, 8)
1348 FIELD(V7M_CFSR, UFSR, 16, 16)
1349 
1350 /* V7M HFSR bits */
1351 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1352 FIELD(V7M_HFSR, FORCED, 30, 1)
1353 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1354 
1355 /* V7M DFSR bits */
1356 FIELD(V7M_DFSR, HALTED, 0, 1)
1357 FIELD(V7M_DFSR, BKPT, 1, 1)
1358 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1359 FIELD(V7M_DFSR, VCATCH, 3, 1)
1360 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1361 
1362 /* V7M SFSR bits */
1363 FIELD(V7M_SFSR, INVEP, 0, 1)
1364 FIELD(V7M_SFSR, INVIS, 1, 1)
1365 FIELD(V7M_SFSR, INVER, 2, 1)
1366 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1367 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1368 FIELD(V7M_SFSR, LSPERR, 5, 1)
1369 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1370 FIELD(V7M_SFSR, LSERR, 7, 1)
1371 
1372 /* v7M MPU_CTRL bits */
1373 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1374 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1375 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1376 
1377 /* v7M CLIDR bits */
1378 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1379 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1380 FIELD(V7M_CLIDR, LOC, 24, 3)
1381 FIELD(V7M_CLIDR, LOUU, 27, 3)
1382 FIELD(V7M_CLIDR, ICB, 30, 2)
1383 
1384 FIELD(V7M_CSSELR, IND, 0, 1)
1385 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1386 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1387  * define a mask for this and check that it doesn't permit running off
1388  * the end of the array.
1389  */
1390 FIELD(V7M_CSSELR, INDEX, 0, 4)
1391 
1392 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1393 
1394 /* If adding a feature bit which corresponds to a Linux ELF
1395  * HWCAP bit, remember to update the feature-bit-to-hwcap
1396  * mapping in linux-user/elfload.c:get_elf_hwcap().
1397  */
1398 enum arm_features {
1399     ARM_FEATURE_VFP,
1400     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1401     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1402     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1403     ARM_FEATURE_V6,
1404     ARM_FEATURE_V6K,
1405     ARM_FEATURE_V7,
1406     ARM_FEATURE_THUMB2,
1407     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1408     ARM_FEATURE_VFP3,
1409     ARM_FEATURE_VFP_FP16,
1410     ARM_FEATURE_NEON,
1411     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1412     ARM_FEATURE_M, /* Microcontroller profile.  */
1413     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1414     ARM_FEATURE_THUMB2EE,
1415     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1416     ARM_FEATURE_V4T,
1417     ARM_FEATURE_V5,
1418     ARM_FEATURE_STRONGARM,
1419     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1420     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1421     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1422     ARM_FEATURE_GENERIC_TIMER,
1423     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1424     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1425     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1426     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1427     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1428     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1429     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1430     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1431     ARM_FEATURE_V8,
1432     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1433     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1434     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1435     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1436     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1437     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1438     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1439     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1440     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1441     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1442     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1443     ARM_FEATURE_PMU, /* has PMU support */
1444     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1445     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1446     ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1447     ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1448     ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1449     ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1450     ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1451     ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1452     ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
1453     ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1454     ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions.  */
1455 };
1456 
1457 static inline int arm_feature(CPUARMState *env, int feature)
1458 {
1459     return (env->features & (1ULL << feature)) != 0;
1460 }
1461 
1462 #if !defined(CONFIG_USER_ONLY)
1463 /* Return true if exception levels below EL3 are in secure state,
1464  * or would be following an exception return to that level.
1465  * Unlike arm_is_secure() (which is always a question about the
1466  * _current_ state of the CPU) this doesn't care about the current
1467  * EL or mode.
1468  */
1469 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1470 {
1471     if (arm_feature(env, ARM_FEATURE_EL3)) {
1472         return !(env->cp15.scr_el3 & SCR_NS);
1473     } else {
1474         /* If EL3 is not supported then the secure state is implementation
1475          * defined, in which case QEMU defaults to non-secure.
1476          */
1477         return false;
1478     }
1479 }
1480 
1481 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1482 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1483 {
1484     if (arm_feature(env, ARM_FEATURE_EL3)) {
1485         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1486             /* CPU currently in AArch64 state and EL3 */
1487             return true;
1488         } else if (!is_a64(env) &&
1489                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1490             /* CPU currently in AArch32 state and monitor mode */
1491             return true;
1492         }
1493     }
1494     return false;
1495 }
1496 
1497 /* Return true if the processor is in secure state */
1498 static inline bool arm_is_secure(CPUARMState *env)
1499 {
1500     if (arm_is_el3_or_mon(env)) {
1501         return true;
1502     }
1503     return arm_is_secure_below_el3(env);
1504 }
1505 
1506 #else
1507 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1508 {
1509     return false;
1510 }
1511 
1512 static inline bool arm_is_secure(CPUARMState *env)
1513 {
1514     return false;
1515 }
1516 #endif
1517 
1518 /* Return true if the specified exception level is running in AArch64 state. */
1519 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1520 {
1521     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1522      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1523      */
1524     assert(el >= 1 && el <= 3);
1525     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1526 
1527     /* The highest exception level is always at the maximum supported
1528      * register width, and then lower levels have a register width controlled
1529      * by bits in the SCR or HCR registers.
1530      */
1531     if (el == 3) {
1532         return aa64;
1533     }
1534 
1535     if (arm_feature(env, ARM_FEATURE_EL3)) {
1536         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1537     }
1538 
1539     if (el == 2) {
1540         return aa64;
1541     }
1542 
1543     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1544         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1545     }
1546 
1547     return aa64;
1548 }
1549 
1550 /* Function for determing whether guest cp register reads and writes should
1551  * access the secure or non-secure bank of a cp register.  When EL3 is
1552  * operating in AArch32 state, the NS-bit determines whether the secure
1553  * instance of a cp register should be used. When EL3 is AArch64 (or if
1554  * it doesn't exist at all) then there is no register banking, and all
1555  * accesses are to the non-secure version.
1556  */
1557 static inline bool access_secure_reg(CPUARMState *env)
1558 {
1559     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1560                 !arm_el_is_aa64(env, 3) &&
1561                 !(env->cp15.scr_el3 & SCR_NS));
1562 
1563     return ret;
1564 }
1565 
1566 /* Macros for accessing a specified CP register bank */
1567 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1568     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1569 
1570 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1571     do {                                                \
1572         if (_secure) {                                   \
1573             (_env)->cp15._regname##_s = (_val);            \
1574         } else {                                        \
1575             (_env)->cp15._regname##_ns = (_val);           \
1576         }                                               \
1577     } while (0)
1578 
1579 /* Macros for automatically accessing a specific CP register bank depending on
1580  * the current secure state of the system.  These macros are not intended for
1581  * supporting instruction translation reads/writes as these are dependent
1582  * solely on the SCR.NS bit and not the mode.
1583  */
1584 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1585     A32_BANKED_REG_GET((_env), _regname,                \
1586                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1587 
1588 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1589     A32_BANKED_REG_SET((_env), _regname,                                    \
1590                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1591                        (_val))
1592 
1593 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1594 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1595                                  uint32_t cur_el, bool secure);
1596 
1597 /* Interface between CPU and Interrupt controller.  */
1598 #ifndef CONFIG_USER_ONLY
1599 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1600 #else
1601 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1602 {
1603     return true;
1604 }
1605 #endif
1606 /**
1607  * armv7m_nvic_set_pending: mark the specified exception as pending
1608  * @opaque: the NVIC
1609  * @irq: the exception number to mark pending
1610  * @secure: false for non-banked exceptions or for the nonsecure
1611  * version of a banked exception, true for the secure version of a banked
1612  * exception.
1613  *
1614  * Marks the specified exception as pending. Note that we will assert()
1615  * if @secure is true and @irq does not specify one of the fixed set
1616  * of architecturally banked exceptions.
1617  */
1618 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1619 /**
1620  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1621  * @opaque: the NVIC
1622  * @irq: the exception number to mark pending
1623  * @secure: false for non-banked exceptions or for the nonsecure
1624  * version of a banked exception, true for the secure version of a banked
1625  * exception.
1626  *
1627  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1628  * exceptions (exceptions generated in the course of trying to take
1629  * a different exception).
1630  */
1631 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1632 /**
1633  * armv7m_nvic_get_pending_irq_info: return highest priority pending
1634  *    exception, and whether it targets Secure state
1635  * @opaque: the NVIC
1636  * @pirq: set to pending exception number
1637  * @ptargets_secure: set to whether pending exception targets Secure
1638  *
1639  * This function writes the number of the highest priority pending
1640  * exception (the one which would be made active by
1641  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1642  * to true if the current highest priority pending exception should
1643  * be taken to Secure state, false for NS.
1644  */
1645 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1646                                       bool *ptargets_secure);
1647 /**
1648  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1649  * @opaque: the NVIC
1650  *
1651  * Move the current highest priority pending exception from the pending
1652  * state to the active state, and update v7m.exception to indicate that
1653  * it is the exception currently being handled.
1654  */
1655 void armv7m_nvic_acknowledge_irq(void *opaque);
1656 /**
1657  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1658  * @opaque: the NVIC
1659  * @irq: the exception number to complete
1660  * @secure: true if this exception was secure
1661  *
1662  * Returns: -1 if the irq was not active
1663  *           1 if completing this irq brought us back to base (no active irqs)
1664  *           0 if there is still an irq active after this one was completed
1665  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1666  */
1667 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1668 /**
1669  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1670  * @opaque: the NVIC
1671  *
1672  * Returns: the raw execution priority as defined by the v8M architecture.
1673  * This is the execution priority minus the effects of AIRCR.PRIS,
1674  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1675  * (v8M ARM ARM I_PKLD.)
1676  */
1677 int armv7m_nvic_raw_execution_priority(void *opaque);
1678 /**
1679  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1680  * priority is negative for the specified security state.
1681  * @opaque: the NVIC
1682  * @secure: the security state to test
1683  * This corresponds to the pseudocode IsReqExecPriNeg().
1684  */
1685 #ifndef CONFIG_USER_ONLY
1686 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1687 #else
1688 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1689 {
1690     return false;
1691 }
1692 #endif
1693 
1694 /* Interface for defining coprocessor registers.
1695  * Registers are defined in tables of arm_cp_reginfo structs
1696  * which are passed to define_arm_cp_regs().
1697  */
1698 
1699 /* When looking up a coprocessor register we look for it
1700  * via an integer which encodes all of:
1701  *  coprocessor number
1702  *  Crn, Crm, opc1, opc2 fields
1703  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1704  *    or via MRRC/MCRR?)
1705  *  non-secure/secure bank (AArch32 only)
1706  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1707  * (In this case crn and opc2 should be zero.)
1708  * For AArch64, there is no 32/64 bit size distinction;
1709  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1710  * and 4 bit CRn and CRm. The encoding patterns are chosen
1711  * to be easy to convert to and from the KVM encodings, and also
1712  * so that the hashtable can contain both AArch32 and AArch64
1713  * registers (to allow for interprocessing where we might run
1714  * 32 bit code on a 64 bit core).
1715  */
1716 /* This bit is private to our hashtable cpreg; in KVM register
1717  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1718  * in the upper bits of the 64 bit ID.
1719  */
1720 #define CP_REG_AA64_SHIFT 28
1721 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1722 
1723 /* To enable banking of coprocessor registers depending on ns-bit we
1724  * add a bit to distinguish between secure and non-secure cpregs in the
1725  * hashtable.
1726  */
1727 #define CP_REG_NS_SHIFT 29
1728 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1729 
1730 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1731     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1732      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1733 
1734 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1735     (CP_REG_AA64_MASK |                                 \
1736      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1737      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1738      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1739      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1740      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1741      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1742 
1743 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1744  * version used as a key for the coprocessor register hashtable
1745  */
1746 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1747 {
1748     uint32_t cpregid = kvmid;
1749     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1750         cpregid |= CP_REG_AA64_MASK;
1751     } else {
1752         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1753             cpregid |= (1 << 15);
1754         }
1755 
1756         /* KVM is always non-secure so add the NS flag on AArch32 register
1757          * entries.
1758          */
1759          cpregid |= 1 << CP_REG_NS_SHIFT;
1760     }
1761     return cpregid;
1762 }
1763 
1764 /* Convert a truncated 32 bit hashtable key into the full
1765  * 64 bit KVM register ID.
1766  */
1767 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1768 {
1769     uint64_t kvmid;
1770 
1771     if (cpregid & CP_REG_AA64_MASK) {
1772         kvmid = cpregid & ~CP_REG_AA64_MASK;
1773         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1774     } else {
1775         kvmid = cpregid & ~(1 << 15);
1776         if (cpregid & (1 << 15)) {
1777             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1778         } else {
1779             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1780         }
1781     }
1782     return kvmid;
1783 }
1784 
1785 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1786  * special-behaviour cp reg and bits [11..8] indicate what behaviour
1787  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1788  * TCG can assume the value to be constant (ie load at translate time)
1789  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1790  * indicates that the TB should not be ended after a write to this register
1791  * (the default is that the TB ends after cp writes). OVERRIDE permits
1792  * a register definition to override a previous definition for the
1793  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1794  * old must have the OVERRIDE bit set.
1795  * ALIAS indicates that this register is an alias view of some underlying
1796  * state which is also visible via another register, and that the other
1797  * register is handling migration and reset; registers marked ALIAS will not be
1798  * migrated but may have their state set by syncing of register state from KVM.
1799  * NO_RAW indicates that this register has no underlying state and does not
1800  * support raw access for state saving/loading; it will not be used for either
1801  * migration or KVM state synchronization. (Typically this is for "registers"
1802  * which are actually used as instructions for cache maintenance and so on.)
1803  * IO indicates that this register does I/O and therefore its accesses
1804  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1805  * registers which implement clocks or timers require this.
1806  */
1807 #define ARM_CP_SPECIAL           0x0001
1808 #define ARM_CP_CONST             0x0002
1809 #define ARM_CP_64BIT             0x0004
1810 #define ARM_CP_SUPPRESS_TB_END   0x0008
1811 #define ARM_CP_OVERRIDE          0x0010
1812 #define ARM_CP_ALIAS             0x0020
1813 #define ARM_CP_IO                0x0040
1814 #define ARM_CP_NO_RAW            0x0080
1815 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
1816 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
1817 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
1818 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
1819 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
1820 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
1821 #define ARM_CP_FPU               0x1000
1822 #define ARM_CP_SVE               0x2000
1823 /* Used only as a terminator for ARMCPRegInfo lists */
1824 #define ARM_CP_SENTINEL          0xffff
1825 /* Mask of only the flag bits in a type field */
1826 #define ARM_CP_FLAG_MASK         0x30ff
1827 
1828 /* Valid values for ARMCPRegInfo state field, indicating which of
1829  * the AArch32 and AArch64 execution states this register is visible in.
1830  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1831  * If the reginfo is declared to be visible in both states then a second
1832  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1833  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1834  * Note that we rely on the values of these enums as we iterate through
1835  * the various states in some places.
1836  */
1837 enum {
1838     ARM_CP_STATE_AA32 = 0,
1839     ARM_CP_STATE_AA64 = 1,
1840     ARM_CP_STATE_BOTH = 2,
1841 };
1842 
1843 /* ARM CP register secure state flags.  These flags identify security state
1844  * attributes for a given CP register entry.
1845  * The existence of both or neither secure and non-secure flags indicates that
1846  * the register has both a secure and non-secure hash entry.  A single one of
1847  * these flags causes the register to only be hashed for the specified
1848  * security state.
1849  * Although definitions may have any combination of the S/NS bits, each
1850  * registered entry will only have one to identify whether the entry is secure
1851  * or non-secure.
1852  */
1853 enum {
1854     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1855     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1856 };
1857 
1858 /* Return true if cptype is a valid type field. This is used to try to
1859  * catch errors where the sentinel has been accidentally left off the end
1860  * of a list of registers.
1861  */
1862 static inline bool cptype_valid(int cptype)
1863 {
1864     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1865         || ((cptype & ARM_CP_SPECIAL) &&
1866             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1867 }
1868 
1869 /* Access rights:
1870  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1871  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1872  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1873  * (ie any of the privileged modes in Secure state, or Monitor mode).
1874  * If a register is accessible in one privilege level it's always accessible
1875  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1876  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1877  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1878  * terminology a little and call this PL3.
1879  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1880  * with the ELx exception levels.
1881  *
1882  * If access permissions for a register are more complex than can be
1883  * described with these bits, then use a laxer set of restrictions, and
1884  * do the more restrictive/complex check inside a helper function.
1885  */
1886 #define PL3_R 0x80
1887 #define PL3_W 0x40
1888 #define PL2_R (0x20 | PL3_R)
1889 #define PL2_W (0x10 | PL3_W)
1890 #define PL1_R (0x08 | PL2_R)
1891 #define PL1_W (0x04 | PL2_W)
1892 #define PL0_R (0x02 | PL1_R)
1893 #define PL0_W (0x01 | PL1_W)
1894 
1895 #define PL3_RW (PL3_R | PL3_W)
1896 #define PL2_RW (PL2_R | PL2_W)
1897 #define PL1_RW (PL1_R | PL1_W)
1898 #define PL0_RW (PL0_R | PL0_W)
1899 
1900 /* Return the highest implemented Exception Level */
1901 static inline int arm_highest_el(CPUARMState *env)
1902 {
1903     if (arm_feature(env, ARM_FEATURE_EL3)) {
1904         return 3;
1905     }
1906     if (arm_feature(env, ARM_FEATURE_EL2)) {
1907         return 2;
1908     }
1909     return 1;
1910 }
1911 
1912 /* Return true if a v7M CPU is in Handler mode */
1913 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1914 {
1915     return env->v7m.exception != 0;
1916 }
1917 
1918 /* Return the current Exception Level (as per ARMv8; note that this differs
1919  * from the ARMv7 Privilege Level).
1920  */
1921 static inline int arm_current_el(CPUARMState *env)
1922 {
1923     if (arm_feature(env, ARM_FEATURE_M)) {
1924         return arm_v7m_is_handler_mode(env) ||
1925             !(env->v7m.control[env->v7m.secure] & 1);
1926     }
1927 
1928     if (is_a64(env)) {
1929         return extract32(env->pstate, 2, 2);
1930     }
1931 
1932     switch (env->uncached_cpsr & 0x1f) {
1933     case ARM_CPU_MODE_USR:
1934         return 0;
1935     case ARM_CPU_MODE_HYP:
1936         return 2;
1937     case ARM_CPU_MODE_MON:
1938         return 3;
1939     default:
1940         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1941             /* If EL3 is 32-bit then all secure privileged modes run in
1942              * EL3
1943              */
1944             return 3;
1945         }
1946 
1947         return 1;
1948     }
1949 }
1950 
1951 typedef struct ARMCPRegInfo ARMCPRegInfo;
1952 
1953 typedef enum CPAccessResult {
1954     /* Access is permitted */
1955     CP_ACCESS_OK = 0,
1956     /* Access fails due to a configurable trap or enable which would
1957      * result in a categorized exception syndrome giving information about
1958      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1959      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1960      * PL1 if in EL0, otherwise to the current EL).
1961      */
1962     CP_ACCESS_TRAP = 1,
1963     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1964      * Note that this is not a catch-all case -- the set of cases which may
1965      * result in this failure is specifically defined by the architecture.
1966      */
1967     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1968     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1969     CP_ACCESS_TRAP_EL2 = 3,
1970     CP_ACCESS_TRAP_EL3 = 4,
1971     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1972     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1973     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1974     /* Access fails and results in an exception syndrome for an FP access,
1975      * trapped directly to EL2 or EL3
1976      */
1977     CP_ACCESS_TRAP_FP_EL2 = 7,
1978     CP_ACCESS_TRAP_FP_EL3 = 8,
1979 } CPAccessResult;
1980 
1981 /* Access functions for coprocessor registers. These cannot fail and
1982  * may not raise exceptions.
1983  */
1984 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1985 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1986                        uint64_t value);
1987 /* Access permission check functions for coprocessor registers. */
1988 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1989                                   const ARMCPRegInfo *opaque,
1990                                   bool isread);
1991 /* Hook function for register reset */
1992 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1993 
1994 #define CP_ANY 0xff
1995 
1996 /* Definition of an ARM coprocessor register */
1997 struct ARMCPRegInfo {
1998     /* Name of register (useful mainly for debugging, need not be unique) */
1999     const char *name;
2000     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2001      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2002      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2003      * will be decoded to this register. The register read and write
2004      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2005      * used by the program, so it is possible to register a wildcard and
2006      * then behave differently on read/write if necessary.
2007      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2008      * must both be zero.
2009      * For AArch64-visible registers, opc0 is also used.
2010      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2011      * way to distinguish (for KVM's benefit) guest-visible system registers
2012      * from demuxed ones provided to preserve the "no side effects on
2013      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2014      * visible (to match KVM's encoding); cp==0 will be converted to
2015      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2016      */
2017     uint8_t cp;
2018     uint8_t crn;
2019     uint8_t crm;
2020     uint8_t opc0;
2021     uint8_t opc1;
2022     uint8_t opc2;
2023     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2024     int state;
2025     /* Register type: ARM_CP_* bits/values */
2026     int type;
2027     /* Access rights: PL*_[RW] */
2028     int access;
2029     /* Security state: ARM_CP_SECSTATE_* bits/values */
2030     int secure;
2031     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2032      * this register was defined: can be used to hand data through to the
2033      * register read/write functions, since they are passed the ARMCPRegInfo*.
2034      */
2035     void *opaque;
2036     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2037      * fieldoffset is non-zero, the reset value of the register.
2038      */
2039     uint64_t resetvalue;
2040     /* Offset of the field in CPUARMState for this register.
2041      *
2042      * This is not needed if either:
2043      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2044      *  2. both readfn and writefn are specified
2045      */
2046     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2047 
2048     /* Offsets of the secure and non-secure fields in CPUARMState for the
2049      * register if it is banked.  These fields are only used during the static
2050      * registration of a register.  During hashing the bank associated
2051      * with a given security state is copied to fieldoffset which is used from
2052      * there on out.
2053      *
2054      * It is expected that register definitions use either fieldoffset or
2055      * bank_fieldoffsets in the definition but not both.  It is also expected
2056      * that both bank offsets are set when defining a banked register.  This
2057      * use indicates that a register is banked.
2058      */
2059     ptrdiff_t bank_fieldoffsets[2];
2060 
2061     /* Function for making any access checks for this register in addition to
2062      * those specified by the 'access' permissions bits. If NULL, no extra
2063      * checks required. The access check is performed at runtime, not at
2064      * translate time.
2065      */
2066     CPAccessFn *accessfn;
2067     /* Function for handling reads of this register. If NULL, then reads
2068      * will be done by loading from the offset into CPUARMState specified
2069      * by fieldoffset.
2070      */
2071     CPReadFn *readfn;
2072     /* Function for handling writes of this register. If NULL, then writes
2073      * will be done by writing to the offset into CPUARMState specified
2074      * by fieldoffset.
2075      */
2076     CPWriteFn *writefn;
2077     /* Function for doing a "raw" read; used when we need to copy
2078      * coprocessor state to the kernel for KVM or out for
2079      * migration. This only needs to be provided if there is also a
2080      * readfn and it has side effects (for instance clear-on-read bits).
2081      */
2082     CPReadFn *raw_readfn;
2083     /* Function for doing a "raw" write; used when we need to copy KVM
2084      * kernel coprocessor state into userspace, or for inbound
2085      * migration. This only needs to be provided if there is also a
2086      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2087      * or similar behaviour.
2088      */
2089     CPWriteFn *raw_writefn;
2090     /* Function for resetting the register. If NULL, then reset will be done
2091      * by writing resetvalue to the field specified in fieldoffset. If
2092      * fieldoffset is 0 then no reset will be done.
2093      */
2094     CPResetFn *resetfn;
2095 };
2096 
2097 /* Macros which are lvalues for the field in CPUARMState for the
2098  * ARMCPRegInfo *ri.
2099  */
2100 #define CPREG_FIELD32(env, ri) \
2101     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2102 #define CPREG_FIELD64(env, ri) \
2103     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2104 
2105 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2106 
2107 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2108                                     const ARMCPRegInfo *regs, void *opaque);
2109 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2110                                        const ARMCPRegInfo *regs, void *opaque);
2111 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2112 {
2113     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2114 }
2115 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2116 {
2117     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2118 }
2119 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2120 
2121 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2122 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2123                          uint64_t value);
2124 /* CPReadFn that can be used for read-as-zero behaviour */
2125 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2126 
2127 /* CPResetFn that does nothing, for use if no reset is required even
2128  * if fieldoffset is non zero.
2129  */
2130 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2131 
2132 /* Return true if this reginfo struct's field in the cpu state struct
2133  * is 64 bits wide.
2134  */
2135 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2136 {
2137     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2138 }
2139 
2140 static inline bool cp_access_ok(int current_el,
2141                                 const ARMCPRegInfo *ri, int isread)
2142 {
2143     return (ri->access >> ((current_el * 2) + isread)) & 1;
2144 }
2145 
2146 /* Raw read of a coprocessor register (as needed for migration, etc) */
2147 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2148 
2149 /**
2150  * write_list_to_cpustate
2151  * @cpu: ARMCPU
2152  *
2153  * For each register listed in the ARMCPU cpreg_indexes list, write
2154  * its value from the cpreg_values list into the ARMCPUState structure.
2155  * This updates TCG's working data structures from KVM data or
2156  * from incoming migration state.
2157  *
2158  * Returns: true if all register values were updated correctly,
2159  * false if some register was unknown or could not be written.
2160  * Note that we do not stop early on failure -- we will attempt
2161  * writing all registers in the list.
2162  */
2163 bool write_list_to_cpustate(ARMCPU *cpu);
2164 
2165 /**
2166  * write_cpustate_to_list:
2167  * @cpu: ARMCPU
2168  *
2169  * For each register listed in the ARMCPU cpreg_indexes list, write
2170  * its value from the ARMCPUState structure into the cpreg_values list.
2171  * This is used to copy info from TCG's working data structures into
2172  * KVM or for outbound migration.
2173  *
2174  * Returns: true if all register values were read correctly,
2175  * false if some register was unknown or could not be read.
2176  * Note that we do not stop early on failure -- we will attempt
2177  * reading all registers in the list.
2178  */
2179 bool write_cpustate_to_list(ARMCPU *cpu);
2180 
2181 #define ARM_CPUID_TI915T      0x54029152
2182 #define ARM_CPUID_TI925T      0x54029252
2183 
2184 #if defined(CONFIG_USER_ONLY)
2185 #define TARGET_PAGE_BITS 12
2186 #else
2187 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2188  * have to support 1K tiny pages.
2189  */
2190 #define TARGET_PAGE_BITS_VARY
2191 #define TARGET_PAGE_BITS_MIN 10
2192 #endif
2193 
2194 #if defined(TARGET_AARCH64)
2195 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2196 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2197 #else
2198 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2199 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2200 #endif
2201 
2202 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2203                                      unsigned int target_el)
2204 {
2205     CPUARMState *env = cs->env_ptr;
2206     unsigned int cur_el = arm_current_el(env);
2207     bool secure = arm_is_secure(env);
2208     bool pstate_unmasked;
2209     int8_t unmasked = 0;
2210 
2211     /* Don't take exceptions if they target a lower EL.
2212      * This check should catch any exceptions that would not be taken but left
2213      * pending.
2214      */
2215     if (cur_el > target_el) {
2216         return false;
2217     }
2218 
2219     switch (excp_idx) {
2220     case EXCP_FIQ:
2221         pstate_unmasked = !(env->daif & PSTATE_F);
2222         break;
2223 
2224     case EXCP_IRQ:
2225         pstate_unmasked = !(env->daif & PSTATE_I);
2226         break;
2227 
2228     case EXCP_VFIQ:
2229         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2230             /* VFIQs are only taken when hypervized and non-secure.  */
2231             return false;
2232         }
2233         return !(env->daif & PSTATE_F);
2234     case EXCP_VIRQ:
2235         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2236             /* VIRQs are only taken when hypervized and non-secure.  */
2237             return false;
2238         }
2239         return !(env->daif & PSTATE_I);
2240     default:
2241         g_assert_not_reached();
2242     }
2243 
2244     /* Use the target EL, current execution state and SCR/HCR settings to
2245      * determine whether the corresponding CPSR bit is used to mask the
2246      * interrupt.
2247      */
2248     if ((target_el > cur_el) && (target_el != 1)) {
2249         /* Exceptions targeting a higher EL may not be maskable */
2250         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2251             /* 64-bit masking rules are simple: exceptions to EL3
2252              * can't be masked, and exceptions to EL2 can only be
2253              * masked from Secure state. The HCR and SCR settings
2254              * don't affect the masking logic, only the interrupt routing.
2255              */
2256             if (target_el == 3 || !secure) {
2257                 unmasked = 1;
2258             }
2259         } else {
2260             /* The old 32-bit-only environment has a more complicated
2261              * masking setup. HCR and SCR bits not only affect interrupt
2262              * routing but also change the behaviour of masking.
2263              */
2264             bool hcr, scr;
2265 
2266             switch (excp_idx) {
2267             case EXCP_FIQ:
2268                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2269                  * we override the CPSR.F in determining if the exception is
2270                  * masked or not. If neither of these are set then we fall back
2271                  * to the CPSR.F setting otherwise we further assess the state
2272                  * below.
2273                  */
2274                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2275                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2276 
2277                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2278                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2279                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2280                  * when non-secure but only when FIQs are only routed to EL3.
2281                  */
2282                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2283                 break;
2284             case EXCP_IRQ:
2285                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2286                  * we may override the CPSR.I masking when in non-secure state.
2287                  * The SCR.IRQ setting has already been taken into consideration
2288                  * when setting the target EL, so it does not have a further
2289                  * affect here.
2290                  */
2291                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2292                 scr = false;
2293                 break;
2294             default:
2295                 g_assert_not_reached();
2296             }
2297 
2298             if ((scr || hcr) && !secure) {
2299                 unmasked = 1;
2300             }
2301         }
2302     }
2303 
2304     /* The PSTATE bits only mask the interrupt if we have not overriden the
2305      * ability above.
2306      */
2307     return unmasked || pstate_unmasked;
2308 }
2309 
2310 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2311 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2312 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2313 
2314 #define cpu_signal_handler cpu_arm_signal_handler
2315 #define cpu_list arm_cpu_list
2316 
2317 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2318  *
2319  * If EL3 is 64-bit:
2320  *  + NonSecure EL1 & 0 stage 1
2321  *  + NonSecure EL1 & 0 stage 2
2322  *  + NonSecure EL2
2323  *  + Secure EL1 & EL0
2324  *  + Secure EL3
2325  * If EL3 is 32-bit:
2326  *  + NonSecure PL1 & 0 stage 1
2327  *  + NonSecure PL1 & 0 stage 2
2328  *  + NonSecure PL2
2329  *  + Secure PL0 & PL1
2330  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2331  *
2332  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2333  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2334  *     may differ in access permissions even if the VA->PA map is the same
2335  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2336  *     translation, which means that we have one mmu_idx that deals with two
2337  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2338  *     architecturally permitted]
2339  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2340  *     handling via the TLB. The only way to do a stage 1 translation without
2341  *     the immediate stage 2 translation is via the ATS or AT system insns,
2342  *     which can be slow-pathed and always do a page table walk.
2343  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2344  *     translation regimes, because they map reasonably well to each other
2345  *     and they can't both be active at the same time.
2346  * This gives us the following list of mmu_idx values:
2347  *
2348  * NS EL0 (aka NS PL0) stage 1+2
2349  * NS EL1 (aka NS PL1) stage 1+2
2350  * NS EL2 (aka NS PL2)
2351  * S EL3 (aka S PL1)
2352  * S EL0 (aka S PL0)
2353  * S EL1 (not used if EL3 is 32 bit)
2354  * NS EL0+1 stage 2
2355  *
2356  * (The last of these is an mmu_idx because we want to be able to use the TLB
2357  * for the accesses done as part of a stage 1 page table walk, rather than
2358  * having to walk the stage 2 page table over and over.)
2359  *
2360  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2361  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2362  * NS EL2 if we ever model a Cortex-R52).
2363  *
2364  * M profile CPUs are rather different as they do not have a true MMU.
2365  * They have the following different MMU indexes:
2366  *  User
2367  *  Privileged
2368  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2369  *  Privileged, execution priority negative (ditto)
2370  * If the CPU supports the v8M Security Extension then there are also:
2371  *  Secure User
2372  *  Secure Privileged
2373  *  Secure User, execution priority negative
2374  *  Secure Privileged, execution priority negative
2375  *
2376  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2377  * are not quite the same -- different CPU types (most notably M profile
2378  * vs A/R profile) would like to use MMU indexes with different semantics,
2379  * but since we don't ever need to use all of those in a single CPU we
2380  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2381  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2382  * the same for any particular CPU.
2383  * Variables of type ARMMUIdx are always full values, and the core
2384  * index values are in variables of type 'int'.
2385  *
2386  * Our enumeration includes at the end some entries which are not "true"
2387  * mmu_idx values in that they don't have corresponding TLBs and are only
2388  * valid for doing slow path page table walks.
2389  *
2390  * The constant names here are patterned after the general style of the names
2391  * of the AT/ATS operations.
2392  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2393  * For M profile we arrange them to have a bit for priv, a bit for negpri
2394  * and a bit for secure.
2395  */
2396 #define ARM_MMU_IDX_A 0x10 /* A profile */
2397 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2398 #define ARM_MMU_IDX_M 0x40 /* M profile */
2399 
2400 /* meanings of the bits for M profile mmu idx values */
2401 #define ARM_MMU_IDX_M_PRIV 0x1
2402 #define ARM_MMU_IDX_M_NEGPRI 0x2
2403 #define ARM_MMU_IDX_M_S 0x4
2404 
2405 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2406 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2407 
2408 typedef enum ARMMMUIdx {
2409     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2410     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2411     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2412     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2413     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2414     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2415     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2416     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2417     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2418     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2419     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2420     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2421     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2422     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2423     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2424     /* Indexes below here don't have TLBs and are used only for AT system
2425      * instructions or for the first stage of an S12 page table walk.
2426      */
2427     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2428     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2429 } ARMMMUIdx;
2430 
2431 /* Bit macros for the core-mmu-index values for each index,
2432  * for use when calling tlb_flush_by_mmuidx() and friends.
2433  */
2434 typedef enum ARMMMUIdxBit {
2435     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2436     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2437     ARMMMUIdxBit_S1E2 = 1 << 2,
2438     ARMMMUIdxBit_S1E3 = 1 << 3,
2439     ARMMMUIdxBit_S1SE0 = 1 << 4,
2440     ARMMMUIdxBit_S1SE1 = 1 << 5,
2441     ARMMMUIdxBit_S2NS = 1 << 6,
2442     ARMMMUIdxBit_MUser = 1 << 0,
2443     ARMMMUIdxBit_MPriv = 1 << 1,
2444     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2445     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2446     ARMMMUIdxBit_MSUser = 1 << 4,
2447     ARMMMUIdxBit_MSPriv = 1 << 5,
2448     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2449     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2450 } ARMMMUIdxBit;
2451 
2452 #define MMU_USER_IDX 0
2453 
2454 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2455 {
2456     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2457 }
2458 
2459 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2460 {
2461     if (arm_feature(env, ARM_FEATURE_M)) {
2462         return mmu_idx | ARM_MMU_IDX_M;
2463     } else {
2464         return mmu_idx | ARM_MMU_IDX_A;
2465     }
2466 }
2467 
2468 /* Return the exception level we're running at if this is our mmu_idx */
2469 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2470 {
2471     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2472     case ARM_MMU_IDX_A:
2473         return mmu_idx & 3;
2474     case ARM_MMU_IDX_M:
2475         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2476     default:
2477         g_assert_not_reached();
2478     }
2479 }
2480 
2481 /* Return the MMU index for a v7M CPU in the specified security and
2482  * privilege state
2483  */
2484 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2485                                                               bool secstate,
2486                                                               bool priv)
2487 {
2488     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2489 
2490     if (priv) {
2491         mmu_idx |= ARM_MMU_IDX_M_PRIV;
2492     }
2493 
2494     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2495         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2496     }
2497 
2498     if (secstate) {
2499         mmu_idx |= ARM_MMU_IDX_M_S;
2500     }
2501 
2502     return mmu_idx;
2503 }
2504 
2505 /* Return the MMU index for a v7M CPU in the specified security state */
2506 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2507                                                      bool secstate)
2508 {
2509     bool priv = arm_current_el(env) != 0;
2510 
2511     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2512 }
2513 
2514 /* Determine the current mmu_idx to use for normal loads/stores */
2515 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2516 {
2517     int el = arm_current_el(env);
2518 
2519     if (arm_feature(env, ARM_FEATURE_M)) {
2520         ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2521 
2522         return arm_to_core_mmu_idx(mmu_idx);
2523     }
2524 
2525     if (el < 2 && arm_is_secure_below_el3(env)) {
2526         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2527     }
2528     return el;
2529 }
2530 
2531 /* Indexes used when registering address spaces with cpu_address_space_init */
2532 typedef enum ARMASIdx {
2533     ARMASIdx_NS = 0,
2534     ARMASIdx_S = 1,
2535 } ARMASIdx;
2536 
2537 /* Return the Exception Level targeted by debug exceptions. */
2538 static inline int arm_debug_target_el(CPUARMState *env)
2539 {
2540     bool secure = arm_is_secure(env);
2541     bool route_to_el2 = false;
2542 
2543     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2544         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2545                        env->cp15.mdcr_el2 & (1 << 8);
2546     }
2547 
2548     if (route_to_el2) {
2549         return 2;
2550     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2551                !arm_el_is_aa64(env, 3) && secure) {
2552         return 3;
2553     } else {
2554         return 1;
2555     }
2556 }
2557 
2558 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2559 {
2560     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2561      * CSSELR is RAZ/WI.
2562      */
2563     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2564 }
2565 
2566 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2567 {
2568     if (arm_is_secure(env)) {
2569         /* MDCR_EL3.SDD disables debug events from Secure state */
2570         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2571             || arm_current_el(env) == 3) {
2572             return false;
2573         }
2574     }
2575 
2576     if (arm_current_el(env) == arm_debug_target_el(env)) {
2577         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2578             || (env->daif & PSTATE_D)) {
2579             return false;
2580         }
2581     }
2582     return true;
2583 }
2584 
2585 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2586 {
2587     int el = arm_current_el(env);
2588 
2589     if (el == 0 && arm_el_is_aa64(env, 1)) {
2590         return aa64_generate_debug_exceptions(env);
2591     }
2592 
2593     if (arm_is_secure(env)) {
2594         int spd;
2595 
2596         if (el == 0 && (env->cp15.sder & 1)) {
2597             /* SDER.SUIDEN means debug exceptions from Secure EL0
2598              * are always enabled. Otherwise they are controlled by
2599              * SDCR.SPD like those from other Secure ELs.
2600              */
2601             return true;
2602         }
2603 
2604         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2605         switch (spd) {
2606         case 1:
2607             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2608         case 0:
2609             /* For 0b00 we return true if external secure invasive debug
2610              * is enabled. On real hardware this is controlled by external
2611              * signals to the core. QEMU always permits debug, and behaves
2612              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2613              */
2614             return true;
2615         case 2:
2616             return false;
2617         case 3:
2618             return true;
2619         }
2620     }
2621 
2622     return el != 2;
2623 }
2624 
2625 /* Return true if debugging exceptions are currently enabled.
2626  * This corresponds to what in ARM ARM pseudocode would be
2627  *    if UsingAArch32() then
2628  *        return AArch32.GenerateDebugExceptions()
2629  *    else
2630  *        return AArch64.GenerateDebugExceptions()
2631  * We choose to push the if() down into this function for clarity,
2632  * since the pseudocode has it at all callsites except for the one in
2633  * CheckSoftwareStep(), where it is elided because both branches would
2634  * always return the same value.
2635  *
2636  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2637  * don't yet implement those exception levels or their associated trap bits.
2638  */
2639 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2640 {
2641     if (env->aarch64) {
2642         return aa64_generate_debug_exceptions(env);
2643     } else {
2644         return aa32_generate_debug_exceptions(env);
2645     }
2646 }
2647 
2648 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2649  * implicitly means this always returns false in pre-v8 CPUs.)
2650  */
2651 static inline bool arm_singlestep_active(CPUARMState *env)
2652 {
2653     return extract32(env->cp15.mdscr_el1, 0, 1)
2654         && arm_el_is_aa64(env, arm_debug_target_el(env))
2655         && arm_generate_debug_exceptions(env);
2656 }
2657 
2658 static inline bool arm_sctlr_b(CPUARMState *env)
2659 {
2660     return
2661         /* We need not implement SCTLR.ITD in user-mode emulation, so
2662          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2663          * This lets people run BE32 binaries with "-cpu any".
2664          */
2665 #ifndef CONFIG_USER_ONLY
2666         !arm_feature(env, ARM_FEATURE_V7) &&
2667 #endif
2668         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2669 }
2670 
2671 /* Return true if the processor is in big-endian mode. */
2672 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2673 {
2674     int cur_el;
2675 
2676     /* In 32bit endianness is determined by looking at CPSR's E bit */
2677     if (!is_a64(env)) {
2678         return
2679 #ifdef CONFIG_USER_ONLY
2680             /* In system mode, BE32 is modelled in line with the
2681              * architecture (as word-invariant big-endianness), where loads
2682              * and stores are done little endian but from addresses which
2683              * are adjusted by XORing with the appropriate constant. So the
2684              * endianness to use for the raw data access is not affected by
2685              * SCTLR.B.
2686              * In user mode, however, we model BE32 as byte-invariant
2687              * big-endianness (because user-only code cannot tell the
2688              * difference), and so we need to use a data access endianness
2689              * that depends on SCTLR.B.
2690              */
2691             arm_sctlr_b(env) ||
2692 #endif
2693                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2694     }
2695 
2696     cur_el = arm_current_el(env);
2697 
2698     if (cur_el == 0) {
2699         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2700     }
2701 
2702     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2703 }
2704 
2705 #include "exec/cpu-all.h"
2706 
2707 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2708  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2709  * We put flags which are shared between 32 and 64 bit mode at the top
2710  * of the word, and flags which apply to only one mode at the bottom.
2711  */
2712 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2713 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2714 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2715 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2716 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2717 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2718 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2719 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2720 /* Target EL if we take a floating-point-disabled exception */
2721 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2722 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2723 
2724 /* Bit usage when in AArch32 state: */
2725 #define ARM_TBFLAG_THUMB_SHIFT      0
2726 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2727 #define ARM_TBFLAG_VECLEN_SHIFT     1
2728 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2729 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2730 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2731 #define ARM_TBFLAG_VFPEN_SHIFT      7
2732 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2733 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2734 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2735 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2736 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2737 /* We store the bottom two bits of the CPAR as TB flags and handle
2738  * checks on the other bits at runtime
2739  */
2740 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2741 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2742 /* Indicates whether cp register reads and writes by guest code should access
2743  * the secure or nonsecure bank of banked registers; note that this is not
2744  * the same thing as the current security state of the processor!
2745  */
2746 #define ARM_TBFLAG_NS_SHIFT         19
2747 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2748 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2749 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2750 /* For M profile only, Handler (ie not Thread) mode */
2751 #define ARM_TBFLAG_HANDLER_SHIFT    21
2752 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2753 
2754 /* Bit usage when in AArch64 state */
2755 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2756 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2757 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2758 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2759 #define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
2760 #define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2761 #define ARM_TBFLAG_ZCR_LEN_SHIFT    4
2762 #define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2763 
2764 /* some convenience accessor macros */
2765 #define ARM_TBFLAG_AARCH64_STATE(F) \
2766     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2767 #define ARM_TBFLAG_MMUIDX(F) \
2768     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2769 #define ARM_TBFLAG_SS_ACTIVE(F) \
2770     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2771 #define ARM_TBFLAG_PSTATE_SS(F) \
2772     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2773 #define ARM_TBFLAG_FPEXC_EL(F) \
2774     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2775 #define ARM_TBFLAG_THUMB(F) \
2776     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2777 #define ARM_TBFLAG_VECLEN(F) \
2778     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2779 #define ARM_TBFLAG_VECSTRIDE(F) \
2780     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2781 #define ARM_TBFLAG_VFPEN(F) \
2782     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2783 #define ARM_TBFLAG_CONDEXEC(F) \
2784     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2785 #define ARM_TBFLAG_SCTLR_B(F) \
2786     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2787 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2788     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2789 #define ARM_TBFLAG_NS(F) \
2790     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2791 #define ARM_TBFLAG_BE_DATA(F) \
2792     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2793 #define ARM_TBFLAG_HANDLER(F) \
2794     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2795 #define ARM_TBFLAG_TBI0(F) \
2796     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2797 #define ARM_TBFLAG_TBI1(F) \
2798     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2799 #define ARM_TBFLAG_SVEEXC_EL(F) \
2800     (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2801 #define ARM_TBFLAG_ZCR_LEN(F) \
2802     (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2803 
2804 static inline bool bswap_code(bool sctlr_b)
2805 {
2806 #ifdef CONFIG_USER_ONLY
2807     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2808      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2809      * would also end up as a mixed-endian mode with BE code, LE data.
2810      */
2811     return
2812 #ifdef TARGET_WORDS_BIGENDIAN
2813         1 ^
2814 #endif
2815         sctlr_b;
2816 #else
2817     /* All code access in ARM is little endian, and there are no loaders
2818      * doing swaps that need to be reversed
2819      */
2820     return 0;
2821 #endif
2822 }
2823 
2824 #ifdef CONFIG_USER_ONLY
2825 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2826 {
2827     return
2828 #ifdef TARGET_WORDS_BIGENDIAN
2829        1 ^
2830 #endif
2831        arm_cpu_data_is_big_endian(env);
2832 }
2833 #endif
2834 
2835 #ifndef CONFIG_USER_ONLY
2836 /**
2837  * arm_regime_tbi0:
2838  * @env: CPUARMState
2839  * @mmu_idx: MMU index indicating required translation regime
2840  *
2841  * Extracts the TBI0 value from the appropriate TCR for the current EL
2842  *
2843  * Returns: the TBI0 value.
2844  */
2845 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2846 
2847 /**
2848  * arm_regime_tbi1:
2849  * @env: CPUARMState
2850  * @mmu_idx: MMU index indicating required translation regime
2851  *
2852  * Extracts the TBI1 value from the appropriate TCR for the current EL
2853  *
2854  * Returns: the TBI1 value.
2855  */
2856 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2857 #else
2858 /* We can't handle tagged addresses properly in user-only mode */
2859 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2860 {
2861     return 0;
2862 }
2863 
2864 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2865 {
2866     return 0;
2867 }
2868 #endif
2869 
2870 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2871                           target_ulong *cs_base, uint32_t *flags);
2872 
2873 enum {
2874     QEMU_PSCI_CONDUIT_DISABLED = 0,
2875     QEMU_PSCI_CONDUIT_SMC = 1,
2876     QEMU_PSCI_CONDUIT_HVC = 2,
2877 };
2878 
2879 #ifndef CONFIG_USER_ONLY
2880 /* Return the address space index to use for a memory access */
2881 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2882 {
2883     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2884 }
2885 
2886 /* Return the AddressSpace to use for a memory access
2887  * (which depends on whether the access is S or NS, and whether
2888  * the board gave us a separate AddressSpace for S accesses).
2889  */
2890 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2891 {
2892     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2893 }
2894 #endif
2895 
2896 /**
2897  * arm_register_pre_el_change_hook:
2898  * Register a hook function which will be called immediately before this
2899  * CPU changes exception level or mode. The hook function will be
2900  * passed a pointer to the ARMCPU and the opaque data pointer passed
2901  * to this function when the hook was registered.
2902  *
2903  * Note that if a pre-change hook is called, any registered post-change hooks
2904  * are guaranteed to subsequently be called.
2905  */
2906 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
2907                                  void *opaque);
2908 /**
2909  * arm_register_el_change_hook:
2910  * Register a hook function which will be called immediately after this
2911  * CPU changes exception level or mode. The hook function will be
2912  * passed a pointer to the ARMCPU and the opaque data pointer passed
2913  * to this function when the hook was registered.
2914  *
2915  * Note that any registered hooks registered here are guaranteed to be called
2916  * if pre-change hooks have been.
2917  */
2918 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
2919         *opaque);
2920 
2921 /**
2922  * aa32_vfp_dreg:
2923  * Return a pointer to the Dn register within env in 32-bit mode.
2924  */
2925 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2926 {
2927     return &env->vfp.zregs[regno >> 1].d[regno & 1];
2928 }
2929 
2930 /**
2931  * aa32_vfp_qreg:
2932  * Return a pointer to the Qn register within env in 32-bit mode.
2933  */
2934 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2935 {
2936     return &env->vfp.zregs[regno].d[0];
2937 }
2938 
2939 /**
2940  * aa64_vfp_qreg:
2941  * Return a pointer to the Qn register within env in 64-bit mode.
2942  */
2943 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2944 {
2945     return &env->vfp.zregs[regno].d[0];
2946 }
2947 
2948 #endif
2949