xref: /openbmc/qemu/target/arm/cpu.h (revision ecd6f6a8)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "qapi/qapi-types-common.h"
30 #include "target/arm/multiprocessing.h"
31 #include "target/arm/gtimer.h"
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #ifdef TARGET_AARCH64
37 #define KVM_HAVE_MCE_INJECTION 1
38 #endif
39 
40 #define EXCP_UDEF            1   /* undefined instruction */
41 #define EXCP_SWI             2   /* software interrupt */
42 #define EXCP_PREFETCH_ABORT  3
43 #define EXCP_DATA_ABORT      4
44 #define EXCP_IRQ             5
45 #define EXCP_FIQ             6
46 #define EXCP_BKPT            7
47 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
48 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
49 #define EXCP_HVC            11   /* HyperVisor Call */
50 #define EXCP_HYP_TRAP       12
51 #define EXCP_SMC            13   /* Secure Monitor Call */
52 #define EXCP_VIRQ           14
53 #define EXCP_VFIQ           15
54 #define EXCP_SEMIHOST       16   /* semihosting call */
55 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
56 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
57 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
58 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
59 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
60 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
61 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
62 #define EXCP_VSERR          24
63 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
64 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
65 
66 #define ARMV7M_EXCP_RESET   1
67 #define ARMV7M_EXCP_NMI     2
68 #define ARMV7M_EXCP_HARD    3
69 #define ARMV7M_EXCP_MEM     4
70 #define ARMV7M_EXCP_BUS     5
71 #define ARMV7M_EXCP_USAGE   6
72 #define ARMV7M_EXCP_SECURE  7
73 #define ARMV7M_EXCP_SVC     11
74 #define ARMV7M_EXCP_DEBUG   12
75 #define ARMV7M_EXCP_PENDSV  14
76 #define ARMV7M_EXCP_SYSTICK 15
77 
78 /* ARM-specific interrupt pending bits.  */
79 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
80 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
81 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
82 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
83 
84 /* The usual mapping for an AArch64 system register to its AArch32
85  * counterpart is for the 32 bit world to have access to the lower
86  * half only (with writes leaving the upper half untouched). It's
87  * therefore useful to be able to pass TCG the offset of the least
88  * significant half of a uint64_t struct member.
89  */
90 #if HOST_BIG_ENDIAN
91 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
92 #define offsetofhigh32(S, M) offsetof(S, M)
93 #else
94 #define offsetoflow32(S, M) offsetof(S, M)
95 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #endif
97 
98 /* ARM-specific extra insn start words:
99  * 1: Conditional execution bits
100  * 2: Partial exception syndrome for data aborts
101  */
102 #define TARGET_INSN_START_EXTRA_WORDS 2
103 
104 /* The 2nd extra word holding syndrome info for data aborts does not use
105  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
106  * help the sleb128 encoder do a better job.
107  * When restoring the CPU state, we shift it back up.
108  */
109 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
110 #define ARM_INSN_START_WORD2_SHIFT 13
111 
112 /* We currently assume float and double are IEEE single and double
113    precision respectively.
114    Doing runtime conversions is tricky because VFP registers may contain
115    integer values (eg. as the result of a FTOSI instruction).
116    s<2n> maps to the least significant half of d<n>
117    s<2n+1> maps to the most significant half of d<n>
118  */
119 
120 /**
121  * DynamicGDBFeatureInfo:
122  * @desc: Contains the feature descriptions.
123  * @data: A union with data specific to the set of registers
124  *    @cpregs_keys: Array that contains the corresponding Key of
125  *                  a given cpreg with the same order of the cpreg
126  *                  in the XML description.
127  */
128 typedef struct DynamicGDBFeatureInfo {
129     GDBFeature desc;
130     union {
131         struct {
132             uint32_t *keys;
133         } cpregs;
134     } data;
135 } DynamicGDBFeatureInfo;
136 
137 /* CPU state for each instance of a generic timer (in cp15 c14) */
138 typedef struct ARMGenericTimer {
139     uint64_t cval; /* Timer CompareValue register */
140     uint64_t ctl; /* Timer Control register */
141 } ARMGenericTimer;
142 
143 #define VTCR_NSW (1u << 29)
144 #define VTCR_NSA (1u << 30)
145 #define VSTCR_SW VTCR_NSW
146 #define VSTCR_SA VTCR_NSA
147 
148 /* Define a maximum sized vector register.
149  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
150  * For 64-bit, this is a 2048-bit SVE register.
151  *
152  * Note that the mapping between S, D, and Q views of the register bank
153  * differs between AArch64 and AArch32.
154  * In AArch32:
155  *  Qn = regs[n].d[1]:regs[n].d[0]
156  *  Dn = regs[n / 2].d[n & 1]
157  *  Sn = regs[n / 4].d[n % 4 / 2],
158  *       bits 31..0 for even n, and bits 63..32 for odd n
159  *       (and regs[16] to regs[31] are inaccessible)
160  * In AArch64:
161  *  Zn = regs[n].d[*]
162  *  Qn = regs[n].d[1]:regs[n].d[0]
163  *  Dn = regs[n].d[0]
164  *  Sn = regs[n].d[0] bits 31..0
165  *  Hn = regs[n].d[0] bits 15..0
166  *
167  * This corresponds to the architecturally defined mapping between
168  * the two execution states, and means we do not need to explicitly
169  * map these registers when changing states.
170  *
171  * Align the data for use with TCG host vector operations.
172  */
173 
174 #ifdef TARGET_AARCH64
175 # define ARM_MAX_VQ    16
176 #else
177 # define ARM_MAX_VQ    1
178 #endif
179 
180 typedef struct ARMVectorReg {
181     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
182 } ARMVectorReg;
183 
184 #ifdef TARGET_AARCH64
185 /* In AArch32 mode, predicate registers do not exist at all.  */
186 typedef struct ARMPredicateReg {
187     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
188 } ARMPredicateReg;
189 
190 /* In AArch32 mode, PAC keys do not exist at all.  */
191 typedef struct ARMPACKey {
192     uint64_t lo, hi;
193 } ARMPACKey;
194 #endif
195 
196 /* See the commentary above the TBFLAG field definitions.  */
197 typedef struct CPUARMTBFlags {
198     uint32_t flags;
199     target_ulong flags2;
200 } CPUARMTBFlags;
201 
202 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
203 
204 typedef struct NVICState NVICState;
205 
206 typedef struct CPUArchState {
207     /* Regs for current mode.  */
208     uint32_t regs[16];
209 
210     /* 32/64 switch only happens when taking and returning from
211      * exceptions so the overlap semantics are taken care of then
212      * instead of having a complicated union.
213      */
214     /* Regs for A64 mode.  */
215     uint64_t xregs[32];
216     uint64_t pc;
217     /* PSTATE isn't an architectural register for ARMv8. However, it is
218      * convenient for us to assemble the underlying state into a 32 bit format
219      * identical to the architectural format used for the SPSR. (This is also
220      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
221      * 'pstate' register are.) Of the PSTATE bits:
222      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
223      *    semantics as for AArch32, as described in the comments on each field)
224      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
225      *  DAIF (exception masks) are kept in env->daif
226      *  BTYPE is kept in env->btype
227      *  SM and ZA are kept in env->svcr
228      *  all other bits are stored in their correct places in env->pstate
229      */
230     uint32_t pstate;
231     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
232     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
233 
234     /* Cached TBFLAGS state.  See below for which bits are included.  */
235     CPUARMTBFlags hflags;
236 
237     /* Frequently accessed CPSR bits are stored separately for efficiency.
238        This contains all the other bits.  Use cpsr_{read,write} to access
239        the whole CPSR.  */
240     uint32_t uncached_cpsr;
241     uint32_t spsr;
242 
243     /* Banked registers.  */
244     uint64_t banked_spsr[8];
245     uint32_t banked_r13[8];
246     uint32_t banked_r14[8];
247 
248     /* These hold r8-r12.  */
249     uint32_t usr_regs[5];
250     uint32_t fiq_regs[5];
251 
252     /* cpsr flag cache for faster execution */
253     uint32_t CF; /* 0 or 1 */
254     uint32_t VF; /* V is the bit 31. All other bits are undefined */
255     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
256     uint32_t ZF; /* Z set if zero.  */
257     uint32_t QF; /* 0 or 1 */
258     uint32_t GE; /* cpsr[19:16] */
259     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
260     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
261     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
262     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
263 
264     uint64_t elr_el[4]; /* AArch64 exception link regs  */
265     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
266 
267     /* System control coprocessor (cp15) */
268     struct {
269         uint32_t c0_cpuid;
270         union { /* Cache size selection */
271             struct {
272                 uint64_t _unused_csselr0;
273                 uint64_t csselr_ns;
274                 uint64_t _unused_csselr1;
275                 uint64_t csselr_s;
276             };
277             uint64_t csselr_el[4];
278         };
279         union { /* System control register. */
280             struct {
281                 uint64_t _unused_sctlr;
282                 uint64_t sctlr_ns;
283                 uint64_t hsctlr;
284                 uint64_t sctlr_s;
285             };
286             uint64_t sctlr_el[4];
287         };
288         uint64_t vsctlr; /* Virtualization System control register. */
289         uint64_t cpacr_el1; /* Architectural feature access control register */
290         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
291         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
292         uint64_t sder; /* Secure debug enable register. */
293         uint32_t nsacr; /* Non-secure access control register. */
294         union { /* MMU translation table base 0. */
295             struct {
296                 uint64_t _unused_ttbr0_0;
297                 uint64_t ttbr0_ns;
298                 uint64_t _unused_ttbr0_1;
299                 uint64_t ttbr0_s;
300             };
301             uint64_t ttbr0_el[4];
302         };
303         union { /* MMU translation table base 1. */
304             struct {
305                 uint64_t _unused_ttbr1_0;
306                 uint64_t ttbr1_ns;
307                 uint64_t _unused_ttbr1_1;
308                 uint64_t ttbr1_s;
309             };
310             uint64_t ttbr1_el[4];
311         };
312         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
313         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
314         /* MMU translation table base control. */
315         uint64_t tcr_el[4];
316         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
317         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
318         uint32_t c2_data; /* MPU data cacheable bits.  */
319         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
320         union { /* MMU domain access control register
321                  * MPU write buffer control.
322                  */
323             struct {
324                 uint64_t dacr_ns;
325                 uint64_t dacr_s;
326             };
327             struct {
328                 uint64_t dacr32_el2;
329             };
330         };
331         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
332         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
333         uint64_t hcr_el2; /* Hypervisor configuration register */
334         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
335         uint64_t scr_el3; /* Secure configuration register.  */
336         union { /* Fault status registers.  */
337             struct {
338                 uint64_t ifsr_ns;
339                 uint64_t ifsr_s;
340             };
341             struct {
342                 uint64_t ifsr32_el2;
343             };
344         };
345         union {
346             struct {
347                 uint64_t _unused_dfsr;
348                 uint64_t dfsr_ns;
349                 uint64_t hsr;
350                 uint64_t dfsr_s;
351             };
352             uint64_t esr_el[4];
353         };
354         uint32_t c6_region[8]; /* MPU base/size registers.  */
355         union { /* Fault address registers. */
356             struct {
357                 uint64_t _unused_far0;
358 #if HOST_BIG_ENDIAN
359                 uint32_t ifar_ns;
360                 uint32_t dfar_ns;
361                 uint32_t ifar_s;
362                 uint32_t dfar_s;
363 #else
364                 uint32_t dfar_ns;
365                 uint32_t ifar_ns;
366                 uint32_t dfar_s;
367                 uint32_t ifar_s;
368 #endif
369                 uint64_t _unused_far3;
370             };
371             uint64_t far_el[4];
372         };
373         uint64_t hpfar_el2;
374         uint64_t hstr_el2;
375         union { /* Translation result. */
376             struct {
377                 uint64_t _unused_par_0;
378                 uint64_t par_ns;
379                 uint64_t _unused_par_1;
380                 uint64_t par_s;
381             };
382             uint64_t par_el[4];
383         };
384 
385         uint32_t c9_insn; /* Cache lockdown registers.  */
386         uint32_t c9_data;
387         uint64_t c9_pmcr; /* performance monitor control register */
388         uint64_t c9_pmcnten; /* perf monitor counter enables */
389         uint64_t c9_pmovsr; /* perf monitor overflow status */
390         uint64_t c9_pmuserenr; /* perf monitor user enable */
391         uint64_t c9_pmselr; /* perf monitor counter selection register */
392         uint64_t c9_pminten; /* perf monitor interrupt enables */
393         union { /* Memory attribute redirection */
394             struct {
395 #if HOST_BIG_ENDIAN
396                 uint64_t _unused_mair_0;
397                 uint32_t mair1_ns;
398                 uint32_t mair0_ns;
399                 uint64_t _unused_mair_1;
400                 uint32_t mair1_s;
401                 uint32_t mair0_s;
402 #else
403                 uint64_t _unused_mair_0;
404                 uint32_t mair0_ns;
405                 uint32_t mair1_ns;
406                 uint64_t _unused_mair_1;
407                 uint32_t mair0_s;
408                 uint32_t mair1_s;
409 #endif
410             };
411             uint64_t mair_el[4];
412         };
413         union { /* vector base address register */
414             struct {
415                 uint64_t _unused_vbar;
416                 uint64_t vbar_ns;
417                 uint64_t hvbar;
418                 uint64_t vbar_s;
419             };
420             uint64_t vbar_el[4];
421         };
422         uint32_t mvbar; /* (monitor) vector base address register */
423         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
424         struct { /* FCSE PID. */
425             uint32_t fcseidr_ns;
426             uint32_t fcseidr_s;
427         };
428         union { /* Context ID. */
429             struct {
430                 uint64_t _unused_contextidr_0;
431                 uint64_t contextidr_ns;
432                 uint64_t _unused_contextidr_1;
433                 uint64_t contextidr_s;
434             };
435             uint64_t contextidr_el[4];
436         };
437         union { /* User RW Thread register. */
438             struct {
439                 uint64_t tpidrurw_ns;
440                 uint64_t tpidrprw_ns;
441                 uint64_t htpidr;
442                 uint64_t _tpidr_el3;
443             };
444             uint64_t tpidr_el[4];
445         };
446         uint64_t tpidr2_el0;
447         /* The secure banks of these registers don't map anywhere */
448         uint64_t tpidrurw_s;
449         uint64_t tpidrprw_s;
450         uint64_t tpidruro_s;
451 
452         union { /* User RO Thread register. */
453             uint64_t tpidruro_ns;
454             uint64_t tpidrro_el[1];
455         };
456         uint64_t c14_cntfrq; /* Counter Frequency register */
457         uint64_t c14_cntkctl; /* Timer Control register */
458         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
459         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
460         ARMGenericTimer c14_timer[NUM_GTIMERS];
461         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465         uint32_t c15_threadid; /* TI debugger thread-ID.  */
466         uint32_t c15_config_base_address; /* SCU base address.  */
467         uint32_t c15_diagnostic; /* diagnostic register */
468         uint32_t c15_power_diagnostic;
469         uint32_t c15_power_control; /* power control */
470         uint64_t dbgbvr[16]; /* breakpoint value registers */
471         uint64_t dbgbcr[16]; /* breakpoint control registers */
472         uint64_t dbgwvr[16]; /* watchpoint value registers */
473         uint64_t dbgwcr[16]; /* watchpoint control registers */
474         uint64_t dbgclaim;   /* DBGCLAIM bits */
475         uint64_t mdscr_el1;
476         uint64_t oslsr_el1; /* OS Lock Status */
477         uint64_t osdlr_el1; /* OS DoubleLock status */
478         uint64_t mdcr_el2;
479         uint64_t mdcr_el3;
480         /* Stores the architectural value of the counter *the last time it was
481          * updated* by pmccntr_op_start. Accesses should always be surrounded
482          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483          * architecturally-correct value is being read/set.
484          */
485         uint64_t c15_ccnt;
486         /* Stores the delta between the architectural value and the underlying
487          * cycle count during normal operation. It is used to update c15_ccnt
488          * to be the correct architectural value before accesses. During
489          * accesses, c15_ccnt_delta contains the underlying count being used
490          * for the access, after which it reverts to the delta value in
491          * pmccntr_op_finish.
492          */
493         uint64_t c15_ccnt_delta;
494         uint64_t c14_pmevcntr[31];
495         uint64_t c14_pmevcntr_delta[31];
496         uint64_t c14_pmevtyper[31];
497         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
498         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
499         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
500         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
501         uint64_t gcr_el1;
502         uint64_t rgsr_el1;
503 
504         /* Minimal RAS registers */
505         uint64_t disr_el1;
506         uint64_t vdisr_el2;
507         uint64_t vsesr_el2;
508 
509         /*
510          * Fine-Grained Trap registers. We store these as arrays so the
511          * access checking code doesn't have to manually select
512          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513          * FEAT_FGT2 will add more elements to these arrays.
514          */
515         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517         uint64_t fgt_exec[1]; /* HFGITR */
518 
519         /* RME registers */
520         uint64_t gpccr_el3;
521         uint64_t gptbr_el3;
522         uint64_t mfar_el3;
523 
524         /* NV2 register */
525         uint64_t vncr_el2;
526     } cp15;
527 
528     struct {
529         /* M profile has up to 4 stack pointers:
530          * a Main Stack Pointer and a Process Stack Pointer for each
531          * of the Secure and Non-Secure states. (If the CPU doesn't support
532          * the security extension then it has only two SPs.)
533          * In QEMU we always store the currently active SP in regs[13],
534          * and the non-active SP for the current security state in
535          * v7m.other_sp. The stack pointers for the inactive security state
536          * are stored in other_ss_msp and other_ss_psp.
537          * switch_v7m_security_state() is responsible for rearranging them
538          * when we change security state.
539          */
540         uint32_t other_sp;
541         uint32_t other_ss_msp;
542         uint32_t other_ss_psp;
543         uint32_t vecbase[M_REG_NUM_BANKS];
544         uint32_t basepri[M_REG_NUM_BANKS];
545         uint32_t control[M_REG_NUM_BANKS];
546         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
548         uint32_t hfsr; /* HardFault Status */
549         uint32_t dfsr; /* Debug Fault Status Register */
550         uint32_t sfsr; /* Secure Fault Status Register */
551         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
552         uint32_t bfar; /* BusFault Address */
553         uint32_t sfar; /* Secure Fault Address Register */
554         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
555         int exception;
556         uint32_t primask[M_REG_NUM_BANKS];
557         uint32_t faultmask[M_REG_NUM_BANKS];
558         uint32_t aircr; /* only holds r/w state if security extn implemented */
559         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
560         uint32_t csselr[M_REG_NUM_BANKS];
561         uint32_t scr[M_REG_NUM_BANKS];
562         uint32_t msplim[M_REG_NUM_BANKS];
563         uint32_t psplim[M_REG_NUM_BANKS];
564         uint32_t fpcar[M_REG_NUM_BANKS];
565         uint32_t fpccr[M_REG_NUM_BANKS];
566         uint32_t fpdscr[M_REG_NUM_BANKS];
567         uint32_t cpacr[M_REG_NUM_BANKS];
568         uint32_t nsacr;
569         uint32_t ltpsize;
570         uint32_t vpr;
571     } v7m;
572 
573     /* Information associated with an exception about to be taken:
574      * code which raises an exception must set cs->exception_index and
575      * the relevant parts of this structure; the cpu_do_interrupt function
576      * will then set the guest-visible registers as part of the exception
577      * entry process.
578      */
579     struct {
580         uint32_t syndrome; /* AArch64 format syndrome register */
581         uint32_t fsr; /* AArch32 format fault status register info */
582         uint64_t vaddress; /* virtual addr associated with exception, if any */
583         uint32_t target_el; /* EL the exception should be targeted for */
584         /* If we implement EL2 we will also need to store information
585          * about the intermediate physical address for stage 2 faults.
586          */
587     } exception;
588 
589     /* Information associated with an SError */
590     struct {
591         uint8_t pending;
592         uint8_t has_esr;
593         uint64_t esr;
594     } serror;
595 
596     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597 
598     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599     uint32_t irq_line_state;
600 
601     /* Thumb-2 EE state.  */
602     uint32_t teecr;
603     uint32_t teehbr;
604 
605     /* VFP coprocessor state.  */
606     struct {
607         ARMVectorReg zregs[32];
608 
609 #ifdef TARGET_AARCH64
610         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
611 #define FFR_PRED_NUM 16
612         ARMPredicateReg pregs[17];
613         /* Scratch space for aa64 sve predicate temporary.  */
614         ARMPredicateReg preg_tmp;
615 #endif
616 
617         /* We store these fpcsr fields separately for convenience.  */
618         uint32_t qc[4] QEMU_ALIGNED(16);
619         int vec_len;
620         int vec_stride;
621 
622         uint32_t xregs[16];
623 
624         /* Scratch space for aa32 neon expansion.  */
625         uint32_t scratch[8];
626 
627         /* There are a number of distinct float control structures:
628          *
629          *  fp_status: is the "normal" fp status.
630          *  fp_status_fp16: used for half-precision calculations
631          *  standard_fp_status : the ARM "Standard FPSCR Value"
632          *  standard_fp_status_fp16 : used for half-precision
633          *       calculations with the ARM "Standard FPSCR Value"
634          *
635          * Half-precision operations are governed by a separate
636          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
637          * status structure to control this.
638          *
639          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
640          * round-to-nearest and is used by any operations (generally
641          * Neon) which the architecture defines as controlled by the
642          * standard FPSCR value rather than the FPSCR.
643          *
644          * The "standard FPSCR but for fp16 ops" is needed because
645          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
646          * using a fixed value for it.
647          *
648          * To avoid having to transfer exception bits around, we simply
649          * say that the FPSCR cumulative exception flags are the logical
650          * OR of the flags in the four fp statuses. This relies on the
651          * only thing which needs to read the exception flags being
652          * an explicit FPSCR read.
653          */
654         float_status fp_status;
655         float_status fp_status_f16;
656         float_status standard_fp_status;
657         float_status standard_fp_status_f16;
658 
659         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
660         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
661     } vfp;
662 
663     uint64_t exclusive_addr;
664     uint64_t exclusive_val;
665     /*
666      * Contains the 'val' for the second 64-bit register of LDXP, which comes
667      * from the higher address, not the high part of a complete 128-bit value.
668      * In some ways it might be more convenient to record the exclusive value
669      * as the low and high halves of a 128 bit data value, but the current
670      * semantics of these fields are baked into the migration format.
671      */
672     uint64_t exclusive_high;
673 
674     /* iwMMXt coprocessor state.  */
675     struct {
676         uint64_t regs[16];
677         uint64_t val;
678 
679         uint32_t cregs[16];
680     } iwmmxt;
681 
682 #ifdef TARGET_AARCH64
683     struct {
684         ARMPACKey apia;
685         ARMPACKey apib;
686         ARMPACKey apda;
687         ARMPACKey apdb;
688         ARMPACKey apga;
689     } keys;
690 
691     uint64_t scxtnum_el[4];
692 
693     /*
694      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
695      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
696      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
697      * When SVL is less than the architectural maximum, the accessible
698      * storage is restricted, such that if the SVL is X bytes the guest can
699      * see only the bottom X elements of zarray[], and only the least
700      * significant X bytes of each element of the array. (In other words,
701      * the observable part is always square.)
702      *
703      * The ZA storage can also be considered as a set of square tiles of
704      * elements of different sizes. The mapping from tiles to the ZA array
705      * is architecturally defined, such that for tiles of elements of esz
706      * bytes, the Nth row (or "horizontal slice") of tile T is in
707      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
708      * in the ZA storage, because its rows are striped through the ZA array.
709      *
710      * Because this is so large, keep this toward the end of the reset area,
711      * to keep the offsets into the rest of the structure smaller.
712      */
713     ARMVectorReg zarray[ARM_MAX_VQ * 16];
714 #endif
715 
716     struct CPUBreakpoint *cpu_breakpoint[16];
717     struct CPUWatchpoint *cpu_watchpoint[16];
718 
719     /* Optional fault info across tlb lookup. */
720     ARMMMUFaultInfo *tlb_fi;
721 
722     /* Fields up to this point are cleared by a CPU reset */
723     struct {} end_reset_fields;
724 
725     /* Fields after this point are preserved across CPU reset. */
726 
727     /* Internal CPU feature flags.  */
728     uint64_t features;
729 
730     /* PMSAv7 MPU */
731     struct {
732         uint32_t *drbar;
733         uint32_t *drsr;
734         uint32_t *dracr;
735         uint32_t rnr[M_REG_NUM_BANKS];
736     } pmsav7;
737 
738     /* PMSAv8 MPU */
739     struct {
740         /* The PMSAv8 implementation also shares some PMSAv7 config
741          * and state:
742          *  pmsav7.rnr (region number register)
743          *  pmsav7_dregion (number of configured regions)
744          */
745         uint32_t *rbar[M_REG_NUM_BANKS];
746         uint32_t *rlar[M_REG_NUM_BANKS];
747         uint32_t *hprbar;
748         uint32_t *hprlar;
749         uint32_t mair0[M_REG_NUM_BANKS];
750         uint32_t mair1[M_REG_NUM_BANKS];
751         uint32_t hprselr;
752     } pmsav8;
753 
754     /* v8M SAU */
755     struct {
756         uint32_t *rbar;
757         uint32_t *rlar;
758         uint32_t rnr;
759         uint32_t ctrl;
760     } sau;
761 
762 #if !defined(CONFIG_USER_ONLY)
763     NVICState *nvic;
764     const struct arm_boot_info *boot_info;
765     /* Store GICv3CPUState to access from this struct */
766     void *gicv3state;
767 #else /* CONFIG_USER_ONLY */
768     /* For usermode syscall translation.  */
769     bool eabi;
770 #endif /* CONFIG_USER_ONLY */
771 
772 #ifdef TARGET_TAGGED_ADDRESSES
773     /* Linux syscall tagged address support */
774     bool tagged_addr_enable;
775 #endif
776 } CPUARMState;
777 
778 static inline void set_feature(CPUARMState *env, int feature)
779 {
780     env->features |= 1ULL << feature;
781 }
782 
783 static inline void unset_feature(CPUARMState *env, int feature)
784 {
785     env->features &= ~(1ULL << feature);
786 }
787 
788 /**
789  * ARMELChangeHookFn:
790  * type of a function which can be registered via arm_register_el_change_hook()
791  * to get callbacks when the CPU changes its exception level or mode.
792  */
793 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
794 typedef struct ARMELChangeHook ARMELChangeHook;
795 struct ARMELChangeHook {
796     ARMELChangeHookFn *hook;
797     void *opaque;
798     QLIST_ENTRY(ARMELChangeHook) node;
799 };
800 
801 /* These values map onto the return values for
802  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
803 typedef enum ARMPSCIState {
804     PSCI_ON = 0,
805     PSCI_OFF = 1,
806     PSCI_ON_PENDING = 2
807 } ARMPSCIState;
808 
809 typedef struct ARMISARegisters ARMISARegisters;
810 
811 /*
812  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
813  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
814  *
815  * While processing properties during initialization, corresponding init bits
816  * are set for bits in sve_vq_map that have been set by properties.
817  *
818  * Bits set in supported represent valid vector lengths for the CPU type.
819  */
820 typedef struct {
821     uint32_t map, init, supported;
822 } ARMVQMap;
823 
824 /**
825  * ARMCPU:
826  * @env: #CPUARMState
827  *
828  * An ARM CPU core.
829  */
830 struct ArchCPU {
831     CPUState parent_obj;
832 
833     CPUARMState env;
834 
835     /* Coprocessor information */
836     GHashTable *cp_regs;
837     /* For marshalling (mostly coprocessor) register state between the
838      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
839      * we use these arrays.
840      */
841     /* List of register indexes managed via these arrays; (full KVM style
842      * 64 bit indexes, not CPRegInfo 32 bit indexes)
843      */
844     uint64_t *cpreg_indexes;
845     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
846     uint64_t *cpreg_values;
847     /* Length of the indexes, values, reset_values arrays */
848     int32_t cpreg_array_len;
849     /* These are used only for migration: incoming data arrives in
850      * these fields and is sanity checked in post_load before copying
851      * to the working data structures above.
852      */
853     uint64_t *cpreg_vmstate_indexes;
854     uint64_t *cpreg_vmstate_values;
855     int32_t cpreg_vmstate_array_len;
856 
857     DynamicGDBFeatureInfo dyn_sysreg_feature;
858     DynamicGDBFeatureInfo dyn_svereg_feature;
859     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
860     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
861 
862     /* Timers used by the generic (architected) timer */
863     QEMUTimer *gt_timer[NUM_GTIMERS];
864     /*
865      * Timer used by the PMU. Its state is restored after migration by
866      * pmu_op_finish() - it does not need other handling during migration
867      */
868     QEMUTimer *pmu_timer;
869     /* GPIO outputs for generic timer */
870     qemu_irq gt_timer_outputs[NUM_GTIMERS];
871     /* GPIO output for GICv3 maintenance interrupt signal */
872     qemu_irq gicv3_maintenance_interrupt;
873     /* GPIO output for the PMU interrupt */
874     qemu_irq pmu_interrupt;
875 
876     /* MemoryRegion to use for secure physical accesses */
877     MemoryRegion *secure_memory;
878 
879     /* MemoryRegion to use for allocation tag accesses */
880     MemoryRegion *tag_memory;
881     MemoryRegion *secure_tag_memory;
882 
883     /* For v8M, pointer to the IDAU interface provided by board/SoC */
884     Object *idau;
885 
886     /* 'compatible' string for this CPU for Linux device trees */
887     const char *dtb_compatible;
888 
889     /* PSCI version for this CPU
890      * Bits[31:16] = Major Version
891      * Bits[15:0] = Minor Version
892      */
893     uint32_t psci_version;
894 
895     /* Current power state, access guarded by BQL */
896     ARMPSCIState power_state;
897 
898     /* CPU has virtualization extension */
899     bool has_el2;
900     /* CPU has security extension */
901     bool has_el3;
902     /* CPU has PMU (Performance Monitor Unit) */
903     bool has_pmu;
904     /* CPU has VFP */
905     bool has_vfp;
906     /* CPU has 32 VFP registers */
907     bool has_vfp_d32;
908     /* CPU has Neon */
909     bool has_neon;
910     /* CPU has M-profile DSP extension */
911     bool has_dsp;
912 
913     /* CPU has memory protection unit */
914     bool has_mpu;
915     /* PMSAv7 MPU number of supported regions */
916     uint32_t pmsav7_dregion;
917     /* PMSAv8 MPU number of supported hyp regions */
918     uint32_t pmsav8r_hdregion;
919     /* v8M SAU number of supported regions */
920     uint32_t sau_sregion;
921 
922     /* PSCI conduit used to invoke PSCI methods
923      * 0 - disabled, 1 - smc, 2 - hvc
924      */
925     uint32_t psci_conduit;
926 
927     /* For v8M, initial value of the Secure VTOR */
928     uint32_t init_svtor;
929     /* For v8M, initial value of the Non-secure VTOR */
930     uint32_t init_nsvtor;
931 
932     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
933      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
934      */
935     uint32_t kvm_target;
936 
937 #ifdef CONFIG_KVM
938     /* KVM init features for this CPU */
939     uint32_t kvm_init_features[7];
940 
941     /* KVM CPU state */
942 
943     /* KVM virtual time adjustment */
944     bool kvm_adjvtime;
945     bool kvm_vtime_dirty;
946     uint64_t kvm_vtime;
947 
948     /* KVM steal time */
949     OnOffAuto kvm_steal_time;
950 #endif /* CONFIG_KVM */
951 
952     /* Uniprocessor system with MP extensions */
953     bool mp_is_up;
954 
955     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
956      * and the probe failed (so we need to report the error in realize)
957      */
958     bool host_cpu_probe_failed;
959 
960     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
961      * register.
962      */
963     int32_t core_count;
964 
965     /* The instance init functions for implementation-specific subclasses
966      * set these fields to specify the implementation-dependent values of
967      * various constant registers and reset values of non-constant
968      * registers.
969      * Some of these might become QOM properties eventually.
970      * Field names match the official register names as defined in the
971      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
972      * is used for reset values of non-constant registers; no reset_
973      * prefix means a constant register.
974      * Some of these registers are split out into a substructure that
975      * is shared with the translators to control the ISA.
976      *
977      * Note that if you add an ID register to the ARMISARegisters struct
978      * you need to also update the 32-bit and 64-bit versions of the
979      * kvm_arm_get_host_cpu_features() function to correctly populate the
980      * field by reading the value from the KVM vCPU.
981      */
982     struct ARMISARegisters {
983         uint32_t id_isar0;
984         uint32_t id_isar1;
985         uint32_t id_isar2;
986         uint32_t id_isar3;
987         uint32_t id_isar4;
988         uint32_t id_isar5;
989         uint32_t id_isar6;
990         uint32_t id_mmfr0;
991         uint32_t id_mmfr1;
992         uint32_t id_mmfr2;
993         uint32_t id_mmfr3;
994         uint32_t id_mmfr4;
995         uint32_t id_mmfr5;
996         uint32_t id_pfr0;
997         uint32_t id_pfr1;
998         uint32_t id_pfr2;
999         uint32_t mvfr0;
1000         uint32_t mvfr1;
1001         uint32_t mvfr2;
1002         uint32_t id_dfr0;
1003         uint32_t id_dfr1;
1004         uint32_t dbgdidr;
1005         uint32_t dbgdevid;
1006         uint32_t dbgdevid1;
1007         uint64_t id_aa64isar0;
1008         uint64_t id_aa64isar1;
1009         uint64_t id_aa64isar2;
1010         uint64_t id_aa64pfr0;
1011         uint64_t id_aa64pfr1;
1012         uint64_t id_aa64mmfr0;
1013         uint64_t id_aa64mmfr1;
1014         uint64_t id_aa64mmfr2;
1015         uint64_t id_aa64dfr0;
1016         uint64_t id_aa64dfr1;
1017         uint64_t id_aa64zfr0;
1018         uint64_t id_aa64smfr0;
1019         uint64_t reset_pmcr_el0;
1020     } isar;
1021     uint64_t midr;
1022     uint32_t revidr;
1023     uint32_t reset_fpsid;
1024     uint64_t ctr;
1025     uint32_t reset_sctlr;
1026     uint64_t pmceid0;
1027     uint64_t pmceid1;
1028     uint32_t id_afr0;
1029     uint64_t id_aa64afr0;
1030     uint64_t id_aa64afr1;
1031     uint64_t clidr;
1032     uint64_t mp_affinity; /* MP ID without feature bits */
1033     /* The elements of this array are the CCSIDR values for each cache,
1034      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1035      */
1036     uint64_t ccsidr[16];
1037     uint64_t reset_cbar;
1038     uint32_t reset_auxcr;
1039     bool reset_hivecs;
1040     uint8_t reset_l0gptsz;
1041 
1042     /*
1043      * Intermediate values used during property parsing.
1044      * Once finalized, the values should be read from ID_AA64*.
1045      */
1046     bool prop_pauth;
1047     bool prop_pauth_impdef;
1048     bool prop_pauth_qarma3;
1049     bool prop_lpa2;
1050 
1051     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1052     uint8_t dcz_blocksize;
1053     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1054     uint8_t gm_blocksize;
1055 
1056     uint64_t rvbar_prop; /* Property/input signals.  */
1057 
1058     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1059     int gic_num_lrs; /* number of list registers */
1060     int gic_vpribits; /* number of virtual priority bits */
1061     int gic_vprebits; /* number of virtual preemption bits */
1062     int gic_pribits; /* number of physical priority bits */
1063 
1064     /* Whether the cfgend input is high (i.e. this CPU should reset into
1065      * big-endian mode).  This setting isn't used directly: instead it modifies
1066      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1067      * architecture version.
1068      */
1069     bool cfgend;
1070 
1071     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1072     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1073 
1074     int32_t node_id; /* NUMA node this CPU belongs to */
1075 
1076     /* Used to synchronize KVM and QEMU in-kernel device levels */
1077     uint8_t device_irq_level;
1078 
1079     /* Used to set the maximum vector length the cpu will support.  */
1080     uint32_t sve_max_vq;
1081 
1082 #ifdef CONFIG_USER_ONLY
1083     /* Used to set the default vector length at process start. */
1084     uint32_t sve_default_vq;
1085     uint32_t sme_default_vq;
1086 #endif
1087 
1088     ARMVQMap sve_vq;
1089     ARMVQMap sme_vq;
1090 
1091     /* Generic timer counter frequency, in Hz */
1092     uint64_t gt_cntfrq_hz;
1093 };
1094 
1095 typedef struct ARMCPUInfo {
1096     const char *name;
1097     void (*initfn)(Object *obj);
1098     void (*class_init)(ObjectClass *oc, void *data);
1099 } ARMCPUInfo;
1100 
1101 /**
1102  * ARMCPUClass:
1103  * @parent_realize: The parent class' realize handler.
1104  * @parent_phases: The parent class' reset phase handlers.
1105  *
1106  * An ARM CPU model.
1107  */
1108 struct ARMCPUClass {
1109     CPUClass parent_class;
1110 
1111     const ARMCPUInfo *info;
1112     DeviceRealize parent_realize;
1113     ResettablePhases parent_phases;
1114 };
1115 
1116 struct AArch64CPUClass {
1117     ARMCPUClass parent_class;
1118 };
1119 
1120 /* Callback functions for the generic timer's timers. */
1121 void arm_gt_ptimer_cb(void *opaque);
1122 void arm_gt_vtimer_cb(void *opaque);
1123 void arm_gt_htimer_cb(void *opaque);
1124 void arm_gt_stimer_cb(void *opaque);
1125 void arm_gt_hvtimer_cb(void *opaque);
1126 
1127 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1128 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1129 
1130 void arm_cpu_post_init(Object *obj);
1131 
1132 #define ARM_AFF0_SHIFT 0
1133 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1134 #define ARM_AFF1_SHIFT 8
1135 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1136 #define ARM_AFF2_SHIFT 16
1137 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1138 #define ARM_AFF3_SHIFT 32
1139 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1140 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1141 
1142 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1143 #define ARM64_AFFINITY_MASK \
1144     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1145 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1146 
1147 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1148 
1149 #ifndef CONFIG_USER_ONLY
1150 extern const VMStateDescription vmstate_arm_cpu;
1151 
1152 void arm_cpu_do_interrupt(CPUState *cpu);
1153 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1154 
1155 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1156                                          MemTxAttrs *attrs);
1157 #endif /* !CONFIG_USER_ONLY */
1158 
1159 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1160 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1161 
1162 /* Returns the dynamically generated XML for the gdb stub.
1163  * Returns a pointer to the XML contents for the specified XML file or NULL
1164  * if the XML name doesn't match the predefined one.
1165  */
1166 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1167 
1168 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1169                              int cpuid, DumpState *s);
1170 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1171                              int cpuid, DumpState *s);
1172 
1173 /**
1174  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1175  * @cpu: CPU (which must have been freshly reset)
1176  * @target_el: exception level to put the CPU into
1177  * @secure: whether to put the CPU in secure state
1178  *
1179  * When QEMU is directly running a guest kernel at a lower level than
1180  * EL3 it implicitly emulates some aspects of the guest firmware.
1181  * This includes that on reset we need to configure the parts of the
1182  * CPU corresponding to EL3 so that the real guest code can run at its
1183  * lower exception level. This function does that post-reset CPU setup,
1184  * for when we do direct boot of a guest kernel, and for when we
1185  * emulate PSCI and similar firmware interfaces starting a CPU at a
1186  * lower exception level.
1187  *
1188  * @target_el must be an EL implemented by the CPU between 1 and 3.
1189  * We do not support dropping into a Secure EL other than 3.
1190  *
1191  * It is the responsibility of the caller to call arm_rebuild_hflags().
1192  */
1193 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1194 
1195 #ifdef TARGET_AARCH64
1196 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1197 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1198 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1199 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1200                            int new_el, bool el0_a64);
1201 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1202 
1203 /*
1204  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1205  * The byte at offset i from the start of the in-memory representation contains
1206  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1207  * lowest offsets are stored in the lowest memory addresses, then that nearly
1208  * matches QEMU's representation, which is to use an array of host-endian
1209  * uint64_t's, where the lower offsets are at the lower indices. To complete
1210  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1211  */
1212 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1213 {
1214 #if HOST_BIG_ENDIAN
1215     int i;
1216 
1217     for (i = 0; i < nr; ++i) {
1218         dst[i] = bswap64(src[i]);
1219     }
1220 
1221     return dst;
1222 #else
1223     return src;
1224 #endif
1225 }
1226 
1227 #else
1228 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1229 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1230                                          int n, bool a)
1231 { }
1232 #endif
1233 
1234 void aarch64_sync_32_to_64(CPUARMState *env);
1235 void aarch64_sync_64_to_32(CPUARMState *env);
1236 
1237 int fp_exception_el(CPUARMState *env, int cur_el);
1238 int sve_exception_el(CPUARMState *env, int cur_el);
1239 int sme_exception_el(CPUARMState *env, int cur_el);
1240 
1241 /**
1242  * sve_vqm1_for_el_sm:
1243  * @env: CPUARMState
1244  * @el: exception level
1245  * @sm: streaming mode
1246  *
1247  * Compute the current vector length for @el & @sm, in units of
1248  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1249  * If @sm, compute for SVL, otherwise NVL.
1250  */
1251 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1252 
1253 /* Likewise, but using @sm = PSTATE.SM. */
1254 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1255 
1256 static inline bool is_a64(CPUARMState *env)
1257 {
1258     return env->aarch64;
1259 }
1260 
1261 /**
1262  * pmu_op_start/finish
1263  * @env: CPUARMState
1264  *
1265  * Convert all PMU counters between their delta form (the typical mode when
1266  * they are enabled) and the guest-visible values. These two calls must
1267  * surround any action which might affect the counters.
1268  */
1269 void pmu_op_start(CPUARMState *env);
1270 void pmu_op_finish(CPUARMState *env);
1271 
1272 /*
1273  * Called when a PMU counter is due to overflow
1274  */
1275 void arm_pmu_timer_cb(void *opaque);
1276 
1277 /**
1278  * Functions to register as EL change hooks for PMU mode filtering
1279  */
1280 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1281 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1282 
1283 /*
1284  * pmu_init
1285  * @cpu: ARMCPU
1286  *
1287  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1288  * for the current configuration
1289  */
1290 void pmu_init(ARMCPU *cpu);
1291 
1292 /* SCTLR bit meanings. Several bits have been reused in newer
1293  * versions of the architecture; in that case we define constants
1294  * for both old and new bit meanings. Code which tests against those
1295  * bits should probably check or otherwise arrange that the CPU
1296  * is the architectural version it expects.
1297  */
1298 #define SCTLR_M       (1U << 0)
1299 #define SCTLR_A       (1U << 1)
1300 #define SCTLR_C       (1U << 2)
1301 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1302 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1303 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1304 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1305 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1306 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1307 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1308 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1309 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1310 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1311 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1312 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1313 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1314 #define SCTLR_SED     (1U << 8) /* v8 onward */
1315 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1316 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1317 #define SCTLR_F       (1U << 10) /* up to v6 */
1318 #define SCTLR_SW      (1U << 10) /* v7 */
1319 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1320 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1321 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1322 #define SCTLR_I       (1U << 12)
1323 #define SCTLR_V       (1U << 13) /* AArch32 only */
1324 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1325 #define SCTLR_RR      (1U << 14) /* up to v7 */
1326 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1327 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1328 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1329 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1330 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1331 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1332 #define SCTLR_BR      (1U << 17) /* PMSA only */
1333 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1334 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1335 #define SCTLR_WXN     (1U << 19)
1336 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1337 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1338 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1339 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1340 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1341 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1342 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1343 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1344 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1345 #define SCTLR_VE      (1U << 24) /* up to v7 */
1346 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1347 #define SCTLR_EE      (1U << 25)
1348 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1349 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1350 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1351 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1352 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1353 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1354 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1355 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1356 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1357 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1358 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1359 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1360 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1361 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1362 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1363 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1364 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1365 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1366 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1367 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1368 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1369 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1370 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1371 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1372 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1373 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1374 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1375 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1376 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1377 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1378 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1379 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1380 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1381 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1382 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1383 
1384 /* Bit definitions for CPACR (AArch32 only) */
1385 FIELD(CPACR, CP10, 20, 2)
1386 FIELD(CPACR, CP11, 22, 2)
1387 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1388 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1389 FIELD(CPACR, ASEDIS, 31, 1)
1390 
1391 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1392 FIELD(CPACR_EL1, ZEN, 16, 2)
1393 FIELD(CPACR_EL1, FPEN, 20, 2)
1394 FIELD(CPACR_EL1, SMEN, 24, 2)
1395 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1396 
1397 /* Bit definitions for HCPTR (AArch32 only) */
1398 FIELD(HCPTR, TCP10, 10, 1)
1399 FIELD(HCPTR, TCP11, 11, 1)
1400 FIELD(HCPTR, TASE, 15, 1)
1401 FIELD(HCPTR, TTA, 20, 1)
1402 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1403 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1404 
1405 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1406 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1407 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1408 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1409 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1410 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1411 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1412 FIELD(CPTR_EL2, TTA, 28, 1)
1413 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1414 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1415 
1416 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1417 FIELD(CPTR_EL3, EZ, 8, 1)
1418 FIELD(CPTR_EL3, TFP, 10, 1)
1419 FIELD(CPTR_EL3, ESM, 12, 1)
1420 FIELD(CPTR_EL3, TTA, 20, 1)
1421 FIELD(CPTR_EL3, TAM, 30, 1)
1422 FIELD(CPTR_EL3, TCPAC, 31, 1)
1423 
1424 #define MDCR_MTPME    (1U << 28)
1425 #define MDCR_TDCC     (1U << 27)
1426 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1427 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1428 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1429 #define MDCR_EPMAD    (1U << 21)
1430 #define MDCR_EDAD     (1U << 20)
1431 #define MDCR_TTRF     (1U << 19)
1432 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1433 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1434 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1435 #define MDCR_SDD      (1U << 16)
1436 #define MDCR_SPD      (3U << 14)
1437 #define MDCR_TDRA     (1U << 11)
1438 #define MDCR_TDOSA    (1U << 10)
1439 #define MDCR_TDA      (1U << 9)
1440 #define MDCR_TDE      (1U << 8)
1441 #define MDCR_HPME     (1U << 7)
1442 #define MDCR_TPM      (1U << 6)
1443 #define MDCR_TPMCR    (1U << 5)
1444 #define MDCR_HPMN     (0x1fU)
1445 
1446 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1447 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1448                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1449                          MDCR_STE | MDCR_SPME | MDCR_SPD)
1450 
1451 #define CPSR_M (0x1fU)
1452 #define CPSR_T (1U << 5)
1453 #define CPSR_F (1U << 6)
1454 #define CPSR_I (1U << 7)
1455 #define CPSR_A (1U << 8)
1456 #define CPSR_E (1U << 9)
1457 #define CPSR_IT_2_7 (0xfc00U)
1458 #define CPSR_GE (0xfU << 16)
1459 #define CPSR_IL (1U << 20)
1460 #define CPSR_DIT (1U << 21)
1461 #define CPSR_PAN (1U << 22)
1462 #define CPSR_SSBS (1U << 23)
1463 #define CPSR_J (1U << 24)
1464 #define CPSR_IT_0_1 (3U << 25)
1465 #define CPSR_Q (1U << 27)
1466 #define CPSR_V (1U << 28)
1467 #define CPSR_C (1U << 29)
1468 #define CPSR_Z (1U << 30)
1469 #define CPSR_N (1U << 31)
1470 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1471 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1472 
1473 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1474 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1475     | CPSR_NZCV)
1476 /* Bits writable in user mode.  */
1477 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1478 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1479 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1480 
1481 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1482 #define XPSR_EXCP 0x1ffU
1483 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1484 #define XPSR_IT_2_7 CPSR_IT_2_7
1485 #define XPSR_GE CPSR_GE
1486 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1487 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1488 #define XPSR_IT_0_1 CPSR_IT_0_1
1489 #define XPSR_Q CPSR_Q
1490 #define XPSR_V CPSR_V
1491 #define XPSR_C CPSR_C
1492 #define XPSR_Z CPSR_Z
1493 #define XPSR_N CPSR_N
1494 #define XPSR_NZCV CPSR_NZCV
1495 #define XPSR_IT CPSR_IT
1496 
1497 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1498 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1499 #define TTBCR_PD0    (1U << 4)
1500 #define TTBCR_PD1    (1U << 5)
1501 #define TTBCR_EPD0   (1U << 7)
1502 #define TTBCR_IRGN0  (3U << 8)
1503 #define TTBCR_ORGN0  (3U << 10)
1504 #define TTBCR_SH0    (3U << 12)
1505 #define TTBCR_T1SZ   (3U << 16)
1506 #define TTBCR_A1     (1U << 22)
1507 #define TTBCR_EPD1   (1U << 23)
1508 #define TTBCR_IRGN1  (3U << 24)
1509 #define TTBCR_ORGN1  (3U << 26)
1510 #define TTBCR_SH1    (1U << 28)
1511 #define TTBCR_EAE    (1U << 31)
1512 
1513 FIELD(VTCR, T0SZ, 0, 6)
1514 FIELD(VTCR, SL0, 6, 2)
1515 FIELD(VTCR, IRGN0, 8, 2)
1516 FIELD(VTCR, ORGN0, 10, 2)
1517 FIELD(VTCR, SH0, 12, 2)
1518 FIELD(VTCR, TG0, 14, 2)
1519 FIELD(VTCR, PS, 16, 3)
1520 FIELD(VTCR, VS, 19, 1)
1521 FIELD(VTCR, HA, 21, 1)
1522 FIELD(VTCR, HD, 22, 1)
1523 FIELD(VTCR, HWU59, 25, 1)
1524 FIELD(VTCR, HWU60, 26, 1)
1525 FIELD(VTCR, HWU61, 27, 1)
1526 FIELD(VTCR, HWU62, 28, 1)
1527 FIELD(VTCR, NSW, 29, 1)
1528 FIELD(VTCR, NSA, 30, 1)
1529 FIELD(VTCR, DS, 32, 1)
1530 FIELD(VTCR, SL2, 33, 1)
1531 
1532 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1533  * Only these are valid when in AArch64 mode; in
1534  * AArch32 mode SPSRs are basically CPSR-format.
1535  */
1536 #define PSTATE_SP (1U)
1537 #define PSTATE_M (0xFU)
1538 #define PSTATE_nRW (1U << 4)
1539 #define PSTATE_F (1U << 6)
1540 #define PSTATE_I (1U << 7)
1541 #define PSTATE_A (1U << 8)
1542 #define PSTATE_D (1U << 9)
1543 #define PSTATE_BTYPE (3U << 10)
1544 #define PSTATE_SSBS (1U << 12)
1545 #define PSTATE_IL (1U << 20)
1546 #define PSTATE_SS (1U << 21)
1547 #define PSTATE_PAN (1U << 22)
1548 #define PSTATE_UAO (1U << 23)
1549 #define PSTATE_DIT (1U << 24)
1550 #define PSTATE_TCO (1U << 25)
1551 #define PSTATE_V (1U << 28)
1552 #define PSTATE_C (1U << 29)
1553 #define PSTATE_Z (1U << 30)
1554 #define PSTATE_N (1U << 31)
1555 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1556 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1557 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1558 /* Mode values for AArch64 */
1559 #define PSTATE_MODE_EL3h 13
1560 #define PSTATE_MODE_EL3t 12
1561 #define PSTATE_MODE_EL2h 9
1562 #define PSTATE_MODE_EL2t 8
1563 #define PSTATE_MODE_EL1h 5
1564 #define PSTATE_MODE_EL1t 4
1565 #define PSTATE_MODE_EL0t 0
1566 
1567 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1568 FIELD(SVCR, SM, 0, 1)
1569 FIELD(SVCR, ZA, 1, 1)
1570 
1571 /* Fields for SMCR_ELx. */
1572 FIELD(SMCR, LEN, 0, 4)
1573 FIELD(SMCR, FA64, 31, 1)
1574 
1575 /* Write a new value to v7m.exception, thus transitioning into or out
1576  * of Handler mode; this may result in a change of active stack pointer.
1577  */
1578 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1579 
1580 /* Map EL and handler into a PSTATE_MODE.  */
1581 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1582 {
1583     return (el << 2) | handler;
1584 }
1585 
1586 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1587  * interprocessing, so we don't attempt to sync with the cpsr state used by
1588  * the 32 bit decoder.
1589  */
1590 static inline uint32_t pstate_read(CPUARMState *env)
1591 {
1592     int ZF;
1593 
1594     ZF = (env->ZF == 0);
1595     return (env->NF & 0x80000000) | (ZF << 30)
1596         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1597         | env->pstate | env->daif | (env->btype << 10);
1598 }
1599 
1600 static inline void pstate_write(CPUARMState *env, uint32_t val)
1601 {
1602     env->ZF = (~val) & PSTATE_Z;
1603     env->NF = val;
1604     env->CF = (val >> 29) & 1;
1605     env->VF = (val << 3) & 0x80000000;
1606     env->daif = val & PSTATE_DAIF;
1607     env->btype = (val >> 10) & 3;
1608     env->pstate = val & ~CACHED_PSTATE_BITS;
1609 }
1610 
1611 /* Return the current CPSR value.  */
1612 uint32_t cpsr_read(CPUARMState *env);
1613 
1614 typedef enum CPSRWriteType {
1615     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1616     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1617     CPSRWriteRaw = 2,
1618         /* trust values, no reg bank switch, no hflags rebuild */
1619     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1620 } CPSRWriteType;
1621 
1622 /*
1623  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1624  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1625  * correspond to TB flags bits cached in the hflags, unless @write_type
1626  * is CPSRWriteRaw.
1627  */
1628 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1629                 CPSRWriteType write_type);
1630 
1631 /* Return the current xPSR value.  */
1632 static inline uint32_t xpsr_read(CPUARMState *env)
1633 {
1634     int ZF;
1635     ZF = (env->ZF == 0);
1636     return (env->NF & 0x80000000) | (ZF << 30)
1637         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1638         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1639         | ((env->condexec_bits & 0xfc) << 8)
1640         | (env->GE << 16)
1641         | env->v7m.exception;
1642 }
1643 
1644 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1645 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1646 {
1647     if (mask & XPSR_NZCV) {
1648         env->ZF = (~val) & XPSR_Z;
1649         env->NF = val;
1650         env->CF = (val >> 29) & 1;
1651         env->VF = (val << 3) & 0x80000000;
1652     }
1653     if (mask & XPSR_Q) {
1654         env->QF = ((val & XPSR_Q) != 0);
1655     }
1656     if (mask & XPSR_GE) {
1657         env->GE = (val & XPSR_GE) >> 16;
1658     }
1659 #ifndef CONFIG_USER_ONLY
1660     if (mask & XPSR_T) {
1661         env->thumb = ((val & XPSR_T) != 0);
1662     }
1663     if (mask & XPSR_IT_0_1) {
1664         env->condexec_bits &= ~3;
1665         env->condexec_bits |= (val >> 25) & 3;
1666     }
1667     if (mask & XPSR_IT_2_7) {
1668         env->condexec_bits &= 3;
1669         env->condexec_bits |= (val >> 8) & 0xfc;
1670     }
1671     if (mask & XPSR_EXCP) {
1672         /* Note that this only happens on exception exit */
1673         write_v7m_exception(env, val & XPSR_EXCP);
1674     }
1675 #endif
1676 }
1677 
1678 #define HCR_VM        (1ULL << 0)
1679 #define HCR_SWIO      (1ULL << 1)
1680 #define HCR_PTW       (1ULL << 2)
1681 #define HCR_FMO       (1ULL << 3)
1682 #define HCR_IMO       (1ULL << 4)
1683 #define HCR_AMO       (1ULL << 5)
1684 #define HCR_VF        (1ULL << 6)
1685 #define HCR_VI        (1ULL << 7)
1686 #define HCR_VSE       (1ULL << 8)
1687 #define HCR_FB        (1ULL << 9)
1688 #define HCR_BSU_MASK  (3ULL << 10)
1689 #define HCR_DC        (1ULL << 12)
1690 #define HCR_TWI       (1ULL << 13)
1691 #define HCR_TWE       (1ULL << 14)
1692 #define HCR_TID0      (1ULL << 15)
1693 #define HCR_TID1      (1ULL << 16)
1694 #define HCR_TID2      (1ULL << 17)
1695 #define HCR_TID3      (1ULL << 18)
1696 #define HCR_TSC       (1ULL << 19)
1697 #define HCR_TIDCP     (1ULL << 20)
1698 #define HCR_TACR      (1ULL << 21)
1699 #define HCR_TSW       (1ULL << 22)
1700 #define HCR_TPCP      (1ULL << 23)
1701 #define HCR_TPU       (1ULL << 24)
1702 #define HCR_TTLB      (1ULL << 25)
1703 #define HCR_TVM       (1ULL << 26)
1704 #define HCR_TGE       (1ULL << 27)
1705 #define HCR_TDZ       (1ULL << 28)
1706 #define HCR_HCD       (1ULL << 29)
1707 #define HCR_TRVM      (1ULL << 30)
1708 #define HCR_RW        (1ULL << 31)
1709 #define HCR_CD        (1ULL << 32)
1710 #define HCR_ID        (1ULL << 33)
1711 #define HCR_E2H       (1ULL << 34)
1712 #define HCR_TLOR      (1ULL << 35)
1713 #define HCR_TERR      (1ULL << 36)
1714 #define HCR_TEA       (1ULL << 37)
1715 #define HCR_MIOCNCE   (1ULL << 38)
1716 #define HCR_TME       (1ULL << 39)
1717 #define HCR_APK       (1ULL << 40)
1718 #define HCR_API       (1ULL << 41)
1719 #define HCR_NV        (1ULL << 42)
1720 #define HCR_NV1       (1ULL << 43)
1721 #define HCR_AT        (1ULL << 44)
1722 #define HCR_NV2       (1ULL << 45)
1723 #define HCR_FWB       (1ULL << 46)
1724 #define HCR_FIEN      (1ULL << 47)
1725 #define HCR_GPF       (1ULL << 48)
1726 #define HCR_TID4      (1ULL << 49)
1727 #define HCR_TICAB     (1ULL << 50)
1728 #define HCR_AMVOFFEN  (1ULL << 51)
1729 #define HCR_TOCU      (1ULL << 52)
1730 #define HCR_ENSCXT    (1ULL << 53)
1731 #define HCR_TTLBIS    (1ULL << 54)
1732 #define HCR_TTLBOS    (1ULL << 55)
1733 #define HCR_ATA       (1ULL << 56)
1734 #define HCR_DCT       (1ULL << 57)
1735 #define HCR_TID5      (1ULL << 58)
1736 #define HCR_TWEDEN    (1ULL << 59)
1737 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1738 
1739 #define HCRX_ENAS0    (1ULL << 0)
1740 #define HCRX_ENALS    (1ULL << 1)
1741 #define HCRX_ENASR    (1ULL << 2)
1742 #define HCRX_FNXS     (1ULL << 3)
1743 #define HCRX_FGTNXS   (1ULL << 4)
1744 #define HCRX_SMPME    (1ULL << 5)
1745 #define HCRX_TALLINT  (1ULL << 6)
1746 #define HCRX_VINMI    (1ULL << 7)
1747 #define HCRX_VFNMI    (1ULL << 8)
1748 #define HCRX_CMOW     (1ULL << 9)
1749 #define HCRX_MCE2     (1ULL << 10)
1750 #define HCRX_MSCEN    (1ULL << 11)
1751 
1752 #define HPFAR_NS      (1ULL << 63)
1753 
1754 #define SCR_NS                (1ULL << 0)
1755 #define SCR_IRQ               (1ULL << 1)
1756 #define SCR_FIQ               (1ULL << 2)
1757 #define SCR_EA                (1ULL << 3)
1758 #define SCR_FW                (1ULL << 4)
1759 #define SCR_AW                (1ULL << 5)
1760 #define SCR_NET               (1ULL << 6)
1761 #define SCR_SMD               (1ULL << 7)
1762 #define SCR_HCE               (1ULL << 8)
1763 #define SCR_SIF               (1ULL << 9)
1764 #define SCR_RW                (1ULL << 10)
1765 #define SCR_ST                (1ULL << 11)
1766 #define SCR_TWI               (1ULL << 12)
1767 #define SCR_TWE               (1ULL << 13)
1768 #define SCR_TLOR              (1ULL << 14)
1769 #define SCR_TERR              (1ULL << 15)
1770 #define SCR_APK               (1ULL << 16)
1771 #define SCR_API               (1ULL << 17)
1772 #define SCR_EEL2              (1ULL << 18)
1773 #define SCR_EASE              (1ULL << 19)
1774 #define SCR_NMEA              (1ULL << 20)
1775 #define SCR_FIEN              (1ULL << 21)
1776 #define SCR_ENSCXT            (1ULL << 25)
1777 #define SCR_ATA               (1ULL << 26)
1778 #define SCR_FGTEN             (1ULL << 27)
1779 #define SCR_ECVEN             (1ULL << 28)
1780 #define SCR_TWEDEN            (1ULL << 29)
1781 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1782 #define SCR_TME               (1ULL << 34)
1783 #define SCR_AMVOFFEN          (1ULL << 35)
1784 #define SCR_ENAS0             (1ULL << 36)
1785 #define SCR_ADEN              (1ULL << 37)
1786 #define SCR_HXEN              (1ULL << 38)
1787 #define SCR_TRNDR             (1ULL << 40)
1788 #define SCR_ENTP2             (1ULL << 41)
1789 #define SCR_GPF               (1ULL << 48)
1790 #define SCR_NSE               (1ULL << 62)
1791 
1792 #define HSTR_TTEE (1 << 16)
1793 #define HSTR_TJDBX (1 << 17)
1794 
1795 #define CNTHCTL_CNTVMASK      (1 << 18)
1796 #define CNTHCTL_CNTPMASK      (1 << 19)
1797 
1798 /* Return the current FPSCR value.  */
1799 uint32_t vfp_get_fpscr(CPUARMState *env);
1800 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1801 
1802 /* FPCR, Floating Point Control Register
1803  * FPSR, Floating Poiht Status Register
1804  *
1805  * For A64 the FPSCR is split into two logically distinct registers,
1806  * FPCR and FPSR. However since they still use non-overlapping bits
1807  * we store the underlying state in fpscr and just mask on read/write.
1808  */
1809 #define FPSR_MASK 0xf800009f
1810 #define FPCR_MASK 0x07ff9f00
1811 
1812 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1813 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1814 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1815 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1816 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1817 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1818 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1819 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1820 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1821 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1822 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1823 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1824 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1825 #define FPCR_C      (1 << 29)   /* FP carry flag */
1826 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1827 #define FPCR_N      (1 << 31)   /* FP negative flag */
1828 
1829 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1830 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1831 #define FPCR_LTPSIZE_LENGTH 3
1832 
1833 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1834 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1835 
1836 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1837 {
1838     return vfp_get_fpscr(env) & FPSR_MASK;
1839 }
1840 
1841 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1842 {
1843     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1844     vfp_set_fpscr(env, new_fpscr);
1845 }
1846 
1847 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1848 {
1849     return vfp_get_fpscr(env) & FPCR_MASK;
1850 }
1851 
1852 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1853 {
1854     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1855     vfp_set_fpscr(env, new_fpscr);
1856 }
1857 
1858 enum arm_cpu_mode {
1859   ARM_CPU_MODE_USR = 0x10,
1860   ARM_CPU_MODE_FIQ = 0x11,
1861   ARM_CPU_MODE_IRQ = 0x12,
1862   ARM_CPU_MODE_SVC = 0x13,
1863   ARM_CPU_MODE_MON = 0x16,
1864   ARM_CPU_MODE_ABT = 0x17,
1865   ARM_CPU_MODE_HYP = 0x1a,
1866   ARM_CPU_MODE_UND = 0x1b,
1867   ARM_CPU_MODE_SYS = 0x1f
1868 };
1869 
1870 /* VFP system registers.  */
1871 #define ARM_VFP_FPSID   0
1872 #define ARM_VFP_FPSCR   1
1873 #define ARM_VFP_MVFR2   5
1874 #define ARM_VFP_MVFR1   6
1875 #define ARM_VFP_MVFR0   7
1876 #define ARM_VFP_FPEXC   8
1877 #define ARM_VFP_FPINST  9
1878 #define ARM_VFP_FPINST2 10
1879 /* These ones are M-profile only */
1880 #define ARM_VFP_FPSCR_NZCVQC 2
1881 #define ARM_VFP_VPR 12
1882 #define ARM_VFP_P0 13
1883 #define ARM_VFP_FPCXT_NS 14
1884 #define ARM_VFP_FPCXT_S 15
1885 
1886 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1887 #define QEMU_VFP_FPSCR_NZCV 0xffff
1888 
1889 /* iwMMXt coprocessor control registers.  */
1890 #define ARM_IWMMXT_wCID  0
1891 #define ARM_IWMMXT_wCon  1
1892 #define ARM_IWMMXT_wCSSF 2
1893 #define ARM_IWMMXT_wCASF 3
1894 #define ARM_IWMMXT_wCGR0 8
1895 #define ARM_IWMMXT_wCGR1 9
1896 #define ARM_IWMMXT_wCGR2 10
1897 #define ARM_IWMMXT_wCGR3 11
1898 
1899 /* V7M CCR bits */
1900 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1901 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1902 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1903 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1904 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1905 FIELD(V7M_CCR, STKALIGN, 9, 1)
1906 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1907 FIELD(V7M_CCR, DC, 16, 1)
1908 FIELD(V7M_CCR, IC, 17, 1)
1909 FIELD(V7M_CCR, BP, 18, 1)
1910 FIELD(V7M_CCR, LOB, 19, 1)
1911 FIELD(V7M_CCR, TRD, 20, 1)
1912 
1913 /* V7M SCR bits */
1914 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1915 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1916 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1917 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1918 
1919 /* V7M AIRCR bits */
1920 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1921 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1922 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1923 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1924 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1925 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1926 FIELD(V7M_AIRCR, PRIS, 14, 1)
1927 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1928 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1929 
1930 /* V7M CFSR bits for MMFSR */
1931 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1932 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1933 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1934 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1935 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1936 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1937 
1938 /* V7M CFSR bits for BFSR */
1939 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1940 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1941 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1942 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1943 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1944 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1945 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1946 
1947 /* V7M CFSR bits for UFSR */
1948 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1949 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1950 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1951 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1952 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1953 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1954 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1955 
1956 /* V7M CFSR bit masks covering all of the subregister bits */
1957 FIELD(V7M_CFSR, MMFSR, 0, 8)
1958 FIELD(V7M_CFSR, BFSR, 8, 8)
1959 FIELD(V7M_CFSR, UFSR, 16, 16)
1960 
1961 /* V7M HFSR bits */
1962 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1963 FIELD(V7M_HFSR, FORCED, 30, 1)
1964 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1965 
1966 /* V7M DFSR bits */
1967 FIELD(V7M_DFSR, HALTED, 0, 1)
1968 FIELD(V7M_DFSR, BKPT, 1, 1)
1969 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1970 FIELD(V7M_DFSR, VCATCH, 3, 1)
1971 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1972 
1973 /* V7M SFSR bits */
1974 FIELD(V7M_SFSR, INVEP, 0, 1)
1975 FIELD(V7M_SFSR, INVIS, 1, 1)
1976 FIELD(V7M_SFSR, INVER, 2, 1)
1977 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1978 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1979 FIELD(V7M_SFSR, LSPERR, 5, 1)
1980 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1981 FIELD(V7M_SFSR, LSERR, 7, 1)
1982 
1983 /* v7M MPU_CTRL bits */
1984 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1985 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1986 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1987 
1988 /* v7M CLIDR bits */
1989 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1990 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1991 FIELD(V7M_CLIDR, LOC, 24, 3)
1992 FIELD(V7M_CLIDR, LOUU, 27, 3)
1993 FIELD(V7M_CLIDR, ICB, 30, 2)
1994 
1995 FIELD(V7M_CSSELR, IND, 0, 1)
1996 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1997 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1998  * define a mask for this and check that it doesn't permit running off
1999  * the end of the array.
2000  */
2001 FIELD(V7M_CSSELR, INDEX, 0, 4)
2002 
2003 /* v7M FPCCR bits */
2004 FIELD(V7M_FPCCR, LSPACT, 0, 1)
2005 FIELD(V7M_FPCCR, USER, 1, 1)
2006 FIELD(V7M_FPCCR, S, 2, 1)
2007 FIELD(V7M_FPCCR, THREAD, 3, 1)
2008 FIELD(V7M_FPCCR, HFRDY, 4, 1)
2009 FIELD(V7M_FPCCR, MMRDY, 5, 1)
2010 FIELD(V7M_FPCCR, BFRDY, 6, 1)
2011 FIELD(V7M_FPCCR, SFRDY, 7, 1)
2012 FIELD(V7M_FPCCR, MONRDY, 8, 1)
2013 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
2014 FIELD(V7M_FPCCR, UFRDY, 10, 1)
2015 FIELD(V7M_FPCCR, RES0, 11, 15)
2016 FIELD(V7M_FPCCR, TS, 26, 1)
2017 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
2018 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
2019 FIELD(V7M_FPCCR, LSPENS, 29, 1)
2020 FIELD(V7M_FPCCR, LSPEN, 30, 1)
2021 FIELD(V7M_FPCCR, ASPEN, 31, 1)
2022 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
2023 #define R_V7M_FPCCR_BANKED_MASK                 \
2024     (R_V7M_FPCCR_LSPACT_MASK |                  \
2025      R_V7M_FPCCR_USER_MASK |                    \
2026      R_V7M_FPCCR_THREAD_MASK |                  \
2027      R_V7M_FPCCR_MMRDY_MASK |                   \
2028      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
2029      R_V7M_FPCCR_UFRDY_MASK |                   \
2030      R_V7M_FPCCR_ASPEN_MASK)
2031 
2032 /* v7M VPR bits */
2033 FIELD(V7M_VPR, P0, 0, 16)
2034 FIELD(V7M_VPR, MASK01, 16, 4)
2035 FIELD(V7M_VPR, MASK23, 20, 4)
2036 
2037 /*
2038  * System register ID fields.
2039  */
2040 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2041 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2042 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2043 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2044 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2045 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2046 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2047 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2048 FIELD(CLIDR_EL1, LOC, 24, 3)
2049 FIELD(CLIDR_EL1, LOUU, 27, 3)
2050 FIELD(CLIDR_EL1, ICB, 30, 3)
2051 
2052 /* When FEAT_CCIDX is implemented */
2053 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2054 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2055 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2056 
2057 /* When FEAT_CCIDX is not implemented */
2058 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2059 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2060 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2061 
2062 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2063 FIELD(CTR_EL0,  L1IP, 14, 2)
2064 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2065 FIELD(CTR_EL0,  ERG, 20, 4)
2066 FIELD(CTR_EL0,  CWG, 24, 4)
2067 FIELD(CTR_EL0,  IDC, 28, 1)
2068 FIELD(CTR_EL0,  DIC, 29, 1)
2069 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2070 
2071 FIELD(MIDR_EL1, REVISION, 0, 4)
2072 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2073 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2074 FIELD(MIDR_EL1, VARIANT, 20, 4)
2075 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2076 
2077 FIELD(ID_ISAR0, SWAP, 0, 4)
2078 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2079 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2080 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2081 FIELD(ID_ISAR0, COPROC, 16, 4)
2082 FIELD(ID_ISAR0, DEBUG, 20, 4)
2083 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2084 
2085 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2086 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2087 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2088 FIELD(ID_ISAR1, EXTEND, 12, 4)
2089 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2090 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2091 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2092 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2093 
2094 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2095 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2096 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2097 FIELD(ID_ISAR2, MULT, 12, 4)
2098 FIELD(ID_ISAR2, MULTS, 16, 4)
2099 FIELD(ID_ISAR2, MULTU, 20, 4)
2100 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2101 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2102 
2103 FIELD(ID_ISAR3, SATURATE, 0, 4)
2104 FIELD(ID_ISAR3, SIMD, 4, 4)
2105 FIELD(ID_ISAR3, SVC, 8, 4)
2106 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2107 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2108 FIELD(ID_ISAR3, T32COPY, 20, 4)
2109 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2110 FIELD(ID_ISAR3, T32EE, 28, 4)
2111 
2112 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2113 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2114 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2115 FIELD(ID_ISAR4, SMC, 12, 4)
2116 FIELD(ID_ISAR4, BARRIER, 16, 4)
2117 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2118 FIELD(ID_ISAR4, PSR_M, 24, 4)
2119 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2120 
2121 FIELD(ID_ISAR5, SEVL, 0, 4)
2122 FIELD(ID_ISAR5, AES, 4, 4)
2123 FIELD(ID_ISAR5, SHA1, 8, 4)
2124 FIELD(ID_ISAR5, SHA2, 12, 4)
2125 FIELD(ID_ISAR5, CRC32, 16, 4)
2126 FIELD(ID_ISAR5, RDM, 24, 4)
2127 FIELD(ID_ISAR5, VCMA, 28, 4)
2128 
2129 FIELD(ID_ISAR6, JSCVT, 0, 4)
2130 FIELD(ID_ISAR6, DP, 4, 4)
2131 FIELD(ID_ISAR6, FHM, 8, 4)
2132 FIELD(ID_ISAR6, SB, 12, 4)
2133 FIELD(ID_ISAR6, SPECRES, 16, 4)
2134 FIELD(ID_ISAR6, BF16, 20, 4)
2135 FIELD(ID_ISAR6, I8MM, 24, 4)
2136 
2137 FIELD(ID_MMFR0, VMSA, 0, 4)
2138 FIELD(ID_MMFR0, PMSA, 4, 4)
2139 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2140 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2141 FIELD(ID_MMFR0, TCM, 16, 4)
2142 FIELD(ID_MMFR0, AUXREG, 20, 4)
2143 FIELD(ID_MMFR0, FCSE, 24, 4)
2144 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2145 
2146 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2147 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2148 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2149 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2150 FIELD(ID_MMFR1, L1HVD, 16, 4)
2151 FIELD(ID_MMFR1, L1UNI, 20, 4)
2152 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2153 FIELD(ID_MMFR1, BPRED, 28, 4)
2154 
2155 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2156 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2157 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2158 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2159 FIELD(ID_MMFR2, UNITLB, 16, 4)
2160 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2161 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2162 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2163 
2164 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2165 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2166 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2167 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2168 FIELD(ID_MMFR3, PAN, 16, 4)
2169 FIELD(ID_MMFR3, COHWALK, 20, 4)
2170 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2171 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2172 
2173 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2174 FIELD(ID_MMFR4, AC2, 4, 4)
2175 FIELD(ID_MMFR4, XNX, 8, 4)
2176 FIELD(ID_MMFR4, CNP, 12, 4)
2177 FIELD(ID_MMFR4, HPDS, 16, 4)
2178 FIELD(ID_MMFR4, LSM, 20, 4)
2179 FIELD(ID_MMFR4, CCIDX, 24, 4)
2180 FIELD(ID_MMFR4, EVT, 28, 4)
2181 
2182 FIELD(ID_MMFR5, ETS, 0, 4)
2183 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2184 
2185 FIELD(ID_PFR0, STATE0, 0, 4)
2186 FIELD(ID_PFR0, STATE1, 4, 4)
2187 FIELD(ID_PFR0, STATE2, 8, 4)
2188 FIELD(ID_PFR0, STATE3, 12, 4)
2189 FIELD(ID_PFR0, CSV2, 16, 4)
2190 FIELD(ID_PFR0, AMU, 20, 4)
2191 FIELD(ID_PFR0, DIT, 24, 4)
2192 FIELD(ID_PFR0, RAS, 28, 4)
2193 
2194 FIELD(ID_PFR1, PROGMOD, 0, 4)
2195 FIELD(ID_PFR1, SECURITY, 4, 4)
2196 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2197 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2198 FIELD(ID_PFR1, GENTIMER, 16, 4)
2199 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2200 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2201 FIELD(ID_PFR1, GIC, 28, 4)
2202 
2203 FIELD(ID_PFR2, CSV3, 0, 4)
2204 FIELD(ID_PFR2, SSBS, 4, 4)
2205 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2206 
2207 FIELD(ID_AA64ISAR0, AES, 4, 4)
2208 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2209 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2210 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2211 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2212 FIELD(ID_AA64ISAR0, TME, 24, 4)
2213 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2214 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2215 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2216 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2217 FIELD(ID_AA64ISAR0, DP, 44, 4)
2218 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2219 FIELD(ID_AA64ISAR0, TS, 52, 4)
2220 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2221 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2222 
2223 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2224 FIELD(ID_AA64ISAR1, APA, 4, 4)
2225 FIELD(ID_AA64ISAR1, API, 8, 4)
2226 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2227 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2228 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2229 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2230 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2231 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2232 FIELD(ID_AA64ISAR1, SB, 36, 4)
2233 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2234 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2235 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2236 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2237 FIELD(ID_AA64ISAR1, XS, 56, 4)
2238 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2239 
2240 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2241 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2242 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2243 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2244 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2245 FIELD(ID_AA64ISAR2, BC, 20, 4)
2246 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2247 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2248 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2249 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2250 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2251 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2252 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2253 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2254 
2255 FIELD(ID_AA64PFR0, EL0, 0, 4)
2256 FIELD(ID_AA64PFR0, EL1, 4, 4)
2257 FIELD(ID_AA64PFR0, EL2, 8, 4)
2258 FIELD(ID_AA64PFR0, EL3, 12, 4)
2259 FIELD(ID_AA64PFR0, FP, 16, 4)
2260 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2261 FIELD(ID_AA64PFR0, GIC, 24, 4)
2262 FIELD(ID_AA64PFR0, RAS, 28, 4)
2263 FIELD(ID_AA64PFR0, SVE, 32, 4)
2264 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2265 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2266 FIELD(ID_AA64PFR0, AMU, 44, 4)
2267 FIELD(ID_AA64PFR0, DIT, 48, 4)
2268 FIELD(ID_AA64PFR0, RME, 52, 4)
2269 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2270 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2271 
2272 FIELD(ID_AA64PFR1, BT, 0, 4)
2273 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2274 FIELD(ID_AA64PFR1, MTE, 8, 4)
2275 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2276 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2277 FIELD(ID_AA64PFR1, SME, 24, 4)
2278 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2279 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2280 FIELD(ID_AA64PFR1, NMI, 36, 4)
2281 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2282 FIELD(ID_AA64PFR1, GCS, 44, 4)
2283 FIELD(ID_AA64PFR1, THE, 48, 4)
2284 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2285 FIELD(ID_AA64PFR1, DF2, 56, 4)
2286 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2287 
2288 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2289 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2290 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2291 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2292 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2293 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2294 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2295 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2296 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2297 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2298 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2299 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2300 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2301 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2302 
2303 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2304 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2305 FIELD(ID_AA64MMFR1, VH, 8, 4)
2306 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2307 FIELD(ID_AA64MMFR1, LO, 16, 4)
2308 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2309 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2310 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2311 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2312 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2313 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2314 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2315 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2316 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2317 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2318 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2319 
2320 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2321 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2322 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2323 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2324 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2325 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2326 FIELD(ID_AA64MMFR2, NV, 24, 4)
2327 FIELD(ID_AA64MMFR2, ST, 28, 4)
2328 FIELD(ID_AA64MMFR2, AT, 32, 4)
2329 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2330 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2331 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2332 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2333 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2334 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2335 
2336 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2337 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2338 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2339 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2340 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2341 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2342 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2343 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2344 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2345 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2346 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2347 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2348 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2349 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2350 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2351 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2352 
2353 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2354 FIELD(ID_AA64ZFR0, AES, 4, 4)
2355 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2356 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2357 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2358 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2359 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2360 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2361 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2362 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2363 
2364 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2365 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2366 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2367 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2368 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2369 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2370 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2371 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2372 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2373 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2374 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2375 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2376 
2377 FIELD(ID_DFR0, COPDBG, 0, 4)
2378 FIELD(ID_DFR0, COPSDBG, 4, 4)
2379 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2380 FIELD(ID_DFR0, COPTRC, 12, 4)
2381 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2382 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2383 FIELD(ID_DFR0, PERFMON, 24, 4)
2384 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2385 
2386 FIELD(ID_DFR1, MTPMU, 0, 4)
2387 FIELD(ID_DFR1, HPMN0, 4, 4)
2388 
2389 FIELD(DBGDIDR, SE_IMP, 12, 1)
2390 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2391 FIELD(DBGDIDR, VERSION, 16, 4)
2392 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2393 FIELD(DBGDIDR, BRPS, 24, 4)
2394 FIELD(DBGDIDR, WRPS, 28, 4)
2395 
2396 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2397 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2398 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2399 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2400 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2401 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2402 FIELD(DBGDEVID, AUXREGS, 24, 4)
2403 FIELD(DBGDEVID, CIDMASK, 28, 4)
2404 
2405 FIELD(MVFR0, SIMDREG, 0, 4)
2406 FIELD(MVFR0, FPSP, 4, 4)
2407 FIELD(MVFR0, FPDP, 8, 4)
2408 FIELD(MVFR0, FPTRAP, 12, 4)
2409 FIELD(MVFR0, FPDIVIDE, 16, 4)
2410 FIELD(MVFR0, FPSQRT, 20, 4)
2411 FIELD(MVFR0, FPSHVEC, 24, 4)
2412 FIELD(MVFR0, FPROUND, 28, 4)
2413 
2414 FIELD(MVFR1, FPFTZ, 0, 4)
2415 FIELD(MVFR1, FPDNAN, 4, 4)
2416 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2417 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2418 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2419 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2420 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2421 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2422 FIELD(MVFR1, FPHP, 24, 4)
2423 FIELD(MVFR1, SIMDFMAC, 28, 4)
2424 
2425 FIELD(MVFR2, SIMDMISC, 0, 4)
2426 FIELD(MVFR2, FPMISC, 4, 4)
2427 
2428 FIELD(GPCCR, PPS, 0, 3)
2429 FIELD(GPCCR, IRGN, 8, 2)
2430 FIELD(GPCCR, ORGN, 10, 2)
2431 FIELD(GPCCR, SH, 12, 2)
2432 FIELD(GPCCR, PGS, 14, 2)
2433 FIELD(GPCCR, GPC, 16, 1)
2434 FIELD(GPCCR, GPCP, 17, 1)
2435 FIELD(GPCCR, L0GPTSZ, 20, 4)
2436 
2437 FIELD(MFAR, FPA, 12, 40)
2438 FIELD(MFAR, NSE, 62, 1)
2439 FIELD(MFAR, NS, 63, 1)
2440 
2441 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2442 
2443 /* If adding a feature bit which corresponds to a Linux ELF
2444  * HWCAP bit, remember to update the feature-bit-to-hwcap
2445  * mapping in linux-user/elfload.c:get_elf_hwcap().
2446  */
2447 enum arm_features {
2448     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2449     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2450     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2451     ARM_FEATURE_V6,
2452     ARM_FEATURE_V6K,
2453     ARM_FEATURE_V7,
2454     ARM_FEATURE_THUMB2,
2455     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2456     ARM_FEATURE_NEON,
2457     ARM_FEATURE_M, /* Microcontroller profile.  */
2458     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2459     ARM_FEATURE_THUMB2EE,
2460     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2461     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2462     ARM_FEATURE_V4T,
2463     ARM_FEATURE_V5,
2464     ARM_FEATURE_STRONGARM,
2465     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2466     ARM_FEATURE_GENERIC_TIMER,
2467     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2468     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2469     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2470     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2471     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2472     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2473     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2474     ARM_FEATURE_V8,
2475     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2476     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2477     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2478     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2479     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2480     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2481     ARM_FEATURE_PMU, /* has PMU support */
2482     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2483     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2484     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2485     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2486 };
2487 
2488 static inline int arm_feature(CPUARMState *env, int feature)
2489 {
2490     return (env->features & (1ULL << feature)) != 0;
2491 }
2492 
2493 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2494 
2495 /*
2496  * ARM v9 security states.
2497  * The ordering of the enumeration corresponds to the low 2 bits
2498  * of the GPI value, and (except for Root) the concat of NSE:NS.
2499  */
2500 
2501 typedef enum ARMSecuritySpace {
2502     ARMSS_Secure     = 0,
2503     ARMSS_NonSecure  = 1,
2504     ARMSS_Root       = 2,
2505     ARMSS_Realm      = 3,
2506 } ARMSecuritySpace;
2507 
2508 /* Return true if @space is secure, in the pre-v9 sense. */
2509 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2510 {
2511     return space == ARMSS_Secure || space == ARMSS_Root;
2512 }
2513 
2514 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2515 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2516 {
2517     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2518 }
2519 
2520 #if !defined(CONFIG_USER_ONLY)
2521 /**
2522  * arm_security_space_below_el3:
2523  * @env: cpu context
2524  *
2525  * Return the security space of exception levels below EL3, following
2526  * an exception return to those levels.  Unlike arm_security_space,
2527  * this doesn't care about the current EL.
2528  */
2529 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2530 
2531 /**
2532  * arm_is_secure_below_el3:
2533  * @env: cpu context
2534  *
2535  * Return true if exception levels below EL3 are in secure state,
2536  * or would be following an exception return to those levels.
2537  */
2538 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2539 {
2540     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2541     return ss == ARMSS_Secure;
2542 }
2543 
2544 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2545 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2546 {
2547     assert(!arm_feature(env, ARM_FEATURE_M));
2548     if (arm_feature(env, ARM_FEATURE_EL3)) {
2549         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2550             /* CPU currently in AArch64 state and EL3 */
2551             return true;
2552         } else if (!is_a64(env) &&
2553                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2554             /* CPU currently in AArch32 state and monitor mode */
2555             return true;
2556         }
2557     }
2558     return false;
2559 }
2560 
2561 /**
2562  * arm_security_space:
2563  * @env: cpu context
2564  *
2565  * Return the current security space of the cpu.
2566  */
2567 ARMSecuritySpace arm_security_space(CPUARMState *env);
2568 
2569 /**
2570  * arm_is_secure:
2571  * @env: cpu context
2572  *
2573  * Return true if the processor is in secure state.
2574  */
2575 static inline bool arm_is_secure(CPUARMState *env)
2576 {
2577     return arm_space_is_secure(arm_security_space(env));
2578 }
2579 
2580 /*
2581  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2582  * This corresponds to the pseudocode EL2Enabled().
2583  */
2584 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2585                                                ARMSecuritySpace space)
2586 {
2587     assert(space != ARMSS_Root);
2588     return arm_feature(env, ARM_FEATURE_EL2)
2589            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2590 }
2591 
2592 static inline bool arm_is_el2_enabled(CPUARMState *env)
2593 {
2594     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2595 }
2596 
2597 #else
2598 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2599 {
2600     return ARMSS_NonSecure;
2601 }
2602 
2603 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2604 {
2605     return false;
2606 }
2607 
2608 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2609 {
2610     return ARMSS_NonSecure;
2611 }
2612 
2613 static inline bool arm_is_secure(CPUARMState *env)
2614 {
2615     return false;
2616 }
2617 
2618 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2619                                                ARMSecuritySpace space)
2620 {
2621     return false;
2622 }
2623 
2624 static inline bool arm_is_el2_enabled(CPUARMState *env)
2625 {
2626     return false;
2627 }
2628 #endif
2629 
2630 /**
2631  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2632  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2633  * "for all purposes other than a direct read or write access of HCR_EL2."
2634  * Not included here is HCR_RW.
2635  */
2636 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2637 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2638 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2639 
2640 /* Return true if the specified exception level is running in AArch64 state. */
2641 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2642 {
2643     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2644      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2645      */
2646     assert(el >= 1 && el <= 3);
2647     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2648 
2649     /* The highest exception level is always at the maximum supported
2650      * register width, and then lower levels have a register width controlled
2651      * by bits in the SCR or HCR registers.
2652      */
2653     if (el == 3) {
2654         return aa64;
2655     }
2656 
2657     if (arm_feature(env, ARM_FEATURE_EL3) &&
2658         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2659         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2660     }
2661 
2662     if (el == 2) {
2663         return aa64;
2664     }
2665 
2666     if (arm_is_el2_enabled(env)) {
2667         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2668     }
2669 
2670     return aa64;
2671 }
2672 
2673 /* Function for determining whether guest cp register reads and writes should
2674  * access the secure or non-secure bank of a cp register.  When EL3 is
2675  * operating in AArch32 state, the NS-bit determines whether the secure
2676  * instance of a cp register should be used. When EL3 is AArch64 (or if
2677  * it doesn't exist at all) then there is no register banking, and all
2678  * accesses are to the non-secure version.
2679  */
2680 static inline bool access_secure_reg(CPUARMState *env)
2681 {
2682     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2683                 !arm_el_is_aa64(env, 3) &&
2684                 !(env->cp15.scr_el3 & SCR_NS));
2685 
2686     return ret;
2687 }
2688 
2689 /* Macros for accessing a specified CP register bank */
2690 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2691     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2692 
2693 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2694     do {                                                \
2695         if (_secure) {                                   \
2696             (_env)->cp15._regname##_s = (_val);            \
2697         } else {                                        \
2698             (_env)->cp15._regname##_ns = (_val);           \
2699         }                                               \
2700     } while (0)
2701 
2702 /* Macros for automatically accessing a specific CP register bank depending on
2703  * the current secure state of the system.  These macros are not intended for
2704  * supporting instruction translation reads/writes as these are dependent
2705  * solely on the SCR.NS bit and not the mode.
2706  */
2707 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2708     A32_BANKED_REG_GET((_env), _regname,                \
2709                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2710 
2711 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2712     A32_BANKED_REG_SET((_env), _regname,                                    \
2713                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2714                        (_val))
2715 
2716 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2717                                  uint32_t cur_el, bool secure);
2718 
2719 /* Return the highest implemented Exception Level */
2720 static inline int arm_highest_el(CPUARMState *env)
2721 {
2722     if (arm_feature(env, ARM_FEATURE_EL3)) {
2723         return 3;
2724     }
2725     if (arm_feature(env, ARM_FEATURE_EL2)) {
2726         return 2;
2727     }
2728     return 1;
2729 }
2730 
2731 /* Return true if a v7M CPU is in Handler mode */
2732 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2733 {
2734     return env->v7m.exception != 0;
2735 }
2736 
2737 /* Return the current Exception Level (as per ARMv8; note that this differs
2738  * from the ARMv7 Privilege Level).
2739  */
2740 static inline int arm_current_el(CPUARMState *env)
2741 {
2742     if (arm_feature(env, ARM_FEATURE_M)) {
2743         return arm_v7m_is_handler_mode(env) ||
2744             !(env->v7m.control[env->v7m.secure] & 1);
2745     }
2746 
2747     if (is_a64(env)) {
2748         return extract32(env->pstate, 2, 2);
2749     }
2750 
2751     switch (env->uncached_cpsr & 0x1f) {
2752     case ARM_CPU_MODE_USR:
2753         return 0;
2754     case ARM_CPU_MODE_HYP:
2755         return 2;
2756     case ARM_CPU_MODE_MON:
2757         return 3;
2758     default:
2759         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2760             /* If EL3 is 32-bit then all secure privileged modes run in
2761              * EL3
2762              */
2763             return 3;
2764         }
2765 
2766         return 1;
2767     }
2768 }
2769 
2770 /**
2771  * write_list_to_cpustate
2772  * @cpu: ARMCPU
2773  *
2774  * For each register listed in the ARMCPU cpreg_indexes list, write
2775  * its value from the cpreg_values list into the ARMCPUState structure.
2776  * This updates TCG's working data structures from KVM data or
2777  * from incoming migration state.
2778  *
2779  * Returns: true if all register values were updated correctly,
2780  * false if some register was unknown or could not be written.
2781  * Note that we do not stop early on failure -- we will attempt
2782  * writing all registers in the list.
2783  */
2784 bool write_list_to_cpustate(ARMCPU *cpu);
2785 
2786 /**
2787  * write_cpustate_to_list:
2788  * @cpu: ARMCPU
2789  * @kvm_sync: true if this is for syncing back to KVM
2790  *
2791  * For each register listed in the ARMCPU cpreg_indexes list, write
2792  * its value from the ARMCPUState structure into the cpreg_values list.
2793  * This is used to copy info from TCG's working data structures into
2794  * KVM or for outbound migration.
2795  *
2796  * @kvm_sync is true if we are doing this in order to sync the
2797  * register state back to KVM. In this case we will only update
2798  * values in the list if the previous list->cpustate sync actually
2799  * successfully wrote the CPU state. Otherwise we will keep the value
2800  * that is in the list.
2801  *
2802  * Returns: true if all register values were read correctly,
2803  * false if some register was unknown or could not be read.
2804  * Note that we do not stop early on failure -- we will attempt
2805  * reading all registers in the list.
2806  */
2807 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2808 
2809 #define ARM_CPUID_TI915T      0x54029152
2810 #define ARM_CPUID_TI925T      0x54029252
2811 
2812 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2813 
2814 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2815 
2816 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2817  *
2818  * If EL3 is 64-bit:
2819  *  + NonSecure EL1 & 0 stage 1
2820  *  + NonSecure EL1 & 0 stage 2
2821  *  + NonSecure EL2
2822  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2823  *  + Secure EL1 & 0
2824  *  + Secure EL3
2825  * If EL3 is 32-bit:
2826  *  + NonSecure PL1 & 0 stage 1
2827  *  + NonSecure PL1 & 0 stage 2
2828  *  + NonSecure PL2
2829  *  + Secure PL0
2830  *  + Secure PL1
2831  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2832  *
2833  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2834  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2835  *     because they may differ in access permissions even if the VA->PA map is
2836  *     the same
2837  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2838  *     translation, which means that we have one mmu_idx that deals with two
2839  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2840  *     architecturally permitted]
2841  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2842  *     handling via the TLB. The only way to do a stage 1 translation without
2843  *     the immediate stage 2 translation is via the ATS or AT system insns,
2844  *     which can be slow-pathed and always do a page table walk.
2845  *     The only use of stage 2 translations is either as part of an s1+2
2846  *     lookup or when loading the descriptors during a stage 1 page table walk,
2847  *     and in both those cases we don't use the TLB.
2848  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2849  *     translation regimes, because they map reasonably well to each other
2850  *     and they can't both be active at the same time.
2851  *  5. we want to be able to use the TLB for accesses done as part of a
2852  *     stage1 page table walk, rather than having to walk the stage2 page
2853  *     table over and over.
2854  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2855  *     Never (PAN) bit within PSTATE.
2856  *  7. we fold together the secure and non-secure regimes for A-profile,
2857  *     because there are no banked system registers for aarch64, so the
2858  *     process of switching between secure and non-secure is
2859  *     already heavyweight.
2860  *
2861  * This gives us the following list of cases:
2862  *
2863  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2864  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2865  * EL1 EL1&0 stage 1+2 +PAN
2866  * EL0 EL2&0
2867  * EL2 EL2&0
2868  * EL2 EL2&0 +PAN
2869  * EL2 (aka NS PL2)
2870  * EL3 (aka S PL1)
2871  * Physical (NS & S)
2872  * Stage2 (NS & S)
2873  *
2874  * for a total of 12 different mmu_idx.
2875  *
2876  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2877  * as A profile. They only need to distinguish EL0 and EL1 (and
2878  * EL2 if we ever model a Cortex-R52).
2879  *
2880  * M profile CPUs are rather different as they do not have a true MMU.
2881  * They have the following different MMU indexes:
2882  *  User
2883  *  Privileged
2884  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2885  *  Privileged, execution priority negative (ditto)
2886  * If the CPU supports the v8M Security Extension then there are also:
2887  *  Secure User
2888  *  Secure Privileged
2889  *  Secure User, execution priority negative
2890  *  Secure Privileged, execution priority negative
2891  *
2892  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2893  * are not quite the same -- different CPU types (most notably M profile
2894  * vs A/R profile) would like to use MMU indexes with different semantics,
2895  * but since we don't ever need to use all of those in a single CPU we
2896  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2897  * modes + total number of M profile MMU modes". The lower bits of
2898  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2899  * the same for any particular CPU.
2900  * Variables of type ARMMUIdx are always full values, and the core
2901  * index values are in variables of type 'int'.
2902  *
2903  * Our enumeration includes at the end some entries which are not "true"
2904  * mmu_idx values in that they don't have corresponding TLBs and are only
2905  * valid for doing slow path page table walks.
2906  *
2907  * The constant names here are patterned after the general style of the names
2908  * of the AT/ATS operations.
2909  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2910  * For M profile we arrange them to have a bit for priv, a bit for negpri
2911  * and a bit for secure.
2912  */
2913 #define ARM_MMU_IDX_A     0x10  /* A profile */
2914 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2915 #define ARM_MMU_IDX_M     0x40  /* M profile */
2916 
2917 /* Meanings of the bits for M profile mmu idx values */
2918 #define ARM_MMU_IDX_M_PRIV   0x1
2919 #define ARM_MMU_IDX_M_NEGPRI 0x2
2920 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2921 
2922 #define ARM_MMU_IDX_TYPE_MASK \
2923     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2924 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2925 
2926 typedef enum ARMMMUIdx {
2927     /*
2928      * A-profile.
2929      */
2930     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2931     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2932     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2933     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2934     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2935     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2936     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2937     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2938 
2939     /*
2940      * Used for second stage of an S12 page table walk, or for descriptor
2941      * loads during first stage of an S1 page table walk.  Note that both
2942      * are in use simultaneously for SecureEL2: the security state for
2943      * the S2 ptw is selected by the NS bit from the S1 ptw.
2944      */
2945     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2946     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2947 
2948     /* TLBs with 1-1 mapping to the physical address spaces. */
2949     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2950     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2951     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2952     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2953 
2954     /*
2955      * These are not allocated TLBs and are used only for AT system
2956      * instructions or for the first stage of an S12 page table walk.
2957      */
2958     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2959     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2960     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2961 
2962     /*
2963      * M-profile.
2964      */
2965     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2966     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2967     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2968     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2969     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2970     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2971     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2972     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2973 } ARMMMUIdx;
2974 
2975 /*
2976  * Bit macros for the core-mmu-index values for each index,
2977  * for use when calling tlb_flush_by_mmuidx() and friends.
2978  */
2979 #define TO_CORE_BIT(NAME) \
2980     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2981 
2982 typedef enum ARMMMUIdxBit {
2983     TO_CORE_BIT(E10_0),
2984     TO_CORE_BIT(E20_0),
2985     TO_CORE_BIT(E10_1),
2986     TO_CORE_BIT(E10_1_PAN),
2987     TO_CORE_BIT(E2),
2988     TO_CORE_BIT(E20_2),
2989     TO_CORE_BIT(E20_2_PAN),
2990     TO_CORE_BIT(E3),
2991     TO_CORE_BIT(Stage2),
2992     TO_CORE_BIT(Stage2_S),
2993 
2994     TO_CORE_BIT(MUser),
2995     TO_CORE_BIT(MPriv),
2996     TO_CORE_BIT(MUserNegPri),
2997     TO_CORE_BIT(MPrivNegPri),
2998     TO_CORE_BIT(MSUser),
2999     TO_CORE_BIT(MSPriv),
3000     TO_CORE_BIT(MSUserNegPri),
3001     TO_CORE_BIT(MSPrivNegPri),
3002 } ARMMMUIdxBit;
3003 
3004 #undef TO_CORE_BIT
3005 
3006 #define MMU_USER_IDX 0
3007 
3008 /* Indexes used when registering address spaces with cpu_address_space_init */
3009 typedef enum ARMASIdx {
3010     ARMASIdx_NS = 0,
3011     ARMASIdx_S = 1,
3012     ARMASIdx_TagNS = 2,
3013     ARMASIdx_TagS = 3,
3014 } ARMASIdx;
3015 
3016 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3017 {
3018     /* Assert the relative order of the physical mmu indexes. */
3019     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3020     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3021     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3022     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3023 
3024     return ARMMMUIdx_Phys_S + space;
3025 }
3026 
3027 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3028 {
3029     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3030     return idx - ARMMMUIdx_Phys_S;
3031 }
3032 
3033 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3034 {
3035     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3036      * CSSELR is RAZ/WI.
3037      */
3038     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3039 }
3040 
3041 static inline bool arm_sctlr_b(CPUARMState *env)
3042 {
3043     return
3044         /* We need not implement SCTLR.ITD in user-mode emulation, so
3045          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3046          * This lets people run BE32 binaries with "-cpu any".
3047          */
3048 #ifndef CONFIG_USER_ONLY
3049         !arm_feature(env, ARM_FEATURE_V7) &&
3050 #endif
3051         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3052 }
3053 
3054 uint64_t arm_sctlr(CPUARMState *env, int el);
3055 
3056 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3057                                                   bool sctlr_b)
3058 {
3059 #ifdef CONFIG_USER_ONLY
3060     /*
3061      * In system mode, BE32 is modelled in line with the
3062      * architecture (as word-invariant big-endianness), where loads
3063      * and stores are done little endian but from addresses which
3064      * are adjusted by XORing with the appropriate constant. So the
3065      * endianness to use for the raw data access is not affected by
3066      * SCTLR.B.
3067      * In user mode, however, we model BE32 as byte-invariant
3068      * big-endianness (because user-only code cannot tell the
3069      * difference), and so we need to use a data access endianness
3070      * that depends on SCTLR.B.
3071      */
3072     if (sctlr_b) {
3073         return true;
3074     }
3075 #endif
3076     /* In 32bit endianness is determined by looking at CPSR's E bit */
3077     return env->uncached_cpsr & CPSR_E;
3078 }
3079 
3080 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3081 {
3082     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3083 }
3084 
3085 /* Return true if the processor is in big-endian mode. */
3086 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3087 {
3088     if (!is_a64(env)) {
3089         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3090     } else {
3091         int cur_el = arm_current_el(env);
3092         uint64_t sctlr = arm_sctlr(env, cur_el);
3093         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3094     }
3095 }
3096 
3097 #include "exec/cpu-all.h"
3098 
3099 /*
3100  * We have more than 32-bits worth of state per TB, so we split the data
3101  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3102  * We collect these two parts in CPUARMTBFlags where they are named
3103  * flags and flags2 respectively.
3104  *
3105  * The flags that are shared between all execution modes, TBFLAG_ANY,
3106  * are stored in flags.  The flags that are specific to a given mode
3107  * are stores in flags2.  Since cs_base is sized on the configured
3108  * address size, flags2 always has 64-bits for A64, and a minimum of
3109  * 32-bits for A32 and M32.
3110  *
3111  * The bits for 32-bit A-profile and M-profile partially overlap:
3112  *
3113  *  31         23         11 10             0
3114  * +-------------+----------+----------------+
3115  * |             |          |   TBFLAG_A32   |
3116  * | TBFLAG_AM32 |          +-----+----------+
3117  * |             |                |TBFLAG_M32|
3118  * +-------------+----------------+----------+
3119  *  31         23                6 5        0
3120  *
3121  * Unless otherwise noted, these bits are cached in env->hflags.
3122  */
3123 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3124 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3125 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3126 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3127 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3128 /* Target EL if we take a floating-point-disabled exception */
3129 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3130 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3131 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3132 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3133 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3134 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3135 
3136 /*
3137  * Bit usage when in AArch32 state, both A- and M-profile.
3138  */
3139 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3140 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3141 
3142 /*
3143  * Bit usage when in AArch32 state, for A-profile only.
3144  */
3145 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3146 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3147 /*
3148  * We store the bottom two bits of the CPAR as TB flags and handle
3149  * checks on the other bits at runtime. This shares the same bits as
3150  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3151  * Not cached, because VECLEN+VECSTRIDE are not cached.
3152  */
3153 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3154 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3155 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3156 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3157 /*
3158  * Indicates whether cp register reads and writes by guest code should access
3159  * the secure or nonsecure bank of banked registers; note that this is not
3160  * the same thing as the current security state of the processor!
3161  */
3162 FIELD(TBFLAG_A32, NS, 10, 1)
3163 /*
3164  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3165  * This requires an SME trap from AArch32 mode when using NEON.
3166  */
3167 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3168 
3169 /*
3170  * Bit usage when in AArch32 state, for M-profile only.
3171  */
3172 /* Handler (ie not Thread) mode */
3173 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3174 /* Whether we should generate stack-limit checks */
3175 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3176 /* Set if FPCCR.LSPACT is set */
3177 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3178 /* Set if we must create a new FP context */
3179 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3180 /* Set if FPCCR.S does not match current security state */
3181 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3182 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3183 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3184 /* Set if in secure mode */
3185 FIELD(TBFLAG_M32, SECURE, 6, 1)
3186 
3187 /*
3188  * Bit usage when in AArch64 state
3189  */
3190 FIELD(TBFLAG_A64, TBII, 0, 2)
3191 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3192 /* The current vector length, either NVL or SVL. */
3193 FIELD(TBFLAG_A64, VL, 4, 4)
3194 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3195 FIELD(TBFLAG_A64, BT, 9, 1)
3196 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3197 FIELD(TBFLAG_A64, TBID, 12, 2)
3198 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3199 FIELD(TBFLAG_A64, ATA, 15, 1)
3200 FIELD(TBFLAG_A64, TCMA, 16, 2)
3201 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3202 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3203 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3204 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3205 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3206 FIELD(TBFLAG_A64, SVL, 24, 4)
3207 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3208 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3209 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3210 FIELD(TBFLAG_A64, NAA, 30, 1)
3211 FIELD(TBFLAG_A64, ATA0, 31, 1)
3212 FIELD(TBFLAG_A64, NV, 32, 1)
3213 FIELD(TBFLAG_A64, NV1, 33, 1)
3214 FIELD(TBFLAG_A64, NV2, 34, 1)
3215 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3216 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3217 /* Set if FEAT_NV2 RAM accesses are big-endian */
3218 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3219 
3220 /*
3221  * Helpers for using the above. Note that only the A64 accessors use
3222  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3223  * word either is or might be 32 bits only.
3224  */
3225 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3226     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3227 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3228     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3229 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3230     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3231 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3232     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3233 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3234     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3235 
3236 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3237 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3238 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3239 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3240 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3241 
3242 /**
3243  * sve_vq
3244  * @env: the cpu context
3245  *
3246  * Return the VL cached within env->hflags, in units of quadwords.
3247  */
3248 static inline int sve_vq(CPUARMState *env)
3249 {
3250     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3251 }
3252 
3253 /**
3254  * sme_vq
3255  * @env: the cpu context
3256  *
3257  * Return the SVL cached within env->hflags, in units of quadwords.
3258  */
3259 static inline int sme_vq(CPUARMState *env)
3260 {
3261     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3262 }
3263 
3264 static inline bool bswap_code(bool sctlr_b)
3265 {
3266 #ifdef CONFIG_USER_ONLY
3267     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3268      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3269      * would also end up as a mixed-endian mode with BE code, LE data.
3270      */
3271     return TARGET_BIG_ENDIAN ^ sctlr_b;
3272 #else
3273     /* All code access in ARM is little endian, and there are no loaders
3274      * doing swaps that need to be reversed
3275      */
3276     return 0;
3277 #endif
3278 }
3279 
3280 #ifdef CONFIG_USER_ONLY
3281 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3282 {
3283     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3284 }
3285 #endif
3286 
3287 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3288                           uint64_t *cs_base, uint32_t *flags);
3289 
3290 enum {
3291     QEMU_PSCI_CONDUIT_DISABLED = 0,
3292     QEMU_PSCI_CONDUIT_SMC = 1,
3293     QEMU_PSCI_CONDUIT_HVC = 2,
3294 };
3295 
3296 #ifndef CONFIG_USER_ONLY
3297 /* Return the address space index to use for a memory access */
3298 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3299 {
3300     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3301 }
3302 
3303 /* Return the AddressSpace to use for a memory access
3304  * (which depends on whether the access is S or NS, and whether
3305  * the board gave us a separate AddressSpace for S accesses).
3306  */
3307 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3308 {
3309     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3310 }
3311 #endif
3312 
3313 /**
3314  * arm_register_pre_el_change_hook:
3315  * Register a hook function which will be called immediately before this
3316  * CPU changes exception level or mode. The hook function will be
3317  * passed a pointer to the ARMCPU and the opaque data pointer passed
3318  * to this function when the hook was registered.
3319  *
3320  * Note that if a pre-change hook is called, any registered post-change hooks
3321  * are guaranteed to subsequently be called.
3322  */
3323 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3324                                  void *opaque);
3325 /**
3326  * arm_register_el_change_hook:
3327  * Register a hook function which will be called immediately after this
3328  * CPU changes exception level or mode. The hook function will be
3329  * passed a pointer to the ARMCPU and the opaque data pointer passed
3330  * to this function when the hook was registered.
3331  *
3332  * Note that any registered hooks registered here are guaranteed to be called
3333  * if pre-change hooks have been.
3334  */
3335 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3336         *opaque);
3337 
3338 /**
3339  * arm_rebuild_hflags:
3340  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3341  */
3342 void arm_rebuild_hflags(CPUARMState *env);
3343 
3344 /**
3345  * aa32_vfp_dreg:
3346  * Return a pointer to the Dn register within env in 32-bit mode.
3347  */
3348 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3349 {
3350     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3351 }
3352 
3353 /**
3354  * aa32_vfp_qreg:
3355  * Return a pointer to the Qn register within env in 32-bit mode.
3356  */
3357 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3358 {
3359     return &env->vfp.zregs[regno].d[0];
3360 }
3361 
3362 /**
3363  * aa64_vfp_qreg:
3364  * Return a pointer to the Qn register within env in 64-bit mode.
3365  */
3366 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3367 {
3368     return &env->vfp.zregs[regno].d[0];
3369 }
3370 
3371 /* Shared between translate-sve.c and sve_helper.c.  */
3372 extern const uint64_t pred_esz_masks[5];
3373 
3374 /*
3375  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3376  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3377  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3378  */
3379 #define PAGE_BTI            PAGE_TARGET_1
3380 #define PAGE_MTE            PAGE_TARGET_2
3381 #define PAGE_TARGET_STICKY  PAGE_MTE
3382 
3383 /* We associate one allocation tag per 16 bytes, the minimum.  */
3384 #define LOG2_TAG_GRANULE 4
3385 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3386 
3387 #ifdef CONFIG_USER_ONLY
3388 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3389 #endif
3390 
3391 #ifdef TARGET_TAGGED_ADDRESSES
3392 /**
3393  * cpu_untagged_addr:
3394  * @cs: CPU context
3395  * @x: tagged address
3396  *
3397  * Remove any address tag from @x.  This is explicitly related to the
3398  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3399  *
3400  * There should be a better place to put this, but we need this in
3401  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3402  */
3403 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3404 {
3405     ARMCPU *cpu = ARM_CPU(cs);
3406     if (cpu->env.tagged_addr_enable) {
3407         /*
3408          * TBI is enabled for userspace but not kernelspace addresses.
3409          * Only clear the tag if bit 55 is clear.
3410          */
3411         x &= sextract64(x, 0, 56);
3412     }
3413     return x;
3414 }
3415 #endif
3416 
3417 #endif
3418