xref: /openbmc/qemu/target/arm/cpu.h (revision e95c74c5e5522f6270092b788c3a96dfd8a93671)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 typedef struct {
170     uint64_t raw_tcr;
171     uint32_t mask;
172     uint32_t base_mask;
173 } TCR;
174 
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
179 
180 /* Define a maximum sized vector register.
181  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182  * For 64-bit, this is a 2048-bit SVE register.
183  *
184  * Note that the mapping between S, D, and Q views of the register bank
185  * differs between AArch64 and AArch32.
186  * In AArch32:
187  *  Qn = regs[n].d[1]:regs[n].d[0]
188  *  Dn = regs[n / 2].d[n & 1]
189  *  Sn = regs[n / 4].d[n % 4 / 2],
190  *       bits 31..0 for even n, and bits 63..32 for odd n
191  *       (and regs[16] to regs[31] are inaccessible)
192  * In AArch64:
193  *  Zn = regs[n].d[*]
194  *  Qn = regs[n].d[1]:regs[n].d[0]
195  *  Dn = regs[n].d[0]
196  *  Sn = regs[n].d[0] bits 31..0
197  *  Hn = regs[n].d[0] bits 15..0
198  *
199  * This corresponds to the architecturally defined mapping between
200  * the two execution states, and means we do not need to explicitly
201  * map these registers when changing states.
202  *
203  * Align the data for use with TCG host vector operations.
204  */
205 
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ    16
208 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
209 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
210 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
211 #else
212 # define ARM_MAX_VQ    1
213 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
214 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
215 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
216 #endif
217 
218 typedef struct ARMVectorReg {
219     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220 } ARMVectorReg;
221 
222 #ifdef TARGET_AARCH64
223 /* In AArch32 mode, predicate registers do not exist at all.  */
224 typedef struct ARMPredicateReg {
225     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
226 } ARMPredicateReg;
227 
228 /* In AArch32 mode, PAC keys do not exist at all.  */
229 typedef struct ARMPACKey {
230     uint64_t lo, hi;
231 } ARMPACKey;
232 #endif
233 
234 /* See the commentary above the TBFLAG field definitions.  */
235 typedef struct CPUARMTBFlags {
236     uint32_t flags;
237     target_ulong flags2;
238 } CPUARMTBFlags;
239 
240 typedef struct CPUArchState {
241     /* Regs for current mode.  */
242     uint32_t regs[16];
243 
244     /* 32/64 switch only happens when taking and returning from
245      * exceptions so the overlap semantics are taken care of then
246      * instead of having a complicated union.
247      */
248     /* Regs for A64 mode.  */
249     uint64_t xregs[32];
250     uint64_t pc;
251     /* PSTATE isn't an architectural register for ARMv8. However, it is
252      * convenient for us to assemble the underlying state into a 32 bit format
253      * identical to the architectural format used for the SPSR. (This is also
254      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255      * 'pstate' register are.) Of the PSTATE bits:
256      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257      *    semantics as for AArch32, as described in the comments on each field)
258      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
259      *  DAIF (exception masks) are kept in env->daif
260      *  BTYPE is kept in env->btype
261      *  all other bits are stored in their correct places in env->pstate
262      */
263     uint32_t pstate;
264     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
265     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
266 
267     /* Cached TBFLAGS state.  See below for which bits are included.  */
268     CPUARMTBFlags hflags;
269 
270     /* Frequently accessed CPSR bits are stored separately for efficiency.
271        This contains all the other bits.  Use cpsr_{read,write} to access
272        the whole CPSR.  */
273     uint32_t uncached_cpsr;
274     uint32_t spsr;
275 
276     /* Banked registers.  */
277     uint64_t banked_spsr[8];
278     uint32_t banked_r13[8];
279     uint32_t banked_r14[8];
280 
281     /* These hold r8-r12.  */
282     uint32_t usr_regs[5];
283     uint32_t fiq_regs[5];
284 
285     /* cpsr flag cache for faster execution */
286     uint32_t CF; /* 0 or 1 */
287     uint32_t VF; /* V is the bit 31. All other bits are undefined */
288     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
289     uint32_t ZF; /* Z set if zero.  */
290     uint32_t QF; /* 0 or 1 */
291     uint32_t GE; /* cpsr[19:16] */
292     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
293     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
294     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
295 
296     uint64_t elr_el[4]; /* AArch64 exception link regs  */
297     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
298 
299     /* System control coprocessor (cp15) */
300     struct {
301         uint32_t c0_cpuid;
302         union { /* Cache size selection */
303             struct {
304                 uint64_t _unused_csselr0;
305                 uint64_t csselr_ns;
306                 uint64_t _unused_csselr1;
307                 uint64_t csselr_s;
308             };
309             uint64_t csselr_el[4];
310         };
311         union { /* System control register. */
312             struct {
313                 uint64_t _unused_sctlr;
314                 uint64_t sctlr_ns;
315                 uint64_t hsctlr;
316                 uint64_t sctlr_s;
317             };
318             uint64_t sctlr_el[4];
319         };
320         uint64_t cpacr_el1; /* Architectural feature access control register */
321         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
322         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
323         uint64_t sder; /* Secure debug enable register. */
324         uint32_t nsacr; /* Non-secure access control register. */
325         union { /* MMU translation table base 0. */
326             struct {
327                 uint64_t _unused_ttbr0_0;
328                 uint64_t ttbr0_ns;
329                 uint64_t _unused_ttbr0_1;
330                 uint64_t ttbr0_s;
331             };
332             uint64_t ttbr0_el[4];
333         };
334         union { /* MMU translation table base 1. */
335             struct {
336                 uint64_t _unused_ttbr1_0;
337                 uint64_t ttbr1_ns;
338                 uint64_t _unused_ttbr1_1;
339                 uint64_t ttbr1_s;
340             };
341             uint64_t ttbr1_el[4];
342         };
343         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
344         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
345         /* MMU translation table base control. */
346         TCR tcr_el[4];
347         TCR vtcr_el2; /* Virtualization Translation Control.  */
348         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
349         uint32_t c2_data; /* MPU data cacheable bits.  */
350         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
351         union { /* MMU domain access control register
352                  * MPU write buffer control.
353                  */
354             struct {
355                 uint64_t dacr_ns;
356                 uint64_t dacr_s;
357             };
358             struct {
359                 uint64_t dacr32_el2;
360             };
361         };
362         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
364         uint64_t hcr_el2; /* Hypervisor configuration register */
365         uint64_t scr_el3; /* Secure configuration register.  */
366         union { /* Fault status registers.  */
367             struct {
368                 uint64_t ifsr_ns;
369                 uint64_t ifsr_s;
370             };
371             struct {
372                 uint64_t ifsr32_el2;
373             };
374         };
375         union {
376             struct {
377                 uint64_t _unused_dfsr;
378                 uint64_t dfsr_ns;
379                 uint64_t hsr;
380                 uint64_t dfsr_s;
381             };
382             uint64_t esr_el[4];
383         };
384         uint32_t c6_region[8]; /* MPU base/size registers.  */
385         union { /* Fault address registers. */
386             struct {
387                 uint64_t _unused_far0;
388 #if HOST_BIG_ENDIAN
389                 uint32_t ifar_ns;
390                 uint32_t dfar_ns;
391                 uint32_t ifar_s;
392                 uint32_t dfar_s;
393 #else
394                 uint32_t dfar_ns;
395                 uint32_t ifar_ns;
396                 uint32_t dfar_s;
397                 uint32_t ifar_s;
398 #endif
399                 uint64_t _unused_far3;
400             };
401             uint64_t far_el[4];
402         };
403         uint64_t hpfar_el2;
404         uint64_t hstr_el2;
405         union { /* Translation result. */
406             struct {
407                 uint64_t _unused_par_0;
408                 uint64_t par_ns;
409                 uint64_t _unused_par_1;
410                 uint64_t par_s;
411             };
412             uint64_t par_el[4];
413         };
414 
415         uint32_t c9_insn; /* Cache lockdown registers.  */
416         uint32_t c9_data;
417         uint64_t c9_pmcr; /* performance monitor control register */
418         uint64_t c9_pmcnten; /* perf monitor counter enables */
419         uint64_t c9_pmovsr; /* perf monitor overflow status */
420         uint64_t c9_pmuserenr; /* perf monitor user enable */
421         uint64_t c9_pmselr; /* perf monitor counter selection register */
422         uint64_t c9_pminten; /* perf monitor interrupt enables */
423         union { /* Memory attribute redirection */
424             struct {
425 #if HOST_BIG_ENDIAN
426                 uint64_t _unused_mair_0;
427                 uint32_t mair1_ns;
428                 uint32_t mair0_ns;
429                 uint64_t _unused_mair_1;
430                 uint32_t mair1_s;
431                 uint32_t mair0_s;
432 #else
433                 uint64_t _unused_mair_0;
434                 uint32_t mair0_ns;
435                 uint32_t mair1_ns;
436                 uint64_t _unused_mair_1;
437                 uint32_t mair0_s;
438                 uint32_t mair1_s;
439 #endif
440             };
441             uint64_t mair_el[4];
442         };
443         union { /* vector base address register */
444             struct {
445                 uint64_t _unused_vbar;
446                 uint64_t vbar_ns;
447                 uint64_t hvbar;
448                 uint64_t vbar_s;
449             };
450             uint64_t vbar_el[4];
451         };
452         uint32_t mvbar; /* (monitor) vector base address register */
453         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
454         struct { /* FCSE PID. */
455             uint32_t fcseidr_ns;
456             uint32_t fcseidr_s;
457         };
458         union { /* Context ID. */
459             struct {
460                 uint64_t _unused_contextidr_0;
461                 uint64_t contextidr_ns;
462                 uint64_t _unused_contextidr_1;
463                 uint64_t contextidr_s;
464             };
465             uint64_t contextidr_el[4];
466         };
467         union { /* User RW Thread register. */
468             struct {
469                 uint64_t tpidrurw_ns;
470                 uint64_t tpidrprw_ns;
471                 uint64_t htpidr;
472                 uint64_t _tpidr_el3;
473             };
474             uint64_t tpidr_el[4];
475         };
476         /* The secure banks of these registers don't map anywhere */
477         uint64_t tpidrurw_s;
478         uint64_t tpidrprw_s;
479         uint64_t tpidruro_s;
480 
481         union { /* User RO Thread register. */
482             uint64_t tpidruro_ns;
483             uint64_t tpidrro_el[1];
484         };
485         uint64_t c14_cntfrq; /* Counter Frequency register */
486         uint64_t c14_cntkctl; /* Timer Control register */
487         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
488         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
489         ARMGenericTimer c14_timer[NUM_GTIMERS];
490         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
491         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
492         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
493         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
494         uint32_t c15_threadid; /* TI debugger thread-ID.  */
495         uint32_t c15_config_base_address; /* SCU base address.  */
496         uint32_t c15_diagnostic; /* diagnostic register */
497         uint32_t c15_power_diagnostic;
498         uint32_t c15_power_control; /* power control */
499         uint64_t dbgbvr[16]; /* breakpoint value registers */
500         uint64_t dbgbcr[16]; /* breakpoint control registers */
501         uint64_t dbgwvr[16]; /* watchpoint value registers */
502         uint64_t dbgwcr[16]; /* watchpoint control registers */
503         uint64_t mdscr_el1;
504         uint64_t oslsr_el1; /* OS Lock Status */
505         uint64_t mdcr_el2;
506         uint64_t mdcr_el3;
507         /* Stores the architectural value of the counter *the last time it was
508          * updated* by pmccntr_op_start. Accesses should always be surrounded
509          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510          * architecturally-correct value is being read/set.
511          */
512         uint64_t c15_ccnt;
513         /* Stores the delta between the architectural value and the underlying
514          * cycle count during normal operation. It is used to update c15_ccnt
515          * to be the correct architectural value before accesses. During
516          * accesses, c15_ccnt_delta contains the underlying count being used
517          * for the access, after which it reverts to the delta value in
518          * pmccntr_op_finish.
519          */
520         uint64_t c15_ccnt_delta;
521         uint64_t c14_pmevcntr[31];
522         uint64_t c14_pmevcntr_delta[31];
523         uint64_t c14_pmevtyper[31];
524         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
525         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
526         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
527         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
528         uint64_t gcr_el1;
529         uint64_t rgsr_el1;
530 
531         /* Minimal RAS registers */
532         uint64_t disr_el1;
533         uint64_t vdisr_el2;
534         uint64_t vsesr_el2;
535     } cp15;
536 
537     struct {
538         /* M profile has up to 4 stack pointers:
539          * a Main Stack Pointer and a Process Stack Pointer for each
540          * of the Secure and Non-Secure states. (If the CPU doesn't support
541          * the security extension then it has only two SPs.)
542          * In QEMU we always store the currently active SP in regs[13],
543          * and the non-active SP for the current security state in
544          * v7m.other_sp. The stack pointers for the inactive security state
545          * are stored in other_ss_msp and other_ss_psp.
546          * switch_v7m_security_state() is responsible for rearranging them
547          * when we change security state.
548          */
549         uint32_t other_sp;
550         uint32_t other_ss_msp;
551         uint32_t other_ss_psp;
552         uint32_t vecbase[M_REG_NUM_BANKS];
553         uint32_t basepri[M_REG_NUM_BANKS];
554         uint32_t control[M_REG_NUM_BANKS];
555         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
556         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
557         uint32_t hfsr; /* HardFault Status */
558         uint32_t dfsr; /* Debug Fault Status Register */
559         uint32_t sfsr; /* Secure Fault Status Register */
560         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
561         uint32_t bfar; /* BusFault Address */
562         uint32_t sfar; /* Secure Fault Address Register */
563         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
564         int exception;
565         uint32_t primask[M_REG_NUM_BANKS];
566         uint32_t faultmask[M_REG_NUM_BANKS];
567         uint32_t aircr; /* only holds r/w state if security extn implemented */
568         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
569         uint32_t csselr[M_REG_NUM_BANKS];
570         uint32_t scr[M_REG_NUM_BANKS];
571         uint32_t msplim[M_REG_NUM_BANKS];
572         uint32_t psplim[M_REG_NUM_BANKS];
573         uint32_t fpcar[M_REG_NUM_BANKS];
574         uint32_t fpccr[M_REG_NUM_BANKS];
575         uint32_t fpdscr[M_REG_NUM_BANKS];
576         uint32_t cpacr[M_REG_NUM_BANKS];
577         uint32_t nsacr;
578         uint32_t ltpsize;
579         uint32_t vpr;
580     } v7m;
581 
582     /* Information associated with an exception about to be taken:
583      * code which raises an exception must set cs->exception_index and
584      * the relevant parts of this structure; the cpu_do_interrupt function
585      * will then set the guest-visible registers as part of the exception
586      * entry process.
587      */
588     struct {
589         uint32_t syndrome; /* AArch64 format syndrome register */
590         uint32_t fsr; /* AArch32 format fault status register info */
591         uint64_t vaddress; /* virtual addr associated with exception, if any */
592         uint32_t target_el; /* EL the exception should be targeted for */
593         /* If we implement EL2 we will also need to store information
594          * about the intermediate physical address for stage 2 faults.
595          */
596     } exception;
597 
598     /* Information associated with an SError */
599     struct {
600         uint8_t pending;
601         uint8_t has_esr;
602         uint64_t esr;
603     } serror;
604 
605     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
606 
607     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
608     uint32_t irq_line_state;
609 
610     /* Thumb-2 EE state.  */
611     uint32_t teecr;
612     uint32_t teehbr;
613 
614     /* VFP coprocessor state.  */
615     struct {
616         ARMVectorReg zregs[32];
617 
618 #ifdef TARGET_AARCH64
619         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
620 #define FFR_PRED_NUM 16
621         ARMPredicateReg pregs[17];
622         /* Scratch space for aa64 sve predicate temporary.  */
623         ARMPredicateReg preg_tmp;
624 #endif
625 
626         /* We store these fpcsr fields separately for convenience.  */
627         uint32_t qc[4] QEMU_ALIGNED(16);
628         int vec_len;
629         int vec_stride;
630 
631         uint32_t xregs[16];
632 
633         /* Scratch space for aa32 neon expansion.  */
634         uint32_t scratch[8];
635 
636         /* There are a number of distinct float control structures:
637          *
638          *  fp_status: is the "normal" fp status.
639          *  fp_status_fp16: used for half-precision calculations
640          *  standard_fp_status : the ARM "Standard FPSCR Value"
641          *  standard_fp_status_fp16 : used for half-precision
642          *       calculations with the ARM "Standard FPSCR Value"
643          *
644          * Half-precision operations are governed by a separate
645          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
646          * status structure to control this.
647          *
648          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
649          * round-to-nearest and is used by any operations (generally
650          * Neon) which the architecture defines as controlled by the
651          * standard FPSCR value rather than the FPSCR.
652          *
653          * The "standard FPSCR but for fp16 ops" is needed because
654          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
655          * using a fixed value for it.
656          *
657          * To avoid having to transfer exception bits around, we simply
658          * say that the FPSCR cumulative exception flags are the logical
659          * OR of the flags in the four fp statuses. This relies on the
660          * only thing which needs to read the exception flags being
661          * an explicit FPSCR read.
662          */
663         float_status fp_status;
664         float_status fp_status_f16;
665         float_status standard_fp_status;
666         float_status standard_fp_status_f16;
667 
668         /* ZCR_EL[1-3] */
669         uint64_t zcr_el[4];
670     } vfp;
671     uint64_t exclusive_addr;
672     uint64_t exclusive_val;
673     uint64_t exclusive_high;
674 
675     /* iwMMXt coprocessor state.  */
676     struct {
677         uint64_t regs[16];
678         uint64_t val;
679 
680         uint32_t cregs[16];
681     } iwmmxt;
682 
683 #ifdef TARGET_AARCH64
684     struct {
685         ARMPACKey apia;
686         ARMPACKey apib;
687         ARMPACKey apda;
688         ARMPACKey apdb;
689         ARMPACKey apga;
690     } keys;
691 #endif
692 
693 #if defined(CONFIG_USER_ONLY)
694     /* For usermode syscall translation.  */
695     int eabi;
696 #endif
697 
698     struct CPUBreakpoint *cpu_breakpoint[16];
699     struct CPUWatchpoint *cpu_watchpoint[16];
700 
701     /* Fields up to this point are cleared by a CPU reset */
702     struct {} end_reset_fields;
703 
704     /* Fields after this point are preserved across CPU reset. */
705 
706     /* Internal CPU feature flags.  */
707     uint64_t features;
708 
709     /* PMSAv7 MPU */
710     struct {
711         uint32_t *drbar;
712         uint32_t *drsr;
713         uint32_t *dracr;
714         uint32_t rnr[M_REG_NUM_BANKS];
715     } pmsav7;
716 
717     /* PMSAv8 MPU */
718     struct {
719         /* The PMSAv8 implementation also shares some PMSAv7 config
720          * and state:
721          *  pmsav7.rnr (region number register)
722          *  pmsav7_dregion (number of configured regions)
723          */
724         uint32_t *rbar[M_REG_NUM_BANKS];
725         uint32_t *rlar[M_REG_NUM_BANKS];
726         uint32_t mair0[M_REG_NUM_BANKS];
727         uint32_t mair1[M_REG_NUM_BANKS];
728     } pmsav8;
729 
730     /* v8M SAU */
731     struct {
732         uint32_t *rbar;
733         uint32_t *rlar;
734         uint32_t rnr;
735         uint32_t ctrl;
736     } sau;
737 
738     void *nvic;
739     const struct arm_boot_info *boot_info;
740     /* Store GICv3CPUState to access from this struct */
741     void *gicv3state;
742 
743 #ifdef TARGET_TAGGED_ADDRESSES
744     /* Linux syscall tagged address support */
745     bool tagged_addr_enable;
746 #endif
747 } CPUARMState;
748 
749 static inline void set_feature(CPUARMState *env, int feature)
750 {
751     env->features |= 1ULL << feature;
752 }
753 
754 static inline void unset_feature(CPUARMState *env, int feature)
755 {
756     env->features &= ~(1ULL << feature);
757 }
758 
759 /**
760  * ARMELChangeHookFn:
761  * type of a function which can be registered via arm_register_el_change_hook()
762  * to get callbacks when the CPU changes its exception level or mode.
763  */
764 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
765 typedef struct ARMELChangeHook ARMELChangeHook;
766 struct ARMELChangeHook {
767     ARMELChangeHookFn *hook;
768     void *opaque;
769     QLIST_ENTRY(ARMELChangeHook) node;
770 };
771 
772 /* These values map onto the return values for
773  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
774 typedef enum ARMPSCIState {
775     PSCI_ON = 0,
776     PSCI_OFF = 1,
777     PSCI_ON_PENDING = 2
778 } ARMPSCIState;
779 
780 typedef struct ARMISARegisters ARMISARegisters;
781 
782 /**
783  * ARMCPU:
784  * @env: #CPUARMState
785  *
786  * An ARM CPU core.
787  */
788 struct ArchCPU {
789     /*< private >*/
790     CPUState parent_obj;
791     /*< public >*/
792 
793     CPUNegativeOffsetState neg;
794     CPUARMState env;
795 
796     /* Coprocessor information */
797     GHashTable *cp_regs;
798     /* For marshalling (mostly coprocessor) register state between the
799      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
800      * we use these arrays.
801      */
802     /* List of register indexes managed via these arrays; (full KVM style
803      * 64 bit indexes, not CPRegInfo 32 bit indexes)
804      */
805     uint64_t *cpreg_indexes;
806     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
807     uint64_t *cpreg_values;
808     /* Length of the indexes, values, reset_values arrays */
809     int32_t cpreg_array_len;
810     /* These are used only for migration: incoming data arrives in
811      * these fields and is sanity checked in post_load before copying
812      * to the working data structures above.
813      */
814     uint64_t *cpreg_vmstate_indexes;
815     uint64_t *cpreg_vmstate_values;
816     int32_t cpreg_vmstate_array_len;
817 
818     DynamicGDBXMLInfo dyn_sysreg_xml;
819     DynamicGDBXMLInfo dyn_svereg_xml;
820 
821     /* Timers used by the generic (architected) timer */
822     QEMUTimer *gt_timer[NUM_GTIMERS];
823     /*
824      * Timer used by the PMU. Its state is restored after migration by
825      * pmu_op_finish() - it does not need other handling during migration
826      */
827     QEMUTimer *pmu_timer;
828     /* GPIO outputs for generic timer */
829     qemu_irq gt_timer_outputs[NUM_GTIMERS];
830     /* GPIO output for GICv3 maintenance interrupt signal */
831     qemu_irq gicv3_maintenance_interrupt;
832     /* GPIO output for the PMU interrupt */
833     qemu_irq pmu_interrupt;
834 
835     /* MemoryRegion to use for secure physical accesses */
836     MemoryRegion *secure_memory;
837 
838     /* MemoryRegion to use for allocation tag accesses */
839     MemoryRegion *tag_memory;
840     MemoryRegion *secure_tag_memory;
841 
842     /* For v8M, pointer to the IDAU interface provided by board/SoC */
843     Object *idau;
844 
845     /* 'compatible' string for this CPU for Linux device trees */
846     const char *dtb_compatible;
847 
848     /* PSCI version for this CPU
849      * Bits[31:16] = Major Version
850      * Bits[15:0] = Minor Version
851      */
852     uint32_t psci_version;
853 
854     /* Current power state, access guarded by BQL */
855     ARMPSCIState power_state;
856 
857     /* CPU has virtualization extension */
858     bool has_el2;
859     /* CPU has security extension */
860     bool has_el3;
861     /* CPU has PMU (Performance Monitor Unit) */
862     bool has_pmu;
863     /* CPU has VFP */
864     bool has_vfp;
865     /* CPU has Neon */
866     bool has_neon;
867     /* CPU has M-profile DSP extension */
868     bool has_dsp;
869 
870     /* CPU has memory protection unit */
871     bool has_mpu;
872     /* PMSAv7 MPU number of supported regions */
873     uint32_t pmsav7_dregion;
874     /* v8M SAU number of supported regions */
875     uint32_t sau_sregion;
876 
877     /* PSCI conduit used to invoke PSCI methods
878      * 0 - disabled, 1 - smc, 2 - hvc
879      */
880     uint32_t psci_conduit;
881 
882     /* For v8M, initial value of the Secure VTOR */
883     uint32_t init_svtor;
884     /* For v8M, initial value of the Non-secure VTOR */
885     uint32_t init_nsvtor;
886 
887     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
888      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
889      */
890     uint32_t kvm_target;
891 
892     /* KVM init features for this CPU */
893     uint32_t kvm_init_features[7];
894 
895     /* KVM CPU state */
896 
897     /* KVM virtual time adjustment */
898     bool kvm_adjvtime;
899     bool kvm_vtime_dirty;
900     uint64_t kvm_vtime;
901 
902     /* KVM steal time */
903     OnOffAuto kvm_steal_time;
904 
905     /* Uniprocessor system with MP extensions */
906     bool mp_is_up;
907 
908     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
909      * and the probe failed (so we need to report the error in realize)
910      */
911     bool host_cpu_probe_failed;
912 
913     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
914      * register.
915      */
916     int32_t core_count;
917 
918     /* The instance init functions for implementation-specific subclasses
919      * set these fields to specify the implementation-dependent values of
920      * various constant registers and reset values of non-constant
921      * registers.
922      * Some of these might become QOM properties eventually.
923      * Field names match the official register names as defined in the
924      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
925      * is used for reset values of non-constant registers; no reset_
926      * prefix means a constant register.
927      * Some of these registers are split out into a substructure that
928      * is shared with the translators to control the ISA.
929      *
930      * Note that if you add an ID register to the ARMISARegisters struct
931      * you need to also update the 32-bit and 64-bit versions of the
932      * kvm_arm_get_host_cpu_features() function to correctly populate the
933      * field by reading the value from the KVM vCPU.
934      */
935     struct ARMISARegisters {
936         uint32_t id_isar0;
937         uint32_t id_isar1;
938         uint32_t id_isar2;
939         uint32_t id_isar3;
940         uint32_t id_isar4;
941         uint32_t id_isar5;
942         uint32_t id_isar6;
943         uint32_t id_mmfr0;
944         uint32_t id_mmfr1;
945         uint32_t id_mmfr2;
946         uint32_t id_mmfr3;
947         uint32_t id_mmfr4;
948         uint32_t id_pfr0;
949         uint32_t id_pfr1;
950         uint32_t id_pfr2;
951         uint32_t mvfr0;
952         uint32_t mvfr1;
953         uint32_t mvfr2;
954         uint32_t id_dfr0;
955         uint32_t dbgdidr;
956         uint64_t id_aa64isar0;
957         uint64_t id_aa64isar1;
958         uint64_t id_aa64pfr0;
959         uint64_t id_aa64pfr1;
960         uint64_t id_aa64mmfr0;
961         uint64_t id_aa64mmfr1;
962         uint64_t id_aa64mmfr2;
963         uint64_t id_aa64dfr0;
964         uint64_t id_aa64dfr1;
965         uint64_t id_aa64zfr0;
966     } isar;
967     uint64_t midr;
968     uint32_t revidr;
969     uint32_t reset_fpsid;
970     uint64_t ctr;
971     uint32_t reset_sctlr;
972     uint64_t pmceid0;
973     uint64_t pmceid1;
974     uint32_t id_afr0;
975     uint64_t id_aa64afr0;
976     uint64_t id_aa64afr1;
977     uint64_t clidr;
978     uint64_t mp_affinity; /* MP ID without feature bits */
979     /* The elements of this array are the CCSIDR values for each cache,
980      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
981      */
982     uint64_t ccsidr[16];
983     uint64_t reset_cbar;
984     uint32_t reset_auxcr;
985     bool reset_hivecs;
986 
987     /*
988      * Intermediate values used during property parsing.
989      * Once finalized, the values should be read from ID_AA64*.
990      */
991     bool prop_pauth;
992     bool prop_pauth_impdef;
993     bool prop_lpa2;
994 
995     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
996     uint32_t dcz_blocksize;
997     uint64_t rvbar_prop; /* Property/input signals.  */
998 
999     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1000     int gic_num_lrs; /* number of list registers */
1001     int gic_vpribits; /* number of virtual priority bits */
1002     int gic_vprebits; /* number of virtual preemption bits */
1003 
1004     /* Whether the cfgend input is high (i.e. this CPU should reset into
1005      * big-endian mode).  This setting isn't used directly: instead it modifies
1006      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1007      * architecture version.
1008      */
1009     bool cfgend;
1010 
1011     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1012     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1013 
1014     int32_t node_id; /* NUMA node this CPU belongs to */
1015 
1016     /* Used to synchronize KVM and QEMU in-kernel device levels */
1017     uint8_t device_irq_level;
1018 
1019     /* Used to set the maximum vector length the cpu will support.  */
1020     uint32_t sve_max_vq;
1021 
1022 #ifdef CONFIG_USER_ONLY
1023     /* Used to set the default vector length at process start. */
1024     uint32_t sve_default_vq;
1025 #endif
1026 
1027     /*
1028      * In sve_vq_map each set bit is a supported vector length of
1029      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1030      * length in quadwords.
1031      *
1032      * While processing properties during initialization, corresponding
1033      * sve_vq_init bits are set for bits in sve_vq_map that have been
1034      * set by properties.
1035      *
1036      * Bits set in sve_vq_supported represent valid vector lengths for
1037      * the CPU type.
1038      */
1039     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1040     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1041     DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1042 
1043     /* Generic timer counter frequency, in Hz */
1044     uint64_t gt_cntfrq_hz;
1045 };
1046 
1047 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1048 
1049 void arm_cpu_post_init(Object *obj);
1050 
1051 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1052 
1053 #ifndef CONFIG_USER_ONLY
1054 extern const VMStateDescription vmstate_arm_cpu;
1055 
1056 void arm_cpu_do_interrupt(CPUState *cpu);
1057 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1058 #endif /* !CONFIG_USER_ONLY */
1059 
1060 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1061                                          MemTxAttrs *attrs);
1062 
1063 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1064 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1065 
1066 /*
1067  * Helpers to dynamically generates XML descriptions of the sysregs
1068  * and SVE registers. Returns the number of registers in each set.
1069  */
1070 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1071 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1072 
1073 /* Returns the dynamically generated XML for the gdb stub.
1074  * Returns a pointer to the XML contents for the specified XML file or NULL
1075  * if the XML name doesn't match the predefined one.
1076  */
1077 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1078 
1079 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1080                              int cpuid, void *opaque);
1081 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1082                              int cpuid, void *opaque);
1083 
1084 #ifdef TARGET_AARCH64
1085 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1086 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1087 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1088 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1089                            int new_el, bool el0_a64);
1090 void aarch64_add_sve_properties(Object *obj);
1091 void aarch64_add_pauth_properties(Object *obj);
1092 
1093 /*
1094  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1095  * The byte at offset i from the start of the in-memory representation contains
1096  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1097  * lowest offsets are stored in the lowest memory addresses, then that nearly
1098  * matches QEMU's representation, which is to use an array of host-endian
1099  * uint64_t's, where the lower offsets are at the lower indices. To complete
1100  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1101  */
1102 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1103 {
1104 #if HOST_BIG_ENDIAN
1105     int i;
1106 
1107     for (i = 0; i < nr; ++i) {
1108         dst[i] = bswap64(src[i]);
1109     }
1110 
1111     return dst;
1112 #else
1113     return src;
1114 #endif
1115 }
1116 
1117 #else
1118 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1119 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1120                                          int n, bool a)
1121 { }
1122 static inline void aarch64_add_sve_properties(Object *obj) { }
1123 #endif
1124 
1125 void aarch64_sync_32_to_64(CPUARMState *env);
1126 void aarch64_sync_64_to_32(CPUARMState *env);
1127 
1128 int fp_exception_el(CPUARMState *env, int cur_el);
1129 int sve_exception_el(CPUARMState *env, int cur_el);
1130 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1131 
1132 static inline bool is_a64(CPUARMState *env)
1133 {
1134     return env->aarch64;
1135 }
1136 
1137 /**
1138  * pmu_op_start/finish
1139  * @env: CPUARMState
1140  *
1141  * Convert all PMU counters between their delta form (the typical mode when
1142  * they are enabled) and the guest-visible values. These two calls must
1143  * surround any action which might affect the counters.
1144  */
1145 void pmu_op_start(CPUARMState *env);
1146 void pmu_op_finish(CPUARMState *env);
1147 
1148 /*
1149  * Called when a PMU counter is due to overflow
1150  */
1151 void arm_pmu_timer_cb(void *opaque);
1152 
1153 /**
1154  * Functions to register as EL change hooks for PMU mode filtering
1155  */
1156 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1157 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1158 
1159 /*
1160  * pmu_init
1161  * @cpu: ARMCPU
1162  *
1163  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1164  * for the current configuration
1165  */
1166 void pmu_init(ARMCPU *cpu);
1167 
1168 /* SCTLR bit meanings. Several bits have been reused in newer
1169  * versions of the architecture; in that case we define constants
1170  * for both old and new bit meanings. Code which tests against those
1171  * bits should probably check or otherwise arrange that the CPU
1172  * is the architectural version it expects.
1173  */
1174 #define SCTLR_M       (1U << 0)
1175 #define SCTLR_A       (1U << 1)
1176 #define SCTLR_C       (1U << 2)
1177 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1178 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1179 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1180 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1181 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1182 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1183 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1184 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1185 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1186 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1187 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1188 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1189 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1190 #define SCTLR_SED     (1U << 8) /* v8 onward */
1191 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1192 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1193 #define SCTLR_F       (1U << 10) /* up to v6 */
1194 #define SCTLR_SW      (1U << 10) /* v7 */
1195 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1196 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1197 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1198 #define SCTLR_I       (1U << 12)
1199 #define SCTLR_V       (1U << 13) /* AArch32 only */
1200 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1201 #define SCTLR_RR      (1U << 14) /* up to v7 */
1202 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1203 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1204 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1205 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1206 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1207 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1208 #define SCTLR_BR      (1U << 17) /* PMSA only */
1209 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1210 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1211 #define SCTLR_WXN     (1U << 19)
1212 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1213 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1214 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1215 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1216 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1217 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1218 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1219 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1220 #define SCTLR_VE      (1U << 24) /* up to v7 */
1221 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1222 #define SCTLR_EE      (1U << 25)
1223 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1224 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1225 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1226 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1227 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1228 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1229 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1230 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1231 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1232 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1233 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1234 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1235 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1236 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1237 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1238 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1239 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1240 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1241 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1242 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1243 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1244 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1245 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1246 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1247 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1248 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1249 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1250 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1251 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1252 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1253 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1254 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1255 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1256 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1257 
1258 #define CPTR_TCPAC    (1U << 31)
1259 #define CPTR_TTA      (1U << 20)
1260 #define CPTR_TFP      (1U << 10)
1261 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1262 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1263 
1264 #define MDCR_EPMAD    (1U << 21)
1265 #define MDCR_EDAD     (1U << 20)
1266 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1267 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1268 #define MDCR_SDD      (1U << 16)
1269 #define MDCR_SPD      (3U << 14)
1270 #define MDCR_TDRA     (1U << 11)
1271 #define MDCR_TDOSA    (1U << 10)
1272 #define MDCR_TDA      (1U << 9)
1273 #define MDCR_TDE      (1U << 8)
1274 #define MDCR_HPME     (1U << 7)
1275 #define MDCR_TPM      (1U << 6)
1276 #define MDCR_TPMCR    (1U << 5)
1277 #define MDCR_HPMN     (0x1fU)
1278 
1279 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1280 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1281 
1282 #define CPSR_M (0x1fU)
1283 #define CPSR_T (1U << 5)
1284 #define CPSR_F (1U << 6)
1285 #define CPSR_I (1U << 7)
1286 #define CPSR_A (1U << 8)
1287 #define CPSR_E (1U << 9)
1288 #define CPSR_IT_2_7 (0xfc00U)
1289 #define CPSR_GE (0xfU << 16)
1290 #define CPSR_IL (1U << 20)
1291 #define CPSR_DIT (1U << 21)
1292 #define CPSR_PAN (1U << 22)
1293 #define CPSR_SSBS (1U << 23)
1294 #define CPSR_J (1U << 24)
1295 #define CPSR_IT_0_1 (3U << 25)
1296 #define CPSR_Q (1U << 27)
1297 #define CPSR_V (1U << 28)
1298 #define CPSR_C (1U << 29)
1299 #define CPSR_Z (1U << 30)
1300 #define CPSR_N (1U << 31)
1301 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1302 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1303 
1304 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1305 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1306     | CPSR_NZCV)
1307 /* Bits writable in user mode.  */
1308 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1309 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1310 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1311 
1312 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1313 #define XPSR_EXCP 0x1ffU
1314 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1315 #define XPSR_IT_2_7 CPSR_IT_2_7
1316 #define XPSR_GE CPSR_GE
1317 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1318 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1319 #define XPSR_IT_0_1 CPSR_IT_0_1
1320 #define XPSR_Q CPSR_Q
1321 #define XPSR_V CPSR_V
1322 #define XPSR_C CPSR_C
1323 #define XPSR_Z CPSR_Z
1324 #define XPSR_N CPSR_N
1325 #define XPSR_NZCV CPSR_NZCV
1326 #define XPSR_IT CPSR_IT
1327 
1328 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1329 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1330 #define TTBCR_PD0    (1U << 4)
1331 #define TTBCR_PD1    (1U << 5)
1332 #define TTBCR_EPD0   (1U << 7)
1333 #define TTBCR_IRGN0  (3U << 8)
1334 #define TTBCR_ORGN0  (3U << 10)
1335 #define TTBCR_SH0    (3U << 12)
1336 #define TTBCR_T1SZ   (3U << 16)
1337 #define TTBCR_A1     (1U << 22)
1338 #define TTBCR_EPD1   (1U << 23)
1339 #define TTBCR_IRGN1  (3U << 24)
1340 #define TTBCR_ORGN1  (3U << 26)
1341 #define TTBCR_SH1    (1U << 28)
1342 #define TTBCR_EAE    (1U << 31)
1343 
1344 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1345  * Only these are valid when in AArch64 mode; in
1346  * AArch32 mode SPSRs are basically CPSR-format.
1347  */
1348 #define PSTATE_SP (1U)
1349 #define PSTATE_M (0xFU)
1350 #define PSTATE_nRW (1U << 4)
1351 #define PSTATE_F (1U << 6)
1352 #define PSTATE_I (1U << 7)
1353 #define PSTATE_A (1U << 8)
1354 #define PSTATE_D (1U << 9)
1355 #define PSTATE_BTYPE (3U << 10)
1356 #define PSTATE_SSBS (1U << 12)
1357 #define PSTATE_IL (1U << 20)
1358 #define PSTATE_SS (1U << 21)
1359 #define PSTATE_PAN (1U << 22)
1360 #define PSTATE_UAO (1U << 23)
1361 #define PSTATE_DIT (1U << 24)
1362 #define PSTATE_TCO (1U << 25)
1363 #define PSTATE_V (1U << 28)
1364 #define PSTATE_C (1U << 29)
1365 #define PSTATE_Z (1U << 30)
1366 #define PSTATE_N (1U << 31)
1367 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1368 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1369 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1370 /* Mode values for AArch64 */
1371 #define PSTATE_MODE_EL3h 13
1372 #define PSTATE_MODE_EL3t 12
1373 #define PSTATE_MODE_EL2h 9
1374 #define PSTATE_MODE_EL2t 8
1375 #define PSTATE_MODE_EL1h 5
1376 #define PSTATE_MODE_EL1t 4
1377 #define PSTATE_MODE_EL0t 0
1378 
1379 /* Write a new value to v7m.exception, thus transitioning into or out
1380  * of Handler mode; this may result in a change of active stack pointer.
1381  */
1382 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1383 
1384 /* Map EL and handler into a PSTATE_MODE.  */
1385 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1386 {
1387     return (el << 2) | handler;
1388 }
1389 
1390 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1391  * interprocessing, so we don't attempt to sync with the cpsr state used by
1392  * the 32 bit decoder.
1393  */
1394 static inline uint32_t pstate_read(CPUARMState *env)
1395 {
1396     int ZF;
1397 
1398     ZF = (env->ZF == 0);
1399     return (env->NF & 0x80000000) | (ZF << 30)
1400         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1401         | env->pstate | env->daif | (env->btype << 10);
1402 }
1403 
1404 static inline void pstate_write(CPUARMState *env, uint32_t val)
1405 {
1406     env->ZF = (~val) & PSTATE_Z;
1407     env->NF = val;
1408     env->CF = (val >> 29) & 1;
1409     env->VF = (val << 3) & 0x80000000;
1410     env->daif = val & PSTATE_DAIF;
1411     env->btype = (val >> 10) & 3;
1412     env->pstate = val & ~CACHED_PSTATE_BITS;
1413 }
1414 
1415 /* Return the current CPSR value.  */
1416 uint32_t cpsr_read(CPUARMState *env);
1417 
1418 typedef enum CPSRWriteType {
1419     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1420     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1421     CPSRWriteRaw = 2,
1422         /* trust values, no reg bank switch, no hflags rebuild */
1423     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1424 } CPSRWriteType;
1425 
1426 /*
1427  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1428  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1429  * correspond to TB flags bits cached in the hflags, unless @write_type
1430  * is CPSRWriteRaw.
1431  */
1432 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1433                 CPSRWriteType write_type);
1434 
1435 /* Return the current xPSR value.  */
1436 static inline uint32_t xpsr_read(CPUARMState *env)
1437 {
1438     int ZF;
1439     ZF = (env->ZF == 0);
1440     return (env->NF & 0x80000000) | (ZF << 30)
1441         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1442         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1443         | ((env->condexec_bits & 0xfc) << 8)
1444         | (env->GE << 16)
1445         | env->v7m.exception;
1446 }
1447 
1448 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1449 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1450 {
1451     if (mask & XPSR_NZCV) {
1452         env->ZF = (~val) & XPSR_Z;
1453         env->NF = val;
1454         env->CF = (val >> 29) & 1;
1455         env->VF = (val << 3) & 0x80000000;
1456     }
1457     if (mask & XPSR_Q) {
1458         env->QF = ((val & XPSR_Q) != 0);
1459     }
1460     if (mask & XPSR_GE) {
1461         env->GE = (val & XPSR_GE) >> 16;
1462     }
1463 #ifndef CONFIG_USER_ONLY
1464     if (mask & XPSR_T) {
1465         env->thumb = ((val & XPSR_T) != 0);
1466     }
1467     if (mask & XPSR_IT_0_1) {
1468         env->condexec_bits &= ~3;
1469         env->condexec_bits |= (val >> 25) & 3;
1470     }
1471     if (mask & XPSR_IT_2_7) {
1472         env->condexec_bits &= 3;
1473         env->condexec_bits |= (val >> 8) & 0xfc;
1474     }
1475     if (mask & XPSR_EXCP) {
1476         /* Note that this only happens on exception exit */
1477         write_v7m_exception(env, val & XPSR_EXCP);
1478     }
1479 #endif
1480 }
1481 
1482 #define HCR_VM        (1ULL << 0)
1483 #define HCR_SWIO      (1ULL << 1)
1484 #define HCR_PTW       (1ULL << 2)
1485 #define HCR_FMO       (1ULL << 3)
1486 #define HCR_IMO       (1ULL << 4)
1487 #define HCR_AMO       (1ULL << 5)
1488 #define HCR_VF        (1ULL << 6)
1489 #define HCR_VI        (1ULL << 7)
1490 #define HCR_VSE       (1ULL << 8)
1491 #define HCR_FB        (1ULL << 9)
1492 #define HCR_BSU_MASK  (3ULL << 10)
1493 #define HCR_DC        (1ULL << 12)
1494 #define HCR_TWI       (1ULL << 13)
1495 #define HCR_TWE       (1ULL << 14)
1496 #define HCR_TID0      (1ULL << 15)
1497 #define HCR_TID1      (1ULL << 16)
1498 #define HCR_TID2      (1ULL << 17)
1499 #define HCR_TID3      (1ULL << 18)
1500 #define HCR_TSC       (1ULL << 19)
1501 #define HCR_TIDCP     (1ULL << 20)
1502 #define HCR_TACR      (1ULL << 21)
1503 #define HCR_TSW       (1ULL << 22)
1504 #define HCR_TPCP      (1ULL << 23)
1505 #define HCR_TPU       (1ULL << 24)
1506 #define HCR_TTLB      (1ULL << 25)
1507 #define HCR_TVM       (1ULL << 26)
1508 #define HCR_TGE       (1ULL << 27)
1509 #define HCR_TDZ       (1ULL << 28)
1510 #define HCR_HCD       (1ULL << 29)
1511 #define HCR_TRVM      (1ULL << 30)
1512 #define HCR_RW        (1ULL << 31)
1513 #define HCR_CD        (1ULL << 32)
1514 #define HCR_ID        (1ULL << 33)
1515 #define HCR_E2H       (1ULL << 34)
1516 #define HCR_TLOR      (1ULL << 35)
1517 #define HCR_TERR      (1ULL << 36)
1518 #define HCR_TEA       (1ULL << 37)
1519 #define HCR_MIOCNCE   (1ULL << 38)
1520 /* RES0 bit 39 */
1521 #define HCR_APK       (1ULL << 40)
1522 #define HCR_API       (1ULL << 41)
1523 #define HCR_NV        (1ULL << 42)
1524 #define HCR_NV1       (1ULL << 43)
1525 #define HCR_AT        (1ULL << 44)
1526 #define HCR_NV2       (1ULL << 45)
1527 #define HCR_FWB       (1ULL << 46)
1528 #define HCR_FIEN      (1ULL << 47)
1529 /* RES0 bit 48 */
1530 #define HCR_TID4      (1ULL << 49)
1531 #define HCR_TICAB     (1ULL << 50)
1532 #define HCR_AMVOFFEN  (1ULL << 51)
1533 #define HCR_TOCU      (1ULL << 52)
1534 #define HCR_ENSCXT    (1ULL << 53)
1535 #define HCR_TTLBIS    (1ULL << 54)
1536 #define HCR_TTLBOS    (1ULL << 55)
1537 #define HCR_ATA       (1ULL << 56)
1538 #define HCR_DCT       (1ULL << 57)
1539 #define HCR_TID5      (1ULL << 58)
1540 #define HCR_TWEDEN    (1ULL << 59)
1541 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1542 
1543 #define HPFAR_NS      (1ULL << 63)
1544 
1545 #define SCR_NS                (1U << 0)
1546 #define SCR_IRQ               (1U << 1)
1547 #define SCR_FIQ               (1U << 2)
1548 #define SCR_EA                (1U << 3)
1549 #define SCR_FW                (1U << 4)
1550 #define SCR_AW                (1U << 5)
1551 #define SCR_NET               (1U << 6)
1552 #define SCR_SMD               (1U << 7)
1553 #define SCR_HCE               (1U << 8)
1554 #define SCR_SIF               (1U << 9)
1555 #define SCR_RW                (1U << 10)
1556 #define SCR_ST                (1U << 11)
1557 #define SCR_TWI               (1U << 12)
1558 #define SCR_TWE               (1U << 13)
1559 #define SCR_TLOR              (1U << 14)
1560 #define SCR_TERR              (1U << 15)
1561 #define SCR_APK               (1U << 16)
1562 #define SCR_API               (1U << 17)
1563 #define SCR_EEL2              (1U << 18)
1564 #define SCR_EASE              (1U << 19)
1565 #define SCR_NMEA              (1U << 20)
1566 #define SCR_FIEN              (1U << 21)
1567 #define SCR_ENSCXT            (1U << 25)
1568 #define SCR_ATA               (1U << 26)
1569 #define SCR_FGTEN             (1U << 27)
1570 #define SCR_ECVEN             (1U << 28)
1571 #define SCR_TWEDEN            (1U << 29)
1572 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1573 #define SCR_TME               (1ULL << 34)
1574 #define SCR_AMVOFFEN          (1ULL << 35)
1575 #define SCR_ENAS0             (1ULL << 36)
1576 #define SCR_ADEN              (1ULL << 37)
1577 #define SCR_HXEN              (1ULL << 38)
1578 #define SCR_TRNDR             (1ULL << 40)
1579 #define SCR_ENTP2             (1ULL << 41)
1580 #define SCR_GPF               (1ULL << 48)
1581 
1582 #define HSTR_TTEE (1 << 16)
1583 #define HSTR_TJDBX (1 << 17)
1584 
1585 /* Return the current FPSCR value.  */
1586 uint32_t vfp_get_fpscr(CPUARMState *env);
1587 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1588 
1589 /* FPCR, Floating Point Control Register
1590  * FPSR, Floating Poiht Status Register
1591  *
1592  * For A64 the FPSCR is split into two logically distinct registers,
1593  * FPCR and FPSR. However since they still use non-overlapping bits
1594  * we store the underlying state in fpscr and just mask on read/write.
1595  */
1596 #define FPSR_MASK 0xf800009f
1597 #define FPCR_MASK 0x07ff9f00
1598 
1599 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1600 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1601 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1602 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1603 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1604 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1605 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1606 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1607 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1608 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1609 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1610 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1611 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1612 #define FPCR_C      (1 << 29)   /* FP carry flag */
1613 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1614 #define FPCR_N      (1 << 31)   /* FP negative flag */
1615 
1616 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1617 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1618 #define FPCR_LTPSIZE_LENGTH 3
1619 
1620 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1621 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1622 
1623 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1624 {
1625     return vfp_get_fpscr(env) & FPSR_MASK;
1626 }
1627 
1628 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1629 {
1630     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1631     vfp_set_fpscr(env, new_fpscr);
1632 }
1633 
1634 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1635 {
1636     return vfp_get_fpscr(env) & FPCR_MASK;
1637 }
1638 
1639 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1640 {
1641     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1642     vfp_set_fpscr(env, new_fpscr);
1643 }
1644 
1645 enum arm_cpu_mode {
1646   ARM_CPU_MODE_USR = 0x10,
1647   ARM_CPU_MODE_FIQ = 0x11,
1648   ARM_CPU_MODE_IRQ = 0x12,
1649   ARM_CPU_MODE_SVC = 0x13,
1650   ARM_CPU_MODE_MON = 0x16,
1651   ARM_CPU_MODE_ABT = 0x17,
1652   ARM_CPU_MODE_HYP = 0x1a,
1653   ARM_CPU_MODE_UND = 0x1b,
1654   ARM_CPU_MODE_SYS = 0x1f
1655 };
1656 
1657 /* VFP system registers.  */
1658 #define ARM_VFP_FPSID   0
1659 #define ARM_VFP_FPSCR   1
1660 #define ARM_VFP_MVFR2   5
1661 #define ARM_VFP_MVFR1   6
1662 #define ARM_VFP_MVFR0   7
1663 #define ARM_VFP_FPEXC   8
1664 #define ARM_VFP_FPINST  9
1665 #define ARM_VFP_FPINST2 10
1666 /* These ones are M-profile only */
1667 #define ARM_VFP_FPSCR_NZCVQC 2
1668 #define ARM_VFP_VPR 12
1669 #define ARM_VFP_P0 13
1670 #define ARM_VFP_FPCXT_NS 14
1671 #define ARM_VFP_FPCXT_S 15
1672 
1673 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1674 #define QEMU_VFP_FPSCR_NZCV 0xffff
1675 
1676 /* iwMMXt coprocessor control registers.  */
1677 #define ARM_IWMMXT_wCID  0
1678 #define ARM_IWMMXT_wCon  1
1679 #define ARM_IWMMXT_wCSSF 2
1680 #define ARM_IWMMXT_wCASF 3
1681 #define ARM_IWMMXT_wCGR0 8
1682 #define ARM_IWMMXT_wCGR1 9
1683 #define ARM_IWMMXT_wCGR2 10
1684 #define ARM_IWMMXT_wCGR3 11
1685 
1686 /* V7M CCR bits */
1687 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1688 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1689 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1690 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1691 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1692 FIELD(V7M_CCR, STKALIGN, 9, 1)
1693 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1694 FIELD(V7M_CCR, DC, 16, 1)
1695 FIELD(V7M_CCR, IC, 17, 1)
1696 FIELD(V7M_CCR, BP, 18, 1)
1697 FIELD(V7M_CCR, LOB, 19, 1)
1698 FIELD(V7M_CCR, TRD, 20, 1)
1699 
1700 /* V7M SCR bits */
1701 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1702 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1703 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1704 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1705 
1706 /* V7M AIRCR bits */
1707 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1708 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1709 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1710 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1711 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1712 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1713 FIELD(V7M_AIRCR, PRIS, 14, 1)
1714 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1715 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1716 
1717 /* V7M CFSR bits for MMFSR */
1718 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1719 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1720 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1721 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1722 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1723 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1724 
1725 /* V7M CFSR bits for BFSR */
1726 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1727 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1728 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1729 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1730 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1731 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1732 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1733 
1734 /* V7M CFSR bits for UFSR */
1735 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1736 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1737 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1738 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1739 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1740 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1741 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1742 
1743 /* V7M CFSR bit masks covering all of the subregister bits */
1744 FIELD(V7M_CFSR, MMFSR, 0, 8)
1745 FIELD(V7M_CFSR, BFSR, 8, 8)
1746 FIELD(V7M_CFSR, UFSR, 16, 16)
1747 
1748 /* V7M HFSR bits */
1749 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1750 FIELD(V7M_HFSR, FORCED, 30, 1)
1751 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1752 
1753 /* V7M DFSR bits */
1754 FIELD(V7M_DFSR, HALTED, 0, 1)
1755 FIELD(V7M_DFSR, BKPT, 1, 1)
1756 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1757 FIELD(V7M_DFSR, VCATCH, 3, 1)
1758 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1759 
1760 /* V7M SFSR bits */
1761 FIELD(V7M_SFSR, INVEP, 0, 1)
1762 FIELD(V7M_SFSR, INVIS, 1, 1)
1763 FIELD(V7M_SFSR, INVER, 2, 1)
1764 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1765 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1766 FIELD(V7M_SFSR, LSPERR, 5, 1)
1767 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1768 FIELD(V7M_SFSR, LSERR, 7, 1)
1769 
1770 /* v7M MPU_CTRL bits */
1771 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1772 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1773 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1774 
1775 /* v7M CLIDR bits */
1776 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1777 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1778 FIELD(V7M_CLIDR, LOC, 24, 3)
1779 FIELD(V7M_CLIDR, LOUU, 27, 3)
1780 FIELD(V7M_CLIDR, ICB, 30, 2)
1781 
1782 FIELD(V7M_CSSELR, IND, 0, 1)
1783 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1784 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1785  * define a mask for this and check that it doesn't permit running off
1786  * the end of the array.
1787  */
1788 FIELD(V7M_CSSELR, INDEX, 0, 4)
1789 
1790 /* v7M FPCCR bits */
1791 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1792 FIELD(V7M_FPCCR, USER, 1, 1)
1793 FIELD(V7M_FPCCR, S, 2, 1)
1794 FIELD(V7M_FPCCR, THREAD, 3, 1)
1795 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1796 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1797 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1798 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1799 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1800 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1801 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1802 FIELD(V7M_FPCCR, RES0, 11, 15)
1803 FIELD(V7M_FPCCR, TS, 26, 1)
1804 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1805 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1806 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1807 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1808 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1809 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1810 #define R_V7M_FPCCR_BANKED_MASK                 \
1811     (R_V7M_FPCCR_LSPACT_MASK |                  \
1812      R_V7M_FPCCR_USER_MASK |                    \
1813      R_V7M_FPCCR_THREAD_MASK |                  \
1814      R_V7M_FPCCR_MMRDY_MASK |                   \
1815      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1816      R_V7M_FPCCR_UFRDY_MASK |                   \
1817      R_V7M_FPCCR_ASPEN_MASK)
1818 
1819 /* v7M VPR bits */
1820 FIELD(V7M_VPR, P0, 0, 16)
1821 FIELD(V7M_VPR, MASK01, 16, 4)
1822 FIELD(V7M_VPR, MASK23, 20, 4)
1823 
1824 /*
1825  * System register ID fields.
1826  */
1827 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1828 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1829 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1830 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1831 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1832 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1833 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1834 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1835 FIELD(CLIDR_EL1, LOC, 24, 3)
1836 FIELD(CLIDR_EL1, LOUU, 27, 3)
1837 FIELD(CLIDR_EL1, ICB, 30, 3)
1838 
1839 /* When FEAT_CCIDX is implemented */
1840 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1841 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1842 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1843 
1844 /* When FEAT_CCIDX is not implemented */
1845 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1846 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1847 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1848 
1849 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1850 FIELD(CTR_EL0,  L1IP, 14, 2)
1851 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1852 FIELD(CTR_EL0,  ERG, 20, 4)
1853 FIELD(CTR_EL0,  CWG, 24, 4)
1854 FIELD(CTR_EL0,  IDC, 28, 1)
1855 FIELD(CTR_EL0,  DIC, 29, 1)
1856 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1857 
1858 FIELD(MIDR_EL1, REVISION, 0, 4)
1859 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1860 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1861 FIELD(MIDR_EL1, VARIANT, 20, 4)
1862 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1863 
1864 FIELD(ID_ISAR0, SWAP, 0, 4)
1865 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1866 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1867 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1868 FIELD(ID_ISAR0, COPROC, 16, 4)
1869 FIELD(ID_ISAR0, DEBUG, 20, 4)
1870 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1871 
1872 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1873 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1874 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1875 FIELD(ID_ISAR1, EXTEND, 12, 4)
1876 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1877 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1878 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1879 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1880 
1881 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1882 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1883 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1884 FIELD(ID_ISAR2, MULT, 12, 4)
1885 FIELD(ID_ISAR2, MULTS, 16, 4)
1886 FIELD(ID_ISAR2, MULTU, 20, 4)
1887 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1888 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1889 
1890 FIELD(ID_ISAR3, SATURATE, 0, 4)
1891 FIELD(ID_ISAR3, SIMD, 4, 4)
1892 FIELD(ID_ISAR3, SVC, 8, 4)
1893 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1894 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1895 FIELD(ID_ISAR3, T32COPY, 20, 4)
1896 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1897 FIELD(ID_ISAR3, T32EE, 28, 4)
1898 
1899 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1900 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1901 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1902 FIELD(ID_ISAR4, SMC, 12, 4)
1903 FIELD(ID_ISAR4, BARRIER, 16, 4)
1904 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1905 FIELD(ID_ISAR4, PSR_M, 24, 4)
1906 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1907 
1908 FIELD(ID_ISAR5, SEVL, 0, 4)
1909 FIELD(ID_ISAR5, AES, 4, 4)
1910 FIELD(ID_ISAR5, SHA1, 8, 4)
1911 FIELD(ID_ISAR5, SHA2, 12, 4)
1912 FIELD(ID_ISAR5, CRC32, 16, 4)
1913 FIELD(ID_ISAR5, RDM, 24, 4)
1914 FIELD(ID_ISAR5, VCMA, 28, 4)
1915 
1916 FIELD(ID_ISAR6, JSCVT, 0, 4)
1917 FIELD(ID_ISAR6, DP, 4, 4)
1918 FIELD(ID_ISAR6, FHM, 8, 4)
1919 FIELD(ID_ISAR6, SB, 12, 4)
1920 FIELD(ID_ISAR6, SPECRES, 16, 4)
1921 FIELD(ID_ISAR6, BF16, 20, 4)
1922 FIELD(ID_ISAR6, I8MM, 24, 4)
1923 
1924 FIELD(ID_MMFR0, VMSA, 0, 4)
1925 FIELD(ID_MMFR0, PMSA, 4, 4)
1926 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1927 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1928 FIELD(ID_MMFR0, TCM, 16, 4)
1929 FIELD(ID_MMFR0, AUXREG, 20, 4)
1930 FIELD(ID_MMFR0, FCSE, 24, 4)
1931 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1932 
1933 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1934 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1935 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1936 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1937 FIELD(ID_MMFR1, L1HVD, 16, 4)
1938 FIELD(ID_MMFR1, L1UNI, 20, 4)
1939 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1940 FIELD(ID_MMFR1, BPRED, 28, 4)
1941 
1942 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1943 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1944 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1945 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1946 FIELD(ID_MMFR2, UNITLB, 16, 4)
1947 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1948 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1949 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1950 
1951 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1952 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1953 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1954 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1955 FIELD(ID_MMFR3, PAN, 16, 4)
1956 FIELD(ID_MMFR3, COHWALK, 20, 4)
1957 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1958 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1959 
1960 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1961 FIELD(ID_MMFR4, AC2, 4, 4)
1962 FIELD(ID_MMFR4, XNX, 8, 4)
1963 FIELD(ID_MMFR4, CNP, 12, 4)
1964 FIELD(ID_MMFR4, HPDS, 16, 4)
1965 FIELD(ID_MMFR4, LSM, 20, 4)
1966 FIELD(ID_MMFR4, CCIDX, 24, 4)
1967 FIELD(ID_MMFR4, EVT, 28, 4)
1968 
1969 FIELD(ID_MMFR5, ETS, 0, 4)
1970 FIELD(ID_MMFR5, NTLBPA, 4, 4)
1971 
1972 FIELD(ID_PFR0, STATE0, 0, 4)
1973 FIELD(ID_PFR0, STATE1, 4, 4)
1974 FIELD(ID_PFR0, STATE2, 8, 4)
1975 FIELD(ID_PFR0, STATE3, 12, 4)
1976 FIELD(ID_PFR0, CSV2, 16, 4)
1977 FIELD(ID_PFR0, AMU, 20, 4)
1978 FIELD(ID_PFR0, DIT, 24, 4)
1979 FIELD(ID_PFR0, RAS, 28, 4)
1980 
1981 FIELD(ID_PFR1, PROGMOD, 0, 4)
1982 FIELD(ID_PFR1, SECURITY, 4, 4)
1983 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1984 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1985 FIELD(ID_PFR1, GENTIMER, 16, 4)
1986 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1987 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1988 FIELD(ID_PFR1, GIC, 28, 4)
1989 
1990 FIELD(ID_PFR2, CSV3, 0, 4)
1991 FIELD(ID_PFR2, SSBS, 4, 4)
1992 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1993 
1994 FIELD(ID_AA64ISAR0, AES, 4, 4)
1995 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1996 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1997 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1998 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1999 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2000 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2001 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2002 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2003 FIELD(ID_AA64ISAR0, DP, 44, 4)
2004 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2005 FIELD(ID_AA64ISAR0, TS, 52, 4)
2006 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2007 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2008 
2009 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2010 FIELD(ID_AA64ISAR1, APA, 4, 4)
2011 FIELD(ID_AA64ISAR1, API, 8, 4)
2012 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2013 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2014 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2015 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2016 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2017 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2018 FIELD(ID_AA64ISAR1, SB, 36, 4)
2019 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2020 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2021 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2022 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2023 FIELD(ID_AA64ISAR1, XS, 56, 4)
2024 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2025 
2026 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2027 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2028 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2029 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2030 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2031 FIELD(ID_AA64ISAR2, BC, 20, 4)
2032 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2033 
2034 FIELD(ID_AA64PFR0, EL0, 0, 4)
2035 FIELD(ID_AA64PFR0, EL1, 4, 4)
2036 FIELD(ID_AA64PFR0, EL2, 8, 4)
2037 FIELD(ID_AA64PFR0, EL3, 12, 4)
2038 FIELD(ID_AA64PFR0, FP, 16, 4)
2039 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2040 FIELD(ID_AA64PFR0, GIC, 24, 4)
2041 FIELD(ID_AA64PFR0, RAS, 28, 4)
2042 FIELD(ID_AA64PFR0, SVE, 32, 4)
2043 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2044 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2045 FIELD(ID_AA64PFR0, AMU, 44, 4)
2046 FIELD(ID_AA64PFR0, DIT, 48, 4)
2047 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2048 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2049 
2050 FIELD(ID_AA64PFR1, BT, 0, 4)
2051 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2052 FIELD(ID_AA64PFR1, MTE, 8, 4)
2053 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2054 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2055 FIELD(ID_AA64PFR1, SME, 24, 4)
2056 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2057 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2058 FIELD(ID_AA64PFR1, NMI, 36, 4)
2059 
2060 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2061 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2062 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2063 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2064 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2065 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2066 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2067 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2068 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2069 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2070 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2071 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2072 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2073 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2074 
2075 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2076 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2077 FIELD(ID_AA64MMFR1, VH, 8, 4)
2078 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2079 FIELD(ID_AA64MMFR1, LO, 16, 4)
2080 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2081 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2082 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2083 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2084 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2085 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2086 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2087 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2088 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2089 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2090 
2091 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2092 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2093 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2094 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2095 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2096 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2097 FIELD(ID_AA64MMFR2, NV, 24, 4)
2098 FIELD(ID_AA64MMFR2, ST, 28, 4)
2099 FIELD(ID_AA64MMFR2, AT, 32, 4)
2100 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2101 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2102 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2103 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2104 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2105 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2106 
2107 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2108 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2109 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2110 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2111 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2112 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2113 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2114 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2115 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2116 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2117 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2118 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2119 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2120 
2121 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2122 FIELD(ID_AA64ZFR0, AES, 4, 4)
2123 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2124 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2125 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2126 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2127 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2128 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2129 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2130 
2131 FIELD(ID_DFR0, COPDBG, 0, 4)
2132 FIELD(ID_DFR0, COPSDBG, 4, 4)
2133 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2134 FIELD(ID_DFR0, COPTRC, 12, 4)
2135 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2136 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2137 FIELD(ID_DFR0, PERFMON, 24, 4)
2138 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2139 
2140 FIELD(ID_DFR1, MTPMU, 0, 4)
2141 FIELD(ID_DFR1, HPMN0, 4, 4)
2142 
2143 FIELD(DBGDIDR, SE_IMP, 12, 1)
2144 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2145 FIELD(DBGDIDR, VERSION, 16, 4)
2146 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2147 FIELD(DBGDIDR, BRPS, 24, 4)
2148 FIELD(DBGDIDR, WRPS, 28, 4)
2149 
2150 FIELD(MVFR0, SIMDREG, 0, 4)
2151 FIELD(MVFR0, FPSP, 4, 4)
2152 FIELD(MVFR0, FPDP, 8, 4)
2153 FIELD(MVFR0, FPTRAP, 12, 4)
2154 FIELD(MVFR0, FPDIVIDE, 16, 4)
2155 FIELD(MVFR0, FPSQRT, 20, 4)
2156 FIELD(MVFR0, FPSHVEC, 24, 4)
2157 FIELD(MVFR0, FPROUND, 28, 4)
2158 
2159 FIELD(MVFR1, FPFTZ, 0, 4)
2160 FIELD(MVFR1, FPDNAN, 4, 4)
2161 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2162 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2163 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2164 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2165 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2166 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2167 FIELD(MVFR1, FPHP, 24, 4)
2168 FIELD(MVFR1, SIMDFMAC, 28, 4)
2169 
2170 FIELD(MVFR2, SIMDMISC, 0, 4)
2171 FIELD(MVFR2, FPMISC, 4, 4)
2172 
2173 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2174 
2175 /* If adding a feature bit which corresponds to a Linux ELF
2176  * HWCAP bit, remember to update the feature-bit-to-hwcap
2177  * mapping in linux-user/elfload.c:get_elf_hwcap().
2178  */
2179 enum arm_features {
2180     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2181     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2182     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2183     ARM_FEATURE_V6,
2184     ARM_FEATURE_V6K,
2185     ARM_FEATURE_V7,
2186     ARM_FEATURE_THUMB2,
2187     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2188     ARM_FEATURE_NEON,
2189     ARM_FEATURE_M, /* Microcontroller profile.  */
2190     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2191     ARM_FEATURE_THUMB2EE,
2192     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2193     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2194     ARM_FEATURE_V4T,
2195     ARM_FEATURE_V5,
2196     ARM_FEATURE_STRONGARM,
2197     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2198     ARM_FEATURE_GENERIC_TIMER,
2199     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2200     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2201     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2202     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2203     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2204     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2205     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2206     ARM_FEATURE_V8,
2207     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2208     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2209     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2210     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2211     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2212     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2213     ARM_FEATURE_PMU, /* has PMU support */
2214     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2215     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2216     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2217     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2218 };
2219 
2220 static inline int arm_feature(CPUARMState *env, int feature)
2221 {
2222     return (env->features & (1ULL << feature)) != 0;
2223 }
2224 
2225 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2226 
2227 #if !defined(CONFIG_USER_ONLY)
2228 /* Return true if exception levels below EL3 are in secure state,
2229  * or would be following an exception return to that level.
2230  * Unlike arm_is_secure() (which is always a question about the
2231  * _current_ state of the CPU) this doesn't care about the current
2232  * EL or mode.
2233  */
2234 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2235 {
2236     if (arm_feature(env, ARM_FEATURE_EL3)) {
2237         return !(env->cp15.scr_el3 & SCR_NS);
2238     } else {
2239         /* If EL3 is not supported then the secure state is implementation
2240          * defined, in which case QEMU defaults to non-secure.
2241          */
2242         return false;
2243     }
2244 }
2245 
2246 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2247 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2248 {
2249     if (arm_feature(env, ARM_FEATURE_EL3)) {
2250         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2251             /* CPU currently in AArch64 state and EL3 */
2252             return true;
2253         } else if (!is_a64(env) &&
2254                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2255             /* CPU currently in AArch32 state and monitor mode */
2256             return true;
2257         }
2258     }
2259     return false;
2260 }
2261 
2262 /* Return true if the processor is in secure state */
2263 static inline bool arm_is_secure(CPUARMState *env)
2264 {
2265     if (arm_is_el3_or_mon(env)) {
2266         return true;
2267     }
2268     return arm_is_secure_below_el3(env);
2269 }
2270 
2271 /*
2272  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2273  * This corresponds to the pseudocode EL2Enabled()
2274  */
2275 static inline bool arm_is_el2_enabled(CPUARMState *env)
2276 {
2277     if (arm_feature(env, ARM_FEATURE_EL2)) {
2278         if (arm_is_secure_below_el3(env)) {
2279             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2280         }
2281         return true;
2282     }
2283     return false;
2284 }
2285 
2286 #else
2287 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2288 {
2289     return false;
2290 }
2291 
2292 static inline bool arm_is_secure(CPUARMState *env)
2293 {
2294     return false;
2295 }
2296 
2297 static inline bool arm_is_el2_enabled(CPUARMState *env)
2298 {
2299     return false;
2300 }
2301 #endif
2302 
2303 /**
2304  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2305  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2306  * "for all purposes other than a direct read or write access of HCR_EL2."
2307  * Not included here is HCR_RW.
2308  */
2309 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2310 
2311 /* Return true if the specified exception level is running in AArch64 state. */
2312 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2313 {
2314     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2315      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2316      */
2317     assert(el >= 1 && el <= 3);
2318     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2319 
2320     /* The highest exception level is always at the maximum supported
2321      * register width, and then lower levels have a register width controlled
2322      * by bits in the SCR or HCR registers.
2323      */
2324     if (el == 3) {
2325         return aa64;
2326     }
2327 
2328     if (arm_feature(env, ARM_FEATURE_EL3) &&
2329         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2330         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2331     }
2332 
2333     if (el == 2) {
2334         return aa64;
2335     }
2336 
2337     if (arm_is_el2_enabled(env)) {
2338         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2339     }
2340 
2341     return aa64;
2342 }
2343 
2344 /* Function for determing whether guest cp register reads and writes should
2345  * access the secure or non-secure bank of a cp register.  When EL3 is
2346  * operating in AArch32 state, the NS-bit determines whether the secure
2347  * instance of a cp register should be used. When EL3 is AArch64 (or if
2348  * it doesn't exist at all) then there is no register banking, and all
2349  * accesses are to the non-secure version.
2350  */
2351 static inline bool access_secure_reg(CPUARMState *env)
2352 {
2353     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2354                 !arm_el_is_aa64(env, 3) &&
2355                 !(env->cp15.scr_el3 & SCR_NS));
2356 
2357     return ret;
2358 }
2359 
2360 /* Macros for accessing a specified CP register bank */
2361 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2362     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2363 
2364 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2365     do {                                                \
2366         if (_secure) {                                   \
2367             (_env)->cp15._regname##_s = (_val);            \
2368         } else {                                        \
2369             (_env)->cp15._regname##_ns = (_val);           \
2370         }                                               \
2371     } while (0)
2372 
2373 /* Macros for automatically accessing a specific CP register bank depending on
2374  * the current secure state of the system.  These macros are not intended for
2375  * supporting instruction translation reads/writes as these are dependent
2376  * solely on the SCR.NS bit and not the mode.
2377  */
2378 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2379     A32_BANKED_REG_GET((_env), _regname,                \
2380                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2381 
2382 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2383     A32_BANKED_REG_SET((_env), _regname,                                    \
2384                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2385                        (_val))
2386 
2387 void arm_cpu_list(void);
2388 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2389                                  uint32_t cur_el, bool secure);
2390 
2391 /* Interface between CPU and Interrupt controller.  */
2392 #ifndef CONFIG_USER_ONLY
2393 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2394 #else
2395 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2396 {
2397     return true;
2398 }
2399 #endif
2400 /**
2401  * armv7m_nvic_set_pending: mark the specified exception as pending
2402  * @opaque: the NVIC
2403  * @irq: the exception number to mark pending
2404  * @secure: false for non-banked exceptions or for the nonsecure
2405  * version of a banked exception, true for the secure version of a banked
2406  * exception.
2407  *
2408  * Marks the specified exception as pending. Note that we will assert()
2409  * if @secure is true and @irq does not specify one of the fixed set
2410  * of architecturally banked exceptions.
2411  */
2412 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2413 /**
2414  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2415  * @opaque: the NVIC
2416  * @irq: the exception number to mark pending
2417  * @secure: false for non-banked exceptions or for the nonsecure
2418  * version of a banked exception, true for the secure version of a banked
2419  * exception.
2420  *
2421  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2422  * exceptions (exceptions generated in the course of trying to take
2423  * a different exception).
2424  */
2425 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2426 /**
2427  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2428  * @opaque: the NVIC
2429  * @irq: the exception number to mark pending
2430  * @secure: false for non-banked exceptions or for the nonsecure
2431  * version of a banked exception, true for the secure version of a banked
2432  * exception.
2433  *
2434  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2435  * generated in the course of lazy stacking of FP registers.
2436  */
2437 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2438 /**
2439  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2440  *    exception, and whether it targets Secure state
2441  * @opaque: the NVIC
2442  * @pirq: set to pending exception number
2443  * @ptargets_secure: set to whether pending exception targets Secure
2444  *
2445  * This function writes the number of the highest priority pending
2446  * exception (the one which would be made active by
2447  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2448  * to true if the current highest priority pending exception should
2449  * be taken to Secure state, false for NS.
2450  */
2451 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2452                                       bool *ptargets_secure);
2453 /**
2454  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2455  * @opaque: the NVIC
2456  *
2457  * Move the current highest priority pending exception from the pending
2458  * state to the active state, and update v7m.exception to indicate that
2459  * it is the exception currently being handled.
2460  */
2461 void armv7m_nvic_acknowledge_irq(void *opaque);
2462 /**
2463  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2464  * @opaque: the NVIC
2465  * @irq: the exception number to complete
2466  * @secure: true if this exception was secure
2467  *
2468  * Returns: -1 if the irq was not active
2469  *           1 if completing this irq brought us back to base (no active irqs)
2470  *           0 if there is still an irq active after this one was completed
2471  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2472  */
2473 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2474 /**
2475  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2476  * @opaque: the NVIC
2477  * @irq: the exception number to mark pending
2478  * @secure: false for non-banked exceptions or for the nonsecure
2479  * version of a banked exception, true for the secure version of a banked
2480  * exception.
2481  *
2482  * Return whether an exception is "ready", i.e. whether the exception is
2483  * enabled and is configured at a priority which would allow it to
2484  * interrupt the current execution priority. This controls whether the
2485  * RDY bit for it in the FPCCR is set.
2486  */
2487 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2488 /**
2489  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2490  * @opaque: the NVIC
2491  *
2492  * Returns: the raw execution priority as defined by the v8M architecture.
2493  * This is the execution priority minus the effects of AIRCR.PRIS,
2494  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2495  * (v8M ARM ARM I_PKLD.)
2496  */
2497 int armv7m_nvic_raw_execution_priority(void *opaque);
2498 /**
2499  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2500  * priority is negative for the specified security state.
2501  * @opaque: the NVIC
2502  * @secure: the security state to test
2503  * This corresponds to the pseudocode IsReqExecPriNeg().
2504  */
2505 #ifndef CONFIG_USER_ONLY
2506 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2507 #else
2508 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2509 {
2510     return false;
2511 }
2512 #endif
2513 
2514 /* Interface for defining coprocessor registers.
2515  * Registers are defined in tables of arm_cp_reginfo structs
2516  * which are passed to define_arm_cp_regs().
2517  */
2518 
2519 /* When looking up a coprocessor register we look for it
2520  * via an integer which encodes all of:
2521  *  coprocessor number
2522  *  Crn, Crm, opc1, opc2 fields
2523  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2524  *    or via MRRC/MCRR?)
2525  *  non-secure/secure bank (AArch32 only)
2526  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2527  * (In this case crn and opc2 should be zero.)
2528  * For AArch64, there is no 32/64 bit size distinction;
2529  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2530  * and 4 bit CRn and CRm. The encoding patterns are chosen
2531  * to be easy to convert to and from the KVM encodings, and also
2532  * so that the hashtable can contain both AArch32 and AArch64
2533  * registers (to allow for interprocessing where we might run
2534  * 32 bit code on a 64 bit core).
2535  */
2536 /* This bit is private to our hashtable cpreg; in KVM register
2537  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2538  * in the upper bits of the 64 bit ID.
2539  */
2540 #define CP_REG_AA64_SHIFT 28
2541 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2542 
2543 /* To enable banking of coprocessor registers depending on ns-bit we
2544  * add a bit to distinguish between secure and non-secure cpregs in the
2545  * hashtable.
2546  */
2547 #define CP_REG_NS_SHIFT 29
2548 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2549 
2550 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2551     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2552      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2553 
2554 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2555     (CP_REG_AA64_MASK |                                 \
2556      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2557      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2558      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2559      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2560      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2561      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2562 
2563 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2564  * version used as a key for the coprocessor register hashtable
2565  */
2566 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2567 {
2568     uint32_t cpregid = kvmid;
2569     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2570         cpregid |= CP_REG_AA64_MASK;
2571     } else {
2572         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2573             cpregid |= (1 << 15);
2574         }
2575 
2576         /* KVM is always non-secure so add the NS flag on AArch32 register
2577          * entries.
2578          */
2579          cpregid |= 1 << CP_REG_NS_SHIFT;
2580     }
2581     return cpregid;
2582 }
2583 
2584 /* Convert a truncated 32 bit hashtable key into the full
2585  * 64 bit KVM register ID.
2586  */
2587 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2588 {
2589     uint64_t kvmid;
2590 
2591     if (cpregid & CP_REG_AA64_MASK) {
2592         kvmid = cpregid & ~CP_REG_AA64_MASK;
2593         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2594     } else {
2595         kvmid = cpregid & ~(1 << 15);
2596         if (cpregid & (1 << 15)) {
2597             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2598         } else {
2599             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2600         }
2601     }
2602     return kvmid;
2603 }
2604 
2605 /* Return the highest implemented Exception Level */
2606 static inline int arm_highest_el(CPUARMState *env)
2607 {
2608     if (arm_feature(env, ARM_FEATURE_EL3)) {
2609         return 3;
2610     }
2611     if (arm_feature(env, ARM_FEATURE_EL2)) {
2612         return 2;
2613     }
2614     return 1;
2615 }
2616 
2617 /* Return true if a v7M CPU is in Handler mode */
2618 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2619 {
2620     return env->v7m.exception != 0;
2621 }
2622 
2623 /* Return the current Exception Level (as per ARMv8; note that this differs
2624  * from the ARMv7 Privilege Level).
2625  */
2626 static inline int arm_current_el(CPUARMState *env)
2627 {
2628     if (arm_feature(env, ARM_FEATURE_M)) {
2629         return arm_v7m_is_handler_mode(env) ||
2630             !(env->v7m.control[env->v7m.secure] & 1);
2631     }
2632 
2633     if (is_a64(env)) {
2634         return extract32(env->pstate, 2, 2);
2635     }
2636 
2637     switch (env->uncached_cpsr & 0x1f) {
2638     case ARM_CPU_MODE_USR:
2639         return 0;
2640     case ARM_CPU_MODE_HYP:
2641         return 2;
2642     case ARM_CPU_MODE_MON:
2643         return 3;
2644     default:
2645         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2646             /* If EL3 is 32-bit then all secure privileged modes run in
2647              * EL3
2648              */
2649             return 3;
2650         }
2651 
2652         return 1;
2653     }
2654 }
2655 
2656 /**
2657  * write_list_to_cpustate
2658  * @cpu: ARMCPU
2659  *
2660  * For each register listed in the ARMCPU cpreg_indexes list, write
2661  * its value from the cpreg_values list into the ARMCPUState structure.
2662  * This updates TCG's working data structures from KVM data or
2663  * from incoming migration state.
2664  *
2665  * Returns: true if all register values were updated correctly,
2666  * false if some register was unknown or could not be written.
2667  * Note that we do not stop early on failure -- we will attempt
2668  * writing all registers in the list.
2669  */
2670 bool write_list_to_cpustate(ARMCPU *cpu);
2671 
2672 /**
2673  * write_cpustate_to_list:
2674  * @cpu: ARMCPU
2675  * @kvm_sync: true if this is for syncing back to KVM
2676  *
2677  * For each register listed in the ARMCPU cpreg_indexes list, write
2678  * its value from the ARMCPUState structure into the cpreg_values list.
2679  * This is used to copy info from TCG's working data structures into
2680  * KVM or for outbound migration.
2681  *
2682  * @kvm_sync is true if we are doing this in order to sync the
2683  * register state back to KVM. In this case we will only update
2684  * values in the list if the previous list->cpustate sync actually
2685  * successfully wrote the CPU state. Otherwise we will keep the value
2686  * that is in the list.
2687  *
2688  * Returns: true if all register values were read correctly,
2689  * false if some register was unknown or could not be read.
2690  * Note that we do not stop early on failure -- we will attempt
2691  * reading all registers in the list.
2692  */
2693 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2694 
2695 #define ARM_CPUID_TI915T      0x54029152
2696 #define ARM_CPUID_TI925T      0x54029252
2697 
2698 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2699 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2700 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2701 
2702 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2703 
2704 #define cpu_list arm_cpu_list
2705 
2706 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2707  *
2708  * If EL3 is 64-bit:
2709  *  + NonSecure EL1 & 0 stage 1
2710  *  + NonSecure EL1 & 0 stage 2
2711  *  + NonSecure EL2
2712  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2713  *  + Secure EL1 & 0
2714  *  + Secure EL3
2715  * If EL3 is 32-bit:
2716  *  + NonSecure PL1 & 0 stage 1
2717  *  + NonSecure PL1 & 0 stage 2
2718  *  + NonSecure PL2
2719  *  + Secure PL0
2720  *  + Secure PL1
2721  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2722  *
2723  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2724  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2725  *     because they may differ in access permissions even if the VA->PA map is
2726  *     the same
2727  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2728  *     translation, which means that we have one mmu_idx that deals with two
2729  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2730  *     architecturally permitted]
2731  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2732  *     handling via the TLB. The only way to do a stage 1 translation without
2733  *     the immediate stage 2 translation is via the ATS or AT system insns,
2734  *     which can be slow-pathed and always do a page table walk.
2735  *     The only use of stage 2 translations is either as part of an s1+2
2736  *     lookup or when loading the descriptors during a stage 1 page table walk,
2737  *     and in both those cases we don't use the TLB.
2738  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2739  *     translation regimes, because they map reasonably well to each other
2740  *     and they can't both be active at the same time.
2741  *  5. we want to be able to use the TLB for accesses done as part of a
2742  *     stage1 page table walk, rather than having to walk the stage2 page
2743  *     table over and over.
2744  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2745  *     Never (PAN) bit within PSTATE.
2746  *
2747  * This gives us the following list of cases:
2748  *
2749  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2750  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2751  * NS EL1 EL1&0 stage 1+2 +PAN
2752  * NS EL0 EL2&0
2753  * NS EL2 EL2&0
2754  * NS EL2 EL2&0 +PAN
2755  * NS EL2 (aka NS PL2)
2756  * S EL0 EL1&0 (aka S PL0)
2757  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2758  * S EL1 EL1&0 +PAN
2759  * S EL3 (aka S PL1)
2760  *
2761  * for a total of 11 different mmu_idx.
2762  *
2763  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2764  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2765  * NS EL2 if we ever model a Cortex-R52).
2766  *
2767  * M profile CPUs are rather different as they do not have a true MMU.
2768  * They have the following different MMU indexes:
2769  *  User
2770  *  Privileged
2771  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2772  *  Privileged, execution priority negative (ditto)
2773  * If the CPU supports the v8M Security Extension then there are also:
2774  *  Secure User
2775  *  Secure Privileged
2776  *  Secure User, execution priority negative
2777  *  Secure Privileged, execution priority negative
2778  *
2779  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2780  * are not quite the same -- different CPU types (most notably M profile
2781  * vs A/R profile) would like to use MMU indexes with different semantics,
2782  * but since we don't ever need to use all of those in a single CPU we
2783  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2784  * modes + total number of M profile MMU modes". The lower bits of
2785  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2786  * the same for any particular CPU.
2787  * Variables of type ARMMUIdx are always full values, and the core
2788  * index values are in variables of type 'int'.
2789  *
2790  * Our enumeration includes at the end some entries which are not "true"
2791  * mmu_idx values in that they don't have corresponding TLBs and are only
2792  * valid for doing slow path page table walks.
2793  *
2794  * The constant names here are patterned after the general style of the names
2795  * of the AT/ATS operations.
2796  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2797  * For M profile we arrange them to have a bit for priv, a bit for negpri
2798  * and a bit for secure.
2799  */
2800 #define ARM_MMU_IDX_A     0x10  /* A profile */
2801 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2802 #define ARM_MMU_IDX_M     0x40  /* M profile */
2803 
2804 /* Meanings of the bits for A profile mmu idx values */
2805 #define ARM_MMU_IDX_A_NS     0x8
2806 
2807 /* Meanings of the bits for M profile mmu idx values */
2808 #define ARM_MMU_IDX_M_PRIV   0x1
2809 #define ARM_MMU_IDX_M_NEGPRI 0x2
2810 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2811 
2812 #define ARM_MMU_IDX_TYPE_MASK \
2813     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2814 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2815 
2816 typedef enum ARMMMUIdx {
2817     /*
2818      * A-profile.
2819      */
2820     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
2821     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
2822     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
2823     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
2824     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
2825     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
2826     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
2827     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
2828 
2829     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2830     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2831     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2832     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2833     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2834     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2835     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2836 
2837     /*
2838      * These are not allocated TLBs and are used only for AT system
2839      * instructions or for the first stage of an S12 page table walk.
2840      */
2841     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2842     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2843     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2844     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2845     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2846     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2847     /*
2848      * Not allocated a TLB: used only for second stage of an S12 page
2849      * table walk, or for descriptor loads during first stage of an S1
2850      * page table walk. Note that if we ever want to have a TLB for this
2851      * then various TLB flush insns which currently are no-ops or flush
2852      * only stage 1 MMU indexes will need to change to flush stage 2.
2853      */
2854     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
2855     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
2856 
2857     /*
2858      * M-profile.
2859      */
2860     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2861     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2862     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2863     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2864     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2865     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2866     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2867     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2868 } ARMMMUIdx;
2869 
2870 /*
2871  * Bit macros for the core-mmu-index values for each index,
2872  * for use when calling tlb_flush_by_mmuidx() and friends.
2873  */
2874 #define TO_CORE_BIT(NAME) \
2875     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2876 
2877 typedef enum ARMMMUIdxBit {
2878     TO_CORE_BIT(E10_0),
2879     TO_CORE_BIT(E20_0),
2880     TO_CORE_BIT(E10_1),
2881     TO_CORE_BIT(E10_1_PAN),
2882     TO_CORE_BIT(E2),
2883     TO_CORE_BIT(E20_2),
2884     TO_CORE_BIT(E20_2_PAN),
2885     TO_CORE_BIT(SE10_0),
2886     TO_CORE_BIT(SE20_0),
2887     TO_CORE_BIT(SE10_1),
2888     TO_CORE_BIT(SE20_2),
2889     TO_CORE_BIT(SE10_1_PAN),
2890     TO_CORE_BIT(SE20_2_PAN),
2891     TO_CORE_BIT(SE2),
2892     TO_CORE_BIT(SE3),
2893 
2894     TO_CORE_BIT(MUser),
2895     TO_CORE_BIT(MPriv),
2896     TO_CORE_BIT(MUserNegPri),
2897     TO_CORE_BIT(MPrivNegPri),
2898     TO_CORE_BIT(MSUser),
2899     TO_CORE_BIT(MSPriv),
2900     TO_CORE_BIT(MSUserNegPri),
2901     TO_CORE_BIT(MSPrivNegPri),
2902 } ARMMMUIdxBit;
2903 
2904 #undef TO_CORE_BIT
2905 
2906 #define MMU_USER_IDX 0
2907 
2908 /* Indexes used when registering address spaces with cpu_address_space_init */
2909 typedef enum ARMASIdx {
2910     ARMASIdx_NS = 0,
2911     ARMASIdx_S = 1,
2912     ARMASIdx_TagNS = 2,
2913     ARMASIdx_TagS = 3,
2914 } ARMASIdx;
2915 
2916 /* Return the Exception Level targeted by debug exceptions. */
2917 static inline int arm_debug_target_el(CPUARMState *env)
2918 {
2919     bool secure = arm_is_secure(env);
2920     bool route_to_el2 = false;
2921 
2922     if (arm_is_el2_enabled(env)) {
2923         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2924                        env->cp15.mdcr_el2 & MDCR_TDE;
2925     }
2926 
2927     if (route_to_el2) {
2928         return 2;
2929     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2930                !arm_el_is_aa64(env, 3) && secure) {
2931         return 3;
2932     } else {
2933         return 1;
2934     }
2935 }
2936 
2937 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2938 {
2939     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2940      * CSSELR is RAZ/WI.
2941      */
2942     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2943 }
2944 
2945 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2946 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2947 {
2948     int cur_el = arm_current_el(env);
2949     int debug_el;
2950 
2951     if (cur_el == 3) {
2952         return false;
2953     }
2954 
2955     /* MDCR_EL3.SDD disables debug events from Secure state */
2956     if (arm_is_secure_below_el3(env)
2957         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2958         return false;
2959     }
2960 
2961     /*
2962      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2963      * while not masking the (D)ebug bit in DAIF.
2964      */
2965     debug_el = arm_debug_target_el(env);
2966 
2967     if (cur_el == debug_el) {
2968         return extract32(env->cp15.mdscr_el1, 13, 1)
2969             && !(env->daif & PSTATE_D);
2970     }
2971 
2972     /* Otherwise the debug target needs to be a higher EL */
2973     return debug_el > cur_el;
2974 }
2975 
2976 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2977 {
2978     int el = arm_current_el(env);
2979 
2980     if (el == 0 && arm_el_is_aa64(env, 1)) {
2981         return aa64_generate_debug_exceptions(env);
2982     }
2983 
2984     if (arm_is_secure(env)) {
2985         int spd;
2986 
2987         if (el == 0 && (env->cp15.sder & 1)) {
2988             /* SDER.SUIDEN means debug exceptions from Secure EL0
2989              * are always enabled. Otherwise they are controlled by
2990              * SDCR.SPD like those from other Secure ELs.
2991              */
2992             return true;
2993         }
2994 
2995         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2996         switch (spd) {
2997         case 1:
2998             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2999         case 0:
3000             /* For 0b00 we return true if external secure invasive debug
3001              * is enabled. On real hardware this is controlled by external
3002              * signals to the core. QEMU always permits debug, and behaves
3003              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3004              */
3005             return true;
3006         case 2:
3007             return false;
3008         case 3:
3009             return true;
3010         }
3011     }
3012 
3013     return el != 2;
3014 }
3015 
3016 /* Return true if debugging exceptions are currently enabled.
3017  * This corresponds to what in ARM ARM pseudocode would be
3018  *    if UsingAArch32() then
3019  *        return AArch32.GenerateDebugExceptions()
3020  *    else
3021  *        return AArch64.GenerateDebugExceptions()
3022  * We choose to push the if() down into this function for clarity,
3023  * since the pseudocode has it at all callsites except for the one in
3024  * CheckSoftwareStep(), where it is elided because both branches would
3025  * always return the same value.
3026  */
3027 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3028 {
3029     if (env->aarch64) {
3030         return aa64_generate_debug_exceptions(env);
3031     } else {
3032         return aa32_generate_debug_exceptions(env);
3033     }
3034 }
3035 
3036 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3037  * implicitly means this always returns false in pre-v8 CPUs.)
3038  */
3039 static inline bool arm_singlestep_active(CPUARMState *env)
3040 {
3041     return extract32(env->cp15.mdscr_el1, 0, 1)
3042         && arm_el_is_aa64(env, arm_debug_target_el(env))
3043         && arm_generate_debug_exceptions(env);
3044 }
3045 
3046 static inline bool arm_sctlr_b(CPUARMState *env)
3047 {
3048     return
3049         /* We need not implement SCTLR.ITD in user-mode emulation, so
3050          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3051          * This lets people run BE32 binaries with "-cpu any".
3052          */
3053 #ifndef CONFIG_USER_ONLY
3054         !arm_feature(env, ARM_FEATURE_V7) &&
3055 #endif
3056         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3057 }
3058 
3059 uint64_t arm_sctlr(CPUARMState *env, int el);
3060 
3061 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3062                                                   bool sctlr_b)
3063 {
3064 #ifdef CONFIG_USER_ONLY
3065     /*
3066      * In system mode, BE32 is modelled in line with the
3067      * architecture (as word-invariant big-endianness), where loads
3068      * and stores are done little endian but from addresses which
3069      * are adjusted by XORing with the appropriate constant. So the
3070      * endianness to use for the raw data access is not affected by
3071      * SCTLR.B.
3072      * In user mode, however, we model BE32 as byte-invariant
3073      * big-endianness (because user-only code cannot tell the
3074      * difference), and so we need to use a data access endianness
3075      * that depends on SCTLR.B.
3076      */
3077     if (sctlr_b) {
3078         return true;
3079     }
3080 #endif
3081     /* In 32bit endianness is determined by looking at CPSR's E bit */
3082     return env->uncached_cpsr & CPSR_E;
3083 }
3084 
3085 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3086 {
3087     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3088 }
3089 
3090 /* Return true if the processor is in big-endian mode. */
3091 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3092 {
3093     if (!is_a64(env)) {
3094         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3095     } else {
3096         int cur_el = arm_current_el(env);
3097         uint64_t sctlr = arm_sctlr(env, cur_el);
3098         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3099     }
3100 }
3101 
3102 #include "exec/cpu-all.h"
3103 
3104 /*
3105  * We have more than 32-bits worth of state per TB, so we split the data
3106  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3107  * We collect these two parts in CPUARMTBFlags where they are named
3108  * flags and flags2 respectively.
3109  *
3110  * The flags that are shared between all execution modes, TBFLAG_ANY,
3111  * are stored in flags.  The flags that are specific to a given mode
3112  * are stores in flags2.  Since cs_base is sized on the configured
3113  * address size, flags2 always has 64-bits for A64, and a minimum of
3114  * 32-bits for A32 and M32.
3115  *
3116  * The bits for 32-bit A-profile and M-profile partially overlap:
3117  *
3118  *  31         23         11 10             0
3119  * +-------------+----------+----------------+
3120  * |             |          |   TBFLAG_A32   |
3121  * | TBFLAG_AM32 |          +-----+----------+
3122  * |             |                |TBFLAG_M32|
3123  * +-------------+----------------+----------+
3124  *  31         23                6 5        0
3125  *
3126  * Unless otherwise noted, these bits are cached in env->hflags.
3127  */
3128 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3129 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3130 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3131 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3132 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3133 /* Target EL if we take a floating-point-disabled exception */
3134 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3135 /* For A-profile only, target EL for debug exceptions.  */
3136 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3137 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3138 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3139 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3140 
3141 /*
3142  * Bit usage when in AArch32 state, both A- and M-profile.
3143  */
3144 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3145 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3146 
3147 /*
3148  * Bit usage when in AArch32 state, for A-profile only.
3149  */
3150 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3151 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3152 /*
3153  * We store the bottom two bits of the CPAR as TB flags and handle
3154  * checks on the other bits at runtime. This shares the same bits as
3155  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3156  * Not cached, because VECLEN+VECSTRIDE are not cached.
3157  */
3158 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3159 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3160 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3161 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3162 /*
3163  * Indicates whether cp register reads and writes by guest code should access
3164  * the secure or nonsecure bank of banked registers; note that this is not
3165  * the same thing as the current security state of the processor!
3166  */
3167 FIELD(TBFLAG_A32, NS, 10, 1)
3168 
3169 /*
3170  * Bit usage when in AArch32 state, for M-profile only.
3171  */
3172 /* Handler (ie not Thread) mode */
3173 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3174 /* Whether we should generate stack-limit checks */
3175 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3176 /* Set if FPCCR.LSPACT is set */
3177 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3178 /* Set if we must create a new FP context */
3179 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3180 /* Set if FPCCR.S does not match current security state */
3181 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3182 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3183 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3184 
3185 /*
3186  * Bit usage when in AArch64 state
3187  */
3188 FIELD(TBFLAG_A64, TBII, 0, 2)
3189 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3190 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3191 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3192 FIELD(TBFLAG_A64, BT, 9, 1)
3193 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3194 FIELD(TBFLAG_A64, TBID, 12, 2)
3195 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3196 FIELD(TBFLAG_A64, ATA, 15, 1)
3197 FIELD(TBFLAG_A64, TCMA, 16, 2)
3198 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3199 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3200 
3201 /*
3202  * Helpers for using the above.
3203  */
3204 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3205     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3206 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3207     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3208 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3209     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3210 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3211     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3212 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3213     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3214 
3215 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3216 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3217 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3218 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3219 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3220 
3221 /**
3222  * cpu_mmu_index:
3223  * @env: The cpu environment
3224  * @ifetch: True for code access, false for data access.
3225  *
3226  * Return the core mmu index for the current translation regime.
3227  * This function is used by generic TCG code paths.
3228  */
3229 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3230 {
3231     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3232 }
3233 
3234 static inline bool bswap_code(bool sctlr_b)
3235 {
3236 #ifdef CONFIG_USER_ONLY
3237     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3238      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3239      * would also end up as a mixed-endian mode with BE code, LE data.
3240      */
3241     return
3242 #if TARGET_BIG_ENDIAN
3243         1 ^
3244 #endif
3245         sctlr_b;
3246 #else
3247     /* All code access in ARM is little endian, and there are no loaders
3248      * doing swaps that need to be reversed
3249      */
3250     return 0;
3251 #endif
3252 }
3253 
3254 #ifdef CONFIG_USER_ONLY
3255 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3256 {
3257     return
3258 #if TARGET_BIG_ENDIAN
3259        1 ^
3260 #endif
3261        arm_cpu_data_is_big_endian(env);
3262 }
3263 #endif
3264 
3265 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3266                           target_ulong *cs_base, uint32_t *flags);
3267 
3268 enum {
3269     QEMU_PSCI_CONDUIT_DISABLED = 0,
3270     QEMU_PSCI_CONDUIT_SMC = 1,
3271     QEMU_PSCI_CONDUIT_HVC = 2,
3272 };
3273 
3274 #ifndef CONFIG_USER_ONLY
3275 /* Return the address space index to use for a memory access */
3276 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3277 {
3278     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3279 }
3280 
3281 /* Return the AddressSpace to use for a memory access
3282  * (which depends on whether the access is S or NS, and whether
3283  * the board gave us a separate AddressSpace for S accesses).
3284  */
3285 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3286 {
3287     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3288 }
3289 #endif
3290 
3291 /**
3292  * arm_register_pre_el_change_hook:
3293  * Register a hook function which will be called immediately before this
3294  * CPU changes exception level or mode. The hook function will be
3295  * passed a pointer to the ARMCPU and the opaque data pointer passed
3296  * to this function when the hook was registered.
3297  *
3298  * Note that if a pre-change hook is called, any registered post-change hooks
3299  * are guaranteed to subsequently be called.
3300  */
3301 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3302                                  void *opaque);
3303 /**
3304  * arm_register_el_change_hook:
3305  * Register a hook function which will be called immediately after this
3306  * CPU changes exception level or mode. The hook function will be
3307  * passed a pointer to the ARMCPU and the opaque data pointer passed
3308  * to this function when the hook was registered.
3309  *
3310  * Note that any registered hooks registered here are guaranteed to be called
3311  * if pre-change hooks have been.
3312  */
3313 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3314         *opaque);
3315 
3316 /**
3317  * arm_rebuild_hflags:
3318  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3319  */
3320 void arm_rebuild_hflags(CPUARMState *env);
3321 
3322 /**
3323  * aa32_vfp_dreg:
3324  * Return a pointer to the Dn register within env in 32-bit mode.
3325  */
3326 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3327 {
3328     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3329 }
3330 
3331 /**
3332  * aa32_vfp_qreg:
3333  * Return a pointer to the Qn register within env in 32-bit mode.
3334  */
3335 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3336 {
3337     return &env->vfp.zregs[regno].d[0];
3338 }
3339 
3340 /**
3341  * aa64_vfp_qreg:
3342  * Return a pointer to the Qn register within env in 64-bit mode.
3343  */
3344 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3345 {
3346     return &env->vfp.zregs[regno].d[0];
3347 }
3348 
3349 /* Shared between translate-sve.c and sve_helper.c.  */
3350 extern const uint64_t pred_esz_masks[4];
3351 
3352 /* Helper for the macros below, validating the argument type. */
3353 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3354 {
3355     return x;
3356 }
3357 
3358 /*
3359  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3360  * Using these should be a bit more self-documenting than using the
3361  * generic target bits directly.
3362  */
3363 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3364 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3365 
3366 /*
3367  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3368  */
3369 #define PAGE_BTI  PAGE_TARGET_1
3370 #define PAGE_MTE  PAGE_TARGET_2
3371 
3372 #ifdef TARGET_TAGGED_ADDRESSES
3373 /**
3374  * cpu_untagged_addr:
3375  * @cs: CPU context
3376  * @x: tagged address
3377  *
3378  * Remove any address tag from @x.  This is explicitly related to the
3379  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3380  *
3381  * There should be a better place to put this, but we need this in
3382  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3383  */
3384 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3385 {
3386     ARMCPU *cpu = ARM_CPU(cs);
3387     if (cpu->env.tagged_addr_enable) {
3388         /*
3389          * TBI is enabled for userspace but not kernelspace addresses.
3390          * Only clear the tag if bit 55 is clear.
3391          */
3392         x &= sextract64(x, 0, 56);
3393     }
3394     return x;
3395 }
3396 #endif
3397 
3398 /*
3399  * Naming convention for isar_feature functions:
3400  * Functions which test 32-bit ID registers should have _aa32_ in
3401  * their name. Functions which test 64-bit ID registers should have
3402  * _aa64_ in their name. These must only be used in code where we
3403  * know for certain that the CPU has AArch32 or AArch64 respectively
3404  * or where the correct answer for a CPU which doesn't implement that
3405  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3406  * system registers that are specific to that CPU state, for "should
3407  * we let this system register bit be set" tests where the 32-bit
3408  * flavour of the register doesn't have the bit, and so on).
3409  * Functions which simply ask "does this feature exist at all" have
3410  * _any_ in their name, and always return the logical OR of the _aa64_
3411  * and the _aa32_ function.
3412  */
3413 
3414 /*
3415  * 32-bit feature tests via id registers.
3416  */
3417 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3418 {
3419     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3420 }
3421 
3422 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3423 {
3424     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3425 }
3426 
3427 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3428 {
3429     /* (M-profile) low-overhead loops and branch future */
3430     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3431 }
3432 
3433 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3434 {
3435     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3436 }
3437 
3438 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3439 {
3440     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3441 }
3442 
3443 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3444 {
3445     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3446 }
3447 
3448 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3449 {
3450     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3451 }
3452 
3453 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3454 {
3455     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3456 }
3457 
3458 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3459 {
3460     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3461 }
3462 
3463 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3464 {
3465     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3466 }
3467 
3468 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3469 {
3470     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3471 }
3472 
3473 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3476 }
3477 
3478 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3479 {
3480     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3481 }
3482 
3483 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3484 {
3485     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3486 }
3487 
3488 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3489 {
3490     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3491 }
3492 
3493 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3496 }
3497 
3498 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3499 {
3500     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3501 }
3502 
3503 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3504 {
3505     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3506 }
3507 
3508 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3509 {
3510     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3511 }
3512 
3513 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3514 {
3515     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3516 }
3517 
3518 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3519 {
3520     /*
3521      * Return true if M-profile state handling insns
3522      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3523      */
3524     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3525 }
3526 
3527 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3528 {
3529     /* Sadly this is encoded differently for A-profile and M-profile */
3530     if (isar_feature_aa32_mprofile(id)) {
3531         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3532     } else {
3533         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3534     }
3535 }
3536 
3537 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3538 {
3539     /*
3540      * Return true if MVE is supported (either integer or floating point).
3541      * We must check for M-profile as the MVFR1 field means something
3542      * else for A-profile.
3543      */
3544     return isar_feature_aa32_mprofile(id) &&
3545         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3546 }
3547 
3548 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3549 {
3550     /*
3551      * Return true if MVE is supported (either integer or floating point).
3552      * We must check for M-profile as the MVFR1 field means something
3553      * else for A-profile.
3554      */
3555     return isar_feature_aa32_mprofile(id) &&
3556         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3557 }
3558 
3559 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3560 {
3561     /*
3562      * Return true if either VFP or SIMD is implemented.
3563      * In this case, a minimum of VFP w/ D0-D15.
3564      */
3565     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3566 }
3567 
3568 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3569 {
3570     /* Return true if D16-D31 are implemented */
3571     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3572 }
3573 
3574 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3575 {
3576     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3577 }
3578 
3579 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3580 {
3581     /* Return true if CPU supports single precision floating point, VFPv2 */
3582     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3583 }
3584 
3585 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3586 {
3587     /* Return true if CPU supports single precision floating point, VFPv3 */
3588     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3589 }
3590 
3591 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3592 {
3593     /* Return true if CPU supports double precision floating point, VFPv2 */
3594     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3595 }
3596 
3597 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3598 {
3599     /* Return true if CPU supports double precision floating point, VFPv3 */
3600     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3601 }
3602 
3603 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3604 {
3605     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3606 }
3607 
3608 /*
3609  * We always set the FP and SIMD FP16 fields to indicate identical
3610  * levels of support (assuming SIMD is implemented at all), so
3611  * we only need one set of accessors.
3612  */
3613 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3614 {
3615     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3616 }
3617 
3618 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3619 {
3620     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3621 }
3622 
3623 /*
3624  * Note that this ID register field covers both VFP and Neon FMAC,
3625  * so should usually be tested in combination with some other
3626  * check that confirms the presence of whichever of VFP or Neon is
3627  * relevant, to avoid accidentally enabling a Neon feature on
3628  * a VFP-no-Neon core or vice-versa.
3629  */
3630 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3631 {
3632     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3633 }
3634 
3635 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3636 {
3637     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3638 }
3639 
3640 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3641 {
3642     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3643 }
3644 
3645 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3646 {
3647     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3648 }
3649 
3650 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3651 {
3652     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3653 }
3654 
3655 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3656 {
3657     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3658 }
3659 
3660 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3661 {
3662     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3663 }
3664 
3665 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3666 {
3667     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3668 }
3669 
3670 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3671 {
3672     /* 0xf means "non-standard IMPDEF PMU" */
3673     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3674         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3675 }
3676 
3677 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3678 {
3679     /* 0xf means "non-standard IMPDEF PMU" */
3680     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3681         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3682 }
3683 
3684 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3685 {
3686     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3687 }
3688 
3689 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3690 {
3691     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3692 }
3693 
3694 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3695 {
3696     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3697 }
3698 
3699 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3700 {
3701     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3702 }
3703 
3704 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3705 {
3706     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3707 }
3708 
3709 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3710 {
3711     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3712 }
3713 
3714 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3715 {
3716     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3717 }
3718 
3719 /*
3720  * 64-bit feature tests via id registers.
3721  */
3722 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3723 {
3724     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3725 }
3726 
3727 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3728 {
3729     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3730 }
3731 
3732 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3733 {
3734     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3735 }
3736 
3737 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3738 {
3739     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3740 }
3741 
3742 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3743 {
3744     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3745 }
3746 
3747 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3748 {
3749     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3750 }
3751 
3752 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3753 {
3754     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3755 }
3756 
3757 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3758 {
3759     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3760 }
3761 
3762 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3763 {
3764     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3765 }
3766 
3767 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3768 {
3769     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3770 }
3771 
3772 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3773 {
3774     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3775 }
3776 
3777 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3778 {
3779     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3780 }
3781 
3782 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3783 {
3784     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3785 }
3786 
3787 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3788 {
3789     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3790 }
3791 
3792 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3793 {
3794     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3795 }
3796 
3797 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3798 {
3799     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3800 }
3801 
3802 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3803 {
3804     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3805 }
3806 
3807 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3808 {
3809     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3810 }
3811 
3812 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3813 {
3814     /*
3815      * Return true if any form of pauth is enabled, as this
3816      * predicate controls migration of the 128-bit keys.
3817      */
3818     return (id->id_aa64isar1 &
3819             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3820              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3821              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3822              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3823 }
3824 
3825 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3826 {
3827     /*
3828      * Return true if pauth is enabled with the architected QARMA algorithm.
3829      * QEMU will always set APA+GPA to the same value.
3830      */
3831     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3832 }
3833 
3834 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3835 {
3836     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3837 }
3838 
3839 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3840 {
3841     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3842 }
3843 
3844 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3845 {
3846     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3847 }
3848 
3849 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3850 {
3851     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3852 }
3853 
3854 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3855 {
3856     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3857 }
3858 
3859 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3860 {
3861     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3862 }
3863 
3864 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3865 {
3866     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3867 }
3868 
3869 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3870 {
3871     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3872 }
3873 
3874 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3875 {
3876     /* We always set the AdvSIMD and FP fields identically.  */
3877     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3878 }
3879 
3880 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3881 {
3882     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3883     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3884 }
3885 
3886 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3887 {
3888     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3889 }
3890 
3891 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3892 {
3893     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3894 }
3895 
3896 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3897 {
3898     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3899 }
3900 
3901 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3902 {
3903     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3904 }
3905 
3906 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3907 {
3908     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3909 }
3910 
3911 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3912 {
3913     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3914 }
3915 
3916 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3917 {
3918     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3919 }
3920 
3921 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3922 {
3923     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3924 }
3925 
3926 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3927 {
3928     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3929 }
3930 
3931 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3932 {
3933     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3934 }
3935 
3936 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3937 {
3938     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3939 }
3940 
3941 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3942 {
3943     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3944 }
3945 
3946 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3947 {
3948     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3949 }
3950 
3951 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3952 {
3953     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3954 }
3955 
3956 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3957 {
3958     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3959         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3960 }
3961 
3962 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3963 {
3964     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3965         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3966 }
3967 
3968 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3969 {
3970     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3971 }
3972 
3973 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3974 {
3975     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3976 }
3977 
3978 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3979 {
3980     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3981 }
3982 
3983 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3984 {
3985     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3986 }
3987 
3988 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3989 {
3990     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3991     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3992 }
3993 
3994 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
3995 {
3996     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
3997 }
3998 
3999 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4000 {
4001     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4002     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4003 }
4004 
4005 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4006 {
4007     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4008 }
4009 
4010 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4011 {
4012     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4013 }
4014 
4015 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4016 {
4017     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4018 }
4019 
4020 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4021 {
4022     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4023 }
4024 
4025 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4026 {
4027     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4028 }
4029 
4030 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4031 {
4032     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4033 }
4034 
4035 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4036 {
4037     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4038 }
4039 
4040 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4041 {
4042     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4043 }
4044 
4045 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4046 {
4047     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4048 }
4049 
4050 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4051 {
4052     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4053 }
4054 
4055 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4056 {
4057     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4058 }
4059 
4060 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4061 {
4062     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4063 }
4064 
4065 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4066 {
4067     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4068 }
4069 
4070 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4071 {
4072     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4073 }
4074 
4075 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4076 {
4077     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4078 }
4079 
4080 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4081 {
4082     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4083 }
4084 
4085 /*
4086  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4087  */
4088 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4089 {
4090     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4091 }
4092 
4093 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4094 {
4095     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4096 }
4097 
4098 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4099 {
4100     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4101 }
4102 
4103 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4104 {
4105     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4106 }
4107 
4108 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4109 {
4110     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4111 }
4112 
4113 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4114 {
4115     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4116 }
4117 
4118 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4119 {
4120     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4121 }
4122 
4123 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4124 {
4125     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4126 }
4127 
4128 /*
4129  * Forward to the above feature tests given an ARMCPU pointer.
4130  */
4131 #define cpu_isar_feature(name, cpu) \
4132     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4133 
4134 #endif
4135