xref: /openbmc/qemu/target/arm/cpu.h (revision f480f6e8)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP  2
150 #define GTIMER_SEC  3
151 #define NUM_GTIMERS 4
152 
153 typedef struct {
154     uint64_t raw_tcr;
155     uint32_t mask;
156     uint32_t base_mask;
157 } TCR;
158 
159 /* Define a maximum sized vector register.
160  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161  * For 64-bit, this is a 2048-bit SVE register.
162  *
163  * Note that the mapping between S, D, and Q views of the register bank
164  * differs between AArch64 and AArch32.
165  * In AArch32:
166  *  Qn = regs[n].d[1]:regs[n].d[0]
167  *  Dn = regs[n / 2].d[n & 1]
168  *  Sn = regs[n / 4].d[n % 4 / 2],
169  *       bits 31..0 for even n, and bits 63..32 for odd n
170  *       (and regs[16] to regs[31] are inaccessible)
171  * In AArch64:
172  *  Zn = regs[n].d[*]
173  *  Qn = regs[n].d[1]:regs[n].d[0]
174  *  Dn = regs[n].d[0]
175  *  Sn = regs[n].d[0] bits 31..0
176  *  Hn = regs[n].d[0] bits 15..0
177  *
178  * This corresponds to the architecturally defined mapping between
179  * the two execution states, and means we do not need to explicitly
180  * map these registers when changing states.
181  *
182  * Align the data for use with TCG host vector operations.
183  */
184 
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ    16
187 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
188 uint32_t arm_cpu_vq_map_next_smaller(ARMCPU *cpu, uint32_t vq);
189 #else
190 # define ARM_MAX_VQ    1
191 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
192 static inline uint32_t arm_cpu_vq_map_next_smaller(ARMCPU *cpu, uint32_t vq)
193 { return 0; }
194 #endif
195 
196 typedef struct ARMVectorReg {
197     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
198 } ARMVectorReg;
199 
200 #ifdef TARGET_AARCH64
201 /* In AArch32 mode, predicate registers do not exist at all.  */
202 typedef struct ARMPredicateReg {
203     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
204 } ARMPredicateReg;
205 
206 /* In AArch32 mode, PAC keys do not exist at all.  */
207 typedef struct ARMPACKey {
208     uint64_t lo, hi;
209 } ARMPACKey;
210 #endif
211 
212 
213 typedef struct CPUARMState {
214     /* Regs for current mode.  */
215     uint32_t regs[16];
216 
217     /* 32/64 switch only happens when taking and returning from
218      * exceptions so the overlap semantics are taken care of then
219      * instead of having a complicated union.
220      */
221     /* Regs for A64 mode.  */
222     uint64_t xregs[32];
223     uint64_t pc;
224     /* PSTATE isn't an architectural register for ARMv8. However, it is
225      * convenient for us to assemble the underlying state into a 32 bit format
226      * identical to the architectural format used for the SPSR. (This is also
227      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
228      * 'pstate' register are.) Of the PSTATE bits:
229      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
230      *    semantics as for AArch32, as described in the comments on each field)
231      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
232      *  DAIF (exception masks) are kept in env->daif
233      *  BTYPE is kept in env->btype
234      *  all other bits are stored in their correct places in env->pstate
235      */
236     uint32_t pstate;
237     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
238 
239     /* Cached TBFLAGS state.  See below for which bits are included.  */
240     uint32_t hflags;
241 
242     /* Frequently accessed CPSR bits are stored separately for efficiency.
243        This contains all the other bits.  Use cpsr_{read,write} to access
244        the whole CPSR.  */
245     uint32_t uncached_cpsr;
246     uint32_t spsr;
247 
248     /* Banked registers.  */
249     uint64_t banked_spsr[8];
250     uint32_t banked_r13[8];
251     uint32_t banked_r14[8];
252 
253     /* These hold r8-r12.  */
254     uint32_t usr_regs[5];
255     uint32_t fiq_regs[5];
256 
257     /* cpsr flag cache for faster execution */
258     uint32_t CF; /* 0 or 1 */
259     uint32_t VF; /* V is the bit 31. All other bits are undefined */
260     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
261     uint32_t ZF; /* Z set if zero.  */
262     uint32_t QF; /* 0 or 1 */
263     uint32_t GE; /* cpsr[19:16] */
264     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
265     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
266     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
267     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
268 
269     uint64_t elr_el[4]; /* AArch64 exception link regs  */
270     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
271 
272     /* System control coprocessor (cp15) */
273     struct {
274         uint32_t c0_cpuid;
275         union { /* Cache size selection */
276             struct {
277                 uint64_t _unused_csselr0;
278                 uint64_t csselr_ns;
279                 uint64_t _unused_csselr1;
280                 uint64_t csselr_s;
281             };
282             uint64_t csselr_el[4];
283         };
284         union { /* System control register. */
285             struct {
286                 uint64_t _unused_sctlr;
287                 uint64_t sctlr_ns;
288                 uint64_t hsctlr;
289                 uint64_t sctlr_s;
290             };
291             uint64_t sctlr_el[4];
292         };
293         uint64_t cpacr_el1; /* Architectural feature access control register */
294         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
295         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
296         uint64_t sder; /* Secure debug enable register. */
297         uint32_t nsacr; /* Non-secure access control register. */
298         union { /* MMU translation table base 0. */
299             struct {
300                 uint64_t _unused_ttbr0_0;
301                 uint64_t ttbr0_ns;
302                 uint64_t _unused_ttbr0_1;
303                 uint64_t ttbr0_s;
304             };
305             uint64_t ttbr0_el[4];
306         };
307         union { /* MMU translation table base 1. */
308             struct {
309                 uint64_t _unused_ttbr1_0;
310                 uint64_t ttbr1_ns;
311                 uint64_t _unused_ttbr1_1;
312                 uint64_t ttbr1_s;
313             };
314             uint64_t ttbr1_el[4];
315         };
316         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
317         /* MMU translation table base control. */
318         TCR tcr_el[4];
319         TCR vtcr_el2; /* Virtualization Translation Control.  */
320         uint32_t c2_data; /* MPU data cacheable bits.  */
321         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
322         union { /* MMU domain access control register
323                  * MPU write buffer control.
324                  */
325             struct {
326                 uint64_t dacr_ns;
327                 uint64_t dacr_s;
328             };
329             struct {
330                 uint64_t dacr32_el2;
331             };
332         };
333         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
334         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
335         uint64_t hcr_el2; /* Hypervisor configuration register */
336         uint64_t scr_el3; /* Secure configuration register.  */
337         union { /* Fault status registers.  */
338             struct {
339                 uint64_t ifsr_ns;
340                 uint64_t ifsr_s;
341             };
342             struct {
343                 uint64_t ifsr32_el2;
344             };
345         };
346         union {
347             struct {
348                 uint64_t _unused_dfsr;
349                 uint64_t dfsr_ns;
350                 uint64_t hsr;
351                 uint64_t dfsr_s;
352             };
353             uint64_t esr_el[4];
354         };
355         uint32_t c6_region[8]; /* MPU base/size registers.  */
356         union { /* Fault address registers. */
357             struct {
358                 uint64_t _unused_far0;
359 #ifdef HOST_WORDS_BIGENDIAN
360                 uint32_t ifar_ns;
361                 uint32_t dfar_ns;
362                 uint32_t ifar_s;
363                 uint32_t dfar_s;
364 #else
365                 uint32_t dfar_ns;
366                 uint32_t ifar_ns;
367                 uint32_t dfar_s;
368                 uint32_t ifar_s;
369 #endif
370                 uint64_t _unused_far3;
371             };
372             uint64_t far_el[4];
373         };
374         uint64_t hpfar_el2;
375         uint64_t hstr_el2;
376         union { /* Translation result. */
377             struct {
378                 uint64_t _unused_par_0;
379                 uint64_t par_ns;
380                 uint64_t _unused_par_1;
381                 uint64_t par_s;
382             };
383             uint64_t par_el[4];
384         };
385 
386         uint32_t c9_insn; /* Cache lockdown registers.  */
387         uint32_t c9_data;
388         uint64_t c9_pmcr; /* performance monitor control register */
389         uint64_t c9_pmcnten; /* perf monitor counter enables */
390         uint64_t c9_pmovsr; /* perf monitor overflow status */
391         uint64_t c9_pmuserenr; /* perf monitor user enable */
392         uint64_t c9_pmselr; /* perf monitor counter selection register */
393         uint64_t c9_pminten; /* perf monitor interrupt enables */
394         union { /* Memory attribute redirection */
395             struct {
396 #ifdef HOST_WORDS_BIGENDIAN
397                 uint64_t _unused_mair_0;
398                 uint32_t mair1_ns;
399                 uint32_t mair0_ns;
400                 uint64_t _unused_mair_1;
401                 uint32_t mair1_s;
402                 uint32_t mair0_s;
403 #else
404                 uint64_t _unused_mair_0;
405                 uint32_t mair0_ns;
406                 uint32_t mair1_ns;
407                 uint64_t _unused_mair_1;
408                 uint32_t mair0_s;
409                 uint32_t mair1_s;
410 #endif
411             };
412             uint64_t mair_el[4];
413         };
414         union { /* vector base address register */
415             struct {
416                 uint64_t _unused_vbar;
417                 uint64_t vbar_ns;
418                 uint64_t hvbar;
419                 uint64_t vbar_s;
420             };
421             uint64_t vbar_el[4];
422         };
423         uint32_t mvbar; /* (monitor) vector base address register */
424         struct { /* FCSE PID. */
425             uint32_t fcseidr_ns;
426             uint32_t fcseidr_s;
427         };
428         union { /* Context ID. */
429             struct {
430                 uint64_t _unused_contextidr_0;
431                 uint64_t contextidr_ns;
432                 uint64_t _unused_contextidr_1;
433                 uint64_t contextidr_s;
434             };
435             uint64_t contextidr_el[4];
436         };
437         union { /* User RW Thread register. */
438             struct {
439                 uint64_t tpidrurw_ns;
440                 uint64_t tpidrprw_ns;
441                 uint64_t htpidr;
442                 uint64_t _tpidr_el3;
443             };
444             uint64_t tpidr_el[4];
445         };
446         /* The secure banks of these registers don't map anywhere */
447         uint64_t tpidrurw_s;
448         uint64_t tpidrprw_s;
449         uint64_t tpidruro_s;
450 
451         union { /* User RO Thread register. */
452             uint64_t tpidruro_ns;
453             uint64_t tpidrro_el[1];
454         };
455         uint64_t c14_cntfrq; /* Counter Frequency register */
456         uint64_t c14_cntkctl; /* Timer Control register */
457         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459         ARMGenericTimer c14_timer[NUM_GTIMERS];
460         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
461         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
462         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
463         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
464         uint32_t c15_threadid; /* TI debugger thread-ID.  */
465         uint32_t c15_config_base_address; /* SCU base address.  */
466         uint32_t c15_diagnostic; /* diagnostic register */
467         uint32_t c15_power_diagnostic;
468         uint32_t c15_power_control; /* power control */
469         uint64_t dbgbvr[16]; /* breakpoint value registers */
470         uint64_t dbgbcr[16]; /* breakpoint control registers */
471         uint64_t dbgwvr[16]; /* watchpoint value registers */
472         uint64_t dbgwcr[16]; /* watchpoint control registers */
473         uint64_t mdscr_el1;
474         uint64_t oslsr_el1; /* OS Lock Status */
475         uint64_t mdcr_el2;
476         uint64_t mdcr_el3;
477         /* Stores the architectural value of the counter *the last time it was
478          * updated* by pmccntr_op_start. Accesses should always be surrounded
479          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
480          * architecturally-correct value is being read/set.
481          */
482         uint64_t c15_ccnt;
483         /* Stores the delta between the architectural value and the underlying
484          * cycle count during normal operation. It is used to update c15_ccnt
485          * to be the correct architectural value before accesses. During
486          * accesses, c15_ccnt_delta contains the underlying count being used
487          * for the access, after which it reverts to the delta value in
488          * pmccntr_op_finish.
489          */
490         uint64_t c15_ccnt_delta;
491         uint64_t c14_pmevcntr[31];
492         uint64_t c14_pmevcntr_delta[31];
493         uint64_t c14_pmevtyper[31];
494         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
495         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
496         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
497     } cp15;
498 
499     struct {
500         /* M profile has up to 4 stack pointers:
501          * a Main Stack Pointer and a Process Stack Pointer for each
502          * of the Secure and Non-Secure states. (If the CPU doesn't support
503          * the security extension then it has only two SPs.)
504          * In QEMU we always store the currently active SP in regs[13],
505          * and the non-active SP for the current security state in
506          * v7m.other_sp. The stack pointers for the inactive security state
507          * are stored in other_ss_msp and other_ss_psp.
508          * switch_v7m_security_state() is responsible for rearranging them
509          * when we change security state.
510          */
511         uint32_t other_sp;
512         uint32_t other_ss_msp;
513         uint32_t other_ss_psp;
514         uint32_t vecbase[M_REG_NUM_BANKS];
515         uint32_t basepri[M_REG_NUM_BANKS];
516         uint32_t control[M_REG_NUM_BANKS];
517         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
518         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
519         uint32_t hfsr; /* HardFault Status */
520         uint32_t dfsr; /* Debug Fault Status Register */
521         uint32_t sfsr; /* Secure Fault Status Register */
522         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
523         uint32_t bfar; /* BusFault Address */
524         uint32_t sfar; /* Secure Fault Address Register */
525         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
526         int exception;
527         uint32_t primask[M_REG_NUM_BANKS];
528         uint32_t faultmask[M_REG_NUM_BANKS];
529         uint32_t aircr; /* only holds r/w state if security extn implemented */
530         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
531         uint32_t csselr[M_REG_NUM_BANKS];
532         uint32_t scr[M_REG_NUM_BANKS];
533         uint32_t msplim[M_REG_NUM_BANKS];
534         uint32_t psplim[M_REG_NUM_BANKS];
535         uint32_t fpcar[M_REG_NUM_BANKS];
536         uint32_t fpccr[M_REG_NUM_BANKS];
537         uint32_t fpdscr[M_REG_NUM_BANKS];
538         uint32_t cpacr[M_REG_NUM_BANKS];
539         uint32_t nsacr;
540     } v7m;
541 
542     /* Information associated with an exception about to be taken:
543      * code which raises an exception must set cs->exception_index and
544      * the relevant parts of this structure; the cpu_do_interrupt function
545      * will then set the guest-visible registers as part of the exception
546      * entry process.
547      */
548     struct {
549         uint32_t syndrome; /* AArch64 format syndrome register */
550         uint32_t fsr; /* AArch32 format fault status register info */
551         uint64_t vaddress; /* virtual addr associated with exception, if any */
552         uint32_t target_el; /* EL the exception should be targeted for */
553         /* If we implement EL2 we will also need to store information
554          * about the intermediate physical address for stage 2 faults.
555          */
556     } exception;
557 
558     /* Information associated with an SError */
559     struct {
560         uint8_t pending;
561         uint8_t has_esr;
562         uint64_t esr;
563     } serror;
564 
565     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
566     uint32_t irq_line_state;
567 
568     /* Thumb-2 EE state.  */
569     uint32_t teecr;
570     uint32_t teehbr;
571 
572     /* VFP coprocessor state.  */
573     struct {
574         ARMVectorReg zregs[32];
575 
576 #ifdef TARGET_AARCH64
577         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
578 #define FFR_PRED_NUM 16
579         ARMPredicateReg pregs[17];
580         /* Scratch space for aa64 sve predicate temporary.  */
581         ARMPredicateReg preg_tmp;
582 #endif
583 
584         /* We store these fpcsr fields separately for convenience.  */
585         uint32_t qc[4] QEMU_ALIGNED(16);
586         int vec_len;
587         int vec_stride;
588 
589         uint32_t xregs[16];
590 
591         /* Scratch space for aa32 neon expansion.  */
592         uint32_t scratch[8];
593 
594         /* There are a number of distinct float control structures:
595          *
596          *  fp_status: is the "normal" fp status.
597          *  fp_status_fp16: used for half-precision calculations
598          *  standard_fp_status : the ARM "Standard FPSCR Value"
599          *
600          * Half-precision operations are governed by a separate
601          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
602          * status structure to control this.
603          *
604          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
605          * round-to-nearest and is used by any operations (generally
606          * Neon) which the architecture defines as controlled by the
607          * standard FPSCR value rather than the FPSCR.
608          *
609          * To avoid having to transfer exception bits around, we simply
610          * say that the FPSCR cumulative exception flags are the logical
611          * OR of the flags in the three fp statuses. This relies on the
612          * only thing which needs to read the exception flags being
613          * an explicit FPSCR read.
614          */
615         float_status fp_status;
616         float_status fp_status_f16;
617         float_status standard_fp_status;
618 
619         /* ZCR_EL[1-3] */
620         uint64_t zcr_el[4];
621     } vfp;
622     uint64_t exclusive_addr;
623     uint64_t exclusive_val;
624     uint64_t exclusive_high;
625 
626     /* iwMMXt coprocessor state.  */
627     struct {
628         uint64_t regs[16];
629         uint64_t val;
630 
631         uint32_t cregs[16];
632     } iwmmxt;
633 
634 #ifdef TARGET_AARCH64
635     struct {
636         ARMPACKey apia;
637         ARMPACKey apib;
638         ARMPACKey apda;
639         ARMPACKey apdb;
640         ARMPACKey apga;
641     } keys;
642 #endif
643 
644 #if defined(CONFIG_USER_ONLY)
645     /* For usermode syscall translation.  */
646     int eabi;
647 #endif
648 
649     struct CPUBreakpoint *cpu_breakpoint[16];
650     struct CPUWatchpoint *cpu_watchpoint[16];
651 
652     /* Fields up to this point are cleared by a CPU reset */
653     struct {} end_reset_fields;
654 
655     /* Fields after this point are preserved across CPU reset. */
656 
657     /* Internal CPU feature flags.  */
658     uint64_t features;
659 
660     /* PMSAv7 MPU */
661     struct {
662         uint32_t *drbar;
663         uint32_t *drsr;
664         uint32_t *dracr;
665         uint32_t rnr[M_REG_NUM_BANKS];
666     } pmsav7;
667 
668     /* PMSAv8 MPU */
669     struct {
670         /* The PMSAv8 implementation also shares some PMSAv7 config
671          * and state:
672          *  pmsav7.rnr (region number register)
673          *  pmsav7_dregion (number of configured regions)
674          */
675         uint32_t *rbar[M_REG_NUM_BANKS];
676         uint32_t *rlar[M_REG_NUM_BANKS];
677         uint32_t mair0[M_REG_NUM_BANKS];
678         uint32_t mair1[M_REG_NUM_BANKS];
679     } pmsav8;
680 
681     /* v8M SAU */
682     struct {
683         uint32_t *rbar;
684         uint32_t *rlar;
685         uint32_t rnr;
686         uint32_t ctrl;
687     } sau;
688 
689     void *nvic;
690     const struct arm_boot_info *boot_info;
691     /* Store GICv3CPUState to access from this struct */
692     void *gicv3state;
693 } CPUARMState;
694 
695 /**
696  * ARMELChangeHookFn:
697  * type of a function which can be registered via arm_register_el_change_hook()
698  * to get callbacks when the CPU changes its exception level or mode.
699  */
700 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
701 typedef struct ARMELChangeHook ARMELChangeHook;
702 struct ARMELChangeHook {
703     ARMELChangeHookFn *hook;
704     void *opaque;
705     QLIST_ENTRY(ARMELChangeHook) node;
706 };
707 
708 /* These values map onto the return values for
709  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
710 typedef enum ARMPSCIState {
711     PSCI_ON = 0,
712     PSCI_OFF = 1,
713     PSCI_ON_PENDING = 2
714 } ARMPSCIState;
715 
716 typedef struct ARMISARegisters ARMISARegisters;
717 
718 /**
719  * ARMCPU:
720  * @env: #CPUARMState
721  *
722  * An ARM CPU core.
723  */
724 struct ARMCPU {
725     /*< private >*/
726     CPUState parent_obj;
727     /*< public >*/
728 
729     CPUNegativeOffsetState neg;
730     CPUARMState env;
731 
732     /* Coprocessor information */
733     GHashTable *cp_regs;
734     /* For marshalling (mostly coprocessor) register state between the
735      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
736      * we use these arrays.
737      */
738     /* List of register indexes managed via these arrays; (full KVM style
739      * 64 bit indexes, not CPRegInfo 32 bit indexes)
740      */
741     uint64_t *cpreg_indexes;
742     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
743     uint64_t *cpreg_values;
744     /* Length of the indexes, values, reset_values arrays */
745     int32_t cpreg_array_len;
746     /* These are used only for migration: incoming data arrives in
747      * these fields and is sanity checked in post_load before copying
748      * to the working data structures above.
749      */
750     uint64_t *cpreg_vmstate_indexes;
751     uint64_t *cpreg_vmstate_values;
752     int32_t cpreg_vmstate_array_len;
753 
754     DynamicGDBXMLInfo dyn_xml;
755 
756     /* Timers used by the generic (architected) timer */
757     QEMUTimer *gt_timer[NUM_GTIMERS];
758     /*
759      * Timer used by the PMU. Its state is restored after migration by
760      * pmu_op_finish() - it does not need other handling during migration
761      */
762     QEMUTimer *pmu_timer;
763     /* GPIO outputs for generic timer */
764     qemu_irq gt_timer_outputs[NUM_GTIMERS];
765     /* GPIO output for GICv3 maintenance interrupt signal */
766     qemu_irq gicv3_maintenance_interrupt;
767     /* GPIO output for the PMU interrupt */
768     qemu_irq pmu_interrupt;
769 
770     /* MemoryRegion to use for secure physical accesses */
771     MemoryRegion *secure_memory;
772 
773     /* For v8M, pointer to the IDAU interface provided by board/SoC */
774     Object *idau;
775 
776     /* 'compatible' string for this CPU for Linux device trees */
777     const char *dtb_compatible;
778 
779     /* PSCI version for this CPU
780      * Bits[31:16] = Major Version
781      * Bits[15:0] = Minor Version
782      */
783     uint32_t psci_version;
784 
785     /* Should CPU start in PSCI powered-off state? */
786     bool start_powered_off;
787 
788     /* Current power state, access guarded by BQL */
789     ARMPSCIState power_state;
790 
791     /* CPU has virtualization extension */
792     bool has_el2;
793     /* CPU has security extension */
794     bool has_el3;
795     /* CPU has PMU (Performance Monitor Unit) */
796     bool has_pmu;
797     /* CPU has VFP */
798     bool has_vfp;
799     /* CPU has Neon */
800     bool has_neon;
801     /* CPU has M-profile DSP extension */
802     bool has_dsp;
803 
804     /* CPU has memory protection unit */
805     bool has_mpu;
806     /* PMSAv7 MPU number of supported regions */
807     uint32_t pmsav7_dregion;
808     /* v8M SAU number of supported regions */
809     uint32_t sau_sregion;
810 
811     /* PSCI conduit used to invoke PSCI methods
812      * 0 - disabled, 1 - smc, 2 - hvc
813      */
814     uint32_t psci_conduit;
815 
816     /* For v8M, initial value of the Secure VTOR */
817     uint32_t init_svtor;
818 
819     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
820      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
821      */
822     uint32_t kvm_target;
823 
824     /* KVM init features for this CPU */
825     uint32_t kvm_init_features[7];
826 
827     /* Uniprocessor system with MP extensions */
828     bool mp_is_up;
829 
830     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
831      * and the probe failed (so we need to report the error in realize)
832      */
833     bool host_cpu_probe_failed;
834 
835     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
836      * register.
837      */
838     int32_t core_count;
839 
840     /* The instance init functions for implementation-specific subclasses
841      * set these fields to specify the implementation-dependent values of
842      * various constant registers and reset values of non-constant
843      * registers.
844      * Some of these might become QOM properties eventually.
845      * Field names match the official register names as defined in the
846      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
847      * is used for reset values of non-constant registers; no reset_
848      * prefix means a constant register.
849      * Some of these registers are split out into a substructure that
850      * is shared with the translators to control the ISA.
851      */
852     struct ARMISARegisters {
853         uint32_t id_isar0;
854         uint32_t id_isar1;
855         uint32_t id_isar2;
856         uint32_t id_isar3;
857         uint32_t id_isar4;
858         uint32_t id_isar5;
859         uint32_t id_isar6;
860         uint32_t mvfr0;
861         uint32_t mvfr1;
862         uint32_t mvfr2;
863         uint64_t id_aa64isar0;
864         uint64_t id_aa64isar1;
865         uint64_t id_aa64pfr0;
866         uint64_t id_aa64pfr1;
867         uint64_t id_aa64mmfr0;
868         uint64_t id_aa64mmfr1;
869     } isar;
870     uint32_t midr;
871     uint32_t revidr;
872     uint32_t reset_fpsid;
873     uint32_t ctr;
874     uint32_t reset_sctlr;
875     uint32_t id_pfr0;
876     uint32_t id_pfr1;
877     uint32_t id_dfr0;
878     uint64_t pmceid0;
879     uint64_t pmceid1;
880     uint32_t id_afr0;
881     uint32_t id_mmfr0;
882     uint32_t id_mmfr1;
883     uint32_t id_mmfr2;
884     uint32_t id_mmfr3;
885     uint32_t id_mmfr4;
886     uint64_t id_aa64dfr0;
887     uint64_t id_aa64dfr1;
888     uint64_t id_aa64afr0;
889     uint64_t id_aa64afr1;
890     uint32_t dbgdidr;
891     uint32_t clidr;
892     uint64_t mp_affinity; /* MP ID without feature bits */
893     /* The elements of this array are the CCSIDR values for each cache,
894      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
895      */
896     uint32_t ccsidr[16];
897     uint64_t reset_cbar;
898     uint32_t reset_auxcr;
899     bool reset_hivecs;
900     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
901     uint32_t dcz_blocksize;
902     uint64_t rvbar;
903 
904     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
905     int gic_num_lrs; /* number of list registers */
906     int gic_vpribits; /* number of virtual priority bits */
907     int gic_vprebits; /* number of virtual preemption bits */
908 
909     /* Whether the cfgend input is high (i.e. this CPU should reset into
910      * big-endian mode).  This setting isn't used directly: instead it modifies
911      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
912      * architecture version.
913      */
914     bool cfgend;
915 
916     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
917     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
918 
919     int32_t node_id; /* NUMA node this CPU belongs to */
920 
921     /* Used to synchronize KVM and QEMU in-kernel device levels */
922     uint8_t device_irq_level;
923 
924     /* Used to set the maximum vector length the cpu will support.  */
925     uint32_t sve_max_vq;
926 
927     /*
928      * In sve_vq_map each set bit is a supported vector length of
929      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
930      * length in quadwords.
931      *
932      * While processing properties during initialization, corresponding
933      * sve_vq_init bits are set for bits in sve_vq_map that have been
934      * set by properties.
935      */
936     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
937     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
938 };
939 
940 void arm_cpu_post_init(Object *obj);
941 
942 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
943 
944 #ifndef CONFIG_USER_ONLY
945 extern const VMStateDescription vmstate_arm_cpu;
946 #endif
947 
948 void arm_cpu_do_interrupt(CPUState *cpu);
949 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
950 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
951 
952 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
953                                          MemTxAttrs *attrs);
954 
955 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
956 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
957 
958 /* Dynamically generates for gdb stub an XML description of the sysregs from
959  * the cp_regs hashtable. Returns the registered sysregs number.
960  */
961 int arm_gen_dynamic_xml(CPUState *cpu);
962 
963 /* Returns the dynamically generated XML for the gdb stub.
964  * Returns a pointer to the XML contents for the specified XML file or NULL
965  * if the XML name doesn't match the predefined one.
966  */
967 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
968 
969 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
970                              int cpuid, void *opaque);
971 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
972                              int cpuid, void *opaque);
973 
974 #ifdef TARGET_AARCH64
975 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
976 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
977 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
978 void aarch64_sve_change_el(CPUARMState *env, int old_el,
979                            int new_el, bool el0_a64);
980 void aarch64_add_sve_properties(Object *obj);
981 #else
982 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
983 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
984                                          int n, bool a)
985 { }
986 static inline void aarch64_add_sve_properties(Object *obj) { }
987 #endif
988 
989 #if !defined(CONFIG_TCG)
990 static inline target_ulong do_arm_semihosting(CPUARMState *env)
991 {
992     g_assert_not_reached();
993 }
994 #else
995 target_ulong do_arm_semihosting(CPUARMState *env);
996 #endif
997 void aarch64_sync_32_to_64(CPUARMState *env);
998 void aarch64_sync_64_to_32(CPUARMState *env);
999 
1000 int fp_exception_el(CPUARMState *env, int cur_el);
1001 int sve_exception_el(CPUARMState *env, int cur_el);
1002 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1003 
1004 static inline bool is_a64(CPUARMState *env)
1005 {
1006     return env->aarch64;
1007 }
1008 
1009 /* you can call this signal handler from your SIGBUS and SIGSEGV
1010    signal handlers to inform the virtual CPU of exceptions. non zero
1011    is returned if the signal was handled by the virtual CPU.  */
1012 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1013                            void *puc);
1014 
1015 /**
1016  * pmu_op_start/finish
1017  * @env: CPUARMState
1018  *
1019  * Convert all PMU counters between their delta form (the typical mode when
1020  * they are enabled) and the guest-visible values. These two calls must
1021  * surround any action which might affect the counters.
1022  */
1023 void pmu_op_start(CPUARMState *env);
1024 void pmu_op_finish(CPUARMState *env);
1025 
1026 /*
1027  * Called when a PMU counter is due to overflow
1028  */
1029 void arm_pmu_timer_cb(void *opaque);
1030 
1031 /**
1032  * Functions to register as EL change hooks for PMU mode filtering
1033  */
1034 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1035 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1036 
1037 /*
1038  * pmu_init
1039  * @cpu: ARMCPU
1040  *
1041  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1042  * for the current configuration
1043  */
1044 void pmu_init(ARMCPU *cpu);
1045 
1046 /* SCTLR bit meanings. Several bits have been reused in newer
1047  * versions of the architecture; in that case we define constants
1048  * for both old and new bit meanings. Code which tests against those
1049  * bits should probably check or otherwise arrange that the CPU
1050  * is the architectural version it expects.
1051  */
1052 #define SCTLR_M       (1U << 0)
1053 #define SCTLR_A       (1U << 1)
1054 #define SCTLR_C       (1U << 2)
1055 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1056 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1057 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1058 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1059 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1060 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1061 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1062 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1063 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1064 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1065 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1066 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1067 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1068 #define SCTLR_SED     (1U << 8) /* v8 onward */
1069 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1070 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1071 #define SCTLR_F       (1U << 10) /* up to v6 */
1072 #define SCTLR_SW      (1U << 10) /* v7 */
1073 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1074 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1075 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1076 #define SCTLR_I       (1U << 12)
1077 #define SCTLR_V       (1U << 13) /* AArch32 only */
1078 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1079 #define SCTLR_RR      (1U << 14) /* up to v7 */
1080 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1081 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1082 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1083 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1084 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1085 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1086 #define SCTLR_BR      (1U << 17) /* PMSA only */
1087 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1088 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1089 #define SCTLR_WXN     (1U << 19)
1090 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1091 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1092 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1093 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1094 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1095 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1096 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1097 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1098 #define SCTLR_VE      (1U << 24) /* up to v7 */
1099 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1100 #define SCTLR_EE      (1U << 25)
1101 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1102 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1103 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1104 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1105 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1106 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1107 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1108 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1109 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1110 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1111 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1112 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1113 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1114 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1115 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1116 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1117 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1118 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1119 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1120 
1121 #define CPTR_TCPAC    (1U << 31)
1122 #define CPTR_TTA      (1U << 20)
1123 #define CPTR_TFP      (1U << 10)
1124 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1125 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1126 
1127 #define MDCR_EPMAD    (1U << 21)
1128 #define MDCR_EDAD     (1U << 20)
1129 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1130 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1131 #define MDCR_SDD      (1U << 16)
1132 #define MDCR_SPD      (3U << 14)
1133 #define MDCR_TDRA     (1U << 11)
1134 #define MDCR_TDOSA    (1U << 10)
1135 #define MDCR_TDA      (1U << 9)
1136 #define MDCR_TDE      (1U << 8)
1137 #define MDCR_HPME     (1U << 7)
1138 #define MDCR_TPM      (1U << 6)
1139 #define MDCR_TPMCR    (1U << 5)
1140 #define MDCR_HPMN     (0x1fU)
1141 
1142 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1143 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1144 
1145 #define CPSR_M (0x1fU)
1146 #define CPSR_T (1U << 5)
1147 #define CPSR_F (1U << 6)
1148 #define CPSR_I (1U << 7)
1149 #define CPSR_A (1U << 8)
1150 #define CPSR_E (1U << 9)
1151 #define CPSR_IT_2_7 (0xfc00U)
1152 #define CPSR_GE (0xfU << 16)
1153 #define CPSR_IL (1U << 20)
1154 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1155  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1156  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1157  * where it is live state but not accessible to the AArch32 code.
1158  */
1159 #define CPSR_RESERVED (0x7U << 21)
1160 #define CPSR_J (1U << 24)
1161 #define CPSR_IT_0_1 (3U << 25)
1162 #define CPSR_Q (1U << 27)
1163 #define CPSR_V (1U << 28)
1164 #define CPSR_C (1U << 29)
1165 #define CPSR_Z (1U << 30)
1166 #define CPSR_N (1U << 31)
1167 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1168 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1169 
1170 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1171 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1172     | CPSR_NZCV)
1173 /* Bits writable in user mode.  */
1174 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1175 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1176 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1177 /* Mask of bits which may be set by exception return copying them from SPSR */
1178 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1179 
1180 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1181 #define XPSR_EXCP 0x1ffU
1182 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1183 #define XPSR_IT_2_7 CPSR_IT_2_7
1184 #define XPSR_GE CPSR_GE
1185 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1186 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1187 #define XPSR_IT_0_1 CPSR_IT_0_1
1188 #define XPSR_Q CPSR_Q
1189 #define XPSR_V CPSR_V
1190 #define XPSR_C CPSR_C
1191 #define XPSR_Z CPSR_Z
1192 #define XPSR_N CPSR_N
1193 #define XPSR_NZCV CPSR_NZCV
1194 #define XPSR_IT CPSR_IT
1195 
1196 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1197 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1198 #define TTBCR_PD0    (1U << 4)
1199 #define TTBCR_PD1    (1U << 5)
1200 #define TTBCR_EPD0   (1U << 7)
1201 #define TTBCR_IRGN0  (3U << 8)
1202 #define TTBCR_ORGN0  (3U << 10)
1203 #define TTBCR_SH0    (3U << 12)
1204 #define TTBCR_T1SZ   (3U << 16)
1205 #define TTBCR_A1     (1U << 22)
1206 #define TTBCR_EPD1   (1U << 23)
1207 #define TTBCR_IRGN1  (3U << 24)
1208 #define TTBCR_ORGN1  (3U << 26)
1209 #define TTBCR_SH1    (1U << 28)
1210 #define TTBCR_EAE    (1U << 31)
1211 
1212 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1213  * Only these are valid when in AArch64 mode; in
1214  * AArch32 mode SPSRs are basically CPSR-format.
1215  */
1216 #define PSTATE_SP (1U)
1217 #define PSTATE_M (0xFU)
1218 #define PSTATE_nRW (1U << 4)
1219 #define PSTATE_F (1U << 6)
1220 #define PSTATE_I (1U << 7)
1221 #define PSTATE_A (1U << 8)
1222 #define PSTATE_D (1U << 9)
1223 #define PSTATE_BTYPE (3U << 10)
1224 #define PSTATE_IL (1U << 20)
1225 #define PSTATE_SS (1U << 21)
1226 #define PSTATE_V (1U << 28)
1227 #define PSTATE_C (1U << 29)
1228 #define PSTATE_Z (1U << 30)
1229 #define PSTATE_N (1U << 31)
1230 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1231 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1232 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1233 /* Mode values for AArch64 */
1234 #define PSTATE_MODE_EL3h 13
1235 #define PSTATE_MODE_EL3t 12
1236 #define PSTATE_MODE_EL2h 9
1237 #define PSTATE_MODE_EL2t 8
1238 #define PSTATE_MODE_EL1h 5
1239 #define PSTATE_MODE_EL1t 4
1240 #define PSTATE_MODE_EL0t 0
1241 
1242 /* Write a new value to v7m.exception, thus transitioning into or out
1243  * of Handler mode; this may result in a change of active stack pointer.
1244  */
1245 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1246 
1247 /* Map EL and handler into a PSTATE_MODE.  */
1248 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1249 {
1250     return (el << 2) | handler;
1251 }
1252 
1253 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1254  * interprocessing, so we don't attempt to sync with the cpsr state used by
1255  * the 32 bit decoder.
1256  */
1257 static inline uint32_t pstate_read(CPUARMState *env)
1258 {
1259     int ZF;
1260 
1261     ZF = (env->ZF == 0);
1262     return (env->NF & 0x80000000) | (ZF << 30)
1263         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1264         | env->pstate | env->daif | (env->btype << 10);
1265 }
1266 
1267 static inline void pstate_write(CPUARMState *env, uint32_t val)
1268 {
1269     env->ZF = (~val) & PSTATE_Z;
1270     env->NF = val;
1271     env->CF = (val >> 29) & 1;
1272     env->VF = (val << 3) & 0x80000000;
1273     env->daif = val & PSTATE_DAIF;
1274     env->btype = (val >> 10) & 3;
1275     env->pstate = val & ~CACHED_PSTATE_BITS;
1276 }
1277 
1278 /* Return the current CPSR value.  */
1279 uint32_t cpsr_read(CPUARMState *env);
1280 
1281 typedef enum CPSRWriteType {
1282     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1283     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1284     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1285     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1286 } CPSRWriteType;
1287 
1288 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1289 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1290                 CPSRWriteType write_type);
1291 
1292 /* Return the current xPSR value.  */
1293 static inline uint32_t xpsr_read(CPUARMState *env)
1294 {
1295     int ZF;
1296     ZF = (env->ZF == 0);
1297     return (env->NF & 0x80000000) | (ZF << 30)
1298         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1299         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1300         | ((env->condexec_bits & 0xfc) << 8)
1301         | (env->GE << 16)
1302         | env->v7m.exception;
1303 }
1304 
1305 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1306 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1307 {
1308     if (mask & XPSR_NZCV) {
1309         env->ZF = (~val) & XPSR_Z;
1310         env->NF = val;
1311         env->CF = (val >> 29) & 1;
1312         env->VF = (val << 3) & 0x80000000;
1313     }
1314     if (mask & XPSR_Q) {
1315         env->QF = ((val & XPSR_Q) != 0);
1316     }
1317     if (mask & XPSR_GE) {
1318         env->GE = (val & XPSR_GE) >> 16;
1319     }
1320     if (mask & XPSR_T) {
1321         env->thumb = ((val & XPSR_T) != 0);
1322     }
1323     if (mask & XPSR_IT_0_1) {
1324         env->condexec_bits &= ~3;
1325         env->condexec_bits |= (val >> 25) & 3;
1326     }
1327     if (mask & XPSR_IT_2_7) {
1328         env->condexec_bits &= 3;
1329         env->condexec_bits |= (val >> 8) & 0xfc;
1330     }
1331     if (mask & XPSR_EXCP) {
1332         /* Note that this only happens on exception exit */
1333         write_v7m_exception(env, val & XPSR_EXCP);
1334     }
1335 }
1336 
1337 #define HCR_VM        (1ULL << 0)
1338 #define HCR_SWIO      (1ULL << 1)
1339 #define HCR_PTW       (1ULL << 2)
1340 #define HCR_FMO       (1ULL << 3)
1341 #define HCR_IMO       (1ULL << 4)
1342 #define HCR_AMO       (1ULL << 5)
1343 #define HCR_VF        (1ULL << 6)
1344 #define HCR_VI        (1ULL << 7)
1345 #define HCR_VSE       (1ULL << 8)
1346 #define HCR_FB        (1ULL << 9)
1347 #define HCR_BSU_MASK  (3ULL << 10)
1348 #define HCR_DC        (1ULL << 12)
1349 #define HCR_TWI       (1ULL << 13)
1350 #define HCR_TWE       (1ULL << 14)
1351 #define HCR_TID0      (1ULL << 15)
1352 #define HCR_TID1      (1ULL << 16)
1353 #define HCR_TID2      (1ULL << 17)
1354 #define HCR_TID3      (1ULL << 18)
1355 #define HCR_TSC       (1ULL << 19)
1356 #define HCR_TIDCP     (1ULL << 20)
1357 #define HCR_TACR      (1ULL << 21)
1358 #define HCR_TSW       (1ULL << 22)
1359 #define HCR_TPCP      (1ULL << 23)
1360 #define HCR_TPU       (1ULL << 24)
1361 #define HCR_TTLB      (1ULL << 25)
1362 #define HCR_TVM       (1ULL << 26)
1363 #define HCR_TGE       (1ULL << 27)
1364 #define HCR_TDZ       (1ULL << 28)
1365 #define HCR_HCD       (1ULL << 29)
1366 #define HCR_TRVM      (1ULL << 30)
1367 #define HCR_RW        (1ULL << 31)
1368 #define HCR_CD        (1ULL << 32)
1369 #define HCR_ID        (1ULL << 33)
1370 #define HCR_E2H       (1ULL << 34)
1371 #define HCR_TLOR      (1ULL << 35)
1372 #define HCR_TERR      (1ULL << 36)
1373 #define HCR_TEA       (1ULL << 37)
1374 #define HCR_MIOCNCE   (1ULL << 38)
1375 #define HCR_APK       (1ULL << 40)
1376 #define HCR_API       (1ULL << 41)
1377 #define HCR_NV        (1ULL << 42)
1378 #define HCR_NV1       (1ULL << 43)
1379 #define HCR_AT        (1ULL << 44)
1380 #define HCR_NV2       (1ULL << 45)
1381 #define HCR_FWB       (1ULL << 46)
1382 #define HCR_FIEN      (1ULL << 47)
1383 #define HCR_TID4      (1ULL << 49)
1384 #define HCR_TICAB     (1ULL << 50)
1385 #define HCR_TOCU      (1ULL << 52)
1386 #define HCR_TTLBIS    (1ULL << 54)
1387 #define HCR_TTLBOS    (1ULL << 55)
1388 #define HCR_ATA       (1ULL << 56)
1389 #define HCR_DCT       (1ULL << 57)
1390 
1391 /*
1392  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1393  * HCR_MASK and then clear it again if the feature bit is not set in
1394  * hcr_write().
1395  */
1396 #define HCR_MASK      ((1ULL << 34) - 1)
1397 
1398 #define SCR_NS                (1U << 0)
1399 #define SCR_IRQ               (1U << 1)
1400 #define SCR_FIQ               (1U << 2)
1401 #define SCR_EA                (1U << 3)
1402 #define SCR_FW                (1U << 4)
1403 #define SCR_AW                (1U << 5)
1404 #define SCR_NET               (1U << 6)
1405 #define SCR_SMD               (1U << 7)
1406 #define SCR_HCE               (1U << 8)
1407 #define SCR_SIF               (1U << 9)
1408 #define SCR_RW                (1U << 10)
1409 #define SCR_ST                (1U << 11)
1410 #define SCR_TWI               (1U << 12)
1411 #define SCR_TWE               (1U << 13)
1412 #define SCR_TLOR              (1U << 14)
1413 #define SCR_TERR              (1U << 15)
1414 #define SCR_APK               (1U << 16)
1415 #define SCR_API               (1U << 17)
1416 #define SCR_EEL2              (1U << 18)
1417 #define SCR_EASE              (1U << 19)
1418 #define SCR_NMEA              (1U << 20)
1419 #define SCR_FIEN              (1U << 21)
1420 #define SCR_ENSCXT            (1U << 25)
1421 #define SCR_ATA               (1U << 26)
1422 
1423 /* Return the current FPSCR value.  */
1424 uint32_t vfp_get_fpscr(CPUARMState *env);
1425 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1426 
1427 /* FPCR, Floating Point Control Register
1428  * FPSR, Floating Poiht Status Register
1429  *
1430  * For A64 the FPSCR is split into two logically distinct registers,
1431  * FPCR and FPSR. However since they still use non-overlapping bits
1432  * we store the underlying state in fpscr and just mask on read/write.
1433  */
1434 #define FPSR_MASK 0xf800009f
1435 #define FPCR_MASK 0x07ff9f00
1436 
1437 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1438 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1439 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1440 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1441 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1442 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1443 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1444 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1445 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1446 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1447 
1448 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1449 {
1450     return vfp_get_fpscr(env) & FPSR_MASK;
1451 }
1452 
1453 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1454 {
1455     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1456     vfp_set_fpscr(env, new_fpscr);
1457 }
1458 
1459 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1460 {
1461     return vfp_get_fpscr(env) & FPCR_MASK;
1462 }
1463 
1464 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1465 {
1466     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1467     vfp_set_fpscr(env, new_fpscr);
1468 }
1469 
1470 enum arm_cpu_mode {
1471   ARM_CPU_MODE_USR = 0x10,
1472   ARM_CPU_MODE_FIQ = 0x11,
1473   ARM_CPU_MODE_IRQ = 0x12,
1474   ARM_CPU_MODE_SVC = 0x13,
1475   ARM_CPU_MODE_MON = 0x16,
1476   ARM_CPU_MODE_ABT = 0x17,
1477   ARM_CPU_MODE_HYP = 0x1a,
1478   ARM_CPU_MODE_UND = 0x1b,
1479   ARM_CPU_MODE_SYS = 0x1f
1480 };
1481 
1482 /* VFP system registers.  */
1483 #define ARM_VFP_FPSID   0
1484 #define ARM_VFP_FPSCR   1
1485 #define ARM_VFP_MVFR2   5
1486 #define ARM_VFP_MVFR1   6
1487 #define ARM_VFP_MVFR0   7
1488 #define ARM_VFP_FPEXC   8
1489 #define ARM_VFP_FPINST  9
1490 #define ARM_VFP_FPINST2 10
1491 
1492 /* iwMMXt coprocessor control registers.  */
1493 #define ARM_IWMMXT_wCID  0
1494 #define ARM_IWMMXT_wCon  1
1495 #define ARM_IWMMXT_wCSSF 2
1496 #define ARM_IWMMXT_wCASF 3
1497 #define ARM_IWMMXT_wCGR0 8
1498 #define ARM_IWMMXT_wCGR1 9
1499 #define ARM_IWMMXT_wCGR2 10
1500 #define ARM_IWMMXT_wCGR3 11
1501 
1502 /* V7M CCR bits */
1503 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1504 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1505 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1506 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1507 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1508 FIELD(V7M_CCR, STKALIGN, 9, 1)
1509 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1510 FIELD(V7M_CCR, DC, 16, 1)
1511 FIELD(V7M_CCR, IC, 17, 1)
1512 FIELD(V7M_CCR, BP, 18, 1)
1513 
1514 /* V7M SCR bits */
1515 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1516 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1517 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1518 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1519 
1520 /* V7M AIRCR bits */
1521 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1522 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1523 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1524 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1525 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1526 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1527 FIELD(V7M_AIRCR, PRIS, 14, 1)
1528 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1529 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1530 
1531 /* V7M CFSR bits for MMFSR */
1532 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1533 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1534 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1535 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1536 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1537 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1538 
1539 /* V7M CFSR bits for BFSR */
1540 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1541 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1542 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1543 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1544 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1545 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1546 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1547 
1548 /* V7M CFSR bits for UFSR */
1549 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1550 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1551 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1552 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1553 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1554 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1555 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1556 
1557 /* V7M CFSR bit masks covering all of the subregister bits */
1558 FIELD(V7M_CFSR, MMFSR, 0, 8)
1559 FIELD(V7M_CFSR, BFSR, 8, 8)
1560 FIELD(V7M_CFSR, UFSR, 16, 16)
1561 
1562 /* V7M HFSR bits */
1563 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1564 FIELD(V7M_HFSR, FORCED, 30, 1)
1565 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1566 
1567 /* V7M DFSR bits */
1568 FIELD(V7M_DFSR, HALTED, 0, 1)
1569 FIELD(V7M_DFSR, BKPT, 1, 1)
1570 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1571 FIELD(V7M_DFSR, VCATCH, 3, 1)
1572 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1573 
1574 /* V7M SFSR bits */
1575 FIELD(V7M_SFSR, INVEP, 0, 1)
1576 FIELD(V7M_SFSR, INVIS, 1, 1)
1577 FIELD(V7M_SFSR, INVER, 2, 1)
1578 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1579 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1580 FIELD(V7M_SFSR, LSPERR, 5, 1)
1581 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1582 FIELD(V7M_SFSR, LSERR, 7, 1)
1583 
1584 /* v7M MPU_CTRL bits */
1585 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1586 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1587 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1588 
1589 /* v7M CLIDR bits */
1590 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1591 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1592 FIELD(V7M_CLIDR, LOC, 24, 3)
1593 FIELD(V7M_CLIDR, LOUU, 27, 3)
1594 FIELD(V7M_CLIDR, ICB, 30, 2)
1595 
1596 FIELD(V7M_CSSELR, IND, 0, 1)
1597 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1598 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1599  * define a mask for this and check that it doesn't permit running off
1600  * the end of the array.
1601  */
1602 FIELD(V7M_CSSELR, INDEX, 0, 4)
1603 
1604 /* v7M FPCCR bits */
1605 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1606 FIELD(V7M_FPCCR, USER, 1, 1)
1607 FIELD(V7M_FPCCR, S, 2, 1)
1608 FIELD(V7M_FPCCR, THREAD, 3, 1)
1609 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1610 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1611 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1612 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1613 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1614 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1615 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1616 FIELD(V7M_FPCCR, RES0, 11, 15)
1617 FIELD(V7M_FPCCR, TS, 26, 1)
1618 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1619 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1620 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1621 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1622 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1623 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1624 #define R_V7M_FPCCR_BANKED_MASK                 \
1625     (R_V7M_FPCCR_LSPACT_MASK |                  \
1626      R_V7M_FPCCR_USER_MASK |                    \
1627      R_V7M_FPCCR_THREAD_MASK |                  \
1628      R_V7M_FPCCR_MMRDY_MASK |                   \
1629      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1630      R_V7M_FPCCR_UFRDY_MASK |                   \
1631      R_V7M_FPCCR_ASPEN_MASK)
1632 
1633 /*
1634  * System register ID fields.
1635  */
1636 FIELD(MIDR_EL1, REVISION, 0, 4)
1637 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1638 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1639 FIELD(MIDR_EL1, VARIANT, 20, 4)
1640 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1641 
1642 FIELD(ID_ISAR0, SWAP, 0, 4)
1643 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1644 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1645 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1646 FIELD(ID_ISAR0, COPROC, 16, 4)
1647 FIELD(ID_ISAR0, DEBUG, 20, 4)
1648 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1649 
1650 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1651 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1652 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1653 FIELD(ID_ISAR1, EXTEND, 12, 4)
1654 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1655 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1656 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1657 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1658 
1659 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1660 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1661 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1662 FIELD(ID_ISAR2, MULT, 12, 4)
1663 FIELD(ID_ISAR2, MULTS, 16, 4)
1664 FIELD(ID_ISAR2, MULTU, 20, 4)
1665 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1666 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1667 
1668 FIELD(ID_ISAR3, SATURATE, 0, 4)
1669 FIELD(ID_ISAR3, SIMD, 4, 4)
1670 FIELD(ID_ISAR3, SVC, 8, 4)
1671 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1672 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1673 FIELD(ID_ISAR3, T32COPY, 20, 4)
1674 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1675 FIELD(ID_ISAR3, T32EE, 28, 4)
1676 
1677 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1678 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1679 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1680 FIELD(ID_ISAR4, SMC, 12, 4)
1681 FIELD(ID_ISAR4, BARRIER, 16, 4)
1682 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1683 FIELD(ID_ISAR4, PSR_M, 24, 4)
1684 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1685 
1686 FIELD(ID_ISAR5, SEVL, 0, 4)
1687 FIELD(ID_ISAR5, AES, 4, 4)
1688 FIELD(ID_ISAR5, SHA1, 8, 4)
1689 FIELD(ID_ISAR5, SHA2, 12, 4)
1690 FIELD(ID_ISAR5, CRC32, 16, 4)
1691 FIELD(ID_ISAR5, RDM, 24, 4)
1692 FIELD(ID_ISAR5, VCMA, 28, 4)
1693 
1694 FIELD(ID_ISAR6, JSCVT, 0, 4)
1695 FIELD(ID_ISAR6, DP, 4, 4)
1696 FIELD(ID_ISAR6, FHM, 8, 4)
1697 FIELD(ID_ISAR6, SB, 12, 4)
1698 FIELD(ID_ISAR6, SPECRES, 16, 4)
1699 
1700 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1701 FIELD(ID_MMFR4, AC2, 4, 4)
1702 FIELD(ID_MMFR4, XNX, 8, 4)
1703 FIELD(ID_MMFR4, CNP, 12, 4)
1704 FIELD(ID_MMFR4, HPDS, 16, 4)
1705 FIELD(ID_MMFR4, LSM, 20, 4)
1706 FIELD(ID_MMFR4, CCIDX, 24, 4)
1707 FIELD(ID_MMFR4, EVT, 28, 4)
1708 
1709 FIELD(ID_AA64ISAR0, AES, 4, 4)
1710 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1711 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1712 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1713 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1714 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1715 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1716 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1717 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1718 FIELD(ID_AA64ISAR0, DP, 44, 4)
1719 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1720 FIELD(ID_AA64ISAR0, TS, 52, 4)
1721 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1722 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1723 
1724 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1725 FIELD(ID_AA64ISAR1, APA, 4, 4)
1726 FIELD(ID_AA64ISAR1, API, 8, 4)
1727 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1728 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1729 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1730 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1731 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1732 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1733 FIELD(ID_AA64ISAR1, SB, 36, 4)
1734 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1735 
1736 FIELD(ID_AA64PFR0, EL0, 0, 4)
1737 FIELD(ID_AA64PFR0, EL1, 4, 4)
1738 FIELD(ID_AA64PFR0, EL2, 8, 4)
1739 FIELD(ID_AA64PFR0, EL3, 12, 4)
1740 FIELD(ID_AA64PFR0, FP, 16, 4)
1741 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1742 FIELD(ID_AA64PFR0, GIC, 24, 4)
1743 FIELD(ID_AA64PFR0, RAS, 28, 4)
1744 FIELD(ID_AA64PFR0, SVE, 32, 4)
1745 
1746 FIELD(ID_AA64PFR1, BT, 0, 4)
1747 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1748 FIELD(ID_AA64PFR1, MTE, 8, 4)
1749 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1750 
1751 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1752 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1753 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1754 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1755 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1756 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1757 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1758 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1759 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1760 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1761 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1762 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1763 
1764 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1765 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1766 FIELD(ID_AA64MMFR1, VH, 8, 4)
1767 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1768 FIELD(ID_AA64MMFR1, LO, 16, 4)
1769 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1770 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1771 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1772 
1773 FIELD(ID_DFR0, COPDBG, 0, 4)
1774 FIELD(ID_DFR0, COPSDBG, 4, 4)
1775 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1776 FIELD(ID_DFR0, COPTRC, 12, 4)
1777 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1778 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1779 FIELD(ID_DFR0, PERFMON, 24, 4)
1780 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1781 
1782 FIELD(MVFR0, SIMDREG, 0, 4)
1783 FIELD(MVFR0, FPSP, 4, 4)
1784 FIELD(MVFR0, FPDP, 8, 4)
1785 FIELD(MVFR0, FPTRAP, 12, 4)
1786 FIELD(MVFR0, FPDIVIDE, 16, 4)
1787 FIELD(MVFR0, FPSQRT, 20, 4)
1788 FIELD(MVFR0, FPSHVEC, 24, 4)
1789 FIELD(MVFR0, FPROUND, 28, 4)
1790 
1791 FIELD(MVFR1, FPFTZ, 0, 4)
1792 FIELD(MVFR1, FPDNAN, 4, 4)
1793 FIELD(MVFR1, SIMDLS, 8, 4)
1794 FIELD(MVFR1, SIMDINT, 12, 4)
1795 FIELD(MVFR1, SIMDSP, 16, 4)
1796 FIELD(MVFR1, SIMDHP, 20, 4)
1797 FIELD(MVFR1, FPHP, 24, 4)
1798 FIELD(MVFR1, SIMDFMAC, 28, 4)
1799 
1800 FIELD(MVFR2, SIMDMISC, 0, 4)
1801 FIELD(MVFR2, FPMISC, 4, 4)
1802 
1803 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1804 
1805 /* If adding a feature bit which corresponds to a Linux ELF
1806  * HWCAP bit, remember to update the feature-bit-to-hwcap
1807  * mapping in linux-user/elfload.c:get_elf_hwcap().
1808  */
1809 enum arm_features {
1810     ARM_FEATURE_VFP,
1811     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1812     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1813     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1814     ARM_FEATURE_V6,
1815     ARM_FEATURE_V6K,
1816     ARM_FEATURE_V7,
1817     ARM_FEATURE_THUMB2,
1818     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1819     ARM_FEATURE_VFP3,
1820     ARM_FEATURE_NEON,
1821     ARM_FEATURE_M, /* Microcontroller profile.  */
1822     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1823     ARM_FEATURE_THUMB2EE,
1824     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1825     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1826     ARM_FEATURE_V4T,
1827     ARM_FEATURE_V5,
1828     ARM_FEATURE_STRONGARM,
1829     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1830     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1831     ARM_FEATURE_GENERIC_TIMER,
1832     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1833     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1834     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1835     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1836     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1837     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1838     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1839     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1840     ARM_FEATURE_V8,
1841     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1842     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1843     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1844     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1845     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1846     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1847     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1848     ARM_FEATURE_PMU, /* has PMU support */
1849     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1850     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1851     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1852 };
1853 
1854 static inline int arm_feature(CPUARMState *env, int feature)
1855 {
1856     return (env->features & (1ULL << feature)) != 0;
1857 }
1858 
1859 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1860 
1861 #if !defined(CONFIG_USER_ONLY)
1862 /* Return true if exception levels below EL3 are in secure state,
1863  * or would be following an exception return to that level.
1864  * Unlike arm_is_secure() (which is always a question about the
1865  * _current_ state of the CPU) this doesn't care about the current
1866  * EL or mode.
1867  */
1868 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1869 {
1870     if (arm_feature(env, ARM_FEATURE_EL3)) {
1871         return !(env->cp15.scr_el3 & SCR_NS);
1872     } else {
1873         /* If EL3 is not supported then the secure state is implementation
1874          * defined, in which case QEMU defaults to non-secure.
1875          */
1876         return false;
1877     }
1878 }
1879 
1880 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1881 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1882 {
1883     if (arm_feature(env, ARM_FEATURE_EL3)) {
1884         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1885             /* CPU currently in AArch64 state and EL3 */
1886             return true;
1887         } else if (!is_a64(env) &&
1888                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1889             /* CPU currently in AArch32 state and monitor mode */
1890             return true;
1891         }
1892     }
1893     return false;
1894 }
1895 
1896 /* Return true if the processor is in secure state */
1897 static inline bool arm_is_secure(CPUARMState *env)
1898 {
1899     if (arm_is_el3_or_mon(env)) {
1900         return true;
1901     }
1902     return arm_is_secure_below_el3(env);
1903 }
1904 
1905 #else
1906 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1907 {
1908     return false;
1909 }
1910 
1911 static inline bool arm_is_secure(CPUARMState *env)
1912 {
1913     return false;
1914 }
1915 #endif
1916 
1917 /**
1918  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1919  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1920  * "for all purposes other than a direct read or write access of HCR_EL2."
1921  * Not included here is HCR_RW.
1922  */
1923 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1924 
1925 /* Return true if the specified exception level is running in AArch64 state. */
1926 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1927 {
1928     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1929      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1930      */
1931     assert(el >= 1 && el <= 3);
1932     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1933 
1934     /* The highest exception level is always at the maximum supported
1935      * register width, and then lower levels have a register width controlled
1936      * by bits in the SCR or HCR registers.
1937      */
1938     if (el == 3) {
1939         return aa64;
1940     }
1941 
1942     if (arm_feature(env, ARM_FEATURE_EL3)) {
1943         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1944     }
1945 
1946     if (el == 2) {
1947         return aa64;
1948     }
1949 
1950     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1951         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1952     }
1953 
1954     return aa64;
1955 }
1956 
1957 /* Function for determing whether guest cp register reads and writes should
1958  * access the secure or non-secure bank of a cp register.  When EL3 is
1959  * operating in AArch32 state, the NS-bit determines whether the secure
1960  * instance of a cp register should be used. When EL3 is AArch64 (or if
1961  * it doesn't exist at all) then there is no register banking, and all
1962  * accesses are to the non-secure version.
1963  */
1964 static inline bool access_secure_reg(CPUARMState *env)
1965 {
1966     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1967                 !arm_el_is_aa64(env, 3) &&
1968                 !(env->cp15.scr_el3 & SCR_NS));
1969 
1970     return ret;
1971 }
1972 
1973 /* Macros for accessing a specified CP register bank */
1974 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1975     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1976 
1977 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1978     do {                                                \
1979         if (_secure) {                                   \
1980             (_env)->cp15._regname##_s = (_val);            \
1981         } else {                                        \
1982             (_env)->cp15._regname##_ns = (_val);           \
1983         }                                               \
1984     } while (0)
1985 
1986 /* Macros for automatically accessing a specific CP register bank depending on
1987  * the current secure state of the system.  These macros are not intended for
1988  * supporting instruction translation reads/writes as these are dependent
1989  * solely on the SCR.NS bit and not the mode.
1990  */
1991 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1992     A32_BANKED_REG_GET((_env), _regname,                \
1993                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1994 
1995 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1996     A32_BANKED_REG_SET((_env), _regname,                                    \
1997                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1998                        (_val))
1999 
2000 void arm_cpu_list(void);
2001 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2002                                  uint32_t cur_el, bool secure);
2003 
2004 /* Interface between CPU and Interrupt controller.  */
2005 #ifndef CONFIG_USER_ONLY
2006 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2007 #else
2008 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2009 {
2010     return true;
2011 }
2012 #endif
2013 /**
2014  * armv7m_nvic_set_pending: mark the specified exception as pending
2015  * @opaque: the NVIC
2016  * @irq: the exception number to mark pending
2017  * @secure: false for non-banked exceptions or for the nonsecure
2018  * version of a banked exception, true for the secure version of a banked
2019  * exception.
2020  *
2021  * Marks the specified exception as pending. Note that we will assert()
2022  * if @secure is true and @irq does not specify one of the fixed set
2023  * of architecturally banked exceptions.
2024  */
2025 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2026 /**
2027  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2028  * @opaque: the NVIC
2029  * @irq: the exception number to mark pending
2030  * @secure: false for non-banked exceptions or for the nonsecure
2031  * version of a banked exception, true for the secure version of a banked
2032  * exception.
2033  *
2034  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2035  * exceptions (exceptions generated in the course of trying to take
2036  * a different exception).
2037  */
2038 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2039 /**
2040  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2041  * @opaque: the NVIC
2042  * @irq: the exception number to mark pending
2043  * @secure: false for non-banked exceptions or for the nonsecure
2044  * version of a banked exception, true for the secure version of a banked
2045  * exception.
2046  *
2047  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2048  * generated in the course of lazy stacking of FP registers.
2049  */
2050 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2051 /**
2052  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2053  *    exception, and whether it targets Secure state
2054  * @opaque: the NVIC
2055  * @pirq: set to pending exception number
2056  * @ptargets_secure: set to whether pending exception targets Secure
2057  *
2058  * This function writes the number of the highest priority pending
2059  * exception (the one which would be made active by
2060  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2061  * to true if the current highest priority pending exception should
2062  * be taken to Secure state, false for NS.
2063  */
2064 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2065                                       bool *ptargets_secure);
2066 /**
2067  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2068  * @opaque: the NVIC
2069  *
2070  * Move the current highest priority pending exception from the pending
2071  * state to the active state, and update v7m.exception to indicate that
2072  * it is the exception currently being handled.
2073  */
2074 void armv7m_nvic_acknowledge_irq(void *opaque);
2075 /**
2076  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2077  * @opaque: the NVIC
2078  * @irq: the exception number to complete
2079  * @secure: true if this exception was secure
2080  *
2081  * Returns: -1 if the irq was not active
2082  *           1 if completing this irq brought us back to base (no active irqs)
2083  *           0 if there is still an irq active after this one was completed
2084  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2085  */
2086 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2087 /**
2088  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2089  * @opaque: the NVIC
2090  * @irq: the exception number to mark pending
2091  * @secure: false for non-banked exceptions or for the nonsecure
2092  * version of a banked exception, true for the secure version of a banked
2093  * exception.
2094  *
2095  * Return whether an exception is "ready", i.e. whether the exception is
2096  * enabled and is configured at a priority which would allow it to
2097  * interrupt the current execution priority. This controls whether the
2098  * RDY bit for it in the FPCCR is set.
2099  */
2100 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2101 /**
2102  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2103  * @opaque: the NVIC
2104  *
2105  * Returns: the raw execution priority as defined by the v8M architecture.
2106  * This is the execution priority minus the effects of AIRCR.PRIS,
2107  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2108  * (v8M ARM ARM I_PKLD.)
2109  */
2110 int armv7m_nvic_raw_execution_priority(void *opaque);
2111 /**
2112  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2113  * priority is negative for the specified security state.
2114  * @opaque: the NVIC
2115  * @secure: the security state to test
2116  * This corresponds to the pseudocode IsReqExecPriNeg().
2117  */
2118 #ifndef CONFIG_USER_ONLY
2119 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2120 #else
2121 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2122 {
2123     return false;
2124 }
2125 #endif
2126 
2127 /* Interface for defining coprocessor registers.
2128  * Registers are defined in tables of arm_cp_reginfo structs
2129  * which are passed to define_arm_cp_regs().
2130  */
2131 
2132 /* When looking up a coprocessor register we look for it
2133  * via an integer which encodes all of:
2134  *  coprocessor number
2135  *  Crn, Crm, opc1, opc2 fields
2136  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2137  *    or via MRRC/MCRR?)
2138  *  non-secure/secure bank (AArch32 only)
2139  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2140  * (In this case crn and opc2 should be zero.)
2141  * For AArch64, there is no 32/64 bit size distinction;
2142  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2143  * and 4 bit CRn and CRm. The encoding patterns are chosen
2144  * to be easy to convert to and from the KVM encodings, and also
2145  * so that the hashtable can contain both AArch32 and AArch64
2146  * registers (to allow for interprocessing where we might run
2147  * 32 bit code on a 64 bit core).
2148  */
2149 /* This bit is private to our hashtable cpreg; in KVM register
2150  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2151  * in the upper bits of the 64 bit ID.
2152  */
2153 #define CP_REG_AA64_SHIFT 28
2154 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2155 
2156 /* To enable banking of coprocessor registers depending on ns-bit we
2157  * add a bit to distinguish between secure and non-secure cpregs in the
2158  * hashtable.
2159  */
2160 #define CP_REG_NS_SHIFT 29
2161 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2162 
2163 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2164     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2165      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2166 
2167 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2168     (CP_REG_AA64_MASK |                                 \
2169      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2170      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2171      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2172      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2173      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2174      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2175 
2176 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2177  * version used as a key for the coprocessor register hashtable
2178  */
2179 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2180 {
2181     uint32_t cpregid = kvmid;
2182     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2183         cpregid |= CP_REG_AA64_MASK;
2184     } else {
2185         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2186             cpregid |= (1 << 15);
2187         }
2188 
2189         /* KVM is always non-secure so add the NS flag on AArch32 register
2190          * entries.
2191          */
2192          cpregid |= 1 << CP_REG_NS_SHIFT;
2193     }
2194     return cpregid;
2195 }
2196 
2197 /* Convert a truncated 32 bit hashtable key into the full
2198  * 64 bit KVM register ID.
2199  */
2200 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2201 {
2202     uint64_t kvmid;
2203 
2204     if (cpregid & CP_REG_AA64_MASK) {
2205         kvmid = cpregid & ~CP_REG_AA64_MASK;
2206         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2207     } else {
2208         kvmid = cpregid & ~(1 << 15);
2209         if (cpregid & (1 << 15)) {
2210             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2211         } else {
2212             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2213         }
2214     }
2215     return kvmid;
2216 }
2217 
2218 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2219  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2220  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2221  * TCG can assume the value to be constant (ie load at translate time)
2222  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2223  * indicates that the TB should not be ended after a write to this register
2224  * (the default is that the TB ends after cp writes). OVERRIDE permits
2225  * a register definition to override a previous definition for the
2226  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2227  * old must have the OVERRIDE bit set.
2228  * ALIAS indicates that this register is an alias view of some underlying
2229  * state which is also visible via another register, and that the other
2230  * register is handling migration and reset; registers marked ALIAS will not be
2231  * migrated but may have their state set by syncing of register state from KVM.
2232  * NO_RAW indicates that this register has no underlying state and does not
2233  * support raw access for state saving/loading; it will not be used for either
2234  * migration or KVM state synchronization. (Typically this is for "registers"
2235  * which are actually used as instructions for cache maintenance and so on.)
2236  * IO indicates that this register does I/O and therefore its accesses
2237  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2238  * registers which implement clocks or timers require this.
2239  * RAISES_EXC is for when the read or write hook might raise an exception;
2240  * the generated code will synchronize the CPU state before calling the hook
2241  * so that it is safe for the hook to call raise_exception().
2242  */
2243 #define ARM_CP_SPECIAL           0x0001
2244 #define ARM_CP_CONST             0x0002
2245 #define ARM_CP_64BIT             0x0004
2246 #define ARM_CP_SUPPRESS_TB_END   0x0008
2247 #define ARM_CP_OVERRIDE          0x0010
2248 #define ARM_CP_ALIAS             0x0020
2249 #define ARM_CP_IO                0x0040
2250 #define ARM_CP_NO_RAW            0x0080
2251 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2252 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2253 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2254 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2255 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2256 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2257 #define ARM_CP_FPU               0x1000
2258 #define ARM_CP_SVE               0x2000
2259 #define ARM_CP_NO_GDB            0x4000
2260 #define ARM_CP_RAISES_EXC        0x8000
2261 /* Used only as a terminator for ARMCPRegInfo lists */
2262 #define ARM_CP_SENTINEL          0xffff
2263 /* Mask of only the flag bits in a type field */
2264 #define ARM_CP_FLAG_MASK         0xf0ff
2265 
2266 /* Valid values for ARMCPRegInfo state field, indicating which of
2267  * the AArch32 and AArch64 execution states this register is visible in.
2268  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2269  * If the reginfo is declared to be visible in both states then a second
2270  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2271  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2272  * Note that we rely on the values of these enums as we iterate through
2273  * the various states in some places.
2274  */
2275 enum {
2276     ARM_CP_STATE_AA32 = 0,
2277     ARM_CP_STATE_AA64 = 1,
2278     ARM_CP_STATE_BOTH = 2,
2279 };
2280 
2281 /* ARM CP register secure state flags.  These flags identify security state
2282  * attributes for a given CP register entry.
2283  * The existence of both or neither secure and non-secure flags indicates that
2284  * the register has both a secure and non-secure hash entry.  A single one of
2285  * these flags causes the register to only be hashed for the specified
2286  * security state.
2287  * Although definitions may have any combination of the S/NS bits, each
2288  * registered entry will only have one to identify whether the entry is secure
2289  * or non-secure.
2290  */
2291 enum {
2292     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2293     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2294 };
2295 
2296 /* Return true if cptype is a valid type field. This is used to try to
2297  * catch errors where the sentinel has been accidentally left off the end
2298  * of a list of registers.
2299  */
2300 static inline bool cptype_valid(int cptype)
2301 {
2302     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2303         || ((cptype & ARM_CP_SPECIAL) &&
2304             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2305 }
2306 
2307 /* Access rights:
2308  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2309  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2310  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2311  * (ie any of the privileged modes in Secure state, or Monitor mode).
2312  * If a register is accessible in one privilege level it's always accessible
2313  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2314  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2315  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2316  * terminology a little and call this PL3.
2317  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2318  * with the ELx exception levels.
2319  *
2320  * If access permissions for a register are more complex than can be
2321  * described with these bits, then use a laxer set of restrictions, and
2322  * do the more restrictive/complex check inside a helper function.
2323  */
2324 #define PL3_R 0x80
2325 #define PL3_W 0x40
2326 #define PL2_R (0x20 | PL3_R)
2327 #define PL2_W (0x10 | PL3_W)
2328 #define PL1_R (0x08 | PL2_R)
2329 #define PL1_W (0x04 | PL2_W)
2330 #define PL0_R (0x02 | PL1_R)
2331 #define PL0_W (0x01 | PL1_W)
2332 
2333 /*
2334  * For user-mode some registers are accessible to EL0 via a kernel
2335  * trap-and-emulate ABI. In this case we define the read permissions
2336  * as actually being PL0_R. However some bits of any given register
2337  * may still be masked.
2338  */
2339 #ifdef CONFIG_USER_ONLY
2340 #define PL0U_R PL0_R
2341 #else
2342 #define PL0U_R PL1_R
2343 #endif
2344 
2345 #define PL3_RW (PL3_R | PL3_W)
2346 #define PL2_RW (PL2_R | PL2_W)
2347 #define PL1_RW (PL1_R | PL1_W)
2348 #define PL0_RW (PL0_R | PL0_W)
2349 
2350 /* Return the highest implemented Exception Level */
2351 static inline int arm_highest_el(CPUARMState *env)
2352 {
2353     if (arm_feature(env, ARM_FEATURE_EL3)) {
2354         return 3;
2355     }
2356     if (arm_feature(env, ARM_FEATURE_EL2)) {
2357         return 2;
2358     }
2359     return 1;
2360 }
2361 
2362 /* Return true if a v7M CPU is in Handler mode */
2363 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2364 {
2365     return env->v7m.exception != 0;
2366 }
2367 
2368 /* Return the current Exception Level (as per ARMv8; note that this differs
2369  * from the ARMv7 Privilege Level).
2370  */
2371 static inline int arm_current_el(CPUARMState *env)
2372 {
2373     if (arm_feature(env, ARM_FEATURE_M)) {
2374         return arm_v7m_is_handler_mode(env) ||
2375             !(env->v7m.control[env->v7m.secure] & 1);
2376     }
2377 
2378     if (is_a64(env)) {
2379         return extract32(env->pstate, 2, 2);
2380     }
2381 
2382     switch (env->uncached_cpsr & 0x1f) {
2383     case ARM_CPU_MODE_USR:
2384         return 0;
2385     case ARM_CPU_MODE_HYP:
2386         return 2;
2387     case ARM_CPU_MODE_MON:
2388         return 3;
2389     default:
2390         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2391             /* If EL3 is 32-bit then all secure privileged modes run in
2392              * EL3
2393              */
2394             return 3;
2395         }
2396 
2397         return 1;
2398     }
2399 }
2400 
2401 typedef struct ARMCPRegInfo ARMCPRegInfo;
2402 
2403 typedef enum CPAccessResult {
2404     /* Access is permitted */
2405     CP_ACCESS_OK = 0,
2406     /* Access fails due to a configurable trap or enable which would
2407      * result in a categorized exception syndrome giving information about
2408      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2409      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2410      * PL1 if in EL0, otherwise to the current EL).
2411      */
2412     CP_ACCESS_TRAP = 1,
2413     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2414      * Note that this is not a catch-all case -- the set of cases which may
2415      * result in this failure is specifically defined by the architecture.
2416      */
2417     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2418     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2419     CP_ACCESS_TRAP_EL2 = 3,
2420     CP_ACCESS_TRAP_EL3 = 4,
2421     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2422     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2423     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2424     /* Access fails and results in an exception syndrome for an FP access,
2425      * trapped directly to EL2 or EL3
2426      */
2427     CP_ACCESS_TRAP_FP_EL2 = 7,
2428     CP_ACCESS_TRAP_FP_EL3 = 8,
2429 } CPAccessResult;
2430 
2431 /* Access functions for coprocessor registers. These cannot fail and
2432  * may not raise exceptions.
2433  */
2434 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2435 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2436                        uint64_t value);
2437 /* Access permission check functions for coprocessor registers. */
2438 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2439                                   const ARMCPRegInfo *opaque,
2440                                   bool isread);
2441 /* Hook function for register reset */
2442 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2443 
2444 #define CP_ANY 0xff
2445 
2446 /* Definition of an ARM coprocessor register */
2447 struct ARMCPRegInfo {
2448     /* Name of register (useful mainly for debugging, need not be unique) */
2449     const char *name;
2450     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2451      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2452      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2453      * will be decoded to this register. The register read and write
2454      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2455      * used by the program, so it is possible to register a wildcard and
2456      * then behave differently on read/write if necessary.
2457      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2458      * must both be zero.
2459      * For AArch64-visible registers, opc0 is also used.
2460      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2461      * way to distinguish (for KVM's benefit) guest-visible system registers
2462      * from demuxed ones provided to preserve the "no side effects on
2463      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2464      * visible (to match KVM's encoding); cp==0 will be converted to
2465      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2466      */
2467     uint8_t cp;
2468     uint8_t crn;
2469     uint8_t crm;
2470     uint8_t opc0;
2471     uint8_t opc1;
2472     uint8_t opc2;
2473     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2474     int state;
2475     /* Register type: ARM_CP_* bits/values */
2476     int type;
2477     /* Access rights: PL*_[RW] */
2478     int access;
2479     /* Security state: ARM_CP_SECSTATE_* bits/values */
2480     int secure;
2481     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2482      * this register was defined: can be used to hand data through to the
2483      * register read/write functions, since they are passed the ARMCPRegInfo*.
2484      */
2485     void *opaque;
2486     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2487      * fieldoffset is non-zero, the reset value of the register.
2488      */
2489     uint64_t resetvalue;
2490     /* Offset of the field in CPUARMState for this register.
2491      *
2492      * This is not needed if either:
2493      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2494      *  2. both readfn and writefn are specified
2495      */
2496     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2497 
2498     /* Offsets of the secure and non-secure fields in CPUARMState for the
2499      * register if it is banked.  These fields are only used during the static
2500      * registration of a register.  During hashing the bank associated
2501      * with a given security state is copied to fieldoffset which is used from
2502      * there on out.
2503      *
2504      * It is expected that register definitions use either fieldoffset or
2505      * bank_fieldoffsets in the definition but not both.  It is also expected
2506      * that both bank offsets are set when defining a banked register.  This
2507      * use indicates that a register is banked.
2508      */
2509     ptrdiff_t bank_fieldoffsets[2];
2510 
2511     /* Function for making any access checks for this register in addition to
2512      * those specified by the 'access' permissions bits. If NULL, no extra
2513      * checks required. The access check is performed at runtime, not at
2514      * translate time.
2515      */
2516     CPAccessFn *accessfn;
2517     /* Function for handling reads of this register. If NULL, then reads
2518      * will be done by loading from the offset into CPUARMState specified
2519      * by fieldoffset.
2520      */
2521     CPReadFn *readfn;
2522     /* Function for handling writes of this register. If NULL, then writes
2523      * will be done by writing to the offset into CPUARMState specified
2524      * by fieldoffset.
2525      */
2526     CPWriteFn *writefn;
2527     /* Function for doing a "raw" read; used when we need to copy
2528      * coprocessor state to the kernel for KVM or out for
2529      * migration. This only needs to be provided if there is also a
2530      * readfn and it has side effects (for instance clear-on-read bits).
2531      */
2532     CPReadFn *raw_readfn;
2533     /* Function for doing a "raw" write; used when we need to copy KVM
2534      * kernel coprocessor state into userspace, or for inbound
2535      * migration. This only needs to be provided if there is also a
2536      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2537      * or similar behaviour.
2538      */
2539     CPWriteFn *raw_writefn;
2540     /* Function for resetting the register. If NULL, then reset will be done
2541      * by writing resetvalue to the field specified in fieldoffset. If
2542      * fieldoffset is 0 then no reset will be done.
2543      */
2544     CPResetFn *resetfn;
2545 };
2546 
2547 /* Macros which are lvalues for the field in CPUARMState for the
2548  * ARMCPRegInfo *ri.
2549  */
2550 #define CPREG_FIELD32(env, ri) \
2551     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2552 #define CPREG_FIELD64(env, ri) \
2553     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2554 
2555 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2556 
2557 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2558                                     const ARMCPRegInfo *regs, void *opaque);
2559 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2560                                        const ARMCPRegInfo *regs, void *opaque);
2561 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2562 {
2563     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2564 }
2565 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2566 {
2567     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2568 }
2569 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2570 
2571 /*
2572  * Definition of an ARM co-processor register as viewed from
2573  * userspace. This is used for presenting sanitised versions of
2574  * registers to userspace when emulating the Linux AArch64 CPU
2575  * ID/feature ABI (advertised as HWCAP_CPUID).
2576  */
2577 typedef struct ARMCPRegUserSpaceInfo {
2578     /* Name of register */
2579     const char *name;
2580 
2581     /* Is the name actually a glob pattern */
2582     bool is_glob;
2583 
2584     /* Only some bits are exported to user space */
2585     uint64_t exported_bits;
2586 
2587     /* Fixed bits are applied after the mask */
2588     uint64_t fixed_bits;
2589 } ARMCPRegUserSpaceInfo;
2590 
2591 #define REGUSERINFO_SENTINEL { .name = NULL }
2592 
2593 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2594 
2595 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2596 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2597                          uint64_t value);
2598 /* CPReadFn that can be used for read-as-zero behaviour */
2599 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2600 
2601 /* CPResetFn that does nothing, for use if no reset is required even
2602  * if fieldoffset is non zero.
2603  */
2604 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2605 
2606 /* Return true if this reginfo struct's field in the cpu state struct
2607  * is 64 bits wide.
2608  */
2609 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2610 {
2611     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2612 }
2613 
2614 static inline bool cp_access_ok(int current_el,
2615                                 const ARMCPRegInfo *ri, int isread)
2616 {
2617     return (ri->access >> ((current_el * 2) + isread)) & 1;
2618 }
2619 
2620 /* Raw read of a coprocessor register (as needed for migration, etc) */
2621 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2622 
2623 /**
2624  * write_list_to_cpustate
2625  * @cpu: ARMCPU
2626  *
2627  * For each register listed in the ARMCPU cpreg_indexes list, write
2628  * its value from the cpreg_values list into the ARMCPUState structure.
2629  * This updates TCG's working data structures from KVM data or
2630  * from incoming migration state.
2631  *
2632  * Returns: true if all register values were updated correctly,
2633  * false if some register was unknown or could not be written.
2634  * Note that we do not stop early on failure -- we will attempt
2635  * writing all registers in the list.
2636  */
2637 bool write_list_to_cpustate(ARMCPU *cpu);
2638 
2639 /**
2640  * write_cpustate_to_list:
2641  * @cpu: ARMCPU
2642  * @kvm_sync: true if this is for syncing back to KVM
2643  *
2644  * For each register listed in the ARMCPU cpreg_indexes list, write
2645  * its value from the ARMCPUState structure into the cpreg_values list.
2646  * This is used to copy info from TCG's working data structures into
2647  * KVM or for outbound migration.
2648  *
2649  * @kvm_sync is true if we are doing this in order to sync the
2650  * register state back to KVM. In this case we will only update
2651  * values in the list if the previous list->cpustate sync actually
2652  * successfully wrote the CPU state. Otherwise we will keep the value
2653  * that is in the list.
2654  *
2655  * Returns: true if all register values were read correctly,
2656  * false if some register was unknown or could not be read.
2657  * Note that we do not stop early on failure -- we will attempt
2658  * reading all registers in the list.
2659  */
2660 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2661 
2662 #define ARM_CPUID_TI915T      0x54029152
2663 #define ARM_CPUID_TI925T      0x54029252
2664 
2665 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2666                                      unsigned int target_el)
2667 {
2668     CPUARMState *env = cs->env_ptr;
2669     unsigned int cur_el = arm_current_el(env);
2670     bool secure = arm_is_secure(env);
2671     bool pstate_unmasked;
2672     int8_t unmasked = 0;
2673     uint64_t hcr_el2;
2674 
2675     /* Don't take exceptions if they target a lower EL.
2676      * This check should catch any exceptions that would not be taken but left
2677      * pending.
2678      */
2679     if (cur_el > target_el) {
2680         return false;
2681     }
2682 
2683     hcr_el2 = arm_hcr_el2_eff(env);
2684 
2685     switch (excp_idx) {
2686     case EXCP_FIQ:
2687         pstate_unmasked = !(env->daif & PSTATE_F);
2688         break;
2689 
2690     case EXCP_IRQ:
2691         pstate_unmasked = !(env->daif & PSTATE_I);
2692         break;
2693 
2694     case EXCP_VFIQ:
2695         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2696             /* VFIQs are only taken when hypervized and non-secure.  */
2697             return false;
2698         }
2699         return !(env->daif & PSTATE_F);
2700     case EXCP_VIRQ:
2701         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2702             /* VIRQs are only taken when hypervized and non-secure.  */
2703             return false;
2704         }
2705         return !(env->daif & PSTATE_I);
2706     default:
2707         g_assert_not_reached();
2708     }
2709 
2710     /* Use the target EL, current execution state and SCR/HCR settings to
2711      * determine whether the corresponding CPSR bit is used to mask the
2712      * interrupt.
2713      */
2714     if ((target_el > cur_el) && (target_el != 1)) {
2715         /* Exceptions targeting a higher EL may not be maskable */
2716         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2717             /* 64-bit masking rules are simple: exceptions to EL3
2718              * can't be masked, and exceptions to EL2 can only be
2719              * masked from Secure state. The HCR and SCR settings
2720              * don't affect the masking logic, only the interrupt routing.
2721              */
2722             if (target_el == 3 || !secure) {
2723                 unmasked = 1;
2724             }
2725         } else {
2726             /* The old 32-bit-only environment has a more complicated
2727              * masking setup. HCR and SCR bits not only affect interrupt
2728              * routing but also change the behaviour of masking.
2729              */
2730             bool hcr, scr;
2731 
2732             switch (excp_idx) {
2733             case EXCP_FIQ:
2734                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2735                  * we override the CPSR.F in determining if the exception is
2736                  * masked or not. If neither of these are set then we fall back
2737                  * to the CPSR.F setting otherwise we further assess the state
2738                  * below.
2739                  */
2740                 hcr = hcr_el2 & HCR_FMO;
2741                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2742 
2743                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2744                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2745                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2746                  * when non-secure but only when FIQs are only routed to EL3.
2747                  */
2748                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2749                 break;
2750             case EXCP_IRQ:
2751                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2752                  * we may override the CPSR.I masking when in non-secure state.
2753                  * The SCR.IRQ setting has already been taken into consideration
2754                  * when setting the target EL, so it does not have a further
2755                  * affect here.
2756                  */
2757                 hcr = hcr_el2 & HCR_IMO;
2758                 scr = false;
2759                 break;
2760             default:
2761                 g_assert_not_reached();
2762             }
2763 
2764             if ((scr || hcr) && !secure) {
2765                 unmasked = 1;
2766             }
2767         }
2768     }
2769 
2770     /* The PSTATE bits only mask the interrupt if we have not overriden the
2771      * ability above.
2772      */
2773     return unmasked || pstate_unmasked;
2774 }
2775 
2776 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2777 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2778 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2779 
2780 #define cpu_signal_handler cpu_arm_signal_handler
2781 #define cpu_list arm_cpu_list
2782 
2783 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2784  *
2785  * If EL3 is 64-bit:
2786  *  + NonSecure EL1 & 0 stage 1
2787  *  + NonSecure EL1 & 0 stage 2
2788  *  + NonSecure EL2
2789  *  + Secure EL1 & EL0
2790  *  + Secure EL3
2791  * If EL3 is 32-bit:
2792  *  + NonSecure PL1 & 0 stage 1
2793  *  + NonSecure PL1 & 0 stage 2
2794  *  + NonSecure PL2
2795  *  + Secure PL0 & PL1
2796  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2797  *
2798  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2799  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2800  *     may differ in access permissions even if the VA->PA map is the same
2801  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2802  *     translation, which means that we have one mmu_idx that deals with two
2803  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2804  *     architecturally permitted]
2805  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2806  *     handling via the TLB. The only way to do a stage 1 translation without
2807  *     the immediate stage 2 translation is via the ATS or AT system insns,
2808  *     which can be slow-pathed and always do a page table walk.
2809  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2810  *     translation regimes, because they map reasonably well to each other
2811  *     and they can't both be active at the same time.
2812  * This gives us the following list of mmu_idx values:
2813  *
2814  * NS EL0 (aka NS PL0) stage 1+2
2815  * NS EL1 (aka NS PL1) stage 1+2
2816  * NS EL2 (aka NS PL2)
2817  * S EL3 (aka S PL1)
2818  * S EL0 (aka S PL0)
2819  * S EL1 (not used if EL3 is 32 bit)
2820  * NS EL0+1 stage 2
2821  *
2822  * (The last of these is an mmu_idx because we want to be able to use the TLB
2823  * for the accesses done as part of a stage 1 page table walk, rather than
2824  * having to walk the stage 2 page table over and over.)
2825  *
2826  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2827  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2828  * NS EL2 if we ever model a Cortex-R52).
2829  *
2830  * M profile CPUs are rather different as they do not have a true MMU.
2831  * They have the following different MMU indexes:
2832  *  User
2833  *  Privileged
2834  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2835  *  Privileged, execution priority negative (ditto)
2836  * If the CPU supports the v8M Security Extension then there are also:
2837  *  Secure User
2838  *  Secure Privileged
2839  *  Secure User, execution priority negative
2840  *  Secure Privileged, execution priority negative
2841  *
2842  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2843  * are not quite the same -- different CPU types (most notably M profile
2844  * vs A/R profile) would like to use MMU indexes with different semantics,
2845  * but since we don't ever need to use all of those in a single CPU we
2846  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2847  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2848  * the same for any particular CPU.
2849  * Variables of type ARMMUIdx are always full values, and the core
2850  * index values are in variables of type 'int'.
2851  *
2852  * Our enumeration includes at the end some entries which are not "true"
2853  * mmu_idx values in that they don't have corresponding TLBs and are only
2854  * valid for doing slow path page table walks.
2855  *
2856  * The constant names here are patterned after the general style of the names
2857  * of the AT/ATS operations.
2858  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2859  * For M profile we arrange them to have a bit for priv, a bit for negpri
2860  * and a bit for secure.
2861  */
2862 #define ARM_MMU_IDX_A 0x10 /* A profile */
2863 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2864 #define ARM_MMU_IDX_M 0x40 /* M profile */
2865 
2866 /* meanings of the bits for M profile mmu idx values */
2867 #define ARM_MMU_IDX_M_PRIV 0x1
2868 #define ARM_MMU_IDX_M_NEGPRI 0x2
2869 #define ARM_MMU_IDX_M_S 0x4
2870 
2871 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2872 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2873 
2874 typedef enum ARMMMUIdx {
2875     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2876     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2877     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2878     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2879     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2880     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2881     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2882     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2883     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2884     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2885     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2886     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2887     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2888     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2889     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2890     /* Indexes below here don't have TLBs and are used only for AT system
2891      * instructions or for the first stage of an S12 page table walk.
2892      */
2893     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2894     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2895 } ARMMMUIdx;
2896 
2897 /* Bit macros for the core-mmu-index values for each index,
2898  * for use when calling tlb_flush_by_mmuidx() and friends.
2899  */
2900 typedef enum ARMMMUIdxBit {
2901     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2902     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2903     ARMMMUIdxBit_S1E2 = 1 << 2,
2904     ARMMMUIdxBit_S1E3 = 1 << 3,
2905     ARMMMUIdxBit_S1SE0 = 1 << 4,
2906     ARMMMUIdxBit_S1SE1 = 1 << 5,
2907     ARMMMUIdxBit_S2NS = 1 << 6,
2908     ARMMMUIdxBit_MUser = 1 << 0,
2909     ARMMMUIdxBit_MPriv = 1 << 1,
2910     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2911     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2912     ARMMMUIdxBit_MSUser = 1 << 4,
2913     ARMMMUIdxBit_MSPriv = 1 << 5,
2914     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2915     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2916 } ARMMMUIdxBit;
2917 
2918 #define MMU_USER_IDX 0
2919 
2920 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2921 {
2922     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2923 }
2924 
2925 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2926 {
2927     if (arm_feature(env, ARM_FEATURE_M)) {
2928         return mmu_idx | ARM_MMU_IDX_M;
2929     } else {
2930         return mmu_idx | ARM_MMU_IDX_A;
2931     }
2932 }
2933 
2934 /* Return the exception level we're running at if this is our mmu_idx */
2935 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2936 {
2937     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2938     case ARM_MMU_IDX_A:
2939         return mmu_idx & 3;
2940     case ARM_MMU_IDX_M:
2941         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2942     default:
2943         g_assert_not_reached();
2944     }
2945 }
2946 
2947 /*
2948  * Return the MMU index for a v7M CPU with all relevant information
2949  * manually specified.
2950  */
2951 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2952                               bool secstate, bool priv, bool negpri);
2953 
2954 /* Return the MMU index for a v7M CPU in the specified security and
2955  * privilege state.
2956  */
2957 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2958                                                 bool secstate, bool priv);
2959 
2960 /* Return the MMU index for a v7M CPU in the specified security state */
2961 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2962 
2963 /**
2964  * cpu_mmu_index:
2965  * @env: The cpu environment
2966  * @ifetch: True for code access, false for data access.
2967  *
2968  * Return the core mmu index for the current translation regime.
2969  * This function is used by generic TCG code paths.
2970  */
2971 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2972 
2973 /* Indexes used when registering address spaces with cpu_address_space_init */
2974 typedef enum ARMASIdx {
2975     ARMASIdx_NS = 0,
2976     ARMASIdx_S = 1,
2977 } ARMASIdx;
2978 
2979 /* Return the Exception Level targeted by debug exceptions. */
2980 static inline int arm_debug_target_el(CPUARMState *env)
2981 {
2982     bool secure = arm_is_secure(env);
2983     bool route_to_el2 = false;
2984 
2985     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2986         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2987                        env->cp15.mdcr_el2 & MDCR_TDE;
2988     }
2989 
2990     if (route_to_el2) {
2991         return 2;
2992     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2993                !arm_el_is_aa64(env, 3) && secure) {
2994         return 3;
2995     } else {
2996         return 1;
2997     }
2998 }
2999 
3000 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3001 {
3002     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3003      * CSSELR is RAZ/WI.
3004      */
3005     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3006 }
3007 
3008 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3009 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3010 {
3011     int cur_el = arm_current_el(env);
3012     int debug_el;
3013 
3014     if (cur_el == 3) {
3015         return false;
3016     }
3017 
3018     /* MDCR_EL3.SDD disables debug events from Secure state */
3019     if (arm_is_secure_below_el3(env)
3020         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3021         return false;
3022     }
3023 
3024     /*
3025      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3026      * while not masking the (D)ebug bit in DAIF.
3027      */
3028     debug_el = arm_debug_target_el(env);
3029 
3030     if (cur_el == debug_el) {
3031         return extract32(env->cp15.mdscr_el1, 13, 1)
3032             && !(env->daif & PSTATE_D);
3033     }
3034 
3035     /* Otherwise the debug target needs to be a higher EL */
3036     return debug_el > cur_el;
3037 }
3038 
3039 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3040 {
3041     int el = arm_current_el(env);
3042 
3043     if (el == 0 && arm_el_is_aa64(env, 1)) {
3044         return aa64_generate_debug_exceptions(env);
3045     }
3046 
3047     if (arm_is_secure(env)) {
3048         int spd;
3049 
3050         if (el == 0 && (env->cp15.sder & 1)) {
3051             /* SDER.SUIDEN means debug exceptions from Secure EL0
3052              * are always enabled. Otherwise they are controlled by
3053              * SDCR.SPD like those from other Secure ELs.
3054              */
3055             return true;
3056         }
3057 
3058         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3059         switch (spd) {
3060         case 1:
3061             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3062         case 0:
3063             /* For 0b00 we return true if external secure invasive debug
3064              * is enabled. On real hardware this is controlled by external
3065              * signals to the core. QEMU always permits debug, and behaves
3066              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3067              */
3068             return true;
3069         case 2:
3070             return false;
3071         case 3:
3072             return true;
3073         }
3074     }
3075 
3076     return el != 2;
3077 }
3078 
3079 /* Return true if debugging exceptions are currently enabled.
3080  * This corresponds to what in ARM ARM pseudocode would be
3081  *    if UsingAArch32() then
3082  *        return AArch32.GenerateDebugExceptions()
3083  *    else
3084  *        return AArch64.GenerateDebugExceptions()
3085  * We choose to push the if() down into this function for clarity,
3086  * since the pseudocode has it at all callsites except for the one in
3087  * CheckSoftwareStep(), where it is elided because both branches would
3088  * always return the same value.
3089  */
3090 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3091 {
3092     if (env->aarch64) {
3093         return aa64_generate_debug_exceptions(env);
3094     } else {
3095         return aa32_generate_debug_exceptions(env);
3096     }
3097 }
3098 
3099 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3100  * implicitly means this always returns false in pre-v8 CPUs.)
3101  */
3102 static inline bool arm_singlestep_active(CPUARMState *env)
3103 {
3104     return extract32(env->cp15.mdscr_el1, 0, 1)
3105         && arm_el_is_aa64(env, arm_debug_target_el(env))
3106         && arm_generate_debug_exceptions(env);
3107 }
3108 
3109 static inline bool arm_sctlr_b(CPUARMState *env)
3110 {
3111     return
3112         /* We need not implement SCTLR.ITD in user-mode emulation, so
3113          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3114          * This lets people run BE32 binaries with "-cpu any".
3115          */
3116 #ifndef CONFIG_USER_ONLY
3117         !arm_feature(env, ARM_FEATURE_V7) &&
3118 #endif
3119         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3120 }
3121 
3122 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3123 {
3124     if (el == 0) {
3125         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3126         return env->cp15.sctlr_el[1];
3127     } else {
3128         return env->cp15.sctlr_el[el];
3129     }
3130 }
3131 
3132 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3133                                                   bool sctlr_b)
3134 {
3135 #ifdef CONFIG_USER_ONLY
3136     /*
3137      * In system mode, BE32 is modelled in line with the
3138      * architecture (as word-invariant big-endianness), where loads
3139      * and stores are done little endian but from addresses which
3140      * are adjusted by XORing with the appropriate constant. So the
3141      * endianness to use for the raw data access is not affected by
3142      * SCTLR.B.
3143      * In user mode, however, we model BE32 as byte-invariant
3144      * big-endianness (because user-only code cannot tell the
3145      * difference), and so we need to use a data access endianness
3146      * that depends on SCTLR.B.
3147      */
3148     if (sctlr_b) {
3149         return true;
3150     }
3151 #endif
3152     /* In 32bit endianness is determined by looking at CPSR's E bit */
3153     return env->uncached_cpsr & CPSR_E;
3154 }
3155 
3156 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3157 {
3158     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3159 }
3160 
3161 /* Return true if the processor is in big-endian mode. */
3162 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3163 {
3164     if (!is_a64(env)) {
3165         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3166     } else {
3167         int cur_el = arm_current_el(env);
3168         uint64_t sctlr = arm_sctlr(env, cur_el);
3169         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3170     }
3171 }
3172 
3173 typedef CPUARMState CPUArchState;
3174 typedef ARMCPU ArchCPU;
3175 
3176 #include "exec/cpu-all.h"
3177 
3178 /*
3179  * Bit usage in the TB flags field: bit 31 indicates whether we are
3180  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3181  * We put flags which are shared between 32 and 64 bit mode at the top
3182  * of the word, and flags which apply to only one mode at the bottom.
3183  *
3184  * Unless otherwise noted, these bits are cached in env->hflags.
3185  */
3186 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3187 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3188 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3189 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)     /* Not cached. */
3190 /* Target EL if we take a floating-point-disabled exception */
3191 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3192 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3193 /*
3194  * For A-profile only, target EL for debug exceptions.
3195  * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3196  */
3197 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3198 
3199 /* Bit usage when in AArch32 state: */
3200 FIELD(TBFLAG_A32, THUMB, 0, 1)          /* Not cached. */
3201 FIELD(TBFLAG_A32, VECLEN, 1, 3)         /* Not cached. */
3202 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)      /* Not cached. */
3203 /*
3204  * We store the bottom two bits of the CPAR as TB flags and handle
3205  * checks on the other bits at runtime. This shares the same bits as
3206  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3207  * Not cached, because VECLEN+VECSTRIDE are not cached.
3208  */
3209 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3210 /*
3211  * Indicates whether cp register reads and writes by guest code should access
3212  * the secure or nonsecure bank of banked registers; note that this is not
3213  * the same thing as the current security state of the processor!
3214  */
3215 FIELD(TBFLAG_A32, NS, 6, 1)
3216 FIELD(TBFLAG_A32, VFPEN, 7, 1)          /* Partially cached, minus FPEXC. */
3217 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)       /* Not cached. */
3218 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3219 /* For M profile only, set if FPCCR.LSPACT is set */
3220 FIELD(TBFLAG_A32, LSPACT, 18, 1)        /* Not cached. */
3221 /* For M profile only, set if we must create a new FP context */
3222 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
3223 /* For M profile only, set if FPCCR.S does not match current security state */
3224 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
3225 /* For M profile only, Handler (ie not Thread) mode */
3226 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3227 /* For M profile only, whether we should generate stack-limit checks */
3228 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3229 
3230 /* Bit usage when in AArch64 state */
3231 FIELD(TBFLAG_A64, TBII, 0, 2)
3232 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3233 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3234 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3235 FIELD(TBFLAG_A64, BT, 9, 1)
3236 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3237 FIELD(TBFLAG_A64, TBID, 12, 2)
3238 
3239 static inline bool bswap_code(bool sctlr_b)
3240 {
3241 #ifdef CONFIG_USER_ONLY
3242     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3243      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3244      * would also end up as a mixed-endian mode with BE code, LE data.
3245      */
3246     return
3247 #ifdef TARGET_WORDS_BIGENDIAN
3248         1 ^
3249 #endif
3250         sctlr_b;
3251 #else
3252     /* All code access in ARM is little endian, and there are no loaders
3253      * doing swaps that need to be reversed
3254      */
3255     return 0;
3256 #endif
3257 }
3258 
3259 #ifdef CONFIG_USER_ONLY
3260 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3261 {
3262     return
3263 #ifdef TARGET_WORDS_BIGENDIAN
3264        1 ^
3265 #endif
3266        arm_cpu_data_is_big_endian(env);
3267 }
3268 #endif
3269 
3270 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3271                           target_ulong *cs_base, uint32_t *flags);
3272 
3273 enum {
3274     QEMU_PSCI_CONDUIT_DISABLED = 0,
3275     QEMU_PSCI_CONDUIT_SMC = 1,
3276     QEMU_PSCI_CONDUIT_HVC = 2,
3277 };
3278 
3279 #ifndef CONFIG_USER_ONLY
3280 /* Return the address space index to use for a memory access */
3281 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3282 {
3283     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3284 }
3285 
3286 /* Return the AddressSpace to use for a memory access
3287  * (which depends on whether the access is S or NS, and whether
3288  * the board gave us a separate AddressSpace for S accesses).
3289  */
3290 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3291 {
3292     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3293 }
3294 #endif
3295 
3296 /**
3297  * arm_register_pre_el_change_hook:
3298  * Register a hook function which will be called immediately before this
3299  * CPU changes exception level or mode. The hook function will be
3300  * passed a pointer to the ARMCPU and the opaque data pointer passed
3301  * to this function when the hook was registered.
3302  *
3303  * Note that if a pre-change hook is called, any registered post-change hooks
3304  * are guaranteed to subsequently be called.
3305  */
3306 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3307                                  void *opaque);
3308 /**
3309  * arm_register_el_change_hook:
3310  * Register a hook function which will be called immediately after this
3311  * CPU changes exception level or mode. The hook function will be
3312  * passed a pointer to the ARMCPU and the opaque data pointer passed
3313  * to this function when the hook was registered.
3314  *
3315  * Note that any registered hooks registered here are guaranteed to be called
3316  * if pre-change hooks have been.
3317  */
3318 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3319         *opaque);
3320 
3321 /**
3322  * arm_rebuild_hflags:
3323  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3324  */
3325 void arm_rebuild_hflags(CPUARMState *env);
3326 
3327 /**
3328  * aa32_vfp_dreg:
3329  * Return a pointer to the Dn register within env in 32-bit mode.
3330  */
3331 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3332 {
3333     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3334 }
3335 
3336 /**
3337  * aa32_vfp_qreg:
3338  * Return a pointer to the Qn register within env in 32-bit mode.
3339  */
3340 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3341 {
3342     return &env->vfp.zregs[regno].d[0];
3343 }
3344 
3345 /**
3346  * aa64_vfp_qreg:
3347  * Return a pointer to the Qn register within env in 64-bit mode.
3348  */
3349 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3350 {
3351     return &env->vfp.zregs[regno].d[0];
3352 }
3353 
3354 /* Shared between translate-sve.c and sve_helper.c.  */
3355 extern const uint64_t pred_esz_masks[4];
3356 
3357 /*
3358  * 32-bit feature tests via id registers.
3359  */
3360 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3361 {
3362     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3363 }
3364 
3365 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3366 {
3367     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3368 }
3369 
3370 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3371 {
3372     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3373 }
3374 
3375 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3376 {
3377     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3378 }
3379 
3380 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3381 {
3382     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3383 }
3384 
3385 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3386 {
3387     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3388 }
3389 
3390 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3391 {
3392     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3393 }
3394 
3395 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3396 {
3397     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3398 }
3399 
3400 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3401 {
3402     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3403 }
3404 
3405 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3406 {
3407     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3408 }
3409 
3410 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3411 {
3412     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3413 }
3414 
3415 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3416 {
3417     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3418 }
3419 
3420 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3421 {
3422     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3423 }
3424 
3425 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3426 {
3427     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3428 }
3429 
3430 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3431 {
3432     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3433 }
3434 
3435 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3436 {
3437     /*
3438      * This is a placeholder for use by VCMA until the rest of
3439      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3440      * At which point we can properly set and check MVFR1.FPHP.
3441      */
3442     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3443 }
3444 
3445 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3446 {
3447     /* Return true if D16-D31 are implemented */
3448     return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3449 }
3450 
3451 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3452 {
3453     return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3454 }
3455 
3456 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3457 {
3458     /* Return true if CPU supports double precision floating point */
3459     return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3460 }
3461 
3462 /*
3463  * We always set the FP and SIMD FP16 fields to indicate identical
3464  * levels of support (assuming SIMD is implemented at all), so
3465  * we only need one set of accessors.
3466  */
3467 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3468 {
3469     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3470 }
3471 
3472 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3473 {
3474     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3475 }
3476 
3477 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3478 {
3479     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3480 }
3481 
3482 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3483 {
3484     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3485 }
3486 
3487 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3488 {
3489     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3490 }
3491 
3492 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3493 {
3494     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3495 }
3496 
3497 /*
3498  * 64-bit feature tests via id registers.
3499  */
3500 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3501 {
3502     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3503 }
3504 
3505 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3506 {
3507     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3508 }
3509 
3510 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3511 {
3512     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3513 }
3514 
3515 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3516 {
3517     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3518 }
3519 
3520 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3521 {
3522     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3523 }
3524 
3525 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3526 {
3527     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3528 }
3529 
3530 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3531 {
3532     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3533 }
3534 
3535 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3536 {
3537     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3538 }
3539 
3540 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3541 {
3542     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3543 }
3544 
3545 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3546 {
3547     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3548 }
3549 
3550 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3551 {
3552     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3553 }
3554 
3555 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3556 {
3557     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3558 }
3559 
3560 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3561 {
3562     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3563 }
3564 
3565 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3566 {
3567     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3568 }
3569 
3570 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3571 {
3572     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3573 }
3574 
3575 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3576 {
3577     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3578 }
3579 
3580 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3581 {
3582     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3583 }
3584 
3585 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3586 {
3587     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3588 }
3589 
3590 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3591 {
3592     /*
3593      * Note that while QEMU will only implement the architected algorithm
3594      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3595      * defined algorithms, and thus API+GPI, and this predicate controls
3596      * migration of the 128-bit keys.
3597      */
3598     return (id->id_aa64isar1 &
3599             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3600              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3601              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3602              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3603 }
3604 
3605 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3606 {
3607     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3608 }
3609 
3610 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3611 {
3612     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3613 }
3614 
3615 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3616 {
3617     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3618 }
3619 
3620 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3621 {
3622     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3623     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3624 }
3625 
3626 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3627 {
3628     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3629 }
3630 
3631 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3632 {
3633     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3634 }
3635 
3636 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3637 {
3638     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3639 }
3640 
3641 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3642 {
3643     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3644 }
3645 
3646 /*
3647  * Forward to the above feature tests given an ARMCPU pointer.
3648  */
3649 #define cpu_isar_feature(name, cpu) \
3650     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3651 
3652 #endif
3653