xref: /openbmc/qemu/target/arm/cpu.h (revision f3635813)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP  2
150 #define GTIMER_SEC  3
151 #define NUM_GTIMERS 4
152 
153 typedef struct {
154     uint64_t raw_tcr;
155     uint32_t mask;
156     uint32_t base_mask;
157 } TCR;
158 
159 /* Define a maximum sized vector register.
160  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161  * For 64-bit, this is a 2048-bit SVE register.
162  *
163  * Note that the mapping between S, D, and Q views of the register bank
164  * differs between AArch64 and AArch32.
165  * In AArch32:
166  *  Qn = regs[n].d[1]:regs[n].d[0]
167  *  Dn = regs[n / 2].d[n & 1]
168  *  Sn = regs[n / 4].d[n % 4 / 2],
169  *       bits 31..0 for even n, and bits 63..32 for odd n
170  *       (and regs[16] to regs[31] are inaccessible)
171  * In AArch64:
172  *  Zn = regs[n].d[*]
173  *  Qn = regs[n].d[1]:regs[n].d[0]
174  *  Dn = regs[n].d[0]
175  *  Sn = regs[n].d[0] bits 31..0
176  *  Hn = regs[n].d[0] bits 15..0
177  *
178  * This corresponds to the architecturally defined mapping between
179  * the two execution states, and means we do not need to explicitly
180  * map these registers when changing states.
181  *
182  * Align the data for use with TCG host vector operations.
183  */
184 
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ    16
187 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
188 #else
189 # define ARM_MAX_VQ    1
190 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
191 #endif
192 
193 typedef struct ARMVectorReg {
194     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
195 } ARMVectorReg;
196 
197 #ifdef TARGET_AARCH64
198 /* In AArch32 mode, predicate registers do not exist at all.  */
199 typedef struct ARMPredicateReg {
200     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
201 } ARMPredicateReg;
202 
203 /* In AArch32 mode, PAC keys do not exist at all.  */
204 typedef struct ARMPACKey {
205     uint64_t lo, hi;
206 } ARMPACKey;
207 #endif
208 
209 
210 typedef struct CPUARMState {
211     /* Regs for current mode.  */
212     uint32_t regs[16];
213 
214     /* 32/64 switch only happens when taking and returning from
215      * exceptions so the overlap semantics are taken care of then
216      * instead of having a complicated union.
217      */
218     /* Regs for A64 mode.  */
219     uint64_t xregs[32];
220     uint64_t pc;
221     /* PSTATE isn't an architectural register for ARMv8. However, it is
222      * convenient for us to assemble the underlying state into a 32 bit format
223      * identical to the architectural format used for the SPSR. (This is also
224      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
225      * 'pstate' register are.) Of the PSTATE bits:
226      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
227      *    semantics as for AArch32, as described in the comments on each field)
228      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
229      *  DAIF (exception masks) are kept in env->daif
230      *  BTYPE is kept in env->btype
231      *  all other bits are stored in their correct places in env->pstate
232      */
233     uint32_t pstate;
234     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
235 
236     /* Cached TBFLAGS state.  See below for which bits are included.  */
237     uint32_t hflags;
238 
239     /* Frequently accessed CPSR bits are stored separately for efficiency.
240        This contains all the other bits.  Use cpsr_{read,write} to access
241        the whole CPSR.  */
242     uint32_t uncached_cpsr;
243     uint32_t spsr;
244 
245     /* Banked registers.  */
246     uint64_t banked_spsr[8];
247     uint32_t banked_r13[8];
248     uint32_t banked_r14[8];
249 
250     /* These hold r8-r12.  */
251     uint32_t usr_regs[5];
252     uint32_t fiq_regs[5];
253 
254     /* cpsr flag cache for faster execution */
255     uint32_t CF; /* 0 or 1 */
256     uint32_t VF; /* V is the bit 31. All other bits are undefined */
257     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
258     uint32_t ZF; /* Z set if zero.  */
259     uint32_t QF; /* 0 or 1 */
260     uint32_t GE; /* cpsr[19:16] */
261     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
262     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
263     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
264     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
265 
266     uint64_t elr_el[4]; /* AArch64 exception link regs  */
267     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
268 
269     /* System control coprocessor (cp15) */
270     struct {
271         uint32_t c0_cpuid;
272         union { /* Cache size selection */
273             struct {
274                 uint64_t _unused_csselr0;
275                 uint64_t csselr_ns;
276                 uint64_t _unused_csselr1;
277                 uint64_t csselr_s;
278             };
279             uint64_t csselr_el[4];
280         };
281         union { /* System control register. */
282             struct {
283                 uint64_t _unused_sctlr;
284                 uint64_t sctlr_ns;
285                 uint64_t hsctlr;
286                 uint64_t sctlr_s;
287             };
288             uint64_t sctlr_el[4];
289         };
290         uint64_t cpacr_el1; /* Architectural feature access control register */
291         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
292         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
293         uint64_t sder; /* Secure debug enable register. */
294         uint32_t nsacr; /* Non-secure access control register. */
295         union { /* MMU translation table base 0. */
296             struct {
297                 uint64_t _unused_ttbr0_0;
298                 uint64_t ttbr0_ns;
299                 uint64_t _unused_ttbr0_1;
300                 uint64_t ttbr0_s;
301             };
302             uint64_t ttbr0_el[4];
303         };
304         union { /* MMU translation table base 1. */
305             struct {
306                 uint64_t _unused_ttbr1_0;
307                 uint64_t ttbr1_ns;
308                 uint64_t _unused_ttbr1_1;
309                 uint64_t ttbr1_s;
310             };
311             uint64_t ttbr1_el[4];
312         };
313         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
314         /* MMU translation table base control. */
315         TCR tcr_el[4];
316         TCR vtcr_el2; /* Virtualization Translation Control.  */
317         uint32_t c2_data; /* MPU data cacheable bits.  */
318         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319         union { /* MMU domain access control register
320                  * MPU write buffer control.
321                  */
322             struct {
323                 uint64_t dacr_ns;
324                 uint64_t dacr_s;
325             };
326             struct {
327                 uint64_t dacr32_el2;
328             };
329         };
330         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332         uint64_t hcr_el2; /* Hypervisor configuration register */
333         uint64_t scr_el3; /* Secure configuration register.  */
334         union { /* Fault status registers.  */
335             struct {
336                 uint64_t ifsr_ns;
337                 uint64_t ifsr_s;
338             };
339             struct {
340                 uint64_t ifsr32_el2;
341             };
342         };
343         union {
344             struct {
345                 uint64_t _unused_dfsr;
346                 uint64_t dfsr_ns;
347                 uint64_t hsr;
348                 uint64_t dfsr_s;
349             };
350             uint64_t esr_el[4];
351         };
352         uint32_t c6_region[8]; /* MPU base/size registers.  */
353         union { /* Fault address registers. */
354             struct {
355                 uint64_t _unused_far0;
356 #ifdef HOST_WORDS_BIGENDIAN
357                 uint32_t ifar_ns;
358                 uint32_t dfar_ns;
359                 uint32_t ifar_s;
360                 uint32_t dfar_s;
361 #else
362                 uint32_t dfar_ns;
363                 uint32_t ifar_ns;
364                 uint32_t dfar_s;
365                 uint32_t ifar_s;
366 #endif
367                 uint64_t _unused_far3;
368             };
369             uint64_t far_el[4];
370         };
371         uint64_t hpfar_el2;
372         uint64_t hstr_el2;
373         union { /* Translation result. */
374             struct {
375                 uint64_t _unused_par_0;
376                 uint64_t par_ns;
377                 uint64_t _unused_par_1;
378                 uint64_t par_s;
379             };
380             uint64_t par_el[4];
381         };
382 
383         uint32_t c9_insn; /* Cache lockdown registers.  */
384         uint32_t c9_data;
385         uint64_t c9_pmcr; /* performance monitor control register */
386         uint64_t c9_pmcnten; /* perf monitor counter enables */
387         uint64_t c9_pmovsr; /* perf monitor overflow status */
388         uint64_t c9_pmuserenr; /* perf monitor user enable */
389         uint64_t c9_pmselr; /* perf monitor counter selection register */
390         uint64_t c9_pminten; /* perf monitor interrupt enables */
391         union { /* Memory attribute redirection */
392             struct {
393 #ifdef HOST_WORDS_BIGENDIAN
394                 uint64_t _unused_mair_0;
395                 uint32_t mair1_ns;
396                 uint32_t mair0_ns;
397                 uint64_t _unused_mair_1;
398                 uint32_t mair1_s;
399                 uint32_t mair0_s;
400 #else
401                 uint64_t _unused_mair_0;
402                 uint32_t mair0_ns;
403                 uint32_t mair1_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair0_s;
406                 uint32_t mair1_s;
407 #endif
408             };
409             uint64_t mair_el[4];
410         };
411         union { /* vector base address register */
412             struct {
413                 uint64_t _unused_vbar;
414                 uint64_t vbar_ns;
415                 uint64_t hvbar;
416                 uint64_t vbar_s;
417             };
418             uint64_t vbar_el[4];
419         };
420         uint32_t mvbar; /* (monitor) vector base address register */
421         struct { /* FCSE PID. */
422             uint32_t fcseidr_ns;
423             uint32_t fcseidr_s;
424         };
425         union { /* Context ID. */
426             struct {
427                 uint64_t _unused_contextidr_0;
428                 uint64_t contextidr_ns;
429                 uint64_t _unused_contextidr_1;
430                 uint64_t contextidr_s;
431             };
432             uint64_t contextidr_el[4];
433         };
434         union { /* User RW Thread register. */
435             struct {
436                 uint64_t tpidrurw_ns;
437                 uint64_t tpidrprw_ns;
438                 uint64_t htpidr;
439                 uint64_t _tpidr_el3;
440             };
441             uint64_t tpidr_el[4];
442         };
443         /* The secure banks of these registers don't map anywhere */
444         uint64_t tpidrurw_s;
445         uint64_t tpidrprw_s;
446         uint64_t tpidruro_s;
447 
448         union { /* User RO Thread register. */
449             uint64_t tpidruro_ns;
450             uint64_t tpidrro_el[1];
451         };
452         uint64_t c14_cntfrq; /* Counter Frequency register */
453         uint64_t c14_cntkctl; /* Timer Control register */
454         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
455         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
456         ARMGenericTimer c14_timer[NUM_GTIMERS];
457         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
458         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
459         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
460         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
461         uint32_t c15_threadid; /* TI debugger thread-ID.  */
462         uint32_t c15_config_base_address; /* SCU base address.  */
463         uint32_t c15_diagnostic; /* diagnostic register */
464         uint32_t c15_power_diagnostic;
465         uint32_t c15_power_control; /* power control */
466         uint64_t dbgbvr[16]; /* breakpoint value registers */
467         uint64_t dbgbcr[16]; /* breakpoint control registers */
468         uint64_t dbgwvr[16]; /* watchpoint value registers */
469         uint64_t dbgwcr[16]; /* watchpoint control registers */
470         uint64_t mdscr_el1;
471         uint64_t oslsr_el1; /* OS Lock Status */
472         uint64_t mdcr_el2;
473         uint64_t mdcr_el3;
474         /* Stores the architectural value of the counter *the last time it was
475          * updated* by pmccntr_op_start. Accesses should always be surrounded
476          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
477          * architecturally-correct value is being read/set.
478          */
479         uint64_t c15_ccnt;
480         /* Stores the delta between the architectural value and the underlying
481          * cycle count during normal operation. It is used to update c15_ccnt
482          * to be the correct architectural value before accesses. During
483          * accesses, c15_ccnt_delta contains the underlying count being used
484          * for the access, after which it reverts to the delta value in
485          * pmccntr_op_finish.
486          */
487         uint64_t c15_ccnt_delta;
488         uint64_t c14_pmevcntr[31];
489         uint64_t c14_pmevcntr_delta[31];
490         uint64_t c14_pmevtyper[31];
491         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
492         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
493         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
494     } cp15;
495 
496     struct {
497         /* M profile has up to 4 stack pointers:
498          * a Main Stack Pointer and a Process Stack Pointer for each
499          * of the Secure and Non-Secure states. (If the CPU doesn't support
500          * the security extension then it has only two SPs.)
501          * In QEMU we always store the currently active SP in regs[13],
502          * and the non-active SP for the current security state in
503          * v7m.other_sp. The stack pointers for the inactive security state
504          * are stored in other_ss_msp and other_ss_psp.
505          * switch_v7m_security_state() is responsible for rearranging them
506          * when we change security state.
507          */
508         uint32_t other_sp;
509         uint32_t other_ss_msp;
510         uint32_t other_ss_psp;
511         uint32_t vecbase[M_REG_NUM_BANKS];
512         uint32_t basepri[M_REG_NUM_BANKS];
513         uint32_t control[M_REG_NUM_BANKS];
514         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
515         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
516         uint32_t hfsr; /* HardFault Status */
517         uint32_t dfsr; /* Debug Fault Status Register */
518         uint32_t sfsr; /* Secure Fault Status Register */
519         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
520         uint32_t bfar; /* BusFault Address */
521         uint32_t sfar; /* Secure Fault Address Register */
522         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
523         int exception;
524         uint32_t primask[M_REG_NUM_BANKS];
525         uint32_t faultmask[M_REG_NUM_BANKS];
526         uint32_t aircr; /* only holds r/w state if security extn implemented */
527         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
528         uint32_t csselr[M_REG_NUM_BANKS];
529         uint32_t scr[M_REG_NUM_BANKS];
530         uint32_t msplim[M_REG_NUM_BANKS];
531         uint32_t psplim[M_REG_NUM_BANKS];
532         uint32_t fpcar[M_REG_NUM_BANKS];
533         uint32_t fpccr[M_REG_NUM_BANKS];
534         uint32_t fpdscr[M_REG_NUM_BANKS];
535         uint32_t cpacr[M_REG_NUM_BANKS];
536         uint32_t nsacr;
537     } v7m;
538 
539     /* Information associated with an exception about to be taken:
540      * code which raises an exception must set cs->exception_index and
541      * the relevant parts of this structure; the cpu_do_interrupt function
542      * will then set the guest-visible registers as part of the exception
543      * entry process.
544      */
545     struct {
546         uint32_t syndrome; /* AArch64 format syndrome register */
547         uint32_t fsr; /* AArch32 format fault status register info */
548         uint64_t vaddress; /* virtual addr associated with exception, if any */
549         uint32_t target_el; /* EL the exception should be targeted for */
550         /* If we implement EL2 we will also need to store information
551          * about the intermediate physical address for stage 2 faults.
552          */
553     } exception;
554 
555     /* Information associated with an SError */
556     struct {
557         uint8_t pending;
558         uint8_t has_esr;
559         uint64_t esr;
560     } serror;
561 
562     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
563     uint32_t irq_line_state;
564 
565     /* Thumb-2 EE state.  */
566     uint32_t teecr;
567     uint32_t teehbr;
568 
569     /* VFP coprocessor state.  */
570     struct {
571         ARMVectorReg zregs[32];
572 
573 #ifdef TARGET_AARCH64
574         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
575 #define FFR_PRED_NUM 16
576         ARMPredicateReg pregs[17];
577         /* Scratch space for aa64 sve predicate temporary.  */
578         ARMPredicateReg preg_tmp;
579 #endif
580 
581         /* We store these fpcsr fields separately for convenience.  */
582         uint32_t qc[4] QEMU_ALIGNED(16);
583         int vec_len;
584         int vec_stride;
585 
586         uint32_t xregs[16];
587 
588         /* Scratch space for aa32 neon expansion.  */
589         uint32_t scratch[8];
590 
591         /* There are a number of distinct float control structures:
592          *
593          *  fp_status: is the "normal" fp status.
594          *  fp_status_fp16: used for half-precision calculations
595          *  standard_fp_status : the ARM "Standard FPSCR Value"
596          *
597          * Half-precision operations are governed by a separate
598          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
599          * status structure to control this.
600          *
601          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
602          * round-to-nearest and is used by any operations (generally
603          * Neon) which the architecture defines as controlled by the
604          * standard FPSCR value rather than the FPSCR.
605          *
606          * To avoid having to transfer exception bits around, we simply
607          * say that the FPSCR cumulative exception flags are the logical
608          * OR of the flags in the three fp statuses. This relies on the
609          * only thing which needs to read the exception flags being
610          * an explicit FPSCR read.
611          */
612         float_status fp_status;
613         float_status fp_status_f16;
614         float_status standard_fp_status;
615 
616         /* ZCR_EL[1-3] */
617         uint64_t zcr_el[4];
618     } vfp;
619     uint64_t exclusive_addr;
620     uint64_t exclusive_val;
621     uint64_t exclusive_high;
622 
623     /* iwMMXt coprocessor state.  */
624     struct {
625         uint64_t regs[16];
626         uint64_t val;
627 
628         uint32_t cregs[16];
629     } iwmmxt;
630 
631 #ifdef TARGET_AARCH64
632     struct {
633         ARMPACKey apia;
634         ARMPACKey apib;
635         ARMPACKey apda;
636         ARMPACKey apdb;
637         ARMPACKey apga;
638     } keys;
639 #endif
640 
641 #if defined(CONFIG_USER_ONLY)
642     /* For usermode syscall translation.  */
643     int eabi;
644 #endif
645 
646     struct CPUBreakpoint *cpu_breakpoint[16];
647     struct CPUWatchpoint *cpu_watchpoint[16];
648 
649     /* Fields up to this point are cleared by a CPU reset */
650     struct {} end_reset_fields;
651 
652     /* Fields after this point are preserved across CPU reset. */
653 
654     /* Internal CPU feature flags.  */
655     uint64_t features;
656 
657     /* PMSAv7 MPU */
658     struct {
659         uint32_t *drbar;
660         uint32_t *drsr;
661         uint32_t *dracr;
662         uint32_t rnr[M_REG_NUM_BANKS];
663     } pmsav7;
664 
665     /* PMSAv8 MPU */
666     struct {
667         /* The PMSAv8 implementation also shares some PMSAv7 config
668          * and state:
669          *  pmsav7.rnr (region number register)
670          *  pmsav7_dregion (number of configured regions)
671          */
672         uint32_t *rbar[M_REG_NUM_BANKS];
673         uint32_t *rlar[M_REG_NUM_BANKS];
674         uint32_t mair0[M_REG_NUM_BANKS];
675         uint32_t mair1[M_REG_NUM_BANKS];
676     } pmsav8;
677 
678     /* v8M SAU */
679     struct {
680         uint32_t *rbar;
681         uint32_t *rlar;
682         uint32_t rnr;
683         uint32_t ctrl;
684     } sau;
685 
686     void *nvic;
687     const struct arm_boot_info *boot_info;
688     /* Store GICv3CPUState to access from this struct */
689     void *gicv3state;
690 } CPUARMState;
691 
692 /**
693  * ARMELChangeHookFn:
694  * type of a function which can be registered via arm_register_el_change_hook()
695  * to get callbacks when the CPU changes its exception level or mode.
696  */
697 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
698 typedef struct ARMELChangeHook ARMELChangeHook;
699 struct ARMELChangeHook {
700     ARMELChangeHookFn *hook;
701     void *opaque;
702     QLIST_ENTRY(ARMELChangeHook) node;
703 };
704 
705 /* These values map onto the return values for
706  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
707 typedef enum ARMPSCIState {
708     PSCI_ON = 0,
709     PSCI_OFF = 1,
710     PSCI_ON_PENDING = 2
711 } ARMPSCIState;
712 
713 typedef struct ARMISARegisters ARMISARegisters;
714 
715 /**
716  * ARMCPU:
717  * @env: #CPUARMState
718  *
719  * An ARM CPU core.
720  */
721 struct ARMCPU {
722     /*< private >*/
723     CPUState parent_obj;
724     /*< public >*/
725 
726     CPUNegativeOffsetState neg;
727     CPUARMState env;
728 
729     /* Coprocessor information */
730     GHashTable *cp_regs;
731     /* For marshalling (mostly coprocessor) register state between the
732      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
733      * we use these arrays.
734      */
735     /* List of register indexes managed via these arrays; (full KVM style
736      * 64 bit indexes, not CPRegInfo 32 bit indexes)
737      */
738     uint64_t *cpreg_indexes;
739     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
740     uint64_t *cpreg_values;
741     /* Length of the indexes, values, reset_values arrays */
742     int32_t cpreg_array_len;
743     /* These are used only for migration: incoming data arrives in
744      * these fields and is sanity checked in post_load before copying
745      * to the working data structures above.
746      */
747     uint64_t *cpreg_vmstate_indexes;
748     uint64_t *cpreg_vmstate_values;
749     int32_t cpreg_vmstate_array_len;
750 
751     DynamicGDBXMLInfo dyn_xml;
752 
753     /* Timers used by the generic (architected) timer */
754     QEMUTimer *gt_timer[NUM_GTIMERS];
755     /*
756      * Timer used by the PMU. Its state is restored after migration by
757      * pmu_op_finish() - it does not need other handling during migration
758      */
759     QEMUTimer *pmu_timer;
760     /* GPIO outputs for generic timer */
761     qemu_irq gt_timer_outputs[NUM_GTIMERS];
762     /* GPIO output for GICv3 maintenance interrupt signal */
763     qemu_irq gicv3_maintenance_interrupt;
764     /* GPIO output for the PMU interrupt */
765     qemu_irq pmu_interrupt;
766 
767     /* MemoryRegion to use for secure physical accesses */
768     MemoryRegion *secure_memory;
769 
770     /* For v8M, pointer to the IDAU interface provided by board/SoC */
771     Object *idau;
772 
773     /* 'compatible' string for this CPU for Linux device trees */
774     const char *dtb_compatible;
775 
776     /* PSCI version for this CPU
777      * Bits[31:16] = Major Version
778      * Bits[15:0] = Minor Version
779      */
780     uint32_t psci_version;
781 
782     /* Should CPU start in PSCI powered-off state? */
783     bool start_powered_off;
784 
785     /* Current power state, access guarded by BQL */
786     ARMPSCIState power_state;
787 
788     /* CPU has virtualization extension */
789     bool has_el2;
790     /* CPU has security extension */
791     bool has_el3;
792     /* CPU has PMU (Performance Monitor Unit) */
793     bool has_pmu;
794     /* CPU has VFP */
795     bool has_vfp;
796     /* CPU has Neon */
797     bool has_neon;
798     /* CPU has M-profile DSP extension */
799     bool has_dsp;
800 
801     /* CPU has memory protection unit */
802     bool has_mpu;
803     /* PMSAv7 MPU number of supported regions */
804     uint32_t pmsav7_dregion;
805     /* v8M SAU number of supported regions */
806     uint32_t sau_sregion;
807 
808     /* PSCI conduit used to invoke PSCI methods
809      * 0 - disabled, 1 - smc, 2 - hvc
810      */
811     uint32_t psci_conduit;
812 
813     /* For v8M, initial value of the Secure VTOR */
814     uint32_t init_svtor;
815 
816     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
817      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
818      */
819     uint32_t kvm_target;
820 
821     /* KVM init features for this CPU */
822     uint32_t kvm_init_features[7];
823 
824     /* Uniprocessor system with MP extensions */
825     bool mp_is_up;
826 
827     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
828      * and the probe failed (so we need to report the error in realize)
829      */
830     bool host_cpu_probe_failed;
831 
832     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
833      * register.
834      */
835     int32_t core_count;
836 
837     /* The instance init functions for implementation-specific subclasses
838      * set these fields to specify the implementation-dependent values of
839      * various constant registers and reset values of non-constant
840      * registers.
841      * Some of these might become QOM properties eventually.
842      * Field names match the official register names as defined in the
843      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
844      * is used for reset values of non-constant registers; no reset_
845      * prefix means a constant register.
846      * Some of these registers are split out into a substructure that
847      * is shared with the translators to control the ISA.
848      */
849     struct ARMISARegisters {
850         uint32_t id_isar0;
851         uint32_t id_isar1;
852         uint32_t id_isar2;
853         uint32_t id_isar3;
854         uint32_t id_isar4;
855         uint32_t id_isar5;
856         uint32_t id_isar6;
857         uint32_t mvfr0;
858         uint32_t mvfr1;
859         uint32_t mvfr2;
860         uint64_t id_aa64isar0;
861         uint64_t id_aa64isar1;
862         uint64_t id_aa64pfr0;
863         uint64_t id_aa64pfr1;
864         uint64_t id_aa64mmfr0;
865         uint64_t id_aa64mmfr1;
866     } isar;
867     uint32_t midr;
868     uint32_t revidr;
869     uint32_t reset_fpsid;
870     uint32_t ctr;
871     uint32_t reset_sctlr;
872     uint32_t id_pfr0;
873     uint32_t id_pfr1;
874     uint32_t id_dfr0;
875     uint64_t pmceid0;
876     uint64_t pmceid1;
877     uint32_t id_afr0;
878     uint32_t id_mmfr0;
879     uint32_t id_mmfr1;
880     uint32_t id_mmfr2;
881     uint32_t id_mmfr3;
882     uint32_t id_mmfr4;
883     uint64_t id_aa64dfr0;
884     uint64_t id_aa64dfr1;
885     uint64_t id_aa64afr0;
886     uint64_t id_aa64afr1;
887     uint32_t dbgdidr;
888     uint32_t clidr;
889     uint64_t mp_affinity; /* MP ID without feature bits */
890     /* The elements of this array are the CCSIDR values for each cache,
891      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
892      */
893     uint32_t ccsidr[16];
894     uint64_t reset_cbar;
895     uint32_t reset_auxcr;
896     bool reset_hivecs;
897     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
898     uint32_t dcz_blocksize;
899     uint64_t rvbar;
900 
901     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
902     int gic_num_lrs; /* number of list registers */
903     int gic_vpribits; /* number of virtual priority bits */
904     int gic_vprebits; /* number of virtual preemption bits */
905 
906     /* Whether the cfgend input is high (i.e. this CPU should reset into
907      * big-endian mode).  This setting isn't used directly: instead it modifies
908      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
909      * architecture version.
910      */
911     bool cfgend;
912 
913     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
914     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
915 
916     int32_t node_id; /* NUMA node this CPU belongs to */
917 
918     /* Used to synchronize KVM and QEMU in-kernel device levels */
919     uint8_t device_irq_level;
920 
921     /* Used to set the maximum vector length the cpu will support.  */
922     uint32_t sve_max_vq;
923 
924     /*
925      * In sve_vq_map each set bit is a supported vector length of
926      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
927      * length in quadwords.
928      *
929      * While processing properties during initialization, corresponding
930      * sve_vq_init bits are set for bits in sve_vq_map that have been
931      * set by properties.
932      */
933     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
934     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
935 };
936 
937 void arm_cpu_post_init(Object *obj);
938 
939 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
940 
941 #ifndef CONFIG_USER_ONLY
942 extern const VMStateDescription vmstate_arm_cpu;
943 #endif
944 
945 void arm_cpu_do_interrupt(CPUState *cpu);
946 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
947 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
948 
949 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
950                                          MemTxAttrs *attrs);
951 
952 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
953 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
954 
955 /* Dynamically generates for gdb stub an XML description of the sysregs from
956  * the cp_regs hashtable. Returns the registered sysregs number.
957  */
958 int arm_gen_dynamic_xml(CPUState *cpu);
959 
960 /* Returns the dynamically generated XML for the gdb stub.
961  * Returns a pointer to the XML contents for the specified XML file or NULL
962  * if the XML name doesn't match the predefined one.
963  */
964 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
965 
966 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
967                              int cpuid, void *opaque);
968 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
969                              int cpuid, void *opaque);
970 
971 #ifdef TARGET_AARCH64
972 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
973 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
974 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
975 void aarch64_sve_change_el(CPUARMState *env, int old_el,
976                            int new_el, bool el0_a64);
977 void aarch64_add_sve_properties(Object *obj);
978 #else
979 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
980 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
981                                          int n, bool a)
982 { }
983 static inline void aarch64_add_sve_properties(Object *obj) { }
984 #endif
985 
986 #if !defined(CONFIG_TCG)
987 static inline target_ulong do_arm_semihosting(CPUARMState *env)
988 {
989     g_assert_not_reached();
990 }
991 #else
992 target_ulong do_arm_semihosting(CPUARMState *env);
993 #endif
994 void aarch64_sync_32_to_64(CPUARMState *env);
995 void aarch64_sync_64_to_32(CPUARMState *env);
996 
997 int fp_exception_el(CPUARMState *env, int cur_el);
998 int sve_exception_el(CPUARMState *env, int cur_el);
999 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1000 
1001 static inline bool is_a64(CPUARMState *env)
1002 {
1003     return env->aarch64;
1004 }
1005 
1006 /* you can call this signal handler from your SIGBUS and SIGSEGV
1007    signal handlers to inform the virtual CPU of exceptions. non zero
1008    is returned if the signal was handled by the virtual CPU.  */
1009 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1010                            void *puc);
1011 
1012 /**
1013  * pmu_op_start/finish
1014  * @env: CPUARMState
1015  *
1016  * Convert all PMU counters between their delta form (the typical mode when
1017  * they are enabled) and the guest-visible values. These two calls must
1018  * surround any action which might affect the counters.
1019  */
1020 void pmu_op_start(CPUARMState *env);
1021 void pmu_op_finish(CPUARMState *env);
1022 
1023 /*
1024  * Called when a PMU counter is due to overflow
1025  */
1026 void arm_pmu_timer_cb(void *opaque);
1027 
1028 /**
1029  * Functions to register as EL change hooks for PMU mode filtering
1030  */
1031 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1032 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1033 
1034 /*
1035  * pmu_init
1036  * @cpu: ARMCPU
1037  *
1038  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1039  * for the current configuration
1040  */
1041 void pmu_init(ARMCPU *cpu);
1042 
1043 /* SCTLR bit meanings. Several bits have been reused in newer
1044  * versions of the architecture; in that case we define constants
1045  * for both old and new bit meanings. Code which tests against those
1046  * bits should probably check or otherwise arrange that the CPU
1047  * is the architectural version it expects.
1048  */
1049 #define SCTLR_M       (1U << 0)
1050 #define SCTLR_A       (1U << 1)
1051 #define SCTLR_C       (1U << 2)
1052 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1053 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1054 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1055 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1056 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1057 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1058 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1059 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1060 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1061 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1062 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1063 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1064 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1065 #define SCTLR_SED     (1U << 8) /* v8 onward */
1066 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1067 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1068 #define SCTLR_F       (1U << 10) /* up to v6 */
1069 #define SCTLR_SW      (1U << 10) /* v7 */
1070 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1071 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1072 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1073 #define SCTLR_I       (1U << 12)
1074 #define SCTLR_V       (1U << 13) /* AArch32 only */
1075 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1076 #define SCTLR_RR      (1U << 14) /* up to v7 */
1077 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1078 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1079 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1080 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1081 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1082 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1083 #define SCTLR_BR      (1U << 17) /* PMSA only */
1084 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1085 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1086 #define SCTLR_WXN     (1U << 19)
1087 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1088 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1089 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1090 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1091 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1092 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1093 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1094 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1095 #define SCTLR_VE      (1U << 24) /* up to v7 */
1096 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1097 #define SCTLR_EE      (1U << 25)
1098 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1099 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1100 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1101 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1102 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1103 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1104 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1105 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1106 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1107 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1108 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1109 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1110 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1111 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1112 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1113 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1114 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1115 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1116 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1117 
1118 #define CPTR_TCPAC    (1U << 31)
1119 #define CPTR_TTA      (1U << 20)
1120 #define CPTR_TFP      (1U << 10)
1121 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1122 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1123 
1124 #define MDCR_EPMAD    (1U << 21)
1125 #define MDCR_EDAD     (1U << 20)
1126 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1127 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1128 #define MDCR_SDD      (1U << 16)
1129 #define MDCR_SPD      (3U << 14)
1130 #define MDCR_TDRA     (1U << 11)
1131 #define MDCR_TDOSA    (1U << 10)
1132 #define MDCR_TDA      (1U << 9)
1133 #define MDCR_TDE      (1U << 8)
1134 #define MDCR_HPME     (1U << 7)
1135 #define MDCR_TPM      (1U << 6)
1136 #define MDCR_TPMCR    (1U << 5)
1137 #define MDCR_HPMN     (0x1fU)
1138 
1139 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1140 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1141 
1142 #define CPSR_M (0x1fU)
1143 #define CPSR_T (1U << 5)
1144 #define CPSR_F (1U << 6)
1145 #define CPSR_I (1U << 7)
1146 #define CPSR_A (1U << 8)
1147 #define CPSR_E (1U << 9)
1148 #define CPSR_IT_2_7 (0xfc00U)
1149 #define CPSR_GE (0xfU << 16)
1150 #define CPSR_IL (1U << 20)
1151 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1152  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1153  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1154  * where it is live state but not accessible to the AArch32 code.
1155  */
1156 #define CPSR_RESERVED (0x7U << 21)
1157 #define CPSR_J (1U << 24)
1158 #define CPSR_IT_0_1 (3U << 25)
1159 #define CPSR_Q (1U << 27)
1160 #define CPSR_V (1U << 28)
1161 #define CPSR_C (1U << 29)
1162 #define CPSR_Z (1U << 30)
1163 #define CPSR_N (1U << 31)
1164 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1165 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1166 
1167 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1168 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1169     | CPSR_NZCV)
1170 /* Bits writable in user mode.  */
1171 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1172 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1173 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1174 /* Mask of bits which may be set by exception return copying them from SPSR */
1175 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1176 
1177 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1178 #define XPSR_EXCP 0x1ffU
1179 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1180 #define XPSR_IT_2_7 CPSR_IT_2_7
1181 #define XPSR_GE CPSR_GE
1182 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1183 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1184 #define XPSR_IT_0_1 CPSR_IT_0_1
1185 #define XPSR_Q CPSR_Q
1186 #define XPSR_V CPSR_V
1187 #define XPSR_C CPSR_C
1188 #define XPSR_Z CPSR_Z
1189 #define XPSR_N CPSR_N
1190 #define XPSR_NZCV CPSR_NZCV
1191 #define XPSR_IT CPSR_IT
1192 
1193 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1194 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1195 #define TTBCR_PD0    (1U << 4)
1196 #define TTBCR_PD1    (1U << 5)
1197 #define TTBCR_EPD0   (1U << 7)
1198 #define TTBCR_IRGN0  (3U << 8)
1199 #define TTBCR_ORGN0  (3U << 10)
1200 #define TTBCR_SH0    (3U << 12)
1201 #define TTBCR_T1SZ   (3U << 16)
1202 #define TTBCR_A1     (1U << 22)
1203 #define TTBCR_EPD1   (1U << 23)
1204 #define TTBCR_IRGN1  (3U << 24)
1205 #define TTBCR_ORGN1  (3U << 26)
1206 #define TTBCR_SH1    (1U << 28)
1207 #define TTBCR_EAE    (1U << 31)
1208 
1209 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1210  * Only these are valid when in AArch64 mode; in
1211  * AArch32 mode SPSRs are basically CPSR-format.
1212  */
1213 #define PSTATE_SP (1U)
1214 #define PSTATE_M (0xFU)
1215 #define PSTATE_nRW (1U << 4)
1216 #define PSTATE_F (1U << 6)
1217 #define PSTATE_I (1U << 7)
1218 #define PSTATE_A (1U << 8)
1219 #define PSTATE_D (1U << 9)
1220 #define PSTATE_BTYPE (3U << 10)
1221 #define PSTATE_IL (1U << 20)
1222 #define PSTATE_SS (1U << 21)
1223 #define PSTATE_V (1U << 28)
1224 #define PSTATE_C (1U << 29)
1225 #define PSTATE_Z (1U << 30)
1226 #define PSTATE_N (1U << 31)
1227 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1228 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1229 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1230 /* Mode values for AArch64 */
1231 #define PSTATE_MODE_EL3h 13
1232 #define PSTATE_MODE_EL3t 12
1233 #define PSTATE_MODE_EL2h 9
1234 #define PSTATE_MODE_EL2t 8
1235 #define PSTATE_MODE_EL1h 5
1236 #define PSTATE_MODE_EL1t 4
1237 #define PSTATE_MODE_EL0t 0
1238 
1239 /* Write a new value to v7m.exception, thus transitioning into or out
1240  * of Handler mode; this may result in a change of active stack pointer.
1241  */
1242 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1243 
1244 /* Map EL and handler into a PSTATE_MODE.  */
1245 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1246 {
1247     return (el << 2) | handler;
1248 }
1249 
1250 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1251  * interprocessing, so we don't attempt to sync with the cpsr state used by
1252  * the 32 bit decoder.
1253  */
1254 static inline uint32_t pstate_read(CPUARMState *env)
1255 {
1256     int ZF;
1257 
1258     ZF = (env->ZF == 0);
1259     return (env->NF & 0x80000000) | (ZF << 30)
1260         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1261         | env->pstate | env->daif | (env->btype << 10);
1262 }
1263 
1264 static inline void pstate_write(CPUARMState *env, uint32_t val)
1265 {
1266     env->ZF = (~val) & PSTATE_Z;
1267     env->NF = val;
1268     env->CF = (val >> 29) & 1;
1269     env->VF = (val << 3) & 0x80000000;
1270     env->daif = val & PSTATE_DAIF;
1271     env->btype = (val >> 10) & 3;
1272     env->pstate = val & ~CACHED_PSTATE_BITS;
1273 }
1274 
1275 /* Return the current CPSR value.  */
1276 uint32_t cpsr_read(CPUARMState *env);
1277 
1278 typedef enum CPSRWriteType {
1279     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1280     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1281     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1282     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1283 } CPSRWriteType;
1284 
1285 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1286 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1287                 CPSRWriteType write_type);
1288 
1289 /* Return the current xPSR value.  */
1290 static inline uint32_t xpsr_read(CPUARMState *env)
1291 {
1292     int ZF;
1293     ZF = (env->ZF == 0);
1294     return (env->NF & 0x80000000) | (ZF << 30)
1295         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1296         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1297         | ((env->condexec_bits & 0xfc) << 8)
1298         | (env->GE << 16)
1299         | env->v7m.exception;
1300 }
1301 
1302 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1303 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1304 {
1305     if (mask & XPSR_NZCV) {
1306         env->ZF = (~val) & XPSR_Z;
1307         env->NF = val;
1308         env->CF = (val >> 29) & 1;
1309         env->VF = (val << 3) & 0x80000000;
1310     }
1311     if (mask & XPSR_Q) {
1312         env->QF = ((val & XPSR_Q) != 0);
1313     }
1314     if (mask & XPSR_GE) {
1315         env->GE = (val & XPSR_GE) >> 16;
1316     }
1317 #ifndef CONFIG_USER_ONLY
1318     if (mask & XPSR_T) {
1319         env->thumb = ((val & XPSR_T) != 0);
1320     }
1321     if (mask & XPSR_IT_0_1) {
1322         env->condexec_bits &= ~3;
1323         env->condexec_bits |= (val >> 25) & 3;
1324     }
1325     if (mask & XPSR_IT_2_7) {
1326         env->condexec_bits &= 3;
1327         env->condexec_bits |= (val >> 8) & 0xfc;
1328     }
1329     if (mask & XPSR_EXCP) {
1330         /* Note that this only happens on exception exit */
1331         write_v7m_exception(env, val & XPSR_EXCP);
1332     }
1333 #endif
1334 }
1335 
1336 #define HCR_VM        (1ULL << 0)
1337 #define HCR_SWIO      (1ULL << 1)
1338 #define HCR_PTW       (1ULL << 2)
1339 #define HCR_FMO       (1ULL << 3)
1340 #define HCR_IMO       (1ULL << 4)
1341 #define HCR_AMO       (1ULL << 5)
1342 #define HCR_VF        (1ULL << 6)
1343 #define HCR_VI        (1ULL << 7)
1344 #define HCR_VSE       (1ULL << 8)
1345 #define HCR_FB        (1ULL << 9)
1346 #define HCR_BSU_MASK  (3ULL << 10)
1347 #define HCR_DC        (1ULL << 12)
1348 #define HCR_TWI       (1ULL << 13)
1349 #define HCR_TWE       (1ULL << 14)
1350 #define HCR_TID0      (1ULL << 15)
1351 #define HCR_TID1      (1ULL << 16)
1352 #define HCR_TID2      (1ULL << 17)
1353 #define HCR_TID3      (1ULL << 18)
1354 #define HCR_TSC       (1ULL << 19)
1355 #define HCR_TIDCP     (1ULL << 20)
1356 #define HCR_TACR      (1ULL << 21)
1357 #define HCR_TSW       (1ULL << 22)
1358 #define HCR_TPCP      (1ULL << 23)
1359 #define HCR_TPU       (1ULL << 24)
1360 #define HCR_TTLB      (1ULL << 25)
1361 #define HCR_TVM       (1ULL << 26)
1362 #define HCR_TGE       (1ULL << 27)
1363 #define HCR_TDZ       (1ULL << 28)
1364 #define HCR_HCD       (1ULL << 29)
1365 #define HCR_TRVM      (1ULL << 30)
1366 #define HCR_RW        (1ULL << 31)
1367 #define HCR_CD        (1ULL << 32)
1368 #define HCR_ID        (1ULL << 33)
1369 #define HCR_E2H       (1ULL << 34)
1370 #define HCR_TLOR      (1ULL << 35)
1371 #define HCR_TERR      (1ULL << 36)
1372 #define HCR_TEA       (1ULL << 37)
1373 #define HCR_MIOCNCE   (1ULL << 38)
1374 #define HCR_APK       (1ULL << 40)
1375 #define HCR_API       (1ULL << 41)
1376 #define HCR_NV        (1ULL << 42)
1377 #define HCR_NV1       (1ULL << 43)
1378 #define HCR_AT        (1ULL << 44)
1379 #define HCR_NV2       (1ULL << 45)
1380 #define HCR_FWB       (1ULL << 46)
1381 #define HCR_FIEN      (1ULL << 47)
1382 #define HCR_TID4      (1ULL << 49)
1383 #define HCR_TICAB     (1ULL << 50)
1384 #define HCR_TOCU      (1ULL << 52)
1385 #define HCR_TTLBIS    (1ULL << 54)
1386 #define HCR_TTLBOS    (1ULL << 55)
1387 #define HCR_ATA       (1ULL << 56)
1388 #define HCR_DCT       (1ULL << 57)
1389 
1390 /*
1391  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1392  * HCR_MASK and then clear it again if the feature bit is not set in
1393  * hcr_write().
1394  */
1395 #define HCR_MASK      ((1ULL << 34) - 1)
1396 
1397 #define SCR_NS                (1U << 0)
1398 #define SCR_IRQ               (1U << 1)
1399 #define SCR_FIQ               (1U << 2)
1400 #define SCR_EA                (1U << 3)
1401 #define SCR_FW                (1U << 4)
1402 #define SCR_AW                (1U << 5)
1403 #define SCR_NET               (1U << 6)
1404 #define SCR_SMD               (1U << 7)
1405 #define SCR_HCE               (1U << 8)
1406 #define SCR_SIF               (1U << 9)
1407 #define SCR_RW                (1U << 10)
1408 #define SCR_ST                (1U << 11)
1409 #define SCR_TWI               (1U << 12)
1410 #define SCR_TWE               (1U << 13)
1411 #define SCR_TLOR              (1U << 14)
1412 #define SCR_TERR              (1U << 15)
1413 #define SCR_APK               (1U << 16)
1414 #define SCR_API               (1U << 17)
1415 #define SCR_EEL2              (1U << 18)
1416 #define SCR_EASE              (1U << 19)
1417 #define SCR_NMEA              (1U << 20)
1418 #define SCR_FIEN              (1U << 21)
1419 #define SCR_ENSCXT            (1U << 25)
1420 #define SCR_ATA               (1U << 26)
1421 
1422 /* Return the current FPSCR value.  */
1423 uint32_t vfp_get_fpscr(CPUARMState *env);
1424 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1425 
1426 /* FPCR, Floating Point Control Register
1427  * FPSR, Floating Poiht Status Register
1428  *
1429  * For A64 the FPSCR is split into two logically distinct registers,
1430  * FPCR and FPSR. However since they still use non-overlapping bits
1431  * we store the underlying state in fpscr and just mask on read/write.
1432  */
1433 #define FPSR_MASK 0xf800009f
1434 #define FPCR_MASK 0x07ff9f00
1435 
1436 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1437 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1438 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1439 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1440 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1441 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1442 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1443 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1444 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1445 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1446 
1447 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1448 {
1449     return vfp_get_fpscr(env) & FPSR_MASK;
1450 }
1451 
1452 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1453 {
1454     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1455     vfp_set_fpscr(env, new_fpscr);
1456 }
1457 
1458 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1459 {
1460     return vfp_get_fpscr(env) & FPCR_MASK;
1461 }
1462 
1463 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1464 {
1465     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1466     vfp_set_fpscr(env, new_fpscr);
1467 }
1468 
1469 enum arm_cpu_mode {
1470   ARM_CPU_MODE_USR = 0x10,
1471   ARM_CPU_MODE_FIQ = 0x11,
1472   ARM_CPU_MODE_IRQ = 0x12,
1473   ARM_CPU_MODE_SVC = 0x13,
1474   ARM_CPU_MODE_MON = 0x16,
1475   ARM_CPU_MODE_ABT = 0x17,
1476   ARM_CPU_MODE_HYP = 0x1a,
1477   ARM_CPU_MODE_UND = 0x1b,
1478   ARM_CPU_MODE_SYS = 0x1f
1479 };
1480 
1481 /* VFP system registers.  */
1482 #define ARM_VFP_FPSID   0
1483 #define ARM_VFP_FPSCR   1
1484 #define ARM_VFP_MVFR2   5
1485 #define ARM_VFP_MVFR1   6
1486 #define ARM_VFP_MVFR0   7
1487 #define ARM_VFP_FPEXC   8
1488 #define ARM_VFP_FPINST  9
1489 #define ARM_VFP_FPINST2 10
1490 
1491 /* iwMMXt coprocessor control registers.  */
1492 #define ARM_IWMMXT_wCID  0
1493 #define ARM_IWMMXT_wCon  1
1494 #define ARM_IWMMXT_wCSSF 2
1495 #define ARM_IWMMXT_wCASF 3
1496 #define ARM_IWMMXT_wCGR0 8
1497 #define ARM_IWMMXT_wCGR1 9
1498 #define ARM_IWMMXT_wCGR2 10
1499 #define ARM_IWMMXT_wCGR3 11
1500 
1501 /* V7M CCR bits */
1502 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1503 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1504 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1505 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1506 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1507 FIELD(V7M_CCR, STKALIGN, 9, 1)
1508 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1509 FIELD(V7M_CCR, DC, 16, 1)
1510 FIELD(V7M_CCR, IC, 17, 1)
1511 FIELD(V7M_CCR, BP, 18, 1)
1512 
1513 /* V7M SCR bits */
1514 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1515 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1516 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1517 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1518 
1519 /* V7M AIRCR bits */
1520 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1521 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1522 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1523 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1524 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1525 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1526 FIELD(V7M_AIRCR, PRIS, 14, 1)
1527 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1528 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1529 
1530 /* V7M CFSR bits for MMFSR */
1531 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1532 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1533 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1534 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1535 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1536 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1537 
1538 /* V7M CFSR bits for BFSR */
1539 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1540 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1541 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1542 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1543 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1544 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1545 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1546 
1547 /* V7M CFSR bits for UFSR */
1548 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1549 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1550 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1551 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1552 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1553 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1554 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1555 
1556 /* V7M CFSR bit masks covering all of the subregister bits */
1557 FIELD(V7M_CFSR, MMFSR, 0, 8)
1558 FIELD(V7M_CFSR, BFSR, 8, 8)
1559 FIELD(V7M_CFSR, UFSR, 16, 16)
1560 
1561 /* V7M HFSR bits */
1562 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1563 FIELD(V7M_HFSR, FORCED, 30, 1)
1564 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1565 
1566 /* V7M DFSR bits */
1567 FIELD(V7M_DFSR, HALTED, 0, 1)
1568 FIELD(V7M_DFSR, BKPT, 1, 1)
1569 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1570 FIELD(V7M_DFSR, VCATCH, 3, 1)
1571 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1572 
1573 /* V7M SFSR bits */
1574 FIELD(V7M_SFSR, INVEP, 0, 1)
1575 FIELD(V7M_SFSR, INVIS, 1, 1)
1576 FIELD(V7M_SFSR, INVER, 2, 1)
1577 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1578 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1579 FIELD(V7M_SFSR, LSPERR, 5, 1)
1580 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1581 FIELD(V7M_SFSR, LSERR, 7, 1)
1582 
1583 /* v7M MPU_CTRL bits */
1584 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1585 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1586 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1587 
1588 /* v7M CLIDR bits */
1589 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1590 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1591 FIELD(V7M_CLIDR, LOC, 24, 3)
1592 FIELD(V7M_CLIDR, LOUU, 27, 3)
1593 FIELD(V7M_CLIDR, ICB, 30, 2)
1594 
1595 FIELD(V7M_CSSELR, IND, 0, 1)
1596 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1597 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1598  * define a mask for this and check that it doesn't permit running off
1599  * the end of the array.
1600  */
1601 FIELD(V7M_CSSELR, INDEX, 0, 4)
1602 
1603 /* v7M FPCCR bits */
1604 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1605 FIELD(V7M_FPCCR, USER, 1, 1)
1606 FIELD(V7M_FPCCR, S, 2, 1)
1607 FIELD(V7M_FPCCR, THREAD, 3, 1)
1608 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1609 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1610 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1611 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1612 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1613 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1614 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1615 FIELD(V7M_FPCCR, RES0, 11, 15)
1616 FIELD(V7M_FPCCR, TS, 26, 1)
1617 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1618 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1619 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1620 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1621 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1622 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1623 #define R_V7M_FPCCR_BANKED_MASK                 \
1624     (R_V7M_FPCCR_LSPACT_MASK |                  \
1625      R_V7M_FPCCR_USER_MASK |                    \
1626      R_V7M_FPCCR_THREAD_MASK |                  \
1627      R_V7M_FPCCR_MMRDY_MASK |                   \
1628      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1629      R_V7M_FPCCR_UFRDY_MASK |                   \
1630      R_V7M_FPCCR_ASPEN_MASK)
1631 
1632 /*
1633  * System register ID fields.
1634  */
1635 FIELD(MIDR_EL1, REVISION, 0, 4)
1636 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1637 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1638 FIELD(MIDR_EL1, VARIANT, 20, 4)
1639 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1640 
1641 FIELD(ID_ISAR0, SWAP, 0, 4)
1642 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1643 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1644 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1645 FIELD(ID_ISAR0, COPROC, 16, 4)
1646 FIELD(ID_ISAR0, DEBUG, 20, 4)
1647 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1648 
1649 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1650 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1651 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1652 FIELD(ID_ISAR1, EXTEND, 12, 4)
1653 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1654 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1655 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1656 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1657 
1658 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1659 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1660 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1661 FIELD(ID_ISAR2, MULT, 12, 4)
1662 FIELD(ID_ISAR2, MULTS, 16, 4)
1663 FIELD(ID_ISAR2, MULTU, 20, 4)
1664 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1665 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1666 
1667 FIELD(ID_ISAR3, SATURATE, 0, 4)
1668 FIELD(ID_ISAR3, SIMD, 4, 4)
1669 FIELD(ID_ISAR3, SVC, 8, 4)
1670 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1671 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1672 FIELD(ID_ISAR3, T32COPY, 20, 4)
1673 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1674 FIELD(ID_ISAR3, T32EE, 28, 4)
1675 
1676 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1677 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1678 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1679 FIELD(ID_ISAR4, SMC, 12, 4)
1680 FIELD(ID_ISAR4, BARRIER, 16, 4)
1681 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1682 FIELD(ID_ISAR4, PSR_M, 24, 4)
1683 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1684 
1685 FIELD(ID_ISAR5, SEVL, 0, 4)
1686 FIELD(ID_ISAR5, AES, 4, 4)
1687 FIELD(ID_ISAR5, SHA1, 8, 4)
1688 FIELD(ID_ISAR5, SHA2, 12, 4)
1689 FIELD(ID_ISAR5, CRC32, 16, 4)
1690 FIELD(ID_ISAR5, RDM, 24, 4)
1691 FIELD(ID_ISAR5, VCMA, 28, 4)
1692 
1693 FIELD(ID_ISAR6, JSCVT, 0, 4)
1694 FIELD(ID_ISAR6, DP, 4, 4)
1695 FIELD(ID_ISAR6, FHM, 8, 4)
1696 FIELD(ID_ISAR6, SB, 12, 4)
1697 FIELD(ID_ISAR6, SPECRES, 16, 4)
1698 
1699 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1700 FIELD(ID_MMFR4, AC2, 4, 4)
1701 FIELD(ID_MMFR4, XNX, 8, 4)
1702 FIELD(ID_MMFR4, CNP, 12, 4)
1703 FIELD(ID_MMFR4, HPDS, 16, 4)
1704 FIELD(ID_MMFR4, LSM, 20, 4)
1705 FIELD(ID_MMFR4, CCIDX, 24, 4)
1706 FIELD(ID_MMFR4, EVT, 28, 4)
1707 
1708 FIELD(ID_AA64ISAR0, AES, 4, 4)
1709 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1710 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1711 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1712 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1713 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1714 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1715 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1716 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1717 FIELD(ID_AA64ISAR0, DP, 44, 4)
1718 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1719 FIELD(ID_AA64ISAR0, TS, 52, 4)
1720 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1721 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1722 
1723 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1724 FIELD(ID_AA64ISAR1, APA, 4, 4)
1725 FIELD(ID_AA64ISAR1, API, 8, 4)
1726 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1727 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1728 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1729 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1730 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1731 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1732 FIELD(ID_AA64ISAR1, SB, 36, 4)
1733 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1734 
1735 FIELD(ID_AA64PFR0, EL0, 0, 4)
1736 FIELD(ID_AA64PFR0, EL1, 4, 4)
1737 FIELD(ID_AA64PFR0, EL2, 8, 4)
1738 FIELD(ID_AA64PFR0, EL3, 12, 4)
1739 FIELD(ID_AA64PFR0, FP, 16, 4)
1740 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1741 FIELD(ID_AA64PFR0, GIC, 24, 4)
1742 FIELD(ID_AA64PFR0, RAS, 28, 4)
1743 FIELD(ID_AA64PFR0, SVE, 32, 4)
1744 
1745 FIELD(ID_AA64PFR1, BT, 0, 4)
1746 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1747 FIELD(ID_AA64PFR1, MTE, 8, 4)
1748 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1749 
1750 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1751 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1752 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1753 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1754 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1755 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1756 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1757 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1758 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1759 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1760 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1761 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1762 
1763 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1764 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1765 FIELD(ID_AA64MMFR1, VH, 8, 4)
1766 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1767 FIELD(ID_AA64MMFR1, LO, 16, 4)
1768 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1769 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1770 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1771 
1772 FIELD(ID_DFR0, COPDBG, 0, 4)
1773 FIELD(ID_DFR0, COPSDBG, 4, 4)
1774 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1775 FIELD(ID_DFR0, COPTRC, 12, 4)
1776 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1777 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1778 FIELD(ID_DFR0, PERFMON, 24, 4)
1779 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1780 
1781 FIELD(MVFR0, SIMDREG, 0, 4)
1782 FIELD(MVFR0, FPSP, 4, 4)
1783 FIELD(MVFR0, FPDP, 8, 4)
1784 FIELD(MVFR0, FPTRAP, 12, 4)
1785 FIELD(MVFR0, FPDIVIDE, 16, 4)
1786 FIELD(MVFR0, FPSQRT, 20, 4)
1787 FIELD(MVFR0, FPSHVEC, 24, 4)
1788 FIELD(MVFR0, FPROUND, 28, 4)
1789 
1790 FIELD(MVFR1, FPFTZ, 0, 4)
1791 FIELD(MVFR1, FPDNAN, 4, 4)
1792 FIELD(MVFR1, SIMDLS, 8, 4)
1793 FIELD(MVFR1, SIMDINT, 12, 4)
1794 FIELD(MVFR1, SIMDSP, 16, 4)
1795 FIELD(MVFR1, SIMDHP, 20, 4)
1796 FIELD(MVFR1, FPHP, 24, 4)
1797 FIELD(MVFR1, SIMDFMAC, 28, 4)
1798 
1799 FIELD(MVFR2, SIMDMISC, 0, 4)
1800 FIELD(MVFR2, FPMISC, 4, 4)
1801 
1802 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1803 
1804 /* If adding a feature bit which corresponds to a Linux ELF
1805  * HWCAP bit, remember to update the feature-bit-to-hwcap
1806  * mapping in linux-user/elfload.c:get_elf_hwcap().
1807  */
1808 enum arm_features {
1809     ARM_FEATURE_VFP,
1810     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1811     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1812     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1813     ARM_FEATURE_V6,
1814     ARM_FEATURE_V6K,
1815     ARM_FEATURE_V7,
1816     ARM_FEATURE_THUMB2,
1817     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1818     ARM_FEATURE_VFP3,
1819     ARM_FEATURE_NEON,
1820     ARM_FEATURE_M, /* Microcontroller profile.  */
1821     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1822     ARM_FEATURE_THUMB2EE,
1823     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1824     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1825     ARM_FEATURE_V4T,
1826     ARM_FEATURE_V5,
1827     ARM_FEATURE_STRONGARM,
1828     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1829     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1830     ARM_FEATURE_GENERIC_TIMER,
1831     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1832     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1833     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1834     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1835     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1836     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1837     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1838     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1839     ARM_FEATURE_V8,
1840     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1841     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1842     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1843     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1844     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1845     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1846     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1847     ARM_FEATURE_PMU, /* has PMU support */
1848     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1849     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1850     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1851 };
1852 
1853 static inline int arm_feature(CPUARMState *env, int feature)
1854 {
1855     return (env->features & (1ULL << feature)) != 0;
1856 }
1857 
1858 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1859 
1860 #if !defined(CONFIG_USER_ONLY)
1861 /* Return true if exception levels below EL3 are in secure state,
1862  * or would be following an exception return to that level.
1863  * Unlike arm_is_secure() (which is always a question about the
1864  * _current_ state of the CPU) this doesn't care about the current
1865  * EL or mode.
1866  */
1867 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1868 {
1869     if (arm_feature(env, ARM_FEATURE_EL3)) {
1870         return !(env->cp15.scr_el3 & SCR_NS);
1871     } else {
1872         /* If EL3 is not supported then the secure state is implementation
1873          * defined, in which case QEMU defaults to non-secure.
1874          */
1875         return false;
1876     }
1877 }
1878 
1879 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1880 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1881 {
1882     if (arm_feature(env, ARM_FEATURE_EL3)) {
1883         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1884             /* CPU currently in AArch64 state and EL3 */
1885             return true;
1886         } else if (!is_a64(env) &&
1887                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1888             /* CPU currently in AArch32 state and monitor mode */
1889             return true;
1890         }
1891     }
1892     return false;
1893 }
1894 
1895 /* Return true if the processor is in secure state */
1896 static inline bool arm_is_secure(CPUARMState *env)
1897 {
1898     if (arm_is_el3_or_mon(env)) {
1899         return true;
1900     }
1901     return arm_is_secure_below_el3(env);
1902 }
1903 
1904 #else
1905 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1906 {
1907     return false;
1908 }
1909 
1910 static inline bool arm_is_secure(CPUARMState *env)
1911 {
1912     return false;
1913 }
1914 #endif
1915 
1916 /**
1917  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1918  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1919  * "for all purposes other than a direct read or write access of HCR_EL2."
1920  * Not included here is HCR_RW.
1921  */
1922 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1923 
1924 /* Return true if the specified exception level is running in AArch64 state. */
1925 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1926 {
1927     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1928      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1929      */
1930     assert(el >= 1 && el <= 3);
1931     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1932 
1933     /* The highest exception level is always at the maximum supported
1934      * register width, and then lower levels have a register width controlled
1935      * by bits in the SCR or HCR registers.
1936      */
1937     if (el == 3) {
1938         return aa64;
1939     }
1940 
1941     if (arm_feature(env, ARM_FEATURE_EL3)) {
1942         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1943     }
1944 
1945     if (el == 2) {
1946         return aa64;
1947     }
1948 
1949     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1950         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1951     }
1952 
1953     return aa64;
1954 }
1955 
1956 /* Function for determing whether guest cp register reads and writes should
1957  * access the secure or non-secure bank of a cp register.  When EL3 is
1958  * operating in AArch32 state, the NS-bit determines whether the secure
1959  * instance of a cp register should be used. When EL3 is AArch64 (or if
1960  * it doesn't exist at all) then there is no register banking, and all
1961  * accesses are to the non-secure version.
1962  */
1963 static inline bool access_secure_reg(CPUARMState *env)
1964 {
1965     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1966                 !arm_el_is_aa64(env, 3) &&
1967                 !(env->cp15.scr_el3 & SCR_NS));
1968 
1969     return ret;
1970 }
1971 
1972 /* Macros for accessing a specified CP register bank */
1973 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1974     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1975 
1976 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1977     do {                                                \
1978         if (_secure) {                                   \
1979             (_env)->cp15._regname##_s = (_val);            \
1980         } else {                                        \
1981             (_env)->cp15._regname##_ns = (_val);           \
1982         }                                               \
1983     } while (0)
1984 
1985 /* Macros for automatically accessing a specific CP register bank depending on
1986  * the current secure state of the system.  These macros are not intended for
1987  * supporting instruction translation reads/writes as these are dependent
1988  * solely on the SCR.NS bit and not the mode.
1989  */
1990 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1991     A32_BANKED_REG_GET((_env), _regname,                \
1992                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1993 
1994 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1995     A32_BANKED_REG_SET((_env), _regname,                                    \
1996                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1997                        (_val))
1998 
1999 void arm_cpu_list(void);
2000 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2001                                  uint32_t cur_el, bool secure);
2002 
2003 /* Interface between CPU and Interrupt controller.  */
2004 #ifndef CONFIG_USER_ONLY
2005 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2006 #else
2007 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2008 {
2009     return true;
2010 }
2011 #endif
2012 /**
2013  * armv7m_nvic_set_pending: mark the specified exception as pending
2014  * @opaque: the NVIC
2015  * @irq: the exception number to mark pending
2016  * @secure: false for non-banked exceptions or for the nonsecure
2017  * version of a banked exception, true for the secure version of a banked
2018  * exception.
2019  *
2020  * Marks the specified exception as pending. Note that we will assert()
2021  * if @secure is true and @irq does not specify one of the fixed set
2022  * of architecturally banked exceptions.
2023  */
2024 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2025 /**
2026  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2027  * @opaque: the NVIC
2028  * @irq: the exception number to mark pending
2029  * @secure: false for non-banked exceptions or for the nonsecure
2030  * version of a banked exception, true for the secure version of a banked
2031  * exception.
2032  *
2033  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2034  * exceptions (exceptions generated in the course of trying to take
2035  * a different exception).
2036  */
2037 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2038 /**
2039  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2040  * @opaque: the NVIC
2041  * @irq: the exception number to mark pending
2042  * @secure: false for non-banked exceptions or for the nonsecure
2043  * version of a banked exception, true for the secure version of a banked
2044  * exception.
2045  *
2046  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2047  * generated in the course of lazy stacking of FP registers.
2048  */
2049 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2050 /**
2051  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2052  *    exception, and whether it targets Secure state
2053  * @opaque: the NVIC
2054  * @pirq: set to pending exception number
2055  * @ptargets_secure: set to whether pending exception targets Secure
2056  *
2057  * This function writes the number of the highest priority pending
2058  * exception (the one which would be made active by
2059  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2060  * to true if the current highest priority pending exception should
2061  * be taken to Secure state, false for NS.
2062  */
2063 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2064                                       bool *ptargets_secure);
2065 /**
2066  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2067  * @opaque: the NVIC
2068  *
2069  * Move the current highest priority pending exception from the pending
2070  * state to the active state, and update v7m.exception to indicate that
2071  * it is the exception currently being handled.
2072  */
2073 void armv7m_nvic_acknowledge_irq(void *opaque);
2074 /**
2075  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2076  * @opaque: the NVIC
2077  * @irq: the exception number to complete
2078  * @secure: true if this exception was secure
2079  *
2080  * Returns: -1 if the irq was not active
2081  *           1 if completing this irq brought us back to base (no active irqs)
2082  *           0 if there is still an irq active after this one was completed
2083  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2084  */
2085 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2086 /**
2087  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2088  * @opaque: the NVIC
2089  * @irq: the exception number to mark pending
2090  * @secure: false for non-banked exceptions or for the nonsecure
2091  * version of a banked exception, true for the secure version of a banked
2092  * exception.
2093  *
2094  * Return whether an exception is "ready", i.e. whether the exception is
2095  * enabled and is configured at a priority which would allow it to
2096  * interrupt the current execution priority. This controls whether the
2097  * RDY bit for it in the FPCCR is set.
2098  */
2099 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2100 /**
2101  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2102  * @opaque: the NVIC
2103  *
2104  * Returns: the raw execution priority as defined by the v8M architecture.
2105  * This is the execution priority minus the effects of AIRCR.PRIS,
2106  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2107  * (v8M ARM ARM I_PKLD.)
2108  */
2109 int armv7m_nvic_raw_execution_priority(void *opaque);
2110 /**
2111  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2112  * priority is negative for the specified security state.
2113  * @opaque: the NVIC
2114  * @secure: the security state to test
2115  * This corresponds to the pseudocode IsReqExecPriNeg().
2116  */
2117 #ifndef CONFIG_USER_ONLY
2118 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2119 #else
2120 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2121 {
2122     return false;
2123 }
2124 #endif
2125 
2126 /* Interface for defining coprocessor registers.
2127  * Registers are defined in tables of arm_cp_reginfo structs
2128  * which are passed to define_arm_cp_regs().
2129  */
2130 
2131 /* When looking up a coprocessor register we look for it
2132  * via an integer which encodes all of:
2133  *  coprocessor number
2134  *  Crn, Crm, opc1, opc2 fields
2135  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2136  *    or via MRRC/MCRR?)
2137  *  non-secure/secure bank (AArch32 only)
2138  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2139  * (In this case crn and opc2 should be zero.)
2140  * For AArch64, there is no 32/64 bit size distinction;
2141  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2142  * and 4 bit CRn and CRm. The encoding patterns are chosen
2143  * to be easy to convert to and from the KVM encodings, and also
2144  * so that the hashtable can contain both AArch32 and AArch64
2145  * registers (to allow for interprocessing where we might run
2146  * 32 bit code on a 64 bit core).
2147  */
2148 /* This bit is private to our hashtable cpreg; in KVM register
2149  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2150  * in the upper bits of the 64 bit ID.
2151  */
2152 #define CP_REG_AA64_SHIFT 28
2153 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2154 
2155 /* To enable banking of coprocessor registers depending on ns-bit we
2156  * add a bit to distinguish between secure and non-secure cpregs in the
2157  * hashtable.
2158  */
2159 #define CP_REG_NS_SHIFT 29
2160 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2161 
2162 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2163     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2164      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2165 
2166 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2167     (CP_REG_AA64_MASK |                                 \
2168      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2169      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2170      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2171      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2172      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2173      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2174 
2175 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2176  * version used as a key for the coprocessor register hashtable
2177  */
2178 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2179 {
2180     uint32_t cpregid = kvmid;
2181     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2182         cpregid |= CP_REG_AA64_MASK;
2183     } else {
2184         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2185             cpregid |= (1 << 15);
2186         }
2187 
2188         /* KVM is always non-secure so add the NS flag on AArch32 register
2189          * entries.
2190          */
2191          cpregid |= 1 << CP_REG_NS_SHIFT;
2192     }
2193     return cpregid;
2194 }
2195 
2196 /* Convert a truncated 32 bit hashtable key into the full
2197  * 64 bit KVM register ID.
2198  */
2199 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2200 {
2201     uint64_t kvmid;
2202 
2203     if (cpregid & CP_REG_AA64_MASK) {
2204         kvmid = cpregid & ~CP_REG_AA64_MASK;
2205         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2206     } else {
2207         kvmid = cpregid & ~(1 << 15);
2208         if (cpregid & (1 << 15)) {
2209             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2210         } else {
2211             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2212         }
2213     }
2214     return kvmid;
2215 }
2216 
2217 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2218  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2219  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2220  * TCG can assume the value to be constant (ie load at translate time)
2221  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2222  * indicates that the TB should not be ended after a write to this register
2223  * (the default is that the TB ends after cp writes). OVERRIDE permits
2224  * a register definition to override a previous definition for the
2225  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2226  * old must have the OVERRIDE bit set.
2227  * ALIAS indicates that this register is an alias view of some underlying
2228  * state which is also visible via another register, and that the other
2229  * register is handling migration and reset; registers marked ALIAS will not be
2230  * migrated but may have their state set by syncing of register state from KVM.
2231  * NO_RAW indicates that this register has no underlying state and does not
2232  * support raw access for state saving/loading; it will not be used for either
2233  * migration or KVM state synchronization. (Typically this is for "registers"
2234  * which are actually used as instructions for cache maintenance and so on.)
2235  * IO indicates that this register does I/O and therefore its accesses
2236  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2237  * registers which implement clocks or timers require this.
2238  * RAISES_EXC is for when the read or write hook might raise an exception;
2239  * the generated code will synchronize the CPU state before calling the hook
2240  * so that it is safe for the hook to call raise_exception().
2241  */
2242 #define ARM_CP_SPECIAL           0x0001
2243 #define ARM_CP_CONST             0x0002
2244 #define ARM_CP_64BIT             0x0004
2245 #define ARM_CP_SUPPRESS_TB_END   0x0008
2246 #define ARM_CP_OVERRIDE          0x0010
2247 #define ARM_CP_ALIAS             0x0020
2248 #define ARM_CP_IO                0x0040
2249 #define ARM_CP_NO_RAW            0x0080
2250 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2251 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2252 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2253 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2254 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2255 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2256 #define ARM_CP_FPU               0x1000
2257 #define ARM_CP_SVE               0x2000
2258 #define ARM_CP_NO_GDB            0x4000
2259 #define ARM_CP_RAISES_EXC        0x8000
2260 /* Used only as a terminator for ARMCPRegInfo lists */
2261 #define ARM_CP_SENTINEL          0xffff
2262 /* Mask of only the flag bits in a type field */
2263 #define ARM_CP_FLAG_MASK         0xf0ff
2264 
2265 /* Valid values for ARMCPRegInfo state field, indicating which of
2266  * the AArch32 and AArch64 execution states this register is visible in.
2267  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2268  * If the reginfo is declared to be visible in both states then a second
2269  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2270  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2271  * Note that we rely on the values of these enums as we iterate through
2272  * the various states in some places.
2273  */
2274 enum {
2275     ARM_CP_STATE_AA32 = 0,
2276     ARM_CP_STATE_AA64 = 1,
2277     ARM_CP_STATE_BOTH = 2,
2278 };
2279 
2280 /* ARM CP register secure state flags.  These flags identify security state
2281  * attributes for a given CP register entry.
2282  * The existence of both or neither secure and non-secure flags indicates that
2283  * the register has both a secure and non-secure hash entry.  A single one of
2284  * these flags causes the register to only be hashed for the specified
2285  * security state.
2286  * Although definitions may have any combination of the S/NS bits, each
2287  * registered entry will only have one to identify whether the entry is secure
2288  * or non-secure.
2289  */
2290 enum {
2291     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2292     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2293 };
2294 
2295 /* Return true if cptype is a valid type field. This is used to try to
2296  * catch errors where the sentinel has been accidentally left off the end
2297  * of a list of registers.
2298  */
2299 static inline bool cptype_valid(int cptype)
2300 {
2301     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2302         || ((cptype & ARM_CP_SPECIAL) &&
2303             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2304 }
2305 
2306 /* Access rights:
2307  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2308  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2309  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2310  * (ie any of the privileged modes in Secure state, or Monitor mode).
2311  * If a register is accessible in one privilege level it's always accessible
2312  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2313  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2314  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2315  * terminology a little and call this PL3.
2316  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2317  * with the ELx exception levels.
2318  *
2319  * If access permissions for a register are more complex than can be
2320  * described with these bits, then use a laxer set of restrictions, and
2321  * do the more restrictive/complex check inside a helper function.
2322  */
2323 #define PL3_R 0x80
2324 #define PL3_W 0x40
2325 #define PL2_R (0x20 | PL3_R)
2326 #define PL2_W (0x10 | PL3_W)
2327 #define PL1_R (0x08 | PL2_R)
2328 #define PL1_W (0x04 | PL2_W)
2329 #define PL0_R (0x02 | PL1_R)
2330 #define PL0_W (0x01 | PL1_W)
2331 
2332 /*
2333  * For user-mode some registers are accessible to EL0 via a kernel
2334  * trap-and-emulate ABI. In this case we define the read permissions
2335  * as actually being PL0_R. However some bits of any given register
2336  * may still be masked.
2337  */
2338 #ifdef CONFIG_USER_ONLY
2339 #define PL0U_R PL0_R
2340 #else
2341 #define PL0U_R PL1_R
2342 #endif
2343 
2344 #define PL3_RW (PL3_R | PL3_W)
2345 #define PL2_RW (PL2_R | PL2_W)
2346 #define PL1_RW (PL1_R | PL1_W)
2347 #define PL0_RW (PL0_R | PL0_W)
2348 
2349 /* Return the highest implemented Exception Level */
2350 static inline int arm_highest_el(CPUARMState *env)
2351 {
2352     if (arm_feature(env, ARM_FEATURE_EL3)) {
2353         return 3;
2354     }
2355     if (arm_feature(env, ARM_FEATURE_EL2)) {
2356         return 2;
2357     }
2358     return 1;
2359 }
2360 
2361 /* Return true if a v7M CPU is in Handler mode */
2362 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2363 {
2364     return env->v7m.exception != 0;
2365 }
2366 
2367 /* Return the current Exception Level (as per ARMv8; note that this differs
2368  * from the ARMv7 Privilege Level).
2369  */
2370 static inline int arm_current_el(CPUARMState *env)
2371 {
2372     if (arm_feature(env, ARM_FEATURE_M)) {
2373         return arm_v7m_is_handler_mode(env) ||
2374             !(env->v7m.control[env->v7m.secure] & 1);
2375     }
2376 
2377     if (is_a64(env)) {
2378         return extract32(env->pstate, 2, 2);
2379     }
2380 
2381     switch (env->uncached_cpsr & 0x1f) {
2382     case ARM_CPU_MODE_USR:
2383         return 0;
2384     case ARM_CPU_MODE_HYP:
2385         return 2;
2386     case ARM_CPU_MODE_MON:
2387         return 3;
2388     default:
2389         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2390             /* If EL3 is 32-bit then all secure privileged modes run in
2391              * EL3
2392              */
2393             return 3;
2394         }
2395 
2396         return 1;
2397     }
2398 }
2399 
2400 typedef struct ARMCPRegInfo ARMCPRegInfo;
2401 
2402 typedef enum CPAccessResult {
2403     /* Access is permitted */
2404     CP_ACCESS_OK = 0,
2405     /* Access fails due to a configurable trap or enable which would
2406      * result in a categorized exception syndrome giving information about
2407      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2408      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2409      * PL1 if in EL0, otherwise to the current EL).
2410      */
2411     CP_ACCESS_TRAP = 1,
2412     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2413      * Note that this is not a catch-all case -- the set of cases which may
2414      * result in this failure is specifically defined by the architecture.
2415      */
2416     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2417     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2418     CP_ACCESS_TRAP_EL2 = 3,
2419     CP_ACCESS_TRAP_EL3 = 4,
2420     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2421     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2422     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2423     /* Access fails and results in an exception syndrome for an FP access,
2424      * trapped directly to EL2 or EL3
2425      */
2426     CP_ACCESS_TRAP_FP_EL2 = 7,
2427     CP_ACCESS_TRAP_FP_EL3 = 8,
2428 } CPAccessResult;
2429 
2430 /* Access functions for coprocessor registers. These cannot fail and
2431  * may not raise exceptions.
2432  */
2433 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2434 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2435                        uint64_t value);
2436 /* Access permission check functions for coprocessor registers. */
2437 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2438                                   const ARMCPRegInfo *opaque,
2439                                   bool isread);
2440 /* Hook function for register reset */
2441 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2442 
2443 #define CP_ANY 0xff
2444 
2445 /* Definition of an ARM coprocessor register */
2446 struct ARMCPRegInfo {
2447     /* Name of register (useful mainly for debugging, need not be unique) */
2448     const char *name;
2449     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2450      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2451      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2452      * will be decoded to this register. The register read and write
2453      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2454      * used by the program, so it is possible to register a wildcard and
2455      * then behave differently on read/write if necessary.
2456      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2457      * must both be zero.
2458      * For AArch64-visible registers, opc0 is also used.
2459      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2460      * way to distinguish (for KVM's benefit) guest-visible system registers
2461      * from demuxed ones provided to preserve the "no side effects on
2462      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2463      * visible (to match KVM's encoding); cp==0 will be converted to
2464      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2465      */
2466     uint8_t cp;
2467     uint8_t crn;
2468     uint8_t crm;
2469     uint8_t opc0;
2470     uint8_t opc1;
2471     uint8_t opc2;
2472     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2473     int state;
2474     /* Register type: ARM_CP_* bits/values */
2475     int type;
2476     /* Access rights: PL*_[RW] */
2477     int access;
2478     /* Security state: ARM_CP_SECSTATE_* bits/values */
2479     int secure;
2480     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2481      * this register was defined: can be used to hand data through to the
2482      * register read/write functions, since they are passed the ARMCPRegInfo*.
2483      */
2484     void *opaque;
2485     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2486      * fieldoffset is non-zero, the reset value of the register.
2487      */
2488     uint64_t resetvalue;
2489     /* Offset of the field in CPUARMState for this register.
2490      *
2491      * This is not needed if either:
2492      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2493      *  2. both readfn and writefn are specified
2494      */
2495     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2496 
2497     /* Offsets of the secure and non-secure fields in CPUARMState for the
2498      * register if it is banked.  These fields are only used during the static
2499      * registration of a register.  During hashing the bank associated
2500      * with a given security state is copied to fieldoffset which is used from
2501      * there on out.
2502      *
2503      * It is expected that register definitions use either fieldoffset or
2504      * bank_fieldoffsets in the definition but not both.  It is also expected
2505      * that both bank offsets are set when defining a banked register.  This
2506      * use indicates that a register is banked.
2507      */
2508     ptrdiff_t bank_fieldoffsets[2];
2509 
2510     /* Function for making any access checks for this register in addition to
2511      * those specified by the 'access' permissions bits. If NULL, no extra
2512      * checks required. The access check is performed at runtime, not at
2513      * translate time.
2514      */
2515     CPAccessFn *accessfn;
2516     /* Function for handling reads of this register. If NULL, then reads
2517      * will be done by loading from the offset into CPUARMState specified
2518      * by fieldoffset.
2519      */
2520     CPReadFn *readfn;
2521     /* Function for handling writes of this register. If NULL, then writes
2522      * will be done by writing to the offset into CPUARMState specified
2523      * by fieldoffset.
2524      */
2525     CPWriteFn *writefn;
2526     /* Function for doing a "raw" read; used when we need to copy
2527      * coprocessor state to the kernel for KVM or out for
2528      * migration. This only needs to be provided if there is also a
2529      * readfn and it has side effects (for instance clear-on-read bits).
2530      */
2531     CPReadFn *raw_readfn;
2532     /* Function for doing a "raw" write; used when we need to copy KVM
2533      * kernel coprocessor state into userspace, or for inbound
2534      * migration. This only needs to be provided if there is also a
2535      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2536      * or similar behaviour.
2537      */
2538     CPWriteFn *raw_writefn;
2539     /* Function for resetting the register. If NULL, then reset will be done
2540      * by writing resetvalue to the field specified in fieldoffset. If
2541      * fieldoffset is 0 then no reset will be done.
2542      */
2543     CPResetFn *resetfn;
2544 };
2545 
2546 /* Macros which are lvalues for the field in CPUARMState for the
2547  * ARMCPRegInfo *ri.
2548  */
2549 #define CPREG_FIELD32(env, ri) \
2550     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2551 #define CPREG_FIELD64(env, ri) \
2552     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2553 
2554 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2555 
2556 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2557                                     const ARMCPRegInfo *regs, void *opaque);
2558 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2559                                        const ARMCPRegInfo *regs, void *opaque);
2560 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2561 {
2562     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2563 }
2564 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2565 {
2566     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2567 }
2568 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2569 
2570 /*
2571  * Definition of an ARM co-processor register as viewed from
2572  * userspace. This is used for presenting sanitised versions of
2573  * registers to userspace when emulating the Linux AArch64 CPU
2574  * ID/feature ABI (advertised as HWCAP_CPUID).
2575  */
2576 typedef struct ARMCPRegUserSpaceInfo {
2577     /* Name of register */
2578     const char *name;
2579 
2580     /* Is the name actually a glob pattern */
2581     bool is_glob;
2582 
2583     /* Only some bits are exported to user space */
2584     uint64_t exported_bits;
2585 
2586     /* Fixed bits are applied after the mask */
2587     uint64_t fixed_bits;
2588 } ARMCPRegUserSpaceInfo;
2589 
2590 #define REGUSERINFO_SENTINEL { .name = NULL }
2591 
2592 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2593 
2594 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2595 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2596                          uint64_t value);
2597 /* CPReadFn that can be used for read-as-zero behaviour */
2598 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2599 
2600 /* CPResetFn that does nothing, for use if no reset is required even
2601  * if fieldoffset is non zero.
2602  */
2603 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2604 
2605 /* Return true if this reginfo struct's field in the cpu state struct
2606  * is 64 bits wide.
2607  */
2608 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2609 {
2610     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2611 }
2612 
2613 static inline bool cp_access_ok(int current_el,
2614                                 const ARMCPRegInfo *ri, int isread)
2615 {
2616     return (ri->access >> ((current_el * 2) + isread)) & 1;
2617 }
2618 
2619 /* Raw read of a coprocessor register (as needed for migration, etc) */
2620 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2621 
2622 /**
2623  * write_list_to_cpustate
2624  * @cpu: ARMCPU
2625  *
2626  * For each register listed in the ARMCPU cpreg_indexes list, write
2627  * its value from the cpreg_values list into the ARMCPUState structure.
2628  * This updates TCG's working data structures from KVM data or
2629  * from incoming migration state.
2630  *
2631  * Returns: true if all register values were updated correctly,
2632  * false if some register was unknown or could not be written.
2633  * Note that we do not stop early on failure -- we will attempt
2634  * writing all registers in the list.
2635  */
2636 bool write_list_to_cpustate(ARMCPU *cpu);
2637 
2638 /**
2639  * write_cpustate_to_list:
2640  * @cpu: ARMCPU
2641  * @kvm_sync: true if this is for syncing back to KVM
2642  *
2643  * For each register listed in the ARMCPU cpreg_indexes list, write
2644  * its value from the ARMCPUState structure into the cpreg_values list.
2645  * This is used to copy info from TCG's working data structures into
2646  * KVM or for outbound migration.
2647  *
2648  * @kvm_sync is true if we are doing this in order to sync the
2649  * register state back to KVM. In this case we will only update
2650  * values in the list if the previous list->cpustate sync actually
2651  * successfully wrote the CPU state. Otherwise we will keep the value
2652  * that is in the list.
2653  *
2654  * Returns: true if all register values were read correctly,
2655  * false if some register was unknown or could not be read.
2656  * Note that we do not stop early on failure -- we will attempt
2657  * reading all registers in the list.
2658  */
2659 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2660 
2661 #define ARM_CPUID_TI915T      0x54029152
2662 #define ARM_CPUID_TI925T      0x54029252
2663 
2664 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2665                                      unsigned int target_el)
2666 {
2667     CPUARMState *env = cs->env_ptr;
2668     unsigned int cur_el = arm_current_el(env);
2669     bool secure = arm_is_secure(env);
2670     bool pstate_unmasked;
2671     int8_t unmasked = 0;
2672     uint64_t hcr_el2;
2673 
2674     /* Don't take exceptions if they target a lower EL.
2675      * This check should catch any exceptions that would not be taken but left
2676      * pending.
2677      */
2678     if (cur_el > target_el) {
2679         return false;
2680     }
2681 
2682     hcr_el2 = arm_hcr_el2_eff(env);
2683 
2684     switch (excp_idx) {
2685     case EXCP_FIQ:
2686         pstate_unmasked = !(env->daif & PSTATE_F);
2687         break;
2688 
2689     case EXCP_IRQ:
2690         pstate_unmasked = !(env->daif & PSTATE_I);
2691         break;
2692 
2693     case EXCP_VFIQ:
2694         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2695             /* VFIQs are only taken when hypervized and non-secure.  */
2696             return false;
2697         }
2698         return !(env->daif & PSTATE_F);
2699     case EXCP_VIRQ:
2700         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2701             /* VIRQs are only taken when hypervized and non-secure.  */
2702             return false;
2703         }
2704         return !(env->daif & PSTATE_I);
2705     default:
2706         g_assert_not_reached();
2707     }
2708 
2709     /* Use the target EL, current execution state and SCR/HCR settings to
2710      * determine whether the corresponding CPSR bit is used to mask the
2711      * interrupt.
2712      */
2713     if ((target_el > cur_el) && (target_el != 1)) {
2714         /* Exceptions targeting a higher EL may not be maskable */
2715         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2716             /* 64-bit masking rules are simple: exceptions to EL3
2717              * can't be masked, and exceptions to EL2 can only be
2718              * masked from Secure state. The HCR and SCR settings
2719              * don't affect the masking logic, only the interrupt routing.
2720              */
2721             if (target_el == 3 || !secure) {
2722                 unmasked = 1;
2723             }
2724         } else {
2725             /* The old 32-bit-only environment has a more complicated
2726              * masking setup. HCR and SCR bits not only affect interrupt
2727              * routing but also change the behaviour of masking.
2728              */
2729             bool hcr, scr;
2730 
2731             switch (excp_idx) {
2732             case EXCP_FIQ:
2733                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2734                  * we override the CPSR.F in determining if the exception is
2735                  * masked or not. If neither of these are set then we fall back
2736                  * to the CPSR.F setting otherwise we further assess the state
2737                  * below.
2738                  */
2739                 hcr = hcr_el2 & HCR_FMO;
2740                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2741 
2742                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2743                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2744                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2745                  * when non-secure but only when FIQs are only routed to EL3.
2746                  */
2747                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2748                 break;
2749             case EXCP_IRQ:
2750                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2751                  * we may override the CPSR.I masking when in non-secure state.
2752                  * The SCR.IRQ setting has already been taken into consideration
2753                  * when setting the target EL, so it does not have a further
2754                  * affect here.
2755                  */
2756                 hcr = hcr_el2 & HCR_IMO;
2757                 scr = false;
2758                 break;
2759             default:
2760                 g_assert_not_reached();
2761             }
2762 
2763             if ((scr || hcr) && !secure) {
2764                 unmasked = 1;
2765             }
2766         }
2767     }
2768 
2769     /* The PSTATE bits only mask the interrupt if we have not overriden the
2770      * ability above.
2771      */
2772     return unmasked || pstate_unmasked;
2773 }
2774 
2775 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2776 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2777 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2778 
2779 #define cpu_signal_handler cpu_arm_signal_handler
2780 #define cpu_list arm_cpu_list
2781 
2782 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2783  *
2784  * If EL3 is 64-bit:
2785  *  + NonSecure EL1 & 0 stage 1
2786  *  + NonSecure EL1 & 0 stage 2
2787  *  + NonSecure EL2
2788  *  + Secure EL1 & EL0
2789  *  + Secure EL3
2790  * If EL3 is 32-bit:
2791  *  + NonSecure PL1 & 0 stage 1
2792  *  + NonSecure PL1 & 0 stage 2
2793  *  + NonSecure PL2
2794  *  + Secure PL0 & PL1
2795  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2796  *
2797  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2798  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2799  *     may differ in access permissions even if the VA->PA map is the same
2800  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2801  *     translation, which means that we have one mmu_idx that deals with two
2802  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2803  *     architecturally permitted]
2804  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2805  *     handling via the TLB. The only way to do a stage 1 translation without
2806  *     the immediate stage 2 translation is via the ATS or AT system insns,
2807  *     which can be slow-pathed and always do a page table walk.
2808  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2809  *     translation regimes, because they map reasonably well to each other
2810  *     and they can't both be active at the same time.
2811  * This gives us the following list of mmu_idx values:
2812  *
2813  * NS EL0 (aka NS PL0) stage 1+2
2814  * NS EL1 (aka NS PL1) stage 1+2
2815  * NS EL2 (aka NS PL2)
2816  * S EL3 (aka S PL1)
2817  * S EL0 (aka S PL0)
2818  * S EL1 (not used if EL3 is 32 bit)
2819  * NS EL0+1 stage 2
2820  *
2821  * (The last of these is an mmu_idx because we want to be able to use the TLB
2822  * for the accesses done as part of a stage 1 page table walk, rather than
2823  * having to walk the stage 2 page table over and over.)
2824  *
2825  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2826  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2827  * NS EL2 if we ever model a Cortex-R52).
2828  *
2829  * M profile CPUs are rather different as they do not have a true MMU.
2830  * They have the following different MMU indexes:
2831  *  User
2832  *  Privileged
2833  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2834  *  Privileged, execution priority negative (ditto)
2835  * If the CPU supports the v8M Security Extension then there are also:
2836  *  Secure User
2837  *  Secure Privileged
2838  *  Secure User, execution priority negative
2839  *  Secure Privileged, execution priority negative
2840  *
2841  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2842  * are not quite the same -- different CPU types (most notably M profile
2843  * vs A/R profile) would like to use MMU indexes with different semantics,
2844  * but since we don't ever need to use all of those in a single CPU we
2845  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2846  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2847  * the same for any particular CPU.
2848  * Variables of type ARMMUIdx are always full values, and the core
2849  * index values are in variables of type 'int'.
2850  *
2851  * Our enumeration includes at the end some entries which are not "true"
2852  * mmu_idx values in that they don't have corresponding TLBs and are only
2853  * valid for doing slow path page table walks.
2854  *
2855  * The constant names here are patterned after the general style of the names
2856  * of the AT/ATS operations.
2857  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2858  * For M profile we arrange them to have a bit for priv, a bit for negpri
2859  * and a bit for secure.
2860  */
2861 #define ARM_MMU_IDX_A 0x10 /* A profile */
2862 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2863 #define ARM_MMU_IDX_M 0x40 /* M profile */
2864 
2865 /* meanings of the bits for M profile mmu idx values */
2866 #define ARM_MMU_IDX_M_PRIV 0x1
2867 #define ARM_MMU_IDX_M_NEGPRI 0x2
2868 #define ARM_MMU_IDX_M_S 0x4
2869 
2870 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2871 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2872 
2873 typedef enum ARMMMUIdx {
2874     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2875     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2876     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2877     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2878     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2879     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2880     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2881     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2882     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2883     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2884     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2885     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2886     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2887     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2888     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2889     /* Indexes below here don't have TLBs and are used only for AT system
2890      * instructions or for the first stage of an S12 page table walk.
2891      */
2892     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2893     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2894 } ARMMMUIdx;
2895 
2896 /* Bit macros for the core-mmu-index values for each index,
2897  * for use when calling tlb_flush_by_mmuidx() and friends.
2898  */
2899 typedef enum ARMMMUIdxBit {
2900     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2901     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2902     ARMMMUIdxBit_S1E2 = 1 << 2,
2903     ARMMMUIdxBit_S1E3 = 1 << 3,
2904     ARMMMUIdxBit_S1SE0 = 1 << 4,
2905     ARMMMUIdxBit_S1SE1 = 1 << 5,
2906     ARMMMUIdxBit_S2NS = 1 << 6,
2907     ARMMMUIdxBit_MUser = 1 << 0,
2908     ARMMMUIdxBit_MPriv = 1 << 1,
2909     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2910     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2911     ARMMMUIdxBit_MSUser = 1 << 4,
2912     ARMMMUIdxBit_MSPriv = 1 << 5,
2913     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2914     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2915 } ARMMMUIdxBit;
2916 
2917 #define MMU_USER_IDX 0
2918 
2919 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2920 {
2921     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2922 }
2923 
2924 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2925 {
2926     if (arm_feature(env, ARM_FEATURE_M)) {
2927         return mmu_idx | ARM_MMU_IDX_M;
2928     } else {
2929         return mmu_idx | ARM_MMU_IDX_A;
2930     }
2931 }
2932 
2933 /* Return the exception level we're running at if this is our mmu_idx */
2934 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2935 {
2936     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2937     case ARM_MMU_IDX_A:
2938         return mmu_idx & 3;
2939     case ARM_MMU_IDX_M:
2940         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2941     default:
2942         g_assert_not_reached();
2943     }
2944 }
2945 
2946 /*
2947  * Return the MMU index for a v7M CPU with all relevant information
2948  * manually specified.
2949  */
2950 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2951                               bool secstate, bool priv, bool negpri);
2952 
2953 /* Return the MMU index for a v7M CPU in the specified security and
2954  * privilege state.
2955  */
2956 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2957                                                 bool secstate, bool priv);
2958 
2959 /* Return the MMU index for a v7M CPU in the specified security state */
2960 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2961 
2962 /**
2963  * cpu_mmu_index:
2964  * @env: The cpu environment
2965  * @ifetch: True for code access, false for data access.
2966  *
2967  * Return the core mmu index for the current translation regime.
2968  * This function is used by generic TCG code paths.
2969  */
2970 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2971 
2972 /* Indexes used when registering address spaces with cpu_address_space_init */
2973 typedef enum ARMASIdx {
2974     ARMASIdx_NS = 0,
2975     ARMASIdx_S = 1,
2976 } ARMASIdx;
2977 
2978 /* Return the Exception Level targeted by debug exceptions. */
2979 static inline int arm_debug_target_el(CPUARMState *env)
2980 {
2981     bool secure = arm_is_secure(env);
2982     bool route_to_el2 = false;
2983 
2984     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2985         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2986                        env->cp15.mdcr_el2 & MDCR_TDE;
2987     }
2988 
2989     if (route_to_el2) {
2990         return 2;
2991     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2992                !arm_el_is_aa64(env, 3) && secure) {
2993         return 3;
2994     } else {
2995         return 1;
2996     }
2997 }
2998 
2999 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3000 {
3001     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3002      * CSSELR is RAZ/WI.
3003      */
3004     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3005 }
3006 
3007 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3008 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3009 {
3010     int cur_el = arm_current_el(env);
3011     int debug_el;
3012 
3013     if (cur_el == 3) {
3014         return false;
3015     }
3016 
3017     /* MDCR_EL3.SDD disables debug events from Secure state */
3018     if (arm_is_secure_below_el3(env)
3019         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3020         return false;
3021     }
3022 
3023     /*
3024      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3025      * while not masking the (D)ebug bit in DAIF.
3026      */
3027     debug_el = arm_debug_target_el(env);
3028 
3029     if (cur_el == debug_el) {
3030         return extract32(env->cp15.mdscr_el1, 13, 1)
3031             && !(env->daif & PSTATE_D);
3032     }
3033 
3034     /* Otherwise the debug target needs to be a higher EL */
3035     return debug_el > cur_el;
3036 }
3037 
3038 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3039 {
3040     int el = arm_current_el(env);
3041 
3042     if (el == 0 && arm_el_is_aa64(env, 1)) {
3043         return aa64_generate_debug_exceptions(env);
3044     }
3045 
3046     if (arm_is_secure(env)) {
3047         int spd;
3048 
3049         if (el == 0 && (env->cp15.sder & 1)) {
3050             /* SDER.SUIDEN means debug exceptions from Secure EL0
3051              * are always enabled. Otherwise they are controlled by
3052              * SDCR.SPD like those from other Secure ELs.
3053              */
3054             return true;
3055         }
3056 
3057         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3058         switch (spd) {
3059         case 1:
3060             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3061         case 0:
3062             /* For 0b00 we return true if external secure invasive debug
3063              * is enabled. On real hardware this is controlled by external
3064              * signals to the core. QEMU always permits debug, and behaves
3065              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3066              */
3067             return true;
3068         case 2:
3069             return false;
3070         case 3:
3071             return true;
3072         }
3073     }
3074 
3075     return el != 2;
3076 }
3077 
3078 /* Return true if debugging exceptions are currently enabled.
3079  * This corresponds to what in ARM ARM pseudocode would be
3080  *    if UsingAArch32() then
3081  *        return AArch32.GenerateDebugExceptions()
3082  *    else
3083  *        return AArch64.GenerateDebugExceptions()
3084  * We choose to push the if() down into this function for clarity,
3085  * since the pseudocode has it at all callsites except for the one in
3086  * CheckSoftwareStep(), where it is elided because both branches would
3087  * always return the same value.
3088  */
3089 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3090 {
3091     if (env->aarch64) {
3092         return aa64_generate_debug_exceptions(env);
3093     } else {
3094         return aa32_generate_debug_exceptions(env);
3095     }
3096 }
3097 
3098 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3099  * implicitly means this always returns false in pre-v8 CPUs.)
3100  */
3101 static inline bool arm_singlestep_active(CPUARMState *env)
3102 {
3103     return extract32(env->cp15.mdscr_el1, 0, 1)
3104         && arm_el_is_aa64(env, arm_debug_target_el(env))
3105         && arm_generate_debug_exceptions(env);
3106 }
3107 
3108 static inline bool arm_sctlr_b(CPUARMState *env)
3109 {
3110     return
3111         /* We need not implement SCTLR.ITD in user-mode emulation, so
3112          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3113          * This lets people run BE32 binaries with "-cpu any".
3114          */
3115 #ifndef CONFIG_USER_ONLY
3116         !arm_feature(env, ARM_FEATURE_V7) &&
3117 #endif
3118         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3119 }
3120 
3121 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3122 {
3123     if (el == 0) {
3124         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3125         return env->cp15.sctlr_el[1];
3126     } else {
3127         return env->cp15.sctlr_el[el];
3128     }
3129 }
3130 
3131 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3132                                                   bool sctlr_b)
3133 {
3134 #ifdef CONFIG_USER_ONLY
3135     /*
3136      * In system mode, BE32 is modelled in line with the
3137      * architecture (as word-invariant big-endianness), where loads
3138      * and stores are done little endian but from addresses which
3139      * are adjusted by XORing with the appropriate constant. So the
3140      * endianness to use for the raw data access is not affected by
3141      * SCTLR.B.
3142      * In user mode, however, we model BE32 as byte-invariant
3143      * big-endianness (because user-only code cannot tell the
3144      * difference), and so we need to use a data access endianness
3145      * that depends on SCTLR.B.
3146      */
3147     if (sctlr_b) {
3148         return true;
3149     }
3150 #endif
3151     /* In 32bit endianness is determined by looking at CPSR's E bit */
3152     return env->uncached_cpsr & CPSR_E;
3153 }
3154 
3155 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3156 {
3157     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3158 }
3159 
3160 /* Return true if the processor is in big-endian mode. */
3161 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3162 {
3163     if (!is_a64(env)) {
3164         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3165     } else {
3166         int cur_el = arm_current_el(env);
3167         uint64_t sctlr = arm_sctlr(env, cur_el);
3168         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3169     }
3170 }
3171 
3172 typedef CPUARMState CPUArchState;
3173 typedef ARMCPU ArchCPU;
3174 
3175 #include "exec/cpu-all.h"
3176 
3177 /*
3178  * Bit usage in the TB flags field: bit 31 indicates whether we are
3179  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3180  * We put flags which are shared between 32 and 64 bit mode at the top
3181  * of the word, and flags which apply to only one mode at the bottom.
3182  *
3183  * Unless otherwise noted, these bits are cached in env->hflags.
3184  */
3185 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3186 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3187 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3188 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)     /* Not cached. */
3189 /* Target EL if we take a floating-point-disabled exception */
3190 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3191 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3192 /*
3193  * For A-profile only, target EL for debug exceptions.
3194  * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3195  */
3196 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3197 
3198 /* Bit usage when in AArch32 state: */
3199 FIELD(TBFLAG_A32, THUMB, 0, 1)          /* Not cached. */
3200 FIELD(TBFLAG_A32, VECLEN, 1, 3)         /* Not cached. */
3201 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)      /* Not cached. */
3202 /*
3203  * We store the bottom two bits of the CPAR as TB flags and handle
3204  * checks on the other bits at runtime. This shares the same bits as
3205  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3206  * Not cached, because VECLEN+VECSTRIDE are not cached.
3207  */
3208 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3209 /*
3210  * Indicates whether cp register reads and writes by guest code should access
3211  * the secure or nonsecure bank of banked registers; note that this is not
3212  * the same thing as the current security state of the processor!
3213  */
3214 FIELD(TBFLAG_A32, NS, 6, 1)
3215 FIELD(TBFLAG_A32, VFPEN, 7, 1)          /* Partially cached, minus FPEXC. */
3216 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)       /* Not cached. */
3217 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3218 FIELD(TBFLAG_A32, HSTR_ACTIVE, 17, 1)
3219 
3220 /* For M profile only, set if FPCCR.LSPACT is set */
3221 FIELD(TBFLAG_A32, LSPACT, 18, 1)        /* Not cached. */
3222 /* For M profile only, set if we must create a new FP context */
3223 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
3224 /* For M profile only, set if FPCCR.S does not match current security state */
3225 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
3226 /* For M profile only, Handler (ie not Thread) mode */
3227 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3228 /* For M profile only, whether we should generate stack-limit checks */
3229 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3230 
3231 /* Bit usage when in AArch64 state */
3232 FIELD(TBFLAG_A64, TBII, 0, 2)
3233 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3234 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3235 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3236 FIELD(TBFLAG_A64, BT, 9, 1)
3237 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3238 FIELD(TBFLAG_A64, TBID, 12, 2)
3239 
3240 static inline bool bswap_code(bool sctlr_b)
3241 {
3242 #ifdef CONFIG_USER_ONLY
3243     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3244      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3245      * would also end up as a mixed-endian mode with BE code, LE data.
3246      */
3247     return
3248 #ifdef TARGET_WORDS_BIGENDIAN
3249         1 ^
3250 #endif
3251         sctlr_b;
3252 #else
3253     /* All code access in ARM is little endian, and there are no loaders
3254      * doing swaps that need to be reversed
3255      */
3256     return 0;
3257 #endif
3258 }
3259 
3260 #ifdef CONFIG_USER_ONLY
3261 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3262 {
3263     return
3264 #ifdef TARGET_WORDS_BIGENDIAN
3265        1 ^
3266 #endif
3267        arm_cpu_data_is_big_endian(env);
3268 }
3269 #endif
3270 
3271 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3272                           target_ulong *cs_base, uint32_t *flags);
3273 
3274 enum {
3275     QEMU_PSCI_CONDUIT_DISABLED = 0,
3276     QEMU_PSCI_CONDUIT_SMC = 1,
3277     QEMU_PSCI_CONDUIT_HVC = 2,
3278 };
3279 
3280 #ifndef CONFIG_USER_ONLY
3281 /* Return the address space index to use for a memory access */
3282 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3283 {
3284     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3285 }
3286 
3287 /* Return the AddressSpace to use for a memory access
3288  * (which depends on whether the access is S or NS, and whether
3289  * the board gave us a separate AddressSpace for S accesses).
3290  */
3291 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3292 {
3293     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3294 }
3295 #endif
3296 
3297 /**
3298  * arm_register_pre_el_change_hook:
3299  * Register a hook function which will be called immediately before this
3300  * CPU changes exception level or mode. The hook function will be
3301  * passed a pointer to the ARMCPU and the opaque data pointer passed
3302  * to this function when the hook was registered.
3303  *
3304  * Note that if a pre-change hook is called, any registered post-change hooks
3305  * are guaranteed to subsequently be called.
3306  */
3307 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3308                                  void *opaque);
3309 /**
3310  * arm_register_el_change_hook:
3311  * Register a hook function which will be called immediately after this
3312  * CPU changes exception level or mode. The hook function will be
3313  * passed a pointer to the ARMCPU and the opaque data pointer passed
3314  * to this function when the hook was registered.
3315  *
3316  * Note that any registered hooks registered here are guaranteed to be called
3317  * if pre-change hooks have been.
3318  */
3319 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3320         *opaque);
3321 
3322 /**
3323  * arm_rebuild_hflags:
3324  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3325  */
3326 void arm_rebuild_hflags(CPUARMState *env);
3327 
3328 /**
3329  * aa32_vfp_dreg:
3330  * Return a pointer to the Dn register within env in 32-bit mode.
3331  */
3332 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3333 {
3334     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3335 }
3336 
3337 /**
3338  * aa32_vfp_qreg:
3339  * Return a pointer to the Qn register within env in 32-bit mode.
3340  */
3341 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3342 {
3343     return &env->vfp.zregs[regno].d[0];
3344 }
3345 
3346 /**
3347  * aa64_vfp_qreg:
3348  * Return a pointer to the Qn register within env in 64-bit mode.
3349  */
3350 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3351 {
3352     return &env->vfp.zregs[regno].d[0];
3353 }
3354 
3355 /* Shared between translate-sve.c and sve_helper.c.  */
3356 extern const uint64_t pred_esz_masks[4];
3357 
3358 /*
3359  * 32-bit feature tests via id registers.
3360  */
3361 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3362 {
3363     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3364 }
3365 
3366 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3367 {
3368     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3369 }
3370 
3371 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3372 {
3373     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3374 }
3375 
3376 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3377 {
3378     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3379 }
3380 
3381 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3382 {
3383     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3384 }
3385 
3386 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3387 {
3388     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3389 }
3390 
3391 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3392 {
3393     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3394 }
3395 
3396 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3397 {
3398     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3399 }
3400 
3401 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3402 {
3403     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3404 }
3405 
3406 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3407 {
3408     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3409 }
3410 
3411 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3412 {
3413     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3414 }
3415 
3416 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3417 {
3418     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3419 }
3420 
3421 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3422 {
3423     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3424 }
3425 
3426 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3427 {
3428     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3429 }
3430 
3431 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3432 {
3433     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3434 }
3435 
3436 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3437 {
3438     /*
3439      * This is a placeholder for use by VCMA until the rest of
3440      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3441      * At which point we can properly set and check MVFR1.FPHP.
3442      */
3443     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3444 }
3445 
3446 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3447 {
3448     /* Return true if D16-D31 are implemented */
3449     return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3450 }
3451 
3452 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3453 {
3454     return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3455 }
3456 
3457 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3458 {
3459     /* Return true if CPU supports double precision floating point */
3460     return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3461 }
3462 
3463 /*
3464  * We always set the FP and SIMD FP16 fields to indicate identical
3465  * levels of support (assuming SIMD is implemented at all), so
3466  * we only need one set of accessors.
3467  */
3468 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3469 {
3470     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3471 }
3472 
3473 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3476 }
3477 
3478 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3479 {
3480     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3481 }
3482 
3483 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3484 {
3485     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3486 }
3487 
3488 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3489 {
3490     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3491 }
3492 
3493 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3496 }
3497 
3498 /*
3499  * 64-bit feature tests via id registers.
3500  */
3501 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3502 {
3503     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3504 }
3505 
3506 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3507 {
3508     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3509 }
3510 
3511 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3512 {
3513     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3514 }
3515 
3516 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3517 {
3518     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3519 }
3520 
3521 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3522 {
3523     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3524 }
3525 
3526 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3527 {
3528     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3529 }
3530 
3531 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3532 {
3533     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3534 }
3535 
3536 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3537 {
3538     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3539 }
3540 
3541 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3542 {
3543     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3544 }
3545 
3546 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3547 {
3548     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3549 }
3550 
3551 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3552 {
3553     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3554 }
3555 
3556 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3557 {
3558     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3559 }
3560 
3561 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3562 {
3563     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3564 }
3565 
3566 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3567 {
3568     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3569 }
3570 
3571 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3572 {
3573     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3574 }
3575 
3576 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3577 {
3578     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3579 }
3580 
3581 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3582 {
3583     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3584 }
3585 
3586 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3587 {
3588     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3589 }
3590 
3591 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3592 {
3593     /*
3594      * Note that while QEMU will only implement the architected algorithm
3595      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3596      * defined algorithms, and thus API+GPI, and this predicate controls
3597      * migration of the 128-bit keys.
3598      */
3599     return (id->id_aa64isar1 &
3600             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3601              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3602              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3603              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3604 }
3605 
3606 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3607 {
3608     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3609 }
3610 
3611 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3612 {
3613     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3614 }
3615 
3616 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3617 {
3618     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3619 }
3620 
3621 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3622 {
3623     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3624 }
3625 
3626 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3627 {
3628     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3629 }
3630 
3631 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3632 {
3633     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3634     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3635 }
3636 
3637 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3638 {
3639     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3640 }
3641 
3642 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3643 {
3644     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3645 }
3646 
3647 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3648 {
3649     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3650 }
3651 
3652 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3653 {
3654     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3655 }
3656 
3657 /*
3658  * Forward to the above feature tests given an ARMCPU pointer.
3659  */
3660 #define cpu_isar_feature(name, cpu) \
3661     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3662 
3663 #endif
3664