xref: /openbmc/qemu/target/arm/cpu.h (revision f28d0dfd)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
60 
61 #define ARMV7M_EXCP_RESET   1
62 #define ARMV7M_EXCP_NMI     2
63 #define ARMV7M_EXCP_HARD    3
64 #define ARMV7M_EXCP_MEM     4
65 #define ARMV7M_EXCP_BUS     5
66 #define ARMV7M_EXCP_USAGE   6
67 #define ARMV7M_EXCP_SECURE  7
68 #define ARMV7M_EXCP_SVC     11
69 #define ARMV7M_EXCP_DEBUG   12
70 #define ARMV7M_EXCP_PENDSV  14
71 #define ARMV7M_EXCP_SYSTICK 15
72 
73 /* For M profile, some registers are banked secure vs non-secure;
74  * these are represented as a 2-element array where the first element
75  * is the non-secure copy and the second is the secure copy.
76  * When the CPU does not have implement the security extension then
77  * only the first element is used.
78  * This means that the copy for the current security state can be
79  * accessed via env->registerfield[env->v7m.secure] (whether the security
80  * extension is implemented or not).
81  */
82 enum {
83     M_REG_NS = 0,
84     M_REG_S = 1,
85     M_REG_NUM_BANKS = 2,
86 };
87 
88 /* ARM-specific interrupt pending bits.  */
89 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
90 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
91 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
92 
93 /* The usual mapping for an AArch64 system register to its AArch32
94  * counterpart is for the 32 bit world to have access to the lower
95  * half only (with writes leaving the upper half untouched). It's
96  * therefore useful to be able to pass TCG the offset of the least
97  * significant half of a uint64_t struct member.
98  */
99 #ifdef HOST_WORDS_BIGENDIAN
100 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #define offsetofhigh32(S, M) offsetof(S, M)
102 #else
103 #define offsetoflow32(S, M) offsetof(S, M)
104 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #endif
106 
107 /* Meanings of the ARMCPU object's four inbound GPIO lines */
108 #define ARM_CPU_IRQ 0
109 #define ARM_CPU_FIQ 1
110 #define ARM_CPU_VIRQ 2
111 #define ARM_CPU_VFIQ 3
112 
113 #define NB_MMU_MODES 8
114 /* ARM-specific extra insn start words:
115  * 1: Conditional execution bits
116  * 2: Partial exception syndrome for data aborts
117  */
118 #define TARGET_INSN_START_EXTRA_WORDS 2
119 
120 /* The 2nd extra word holding syndrome info for data aborts does not use
121  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122  * help the sleb128 encoder do a better job.
123  * When restoring the CPU state, we shift it back up.
124  */
125 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126 #define ARM_INSN_START_WORD2_SHIFT 14
127 
128 /* We currently assume float and double are IEEE single and double
129    precision respectively.
130    Doing runtime conversions is tricky because VFP registers may contain
131    integer values (eg. as the result of a FTOSI instruction).
132    s<2n> maps to the least significant half of d<n>
133    s<2n+1> maps to the most significant half of d<n>
134  */
135 
136 /**
137  * DynamicGDBXMLInfo:
138  * @desc: Contains the XML descriptions.
139  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
140  * @cpregs_keys: Array that contains the corresponding Key of
141  * a given cpreg with the same order of the cpreg in the XML description.
142  */
143 typedef struct DynamicGDBXMLInfo {
144     char *desc;
145     int num_cpregs;
146     uint32_t *cpregs_keys;
147 } DynamicGDBXMLInfo;
148 
149 /* CPU state for each instance of a generic timer (in cp15 c14) */
150 typedef struct ARMGenericTimer {
151     uint64_t cval; /* Timer CompareValue register */
152     uint64_t ctl; /* Timer Control register */
153 } ARMGenericTimer;
154 
155 #define GTIMER_PHYS 0
156 #define GTIMER_VIRT 1
157 #define GTIMER_HYP  2
158 #define GTIMER_SEC  3
159 #define NUM_GTIMERS 4
160 
161 typedef struct {
162     uint64_t raw_tcr;
163     uint32_t mask;
164     uint32_t base_mask;
165 } TCR;
166 
167 /* Define a maximum sized vector register.
168  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
169  * For 64-bit, this is a 2048-bit SVE register.
170  *
171  * Note that the mapping between S, D, and Q views of the register bank
172  * differs between AArch64 and AArch32.
173  * In AArch32:
174  *  Qn = regs[n].d[1]:regs[n].d[0]
175  *  Dn = regs[n / 2].d[n & 1]
176  *  Sn = regs[n / 4].d[n % 4 / 2],
177  *       bits 31..0 for even n, and bits 63..32 for odd n
178  *       (and regs[16] to regs[31] are inaccessible)
179  * In AArch64:
180  *  Zn = regs[n].d[*]
181  *  Qn = regs[n].d[1]:regs[n].d[0]
182  *  Dn = regs[n].d[0]
183  *  Sn = regs[n].d[0] bits 31..0
184  *  Hn = regs[n].d[0] bits 15..0
185  *
186  * This corresponds to the architecturally defined mapping between
187  * the two execution states, and means we do not need to explicitly
188  * map these registers when changing states.
189  *
190  * Align the data for use with TCG host vector operations.
191  */
192 
193 #ifdef TARGET_AARCH64
194 # define ARM_MAX_VQ    16
195 #else
196 # define ARM_MAX_VQ    1
197 #endif
198 
199 typedef struct ARMVectorReg {
200     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
201 } ARMVectorReg;
202 
203 /* In AArch32 mode, predicate registers do not exist at all.  */
204 #ifdef TARGET_AARCH64
205 typedef struct ARMPredicateReg {
206     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
207 } ARMPredicateReg;
208 #endif
209 
210 
211 typedef struct CPUARMState {
212     /* Regs for current mode.  */
213     uint32_t regs[16];
214 
215     /* 32/64 switch only happens when taking and returning from
216      * exceptions so the overlap semantics are taken care of then
217      * instead of having a complicated union.
218      */
219     /* Regs for A64 mode.  */
220     uint64_t xregs[32];
221     uint64_t pc;
222     /* PSTATE isn't an architectural register for ARMv8. However, it is
223      * convenient for us to assemble the underlying state into a 32 bit format
224      * identical to the architectural format used for the SPSR. (This is also
225      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
226      * 'pstate' register are.) Of the PSTATE bits:
227      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
228      *    semantics as for AArch32, as described in the comments on each field)
229      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
230      *  DAIF (exception masks) are kept in env->daif
231      *  all other bits are stored in their correct places in env->pstate
232      */
233     uint32_t pstate;
234     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
235 
236     /* Frequently accessed CPSR bits are stored separately for efficiency.
237        This contains all the other bits.  Use cpsr_{read,write} to access
238        the whole CPSR.  */
239     uint32_t uncached_cpsr;
240     uint32_t spsr;
241 
242     /* Banked registers.  */
243     uint64_t banked_spsr[8];
244     uint32_t banked_r13[8];
245     uint32_t banked_r14[8];
246 
247     /* These hold r8-r12.  */
248     uint32_t usr_regs[5];
249     uint32_t fiq_regs[5];
250 
251     /* cpsr flag cache for faster execution */
252     uint32_t CF; /* 0 or 1 */
253     uint32_t VF; /* V is the bit 31. All other bits are undefined */
254     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
255     uint32_t ZF; /* Z set if zero.  */
256     uint32_t QF; /* 0 or 1 */
257     uint32_t GE; /* cpsr[19:16] */
258     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
259     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
260     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261 
262     uint64_t elr_el[4]; /* AArch64 exception link regs  */
263     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
264 
265     /* System control coprocessor (cp15) */
266     struct {
267         uint32_t c0_cpuid;
268         union { /* Cache size selection */
269             struct {
270                 uint64_t _unused_csselr0;
271                 uint64_t csselr_ns;
272                 uint64_t _unused_csselr1;
273                 uint64_t csselr_s;
274             };
275             uint64_t csselr_el[4];
276         };
277         union { /* System control register. */
278             struct {
279                 uint64_t _unused_sctlr;
280                 uint64_t sctlr_ns;
281                 uint64_t hsctlr;
282                 uint64_t sctlr_s;
283             };
284             uint64_t sctlr_el[4];
285         };
286         uint64_t cpacr_el1; /* Architectural feature access control register */
287         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
288         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
289         uint64_t sder; /* Secure debug enable register. */
290         uint32_t nsacr; /* Non-secure access control register. */
291         union { /* MMU translation table base 0. */
292             struct {
293                 uint64_t _unused_ttbr0_0;
294                 uint64_t ttbr0_ns;
295                 uint64_t _unused_ttbr0_1;
296                 uint64_t ttbr0_s;
297             };
298             uint64_t ttbr0_el[4];
299         };
300         union { /* MMU translation table base 1. */
301             struct {
302                 uint64_t _unused_ttbr1_0;
303                 uint64_t ttbr1_ns;
304                 uint64_t _unused_ttbr1_1;
305                 uint64_t ttbr1_s;
306             };
307             uint64_t ttbr1_el[4];
308         };
309         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
310         /* MMU translation table base control. */
311         TCR tcr_el[4];
312         TCR vtcr_el2; /* Virtualization Translation Control.  */
313         uint32_t c2_data; /* MPU data cacheable bits.  */
314         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
315         union { /* MMU domain access control register
316                  * MPU write buffer control.
317                  */
318             struct {
319                 uint64_t dacr_ns;
320                 uint64_t dacr_s;
321             };
322             struct {
323                 uint64_t dacr32_el2;
324             };
325         };
326         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
328         uint64_t hcr_el2; /* Hypervisor configuration register */
329         uint64_t scr_el3; /* Secure configuration register.  */
330         union { /* Fault status registers.  */
331             struct {
332                 uint64_t ifsr_ns;
333                 uint64_t ifsr_s;
334             };
335             struct {
336                 uint64_t ifsr32_el2;
337             };
338         };
339         union {
340             struct {
341                 uint64_t _unused_dfsr;
342                 uint64_t dfsr_ns;
343                 uint64_t hsr;
344                 uint64_t dfsr_s;
345             };
346             uint64_t esr_el[4];
347         };
348         uint32_t c6_region[8]; /* MPU base/size registers.  */
349         union { /* Fault address registers. */
350             struct {
351                 uint64_t _unused_far0;
352 #ifdef HOST_WORDS_BIGENDIAN
353                 uint32_t ifar_ns;
354                 uint32_t dfar_ns;
355                 uint32_t ifar_s;
356                 uint32_t dfar_s;
357 #else
358                 uint32_t dfar_ns;
359                 uint32_t ifar_ns;
360                 uint32_t dfar_s;
361                 uint32_t ifar_s;
362 #endif
363                 uint64_t _unused_far3;
364             };
365             uint64_t far_el[4];
366         };
367         uint64_t hpfar_el2;
368         uint64_t hstr_el2;
369         union { /* Translation result. */
370             struct {
371                 uint64_t _unused_par_0;
372                 uint64_t par_ns;
373                 uint64_t _unused_par_1;
374                 uint64_t par_s;
375             };
376             uint64_t par_el[4];
377         };
378 
379         uint32_t c9_insn; /* Cache lockdown registers.  */
380         uint32_t c9_data;
381         uint64_t c9_pmcr; /* performance monitor control register */
382         uint64_t c9_pmcnten; /* perf monitor counter enables */
383         uint64_t c9_pmovsr; /* perf monitor overflow status */
384         uint64_t c9_pmuserenr; /* perf monitor user enable */
385         uint64_t c9_pmselr; /* perf monitor counter selection register */
386         uint64_t c9_pminten; /* perf monitor interrupt enables */
387         union { /* Memory attribute redirection */
388             struct {
389 #ifdef HOST_WORDS_BIGENDIAN
390                 uint64_t _unused_mair_0;
391                 uint32_t mair1_ns;
392                 uint32_t mair0_ns;
393                 uint64_t _unused_mair_1;
394                 uint32_t mair1_s;
395                 uint32_t mair0_s;
396 #else
397                 uint64_t _unused_mair_0;
398                 uint32_t mair0_ns;
399                 uint32_t mair1_ns;
400                 uint64_t _unused_mair_1;
401                 uint32_t mair0_s;
402                 uint32_t mair1_s;
403 #endif
404             };
405             uint64_t mair_el[4];
406         };
407         union { /* vector base address register */
408             struct {
409                 uint64_t _unused_vbar;
410                 uint64_t vbar_ns;
411                 uint64_t hvbar;
412                 uint64_t vbar_s;
413             };
414             uint64_t vbar_el[4];
415         };
416         uint32_t mvbar; /* (monitor) vector base address register */
417         struct { /* FCSE PID. */
418             uint32_t fcseidr_ns;
419             uint32_t fcseidr_s;
420         };
421         union { /* Context ID. */
422             struct {
423                 uint64_t _unused_contextidr_0;
424                 uint64_t contextidr_ns;
425                 uint64_t _unused_contextidr_1;
426                 uint64_t contextidr_s;
427             };
428             uint64_t contextidr_el[4];
429         };
430         union { /* User RW Thread register. */
431             struct {
432                 uint64_t tpidrurw_ns;
433                 uint64_t tpidrprw_ns;
434                 uint64_t htpidr;
435                 uint64_t _tpidr_el3;
436             };
437             uint64_t tpidr_el[4];
438         };
439         /* The secure banks of these registers don't map anywhere */
440         uint64_t tpidrurw_s;
441         uint64_t tpidrprw_s;
442         uint64_t tpidruro_s;
443 
444         union { /* User RO Thread register. */
445             uint64_t tpidruro_ns;
446             uint64_t tpidrro_el[1];
447         };
448         uint64_t c14_cntfrq; /* Counter Frequency register */
449         uint64_t c14_cntkctl; /* Timer Control register */
450         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
451         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
452         ARMGenericTimer c14_timer[NUM_GTIMERS];
453         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
454         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
455         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
456         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
457         uint32_t c15_threadid; /* TI debugger thread-ID.  */
458         uint32_t c15_config_base_address; /* SCU base address.  */
459         uint32_t c15_diagnostic; /* diagnostic register */
460         uint32_t c15_power_diagnostic;
461         uint32_t c15_power_control; /* power control */
462         uint64_t dbgbvr[16]; /* breakpoint value registers */
463         uint64_t dbgbcr[16]; /* breakpoint control registers */
464         uint64_t dbgwvr[16]; /* watchpoint value registers */
465         uint64_t dbgwcr[16]; /* watchpoint control registers */
466         uint64_t mdscr_el1;
467         uint64_t oslsr_el1; /* OS Lock Status */
468         uint64_t mdcr_el2;
469         uint64_t mdcr_el3;
470         /* If the counter is enabled, this stores the last time the counter
471          * was reset. Otherwise it stores the counter value
472          */
473         uint64_t c15_ccnt;
474         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
475         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
476         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
477     } cp15;
478 
479     struct {
480         /* M profile has up to 4 stack pointers:
481          * a Main Stack Pointer and a Process Stack Pointer for each
482          * of the Secure and Non-Secure states. (If the CPU doesn't support
483          * the security extension then it has only two SPs.)
484          * In QEMU we always store the currently active SP in regs[13],
485          * and the non-active SP for the current security state in
486          * v7m.other_sp. The stack pointers for the inactive security state
487          * are stored in other_ss_msp and other_ss_psp.
488          * switch_v7m_security_state() is responsible for rearranging them
489          * when we change security state.
490          */
491         uint32_t other_sp;
492         uint32_t other_ss_msp;
493         uint32_t other_ss_psp;
494         uint32_t vecbase[M_REG_NUM_BANKS];
495         uint32_t basepri[M_REG_NUM_BANKS];
496         uint32_t control[M_REG_NUM_BANKS];
497         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
498         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
499         uint32_t hfsr; /* HardFault Status */
500         uint32_t dfsr; /* Debug Fault Status Register */
501         uint32_t sfsr; /* Secure Fault Status Register */
502         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
503         uint32_t bfar; /* BusFault Address */
504         uint32_t sfar; /* Secure Fault Address Register */
505         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
506         int exception;
507         uint32_t primask[M_REG_NUM_BANKS];
508         uint32_t faultmask[M_REG_NUM_BANKS];
509         uint32_t aircr; /* only holds r/w state if security extn implemented */
510         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
511         uint32_t csselr[M_REG_NUM_BANKS];
512         uint32_t scr[M_REG_NUM_BANKS];
513         uint32_t msplim[M_REG_NUM_BANKS];
514         uint32_t psplim[M_REG_NUM_BANKS];
515     } v7m;
516 
517     /* Information associated with an exception about to be taken:
518      * code which raises an exception must set cs->exception_index and
519      * the relevant parts of this structure; the cpu_do_interrupt function
520      * will then set the guest-visible registers as part of the exception
521      * entry process.
522      */
523     struct {
524         uint32_t syndrome; /* AArch64 format syndrome register */
525         uint32_t fsr; /* AArch32 format fault status register info */
526         uint64_t vaddress; /* virtual addr associated with exception, if any */
527         uint32_t target_el; /* EL the exception should be targeted for */
528         /* If we implement EL2 we will also need to store information
529          * about the intermediate physical address for stage 2 faults.
530          */
531     } exception;
532 
533     /* Thumb-2 EE state.  */
534     uint32_t teecr;
535     uint32_t teehbr;
536 
537     /* VFP coprocessor state.  */
538     struct {
539         ARMVectorReg zregs[32];
540 
541 #ifdef TARGET_AARCH64
542         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
543 #define FFR_PRED_NUM 16
544         ARMPredicateReg pregs[17];
545         /* Scratch space for aa64 sve predicate temporary.  */
546         ARMPredicateReg preg_tmp;
547 #endif
548 
549         uint32_t xregs[16];
550         /* We store these fpcsr fields separately for convenience.  */
551         int vec_len;
552         int vec_stride;
553 
554         /* Scratch space for aa32 neon expansion.  */
555         uint32_t scratch[8];
556 
557         /* There are a number of distinct float control structures:
558          *
559          *  fp_status: is the "normal" fp status.
560          *  fp_status_fp16: used for half-precision calculations
561          *  standard_fp_status : the ARM "Standard FPSCR Value"
562          *
563          * Half-precision operations are governed by a separate
564          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
565          * status structure to control this.
566          *
567          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
568          * round-to-nearest and is used by any operations (generally
569          * Neon) which the architecture defines as controlled by the
570          * standard FPSCR value rather than the FPSCR.
571          *
572          * To avoid having to transfer exception bits around, we simply
573          * say that the FPSCR cumulative exception flags are the logical
574          * OR of the flags in the three fp statuses. This relies on the
575          * only thing which needs to read the exception flags being
576          * an explicit FPSCR read.
577          */
578         float_status fp_status;
579         float_status fp_status_f16;
580         float_status standard_fp_status;
581 
582         /* ZCR_EL[1-3] */
583         uint64_t zcr_el[4];
584     } vfp;
585     uint64_t exclusive_addr;
586     uint64_t exclusive_val;
587     uint64_t exclusive_high;
588 
589     /* iwMMXt coprocessor state.  */
590     struct {
591         uint64_t regs[16];
592         uint64_t val;
593 
594         uint32_t cregs[16];
595     } iwmmxt;
596 
597 #if defined(CONFIG_USER_ONLY)
598     /* For usermode syscall translation.  */
599     int eabi;
600 #endif
601 
602     struct CPUBreakpoint *cpu_breakpoint[16];
603     struct CPUWatchpoint *cpu_watchpoint[16];
604 
605     /* Fields up to this point are cleared by a CPU reset */
606     struct {} end_reset_fields;
607 
608     CPU_COMMON
609 
610     /* Fields after CPU_COMMON are preserved across CPU reset. */
611 
612     /* Internal CPU feature flags.  */
613     uint64_t features;
614 
615     /* PMSAv7 MPU */
616     struct {
617         uint32_t *drbar;
618         uint32_t *drsr;
619         uint32_t *dracr;
620         uint32_t rnr[M_REG_NUM_BANKS];
621     } pmsav7;
622 
623     /* PMSAv8 MPU */
624     struct {
625         /* The PMSAv8 implementation also shares some PMSAv7 config
626          * and state:
627          *  pmsav7.rnr (region number register)
628          *  pmsav7_dregion (number of configured regions)
629          */
630         uint32_t *rbar[M_REG_NUM_BANKS];
631         uint32_t *rlar[M_REG_NUM_BANKS];
632         uint32_t mair0[M_REG_NUM_BANKS];
633         uint32_t mair1[M_REG_NUM_BANKS];
634     } pmsav8;
635 
636     /* v8M SAU */
637     struct {
638         uint32_t *rbar;
639         uint32_t *rlar;
640         uint32_t rnr;
641         uint32_t ctrl;
642     } sau;
643 
644     void *nvic;
645     const struct arm_boot_info *boot_info;
646     /* Store GICv3CPUState to access from this struct */
647     void *gicv3state;
648 } CPUARMState;
649 
650 /**
651  * ARMELChangeHookFn:
652  * type of a function which can be registered via arm_register_el_change_hook()
653  * to get callbacks when the CPU changes its exception level or mode.
654  */
655 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
656 typedef struct ARMELChangeHook ARMELChangeHook;
657 struct ARMELChangeHook {
658     ARMELChangeHookFn *hook;
659     void *opaque;
660     QLIST_ENTRY(ARMELChangeHook) node;
661 };
662 
663 /* These values map onto the return values for
664  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
665 typedef enum ARMPSCIState {
666     PSCI_ON = 0,
667     PSCI_OFF = 1,
668     PSCI_ON_PENDING = 2
669 } ARMPSCIState;
670 
671 /**
672  * ARMCPU:
673  * @env: #CPUARMState
674  *
675  * An ARM CPU core.
676  */
677 struct ARMCPU {
678     /*< private >*/
679     CPUState parent_obj;
680     /*< public >*/
681 
682     CPUARMState env;
683 
684     /* Coprocessor information */
685     GHashTable *cp_regs;
686     /* For marshalling (mostly coprocessor) register state between the
687      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
688      * we use these arrays.
689      */
690     /* List of register indexes managed via these arrays; (full KVM style
691      * 64 bit indexes, not CPRegInfo 32 bit indexes)
692      */
693     uint64_t *cpreg_indexes;
694     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
695     uint64_t *cpreg_values;
696     /* Length of the indexes, values, reset_values arrays */
697     int32_t cpreg_array_len;
698     /* These are used only for migration: incoming data arrives in
699      * these fields and is sanity checked in post_load before copying
700      * to the working data structures above.
701      */
702     uint64_t *cpreg_vmstate_indexes;
703     uint64_t *cpreg_vmstate_values;
704     int32_t cpreg_vmstate_array_len;
705 
706     DynamicGDBXMLInfo dyn_xml;
707 
708     /* Timers used by the generic (architected) timer */
709     QEMUTimer *gt_timer[NUM_GTIMERS];
710     /* GPIO outputs for generic timer */
711     qemu_irq gt_timer_outputs[NUM_GTIMERS];
712     /* GPIO output for GICv3 maintenance interrupt signal */
713     qemu_irq gicv3_maintenance_interrupt;
714     /* GPIO output for the PMU interrupt */
715     qemu_irq pmu_interrupt;
716 
717     /* MemoryRegion to use for secure physical accesses */
718     MemoryRegion *secure_memory;
719 
720     /* For v8M, pointer to the IDAU interface provided by board/SoC */
721     Object *idau;
722 
723     /* 'compatible' string for this CPU for Linux device trees */
724     const char *dtb_compatible;
725 
726     /* PSCI version for this CPU
727      * Bits[31:16] = Major Version
728      * Bits[15:0] = Minor Version
729      */
730     uint32_t psci_version;
731 
732     /* Should CPU start in PSCI powered-off state? */
733     bool start_powered_off;
734 
735     /* Current power state, access guarded by BQL */
736     ARMPSCIState power_state;
737 
738     /* CPU has virtualization extension */
739     bool has_el2;
740     /* CPU has security extension */
741     bool has_el3;
742     /* CPU has PMU (Performance Monitor Unit) */
743     bool has_pmu;
744 
745     /* CPU has memory protection unit */
746     bool has_mpu;
747     /* PMSAv7 MPU number of supported regions */
748     uint32_t pmsav7_dregion;
749     /* v8M SAU number of supported regions */
750     uint32_t sau_sregion;
751 
752     /* PSCI conduit used to invoke PSCI methods
753      * 0 - disabled, 1 - smc, 2 - hvc
754      */
755     uint32_t psci_conduit;
756 
757     /* For v8M, initial value of the Secure VTOR */
758     uint32_t init_svtor;
759 
760     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
761      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
762      */
763     uint32_t kvm_target;
764 
765     /* KVM init features for this CPU */
766     uint32_t kvm_init_features[7];
767 
768     /* Uniprocessor system with MP extensions */
769     bool mp_is_up;
770 
771     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
772      * and the probe failed (so we need to report the error in realize)
773      */
774     bool host_cpu_probe_failed;
775 
776     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
777      * register.
778      */
779     int32_t core_count;
780 
781     /* The instance init functions for implementation-specific subclasses
782      * set these fields to specify the implementation-dependent values of
783      * various constant registers and reset values of non-constant
784      * registers.
785      * Some of these might become QOM properties eventually.
786      * Field names match the official register names as defined in the
787      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
788      * is used for reset values of non-constant registers; no reset_
789      * prefix means a constant register.
790      */
791     uint32_t midr;
792     uint32_t revidr;
793     uint32_t reset_fpsid;
794     uint32_t mvfr0;
795     uint32_t mvfr1;
796     uint32_t mvfr2;
797     uint32_t ctr;
798     uint32_t reset_sctlr;
799     uint32_t id_pfr0;
800     uint32_t id_pfr1;
801     uint32_t id_dfr0;
802     uint32_t pmceid0;
803     uint32_t pmceid1;
804     uint32_t id_afr0;
805     uint32_t id_mmfr0;
806     uint32_t id_mmfr1;
807     uint32_t id_mmfr2;
808     uint32_t id_mmfr3;
809     uint32_t id_mmfr4;
810     uint32_t id_isar0;
811     uint32_t id_isar1;
812     uint32_t id_isar2;
813     uint32_t id_isar3;
814     uint32_t id_isar4;
815     uint32_t id_isar5;
816     uint64_t id_aa64pfr0;
817     uint64_t id_aa64pfr1;
818     uint64_t id_aa64dfr0;
819     uint64_t id_aa64dfr1;
820     uint64_t id_aa64afr0;
821     uint64_t id_aa64afr1;
822     uint64_t id_aa64isar0;
823     uint64_t id_aa64isar1;
824     uint64_t id_aa64mmfr0;
825     uint64_t id_aa64mmfr1;
826     uint32_t dbgdidr;
827     uint32_t clidr;
828     uint64_t mp_affinity; /* MP ID without feature bits */
829     /* The elements of this array are the CCSIDR values for each cache,
830      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
831      */
832     uint32_t ccsidr[16];
833     uint64_t reset_cbar;
834     uint32_t reset_auxcr;
835     bool reset_hivecs;
836     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
837     uint32_t dcz_blocksize;
838     uint64_t rvbar;
839 
840     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
841     int gic_num_lrs; /* number of list registers */
842     int gic_vpribits; /* number of virtual priority bits */
843     int gic_vprebits; /* number of virtual preemption bits */
844 
845     /* Whether the cfgend input is high (i.e. this CPU should reset into
846      * big-endian mode).  This setting isn't used directly: instead it modifies
847      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
848      * architecture version.
849      */
850     bool cfgend;
851 
852     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
853     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
854 
855     int32_t node_id; /* NUMA node this CPU belongs to */
856 
857     /* Used to synchronize KVM and QEMU in-kernel device levels */
858     uint8_t device_irq_level;
859 };
860 
861 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
862 {
863     return container_of(env, ARMCPU, env);
864 }
865 
866 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
867 
868 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
869 
870 #define ENV_OFFSET offsetof(ARMCPU, env)
871 
872 #ifndef CONFIG_USER_ONLY
873 extern const struct VMStateDescription vmstate_arm_cpu;
874 #endif
875 
876 void arm_cpu_do_interrupt(CPUState *cpu);
877 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
878 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
879 
880 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
881                         int flags);
882 
883 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
884                                          MemTxAttrs *attrs);
885 
886 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
887 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
888 
889 /* Dynamically generates for gdb stub an XML description of the sysregs from
890  * the cp_regs hashtable. Returns the registered sysregs number.
891  */
892 int arm_gen_dynamic_xml(CPUState *cpu);
893 
894 /* Returns the dynamically generated XML for the gdb stub.
895  * Returns a pointer to the XML contents for the specified XML file or NULL
896  * if the XML name doesn't match the predefined one.
897  */
898 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
899 
900 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
901                              int cpuid, void *opaque);
902 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
903                              int cpuid, void *opaque);
904 
905 #ifdef TARGET_AARCH64
906 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
907 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
908 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
909 #endif
910 
911 target_ulong do_arm_semihosting(CPUARMState *env);
912 void aarch64_sync_32_to_64(CPUARMState *env);
913 void aarch64_sync_64_to_32(CPUARMState *env);
914 
915 static inline bool is_a64(CPUARMState *env)
916 {
917     return env->aarch64;
918 }
919 
920 /* you can call this signal handler from your SIGBUS and SIGSEGV
921    signal handlers to inform the virtual CPU of exceptions. non zero
922    is returned if the signal was handled by the virtual CPU.  */
923 int cpu_arm_signal_handler(int host_signum, void *pinfo,
924                            void *puc);
925 
926 /**
927  * pmccntr_sync
928  * @env: CPUARMState
929  *
930  * Synchronises the counter in the PMCCNTR. This must always be called twice,
931  * once before any action that might affect the timer and again afterwards.
932  * The function is used to swap the state of the register if required.
933  * This only happens when not in user mode (!CONFIG_USER_ONLY)
934  */
935 void pmccntr_sync(CPUARMState *env);
936 
937 /* SCTLR bit meanings. Several bits have been reused in newer
938  * versions of the architecture; in that case we define constants
939  * for both old and new bit meanings. Code which tests against those
940  * bits should probably check or otherwise arrange that the CPU
941  * is the architectural version it expects.
942  */
943 #define SCTLR_M       (1U << 0)
944 #define SCTLR_A       (1U << 1)
945 #define SCTLR_C       (1U << 2)
946 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
947 #define SCTLR_SA      (1U << 3)
948 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
949 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
950 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
951 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
952 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
953 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
954 #define SCTLR_ITD     (1U << 7) /* v8 onward */
955 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
956 #define SCTLR_SED     (1U << 8) /* v8 onward */
957 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
958 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
959 #define SCTLR_F       (1U << 10) /* up to v6 */
960 #define SCTLR_SW      (1U << 10) /* v7 onward */
961 #define SCTLR_Z       (1U << 11)
962 #define SCTLR_I       (1U << 12)
963 #define SCTLR_V       (1U << 13)
964 #define SCTLR_RR      (1U << 14) /* up to v7 */
965 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
966 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
967 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
968 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
969 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
970 #define SCTLR_HA      (1U << 17)
971 #define SCTLR_BR      (1U << 17) /* PMSA only */
972 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
973 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
974 #define SCTLR_WXN     (1U << 19)
975 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
976 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
977 #define SCTLR_FI      (1U << 21)
978 #define SCTLR_U       (1U << 22)
979 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
980 #define SCTLR_VE      (1U << 24) /* up to v7 */
981 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
982 #define SCTLR_EE      (1U << 25)
983 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
984 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
985 #define SCTLR_NMFI    (1U << 27)
986 #define SCTLR_TRE     (1U << 28)
987 #define SCTLR_AFE     (1U << 29)
988 #define SCTLR_TE      (1U << 30)
989 
990 #define CPTR_TCPAC    (1U << 31)
991 #define CPTR_TTA      (1U << 20)
992 #define CPTR_TFP      (1U << 10)
993 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
994 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
995 
996 #define MDCR_EPMAD    (1U << 21)
997 #define MDCR_EDAD     (1U << 20)
998 #define MDCR_SPME     (1U << 17)
999 #define MDCR_SDD      (1U << 16)
1000 #define MDCR_SPD      (3U << 14)
1001 #define MDCR_TDRA     (1U << 11)
1002 #define MDCR_TDOSA    (1U << 10)
1003 #define MDCR_TDA      (1U << 9)
1004 #define MDCR_TDE      (1U << 8)
1005 #define MDCR_HPME     (1U << 7)
1006 #define MDCR_TPM      (1U << 6)
1007 #define MDCR_TPMCR    (1U << 5)
1008 
1009 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1010 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1011 
1012 #define CPSR_M (0x1fU)
1013 #define CPSR_T (1U << 5)
1014 #define CPSR_F (1U << 6)
1015 #define CPSR_I (1U << 7)
1016 #define CPSR_A (1U << 8)
1017 #define CPSR_E (1U << 9)
1018 #define CPSR_IT_2_7 (0xfc00U)
1019 #define CPSR_GE (0xfU << 16)
1020 #define CPSR_IL (1U << 20)
1021 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1022  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1023  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1024  * where it is live state but not accessible to the AArch32 code.
1025  */
1026 #define CPSR_RESERVED (0x7U << 21)
1027 #define CPSR_J (1U << 24)
1028 #define CPSR_IT_0_1 (3U << 25)
1029 #define CPSR_Q (1U << 27)
1030 #define CPSR_V (1U << 28)
1031 #define CPSR_C (1U << 29)
1032 #define CPSR_Z (1U << 30)
1033 #define CPSR_N (1U << 31)
1034 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1035 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1036 
1037 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1038 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1039     | CPSR_NZCV)
1040 /* Bits writable in user mode.  */
1041 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1042 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1043 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1044 /* Mask of bits which may be set by exception return copying them from SPSR */
1045 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1046 
1047 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1048 #define XPSR_EXCP 0x1ffU
1049 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1050 #define XPSR_IT_2_7 CPSR_IT_2_7
1051 #define XPSR_GE CPSR_GE
1052 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1053 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1054 #define XPSR_IT_0_1 CPSR_IT_0_1
1055 #define XPSR_Q CPSR_Q
1056 #define XPSR_V CPSR_V
1057 #define XPSR_C CPSR_C
1058 #define XPSR_Z CPSR_Z
1059 #define XPSR_N CPSR_N
1060 #define XPSR_NZCV CPSR_NZCV
1061 #define XPSR_IT CPSR_IT
1062 
1063 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1064 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1065 #define TTBCR_PD0    (1U << 4)
1066 #define TTBCR_PD1    (1U << 5)
1067 #define TTBCR_EPD0   (1U << 7)
1068 #define TTBCR_IRGN0  (3U << 8)
1069 #define TTBCR_ORGN0  (3U << 10)
1070 #define TTBCR_SH0    (3U << 12)
1071 #define TTBCR_T1SZ   (3U << 16)
1072 #define TTBCR_A1     (1U << 22)
1073 #define TTBCR_EPD1   (1U << 23)
1074 #define TTBCR_IRGN1  (3U << 24)
1075 #define TTBCR_ORGN1  (3U << 26)
1076 #define TTBCR_SH1    (1U << 28)
1077 #define TTBCR_EAE    (1U << 31)
1078 
1079 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1080  * Only these are valid when in AArch64 mode; in
1081  * AArch32 mode SPSRs are basically CPSR-format.
1082  */
1083 #define PSTATE_SP (1U)
1084 #define PSTATE_M (0xFU)
1085 #define PSTATE_nRW (1U << 4)
1086 #define PSTATE_F (1U << 6)
1087 #define PSTATE_I (1U << 7)
1088 #define PSTATE_A (1U << 8)
1089 #define PSTATE_D (1U << 9)
1090 #define PSTATE_IL (1U << 20)
1091 #define PSTATE_SS (1U << 21)
1092 #define PSTATE_V (1U << 28)
1093 #define PSTATE_C (1U << 29)
1094 #define PSTATE_Z (1U << 30)
1095 #define PSTATE_N (1U << 31)
1096 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1097 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1098 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1099 /* Mode values for AArch64 */
1100 #define PSTATE_MODE_EL3h 13
1101 #define PSTATE_MODE_EL3t 12
1102 #define PSTATE_MODE_EL2h 9
1103 #define PSTATE_MODE_EL2t 8
1104 #define PSTATE_MODE_EL1h 5
1105 #define PSTATE_MODE_EL1t 4
1106 #define PSTATE_MODE_EL0t 0
1107 
1108 /* Write a new value to v7m.exception, thus transitioning into or out
1109  * of Handler mode; this may result in a change of active stack pointer.
1110  */
1111 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1112 
1113 /* Map EL and handler into a PSTATE_MODE.  */
1114 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1115 {
1116     return (el << 2) | handler;
1117 }
1118 
1119 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1120  * interprocessing, so we don't attempt to sync with the cpsr state used by
1121  * the 32 bit decoder.
1122  */
1123 static inline uint32_t pstate_read(CPUARMState *env)
1124 {
1125     int ZF;
1126 
1127     ZF = (env->ZF == 0);
1128     return (env->NF & 0x80000000) | (ZF << 30)
1129         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1130         | env->pstate | env->daif;
1131 }
1132 
1133 static inline void pstate_write(CPUARMState *env, uint32_t val)
1134 {
1135     env->ZF = (~val) & PSTATE_Z;
1136     env->NF = val;
1137     env->CF = (val >> 29) & 1;
1138     env->VF = (val << 3) & 0x80000000;
1139     env->daif = val & PSTATE_DAIF;
1140     env->pstate = val & ~CACHED_PSTATE_BITS;
1141 }
1142 
1143 /* Return the current CPSR value.  */
1144 uint32_t cpsr_read(CPUARMState *env);
1145 
1146 typedef enum CPSRWriteType {
1147     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1148     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1149     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1150     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1151 } CPSRWriteType;
1152 
1153 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1154 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1155                 CPSRWriteType write_type);
1156 
1157 /* Return the current xPSR value.  */
1158 static inline uint32_t xpsr_read(CPUARMState *env)
1159 {
1160     int ZF;
1161     ZF = (env->ZF == 0);
1162     return (env->NF & 0x80000000) | (ZF << 30)
1163         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1164         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1165         | ((env->condexec_bits & 0xfc) << 8)
1166         | env->v7m.exception;
1167 }
1168 
1169 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1170 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1171 {
1172     if (mask & XPSR_NZCV) {
1173         env->ZF = (~val) & XPSR_Z;
1174         env->NF = val;
1175         env->CF = (val >> 29) & 1;
1176         env->VF = (val << 3) & 0x80000000;
1177     }
1178     if (mask & XPSR_Q) {
1179         env->QF = ((val & XPSR_Q) != 0);
1180     }
1181     if (mask & XPSR_T) {
1182         env->thumb = ((val & XPSR_T) != 0);
1183     }
1184     if (mask & XPSR_IT_0_1) {
1185         env->condexec_bits &= ~3;
1186         env->condexec_bits |= (val >> 25) & 3;
1187     }
1188     if (mask & XPSR_IT_2_7) {
1189         env->condexec_bits &= 3;
1190         env->condexec_bits |= (val >> 8) & 0xfc;
1191     }
1192     if (mask & XPSR_EXCP) {
1193         /* Note that this only happens on exception exit */
1194         write_v7m_exception(env, val & XPSR_EXCP);
1195     }
1196 }
1197 
1198 #define HCR_VM        (1ULL << 0)
1199 #define HCR_SWIO      (1ULL << 1)
1200 #define HCR_PTW       (1ULL << 2)
1201 #define HCR_FMO       (1ULL << 3)
1202 #define HCR_IMO       (1ULL << 4)
1203 #define HCR_AMO       (1ULL << 5)
1204 #define HCR_VF        (1ULL << 6)
1205 #define HCR_VI        (1ULL << 7)
1206 #define HCR_VSE       (1ULL << 8)
1207 #define HCR_FB        (1ULL << 9)
1208 #define HCR_BSU_MASK  (3ULL << 10)
1209 #define HCR_DC        (1ULL << 12)
1210 #define HCR_TWI       (1ULL << 13)
1211 #define HCR_TWE       (1ULL << 14)
1212 #define HCR_TID0      (1ULL << 15)
1213 #define HCR_TID1      (1ULL << 16)
1214 #define HCR_TID2      (1ULL << 17)
1215 #define HCR_TID3      (1ULL << 18)
1216 #define HCR_TSC       (1ULL << 19)
1217 #define HCR_TIDCP     (1ULL << 20)
1218 #define HCR_TACR      (1ULL << 21)
1219 #define HCR_TSW       (1ULL << 22)
1220 #define HCR_TPC       (1ULL << 23)
1221 #define HCR_TPU       (1ULL << 24)
1222 #define HCR_TTLB      (1ULL << 25)
1223 #define HCR_TVM       (1ULL << 26)
1224 #define HCR_TGE       (1ULL << 27)
1225 #define HCR_TDZ       (1ULL << 28)
1226 #define HCR_HCD       (1ULL << 29)
1227 #define HCR_TRVM      (1ULL << 30)
1228 #define HCR_RW        (1ULL << 31)
1229 #define HCR_CD        (1ULL << 32)
1230 #define HCR_ID        (1ULL << 33)
1231 #define HCR_MASK      ((1ULL << 34) - 1)
1232 
1233 #define SCR_NS                (1U << 0)
1234 #define SCR_IRQ               (1U << 1)
1235 #define SCR_FIQ               (1U << 2)
1236 #define SCR_EA                (1U << 3)
1237 #define SCR_FW                (1U << 4)
1238 #define SCR_AW                (1U << 5)
1239 #define SCR_NET               (1U << 6)
1240 #define SCR_SMD               (1U << 7)
1241 #define SCR_HCE               (1U << 8)
1242 #define SCR_SIF               (1U << 9)
1243 #define SCR_RW                (1U << 10)
1244 #define SCR_ST                (1U << 11)
1245 #define SCR_TWI               (1U << 12)
1246 #define SCR_TWE               (1U << 13)
1247 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1248 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1249 
1250 /* Return the current FPSCR value.  */
1251 uint32_t vfp_get_fpscr(CPUARMState *env);
1252 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1253 
1254 /* FPCR, Floating Point Control Register
1255  * FPSR, Floating Poiht Status Register
1256  *
1257  * For A64 the FPSCR is split into two logically distinct registers,
1258  * FPCR and FPSR. However since they still use non-overlapping bits
1259  * we store the underlying state in fpscr and just mask on read/write.
1260  */
1261 #define FPSR_MASK 0xf800009f
1262 #define FPCR_MASK 0x07f79f00
1263 
1264 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1265 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1266 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1267 
1268 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1269 {
1270     return vfp_get_fpscr(env) & FPSR_MASK;
1271 }
1272 
1273 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1274 {
1275     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1276     vfp_set_fpscr(env, new_fpscr);
1277 }
1278 
1279 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1280 {
1281     return vfp_get_fpscr(env) & FPCR_MASK;
1282 }
1283 
1284 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1285 {
1286     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1287     vfp_set_fpscr(env, new_fpscr);
1288 }
1289 
1290 enum arm_cpu_mode {
1291   ARM_CPU_MODE_USR = 0x10,
1292   ARM_CPU_MODE_FIQ = 0x11,
1293   ARM_CPU_MODE_IRQ = 0x12,
1294   ARM_CPU_MODE_SVC = 0x13,
1295   ARM_CPU_MODE_MON = 0x16,
1296   ARM_CPU_MODE_ABT = 0x17,
1297   ARM_CPU_MODE_HYP = 0x1a,
1298   ARM_CPU_MODE_UND = 0x1b,
1299   ARM_CPU_MODE_SYS = 0x1f
1300 };
1301 
1302 /* VFP system registers.  */
1303 #define ARM_VFP_FPSID   0
1304 #define ARM_VFP_FPSCR   1
1305 #define ARM_VFP_MVFR2   5
1306 #define ARM_VFP_MVFR1   6
1307 #define ARM_VFP_MVFR0   7
1308 #define ARM_VFP_FPEXC   8
1309 #define ARM_VFP_FPINST  9
1310 #define ARM_VFP_FPINST2 10
1311 
1312 /* iwMMXt coprocessor control registers.  */
1313 #define ARM_IWMMXT_wCID		0
1314 #define ARM_IWMMXT_wCon		1
1315 #define ARM_IWMMXT_wCSSF	2
1316 #define ARM_IWMMXT_wCASF	3
1317 #define ARM_IWMMXT_wCGR0	8
1318 #define ARM_IWMMXT_wCGR1	9
1319 #define ARM_IWMMXT_wCGR2	10
1320 #define ARM_IWMMXT_wCGR3	11
1321 
1322 /* V7M CCR bits */
1323 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1324 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1325 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1326 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1327 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1328 FIELD(V7M_CCR, STKALIGN, 9, 1)
1329 FIELD(V7M_CCR, DC, 16, 1)
1330 FIELD(V7M_CCR, IC, 17, 1)
1331 
1332 /* V7M SCR bits */
1333 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1334 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1335 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1336 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1337 
1338 /* V7M AIRCR bits */
1339 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1340 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1341 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1342 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1343 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1344 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1345 FIELD(V7M_AIRCR, PRIS, 14, 1)
1346 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1347 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1348 
1349 /* V7M CFSR bits for MMFSR */
1350 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1351 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1352 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1353 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1354 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1355 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1356 
1357 /* V7M CFSR bits for BFSR */
1358 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1359 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1360 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1361 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1362 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1363 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1364 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1365 
1366 /* V7M CFSR bits for UFSR */
1367 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1368 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1369 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1370 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1371 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1372 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1373 
1374 /* V7M CFSR bit masks covering all of the subregister bits */
1375 FIELD(V7M_CFSR, MMFSR, 0, 8)
1376 FIELD(V7M_CFSR, BFSR, 8, 8)
1377 FIELD(V7M_CFSR, UFSR, 16, 16)
1378 
1379 /* V7M HFSR bits */
1380 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1381 FIELD(V7M_HFSR, FORCED, 30, 1)
1382 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1383 
1384 /* V7M DFSR bits */
1385 FIELD(V7M_DFSR, HALTED, 0, 1)
1386 FIELD(V7M_DFSR, BKPT, 1, 1)
1387 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1388 FIELD(V7M_DFSR, VCATCH, 3, 1)
1389 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1390 
1391 /* V7M SFSR bits */
1392 FIELD(V7M_SFSR, INVEP, 0, 1)
1393 FIELD(V7M_SFSR, INVIS, 1, 1)
1394 FIELD(V7M_SFSR, INVER, 2, 1)
1395 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1396 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1397 FIELD(V7M_SFSR, LSPERR, 5, 1)
1398 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1399 FIELD(V7M_SFSR, LSERR, 7, 1)
1400 
1401 /* v7M MPU_CTRL bits */
1402 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1403 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1404 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1405 
1406 /* v7M CLIDR bits */
1407 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1408 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1409 FIELD(V7M_CLIDR, LOC, 24, 3)
1410 FIELD(V7M_CLIDR, LOUU, 27, 3)
1411 FIELD(V7M_CLIDR, ICB, 30, 2)
1412 
1413 FIELD(V7M_CSSELR, IND, 0, 1)
1414 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1415 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1416  * define a mask for this and check that it doesn't permit running off
1417  * the end of the array.
1418  */
1419 FIELD(V7M_CSSELR, INDEX, 0, 4)
1420 
1421 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1422 
1423 /* If adding a feature bit which corresponds to a Linux ELF
1424  * HWCAP bit, remember to update the feature-bit-to-hwcap
1425  * mapping in linux-user/elfload.c:get_elf_hwcap().
1426  */
1427 enum arm_features {
1428     ARM_FEATURE_VFP,
1429     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1430     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1431     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1432     ARM_FEATURE_V6,
1433     ARM_FEATURE_V6K,
1434     ARM_FEATURE_V7,
1435     ARM_FEATURE_THUMB2,
1436     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1437     ARM_FEATURE_VFP3,
1438     ARM_FEATURE_VFP_FP16,
1439     ARM_FEATURE_NEON,
1440     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1441     ARM_FEATURE_M, /* Microcontroller profile.  */
1442     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1443     ARM_FEATURE_THUMB2EE,
1444     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1445     ARM_FEATURE_V4T,
1446     ARM_FEATURE_V5,
1447     ARM_FEATURE_STRONGARM,
1448     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1449     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1450     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1451     ARM_FEATURE_GENERIC_TIMER,
1452     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1453     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1454     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1455     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1456     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1457     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1458     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1459     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1460     ARM_FEATURE_V8,
1461     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1462     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1463     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1464     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1465     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1466     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1467     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1468     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1469     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1470     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1471     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1472     ARM_FEATURE_PMU, /* has PMU support */
1473     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1474     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1475     ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1476     ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1477     ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1478     ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1479     ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1480     ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1481     ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */
1482     ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
1483     ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1484     ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions.  */
1485     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1486 };
1487 
1488 static inline int arm_feature(CPUARMState *env, int feature)
1489 {
1490     return (env->features & (1ULL << feature)) != 0;
1491 }
1492 
1493 #if !defined(CONFIG_USER_ONLY)
1494 /* Return true if exception levels below EL3 are in secure state,
1495  * or would be following an exception return to that level.
1496  * Unlike arm_is_secure() (which is always a question about the
1497  * _current_ state of the CPU) this doesn't care about the current
1498  * EL or mode.
1499  */
1500 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1501 {
1502     if (arm_feature(env, ARM_FEATURE_EL3)) {
1503         return !(env->cp15.scr_el3 & SCR_NS);
1504     } else {
1505         /* If EL3 is not supported then the secure state is implementation
1506          * defined, in which case QEMU defaults to non-secure.
1507          */
1508         return false;
1509     }
1510 }
1511 
1512 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1513 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1514 {
1515     if (arm_feature(env, ARM_FEATURE_EL3)) {
1516         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1517             /* CPU currently in AArch64 state and EL3 */
1518             return true;
1519         } else if (!is_a64(env) &&
1520                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1521             /* CPU currently in AArch32 state and monitor mode */
1522             return true;
1523         }
1524     }
1525     return false;
1526 }
1527 
1528 /* Return true if the processor is in secure state */
1529 static inline bool arm_is_secure(CPUARMState *env)
1530 {
1531     if (arm_is_el3_or_mon(env)) {
1532         return true;
1533     }
1534     return arm_is_secure_below_el3(env);
1535 }
1536 
1537 #else
1538 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1539 {
1540     return false;
1541 }
1542 
1543 static inline bool arm_is_secure(CPUARMState *env)
1544 {
1545     return false;
1546 }
1547 #endif
1548 
1549 /* Return true if the specified exception level is running in AArch64 state. */
1550 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1551 {
1552     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1553      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1554      */
1555     assert(el >= 1 && el <= 3);
1556     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1557 
1558     /* The highest exception level is always at the maximum supported
1559      * register width, and then lower levels have a register width controlled
1560      * by bits in the SCR or HCR registers.
1561      */
1562     if (el == 3) {
1563         return aa64;
1564     }
1565 
1566     if (arm_feature(env, ARM_FEATURE_EL3)) {
1567         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1568     }
1569 
1570     if (el == 2) {
1571         return aa64;
1572     }
1573 
1574     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1575         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1576     }
1577 
1578     return aa64;
1579 }
1580 
1581 /* Function for determing whether guest cp register reads and writes should
1582  * access the secure or non-secure bank of a cp register.  When EL3 is
1583  * operating in AArch32 state, the NS-bit determines whether the secure
1584  * instance of a cp register should be used. When EL3 is AArch64 (or if
1585  * it doesn't exist at all) then there is no register banking, and all
1586  * accesses are to the non-secure version.
1587  */
1588 static inline bool access_secure_reg(CPUARMState *env)
1589 {
1590     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1591                 !arm_el_is_aa64(env, 3) &&
1592                 !(env->cp15.scr_el3 & SCR_NS));
1593 
1594     return ret;
1595 }
1596 
1597 /* Macros for accessing a specified CP register bank */
1598 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1599     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1600 
1601 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1602     do {                                                \
1603         if (_secure) {                                   \
1604             (_env)->cp15._regname##_s = (_val);            \
1605         } else {                                        \
1606             (_env)->cp15._regname##_ns = (_val);           \
1607         }                                               \
1608     } while (0)
1609 
1610 /* Macros for automatically accessing a specific CP register bank depending on
1611  * the current secure state of the system.  These macros are not intended for
1612  * supporting instruction translation reads/writes as these are dependent
1613  * solely on the SCR.NS bit and not the mode.
1614  */
1615 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1616     A32_BANKED_REG_GET((_env), _regname,                \
1617                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1618 
1619 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1620     A32_BANKED_REG_SET((_env), _regname,                                    \
1621                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1622                        (_val))
1623 
1624 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1625 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1626                                  uint32_t cur_el, bool secure);
1627 
1628 /* Interface between CPU and Interrupt controller.  */
1629 #ifndef CONFIG_USER_ONLY
1630 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1631 #else
1632 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1633 {
1634     return true;
1635 }
1636 #endif
1637 /**
1638  * armv7m_nvic_set_pending: mark the specified exception as pending
1639  * @opaque: the NVIC
1640  * @irq: the exception number to mark pending
1641  * @secure: false for non-banked exceptions or for the nonsecure
1642  * version of a banked exception, true for the secure version of a banked
1643  * exception.
1644  *
1645  * Marks the specified exception as pending. Note that we will assert()
1646  * if @secure is true and @irq does not specify one of the fixed set
1647  * of architecturally banked exceptions.
1648  */
1649 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1650 /**
1651  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1652  * @opaque: the NVIC
1653  * @irq: the exception number to mark pending
1654  * @secure: false for non-banked exceptions or for the nonsecure
1655  * version of a banked exception, true for the secure version of a banked
1656  * exception.
1657  *
1658  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1659  * exceptions (exceptions generated in the course of trying to take
1660  * a different exception).
1661  */
1662 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1663 /**
1664  * armv7m_nvic_get_pending_irq_info: return highest priority pending
1665  *    exception, and whether it targets Secure state
1666  * @opaque: the NVIC
1667  * @pirq: set to pending exception number
1668  * @ptargets_secure: set to whether pending exception targets Secure
1669  *
1670  * This function writes the number of the highest priority pending
1671  * exception (the one which would be made active by
1672  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1673  * to true if the current highest priority pending exception should
1674  * be taken to Secure state, false for NS.
1675  */
1676 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1677                                       bool *ptargets_secure);
1678 /**
1679  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1680  * @opaque: the NVIC
1681  *
1682  * Move the current highest priority pending exception from the pending
1683  * state to the active state, and update v7m.exception to indicate that
1684  * it is the exception currently being handled.
1685  */
1686 void armv7m_nvic_acknowledge_irq(void *opaque);
1687 /**
1688  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1689  * @opaque: the NVIC
1690  * @irq: the exception number to complete
1691  * @secure: true if this exception was secure
1692  *
1693  * Returns: -1 if the irq was not active
1694  *           1 if completing this irq brought us back to base (no active irqs)
1695  *           0 if there is still an irq active after this one was completed
1696  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1697  */
1698 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1699 /**
1700  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1701  * @opaque: the NVIC
1702  *
1703  * Returns: the raw execution priority as defined by the v8M architecture.
1704  * This is the execution priority minus the effects of AIRCR.PRIS,
1705  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1706  * (v8M ARM ARM I_PKLD.)
1707  */
1708 int armv7m_nvic_raw_execution_priority(void *opaque);
1709 /**
1710  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1711  * priority is negative for the specified security state.
1712  * @opaque: the NVIC
1713  * @secure: the security state to test
1714  * This corresponds to the pseudocode IsReqExecPriNeg().
1715  */
1716 #ifndef CONFIG_USER_ONLY
1717 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1718 #else
1719 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1720 {
1721     return false;
1722 }
1723 #endif
1724 
1725 /* Interface for defining coprocessor registers.
1726  * Registers are defined in tables of arm_cp_reginfo structs
1727  * which are passed to define_arm_cp_regs().
1728  */
1729 
1730 /* When looking up a coprocessor register we look for it
1731  * via an integer which encodes all of:
1732  *  coprocessor number
1733  *  Crn, Crm, opc1, opc2 fields
1734  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1735  *    or via MRRC/MCRR?)
1736  *  non-secure/secure bank (AArch32 only)
1737  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1738  * (In this case crn and opc2 should be zero.)
1739  * For AArch64, there is no 32/64 bit size distinction;
1740  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1741  * and 4 bit CRn and CRm. The encoding patterns are chosen
1742  * to be easy to convert to and from the KVM encodings, and also
1743  * so that the hashtable can contain both AArch32 and AArch64
1744  * registers (to allow for interprocessing where we might run
1745  * 32 bit code on a 64 bit core).
1746  */
1747 /* This bit is private to our hashtable cpreg; in KVM register
1748  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1749  * in the upper bits of the 64 bit ID.
1750  */
1751 #define CP_REG_AA64_SHIFT 28
1752 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1753 
1754 /* To enable banking of coprocessor registers depending on ns-bit we
1755  * add a bit to distinguish between secure and non-secure cpregs in the
1756  * hashtable.
1757  */
1758 #define CP_REG_NS_SHIFT 29
1759 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1760 
1761 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1762     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1763      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1764 
1765 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1766     (CP_REG_AA64_MASK |                                 \
1767      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1768      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1769      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1770      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1771      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1772      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1773 
1774 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1775  * version used as a key for the coprocessor register hashtable
1776  */
1777 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1778 {
1779     uint32_t cpregid = kvmid;
1780     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1781         cpregid |= CP_REG_AA64_MASK;
1782     } else {
1783         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1784             cpregid |= (1 << 15);
1785         }
1786 
1787         /* KVM is always non-secure so add the NS flag on AArch32 register
1788          * entries.
1789          */
1790          cpregid |= 1 << CP_REG_NS_SHIFT;
1791     }
1792     return cpregid;
1793 }
1794 
1795 /* Convert a truncated 32 bit hashtable key into the full
1796  * 64 bit KVM register ID.
1797  */
1798 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1799 {
1800     uint64_t kvmid;
1801 
1802     if (cpregid & CP_REG_AA64_MASK) {
1803         kvmid = cpregid & ~CP_REG_AA64_MASK;
1804         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1805     } else {
1806         kvmid = cpregid & ~(1 << 15);
1807         if (cpregid & (1 << 15)) {
1808             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1809         } else {
1810             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1811         }
1812     }
1813     return kvmid;
1814 }
1815 
1816 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1817  * special-behaviour cp reg and bits [11..8] indicate what behaviour
1818  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1819  * TCG can assume the value to be constant (ie load at translate time)
1820  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1821  * indicates that the TB should not be ended after a write to this register
1822  * (the default is that the TB ends after cp writes). OVERRIDE permits
1823  * a register definition to override a previous definition for the
1824  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1825  * old must have the OVERRIDE bit set.
1826  * ALIAS indicates that this register is an alias view of some underlying
1827  * state which is also visible via another register, and that the other
1828  * register is handling migration and reset; registers marked ALIAS will not be
1829  * migrated but may have their state set by syncing of register state from KVM.
1830  * NO_RAW indicates that this register has no underlying state and does not
1831  * support raw access for state saving/loading; it will not be used for either
1832  * migration or KVM state synchronization. (Typically this is for "registers"
1833  * which are actually used as instructions for cache maintenance and so on.)
1834  * IO indicates that this register does I/O and therefore its accesses
1835  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1836  * registers which implement clocks or timers require this.
1837  */
1838 #define ARM_CP_SPECIAL           0x0001
1839 #define ARM_CP_CONST             0x0002
1840 #define ARM_CP_64BIT             0x0004
1841 #define ARM_CP_SUPPRESS_TB_END   0x0008
1842 #define ARM_CP_OVERRIDE          0x0010
1843 #define ARM_CP_ALIAS             0x0020
1844 #define ARM_CP_IO                0x0040
1845 #define ARM_CP_NO_RAW            0x0080
1846 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
1847 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
1848 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
1849 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
1850 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
1851 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
1852 #define ARM_CP_FPU               0x1000
1853 #define ARM_CP_SVE               0x2000
1854 #define ARM_CP_NO_GDB            0x4000
1855 /* Used only as a terminator for ARMCPRegInfo lists */
1856 #define ARM_CP_SENTINEL          0xffff
1857 /* Mask of only the flag bits in a type field */
1858 #define ARM_CP_FLAG_MASK         0x70ff
1859 
1860 /* Valid values for ARMCPRegInfo state field, indicating which of
1861  * the AArch32 and AArch64 execution states this register is visible in.
1862  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1863  * If the reginfo is declared to be visible in both states then a second
1864  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1865  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1866  * Note that we rely on the values of these enums as we iterate through
1867  * the various states in some places.
1868  */
1869 enum {
1870     ARM_CP_STATE_AA32 = 0,
1871     ARM_CP_STATE_AA64 = 1,
1872     ARM_CP_STATE_BOTH = 2,
1873 };
1874 
1875 /* ARM CP register secure state flags.  These flags identify security state
1876  * attributes for a given CP register entry.
1877  * The existence of both or neither secure and non-secure flags indicates that
1878  * the register has both a secure and non-secure hash entry.  A single one of
1879  * these flags causes the register to only be hashed for the specified
1880  * security state.
1881  * Although definitions may have any combination of the S/NS bits, each
1882  * registered entry will only have one to identify whether the entry is secure
1883  * or non-secure.
1884  */
1885 enum {
1886     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1887     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1888 };
1889 
1890 /* Return true if cptype is a valid type field. This is used to try to
1891  * catch errors where the sentinel has been accidentally left off the end
1892  * of a list of registers.
1893  */
1894 static inline bool cptype_valid(int cptype)
1895 {
1896     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1897         || ((cptype & ARM_CP_SPECIAL) &&
1898             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1899 }
1900 
1901 /* Access rights:
1902  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1903  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1904  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1905  * (ie any of the privileged modes in Secure state, or Monitor mode).
1906  * If a register is accessible in one privilege level it's always accessible
1907  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1908  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1909  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1910  * terminology a little and call this PL3.
1911  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1912  * with the ELx exception levels.
1913  *
1914  * If access permissions for a register are more complex than can be
1915  * described with these bits, then use a laxer set of restrictions, and
1916  * do the more restrictive/complex check inside a helper function.
1917  */
1918 #define PL3_R 0x80
1919 #define PL3_W 0x40
1920 #define PL2_R (0x20 | PL3_R)
1921 #define PL2_W (0x10 | PL3_W)
1922 #define PL1_R (0x08 | PL2_R)
1923 #define PL1_W (0x04 | PL2_W)
1924 #define PL0_R (0x02 | PL1_R)
1925 #define PL0_W (0x01 | PL1_W)
1926 
1927 #define PL3_RW (PL3_R | PL3_W)
1928 #define PL2_RW (PL2_R | PL2_W)
1929 #define PL1_RW (PL1_R | PL1_W)
1930 #define PL0_RW (PL0_R | PL0_W)
1931 
1932 /* Return the highest implemented Exception Level */
1933 static inline int arm_highest_el(CPUARMState *env)
1934 {
1935     if (arm_feature(env, ARM_FEATURE_EL3)) {
1936         return 3;
1937     }
1938     if (arm_feature(env, ARM_FEATURE_EL2)) {
1939         return 2;
1940     }
1941     return 1;
1942 }
1943 
1944 /* Return true if a v7M CPU is in Handler mode */
1945 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1946 {
1947     return env->v7m.exception != 0;
1948 }
1949 
1950 /* Return the current Exception Level (as per ARMv8; note that this differs
1951  * from the ARMv7 Privilege Level).
1952  */
1953 static inline int arm_current_el(CPUARMState *env)
1954 {
1955     if (arm_feature(env, ARM_FEATURE_M)) {
1956         return arm_v7m_is_handler_mode(env) ||
1957             !(env->v7m.control[env->v7m.secure] & 1);
1958     }
1959 
1960     if (is_a64(env)) {
1961         return extract32(env->pstate, 2, 2);
1962     }
1963 
1964     switch (env->uncached_cpsr & 0x1f) {
1965     case ARM_CPU_MODE_USR:
1966         return 0;
1967     case ARM_CPU_MODE_HYP:
1968         return 2;
1969     case ARM_CPU_MODE_MON:
1970         return 3;
1971     default:
1972         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1973             /* If EL3 is 32-bit then all secure privileged modes run in
1974              * EL3
1975              */
1976             return 3;
1977         }
1978 
1979         return 1;
1980     }
1981 }
1982 
1983 typedef struct ARMCPRegInfo ARMCPRegInfo;
1984 
1985 typedef enum CPAccessResult {
1986     /* Access is permitted */
1987     CP_ACCESS_OK = 0,
1988     /* Access fails due to a configurable trap or enable which would
1989      * result in a categorized exception syndrome giving information about
1990      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1991      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1992      * PL1 if in EL0, otherwise to the current EL).
1993      */
1994     CP_ACCESS_TRAP = 1,
1995     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1996      * Note that this is not a catch-all case -- the set of cases which may
1997      * result in this failure is specifically defined by the architecture.
1998      */
1999     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2000     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2001     CP_ACCESS_TRAP_EL2 = 3,
2002     CP_ACCESS_TRAP_EL3 = 4,
2003     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2004     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2005     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2006     /* Access fails and results in an exception syndrome for an FP access,
2007      * trapped directly to EL2 or EL3
2008      */
2009     CP_ACCESS_TRAP_FP_EL2 = 7,
2010     CP_ACCESS_TRAP_FP_EL3 = 8,
2011 } CPAccessResult;
2012 
2013 /* Access functions for coprocessor registers. These cannot fail and
2014  * may not raise exceptions.
2015  */
2016 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2017 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2018                        uint64_t value);
2019 /* Access permission check functions for coprocessor registers. */
2020 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2021                                   const ARMCPRegInfo *opaque,
2022                                   bool isread);
2023 /* Hook function for register reset */
2024 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2025 
2026 #define CP_ANY 0xff
2027 
2028 /* Definition of an ARM coprocessor register */
2029 struct ARMCPRegInfo {
2030     /* Name of register (useful mainly for debugging, need not be unique) */
2031     const char *name;
2032     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2033      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2034      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2035      * will be decoded to this register. The register read and write
2036      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2037      * used by the program, so it is possible to register a wildcard and
2038      * then behave differently on read/write if necessary.
2039      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2040      * must both be zero.
2041      * For AArch64-visible registers, opc0 is also used.
2042      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2043      * way to distinguish (for KVM's benefit) guest-visible system registers
2044      * from demuxed ones provided to preserve the "no side effects on
2045      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2046      * visible (to match KVM's encoding); cp==0 will be converted to
2047      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2048      */
2049     uint8_t cp;
2050     uint8_t crn;
2051     uint8_t crm;
2052     uint8_t opc0;
2053     uint8_t opc1;
2054     uint8_t opc2;
2055     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2056     int state;
2057     /* Register type: ARM_CP_* bits/values */
2058     int type;
2059     /* Access rights: PL*_[RW] */
2060     int access;
2061     /* Security state: ARM_CP_SECSTATE_* bits/values */
2062     int secure;
2063     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2064      * this register was defined: can be used to hand data through to the
2065      * register read/write functions, since they are passed the ARMCPRegInfo*.
2066      */
2067     void *opaque;
2068     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2069      * fieldoffset is non-zero, the reset value of the register.
2070      */
2071     uint64_t resetvalue;
2072     /* Offset of the field in CPUARMState for this register.
2073      *
2074      * This is not needed if either:
2075      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2076      *  2. both readfn and writefn are specified
2077      */
2078     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2079 
2080     /* Offsets of the secure and non-secure fields in CPUARMState for the
2081      * register if it is banked.  These fields are only used during the static
2082      * registration of a register.  During hashing the bank associated
2083      * with a given security state is copied to fieldoffset which is used from
2084      * there on out.
2085      *
2086      * It is expected that register definitions use either fieldoffset or
2087      * bank_fieldoffsets in the definition but not both.  It is also expected
2088      * that both bank offsets are set when defining a banked register.  This
2089      * use indicates that a register is banked.
2090      */
2091     ptrdiff_t bank_fieldoffsets[2];
2092 
2093     /* Function for making any access checks for this register in addition to
2094      * those specified by the 'access' permissions bits. If NULL, no extra
2095      * checks required. The access check is performed at runtime, not at
2096      * translate time.
2097      */
2098     CPAccessFn *accessfn;
2099     /* Function for handling reads of this register. If NULL, then reads
2100      * will be done by loading from the offset into CPUARMState specified
2101      * by fieldoffset.
2102      */
2103     CPReadFn *readfn;
2104     /* Function for handling writes of this register. If NULL, then writes
2105      * will be done by writing to the offset into CPUARMState specified
2106      * by fieldoffset.
2107      */
2108     CPWriteFn *writefn;
2109     /* Function for doing a "raw" read; used when we need to copy
2110      * coprocessor state to the kernel for KVM or out for
2111      * migration. This only needs to be provided if there is also a
2112      * readfn and it has side effects (for instance clear-on-read bits).
2113      */
2114     CPReadFn *raw_readfn;
2115     /* Function for doing a "raw" write; used when we need to copy KVM
2116      * kernel coprocessor state into userspace, or for inbound
2117      * migration. This only needs to be provided if there is also a
2118      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2119      * or similar behaviour.
2120      */
2121     CPWriteFn *raw_writefn;
2122     /* Function for resetting the register. If NULL, then reset will be done
2123      * by writing resetvalue to the field specified in fieldoffset. If
2124      * fieldoffset is 0 then no reset will be done.
2125      */
2126     CPResetFn *resetfn;
2127 };
2128 
2129 /* Macros which are lvalues for the field in CPUARMState for the
2130  * ARMCPRegInfo *ri.
2131  */
2132 #define CPREG_FIELD32(env, ri) \
2133     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2134 #define CPREG_FIELD64(env, ri) \
2135     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2136 
2137 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2138 
2139 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2140                                     const ARMCPRegInfo *regs, void *opaque);
2141 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2142                                        const ARMCPRegInfo *regs, void *opaque);
2143 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2144 {
2145     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2146 }
2147 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2148 {
2149     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2150 }
2151 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2152 
2153 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2154 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2155                          uint64_t value);
2156 /* CPReadFn that can be used for read-as-zero behaviour */
2157 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2158 
2159 /* CPResetFn that does nothing, for use if no reset is required even
2160  * if fieldoffset is non zero.
2161  */
2162 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2163 
2164 /* Return true if this reginfo struct's field in the cpu state struct
2165  * is 64 bits wide.
2166  */
2167 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2168 {
2169     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2170 }
2171 
2172 static inline bool cp_access_ok(int current_el,
2173                                 const ARMCPRegInfo *ri, int isread)
2174 {
2175     return (ri->access >> ((current_el * 2) + isread)) & 1;
2176 }
2177 
2178 /* Raw read of a coprocessor register (as needed for migration, etc) */
2179 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2180 
2181 /**
2182  * write_list_to_cpustate
2183  * @cpu: ARMCPU
2184  *
2185  * For each register listed in the ARMCPU cpreg_indexes list, write
2186  * its value from the cpreg_values list into the ARMCPUState structure.
2187  * This updates TCG's working data structures from KVM data or
2188  * from incoming migration state.
2189  *
2190  * Returns: true if all register values were updated correctly,
2191  * false if some register was unknown or could not be written.
2192  * Note that we do not stop early on failure -- we will attempt
2193  * writing all registers in the list.
2194  */
2195 bool write_list_to_cpustate(ARMCPU *cpu);
2196 
2197 /**
2198  * write_cpustate_to_list:
2199  * @cpu: ARMCPU
2200  *
2201  * For each register listed in the ARMCPU cpreg_indexes list, write
2202  * its value from the ARMCPUState structure into the cpreg_values list.
2203  * This is used to copy info from TCG's working data structures into
2204  * KVM or for outbound migration.
2205  *
2206  * Returns: true if all register values were read correctly,
2207  * false if some register was unknown or could not be read.
2208  * Note that we do not stop early on failure -- we will attempt
2209  * reading all registers in the list.
2210  */
2211 bool write_cpustate_to_list(ARMCPU *cpu);
2212 
2213 #define ARM_CPUID_TI915T      0x54029152
2214 #define ARM_CPUID_TI925T      0x54029252
2215 
2216 #if defined(CONFIG_USER_ONLY)
2217 #define TARGET_PAGE_BITS 12
2218 #else
2219 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2220  * have to support 1K tiny pages.
2221  */
2222 #define TARGET_PAGE_BITS_VARY
2223 #define TARGET_PAGE_BITS_MIN 10
2224 #endif
2225 
2226 #if defined(TARGET_AARCH64)
2227 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2228 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2229 #else
2230 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2231 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2232 #endif
2233 
2234 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2235                                      unsigned int target_el)
2236 {
2237     CPUARMState *env = cs->env_ptr;
2238     unsigned int cur_el = arm_current_el(env);
2239     bool secure = arm_is_secure(env);
2240     bool pstate_unmasked;
2241     int8_t unmasked = 0;
2242 
2243     /* Don't take exceptions if they target a lower EL.
2244      * This check should catch any exceptions that would not be taken but left
2245      * pending.
2246      */
2247     if (cur_el > target_el) {
2248         return false;
2249     }
2250 
2251     switch (excp_idx) {
2252     case EXCP_FIQ:
2253         pstate_unmasked = !(env->daif & PSTATE_F);
2254         break;
2255 
2256     case EXCP_IRQ:
2257         pstate_unmasked = !(env->daif & PSTATE_I);
2258         break;
2259 
2260     case EXCP_VFIQ:
2261         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2262             /* VFIQs are only taken when hypervized and non-secure.  */
2263             return false;
2264         }
2265         return !(env->daif & PSTATE_F);
2266     case EXCP_VIRQ:
2267         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2268             /* VIRQs are only taken when hypervized and non-secure.  */
2269             return false;
2270         }
2271         return !(env->daif & PSTATE_I);
2272     default:
2273         g_assert_not_reached();
2274     }
2275 
2276     /* Use the target EL, current execution state and SCR/HCR settings to
2277      * determine whether the corresponding CPSR bit is used to mask the
2278      * interrupt.
2279      */
2280     if ((target_el > cur_el) && (target_el != 1)) {
2281         /* Exceptions targeting a higher EL may not be maskable */
2282         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2283             /* 64-bit masking rules are simple: exceptions to EL3
2284              * can't be masked, and exceptions to EL2 can only be
2285              * masked from Secure state. The HCR and SCR settings
2286              * don't affect the masking logic, only the interrupt routing.
2287              */
2288             if (target_el == 3 || !secure) {
2289                 unmasked = 1;
2290             }
2291         } else {
2292             /* The old 32-bit-only environment has a more complicated
2293              * masking setup. HCR and SCR bits not only affect interrupt
2294              * routing but also change the behaviour of masking.
2295              */
2296             bool hcr, scr;
2297 
2298             switch (excp_idx) {
2299             case EXCP_FIQ:
2300                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2301                  * we override the CPSR.F in determining if the exception is
2302                  * masked or not. If neither of these are set then we fall back
2303                  * to the CPSR.F setting otherwise we further assess the state
2304                  * below.
2305                  */
2306                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2307                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2308 
2309                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2310                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2311                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2312                  * when non-secure but only when FIQs are only routed to EL3.
2313                  */
2314                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2315                 break;
2316             case EXCP_IRQ:
2317                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2318                  * we may override the CPSR.I masking when in non-secure state.
2319                  * The SCR.IRQ setting has already been taken into consideration
2320                  * when setting the target EL, so it does not have a further
2321                  * affect here.
2322                  */
2323                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2324                 scr = false;
2325                 break;
2326             default:
2327                 g_assert_not_reached();
2328             }
2329 
2330             if ((scr || hcr) && !secure) {
2331                 unmasked = 1;
2332             }
2333         }
2334     }
2335 
2336     /* The PSTATE bits only mask the interrupt if we have not overriden the
2337      * ability above.
2338      */
2339     return unmasked || pstate_unmasked;
2340 }
2341 
2342 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2343 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2344 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2345 
2346 #define cpu_signal_handler cpu_arm_signal_handler
2347 #define cpu_list arm_cpu_list
2348 
2349 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2350  *
2351  * If EL3 is 64-bit:
2352  *  + NonSecure EL1 & 0 stage 1
2353  *  + NonSecure EL1 & 0 stage 2
2354  *  + NonSecure EL2
2355  *  + Secure EL1 & EL0
2356  *  + Secure EL3
2357  * If EL3 is 32-bit:
2358  *  + NonSecure PL1 & 0 stage 1
2359  *  + NonSecure PL1 & 0 stage 2
2360  *  + NonSecure PL2
2361  *  + Secure PL0 & PL1
2362  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2363  *
2364  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2365  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2366  *     may differ in access permissions even if the VA->PA map is the same
2367  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2368  *     translation, which means that we have one mmu_idx that deals with two
2369  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2370  *     architecturally permitted]
2371  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2372  *     handling via the TLB. The only way to do a stage 1 translation without
2373  *     the immediate stage 2 translation is via the ATS or AT system insns,
2374  *     which can be slow-pathed and always do a page table walk.
2375  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2376  *     translation regimes, because they map reasonably well to each other
2377  *     and they can't both be active at the same time.
2378  * This gives us the following list of mmu_idx values:
2379  *
2380  * NS EL0 (aka NS PL0) stage 1+2
2381  * NS EL1 (aka NS PL1) stage 1+2
2382  * NS EL2 (aka NS PL2)
2383  * S EL3 (aka S PL1)
2384  * S EL0 (aka S PL0)
2385  * S EL1 (not used if EL3 is 32 bit)
2386  * NS EL0+1 stage 2
2387  *
2388  * (The last of these is an mmu_idx because we want to be able to use the TLB
2389  * for the accesses done as part of a stage 1 page table walk, rather than
2390  * having to walk the stage 2 page table over and over.)
2391  *
2392  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2393  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2394  * NS EL2 if we ever model a Cortex-R52).
2395  *
2396  * M profile CPUs are rather different as they do not have a true MMU.
2397  * They have the following different MMU indexes:
2398  *  User
2399  *  Privileged
2400  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2401  *  Privileged, execution priority negative (ditto)
2402  * If the CPU supports the v8M Security Extension then there are also:
2403  *  Secure User
2404  *  Secure Privileged
2405  *  Secure User, execution priority negative
2406  *  Secure Privileged, execution priority negative
2407  *
2408  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2409  * are not quite the same -- different CPU types (most notably M profile
2410  * vs A/R profile) would like to use MMU indexes with different semantics,
2411  * but since we don't ever need to use all of those in a single CPU we
2412  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2413  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2414  * the same for any particular CPU.
2415  * Variables of type ARMMUIdx are always full values, and the core
2416  * index values are in variables of type 'int'.
2417  *
2418  * Our enumeration includes at the end some entries which are not "true"
2419  * mmu_idx values in that they don't have corresponding TLBs and are only
2420  * valid for doing slow path page table walks.
2421  *
2422  * The constant names here are patterned after the general style of the names
2423  * of the AT/ATS operations.
2424  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2425  * For M profile we arrange them to have a bit for priv, a bit for negpri
2426  * and a bit for secure.
2427  */
2428 #define ARM_MMU_IDX_A 0x10 /* A profile */
2429 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2430 #define ARM_MMU_IDX_M 0x40 /* M profile */
2431 
2432 /* meanings of the bits for M profile mmu idx values */
2433 #define ARM_MMU_IDX_M_PRIV 0x1
2434 #define ARM_MMU_IDX_M_NEGPRI 0x2
2435 #define ARM_MMU_IDX_M_S 0x4
2436 
2437 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2438 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2439 
2440 typedef enum ARMMMUIdx {
2441     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2442     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2443     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2444     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2445     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2446     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2447     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2448     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2449     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2450     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2451     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2452     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2453     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2454     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2455     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2456     /* Indexes below here don't have TLBs and are used only for AT system
2457      * instructions or for the first stage of an S12 page table walk.
2458      */
2459     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2460     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2461 } ARMMMUIdx;
2462 
2463 /* Bit macros for the core-mmu-index values for each index,
2464  * for use when calling tlb_flush_by_mmuidx() and friends.
2465  */
2466 typedef enum ARMMMUIdxBit {
2467     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2468     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2469     ARMMMUIdxBit_S1E2 = 1 << 2,
2470     ARMMMUIdxBit_S1E3 = 1 << 3,
2471     ARMMMUIdxBit_S1SE0 = 1 << 4,
2472     ARMMMUIdxBit_S1SE1 = 1 << 5,
2473     ARMMMUIdxBit_S2NS = 1 << 6,
2474     ARMMMUIdxBit_MUser = 1 << 0,
2475     ARMMMUIdxBit_MPriv = 1 << 1,
2476     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2477     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2478     ARMMMUIdxBit_MSUser = 1 << 4,
2479     ARMMMUIdxBit_MSPriv = 1 << 5,
2480     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2481     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2482 } ARMMMUIdxBit;
2483 
2484 #define MMU_USER_IDX 0
2485 
2486 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2487 {
2488     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2489 }
2490 
2491 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2492 {
2493     if (arm_feature(env, ARM_FEATURE_M)) {
2494         return mmu_idx | ARM_MMU_IDX_M;
2495     } else {
2496         return mmu_idx | ARM_MMU_IDX_A;
2497     }
2498 }
2499 
2500 /* Return the exception level we're running at if this is our mmu_idx */
2501 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2502 {
2503     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2504     case ARM_MMU_IDX_A:
2505         return mmu_idx & 3;
2506     case ARM_MMU_IDX_M:
2507         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2508     default:
2509         g_assert_not_reached();
2510     }
2511 }
2512 
2513 /* Return the MMU index for a v7M CPU in the specified security and
2514  * privilege state
2515  */
2516 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2517                                                               bool secstate,
2518                                                               bool priv)
2519 {
2520     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2521 
2522     if (priv) {
2523         mmu_idx |= ARM_MMU_IDX_M_PRIV;
2524     }
2525 
2526     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2527         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2528     }
2529 
2530     if (secstate) {
2531         mmu_idx |= ARM_MMU_IDX_M_S;
2532     }
2533 
2534     return mmu_idx;
2535 }
2536 
2537 /* Return the MMU index for a v7M CPU in the specified security state */
2538 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2539                                                      bool secstate)
2540 {
2541     bool priv = arm_current_el(env) != 0;
2542 
2543     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2544 }
2545 
2546 /* Determine the current mmu_idx to use for normal loads/stores */
2547 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2548 {
2549     int el = arm_current_el(env);
2550 
2551     if (arm_feature(env, ARM_FEATURE_M)) {
2552         ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2553 
2554         return arm_to_core_mmu_idx(mmu_idx);
2555     }
2556 
2557     if (el < 2 && arm_is_secure_below_el3(env)) {
2558         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2559     }
2560     return el;
2561 }
2562 
2563 /* Indexes used when registering address spaces with cpu_address_space_init */
2564 typedef enum ARMASIdx {
2565     ARMASIdx_NS = 0,
2566     ARMASIdx_S = 1,
2567 } ARMASIdx;
2568 
2569 /* Return the Exception Level targeted by debug exceptions. */
2570 static inline int arm_debug_target_el(CPUARMState *env)
2571 {
2572     bool secure = arm_is_secure(env);
2573     bool route_to_el2 = false;
2574 
2575     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2576         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2577                        env->cp15.mdcr_el2 & (1 << 8);
2578     }
2579 
2580     if (route_to_el2) {
2581         return 2;
2582     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2583                !arm_el_is_aa64(env, 3) && secure) {
2584         return 3;
2585     } else {
2586         return 1;
2587     }
2588 }
2589 
2590 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2591 {
2592     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2593      * CSSELR is RAZ/WI.
2594      */
2595     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2596 }
2597 
2598 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2599 {
2600     if (arm_is_secure(env)) {
2601         /* MDCR_EL3.SDD disables debug events from Secure state */
2602         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2603             || arm_current_el(env) == 3) {
2604             return false;
2605         }
2606     }
2607 
2608     if (arm_current_el(env) == arm_debug_target_el(env)) {
2609         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2610             || (env->daif & PSTATE_D)) {
2611             return false;
2612         }
2613     }
2614     return true;
2615 }
2616 
2617 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2618 {
2619     int el = arm_current_el(env);
2620 
2621     if (el == 0 && arm_el_is_aa64(env, 1)) {
2622         return aa64_generate_debug_exceptions(env);
2623     }
2624 
2625     if (arm_is_secure(env)) {
2626         int spd;
2627 
2628         if (el == 0 && (env->cp15.sder & 1)) {
2629             /* SDER.SUIDEN means debug exceptions from Secure EL0
2630              * are always enabled. Otherwise they are controlled by
2631              * SDCR.SPD like those from other Secure ELs.
2632              */
2633             return true;
2634         }
2635 
2636         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2637         switch (spd) {
2638         case 1:
2639             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2640         case 0:
2641             /* For 0b00 we return true if external secure invasive debug
2642              * is enabled. On real hardware this is controlled by external
2643              * signals to the core. QEMU always permits debug, and behaves
2644              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2645              */
2646             return true;
2647         case 2:
2648             return false;
2649         case 3:
2650             return true;
2651         }
2652     }
2653 
2654     return el != 2;
2655 }
2656 
2657 /* Return true if debugging exceptions are currently enabled.
2658  * This corresponds to what in ARM ARM pseudocode would be
2659  *    if UsingAArch32() then
2660  *        return AArch32.GenerateDebugExceptions()
2661  *    else
2662  *        return AArch64.GenerateDebugExceptions()
2663  * We choose to push the if() down into this function for clarity,
2664  * since the pseudocode has it at all callsites except for the one in
2665  * CheckSoftwareStep(), where it is elided because both branches would
2666  * always return the same value.
2667  *
2668  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2669  * don't yet implement those exception levels or their associated trap bits.
2670  */
2671 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2672 {
2673     if (env->aarch64) {
2674         return aa64_generate_debug_exceptions(env);
2675     } else {
2676         return aa32_generate_debug_exceptions(env);
2677     }
2678 }
2679 
2680 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2681  * implicitly means this always returns false in pre-v8 CPUs.)
2682  */
2683 static inline bool arm_singlestep_active(CPUARMState *env)
2684 {
2685     return extract32(env->cp15.mdscr_el1, 0, 1)
2686         && arm_el_is_aa64(env, arm_debug_target_el(env))
2687         && arm_generate_debug_exceptions(env);
2688 }
2689 
2690 static inline bool arm_sctlr_b(CPUARMState *env)
2691 {
2692     return
2693         /* We need not implement SCTLR.ITD in user-mode emulation, so
2694          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2695          * This lets people run BE32 binaries with "-cpu any".
2696          */
2697 #ifndef CONFIG_USER_ONLY
2698         !arm_feature(env, ARM_FEATURE_V7) &&
2699 #endif
2700         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2701 }
2702 
2703 /* Return true if the processor is in big-endian mode. */
2704 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2705 {
2706     int cur_el;
2707 
2708     /* In 32bit endianness is determined by looking at CPSR's E bit */
2709     if (!is_a64(env)) {
2710         return
2711 #ifdef CONFIG_USER_ONLY
2712             /* In system mode, BE32 is modelled in line with the
2713              * architecture (as word-invariant big-endianness), where loads
2714              * and stores are done little endian but from addresses which
2715              * are adjusted by XORing with the appropriate constant. So the
2716              * endianness to use for the raw data access is not affected by
2717              * SCTLR.B.
2718              * In user mode, however, we model BE32 as byte-invariant
2719              * big-endianness (because user-only code cannot tell the
2720              * difference), and so we need to use a data access endianness
2721              * that depends on SCTLR.B.
2722              */
2723             arm_sctlr_b(env) ||
2724 #endif
2725                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2726     }
2727 
2728     cur_el = arm_current_el(env);
2729 
2730     if (cur_el == 0) {
2731         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2732     }
2733 
2734     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2735 }
2736 
2737 #include "exec/cpu-all.h"
2738 
2739 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2740  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2741  * We put flags which are shared between 32 and 64 bit mode at the top
2742  * of the word, and flags which apply to only one mode at the bottom.
2743  */
2744 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2745 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2746 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2747 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2748 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2749 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2750 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2751 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2752 /* Target EL if we take a floating-point-disabled exception */
2753 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2754 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2755 
2756 /* Bit usage when in AArch32 state: */
2757 #define ARM_TBFLAG_THUMB_SHIFT      0
2758 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2759 #define ARM_TBFLAG_VECLEN_SHIFT     1
2760 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2761 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2762 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2763 #define ARM_TBFLAG_VFPEN_SHIFT      7
2764 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2765 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2766 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2767 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2768 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2769 /* We store the bottom two bits of the CPAR as TB flags and handle
2770  * checks on the other bits at runtime
2771  */
2772 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2773 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2774 /* Indicates whether cp register reads and writes by guest code should access
2775  * the secure or nonsecure bank of banked registers; note that this is not
2776  * the same thing as the current security state of the processor!
2777  */
2778 #define ARM_TBFLAG_NS_SHIFT         19
2779 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2780 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2781 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2782 /* For M profile only, Handler (ie not Thread) mode */
2783 #define ARM_TBFLAG_HANDLER_SHIFT    21
2784 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2785 
2786 /* Bit usage when in AArch64 state */
2787 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2788 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2789 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2790 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2791 #define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
2792 #define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2793 #define ARM_TBFLAG_ZCR_LEN_SHIFT    4
2794 #define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2795 
2796 /* some convenience accessor macros */
2797 #define ARM_TBFLAG_AARCH64_STATE(F) \
2798     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2799 #define ARM_TBFLAG_MMUIDX(F) \
2800     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2801 #define ARM_TBFLAG_SS_ACTIVE(F) \
2802     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2803 #define ARM_TBFLAG_PSTATE_SS(F) \
2804     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2805 #define ARM_TBFLAG_FPEXC_EL(F) \
2806     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2807 #define ARM_TBFLAG_THUMB(F) \
2808     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2809 #define ARM_TBFLAG_VECLEN(F) \
2810     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2811 #define ARM_TBFLAG_VECSTRIDE(F) \
2812     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2813 #define ARM_TBFLAG_VFPEN(F) \
2814     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2815 #define ARM_TBFLAG_CONDEXEC(F) \
2816     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2817 #define ARM_TBFLAG_SCTLR_B(F) \
2818     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2819 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2820     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2821 #define ARM_TBFLAG_NS(F) \
2822     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2823 #define ARM_TBFLAG_BE_DATA(F) \
2824     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2825 #define ARM_TBFLAG_HANDLER(F) \
2826     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2827 #define ARM_TBFLAG_TBI0(F) \
2828     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2829 #define ARM_TBFLAG_TBI1(F) \
2830     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2831 #define ARM_TBFLAG_SVEEXC_EL(F) \
2832     (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2833 #define ARM_TBFLAG_ZCR_LEN(F) \
2834     (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2835 
2836 static inline bool bswap_code(bool sctlr_b)
2837 {
2838 #ifdef CONFIG_USER_ONLY
2839     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2840      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2841      * would also end up as a mixed-endian mode with BE code, LE data.
2842      */
2843     return
2844 #ifdef TARGET_WORDS_BIGENDIAN
2845         1 ^
2846 #endif
2847         sctlr_b;
2848 #else
2849     /* All code access in ARM is little endian, and there are no loaders
2850      * doing swaps that need to be reversed
2851      */
2852     return 0;
2853 #endif
2854 }
2855 
2856 #ifdef CONFIG_USER_ONLY
2857 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2858 {
2859     return
2860 #ifdef TARGET_WORDS_BIGENDIAN
2861        1 ^
2862 #endif
2863        arm_cpu_data_is_big_endian(env);
2864 }
2865 #endif
2866 
2867 #ifndef CONFIG_USER_ONLY
2868 /**
2869  * arm_regime_tbi0:
2870  * @env: CPUARMState
2871  * @mmu_idx: MMU index indicating required translation regime
2872  *
2873  * Extracts the TBI0 value from the appropriate TCR for the current EL
2874  *
2875  * Returns: the TBI0 value.
2876  */
2877 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2878 
2879 /**
2880  * arm_regime_tbi1:
2881  * @env: CPUARMState
2882  * @mmu_idx: MMU index indicating required translation regime
2883  *
2884  * Extracts the TBI1 value from the appropriate TCR for the current EL
2885  *
2886  * Returns: the TBI1 value.
2887  */
2888 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2889 #else
2890 /* We can't handle tagged addresses properly in user-only mode */
2891 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2892 {
2893     return 0;
2894 }
2895 
2896 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2897 {
2898     return 0;
2899 }
2900 #endif
2901 
2902 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2903                           target_ulong *cs_base, uint32_t *flags);
2904 
2905 enum {
2906     QEMU_PSCI_CONDUIT_DISABLED = 0,
2907     QEMU_PSCI_CONDUIT_SMC = 1,
2908     QEMU_PSCI_CONDUIT_HVC = 2,
2909 };
2910 
2911 #ifndef CONFIG_USER_ONLY
2912 /* Return the address space index to use for a memory access */
2913 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2914 {
2915     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2916 }
2917 
2918 /* Return the AddressSpace to use for a memory access
2919  * (which depends on whether the access is S or NS, and whether
2920  * the board gave us a separate AddressSpace for S accesses).
2921  */
2922 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2923 {
2924     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2925 }
2926 #endif
2927 
2928 /**
2929  * arm_register_pre_el_change_hook:
2930  * Register a hook function which will be called immediately before this
2931  * CPU changes exception level or mode. The hook function will be
2932  * passed a pointer to the ARMCPU and the opaque data pointer passed
2933  * to this function when the hook was registered.
2934  *
2935  * Note that if a pre-change hook is called, any registered post-change hooks
2936  * are guaranteed to subsequently be called.
2937  */
2938 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
2939                                  void *opaque);
2940 /**
2941  * arm_register_el_change_hook:
2942  * Register a hook function which will be called immediately after this
2943  * CPU changes exception level or mode. The hook function will be
2944  * passed a pointer to the ARMCPU and the opaque data pointer passed
2945  * to this function when the hook was registered.
2946  *
2947  * Note that any registered hooks registered here are guaranteed to be called
2948  * if pre-change hooks have been.
2949  */
2950 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
2951         *opaque);
2952 
2953 /**
2954  * aa32_vfp_dreg:
2955  * Return a pointer to the Dn register within env in 32-bit mode.
2956  */
2957 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2958 {
2959     return &env->vfp.zregs[regno >> 1].d[regno & 1];
2960 }
2961 
2962 /**
2963  * aa32_vfp_qreg:
2964  * Return a pointer to the Qn register within env in 32-bit mode.
2965  */
2966 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2967 {
2968     return &env->vfp.zregs[regno].d[0];
2969 }
2970 
2971 /**
2972  * aa64_vfp_qreg:
2973  * Return a pointer to the Qn register within env in 64-bit mode.
2974  */
2975 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2976 {
2977     return &env->vfp.zregs[regno].d[0];
2978 }
2979 
2980 /* Shared between translate-sve.c and sve_helper.c.  */
2981 extern const uint64_t pred_esz_masks[4];
2982 
2983 #endif
2984