1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 #include "qapi/qapi-types-common.h" 28 29 /* ARM processors have a weak memory model */ 30 #define TCG_GUEST_DEFAULT_MO (0) 31 32 #ifdef TARGET_AARCH64 33 #define KVM_HAVE_MCE_INJECTION 1 34 #endif 35 36 #define EXCP_UDEF 1 /* undefined instruction */ 37 #define EXCP_SWI 2 /* software interrupt */ 38 #define EXCP_PREFETCH_ABORT 3 39 #define EXCP_DATA_ABORT 4 40 #define EXCP_IRQ 5 41 #define EXCP_FIQ 6 42 #define EXCP_BKPT 7 43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 45 #define EXCP_HVC 11 /* HyperVisor Call */ 46 #define EXCP_HYP_TRAP 12 47 #define EXCP_SMC 13 /* Secure Monitor Call */ 48 #define EXCP_VIRQ 14 49 #define EXCP_VFIQ 15 50 #define EXCP_SEMIHOST 16 /* semihosting call */ 51 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 52 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 53 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 54 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 55 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 56 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 58 59 #define ARMV7M_EXCP_RESET 1 60 #define ARMV7M_EXCP_NMI 2 61 #define ARMV7M_EXCP_HARD 3 62 #define ARMV7M_EXCP_MEM 4 63 #define ARMV7M_EXCP_BUS 5 64 #define ARMV7M_EXCP_USAGE 6 65 #define ARMV7M_EXCP_SECURE 7 66 #define ARMV7M_EXCP_SVC 11 67 #define ARMV7M_EXCP_DEBUG 12 68 #define ARMV7M_EXCP_PENDSV 14 69 #define ARMV7M_EXCP_SYSTICK 15 70 71 /* For M profile, some registers are banked secure vs non-secure; 72 * these are represented as a 2-element array where the first element 73 * is the non-secure copy and the second is the secure copy. 74 * When the CPU does not have implement the security extension then 75 * only the first element is used. 76 * This means that the copy for the current security state can be 77 * accessed via env->registerfield[env->v7m.secure] (whether the security 78 * extension is implemented or not). 79 */ 80 enum { 81 M_REG_NS = 0, 82 M_REG_S = 1, 83 M_REG_NUM_BANKS = 2, 84 }; 85 86 /* ARM-specific interrupt pending bits. */ 87 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 88 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 89 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 90 91 /* The usual mapping for an AArch64 system register to its AArch32 92 * counterpart is for the 32 bit world to have access to the lower 93 * half only (with writes leaving the upper half untouched). It's 94 * therefore useful to be able to pass TCG the offset of the least 95 * significant half of a uint64_t struct member. 96 */ 97 #ifdef HOST_WORDS_BIGENDIAN 98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 99 #define offsetofhigh32(S, M) offsetof(S, M) 100 #else 101 #define offsetoflow32(S, M) offsetof(S, M) 102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #endif 104 105 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 106 #define ARM_CPU_IRQ 0 107 #define ARM_CPU_FIQ 1 108 #define ARM_CPU_VIRQ 2 109 #define ARM_CPU_VFIQ 3 110 111 /* ARM-specific extra insn start words: 112 * 1: Conditional execution bits 113 * 2: Partial exception syndrome for data aborts 114 */ 115 #define TARGET_INSN_START_EXTRA_WORDS 2 116 117 /* The 2nd extra word holding syndrome info for data aborts does not use 118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 119 * help the sleb128 encoder do a better job. 120 * When restoring the CPU state, we shift it back up. 121 */ 122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 123 #define ARM_INSN_START_WORD2_SHIFT 14 124 125 /* We currently assume float and double are IEEE single and double 126 precision respectively. 127 Doing runtime conversions is tricky because VFP registers may contain 128 integer values (eg. as the result of a FTOSI instruction). 129 s<2n> maps to the least significant half of d<n> 130 s<2n+1> maps to the most significant half of d<n> 131 */ 132 133 /** 134 * DynamicGDBXMLInfo: 135 * @desc: Contains the XML descriptions. 136 * @num: Number of the registers in this XML seen by GDB. 137 * @data: A union with data specific to the set of registers 138 * @cpregs_keys: Array that contains the corresponding Key of 139 * a given cpreg with the same order of the cpreg 140 * in the XML description. 141 */ 142 typedef struct DynamicGDBXMLInfo { 143 char *desc; 144 int num; 145 union { 146 struct { 147 uint32_t *keys; 148 } cpregs; 149 } data; 150 } DynamicGDBXMLInfo; 151 152 /* CPU state for each instance of a generic timer (in cp15 c14) */ 153 typedef struct ARMGenericTimer { 154 uint64_t cval; /* Timer CompareValue register */ 155 uint64_t ctl; /* Timer Control register */ 156 } ARMGenericTimer; 157 158 #define GTIMER_PHYS 0 159 #define GTIMER_VIRT 1 160 #define GTIMER_HYP 2 161 #define GTIMER_SEC 3 162 #define GTIMER_HYPVIRT 4 163 #define NUM_GTIMERS 5 164 165 typedef struct { 166 uint64_t raw_tcr; 167 uint32_t mask; 168 uint32_t base_mask; 169 } TCR; 170 171 /* Define a maximum sized vector register. 172 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 173 * For 64-bit, this is a 2048-bit SVE register. 174 * 175 * Note that the mapping between S, D, and Q views of the register bank 176 * differs between AArch64 and AArch32. 177 * In AArch32: 178 * Qn = regs[n].d[1]:regs[n].d[0] 179 * Dn = regs[n / 2].d[n & 1] 180 * Sn = regs[n / 4].d[n % 4 / 2], 181 * bits 31..0 for even n, and bits 63..32 for odd n 182 * (and regs[16] to regs[31] are inaccessible) 183 * In AArch64: 184 * Zn = regs[n].d[*] 185 * Qn = regs[n].d[1]:regs[n].d[0] 186 * Dn = regs[n].d[0] 187 * Sn = regs[n].d[0] bits 31..0 188 * Hn = regs[n].d[0] bits 15..0 189 * 190 * This corresponds to the architecturally defined mapping between 191 * the two execution states, and means we do not need to explicitly 192 * map these registers when changing states. 193 * 194 * Align the data for use with TCG host vector operations. 195 */ 196 197 #ifdef TARGET_AARCH64 198 # define ARM_MAX_VQ 16 199 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 200 #else 201 # define ARM_MAX_VQ 1 202 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 203 #endif 204 205 typedef struct ARMVectorReg { 206 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 207 } ARMVectorReg; 208 209 #ifdef TARGET_AARCH64 210 /* In AArch32 mode, predicate registers do not exist at all. */ 211 typedef struct ARMPredicateReg { 212 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 213 } ARMPredicateReg; 214 215 /* In AArch32 mode, PAC keys do not exist at all. */ 216 typedef struct ARMPACKey { 217 uint64_t lo, hi; 218 } ARMPACKey; 219 #endif 220 221 222 typedef struct CPUARMState { 223 /* Regs for current mode. */ 224 uint32_t regs[16]; 225 226 /* 32/64 switch only happens when taking and returning from 227 * exceptions so the overlap semantics are taken care of then 228 * instead of having a complicated union. 229 */ 230 /* Regs for A64 mode. */ 231 uint64_t xregs[32]; 232 uint64_t pc; 233 /* PSTATE isn't an architectural register for ARMv8. However, it is 234 * convenient for us to assemble the underlying state into a 32 bit format 235 * identical to the architectural format used for the SPSR. (This is also 236 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 237 * 'pstate' register are.) Of the PSTATE bits: 238 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 239 * semantics as for AArch32, as described in the comments on each field) 240 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 241 * DAIF (exception masks) are kept in env->daif 242 * BTYPE is kept in env->btype 243 * all other bits are stored in their correct places in env->pstate 244 */ 245 uint32_t pstate; 246 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 247 248 /* Cached TBFLAGS state. See below for which bits are included. */ 249 uint32_t hflags; 250 251 /* Frequently accessed CPSR bits are stored separately for efficiency. 252 This contains all the other bits. Use cpsr_{read,write} to access 253 the whole CPSR. */ 254 uint32_t uncached_cpsr; 255 uint32_t spsr; 256 257 /* Banked registers. */ 258 uint64_t banked_spsr[8]; 259 uint32_t banked_r13[8]; 260 uint32_t banked_r14[8]; 261 262 /* These hold r8-r12. */ 263 uint32_t usr_regs[5]; 264 uint32_t fiq_regs[5]; 265 266 /* cpsr flag cache for faster execution */ 267 uint32_t CF; /* 0 or 1 */ 268 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 269 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 270 uint32_t ZF; /* Z set if zero. */ 271 uint32_t QF; /* 0 or 1 */ 272 uint32_t GE; /* cpsr[19:16] */ 273 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 274 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 275 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 276 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 277 278 uint64_t elr_el[4]; /* AArch64 exception link regs */ 279 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 280 281 /* System control coprocessor (cp15) */ 282 struct { 283 uint32_t c0_cpuid; 284 union { /* Cache size selection */ 285 struct { 286 uint64_t _unused_csselr0; 287 uint64_t csselr_ns; 288 uint64_t _unused_csselr1; 289 uint64_t csselr_s; 290 }; 291 uint64_t csselr_el[4]; 292 }; 293 union { /* System control register. */ 294 struct { 295 uint64_t _unused_sctlr; 296 uint64_t sctlr_ns; 297 uint64_t hsctlr; 298 uint64_t sctlr_s; 299 }; 300 uint64_t sctlr_el[4]; 301 }; 302 uint64_t cpacr_el1; /* Architectural feature access control register */ 303 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 304 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 305 uint64_t sder; /* Secure debug enable register. */ 306 uint32_t nsacr; /* Non-secure access control register. */ 307 union { /* MMU translation table base 0. */ 308 struct { 309 uint64_t _unused_ttbr0_0; 310 uint64_t ttbr0_ns; 311 uint64_t _unused_ttbr0_1; 312 uint64_t ttbr0_s; 313 }; 314 uint64_t ttbr0_el[4]; 315 }; 316 union { /* MMU translation table base 1. */ 317 struct { 318 uint64_t _unused_ttbr1_0; 319 uint64_t ttbr1_ns; 320 uint64_t _unused_ttbr1_1; 321 uint64_t ttbr1_s; 322 }; 323 uint64_t ttbr1_el[4]; 324 }; 325 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 326 /* MMU translation table base control. */ 327 TCR tcr_el[4]; 328 TCR vtcr_el2; /* Virtualization Translation Control. */ 329 uint32_t c2_data; /* MPU data cacheable bits. */ 330 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 331 union { /* MMU domain access control register 332 * MPU write buffer control. 333 */ 334 struct { 335 uint64_t dacr_ns; 336 uint64_t dacr_s; 337 }; 338 struct { 339 uint64_t dacr32_el2; 340 }; 341 }; 342 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 343 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 344 uint64_t hcr_el2; /* Hypervisor configuration register */ 345 uint64_t scr_el3; /* Secure configuration register. */ 346 union { /* Fault status registers. */ 347 struct { 348 uint64_t ifsr_ns; 349 uint64_t ifsr_s; 350 }; 351 struct { 352 uint64_t ifsr32_el2; 353 }; 354 }; 355 union { 356 struct { 357 uint64_t _unused_dfsr; 358 uint64_t dfsr_ns; 359 uint64_t hsr; 360 uint64_t dfsr_s; 361 }; 362 uint64_t esr_el[4]; 363 }; 364 uint32_t c6_region[8]; /* MPU base/size registers. */ 365 union { /* Fault address registers. */ 366 struct { 367 uint64_t _unused_far0; 368 #ifdef HOST_WORDS_BIGENDIAN 369 uint32_t ifar_ns; 370 uint32_t dfar_ns; 371 uint32_t ifar_s; 372 uint32_t dfar_s; 373 #else 374 uint32_t dfar_ns; 375 uint32_t ifar_ns; 376 uint32_t dfar_s; 377 uint32_t ifar_s; 378 #endif 379 uint64_t _unused_far3; 380 }; 381 uint64_t far_el[4]; 382 }; 383 uint64_t hpfar_el2; 384 uint64_t hstr_el2; 385 union { /* Translation result. */ 386 struct { 387 uint64_t _unused_par_0; 388 uint64_t par_ns; 389 uint64_t _unused_par_1; 390 uint64_t par_s; 391 }; 392 uint64_t par_el[4]; 393 }; 394 395 uint32_t c9_insn; /* Cache lockdown registers. */ 396 uint32_t c9_data; 397 uint64_t c9_pmcr; /* performance monitor control register */ 398 uint64_t c9_pmcnten; /* perf monitor counter enables */ 399 uint64_t c9_pmovsr; /* perf monitor overflow status */ 400 uint64_t c9_pmuserenr; /* perf monitor user enable */ 401 uint64_t c9_pmselr; /* perf monitor counter selection register */ 402 uint64_t c9_pminten; /* perf monitor interrupt enables */ 403 union { /* Memory attribute redirection */ 404 struct { 405 #ifdef HOST_WORDS_BIGENDIAN 406 uint64_t _unused_mair_0; 407 uint32_t mair1_ns; 408 uint32_t mair0_ns; 409 uint64_t _unused_mair_1; 410 uint32_t mair1_s; 411 uint32_t mair0_s; 412 #else 413 uint64_t _unused_mair_0; 414 uint32_t mair0_ns; 415 uint32_t mair1_ns; 416 uint64_t _unused_mair_1; 417 uint32_t mair0_s; 418 uint32_t mair1_s; 419 #endif 420 }; 421 uint64_t mair_el[4]; 422 }; 423 union { /* vector base address register */ 424 struct { 425 uint64_t _unused_vbar; 426 uint64_t vbar_ns; 427 uint64_t hvbar; 428 uint64_t vbar_s; 429 }; 430 uint64_t vbar_el[4]; 431 }; 432 uint32_t mvbar; /* (monitor) vector base address register */ 433 struct { /* FCSE PID. */ 434 uint32_t fcseidr_ns; 435 uint32_t fcseidr_s; 436 }; 437 union { /* Context ID. */ 438 struct { 439 uint64_t _unused_contextidr_0; 440 uint64_t contextidr_ns; 441 uint64_t _unused_contextidr_1; 442 uint64_t contextidr_s; 443 }; 444 uint64_t contextidr_el[4]; 445 }; 446 union { /* User RW Thread register. */ 447 struct { 448 uint64_t tpidrurw_ns; 449 uint64_t tpidrprw_ns; 450 uint64_t htpidr; 451 uint64_t _tpidr_el3; 452 }; 453 uint64_t tpidr_el[4]; 454 }; 455 /* The secure banks of these registers don't map anywhere */ 456 uint64_t tpidrurw_s; 457 uint64_t tpidrprw_s; 458 uint64_t tpidruro_s; 459 460 union { /* User RO Thread register. */ 461 uint64_t tpidruro_ns; 462 uint64_t tpidrro_el[1]; 463 }; 464 uint64_t c14_cntfrq; /* Counter Frequency register */ 465 uint64_t c14_cntkctl; /* Timer Control register */ 466 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 467 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 468 ARMGenericTimer c14_timer[NUM_GTIMERS]; 469 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 470 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 471 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 472 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 473 uint32_t c15_threadid; /* TI debugger thread-ID. */ 474 uint32_t c15_config_base_address; /* SCU base address. */ 475 uint32_t c15_diagnostic; /* diagnostic register */ 476 uint32_t c15_power_diagnostic; 477 uint32_t c15_power_control; /* power control */ 478 uint64_t dbgbvr[16]; /* breakpoint value registers */ 479 uint64_t dbgbcr[16]; /* breakpoint control registers */ 480 uint64_t dbgwvr[16]; /* watchpoint value registers */ 481 uint64_t dbgwcr[16]; /* watchpoint control registers */ 482 uint64_t mdscr_el1; 483 uint64_t oslsr_el1; /* OS Lock Status */ 484 uint64_t mdcr_el2; 485 uint64_t mdcr_el3; 486 /* Stores the architectural value of the counter *the last time it was 487 * updated* by pmccntr_op_start. Accesses should always be surrounded 488 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 489 * architecturally-correct value is being read/set. 490 */ 491 uint64_t c15_ccnt; 492 /* Stores the delta between the architectural value and the underlying 493 * cycle count during normal operation. It is used to update c15_ccnt 494 * to be the correct architectural value before accesses. During 495 * accesses, c15_ccnt_delta contains the underlying count being used 496 * for the access, after which it reverts to the delta value in 497 * pmccntr_op_finish. 498 */ 499 uint64_t c15_ccnt_delta; 500 uint64_t c14_pmevcntr[31]; 501 uint64_t c14_pmevcntr_delta[31]; 502 uint64_t c14_pmevtyper[31]; 503 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 504 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 505 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 506 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 507 uint64_t gcr_el1; 508 uint64_t rgsr_el1; 509 } cp15; 510 511 struct { 512 /* M profile has up to 4 stack pointers: 513 * a Main Stack Pointer and a Process Stack Pointer for each 514 * of the Secure and Non-Secure states. (If the CPU doesn't support 515 * the security extension then it has only two SPs.) 516 * In QEMU we always store the currently active SP in regs[13], 517 * and the non-active SP for the current security state in 518 * v7m.other_sp. The stack pointers for the inactive security state 519 * are stored in other_ss_msp and other_ss_psp. 520 * switch_v7m_security_state() is responsible for rearranging them 521 * when we change security state. 522 */ 523 uint32_t other_sp; 524 uint32_t other_ss_msp; 525 uint32_t other_ss_psp; 526 uint32_t vecbase[M_REG_NUM_BANKS]; 527 uint32_t basepri[M_REG_NUM_BANKS]; 528 uint32_t control[M_REG_NUM_BANKS]; 529 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 530 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 531 uint32_t hfsr; /* HardFault Status */ 532 uint32_t dfsr; /* Debug Fault Status Register */ 533 uint32_t sfsr; /* Secure Fault Status Register */ 534 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 535 uint32_t bfar; /* BusFault Address */ 536 uint32_t sfar; /* Secure Fault Address Register */ 537 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 538 int exception; 539 uint32_t primask[M_REG_NUM_BANKS]; 540 uint32_t faultmask[M_REG_NUM_BANKS]; 541 uint32_t aircr; /* only holds r/w state if security extn implemented */ 542 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 543 uint32_t csselr[M_REG_NUM_BANKS]; 544 uint32_t scr[M_REG_NUM_BANKS]; 545 uint32_t msplim[M_REG_NUM_BANKS]; 546 uint32_t psplim[M_REG_NUM_BANKS]; 547 uint32_t fpcar[M_REG_NUM_BANKS]; 548 uint32_t fpccr[M_REG_NUM_BANKS]; 549 uint32_t fpdscr[M_REG_NUM_BANKS]; 550 uint32_t cpacr[M_REG_NUM_BANKS]; 551 uint32_t nsacr; 552 int ltpsize; 553 } v7m; 554 555 /* Information associated with an exception about to be taken: 556 * code which raises an exception must set cs->exception_index and 557 * the relevant parts of this structure; the cpu_do_interrupt function 558 * will then set the guest-visible registers as part of the exception 559 * entry process. 560 */ 561 struct { 562 uint32_t syndrome; /* AArch64 format syndrome register */ 563 uint32_t fsr; /* AArch32 format fault status register info */ 564 uint64_t vaddress; /* virtual addr associated with exception, if any */ 565 uint32_t target_el; /* EL the exception should be targeted for */ 566 /* If we implement EL2 we will also need to store information 567 * about the intermediate physical address for stage 2 faults. 568 */ 569 } exception; 570 571 /* Information associated with an SError */ 572 struct { 573 uint8_t pending; 574 uint8_t has_esr; 575 uint64_t esr; 576 } serror; 577 578 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 579 580 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 581 uint32_t irq_line_state; 582 583 /* Thumb-2 EE state. */ 584 uint32_t teecr; 585 uint32_t teehbr; 586 587 /* VFP coprocessor state. */ 588 struct { 589 ARMVectorReg zregs[32]; 590 591 #ifdef TARGET_AARCH64 592 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 593 #define FFR_PRED_NUM 16 594 ARMPredicateReg pregs[17]; 595 /* Scratch space for aa64 sve predicate temporary. */ 596 ARMPredicateReg preg_tmp; 597 #endif 598 599 /* We store these fpcsr fields separately for convenience. */ 600 uint32_t qc[4] QEMU_ALIGNED(16); 601 int vec_len; 602 int vec_stride; 603 604 uint32_t xregs[16]; 605 606 /* Scratch space for aa32 neon expansion. */ 607 uint32_t scratch[8]; 608 609 /* There are a number of distinct float control structures: 610 * 611 * fp_status: is the "normal" fp status. 612 * fp_status_fp16: used for half-precision calculations 613 * standard_fp_status : the ARM "Standard FPSCR Value" 614 * standard_fp_status_fp16 : used for half-precision 615 * calculations with the ARM "Standard FPSCR Value" 616 * 617 * Half-precision operations are governed by a separate 618 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 619 * status structure to control this. 620 * 621 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 622 * round-to-nearest and is used by any operations (generally 623 * Neon) which the architecture defines as controlled by the 624 * standard FPSCR value rather than the FPSCR. 625 * 626 * The "standard FPSCR but for fp16 ops" is needed because 627 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 628 * using a fixed value for it. 629 * 630 * To avoid having to transfer exception bits around, we simply 631 * say that the FPSCR cumulative exception flags are the logical 632 * OR of the flags in the four fp statuses. This relies on the 633 * only thing which needs to read the exception flags being 634 * an explicit FPSCR read. 635 */ 636 float_status fp_status; 637 float_status fp_status_f16; 638 float_status standard_fp_status; 639 float_status standard_fp_status_f16; 640 641 /* ZCR_EL[1-3] */ 642 uint64_t zcr_el[4]; 643 } vfp; 644 uint64_t exclusive_addr; 645 uint64_t exclusive_val; 646 uint64_t exclusive_high; 647 648 /* iwMMXt coprocessor state. */ 649 struct { 650 uint64_t regs[16]; 651 uint64_t val; 652 653 uint32_t cregs[16]; 654 } iwmmxt; 655 656 #ifdef TARGET_AARCH64 657 struct { 658 ARMPACKey apia; 659 ARMPACKey apib; 660 ARMPACKey apda; 661 ARMPACKey apdb; 662 ARMPACKey apga; 663 } keys; 664 #endif 665 666 #if defined(CONFIG_USER_ONLY) 667 /* For usermode syscall translation. */ 668 int eabi; 669 #endif 670 671 struct CPUBreakpoint *cpu_breakpoint[16]; 672 struct CPUWatchpoint *cpu_watchpoint[16]; 673 674 /* Fields up to this point are cleared by a CPU reset */ 675 struct {} end_reset_fields; 676 677 /* Fields after this point are preserved across CPU reset. */ 678 679 /* Internal CPU feature flags. */ 680 uint64_t features; 681 682 /* PMSAv7 MPU */ 683 struct { 684 uint32_t *drbar; 685 uint32_t *drsr; 686 uint32_t *dracr; 687 uint32_t rnr[M_REG_NUM_BANKS]; 688 } pmsav7; 689 690 /* PMSAv8 MPU */ 691 struct { 692 /* The PMSAv8 implementation also shares some PMSAv7 config 693 * and state: 694 * pmsav7.rnr (region number register) 695 * pmsav7_dregion (number of configured regions) 696 */ 697 uint32_t *rbar[M_REG_NUM_BANKS]; 698 uint32_t *rlar[M_REG_NUM_BANKS]; 699 uint32_t mair0[M_REG_NUM_BANKS]; 700 uint32_t mair1[M_REG_NUM_BANKS]; 701 } pmsav8; 702 703 /* v8M SAU */ 704 struct { 705 uint32_t *rbar; 706 uint32_t *rlar; 707 uint32_t rnr; 708 uint32_t ctrl; 709 } sau; 710 711 void *nvic; 712 const struct arm_boot_info *boot_info; 713 /* Store GICv3CPUState to access from this struct */ 714 void *gicv3state; 715 } CPUARMState; 716 717 static inline void set_feature(CPUARMState *env, int feature) 718 { 719 env->features |= 1ULL << feature; 720 } 721 722 static inline void unset_feature(CPUARMState *env, int feature) 723 { 724 env->features &= ~(1ULL << feature); 725 } 726 727 /** 728 * ARMELChangeHookFn: 729 * type of a function which can be registered via arm_register_el_change_hook() 730 * to get callbacks when the CPU changes its exception level or mode. 731 */ 732 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 733 typedef struct ARMELChangeHook ARMELChangeHook; 734 struct ARMELChangeHook { 735 ARMELChangeHookFn *hook; 736 void *opaque; 737 QLIST_ENTRY(ARMELChangeHook) node; 738 }; 739 740 /* These values map onto the return values for 741 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 742 typedef enum ARMPSCIState { 743 PSCI_ON = 0, 744 PSCI_OFF = 1, 745 PSCI_ON_PENDING = 2 746 } ARMPSCIState; 747 748 typedef struct ARMISARegisters ARMISARegisters; 749 750 /** 751 * ARMCPU: 752 * @env: #CPUARMState 753 * 754 * An ARM CPU core. 755 */ 756 struct ARMCPU { 757 /*< private >*/ 758 CPUState parent_obj; 759 /*< public >*/ 760 761 CPUNegativeOffsetState neg; 762 CPUARMState env; 763 764 /* Coprocessor information */ 765 GHashTable *cp_regs; 766 /* For marshalling (mostly coprocessor) register state between the 767 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 768 * we use these arrays. 769 */ 770 /* List of register indexes managed via these arrays; (full KVM style 771 * 64 bit indexes, not CPRegInfo 32 bit indexes) 772 */ 773 uint64_t *cpreg_indexes; 774 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 775 uint64_t *cpreg_values; 776 /* Length of the indexes, values, reset_values arrays */ 777 int32_t cpreg_array_len; 778 /* These are used only for migration: incoming data arrives in 779 * these fields and is sanity checked in post_load before copying 780 * to the working data structures above. 781 */ 782 uint64_t *cpreg_vmstate_indexes; 783 uint64_t *cpreg_vmstate_values; 784 int32_t cpreg_vmstate_array_len; 785 786 DynamicGDBXMLInfo dyn_sysreg_xml; 787 DynamicGDBXMLInfo dyn_svereg_xml; 788 789 /* Timers used by the generic (architected) timer */ 790 QEMUTimer *gt_timer[NUM_GTIMERS]; 791 /* 792 * Timer used by the PMU. Its state is restored after migration by 793 * pmu_op_finish() - it does not need other handling during migration 794 */ 795 QEMUTimer *pmu_timer; 796 /* GPIO outputs for generic timer */ 797 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 798 /* GPIO output for GICv3 maintenance interrupt signal */ 799 qemu_irq gicv3_maintenance_interrupt; 800 /* GPIO output for the PMU interrupt */ 801 qemu_irq pmu_interrupt; 802 803 /* MemoryRegion to use for secure physical accesses */ 804 MemoryRegion *secure_memory; 805 806 /* MemoryRegion to use for allocation tag accesses */ 807 MemoryRegion *tag_memory; 808 MemoryRegion *secure_tag_memory; 809 810 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 811 Object *idau; 812 813 /* 'compatible' string for this CPU for Linux device trees */ 814 const char *dtb_compatible; 815 816 /* PSCI version for this CPU 817 * Bits[31:16] = Major Version 818 * Bits[15:0] = Minor Version 819 */ 820 uint32_t psci_version; 821 822 /* Current power state, access guarded by BQL */ 823 ARMPSCIState power_state; 824 825 /* CPU has virtualization extension */ 826 bool has_el2; 827 /* CPU has security extension */ 828 bool has_el3; 829 /* CPU has PMU (Performance Monitor Unit) */ 830 bool has_pmu; 831 /* CPU has VFP */ 832 bool has_vfp; 833 /* CPU has Neon */ 834 bool has_neon; 835 /* CPU has M-profile DSP extension */ 836 bool has_dsp; 837 838 /* CPU has memory protection unit */ 839 bool has_mpu; 840 /* PMSAv7 MPU number of supported regions */ 841 uint32_t pmsav7_dregion; 842 /* v8M SAU number of supported regions */ 843 uint32_t sau_sregion; 844 845 /* PSCI conduit used to invoke PSCI methods 846 * 0 - disabled, 1 - smc, 2 - hvc 847 */ 848 uint32_t psci_conduit; 849 850 /* For v8M, initial value of the Secure VTOR */ 851 uint32_t init_svtor; 852 853 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 854 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 855 */ 856 uint32_t kvm_target; 857 858 /* KVM init features for this CPU */ 859 uint32_t kvm_init_features[7]; 860 861 /* KVM CPU state */ 862 863 /* KVM virtual time adjustment */ 864 bool kvm_adjvtime; 865 bool kvm_vtime_dirty; 866 uint64_t kvm_vtime; 867 868 /* KVM steal time */ 869 OnOffAuto kvm_steal_time; 870 871 /* Uniprocessor system with MP extensions */ 872 bool mp_is_up; 873 874 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 875 * and the probe failed (so we need to report the error in realize) 876 */ 877 bool host_cpu_probe_failed; 878 879 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 880 * register. 881 */ 882 int32_t core_count; 883 884 /* The instance init functions for implementation-specific subclasses 885 * set these fields to specify the implementation-dependent values of 886 * various constant registers and reset values of non-constant 887 * registers. 888 * Some of these might become QOM properties eventually. 889 * Field names match the official register names as defined in the 890 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 891 * is used for reset values of non-constant registers; no reset_ 892 * prefix means a constant register. 893 * Some of these registers are split out into a substructure that 894 * is shared with the translators to control the ISA. 895 * 896 * Note that if you add an ID register to the ARMISARegisters struct 897 * you need to also update the 32-bit and 64-bit versions of the 898 * kvm_arm_get_host_cpu_features() function to correctly populate the 899 * field by reading the value from the KVM vCPU. 900 */ 901 struct ARMISARegisters { 902 uint32_t id_isar0; 903 uint32_t id_isar1; 904 uint32_t id_isar2; 905 uint32_t id_isar3; 906 uint32_t id_isar4; 907 uint32_t id_isar5; 908 uint32_t id_isar6; 909 uint32_t id_mmfr0; 910 uint32_t id_mmfr1; 911 uint32_t id_mmfr2; 912 uint32_t id_mmfr3; 913 uint32_t id_mmfr4; 914 uint32_t id_pfr0; 915 uint32_t id_pfr1; 916 uint32_t mvfr0; 917 uint32_t mvfr1; 918 uint32_t mvfr2; 919 uint32_t id_dfr0; 920 uint32_t dbgdidr; 921 uint64_t id_aa64isar0; 922 uint64_t id_aa64isar1; 923 uint64_t id_aa64pfr0; 924 uint64_t id_aa64pfr1; 925 uint64_t id_aa64mmfr0; 926 uint64_t id_aa64mmfr1; 927 uint64_t id_aa64mmfr2; 928 uint64_t id_aa64dfr0; 929 uint64_t id_aa64dfr1; 930 } isar; 931 uint64_t midr; 932 uint32_t revidr; 933 uint32_t reset_fpsid; 934 uint64_t ctr; 935 uint32_t reset_sctlr; 936 uint64_t pmceid0; 937 uint64_t pmceid1; 938 uint32_t id_afr0; 939 uint64_t id_aa64afr0; 940 uint64_t id_aa64afr1; 941 uint64_t clidr; 942 uint64_t mp_affinity; /* MP ID without feature bits */ 943 /* The elements of this array are the CCSIDR values for each cache, 944 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 945 */ 946 uint64_t ccsidr[16]; 947 uint64_t reset_cbar; 948 uint32_t reset_auxcr; 949 bool reset_hivecs; 950 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 951 uint32_t dcz_blocksize; 952 uint64_t rvbar; 953 954 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 955 int gic_num_lrs; /* number of list registers */ 956 int gic_vpribits; /* number of virtual priority bits */ 957 int gic_vprebits; /* number of virtual preemption bits */ 958 959 /* Whether the cfgend input is high (i.e. this CPU should reset into 960 * big-endian mode). This setting isn't used directly: instead it modifies 961 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 962 * architecture version. 963 */ 964 bool cfgend; 965 966 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 967 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 968 969 int32_t node_id; /* NUMA node this CPU belongs to */ 970 971 /* Used to synchronize KVM and QEMU in-kernel device levels */ 972 uint8_t device_irq_level; 973 974 /* Used to set the maximum vector length the cpu will support. */ 975 uint32_t sve_max_vq; 976 977 /* 978 * In sve_vq_map each set bit is a supported vector length of 979 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 980 * length in quadwords. 981 * 982 * While processing properties during initialization, corresponding 983 * sve_vq_init bits are set for bits in sve_vq_map that have been 984 * set by properties. 985 */ 986 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 987 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 988 989 /* Generic timer counter frequency, in Hz */ 990 uint64_t gt_cntfrq_hz; 991 }; 992 993 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 994 995 void arm_cpu_post_init(Object *obj); 996 997 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 998 999 #ifndef CONFIG_USER_ONLY 1000 extern const VMStateDescription vmstate_arm_cpu; 1001 #endif 1002 1003 void arm_cpu_do_interrupt(CPUState *cpu); 1004 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1005 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 1006 1007 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1008 MemTxAttrs *attrs); 1009 1010 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1011 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1012 1013 /* 1014 * Helpers to dynamically generates XML descriptions of the sysregs 1015 * and SVE registers. Returns the number of registers in each set. 1016 */ 1017 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1018 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1019 1020 /* Returns the dynamically generated XML for the gdb stub. 1021 * Returns a pointer to the XML contents for the specified XML file or NULL 1022 * if the XML name doesn't match the predefined one. 1023 */ 1024 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1025 1026 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1027 int cpuid, void *opaque); 1028 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1029 int cpuid, void *opaque); 1030 1031 #ifdef TARGET_AARCH64 1032 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1033 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1034 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1035 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1036 int new_el, bool el0_a64); 1037 void aarch64_add_sve_properties(Object *obj); 1038 1039 /* 1040 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1041 * The byte at offset i from the start of the in-memory representation contains 1042 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1043 * lowest offsets are stored in the lowest memory addresses, then that nearly 1044 * matches QEMU's representation, which is to use an array of host-endian 1045 * uint64_t's, where the lower offsets are at the lower indices. To complete 1046 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1047 */ 1048 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1049 { 1050 #ifdef HOST_WORDS_BIGENDIAN 1051 int i; 1052 1053 for (i = 0; i < nr; ++i) { 1054 dst[i] = bswap64(src[i]); 1055 } 1056 1057 return dst; 1058 #else 1059 return src; 1060 #endif 1061 } 1062 1063 #else 1064 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1065 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1066 int n, bool a) 1067 { } 1068 static inline void aarch64_add_sve_properties(Object *obj) { } 1069 #endif 1070 1071 #if !defined(CONFIG_TCG) 1072 static inline target_ulong do_arm_semihosting(CPUARMState *env) 1073 { 1074 g_assert_not_reached(); 1075 } 1076 #else 1077 target_ulong do_arm_semihosting(CPUARMState *env); 1078 #endif 1079 void aarch64_sync_32_to_64(CPUARMState *env); 1080 void aarch64_sync_64_to_32(CPUARMState *env); 1081 1082 int fp_exception_el(CPUARMState *env, int cur_el); 1083 int sve_exception_el(CPUARMState *env, int cur_el); 1084 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1085 1086 static inline bool is_a64(CPUARMState *env) 1087 { 1088 return env->aarch64; 1089 } 1090 1091 /* you can call this signal handler from your SIGBUS and SIGSEGV 1092 signal handlers to inform the virtual CPU of exceptions. non zero 1093 is returned if the signal was handled by the virtual CPU. */ 1094 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1095 void *puc); 1096 1097 /** 1098 * pmu_op_start/finish 1099 * @env: CPUARMState 1100 * 1101 * Convert all PMU counters between their delta form (the typical mode when 1102 * they are enabled) and the guest-visible values. These two calls must 1103 * surround any action which might affect the counters. 1104 */ 1105 void pmu_op_start(CPUARMState *env); 1106 void pmu_op_finish(CPUARMState *env); 1107 1108 /* 1109 * Called when a PMU counter is due to overflow 1110 */ 1111 void arm_pmu_timer_cb(void *opaque); 1112 1113 /** 1114 * Functions to register as EL change hooks for PMU mode filtering 1115 */ 1116 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1117 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1118 1119 /* 1120 * pmu_init 1121 * @cpu: ARMCPU 1122 * 1123 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1124 * for the current configuration 1125 */ 1126 void pmu_init(ARMCPU *cpu); 1127 1128 /* SCTLR bit meanings. Several bits have been reused in newer 1129 * versions of the architecture; in that case we define constants 1130 * for both old and new bit meanings. Code which tests against those 1131 * bits should probably check or otherwise arrange that the CPU 1132 * is the architectural version it expects. 1133 */ 1134 #define SCTLR_M (1U << 0) 1135 #define SCTLR_A (1U << 1) 1136 #define SCTLR_C (1U << 2) 1137 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1138 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1139 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1140 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1141 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1142 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1143 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1144 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1145 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1146 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1147 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1148 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1149 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1150 #define SCTLR_SED (1U << 8) /* v8 onward */ 1151 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1152 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1153 #define SCTLR_F (1U << 10) /* up to v6 */ 1154 #define SCTLR_SW (1U << 10) /* v7 */ 1155 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1156 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1157 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1158 #define SCTLR_I (1U << 12) 1159 #define SCTLR_V (1U << 13) /* AArch32 only */ 1160 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1161 #define SCTLR_RR (1U << 14) /* up to v7 */ 1162 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1163 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1164 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1165 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1166 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1167 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1168 #define SCTLR_BR (1U << 17) /* PMSA only */ 1169 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1170 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1171 #define SCTLR_WXN (1U << 19) 1172 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1173 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1174 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1175 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1176 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1177 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1178 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1179 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1180 #define SCTLR_VE (1U << 24) /* up to v7 */ 1181 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1182 #define SCTLR_EE (1U << 25) 1183 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1184 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1185 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1186 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1187 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1188 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1189 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1190 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1191 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1192 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1193 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1194 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1195 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1196 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1197 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1198 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1199 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1200 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1201 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1202 1203 #define CPTR_TCPAC (1U << 31) 1204 #define CPTR_TTA (1U << 20) 1205 #define CPTR_TFP (1U << 10) 1206 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1207 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1208 1209 #define MDCR_EPMAD (1U << 21) 1210 #define MDCR_EDAD (1U << 20) 1211 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1212 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1213 #define MDCR_SDD (1U << 16) 1214 #define MDCR_SPD (3U << 14) 1215 #define MDCR_TDRA (1U << 11) 1216 #define MDCR_TDOSA (1U << 10) 1217 #define MDCR_TDA (1U << 9) 1218 #define MDCR_TDE (1U << 8) 1219 #define MDCR_HPME (1U << 7) 1220 #define MDCR_TPM (1U << 6) 1221 #define MDCR_TPMCR (1U << 5) 1222 #define MDCR_HPMN (0x1fU) 1223 1224 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1225 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1226 1227 #define CPSR_M (0x1fU) 1228 #define CPSR_T (1U << 5) 1229 #define CPSR_F (1U << 6) 1230 #define CPSR_I (1U << 7) 1231 #define CPSR_A (1U << 8) 1232 #define CPSR_E (1U << 9) 1233 #define CPSR_IT_2_7 (0xfc00U) 1234 #define CPSR_GE (0xfU << 16) 1235 #define CPSR_IL (1U << 20) 1236 #define CPSR_PAN (1U << 22) 1237 #define CPSR_J (1U << 24) 1238 #define CPSR_IT_0_1 (3U << 25) 1239 #define CPSR_Q (1U << 27) 1240 #define CPSR_V (1U << 28) 1241 #define CPSR_C (1U << 29) 1242 #define CPSR_Z (1U << 30) 1243 #define CPSR_N (1U << 31) 1244 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1245 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1246 1247 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1248 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1249 | CPSR_NZCV) 1250 /* Bits writable in user mode. */ 1251 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1252 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1253 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1254 1255 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1256 #define XPSR_EXCP 0x1ffU 1257 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1258 #define XPSR_IT_2_7 CPSR_IT_2_7 1259 #define XPSR_GE CPSR_GE 1260 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1261 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1262 #define XPSR_IT_0_1 CPSR_IT_0_1 1263 #define XPSR_Q CPSR_Q 1264 #define XPSR_V CPSR_V 1265 #define XPSR_C CPSR_C 1266 #define XPSR_Z CPSR_Z 1267 #define XPSR_N CPSR_N 1268 #define XPSR_NZCV CPSR_NZCV 1269 #define XPSR_IT CPSR_IT 1270 1271 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1272 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1273 #define TTBCR_PD0 (1U << 4) 1274 #define TTBCR_PD1 (1U << 5) 1275 #define TTBCR_EPD0 (1U << 7) 1276 #define TTBCR_IRGN0 (3U << 8) 1277 #define TTBCR_ORGN0 (3U << 10) 1278 #define TTBCR_SH0 (3U << 12) 1279 #define TTBCR_T1SZ (3U << 16) 1280 #define TTBCR_A1 (1U << 22) 1281 #define TTBCR_EPD1 (1U << 23) 1282 #define TTBCR_IRGN1 (3U << 24) 1283 #define TTBCR_ORGN1 (3U << 26) 1284 #define TTBCR_SH1 (1U << 28) 1285 #define TTBCR_EAE (1U << 31) 1286 1287 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1288 * Only these are valid when in AArch64 mode; in 1289 * AArch32 mode SPSRs are basically CPSR-format. 1290 */ 1291 #define PSTATE_SP (1U) 1292 #define PSTATE_M (0xFU) 1293 #define PSTATE_nRW (1U << 4) 1294 #define PSTATE_F (1U << 6) 1295 #define PSTATE_I (1U << 7) 1296 #define PSTATE_A (1U << 8) 1297 #define PSTATE_D (1U << 9) 1298 #define PSTATE_BTYPE (3U << 10) 1299 #define PSTATE_IL (1U << 20) 1300 #define PSTATE_SS (1U << 21) 1301 #define PSTATE_PAN (1U << 22) 1302 #define PSTATE_UAO (1U << 23) 1303 #define PSTATE_TCO (1U << 25) 1304 #define PSTATE_V (1U << 28) 1305 #define PSTATE_C (1U << 29) 1306 #define PSTATE_Z (1U << 30) 1307 #define PSTATE_N (1U << 31) 1308 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1309 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1310 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1311 /* Mode values for AArch64 */ 1312 #define PSTATE_MODE_EL3h 13 1313 #define PSTATE_MODE_EL3t 12 1314 #define PSTATE_MODE_EL2h 9 1315 #define PSTATE_MODE_EL2t 8 1316 #define PSTATE_MODE_EL1h 5 1317 #define PSTATE_MODE_EL1t 4 1318 #define PSTATE_MODE_EL0t 0 1319 1320 /* Write a new value to v7m.exception, thus transitioning into or out 1321 * of Handler mode; this may result in a change of active stack pointer. 1322 */ 1323 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1324 1325 /* Map EL and handler into a PSTATE_MODE. */ 1326 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1327 { 1328 return (el << 2) | handler; 1329 } 1330 1331 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1332 * interprocessing, so we don't attempt to sync with the cpsr state used by 1333 * the 32 bit decoder. 1334 */ 1335 static inline uint32_t pstate_read(CPUARMState *env) 1336 { 1337 int ZF; 1338 1339 ZF = (env->ZF == 0); 1340 return (env->NF & 0x80000000) | (ZF << 30) 1341 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1342 | env->pstate | env->daif | (env->btype << 10); 1343 } 1344 1345 static inline void pstate_write(CPUARMState *env, uint32_t val) 1346 { 1347 env->ZF = (~val) & PSTATE_Z; 1348 env->NF = val; 1349 env->CF = (val >> 29) & 1; 1350 env->VF = (val << 3) & 0x80000000; 1351 env->daif = val & PSTATE_DAIF; 1352 env->btype = (val >> 10) & 3; 1353 env->pstate = val & ~CACHED_PSTATE_BITS; 1354 } 1355 1356 /* Return the current CPSR value. */ 1357 uint32_t cpsr_read(CPUARMState *env); 1358 1359 typedef enum CPSRWriteType { 1360 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1361 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1362 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1363 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1364 } CPSRWriteType; 1365 1366 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1367 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1368 CPSRWriteType write_type); 1369 1370 /* Return the current xPSR value. */ 1371 static inline uint32_t xpsr_read(CPUARMState *env) 1372 { 1373 int ZF; 1374 ZF = (env->ZF == 0); 1375 return (env->NF & 0x80000000) | (ZF << 30) 1376 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1377 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1378 | ((env->condexec_bits & 0xfc) << 8) 1379 | (env->GE << 16) 1380 | env->v7m.exception; 1381 } 1382 1383 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1384 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1385 { 1386 if (mask & XPSR_NZCV) { 1387 env->ZF = (~val) & XPSR_Z; 1388 env->NF = val; 1389 env->CF = (val >> 29) & 1; 1390 env->VF = (val << 3) & 0x80000000; 1391 } 1392 if (mask & XPSR_Q) { 1393 env->QF = ((val & XPSR_Q) != 0); 1394 } 1395 if (mask & XPSR_GE) { 1396 env->GE = (val & XPSR_GE) >> 16; 1397 } 1398 #ifndef CONFIG_USER_ONLY 1399 if (mask & XPSR_T) { 1400 env->thumb = ((val & XPSR_T) != 0); 1401 } 1402 if (mask & XPSR_IT_0_1) { 1403 env->condexec_bits &= ~3; 1404 env->condexec_bits |= (val >> 25) & 3; 1405 } 1406 if (mask & XPSR_IT_2_7) { 1407 env->condexec_bits &= 3; 1408 env->condexec_bits |= (val >> 8) & 0xfc; 1409 } 1410 if (mask & XPSR_EXCP) { 1411 /* Note that this only happens on exception exit */ 1412 write_v7m_exception(env, val & XPSR_EXCP); 1413 } 1414 #endif 1415 } 1416 1417 #define HCR_VM (1ULL << 0) 1418 #define HCR_SWIO (1ULL << 1) 1419 #define HCR_PTW (1ULL << 2) 1420 #define HCR_FMO (1ULL << 3) 1421 #define HCR_IMO (1ULL << 4) 1422 #define HCR_AMO (1ULL << 5) 1423 #define HCR_VF (1ULL << 6) 1424 #define HCR_VI (1ULL << 7) 1425 #define HCR_VSE (1ULL << 8) 1426 #define HCR_FB (1ULL << 9) 1427 #define HCR_BSU_MASK (3ULL << 10) 1428 #define HCR_DC (1ULL << 12) 1429 #define HCR_TWI (1ULL << 13) 1430 #define HCR_TWE (1ULL << 14) 1431 #define HCR_TID0 (1ULL << 15) 1432 #define HCR_TID1 (1ULL << 16) 1433 #define HCR_TID2 (1ULL << 17) 1434 #define HCR_TID3 (1ULL << 18) 1435 #define HCR_TSC (1ULL << 19) 1436 #define HCR_TIDCP (1ULL << 20) 1437 #define HCR_TACR (1ULL << 21) 1438 #define HCR_TSW (1ULL << 22) 1439 #define HCR_TPCP (1ULL << 23) 1440 #define HCR_TPU (1ULL << 24) 1441 #define HCR_TTLB (1ULL << 25) 1442 #define HCR_TVM (1ULL << 26) 1443 #define HCR_TGE (1ULL << 27) 1444 #define HCR_TDZ (1ULL << 28) 1445 #define HCR_HCD (1ULL << 29) 1446 #define HCR_TRVM (1ULL << 30) 1447 #define HCR_RW (1ULL << 31) 1448 #define HCR_CD (1ULL << 32) 1449 #define HCR_ID (1ULL << 33) 1450 #define HCR_E2H (1ULL << 34) 1451 #define HCR_TLOR (1ULL << 35) 1452 #define HCR_TERR (1ULL << 36) 1453 #define HCR_TEA (1ULL << 37) 1454 #define HCR_MIOCNCE (1ULL << 38) 1455 /* RES0 bit 39 */ 1456 #define HCR_APK (1ULL << 40) 1457 #define HCR_API (1ULL << 41) 1458 #define HCR_NV (1ULL << 42) 1459 #define HCR_NV1 (1ULL << 43) 1460 #define HCR_AT (1ULL << 44) 1461 #define HCR_NV2 (1ULL << 45) 1462 #define HCR_FWB (1ULL << 46) 1463 #define HCR_FIEN (1ULL << 47) 1464 /* RES0 bit 48 */ 1465 #define HCR_TID4 (1ULL << 49) 1466 #define HCR_TICAB (1ULL << 50) 1467 #define HCR_AMVOFFEN (1ULL << 51) 1468 #define HCR_TOCU (1ULL << 52) 1469 #define HCR_ENSCXT (1ULL << 53) 1470 #define HCR_TTLBIS (1ULL << 54) 1471 #define HCR_TTLBOS (1ULL << 55) 1472 #define HCR_ATA (1ULL << 56) 1473 #define HCR_DCT (1ULL << 57) 1474 #define HCR_TID5 (1ULL << 58) 1475 #define HCR_TWEDEN (1ULL << 59) 1476 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1477 1478 #define SCR_NS (1U << 0) 1479 #define SCR_IRQ (1U << 1) 1480 #define SCR_FIQ (1U << 2) 1481 #define SCR_EA (1U << 3) 1482 #define SCR_FW (1U << 4) 1483 #define SCR_AW (1U << 5) 1484 #define SCR_NET (1U << 6) 1485 #define SCR_SMD (1U << 7) 1486 #define SCR_HCE (1U << 8) 1487 #define SCR_SIF (1U << 9) 1488 #define SCR_RW (1U << 10) 1489 #define SCR_ST (1U << 11) 1490 #define SCR_TWI (1U << 12) 1491 #define SCR_TWE (1U << 13) 1492 #define SCR_TLOR (1U << 14) 1493 #define SCR_TERR (1U << 15) 1494 #define SCR_APK (1U << 16) 1495 #define SCR_API (1U << 17) 1496 #define SCR_EEL2 (1U << 18) 1497 #define SCR_EASE (1U << 19) 1498 #define SCR_NMEA (1U << 20) 1499 #define SCR_FIEN (1U << 21) 1500 #define SCR_ENSCXT (1U << 25) 1501 #define SCR_ATA (1U << 26) 1502 1503 /* Return the current FPSCR value. */ 1504 uint32_t vfp_get_fpscr(CPUARMState *env); 1505 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1506 1507 /* FPCR, Floating Point Control Register 1508 * FPSR, Floating Poiht Status Register 1509 * 1510 * For A64 the FPSCR is split into two logically distinct registers, 1511 * FPCR and FPSR. However since they still use non-overlapping bits 1512 * we store the underlying state in fpscr and just mask on read/write. 1513 */ 1514 #define FPSR_MASK 0xf800009f 1515 #define FPCR_MASK 0x07ff9f00 1516 1517 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1518 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1519 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1520 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1521 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1522 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1523 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1524 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1525 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1526 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1527 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1528 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1529 #define FPCR_V (1 << 28) /* FP overflow flag */ 1530 #define FPCR_C (1 << 29) /* FP carry flag */ 1531 #define FPCR_Z (1 << 30) /* FP zero flag */ 1532 #define FPCR_N (1 << 31) /* FP negative flag */ 1533 1534 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1535 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1536 1537 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) 1538 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) 1539 1540 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1541 { 1542 return vfp_get_fpscr(env) & FPSR_MASK; 1543 } 1544 1545 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1546 { 1547 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1548 vfp_set_fpscr(env, new_fpscr); 1549 } 1550 1551 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1552 { 1553 return vfp_get_fpscr(env) & FPCR_MASK; 1554 } 1555 1556 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1557 { 1558 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1559 vfp_set_fpscr(env, new_fpscr); 1560 } 1561 1562 enum arm_cpu_mode { 1563 ARM_CPU_MODE_USR = 0x10, 1564 ARM_CPU_MODE_FIQ = 0x11, 1565 ARM_CPU_MODE_IRQ = 0x12, 1566 ARM_CPU_MODE_SVC = 0x13, 1567 ARM_CPU_MODE_MON = 0x16, 1568 ARM_CPU_MODE_ABT = 0x17, 1569 ARM_CPU_MODE_HYP = 0x1a, 1570 ARM_CPU_MODE_UND = 0x1b, 1571 ARM_CPU_MODE_SYS = 0x1f 1572 }; 1573 1574 /* VFP system registers. */ 1575 #define ARM_VFP_FPSID 0 1576 #define ARM_VFP_FPSCR 1 1577 #define ARM_VFP_MVFR2 5 1578 #define ARM_VFP_MVFR1 6 1579 #define ARM_VFP_MVFR0 7 1580 #define ARM_VFP_FPEXC 8 1581 #define ARM_VFP_FPINST 9 1582 #define ARM_VFP_FPINST2 10 1583 /* These ones are M-profile only */ 1584 #define ARM_VFP_FPSCR_NZCVQC 2 1585 #define ARM_VFP_VPR 12 1586 #define ARM_VFP_P0 13 1587 #define ARM_VFP_FPCXT_NS 14 1588 #define ARM_VFP_FPCXT_S 15 1589 1590 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1591 #define QEMU_VFP_FPSCR_NZCV 0xffff 1592 1593 /* iwMMXt coprocessor control registers. */ 1594 #define ARM_IWMMXT_wCID 0 1595 #define ARM_IWMMXT_wCon 1 1596 #define ARM_IWMMXT_wCSSF 2 1597 #define ARM_IWMMXT_wCASF 3 1598 #define ARM_IWMMXT_wCGR0 8 1599 #define ARM_IWMMXT_wCGR1 9 1600 #define ARM_IWMMXT_wCGR2 10 1601 #define ARM_IWMMXT_wCGR3 11 1602 1603 /* V7M CCR bits */ 1604 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1605 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1606 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1607 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1608 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1609 FIELD(V7M_CCR, STKALIGN, 9, 1) 1610 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1611 FIELD(V7M_CCR, DC, 16, 1) 1612 FIELD(V7M_CCR, IC, 17, 1) 1613 FIELD(V7M_CCR, BP, 18, 1) 1614 FIELD(V7M_CCR, LOB, 19, 1) 1615 FIELD(V7M_CCR, TRD, 20, 1) 1616 1617 /* V7M SCR bits */ 1618 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1619 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1620 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1621 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1622 1623 /* V7M AIRCR bits */ 1624 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1625 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1626 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1627 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1628 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1629 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1630 FIELD(V7M_AIRCR, PRIS, 14, 1) 1631 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1632 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1633 1634 /* V7M CFSR bits for MMFSR */ 1635 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1636 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1637 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1638 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1639 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1640 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1641 1642 /* V7M CFSR bits for BFSR */ 1643 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1644 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1645 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1646 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1647 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1648 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1649 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1650 1651 /* V7M CFSR bits for UFSR */ 1652 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1653 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1654 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1655 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1656 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1657 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1658 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1659 1660 /* V7M CFSR bit masks covering all of the subregister bits */ 1661 FIELD(V7M_CFSR, MMFSR, 0, 8) 1662 FIELD(V7M_CFSR, BFSR, 8, 8) 1663 FIELD(V7M_CFSR, UFSR, 16, 16) 1664 1665 /* V7M HFSR bits */ 1666 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1667 FIELD(V7M_HFSR, FORCED, 30, 1) 1668 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1669 1670 /* V7M DFSR bits */ 1671 FIELD(V7M_DFSR, HALTED, 0, 1) 1672 FIELD(V7M_DFSR, BKPT, 1, 1) 1673 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1674 FIELD(V7M_DFSR, VCATCH, 3, 1) 1675 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1676 1677 /* V7M SFSR bits */ 1678 FIELD(V7M_SFSR, INVEP, 0, 1) 1679 FIELD(V7M_SFSR, INVIS, 1, 1) 1680 FIELD(V7M_SFSR, INVER, 2, 1) 1681 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1682 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1683 FIELD(V7M_SFSR, LSPERR, 5, 1) 1684 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1685 FIELD(V7M_SFSR, LSERR, 7, 1) 1686 1687 /* v7M MPU_CTRL bits */ 1688 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1689 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1690 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1691 1692 /* v7M CLIDR bits */ 1693 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1694 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1695 FIELD(V7M_CLIDR, LOC, 24, 3) 1696 FIELD(V7M_CLIDR, LOUU, 27, 3) 1697 FIELD(V7M_CLIDR, ICB, 30, 2) 1698 1699 FIELD(V7M_CSSELR, IND, 0, 1) 1700 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1701 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1702 * define a mask for this and check that it doesn't permit running off 1703 * the end of the array. 1704 */ 1705 FIELD(V7M_CSSELR, INDEX, 0, 4) 1706 1707 /* v7M FPCCR bits */ 1708 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1709 FIELD(V7M_FPCCR, USER, 1, 1) 1710 FIELD(V7M_FPCCR, S, 2, 1) 1711 FIELD(V7M_FPCCR, THREAD, 3, 1) 1712 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1713 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1714 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1715 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1716 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1717 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1718 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1719 FIELD(V7M_FPCCR, RES0, 11, 15) 1720 FIELD(V7M_FPCCR, TS, 26, 1) 1721 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1722 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1723 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1724 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1725 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1726 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1727 #define R_V7M_FPCCR_BANKED_MASK \ 1728 (R_V7M_FPCCR_LSPACT_MASK | \ 1729 R_V7M_FPCCR_USER_MASK | \ 1730 R_V7M_FPCCR_THREAD_MASK | \ 1731 R_V7M_FPCCR_MMRDY_MASK | \ 1732 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1733 R_V7M_FPCCR_UFRDY_MASK | \ 1734 R_V7M_FPCCR_ASPEN_MASK) 1735 1736 /* 1737 * System register ID fields. 1738 */ 1739 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1740 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1741 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1742 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1743 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1744 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1745 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1746 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1747 FIELD(CLIDR_EL1, LOC, 24, 3) 1748 FIELD(CLIDR_EL1, LOUU, 27, 3) 1749 FIELD(CLIDR_EL1, ICB, 30, 3) 1750 1751 /* When FEAT_CCIDX is implemented */ 1752 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 1753 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 1754 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 1755 1756 /* When FEAT_CCIDX is not implemented */ 1757 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 1758 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 1759 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 1760 1761 FIELD(CTR_EL0, IMINLINE, 0, 4) 1762 FIELD(CTR_EL0, L1IP, 14, 2) 1763 FIELD(CTR_EL0, DMINLINE, 16, 4) 1764 FIELD(CTR_EL0, ERG, 20, 4) 1765 FIELD(CTR_EL0, CWG, 24, 4) 1766 FIELD(CTR_EL0, IDC, 28, 1) 1767 FIELD(CTR_EL0, DIC, 29, 1) 1768 FIELD(CTR_EL0, TMINLINE, 32, 6) 1769 1770 FIELD(MIDR_EL1, REVISION, 0, 4) 1771 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1772 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1773 FIELD(MIDR_EL1, VARIANT, 20, 4) 1774 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1775 1776 FIELD(ID_ISAR0, SWAP, 0, 4) 1777 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1778 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1779 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1780 FIELD(ID_ISAR0, COPROC, 16, 4) 1781 FIELD(ID_ISAR0, DEBUG, 20, 4) 1782 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1783 1784 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1785 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1786 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1787 FIELD(ID_ISAR1, EXTEND, 12, 4) 1788 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1789 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1790 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1791 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1792 1793 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1794 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1795 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1796 FIELD(ID_ISAR2, MULT, 12, 4) 1797 FIELD(ID_ISAR2, MULTS, 16, 4) 1798 FIELD(ID_ISAR2, MULTU, 20, 4) 1799 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1800 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1801 1802 FIELD(ID_ISAR3, SATURATE, 0, 4) 1803 FIELD(ID_ISAR3, SIMD, 4, 4) 1804 FIELD(ID_ISAR3, SVC, 8, 4) 1805 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1806 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1807 FIELD(ID_ISAR3, T32COPY, 20, 4) 1808 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1809 FIELD(ID_ISAR3, T32EE, 28, 4) 1810 1811 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1812 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1813 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1814 FIELD(ID_ISAR4, SMC, 12, 4) 1815 FIELD(ID_ISAR4, BARRIER, 16, 4) 1816 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1817 FIELD(ID_ISAR4, PSR_M, 24, 4) 1818 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1819 1820 FIELD(ID_ISAR5, SEVL, 0, 4) 1821 FIELD(ID_ISAR5, AES, 4, 4) 1822 FIELD(ID_ISAR5, SHA1, 8, 4) 1823 FIELD(ID_ISAR5, SHA2, 12, 4) 1824 FIELD(ID_ISAR5, CRC32, 16, 4) 1825 FIELD(ID_ISAR5, RDM, 24, 4) 1826 FIELD(ID_ISAR5, VCMA, 28, 4) 1827 1828 FIELD(ID_ISAR6, JSCVT, 0, 4) 1829 FIELD(ID_ISAR6, DP, 4, 4) 1830 FIELD(ID_ISAR6, FHM, 8, 4) 1831 FIELD(ID_ISAR6, SB, 12, 4) 1832 FIELD(ID_ISAR6, SPECRES, 16, 4) 1833 FIELD(ID_ISAR6, BF16, 20, 4) 1834 FIELD(ID_ISAR6, I8MM, 24, 4) 1835 1836 FIELD(ID_MMFR0, VMSA, 0, 4) 1837 FIELD(ID_MMFR0, PMSA, 4, 4) 1838 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 1839 FIELD(ID_MMFR0, SHARELVL, 12, 4) 1840 FIELD(ID_MMFR0, TCM, 16, 4) 1841 FIELD(ID_MMFR0, AUXREG, 20, 4) 1842 FIELD(ID_MMFR0, FCSE, 24, 4) 1843 FIELD(ID_MMFR0, INNERSHR, 28, 4) 1844 1845 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 1846 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 1847 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 1848 FIELD(ID_MMFR1, L1UNISW, 12, 4) 1849 FIELD(ID_MMFR1, L1HVD, 16, 4) 1850 FIELD(ID_MMFR1, L1UNI, 20, 4) 1851 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 1852 FIELD(ID_MMFR1, BPRED, 28, 4) 1853 1854 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 1855 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 1856 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 1857 FIELD(ID_MMFR2, HVDTLB, 12, 4) 1858 FIELD(ID_MMFR2, UNITLB, 16, 4) 1859 FIELD(ID_MMFR2, MEMBARR, 20, 4) 1860 FIELD(ID_MMFR2, WFISTALL, 24, 4) 1861 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 1862 1863 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 1864 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 1865 FIELD(ID_MMFR3, BPMAINT, 8, 4) 1866 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 1867 FIELD(ID_MMFR3, PAN, 16, 4) 1868 FIELD(ID_MMFR3, COHWALK, 20, 4) 1869 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 1870 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 1871 1872 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1873 FIELD(ID_MMFR4, AC2, 4, 4) 1874 FIELD(ID_MMFR4, XNX, 8, 4) 1875 FIELD(ID_MMFR4, CNP, 12, 4) 1876 FIELD(ID_MMFR4, HPDS, 16, 4) 1877 FIELD(ID_MMFR4, LSM, 20, 4) 1878 FIELD(ID_MMFR4, CCIDX, 24, 4) 1879 FIELD(ID_MMFR4, EVT, 28, 4) 1880 1881 FIELD(ID_MMFR5, ETS, 0, 4) 1882 1883 FIELD(ID_PFR0, STATE0, 0, 4) 1884 FIELD(ID_PFR0, STATE1, 4, 4) 1885 FIELD(ID_PFR0, STATE2, 8, 4) 1886 FIELD(ID_PFR0, STATE3, 12, 4) 1887 FIELD(ID_PFR0, CSV2, 16, 4) 1888 FIELD(ID_PFR0, AMU, 20, 4) 1889 FIELD(ID_PFR0, DIT, 24, 4) 1890 FIELD(ID_PFR0, RAS, 28, 4) 1891 1892 FIELD(ID_PFR1, PROGMOD, 0, 4) 1893 FIELD(ID_PFR1, SECURITY, 4, 4) 1894 FIELD(ID_PFR1, MPROGMOD, 8, 4) 1895 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 1896 FIELD(ID_PFR1, GENTIMER, 16, 4) 1897 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 1898 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 1899 FIELD(ID_PFR1, GIC, 28, 4) 1900 1901 FIELD(ID_PFR2, CSV3, 0, 4) 1902 FIELD(ID_PFR2, SSBS, 4, 4) 1903 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 1904 1905 FIELD(ID_AA64ISAR0, AES, 4, 4) 1906 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1907 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1908 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1909 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1910 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1911 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1912 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1913 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1914 FIELD(ID_AA64ISAR0, DP, 44, 4) 1915 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1916 FIELD(ID_AA64ISAR0, TS, 52, 4) 1917 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1918 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1919 1920 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1921 FIELD(ID_AA64ISAR1, APA, 4, 4) 1922 FIELD(ID_AA64ISAR1, API, 8, 4) 1923 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1924 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1925 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1926 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1927 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1928 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1929 FIELD(ID_AA64ISAR1, SB, 36, 4) 1930 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1931 FIELD(ID_AA64ISAR1, BF16, 44, 4) 1932 FIELD(ID_AA64ISAR1, DGH, 48, 4) 1933 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 1934 1935 FIELD(ID_AA64PFR0, EL0, 0, 4) 1936 FIELD(ID_AA64PFR0, EL1, 4, 4) 1937 FIELD(ID_AA64PFR0, EL2, 8, 4) 1938 FIELD(ID_AA64PFR0, EL3, 12, 4) 1939 FIELD(ID_AA64PFR0, FP, 16, 4) 1940 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1941 FIELD(ID_AA64PFR0, GIC, 24, 4) 1942 FIELD(ID_AA64PFR0, RAS, 28, 4) 1943 FIELD(ID_AA64PFR0, SVE, 32, 4) 1944 FIELD(ID_AA64PFR0, SEL2, 36, 4) 1945 FIELD(ID_AA64PFR0, MPAM, 40, 4) 1946 FIELD(ID_AA64PFR0, AMU, 44, 4) 1947 FIELD(ID_AA64PFR0, DIT, 48, 4) 1948 FIELD(ID_AA64PFR0, CSV2, 56, 4) 1949 FIELD(ID_AA64PFR0, CSV3, 60, 4) 1950 1951 FIELD(ID_AA64PFR1, BT, 0, 4) 1952 FIELD(ID_AA64PFR1, SSBS, 4, 4) 1953 FIELD(ID_AA64PFR1, MTE, 8, 4) 1954 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1955 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 1956 1957 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1958 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1959 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1960 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1961 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1962 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1963 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1964 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1965 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1966 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1967 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1968 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1969 FIELD(ID_AA64MMFR0, FGT, 56, 4) 1970 FIELD(ID_AA64MMFR0, ECV, 60, 4) 1971 1972 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1973 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1974 FIELD(ID_AA64MMFR1, VH, 8, 4) 1975 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1976 FIELD(ID_AA64MMFR1, LO, 16, 4) 1977 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1978 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1979 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1980 FIELD(ID_AA64MMFR1, TWED, 32, 4) 1981 FIELD(ID_AA64MMFR1, ETS, 36, 4) 1982 1983 FIELD(ID_AA64MMFR2, CNP, 0, 4) 1984 FIELD(ID_AA64MMFR2, UAO, 4, 4) 1985 FIELD(ID_AA64MMFR2, LSM, 8, 4) 1986 FIELD(ID_AA64MMFR2, IESB, 12, 4) 1987 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 1988 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 1989 FIELD(ID_AA64MMFR2, NV, 24, 4) 1990 FIELD(ID_AA64MMFR2, ST, 28, 4) 1991 FIELD(ID_AA64MMFR2, AT, 32, 4) 1992 FIELD(ID_AA64MMFR2, IDS, 36, 4) 1993 FIELD(ID_AA64MMFR2, FWB, 40, 4) 1994 FIELD(ID_AA64MMFR2, TTL, 48, 4) 1995 FIELD(ID_AA64MMFR2, BBM, 52, 4) 1996 FIELD(ID_AA64MMFR2, EVT, 56, 4) 1997 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 1998 1999 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2000 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2001 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2002 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2003 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2004 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2005 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2006 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2007 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2008 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2009 2010 FIELD(ID_DFR0, COPDBG, 0, 4) 2011 FIELD(ID_DFR0, COPSDBG, 4, 4) 2012 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2013 FIELD(ID_DFR0, COPTRC, 12, 4) 2014 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2015 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2016 FIELD(ID_DFR0, PERFMON, 24, 4) 2017 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2018 2019 FIELD(ID_DFR1, MTPMU, 0, 4) 2020 2021 FIELD(DBGDIDR, SE_IMP, 12, 1) 2022 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2023 FIELD(DBGDIDR, VERSION, 16, 4) 2024 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2025 FIELD(DBGDIDR, BRPS, 24, 4) 2026 FIELD(DBGDIDR, WRPS, 28, 4) 2027 2028 FIELD(MVFR0, SIMDREG, 0, 4) 2029 FIELD(MVFR0, FPSP, 4, 4) 2030 FIELD(MVFR0, FPDP, 8, 4) 2031 FIELD(MVFR0, FPTRAP, 12, 4) 2032 FIELD(MVFR0, FPDIVIDE, 16, 4) 2033 FIELD(MVFR0, FPSQRT, 20, 4) 2034 FIELD(MVFR0, FPSHVEC, 24, 4) 2035 FIELD(MVFR0, FPROUND, 28, 4) 2036 2037 FIELD(MVFR1, FPFTZ, 0, 4) 2038 FIELD(MVFR1, FPDNAN, 4, 4) 2039 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2040 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2041 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2042 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2043 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2044 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2045 FIELD(MVFR1, FPHP, 24, 4) 2046 FIELD(MVFR1, SIMDFMAC, 28, 4) 2047 2048 FIELD(MVFR2, SIMDMISC, 0, 4) 2049 FIELD(MVFR2, FPMISC, 4, 4) 2050 2051 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2052 2053 /* If adding a feature bit which corresponds to a Linux ELF 2054 * HWCAP bit, remember to update the feature-bit-to-hwcap 2055 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2056 */ 2057 enum arm_features { 2058 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2059 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2060 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2061 ARM_FEATURE_V6, 2062 ARM_FEATURE_V6K, 2063 ARM_FEATURE_V7, 2064 ARM_FEATURE_THUMB2, 2065 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2066 ARM_FEATURE_NEON, 2067 ARM_FEATURE_M, /* Microcontroller profile. */ 2068 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2069 ARM_FEATURE_THUMB2EE, 2070 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2071 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2072 ARM_FEATURE_V4T, 2073 ARM_FEATURE_V5, 2074 ARM_FEATURE_STRONGARM, 2075 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2076 ARM_FEATURE_GENERIC_TIMER, 2077 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2078 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2079 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2080 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2081 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2082 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2083 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2084 ARM_FEATURE_V8, 2085 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2086 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2087 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2088 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2089 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2090 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2091 ARM_FEATURE_PMU, /* has PMU support */ 2092 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2093 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2094 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2095 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2096 }; 2097 2098 static inline int arm_feature(CPUARMState *env, int feature) 2099 { 2100 return (env->features & (1ULL << feature)) != 0; 2101 } 2102 2103 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2104 2105 #if !defined(CONFIG_USER_ONLY) 2106 /* Return true if exception levels below EL3 are in secure state, 2107 * or would be following an exception return to that level. 2108 * Unlike arm_is_secure() (which is always a question about the 2109 * _current_ state of the CPU) this doesn't care about the current 2110 * EL or mode. 2111 */ 2112 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2113 { 2114 if (arm_feature(env, ARM_FEATURE_EL3)) { 2115 return !(env->cp15.scr_el3 & SCR_NS); 2116 } else { 2117 /* If EL3 is not supported then the secure state is implementation 2118 * defined, in which case QEMU defaults to non-secure. 2119 */ 2120 return false; 2121 } 2122 } 2123 2124 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2125 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2126 { 2127 if (arm_feature(env, ARM_FEATURE_EL3)) { 2128 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2129 /* CPU currently in AArch64 state and EL3 */ 2130 return true; 2131 } else if (!is_a64(env) && 2132 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2133 /* CPU currently in AArch32 state and monitor mode */ 2134 return true; 2135 } 2136 } 2137 return false; 2138 } 2139 2140 /* Return true if the processor is in secure state */ 2141 static inline bool arm_is_secure(CPUARMState *env) 2142 { 2143 if (arm_is_el3_or_mon(env)) { 2144 return true; 2145 } 2146 return arm_is_secure_below_el3(env); 2147 } 2148 2149 #else 2150 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2151 { 2152 return false; 2153 } 2154 2155 static inline bool arm_is_secure(CPUARMState *env) 2156 { 2157 return false; 2158 } 2159 #endif 2160 2161 /** 2162 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2163 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2164 * "for all purposes other than a direct read or write access of HCR_EL2." 2165 * Not included here is HCR_RW. 2166 */ 2167 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2168 2169 /* Return true if the specified exception level is running in AArch64 state. */ 2170 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2171 { 2172 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2173 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2174 */ 2175 assert(el >= 1 && el <= 3); 2176 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2177 2178 /* The highest exception level is always at the maximum supported 2179 * register width, and then lower levels have a register width controlled 2180 * by bits in the SCR or HCR registers. 2181 */ 2182 if (el == 3) { 2183 return aa64; 2184 } 2185 2186 if (arm_feature(env, ARM_FEATURE_EL3)) { 2187 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2188 } 2189 2190 if (el == 2) { 2191 return aa64; 2192 } 2193 2194 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 2195 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2196 } 2197 2198 return aa64; 2199 } 2200 2201 /* Function for determing whether guest cp register reads and writes should 2202 * access the secure or non-secure bank of a cp register. When EL3 is 2203 * operating in AArch32 state, the NS-bit determines whether the secure 2204 * instance of a cp register should be used. When EL3 is AArch64 (or if 2205 * it doesn't exist at all) then there is no register banking, and all 2206 * accesses are to the non-secure version. 2207 */ 2208 static inline bool access_secure_reg(CPUARMState *env) 2209 { 2210 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2211 !arm_el_is_aa64(env, 3) && 2212 !(env->cp15.scr_el3 & SCR_NS)); 2213 2214 return ret; 2215 } 2216 2217 /* Macros for accessing a specified CP register bank */ 2218 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2219 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2220 2221 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2222 do { \ 2223 if (_secure) { \ 2224 (_env)->cp15._regname##_s = (_val); \ 2225 } else { \ 2226 (_env)->cp15._regname##_ns = (_val); \ 2227 } \ 2228 } while (0) 2229 2230 /* Macros for automatically accessing a specific CP register bank depending on 2231 * the current secure state of the system. These macros are not intended for 2232 * supporting instruction translation reads/writes as these are dependent 2233 * solely on the SCR.NS bit and not the mode. 2234 */ 2235 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2236 A32_BANKED_REG_GET((_env), _regname, \ 2237 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2238 2239 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2240 A32_BANKED_REG_SET((_env), _regname, \ 2241 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2242 (_val)) 2243 2244 void arm_cpu_list(void); 2245 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2246 uint32_t cur_el, bool secure); 2247 2248 /* Interface between CPU and Interrupt controller. */ 2249 #ifndef CONFIG_USER_ONLY 2250 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2251 #else 2252 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2253 { 2254 return true; 2255 } 2256 #endif 2257 /** 2258 * armv7m_nvic_set_pending: mark the specified exception as pending 2259 * @opaque: the NVIC 2260 * @irq: the exception number to mark pending 2261 * @secure: false for non-banked exceptions or for the nonsecure 2262 * version of a banked exception, true for the secure version of a banked 2263 * exception. 2264 * 2265 * Marks the specified exception as pending. Note that we will assert() 2266 * if @secure is true and @irq does not specify one of the fixed set 2267 * of architecturally banked exceptions. 2268 */ 2269 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2270 /** 2271 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2272 * @opaque: the NVIC 2273 * @irq: the exception number to mark pending 2274 * @secure: false for non-banked exceptions or for the nonsecure 2275 * version of a banked exception, true for the secure version of a banked 2276 * exception. 2277 * 2278 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2279 * exceptions (exceptions generated in the course of trying to take 2280 * a different exception). 2281 */ 2282 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2283 /** 2284 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2285 * @opaque: the NVIC 2286 * @irq: the exception number to mark pending 2287 * @secure: false for non-banked exceptions or for the nonsecure 2288 * version of a banked exception, true for the secure version of a banked 2289 * exception. 2290 * 2291 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2292 * generated in the course of lazy stacking of FP registers. 2293 */ 2294 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2295 /** 2296 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2297 * exception, and whether it targets Secure state 2298 * @opaque: the NVIC 2299 * @pirq: set to pending exception number 2300 * @ptargets_secure: set to whether pending exception targets Secure 2301 * 2302 * This function writes the number of the highest priority pending 2303 * exception (the one which would be made active by 2304 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2305 * to true if the current highest priority pending exception should 2306 * be taken to Secure state, false for NS. 2307 */ 2308 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2309 bool *ptargets_secure); 2310 /** 2311 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2312 * @opaque: the NVIC 2313 * 2314 * Move the current highest priority pending exception from the pending 2315 * state to the active state, and update v7m.exception to indicate that 2316 * it is the exception currently being handled. 2317 */ 2318 void armv7m_nvic_acknowledge_irq(void *opaque); 2319 /** 2320 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2321 * @opaque: the NVIC 2322 * @irq: the exception number to complete 2323 * @secure: true if this exception was secure 2324 * 2325 * Returns: -1 if the irq was not active 2326 * 1 if completing this irq brought us back to base (no active irqs) 2327 * 0 if there is still an irq active after this one was completed 2328 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2329 */ 2330 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2331 /** 2332 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2333 * @opaque: the NVIC 2334 * @irq: the exception number to mark pending 2335 * @secure: false for non-banked exceptions or for the nonsecure 2336 * version of a banked exception, true for the secure version of a banked 2337 * exception. 2338 * 2339 * Return whether an exception is "ready", i.e. whether the exception is 2340 * enabled and is configured at a priority which would allow it to 2341 * interrupt the current execution priority. This controls whether the 2342 * RDY bit for it in the FPCCR is set. 2343 */ 2344 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2345 /** 2346 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2347 * @opaque: the NVIC 2348 * 2349 * Returns: the raw execution priority as defined by the v8M architecture. 2350 * This is the execution priority minus the effects of AIRCR.PRIS, 2351 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2352 * (v8M ARM ARM I_PKLD.) 2353 */ 2354 int armv7m_nvic_raw_execution_priority(void *opaque); 2355 /** 2356 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2357 * priority is negative for the specified security state. 2358 * @opaque: the NVIC 2359 * @secure: the security state to test 2360 * This corresponds to the pseudocode IsReqExecPriNeg(). 2361 */ 2362 #ifndef CONFIG_USER_ONLY 2363 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2364 #else 2365 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2366 { 2367 return false; 2368 } 2369 #endif 2370 2371 /* Interface for defining coprocessor registers. 2372 * Registers are defined in tables of arm_cp_reginfo structs 2373 * which are passed to define_arm_cp_regs(). 2374 */ 2375 2376 /* When looking up a coprocessor register we look for it 2377 * via an integer which encodes all of: 2378 * coprocessor number 2379 * Crn, Crm, opc1, opc2 fields 2380 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2381 * or via MRRC/MCRR?) 2382 * non-secure/secure bank (AArch32 only) 2383 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2384 * (In this case crn and opc2 should be zero.) 2385 * For AArch64, there is no 32/64 bit size distinction; 2386 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2387 * and 4 bit CRn and CRm. The encoding patterns are chosen 2388 * to be easy to convert to and from the KVM encodings, and also 2389 * so that the hashtable can contain both AArch32 and AArch64 2390 * registers (to allow for interprocessing where we might run 2391 * 32 bit code on a 64 bit core). 2392 */ 2393 /* This bit is private to our hashtable cpreg; in KVM register 2394 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2395 * in the upper bits of the 64 bit ID. 2396 */ 2397 #define CP_REG_AA64_SHIFT 28 2398 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2399 2400 /* To enable banking of coprocessor registers depending on ns-bit we 2401 * add a bit to distinguish between secure and non-secure cpregs in the 2402 * hashtable. 2403 */ 2404 #define CP_REG_NS_SHIFT 29 2405 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2406 2407 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2408 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2409 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2410 2411 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2412 (CP_REG_AA64_MASK | \ 2413 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2414 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2415 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2416 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2417 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2418 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2419 2420 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2421 * version used as a key for the coprocessor register hashtable 2422 */ 2423 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2424 { 2425 uint32_t cpregid = kvmid; 2426 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2427 cpregid |= CP_REG_AA64_MASK; 2428 } else { 2429 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2430 cpregid |= (1 << 15); 2431 } 2432 2433 /* KVM is always non-secure so add the NS flag on AArch32 register 2434 * entries. 2435 */ 2436 cpregid |= 1 << CP_REG_NS_SHIFT; 2437 } 2438 return cpregid; 2439 } 2440 2441 /* Convert a truncated 32 bit hashtable key into the full 2442 * 64 bit KVM register ID. 2443 */ 2444 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2445 { 2446 uint64_t kvmid; 2447 2448 if (cpregid & CP_REG_AA64_MASK) { 2449 kvmid = cpregid & ~CP_REG_AA64_MASK; 2450 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2451 } else { 2452 kvmid = cpregid & ~(1 << 15); 2453 if (cpregid & (1 << 15)) { 2454 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2455 } else { 2456 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2457 } 2458 } 2459 return kvmid; 2460 } 2461 2462 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2463 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2464 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2465 * TCG can assume the value to be constant (ie load at translate time) 2466 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2467 * indicates that the TB should not be ended after a write to this register 2468 * (the default is that the TB ends after cp writes). OVERRIDE permits 2469 * a register definition to override a previous definition for the 2470 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2471 * old must have the OVERRIDE bit set. 2472 * ALIAS indicates that this register is an alias view of some underlying 2473 * state which is also visible via another register, and that the other 2474 * register is handling migration and reset; registers marked ALIAS will not be 2475 * migrated but may have their state set by syncing of register state from KVM. 2476 * NO_RAW indicates that this register has no underlying state and does not 2477 * support raw access for state saving/loading; it will not be used for either 2478 * migration or KVM state synchronization. (Typically this is for "registers" 2479 * which are actually used as instructions for cache maintenance and so on.) 2480 * IO indicates that this register does I/O and therefore its accesses 2481 * need to be marked with gen_io_start() and also end the TB. In particular, 2482 * registers which implement clocks or timers require this. 2483 * RAISES_EXC is for when the read or write hook might raise an exception; 2484 * the generated code will synchronize the CPU state before calling the hook 2485 * so that it is safe for the hook to call raise_exception(). 2486 * NEWEL is for writes to registers that might change the exception 2487 * level - typically on older ARM chips. For those cases we need to 2488 * re-read the new el when recomputing the translation flags. 2489 */ 2490 #define ARM_CP_SPECIAL 0x0001 2491 #define ARM_CP_CONST 0x0002 2492 #define ARM_CP_64BIT 0x0004 2493 #define ARM_CP_SUPPRESS_TB_END 0x0008 2494 #define ARM_CP_OVERRIDE 0x0010 2495 #define ARM_CP_ALIAS 0x0020 2496 #define ARM_CP_IO 0x0040 2497 #define ARM_CP_NO_RAW 0x0080 2498 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2499 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2500 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2501 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2502 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2503 #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) 2504 #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) 2505 #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA 2506 #define ARM_CP_FPU 0x1000 2507 #define ARM_CP_SVE 0x2000 2508 #define ARM_CP_NO_GDB 0x4000 2509 #define ARM_CP_RAISES_EXC 0x8000 2510 #define ARM_CP_NEWEL 0x10000 2511 /* Used only as a terminator for ARMCPRegInfo lists */ 2512 #define ARM_CP_SENTINEL 0xfffff 2513 /* Mask of only the flag bits in a type field */ 2514 #define ARM_CP_FLAG_MASK 0x1f0ff 2515 2516 /* Valid values for ARMCPRegInfo state field, indicating which of 2517 * the AArch32 and AArch64 execution states this register is visible in. 2518 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2519 * If the reginfo is declared to be visible in both states then a second 2520 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2521 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2522 * Note that we rely on the values of these enums as we iterate through 2523 * the various states in some places. 2524 */ 2525 enum { 2526 ARM_CP_STATE_AA32 = 0, 2527 ARM_CP_STATE_AA64 = 1, 2528 ARM_CP_STATE_BOTH = 2, 2529 }; 2530 2531 /* ARM CP register secure state flags. These flags identify security state 2532 * attributes for a given CP register entry. 2533 * The existence of both or neither secure and non-secure flags indicates that 2534 * the register has both a secure and non-secure hash entry. A single one of 2535 * these flags causes the register to only be hashed for the specified 2536 * security state. 2537 * Although definitions may have any combination of the S/NS bits, each 2538 * registered entry will only have one to identify whether the entry is secure 2539 * or non-secure. 2540 */ 2541 enum { 2542 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2543 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2544 }; 2545 2546 /* Return true if cptype is a valid type field. This is used to try to 2547 * catch errors where the sentinel has been accidentally left off the end 2548 * of a list of registers. 2549 */ 2550 static inline bool cptype_valid(int cptype) 2551 { 2552 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2553 || ((cptype & ARM_CP_SPECIAL) && 2554 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2555 } 2556 2557 /* Access rights: 2558 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2559 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2560 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2561 * (ie any of the privileged modes in Secure state, or Monitor mode). 2562 * If a register is accessible in one privilege level it's always accessible 2563 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2564 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2565 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2566 * terminology a little and call this PL3. 2567 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2568 * with the ELx exception levels. 2569 * 2570 * If access permissions for a register are more complex than can be 2571 * described with these bits, then use a laxer set of restrictions, and 2572 * do the more restrictive/complex check inside a helper function. 2573 */ 2574 #define PL3_R 0x80 2575 #define PL3_W 0x40 2576 #define PL2_R (0x20 | PL3_R) 2577 #define PL2_W (0x10 | PL3_W) 2578 #define PL1_R (0x08 | PL2_R) 2579 #define PL1_W (0x04 | PL2_W) 2580 #define PL0_R (0x02 | PL1_R) 2581 #define PL0_W (0x01 | PL1_W) 2582 2583 /* 2584 * For user-mode some registers are accessible to EL0 via a kernel 2585 * trap-and-emulate ABI. In this case we define the read permissions 2586 * as actually being PL0_R. However some bits of any given register 2587 * may still be masked. 2588 */ 2589 #ifdef CONFIG_USER_ONLY 2590 #define PL0U_R PL0_R 2591 #else 2592 #define PL0U_R PL1_R 2593 #endif 2594 2595 #define PL3_RW (PL3_R | PL3_W) 2596 #define PL2_RW (PL2_R | PL2_W) 2597 #define PL1_RW (PL1_R | PL1_W) 2598 #define PL0_RW (PL0_R | PL0_W) 2599 2600 /* Return the highest implemented Exception Level */ 2601 static inline int arm_highest_el(CPUARMState *env) 2602 { 2603 if (arm_feature(env, ARM_FEATURE_EL3)) { 2604 return 3; 2605 } 2606 if (arm_feature(env, ARM_FEATURE_EL2)) { 2607 return 2; 2608 } 2609 return 1; 2610 } 2611 2612 /* Return true if a v7M CPU is in Handler mode */ 2613 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2614 { 2615 return env->v7m.exception != 0; 2616 } 2617 2618 /* Return the current Exception Level (as per ARMv8; note that this differs 2619 * from the ARMv7 Privilege Level). 2620 */ 2621 static inline int arm_current_el(CPUARMState *env) 2622 { 2623 if (arm_feature(env, ARM_FEATURE_M)) { 2624 return arm_v7m_is_handler_mode(env) || 2625 !(env->v7m.control[env->v7m.secure] & 1); 2626 } 2627 2628 if (is_a64(env)) { 2629 return extract32(env->pstate, 2, 2); 2630 } 2631 2632 switch (env->uncached_cpsr & 0x1f) { 2633 case ARM_CPU_MODE_USR: 2634 return 0; 2635 case ARM_CPU_MODE_HYP: 2636 return 2; 2637 case ARM_CPU_MODE_MON: 2638 return 3; 2639 default: 2640 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2641 /* If EL3 is 32-bit then all secure privileged modes run in 2642 * EL3 2643 */ 2644 return 3; 2645 } 2646 2647 return 1; 2648 } 2649 } 2650 2651 typedef struct ARMCPRegInfo ARMCPRegInfo; 2652 2653 typedef enum CPAccessResult { 2654 /* Access is permitted */ 2655 CP_ACCESS_OK = 0, 2656 /* Access fails due to a configurable trap or enable which would 2657 * result in a categorized exception syndrome giving information about 2658 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2659 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2660 * PL1 if in EL0, otherwise to the current EL). 2661 */ 2662 CP_ACCESS_TRAP = 1, 2663 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2664 * Note that this is not a catch-all case -- the set of cases which may 2665 * result in this failure is specifically defined by the architecture. 2666 */ 2667 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2668 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2669 CP_ACCESS_TRAP_EL2 = 3, 2670 CP_ACCESS_TRAP_EL3 = 4, 2671 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2672 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2673 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2674 /* Access fails and results in an exception syndrome for an FP access, 2675 * trapped directly to EL2 or EL3 2676 */ 2677 CP_ACCESS_TRAP_FP_EL2 = 7, 2678 CP_ACCESS_TRAP_FP_EL3 = 8, 2679 } CPAccessResult; 2680 2681 /* Access functions for coprocessor registers. These cannot fail and 2682 * may not raise exceptions. 2683 */ 2684 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2685 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2686 uint64_t value); 2687 /* Access permission check functions for coprocessor registers. */ 2688 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2689 const ARMCPRegInfo *opaque, 2690 bool isread); 2691 /* Hook function for register reset */ 2692 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2693 2694 #define CP_ANY 0xff 2695 2696 /* Definition of an ARM coprocessor register */ 2697 struct ARMCPRegInfo { 2698 /* Name of register (useful mainly for debugging, need not be unique) */ 2699 const char *name; 2700 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2701 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2702 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2703 * will be decoded to this register. The register read and write 2704 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2705 * used by the program, so it is possible to register a wildcard and 2706 * then behave differently on read/write if necessary. 2707 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2708 * must both be zero. 2709 * For AArch64-visible registers, opc0 is also used. 2710 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2711 * way to distinguish (for KVM's benefit) guest-visible system registers 2712 * from demuxed ones provided to preserve the "no side effects on 2713 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2714 * visible (to match KVM's encoding); cp==0 will be converted to 2715 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2716 */ 2717 uint8_t cp; 2718 uint8_t crn; 2719 uint8_t crm; 2720 uint8_t opc0; 2721 uint8_t opc1; 2722 uint8_t opc2; 2723 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2724 int state; 2725 /* Register type: ARM_CP_* bits/values */ 2726 int type; 2727 /* Access rights: PL*_[RW] */ 2728 int access; 2729 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2730 int secure; 2731 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2732 * this register was defined: can be used to hand data through to the 2733 * register read/write functions, since they are passed the ARMCPRegInfo*. 2734 */ 2735 void *opaque; 2736 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2737 * fieldoffset is non-zero, the reset value of the register. 2738 */ 2739 uint64_t resetvalue; 2740 /* Offset of the field in CPUARMState for this register. 2741 * 2742 * This is not needed if either: 2743 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2744 * 2. both readfn and writefn are specified 2745 */ 2746 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2747 2748 /* Offsets of the secure and non-secure fields in CPUARMState for the 2749 * register if it is banked. These fields are only used during the static 2750 * registration of a register. During hashing the bank associated 2751 * with a given security state is copied to fieldoffset which is used from 2752 * there on out. 2753 * 2754 * It is expected that register definitions use either fieldoffset or 2755 * bank_fieldoffsets in the definition but not both. It is also expected 2756 * that both bank offsets are set when defining a banked register. This 2757 * use indicates that a register is banked. 2758 */ 2759 ptrdiff_t bank_fieldoffsets[2]; 2760 2761 /* Function for making any access checks for this register in addition to 2762 * those specified by the 'access' permissions bits. If NULL, no extra 2763 * checks required. The access check is performed at runtime, not at 2764 * translate time. 2765 */ 2766 CPAccessFn *accessfn; 2767 /* Function for handling reads of this register. If NULL, then reads 2768 * will be done by loading from the offset into CPUARMState specified 2769 * by fieldoffset. 2770 */ 2771 CPReadFn *readfn; 2772 /* Function for handling writes of this register. If NULL, then writes 2773 * will be done by writing to the offset into CPUARMState specified 2774 * by fieldoffset. 2775 */ 2776 CPWriteFn *writefn; 2777 /* Function for doing a "raw" read; used when we need to copy 2778 * coprocessor state to the kernel for KVM or out for 2779 * migration. This only needs to be provided if there is also a 2780 * readfn and it has side effects (for instance clear-on-read bits). 2781 */ 2782 CPReadFn *raw_readfn; 2783 /* Function for doing a "raw" write; used when we need to copy KVM 2784 * kernel coprocessor state into userspace, or for inbound 2785 * migration. This only needs to be provided if there is also a 2786 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2787 * or similar behaviour. 2788 */ 2789 CPWriteFn *raw_writefn; 2790 /* Function for resetting the register. If NULL, then reset will be done 2791 * by writing resetvalue to the field specified in fieldoffset. If 2792 * fieldoffset is 0 then no reset will be done. 2793 */ 2794 CPResetFn *resetfn; 2795 2796 /* 2797 * "Original" writefn and readfn. 2798 * For ARMv8.1-VHE register aliases, we overwrite the read/write 2799 * accessor functions of various EL1/EL0 to perform the runtime 2800 * check for which sysreg should actually be modified, and then 2801 * forwards the operation. Before overwriting the accessors, 2802 * the original function is copied here, so that accesses that 2803 * really do go to the EL1/EL0 version proceed normally. 2804 * (The corresponding EL2 register is linked via opaque.) 2805 */ 2806 CPReadFn *orig_readfn; 2807 CPWriteFn *orig_writefn; 2808 }; 2809 2810 /* Macros which are lvalues for the field in CPUARMState for the 2811 * ARMCPRegInfo *ri. 2812 */ 2813 #define CPREG_FIELD32(env, ri) \ 2814 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2815 #define CPREG_FIELD64(env, ri) \ 2816 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2817 2818 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2819 2820 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2821 const ARMCPRegInfo *regs, void *opaque); 2822 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2823 const ARMCPRegInfo *regs, void *opaque); 2824 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2825 { 2826 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2827 } 2828 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2829 { 2830 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2831 } 2832 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2833 2834 /* 2835 * Definition of an ARM co-processor register as viewed from 2836 * userspace. This is used for presenting sanitised versions of 2837 * registers to userspace when emulating the Linux AArch64 CPU 2838 * ID/feature ABI (advertised as HWCAP_CPUID). 2839 */ 2840 typedef struct ARMCPRegUserSpaceInfo { 2841 /* Name of register */ 2842 const char *name; 2843 2844 /* Is the name actually a glob pattern */ 2845 bool is_glob; 2846 2847 /* Only some bits are exported to user space */ 2848 uint64_t exported_bits; 2849 2850 /* Fixed bits are applied after the mask */ 2851 uint64_t fixed_bits; 2852 } ARMCPRegUserSpaceInfo; 2853 2854 #define REGUSERINFO_SENTINEL { .name = NULL } 2855 2856 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2857 2858 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2859 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2860 uint64_t value); 2861 /* CPReadFn that can be used for read-as-zero behaviour */ 2862 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2863 2864 /* CPResetFn that does nothing, for use if no reset is required even 2865 * if fieldoffset is non zero. 2866 */ 2867 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2868 2869 /* Return true if this reginfo struct's field in the cpu state struct 2870 * is 64 bits wide. 2871 */ 2872 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2873 { 2874 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2875 } 2876 2877 static inline bool cp_access_ok(int current_el, 2878 const ARMCPRegInfo *ri, int isread) 2879 { 2880 return (ri->access >> ((current_el * 2) + isread)) & 1; 2881 } 2882 2883 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2884 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2885 2886 /** 2887 * write_list_to_cpustate 2888 * @cpu: ARMCPU 2889 * 2890 * For each register listed in the ARMCPU cpreg_indexes list, write 2891 * its value from the cpreg_values list into the ARMCPUState structure. 2892 * This updates TCG's working data structures from KVM data or 2893 * from incoming migration state. 2894 * 2895 * Returns: true if all register values were updated correctly, 2896 * false if some register was unknown or could not be written. 2897 * Note that we do not stop early on failure -- we will attempt 2898 * writing all registers in the list. 2899 */ 2900 bool write_list_to_cpustate(ARMCPU *cpu); 2901 2902 /** 2903 * write_cpustate_to_list: 2904 * @cpu: ARMCPU 2905 * @kvm_sync: true if this is for syncing back to KVM 2906 * 2907 * For each register listed in the ARMCPU cpreg_indexes list, write 2908 * its value from the ARMCPUState structure into the cpreg_values list. 2909 * This is used to copy info from TCG's working data structures into 2910 * KVM or for outbound migration. 2911 * 2912 * @kvm_sync is true if we are doing this in order to sync the 2913 * register state back to KVM. In this case we will only update 2914 * values in the list if the previous list->cpustate sync actually 2915 * successfully wrote the CPU state. Otherwise we will keep the value 2916 * that is in the list. 2917 * 2918 * Returns: true if all register values were read correctly, 2919 * false if some register was unknown or could not be read. 2920 * Note that we do not stop early on failure -- we will attempt 2921 * reading all registers in the list. 2922 */ 2923 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2924 2925 #define ARM_CPUID_TI915T 0x54029152 2926 #define ARM_CPUID_TI925T 0x54029252 2927 2928 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2929 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2930 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2931 2932 #define cpu_signal_handler cpu_arm_signal_handler 2933 #define cpu_list arm_cpu_list 2934 2935 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2936 * 2937 * If EL3 is 64-bit: 2938 * + NonSecure EL1 & 0 stage 1 2939 * + NonSecure EL1 & 0 stage 2 2940 * + NonSecure EL2 2941 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2942 * + Secure EL1 & 0 2943 * + Secure EL3 2944 * If EL3 is 32-bit: 2945 * + NonSecure PL1 & 0 stage 1 2946 * + NonSecure PL1 & 0 stage 2 2947 * + NonSecure PL2 2948 * + Secure PL0 2949 * + Secure PL1 2950 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2951 * 2952 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2953 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2954 * because they may differ in access permissions even if the VA->PA map is 2955 * the same 2956 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2957 * translation, which means that we have one mmu_idx that deals with two 2958 * concatenated translation regimes [this sort of combined s1+2 TLB is 2959 * architecturally permitted] 2960 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2961 * handling via the TLB. The only way to do a stage 1 translation without 2962 * the immediate stage 2 translation is via the ATS or AT system insns, 2963 * which can be slow-pathed and always do a page table walk. 2964 * The only use of stage 2 translations is either as part of an s1+2 2965 * lookup or when loading the descriptors during a stage 1 page table walk, 2966 * and in both those cases we don't use the TLB. 2967 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2968 * translation regimes, because they map reasonably well to each other 2969 * and they can't both be active at the same time. 2970 * 5. we want to be able to use the TLB for accesses done as part of a 2971 * stage1 page table walk, rather than having to walk the stage2 page 2972 * table over and over. 2973 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2974 * Never (PAN) bit within PSTATE. 2975 * 2976 * This gives us the following list of cases: 2977 * 2978 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 2979 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 2980 * NS EL1 EL1&0 stage 1+2 +PAN 2981 * NS EL0 EL2&0 2982 * NS EL2 EL2&0 2983 * NS EL2 EL2&0 +PAN 2984 * NS EL2 (aka NS PL2) 2985 * S EL0 EL1&0 (aka S PL0) 2986 * S EL1 EL1&0 (not used if EL3 is 32 bit) 2987 * S EL1 EL1&0 +PAN 2988 * S EL3 (aka S PL1) 2989 * 2990 * for a total of 11 different mmu_idx. 2991 * 2992 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2993 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2994 * NS EL2 if we ever model a Cortex-R52). 2995 * 2996 * M profile CPUs are rather different as they do not have a true MMU. 2997 * They have the following different MMU indexes: 2998 * User 2999 * Privileged 3000 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 3001 * Privileged, execution priority negative (ditto) 3002 * If the CPU supports the v8M Security Extension then there are also: 3003 * Secure User 3004 * Secure Privileged 3005 * Secure User, execution priority negative 3006 * Secure Privileged, execution priority negative 3007 * 3008 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 3009 * are not quite the same -- different CPU types (most notably M profile 3010 * vs A/R profile) would like to use MMU indexes with different semantics, 3011 * but since we don't ever need to use all of those in a single CPU we 3012 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 3013 * modes + total number of M profile MMU modes". The lower bits of 3014 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 3015 * the same for any particular CPU. 3016 * Variables of type ARMMUIdx are always full values, and the core 3017 * index values are in variables of type 'int'. 3018 * 3019 * Our enumeration includes at the end some entries which are not "true" 3020 * mmu_idx values in that they don't have corresponding TLBs and are only 3021 * valid for doing slow path page table walks. 3022 * 3023 * The constant names here are patterned after the general style of the names 3024 * of the AT/ATS operations. 3025 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 3026 * For M profile we arrange them to have a bit for priv, a bit for negpri 3027 * and a bit for secure. 3028 */ 3029 #define ARM_MMU_IDX_A 0x10 /* A profile */ 3030 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 3031 #define ARM_MMU_IDX_M 0x40 /* M profile */ 3032 3033 /* Meanings of the bits for M profile mmu idx values */ 3034 #define ARM_MMU_IDX_M_PRIV 0x1 3035 #define ARM_MMU_IDX_M_NEGPRI 0x2 3036 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 3037 3038 #define ARM_MMU_IDX_TYPE_MASK \ 3039 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 3040 #define ARM_MMU_IDX_COREIDX_MASK 0xf 3041 3042 typedef enum ARMMMUIdx { 3043 /* 3044 * A-profile. 3045 */ 3046 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 3047 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 3048 3049 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 3050 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A, 3051 3052 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A, 3053 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A, 3054 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A, 3055 3056 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A, 3057 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A, 3058 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A, 3059 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A, 3060 3061 /* 3062 * These are not allocated TLBs and are used only for AT system 3063 * instructions or for the first stage of an S12 page table walk. 3064 */ 3065 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 3066 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 3067 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 3068 /* 3069 * Not allocated a TLB: used only for second stage of an S12 page 3070 * table walk, or for descriptor loads during first stage of an S1 3071 * page table walk. Note that if we ever want to have a TLB for this 3072 * then various TLB flush insns which currently are no-ops or flush 3073 * only stage 1 MMU indexes will need to change to flush stage 2. 3074 */ 3075 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB, 3076 3077 /* 3078 * M-profile. 3079 */ 3080 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 3081 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 3082 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 3083 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 3084 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 3085 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 3086 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 3087 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 3088 } ARMMMUIdx; 3089 3090 /* 3091 * Bit macros for the core-mmu-index values for each index, 3092 * for use when calling tlb_flush_by_mmuidx() and friends. 3093 */ 3094 #define TO_CORE_BIT(NAME) \ 3095 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 3096 3097 typedef enum ARMMMUIdxBit { 3098 TO_CORE_BIT(E10_0), 3099 TO_CORE_BIT(E20_0), 3100 TO_CORE_BIT(E10_1), 3101 TO_CORE_BIT(E10_1_PAN), 3102 TO_CORE_BIT(E2), 3103 TO_CORE_BIT(E20_2), 3104 TO_CORE_BIT(E20_2_PAN), 3105 TO_CORE_BIT(SE10_0), 3106 TO_CORE_BIT(SE10_1), 3107 TO_CORE_BIT(SE10_1_PAN), 3108 TO_CORE_BIT(SE3), 3109 3110 TO_CORE_BIT(MUser), 3111 TO_CORE_BIT(MPriv), 3112 TO_CORE_BIT(MUserNegPri), 3113 TO_CORE_BIT(MPrivNegPri), 3114 TO_CORE_BIT(MSUser), 3115 TO_CORE_BIT(MSPriv), 3116 TO_CORE_BIT(MSUserNegPri), 3117 TO_CORE_BIT(MSPrivNegPri), 3118 } ARMMMUIdxBit; 3119 3120 #undef TO_CORE_BIT 3121 3122 #define MMU_USER_IDX 0 3123 3124 /* Indexes used when registering address spaces with cpu_address_space_init */ 3125 typedef enum ARMASIdx { 3126 ARMASIdx_NS = 0, 3127 ARMASIdx_S = 1, 3128 ARMASIdx_TagNS = 2, 3129 ARMASIdx_TagS = 3, 3130 } ARMASIdx; 3131 3132 /* Return the Exception Level targeted by debug exceptions. */ 3133 static inline int arm_debug_target_el(CPUARMState *env) 3134 { 3135 bool secure = arm_is_secure(env); 3136 bool route_to_el2 = false; 3137 3138 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 3139 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 3140 env->cp15.mdcr_el2 & MDCR_TDE; 3141 } 3142 3143 if (route_to_el2) { 3144 return 2; 3145 } else if (arm_feature(env, ARM_FEATURE_EL3) && 3146 !arm_el_is_aa64(env, 3) && secure) { 3147 return 3; 3148 } else { 3149 return 1; 3150 } 3151 } 3152 3153 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3154 { 3155 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3156 * CSSELR is RAZ/WI. 3157 */ 3158 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3159 } 3160 3161 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 3162 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 3163 { 3164 int cur_el = arm_current_el(env); 3165 int debug_el; 3166 3167 if (cur_el == 3) { 3168 return false; 3169 } 3170 3171 /* MDCR_EL3.SDD disables debug events from Secure state */ 3172 if (arm_is_secure_below_el3(env) 3173 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3174 return false; 3175 } 3176 3177 /* 3178 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3179 * while not masking the (D)ebug bit in DAIF. 3180 */ 3181 debug_el = arm_debug_target_el(env); 3182 3183 if (cur_el == debug_el) { 3184 return extract32(env->cp15.mdscr_el1, 13, 1) 3185 && !(env->daif & PSTATE_D); 3186 } 3187 3188 /* Otherwise the debug target needs to be a higher EL */ 3189 return debug_el > cur_el; 3190 } 3191 3192 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3193 { 3194 int el = arm_current_el(env); 3195 3196 if (el == 0 && arm_el_is_aa64(env, 1)) { 3197 return aa64_generate_debug_exceptions(env); 3198 } 3199 3200 if (arm_is_secure(env)) { 3201 int spd; 3202 3203 if (el == 0 && (env->cp15.sder & 1)) { 3204 /* SDER.SUIDEN means debug exceptions from Secure EL0 3205 * are always enabled. Otherwise they are controlled by 3206 * SDCR.SPD like those from other Secure ELs. 3207 */ 3208 return true; 3209 } 3210 3211 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3212 switch (spd) { 3213 case 1: 3214 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3215 case 0: 3216 /* For 0b00 we return true if external secure invasive debug 3217 * is enabled. On real hardware this is controlled by external 3218 * signals to the core. QEMU always permits debug, and behaves 3219 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3220 */ 3221 return true; 3222 case 2: 3223 return false; 3224 case 3: 3225 return true; 3226 } 3227 } 3228 3229 return el != 2; 3230 } 3231 3232 /* Return true if debugging exceptions are currently enabled. 3233 * This corresponds to what in ARM ARM pseudocode would be 3234 * if UsingAArch32() then 3235 * return AArch32.GenerateDebugExceptions() 3236 * else 3237 * return AArch64.GenerateDebugExceptions() 3238 * We choose to push the if() down into this function for clarity, 3239 * since the pseudocode has it at all callsites except for the one in 3240 * CheckSoftwareStep(), where it is elided because both branches would 3241 * always return the same value. 3242 */ 3243 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3244 { 3245 if (env->aarch64) { 3246 return aa64_generate_debug_exceptions(env); 3247 } else { 3248 return aa32_generate_debug_exceptions(env); 3249 } 3250 } 3251 3252 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3253 * implicitly means this always returns false in pre-v8 CPUs.) 3254 */ 3255 static inline bool arm_singlestep_active(CPUARMState *env) 3256 { 3257 return extract32(env->cp15.mdscr_el1, 0, 1) 3258 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3259 && arm_generate_debug_exceptions(env); 3260 } 3261 3262 static inline bool arm_sctlr_b(CPUARMState *env) 3263 { 3264 return 3265 /* We need not implement SCTLR.ITD in user-mode emulation, so 3266 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3267 * This lets people run BE32 binaries with "-cpu any". 3268 */ 3269 #ifndef CONFIG_USER_ONLY 3270 !arm_feature(env, ARM_FEATURE_V7) && 3271 #endif 3272 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3273 } 3274 3275 uint64_t arm_sctlr(CPUARMState *env, int el); 3276 3277 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3278 bool sctlr_b) 3279 { 3280 #ifdef CONFIG_USER_ONLY 3281 /* 3282 * In system mode, BE32 is modelled in line with the 3283 * architecture (as word-invariant big-endianness), where loads 3284 * and stores are done little endian but from addresses which 3285 * are adjusted by XORing with the appropriate constant. So the 3286 * endianness to use for the raw data access is not affected by 3287 * SCTLR.B. 3288 * In user mode, however, we model BE32 as byte-invariant 3289 * big-endianness (because user-only code cannot tell the 3290 * difference), and so we need to use a data access endianness 3291 * that depends on SCTLR.B. 3292 */ 3293 if (sctlr_b) { 3294 return true; 3295 } 3296 #endif 3297 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3298 return env->uncached_cpsr & CPSR_E; 3299 } 3300 3301 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3302 { 3303 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3304 } 3305 3306 /* Return true if the processor is in big-endian mode. */ 3307 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3308 { 3309 if (!is_a64(env)) { 3310 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3311 } else { 3312 int cur_el = arm_current_el(env); 3313 uint64_t sctlr = arm_sctlr(env, cur_el); 3314 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3315 } 3316 } 3317 3318 typedef CPUARMState CPUArchState; 3319 typedef ARMCPU ArchCPU; 3320 3321 #include "exec/cpu-all.h" 3322 3323 /* 3324 * Bit usage in the TB flags field: bit 31 indicates whether we are 3325 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3326 * We put flags which are shared between 32 and 64 bit mode at the top 3327 * of the word, and flags which apply to only one mode at the bottom. 3328 * 3329 * 31 20 18 14 9 0 3330 * +--------------+-----+-----+----------+--------------+ 3331 * | | | TBFLAG_A32 | | 3332 * | | +-----+----------+ TBFLAG_AM32 | 3333 * | TBFLAG_ANY | |TBFLAG_M32| | 3334 * | +-----------+----------+--------------| 3335 * | | TBFLAG_A64 | 3336 * +--------------+-------------------------------------+ 3337 * 31 20 0 3338 * 3339 * Unless otherwise noted, these bits are cached in env->hflags. 3340 */ 3341 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3342 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1) 3343 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */ 3344 FIELD(TBFLAG_ANY, BE_DATA, 28, 1) 3345 FIELD(TBFLAG_ANY, MMUIDX, 24, 4) 3346 /* Target EL if we take a floating-point-disabled exception */ 3347 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2) 3348 /* For A-profile only, target EL for debug exceptions. */ 3349 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2) 3350 3351 /* 3352 * Bit usage when in AArch32 state, both A- and M-profile. 3353 */ 3354 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */ 3355 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */ 3356 3357 /* 3358 * Bit usage when in AArch32 state, for A-profile only. 3359 */ 3360 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */ 3361 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */ 3362 /* 3363 * We store the bottom two bits of the CPAR as TB flags and handle 3364 * checks on the other bits at runtime. This shares the same bits as 3365 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3366 * Not cached, because VECLEN+VECSTRIDE are not cached. 3367 */ 3368 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2) 3369 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */ 3370 FIELD(TBFLAG_A32, SCTLR_B, 15, 1) 3371 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1) 3372 /* 3373 * Indicates whether cp register reads and writes by guest code should access 3374 * the secure or nonsecure bank of banked registers; note that this is not 3375 * the same thing as the current security state of the processor! 3376 */ 3377 FIELD(TBFLAG_A32, NS, 17, 1) 3378 3379 /* 3380 * Bit usage when in AArch32 state, for M-profile only. 3381 */ 3382 /* Handler (ie not Thread) mode */ 3383 FIELD(TBFLAG_M32, HANDLER, 9, 1) 3384 /* Whether we should generate stack-limit checks */ 3385 FIELD(TBFLAG_M32, STACKCHECK, 10, 1) 3386 /* Set if FPCCR.LSPACT is set */ 3387 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */ 3388 /* Set if we must create a new FP context */ 3389 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */ 3390 /* Set if FPCCR.S does not match current security state */ 3391 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */ 3392 3393 /* 3394 * Bit usage when in AArch64 state 3395 */ 3396 FIELD(TBFLAG_A64, TBII, 0, 2) 3397 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3398 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3399 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3400 FIELD(TBFLAG_A64, BT, 9, 1) 3401 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3402 FIELD(TBFLAG_A64, TBID, 12, 2) 3403 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3404 FIELD(TBFLAG_A64, ATA, 15, 1) 3405 FIELD(TBFLAG_A64, TCMA, 16, 2) 3406 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3407 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3408 3409 /** 3410 * cpu_mmu_index: 3411 * @env: The cpu environment 3412 * @ifetch: True for code access, false for data access. 3413 * 3414 * Return the core mmu index for the current translation regime. 3415 * This function is used by generic TCG code paths. 3416 */ 3417 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3418 { 3419 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX); 3420 } 3421 3422 static inline bool bswap_code(bool sctlr_b) 3423 { 3424 #ifdef CONFIG_USER_ONLY 3425 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3426 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3427 * would also end up as a mixed-endian mode with BE code, LE data. 3428 */ 3429 return 3430 #ifdef TARGET_WORDS_BIGENDIAN 3431 1 ^ 3432 #endif 3433 sctlr_b; 3434 #else 3435 /* All code access in ARM is little endian, and there are no loaders 3436 * doing swaps that need to be reversed 3437 */ 3438 return 0; 3439 #endif 3440 } 3441 3442 #ifdef CONFIG_USER_ONLY 3443 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3444 { 3445 return 3446 #ifdef TARGET_WORDS_BIGENDIAN 3447 1 ^ 3448 #endif 3449 arm_cpu_data_is_big_endian(env); 3450 } 3451 #endif 3452 3453 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3454 target_ulong *cs_base, uint32_t *flags); 3455 3456 enum { 3457 QEMU_PSCI_CONDUIT_DISABLED = 0, 3458 QEMU_PSCI_CONDUIT_SMC = 1, 3459 QEMU_PSCI_CONDUIT_HVC = 2, 3460 }; 3461 3462 #ifndef CONFIG_USER_ONLY 3463 /* Return the address space index to use for a memory access */ 3464 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3465 { 3466 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3467 } 3468 3469 /* Return the AddressSpace to use for a memory access 3470 * (which depends on whether the access is S or NS, and whether 3471 * the board gave us a separate AddressSpace for S accesses). 3472 */ 3473 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3474 { 3475 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3476 } 3477 #endif 3478 3479 /** 3480 * arm_register_pre_el_change_hook: 3481 * Register a hook function which will be called immediately before this 3482 * CPU changes exception level or mode. The hook function will be 3483 * passed a pointer to the ARMCPU and the opaque data pointer passed 3484 * to this function when the hook was registered. 3485 * 3486 * Note that if a pre-change hook is called, any registered post-change hooks 3487 * are guaranteed to subsequently be called. 3488 */ 3489 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3490 void *opaque); 3491 /** 3492 * arm_register_el_change_hook: 3493 * Register a hook function which will be called immediately after this 3494 * CPU changes exception level or mode. The hook function will be 3495 * passed a pointer to the ARMCPU and the opaque data pointer passed 3496 * to this function when the hook was registered. 3497 * 3498 * Note that any registered hooks registered here are guaranteed to be called 3499 * if pre-change hooks have been. 3500 */ 3501 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3502 *opaque); 3503 3504 /** 3505 * arm_rebuild_hflags: 3506 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3507 */ 3508 void arm_rebuild_hflags(CPUARMState *env); 3509 3510 /** 3511 * aa32_vfp_dreg: 3512 * Return a pointer to the Dn register within env in 32-bit mode. 3513 */ 3514 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3515 { 3516 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3517 } 3518 3519 /** 3520 * aa32_vfp_qreg: 3521 * Return a pointer to the Qn register within env in 32-bit mode. 3522 */ 3523 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3524 { 3525 return &env->vfp.zregs[regno].d[0]; 3526 } 3527 3528 /** 3529 * aa64_vfp_qreg: 3530 * Return a pointer to the Qn register within env in 64-bit mode. 3531 */ 3532 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3533 { 3534 return &env->vfp.zregs[regno].d[0]; 3535 } 3536 3537 /* Shared between translate-sve.c and sve_helper.c. */ 3538 extern const uint64_t pred_esz_masks[4]; 3539 3540 /* Helper for the macros below, validating the argument type. */ 3541 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) 3542 { 3543 return x; 3544 } 3545 3546 /* 3547 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. 3548 * Using these should be a bit more self-documenting than using the 3549 * generic target bits directly. 3550 */ 3551 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) 3552 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) 3553 3554 /* 3555 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3556 */ 3557 #define PAGE_BTI PAGE_TARGET_1 3558 3559 /* 3560 * Naming convention for isar_feature functions: 3561 * Functions which test 32-bit ID registers should have _aa32_ in 3562 * their name. Functions which test 64-bit ID registers should have 3563 * _aa64_ in their name. These must only be used in code where we 3564 * know for certain that the CPU has AArch32 or AArch64 respectively 3565 * or where the correct answer for a CPU which doesn't implement that 3566 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3567 * system registers that are specific to that CPU state, for "should 3568 * we let this system register bit be set" tests where the 32-bit 3569 * flavour of the register doesn't have the bit, and so on). 3570 * Functions which simply ask "does this feature exist at all" have 3571 * _any_ in their name, and always return the logical OR of the _aa64_ 3572 * and the _aa32_ function. 3573 */ 3574 3575 /* 3576 * 32-bit feature tests via id registers. 3577 */ 3578 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3579 { 3580 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3581 } 3582 3583 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3584 { 3585 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3586 } 3587 3588 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) 3589 { 3590 /* (M-profile) low-overhead loops and branch future */ 3591 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; 3592 } 3593 3594 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3595 { 3596 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3597 } 3598 3599 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3600 { 3601 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3602 } 3603 3604 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3605 { 3606 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3607 } 3608 3609 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3610 { 3611 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3612 } 3613 3614 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3615 { 3616 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3617 } 3618 3619 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3620 { 3621 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3622 } 3623 3624 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3625 { 3626 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3627 } 3628 3629 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3630 { 3631 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3632 } 3633 3634 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3635 { 3636 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3637 } 3638 3639 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3640 { 3641 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3642 } 3643 3644 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3645 { 3646 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3647 } 3648 3649 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3650 { 3651 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3652 } 3653 3654 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3655 { 3656 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3657 } 3658 3659 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) 3660 { 3661 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; 3662 } 3663 3664 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3665 { 3666 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3667 } 3668 3669 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) 3670 { 3671 /* 3672 * Return true if M-profile state handling insns 3673 * (VSCCLRM, CLRM, FPCTX access insns) are implemented 3674 */ 3675 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; 3676 } 3677 3678 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3679 { 3680 /* Sadly this is encoded differently for A-profile and M-profile */ 3681 if (isar_feature_aa32_mprofile(id)) { 3682 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3683 } else { 3684 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3685 } 3686 } 3687 3688 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3689 { 3690 /* 3691 * Return true if either VFP or SIMD is implemented. 3692 * In this case, a minimum of VFP w/ D0-D15. 3693 */ 3694 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3695 } 3696 3697 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3698 { 3699 /* Return true if D16-D31 are implemented */ 3700 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3701 } 3702 3703 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3704 { 3705 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3706 } 3707 3708 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3709 { 3710 /* Return true if CPU supports single precision floating point, VFPv2 */ 3711 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3712 } 3713 3714 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3715 { 3716 /* Return true if CPU supports single precision floating point, VFPv3 */ 3717 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3718 } 3719 3720 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3721 { 3722 /* Return true if CPU supports double precision floating point, VFPv2 */ 3723 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3724 } 3725 3726 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3727 { 3728 /* Return true if CPU supports double precision floating point, VFPv3 */ 3729 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3730 } 3731 3732 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3733 { 3734 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3735 } 3736 3737 /* 3738 * We always set the FP and SIMD FP16 fields to indicate identical 3739 * levels of support (assuming SIMD is implemented at all), so 3740 * we only need one set of accessors. 3741 */ 3742 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3743 { 3744 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3745 } 3746 3747 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3748 { 3749 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3750 } 3751 3752 /* 3753 * Note that this ID register field covers both VFP and Neon FMAC, 3754 * so should usually be tested in combination with some other 3755 * check that confirms the presence of whichever of VFP or Neon is 3756 * relevant, to avoid accidentally enabling a Neon feature on 3757 * a VFP-no-Neon core or vice-versa. 3758 */ 3759 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3760 { 3761 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3762 } 3763 3764 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3765 { 3766 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3767 } 3768 3769 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3770 { 3771 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3772 } 3773 3774 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3775 { 3776 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3777 } 3778 3779 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3780 { 3781 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3782 } 3783 3784 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3785 { 3786 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3787 } 3788 3789 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3790 { 3791 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3792 } 3793 3794 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3795 { 3796 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3797 } 3798 3799 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3800 { 3801 /* 0xf means "non-standard IMPDEF PMU" */ 3802 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3803 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3804 } 3805 3806 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3807 { 3808 /* 0xf means "non-standard IMPDEF PMU" */ 3809 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3810 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3811 } 3812 3813 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3814 { 3815 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3816 } 3817 3818 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3819 { 3820 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3821 } 3822 3823 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3824 { 3825 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3826 } 3827 3828 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3829 { 3830 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3831 } 3832 3833 /* 3834 * 64-bit feature tests via id registers. 3835 */ 3836 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3837 { 3838 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3839 } 3840 3841 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3842 { 3843 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3844 } 3845 3846 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3847 { 3848 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3849 } 3850 3851 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3852 { 3853 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3854 } 3855 3856 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3857 { 3858 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3859 } 3860 3861 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3862 { 3863 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3864 } 3865 3866 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3867 { 3868 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3869 } 3870 3871 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3872 { 3873 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3874 } 3875 3876 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3877 { 3878 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3879 } 3880 3881 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3882 { 3883 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3884 } 3885 3886 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3887 { 3888 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3889 } 3890 3891 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3892 { 3893 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3894 } 3895 3896 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3897 { 3898 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3899 } 3900 3901 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3902 { 3903 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3904 } 3905 3906 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3907 { 3908 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3909 } 3910 3911 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3912 { 3913 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3914 } 3915 3916 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3917 { 3918 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3919 } 3920 3921 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3922 { 3923 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3924 } 3925 3926 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3927 { 3928 /* 3929 * Note that while QEMU will only implement the architected algorithm 3930 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3931 * defined algorithms, and thus API+GPI, and this predicate controls 3932 * migration of the 128-bit keys. 3933 */ 3934 return (id->id_aa64isar1 & 3935 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3936 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3937 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3938 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3939 } 3940 3941 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3942 { 3943 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3944 } 3945 3946 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3947 { 3948 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3949 } 3950 3951 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3952 { 3953 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3954 } 3955 3956 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3957 { 3958 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3959 } 3960 3961 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3962 { 3963 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3964 } 3965 3966 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3967 { 3968 /* We always set the AdvSIMD and FP fields identically. */ 3969 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3970 } 3971 3972 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3973 { 3974 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3975 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3976 } 3977 3978 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3979 { 3980 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3981 } 3982 3983 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3984 { 3985 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3986 } 3987 3988 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3989 { 3990 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3991 } 3992 3993 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3994 { 3995 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3996 } 3997 3998 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3999 { 4000 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 4001 } 4002 4003 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 4004 { 4005 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 4006 } 4007 4008 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 4009 { 4010 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 4011 } 4012 4013 static inline bool isar_feature_aa64_st(const ARMISARegisters *id) 4014 { 4015 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; 4016 } 4017 4018 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 4019 { 4020 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 4021 } 4022 4023 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 4024 { 4025 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 4026 } 4027 4028 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 4029 { 4030 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 4031 } 4032 4033 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 4034 { 4035 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 4036 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4037 } 4038 4039 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 4040 { 4041 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 4042 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4043 } 4044 4045 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 4046 { 4047 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 4048 } 4049 4050 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 4051 { 4052 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 4053 } 4054 4055 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 4056 { 4057 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 4058 } 4059 4060 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 4061 { 4062 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 4063 } 4064 4065 /* 4066 * Feature tests for "does this exist in either 32-bit or 64-bit?" 4067 */ 4068 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 4069 { 4070 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 4071 } 4072 4073 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 4074 { 4075 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 4076 } 4077 4078 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 4079 { 4080 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 4081 } 4082 4083 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 4084 { 4085 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 4086 } 4087 4088 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 4089 { 4090 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 4091 } 4092 4093 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 4094 { 4095 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 4096 } 4097 4098 /* 4099 * Forward to the above feature tests given an ARMCPU pointer. 4100 */ 4101 #define cpu_isar_feature(name, cpu) \ 4102 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 4103 4104 #endif 4105