1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 #include "qapi/qapi-types-common.h" 28 29 /* ARM processors have a weak memory model */ 30 #define TCG_GUEST_DEFAULT_MO (0) 31 32 #ifdef TARGET_AARCH64 33 #define KVM_HAVE_MCE_INJECTION 1 34 #endif 35 36 #define EXCP_UDEF 1 /* undefined instruction */ 37 #define EXCP_SWI 2 /* software interrupt */ 38 #define EXCP_PREFETCH_ABORT 3 39 #define EXCP_DATA_ABORT 4 40 #define EXCP_IRQ 5 41 #define EXCP_FIQ 6 42 #define EXCP_BKPT 7 43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 45 #define EXCP_HVC 11 /* HyperVisor Call */ 46 #define EXCP_HYP_TRAP 12 47 #define EXCP_SMC 13 /* Secure Monitor Call */ 48 #define EXCP_VIRQ 14 49 #define EXCP_VFIQ 15 50 #define EXCP_SEMIHOST 16 /* semihosting call */ 51 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 52 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 53 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 54 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 55 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 56 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 58 59 #define ARMV7M_EXCP_RESET 1 60 #define ARMV7M_EXCP_NMI 2 61 #define ARMV7M_EXCP_HARD 3 62 #define ARMV7M_EXCP_MEM 4 63 #define ARMV7M_EXCP_BUS 5 64 #define ARMV7M_EXCP_USAGE 6 65 #define ARMV7M_EXCP_SECURE 7 66 #define ARMV7M_EXCP_SVC 11 67 #define ARMV7M_EXCP_DEBUG 12 68 #define ARMV7M_EXCP_PENDSV 14 69 #define ARMV7M_EXCP_SYSTICK 15 70 71 /* For M profile, some registers are banked secure vs non-secure; 72 * these are represented as a 2-element array where the first element 73 * is the non-secure copy and the second is the secure copy. 74 * When the CPU does not have implement the security extension then 75 * only the first element is used. 76 * This means that the copy for the current security state can be 77 * accessed via env->registerfield[env->v7m.secure] (whether the security 78 * extension is implemented or not). 79 */ 80 enum { 81 M_REG_NS = 0, 82 M_REG_S = 1, 83 M_REG_NUM_BANKS = 2, 84 }; 85 86 /* ARM-specific interrupt pending bits. */ 87 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 88 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 89 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 90 91 /* The usual mapping for an AArch64 system register to its AArch32 92 * counterpart is for the 32 bit world to have access to the lower 93 * half only (with writes leaving the upper half untouched). It's 94 * therefore useful to be able to pass TCG the offset of the least 95 * significant half of a uint64_t struct member. 96 */ 97 #ifdef HOST_WORDS_BIGENDIAN 98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 99 #define offsetofhigh32(S, M) offsetof(S, M) 100 #else 101 #define offsetoflow32(S, M) offsetof(S, M) 102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #endif 104 105 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 106 #define ARM_CPU_IRQ 0 107 #define ARM_CPU_FIQ 1 108 #define ARM_CPU_VIRQ 2 109 #define ARM_CPU_VFIQ 3 110 111 /* ARM-specific extra insn start words: 112 * 1: Conditional execution bits 113 * 2: Partial exception syndrome for data aborts 114 */ 115 #define TARGET_INSN_START_EXTRA_WORDS 2 116 117 /* The 2nd extra word holding syndrome info for data aborts does not use 118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 119 * help the sleb128 encoder do a better job. 120 * When restoring the CPU state, we shift it back up. 121 */ 122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 123 #define ARM_INSN_START_WORD2_SHIFT 14 124 125 /* We currently assume float and double are IEEE single and double 126 precision respectively. 127 Doing runtime conversions is tricky because VFP registers may contain 128 integer values (eg. as the result of a FTOSI instruction). 129 s<2n> maps to the least significant half of d<n> 130 s<2n+1> maps to the most significant half of d<n> 131 */ 132 133 /** 134 * DynamicGDBXMLInfo: 135 * @desc: Contains the XML descriptions. 136 * @num: Number of the registers in this XML seen by GDB. 137 * @data: A union with data specific to the set of registers 138 * @cpregs_keys: Array that contains the corresponding Key of 139 * a given cpreg with the same order of the cpreg 140 * in the XML description. 141 */ 142 typedef struct DynamicGDBXMLInfo { 143 char *desc; 144 int num; 145 union { 146 struct { 147 uint32_t *keys; 148 } cpregs; 149 } data; 150 } DynamicGDBXMLInfo; 151 152 /* CPU state for each instance of a generic timer (in cp15 c14) */ 153 typedef struct ARMGenericTimer { 154 uint64_t cval; /* Timer CompareValue register */ 155 uint64_t ctl; /* Timer Control register */ 156 } ARMGenericTimer; 157 158 #define GTIMER_PHYS 0 159 #define GTIMER_VIRT 1 160 #define GTIMER_HYP 2 161 #define GTIMER_SEC 3 162 #define GTIMER_HYPVIRT 4 163 #define NUM_GTIMERS 5 164 165 typedef struct { 166 uint64_t raw_tcr; 167 uint32_t mask; 168 uint32_t base_mask; 169 } TCR; 170 171 /* Define a maximum sized vector register. 172 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 173 * For 64-bit, this is a 2048-bit SVE register. 174 * 175 * Note that the mapping between S, D, and Q views of the register bank 176 * differs between AArch64 and AArch32. 177 * In AArch32: 178 * Qn = regs[n].d[1]:regs[n].d[0] 179 * Dn = regs[n / 2].d[n & 1] 180 * Sn = regs[n / 4].d[n % 4 / 2], 181 * bits 31..0 for even n, and bits 63..32 for odd n 182 * (and regs[16] to regs[31] are inaccessible) 183 * In AArch64: 184 * Zn = regs[n].d[*] 185 * Qn = regs[n].d[1]:regs[n].d[0] 186 * Dn = regs[n].d[0] 187 * Sn = regs[n].d[0] bits 31..0 188 * Hn = regs[n].d[0] bits 15..0 189 * 190 * This corresponds to the architecturally defined mapping between 191 * the two execution states, and means we do not need to explicitly 192 * map these registers when changing states. 193 * 194 * Align the data for use with TCG host vector operations. 195 */ 196 197 #ifdef TARGET_AARCH64 198 # define ARM_MAX_VQ 16 199 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 200 #else 201 # define ARM_MAX_VQ 1 202 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 203 #endif 204 205 typedef struct ARMVectorReg { 206 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 207 } ARMVectorReg; 208 209 #ifdef TARGET_AARCH64 210 /* In AArch32 mode, predicate registers do not exist at all. */ 211 typedef struct ARMPredicateReg { 212 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 213 } ARMPredicateReg; 214 215 /* In AArch32 mode, PAC keys do not exist at all. */ 216 typedef struct ARMPACKey { 217 uint64_t lo, hi; 218 } ARMPACKey; 219 #endif 220 221 222 typedef struct CPUARMState { 223 /* Regs for current mode. */ 224 uint32_t regs[16]; 225 226 /* 32/64 switch only happens when taking and returning from 227 * exceptions so the overlap semantics are taken care of then 228 * instead of having a complicated union. 229 */ 230 /* Regs for A64 mode. */ 231 uint64_t xregs[32]; 232 uint64_t pc; 233 /* PSTATE isn't an architectural register for ARMv8. However, it is 234 * convenient for us to assemble the underlying state into a 32 bit format 235 * identical to the architectural format used for the SPSR. (This is also 236 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 237 * 'pstate' register are.) Of the PSTATE bits: 238 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 239 * semantics as for AArch32, as described in the comments on each field) 240 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 241 * DAIF (exception masks) are kept in env->daif 242 * BTYPE is kept in env->btype 243 * all other bits are stored in their correct places in env->pstate 244 */ 245 uint32_t pstate; 246 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 247 248 /* Cached TBFLAGS state. See below for which bits are included. */ 249 uint32_t hflags; 250 251 /* Frequently accessed CPSR bits are stored separately for efficiency. 252 This contains all the other bits. Use cpsr_{read,write} to access 253 the whole CPSR. */ 254 uint32_t uncached_cpsr; 255 uint32_t spsr; 256 257 /* Banked registers. */ 258 uint64_t banked_spsr[8]; 259 uint32_t banked_r13[8]; 260 uint32_t banked_r14[8]; 261 262 /* These hold r8-r12. */ 263 uint32_t usr_regs[5]; 264 uint32_t fiq_regs[5]; 265 266 /* cpsr flag cache for faster execution */ 267 uint32_t CF; /* 0 or 1 */ 268 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 269 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 270 uint32_t ZF; /* Z set if zero. */ 271 uint32_t QF; /* 0 or 1 */ 272 uint32_t GE; /* cpsr[19:16] */ 273 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 274 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 275 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 276 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 277 278 uint64_t elr_el[4]; /* AArch64 exception link regs */ 279 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 280 281 /* System control coprocessor (cp15) */ 282 struct { 283 uint32_t c0_cpuid; 284 union { /* Cache size selection */ 285 struct { 286 uint64_t _unused_csselr0; 287 uint64_t csselr_ns; 288 uint64_t _unused_csselr1; 289 uint64_t csselr_s; 290 }; 291 uint64_t csselr_el[4]; 292 }; 293 union { /* System control register. */ 294 struct { 295 uint64_t _unused_sctlr; 296 uint64_t sctlr_ns; 297 uint64_t hsctlr; 298 uint64_t sctlr_s; 299 }; 300 uint64_t sctlr_el[4]; 301 }; 302 uint64_t cpacr_el1; /* Architectural feature access control register */ 303 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 304 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 305 uint64_t sder; /* Secure debug enable register. */ 306 uint32_t nsacr; /* Non-secure access control register. */ 307 union { /* MMU translation table base 0. */ 308 struct { 309 uint64_t _unused_ttbr0_0; 310 uint64_t ttbr0_ns; 311 uint64_t _unused_ttbr0_1; 312 uint64_t ttbr0_s; 313 }; 314 uint64_t ttbr0_el[4]; 315 }; 316 union { /* MMU translation table base 1. */ 317 struct { 318 uint64_t _unused_ttbr1_0; 319 uint64_t ttbr1_ns; 320 uint64_t _unused_ttbr1_1; 321 uint64_t ttbr1_s; 322 }; 323 uint64_t ttbr1_el[4]; 324 }; 325 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 326 /* MMU translation table base control. */ 327 TCR tcr_el[4]; 328 TCR vtcr_el2; /* Virtualization Translation Control. */ 329 uint32_t c2_data; /* MPU data cacheable bits. */ 330 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 331 union { /* MMU domain access control register 332 * MPU write buffer control. 333 */ 334 struct { 335 uint64_t dacr_ns; 336 uint64_t dacr_s; 337 }; 338 struct { 339 uint64_t dacr32_el2; 340 }; 341 }; 342 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 343 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 344 uint64_t hcr_el2; /* Hypervisor configuration register */ 345 uint64_t scr_el3; /* Secure configuration register. */ 346 union { /* Fault status registers. */ 347 struct { 348 uint64_t ifsr_ns; 349 uint64_t ifsr_s; 350 }; 351 struct { 352 uint64_t ifsr32_el2; 353 }; 354 }; 355 union { 356 struct { 357 uint64_t _unused_dfsr; 358 uint64_t dfsr_ns; 359 uint64_t hsr; 360 uint64_t dfsr_s; 361 }; 362 uint64_t esr_el[4]; 363 }; 364 uint32_t c6_region[8]; /* MPU base/size registers. */ 365 union { /* Fault address registers. */ 366 struct { 367 uint64_t _unused_far0; 368 #ifdef HOST_WORDS_BIGENDIAN 369 uint32_t ifar_ns; 370 uint32_t dfar_ns; 371 uint32_t ifar_s; 372 uint32_t dfar_s; 373 #else 374 uint32_t dfar_ns; 375 uint32_t ifar_ns; 376 uint32_t dfar_s; 377 uint32_t ifar_s; 378 #endif 379 uint64_t _unused_far3; 380 }; 381 uint64_t far_el[4]; 382 }; 383 uint64_t hpfar_el2; 384 uint64_t hstr_el2; 385 union { /* Translation result. */ 386 struct { 387 uint64_t _unused_par_0; 388 uint64_t par_ns; 389 uint64_t _unused_par_1; 390 uint64_t par_s; 391 }; 392 uint64_t par_el[4]; 393 }; 394 395 uint32_t c9_insn; /* Cache lockdown registers. */ 396 uint32_t c9_data; 397 uint64_t c9_pmcr; /* performance monitor control register */ 398 uint64_t c9_pmcnten; /* perf monitor counter enables */ 399 uint64_t c9_pmovsr; /* perf monitor overflow status */ 400 uint64_t c9_pmuserenr; /* perf monitor user enable */ 401 uint64_t c9_pmselr; /* perf monitor counter selection register */ 402 uint64_t c9_pminten; /* perf monitor interrupt enables */ 403 union { /* Memory attribute redirection */ 404 struct { 405 #ifdef HOST_WORDS_BIGENDIAN 406 uint64_t _unused_mair_0; 407 uint32_t mair1_ns; 408 uint32_t mair0_ns; 409 uint64_t _unused_mair_1; 410 uint32_t mair1_s; 411 uint32_t mair0_s; 412 #else 413 uint64_t _unused_mair_0; 414 uint32_t mair0_ns; 415 uint32_t mair1_ns; 416 uint64_t _unused_mair_1; 417 uint32_t mair0_s; 418 uint32_t mair1_s; 419 #endif 420 }; 421 uint64_t mair_el[4]; 422 }; 423 union { /* vector base address register */ 424 struct { 425 uint64_t _unused_vbar; 426 uint64_t vbar_ns; 427 uint64_t hvbar; 428 uint64_t vbar_s; 429 }; 430 uint64_t vbar_el[4]; 431 }; 432 uint32_t mvbar; /* (monitor) vector base address register */ 433 struct { /* FCSE PID. */ 434 uint32_t fcseidr_ns; 435 uint32_t fcseidr_s; 436 }; 437 union { /* Context ID. */ 438 struct { 439 uint64_t _unused_contextidr_0; 440 uint64_t contextidr_ns; 441 uint64_t _unused_contextidr_1; 442 uint64_t contextidr_s; 443 }; 444 uint64_t contextidr_el[4]; 445 }; 446 union { /* User RW Thread register. */ 447 struct { 448 uint64_t tpidrurw_ns; 449 uint64_t tpidrprw_ns; 450 uint64_t htpidr; 451 uint64_t _tpidr_el3; 452 }; 453 uint64_t tpidr_el[4]; 454 }; 455 /* The secure banks of these registers don't map anywhere */ 456 uint64_t tpidrurw_s; 457 uint64_t tpidrprw_s; 458 uint64_t tpidruro_s; 459 460 union { /* User RO Thread register. */ 461 uint64_t tpidruro_ns; 462 uint64_t tpidrro_el[1]; 463 }; 464 uint64_t c14_cntfrq; /* Counter Frequency register */ 465 uint64_t c14_cntkctl; /* Timer Control register */ 466 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 467 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 468 ARMGenericTimer c14_timer[NUM_GTIMERS]; 469 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 470 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 471 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 472 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 473 uint32_t c15_threadid; /* TI debugger thread-ID. */ 474 uint32_t c15_config_base_address; /* SCU base address. */ 475 uint32_t c15_diagnostic; /* diagnostic register */ 476 uint32_t c15_power_diagnostic; 477 uint32_t c15_power_control; /* power control */ 478 uint64_t dbgbvr[16]; /* breakpoint value registers */ 479 uint64_t dbgbcr[16]; /* breakpoint control registers */ 480 uint64_t dbgwvr[16]; /* watchpoint value registers */ 481 uint64_t dbgwcr[16]; /* watchpoint control registers */ 482 uint64_t mdscr_el1; 483 uint64_t oslsr_el1; /* OS Lock Status */ 484 uint64_t mdcr_el2; 485 uint64_t mdcr_el3; 486 /* Stores the architectural value of the counter *the last time it was 487 * updated* by pmccntr_op_start. Accesses should always be surrounded 488 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 489 * architecturally-correct value is being read/set. 490 */ 491 uint64_t c15_ccnt; 492 /* Stores the delta between the architectural value and the underlying 493 * cycle count during normal operation. It is used to update c15_ccnt 494 * to be the correct architectural value before accesses. During 495 * accesses, c15_ccnt_delta contains the underlying count being used 496 * for the access, after which it reverts to the delta value in 497 * pmccntr_op_finish. 498 */ 499 uint64_t c15_ccnt_delta; 500 uint64_t c14_pmevcntr[31]; 501 uint64_t c14_pmevcntr_delta[31]; 502 uint64_t c14_pmevtyper[31]; 503 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 504 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 505 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 506 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 507 uint64_t gcr_el1; 508 uint64_t rgsr_el1; 509 } cp15; 510 511 struct { 512 /* M profile has up to 4 stack pointers: 513 * a Main Stack Pointer and a Process Stack Pointer for each 514 * of the Secure and Non-Secure states. (If the CPU doesn't support 515 * the security extension then it has only two SPs.) 516 * In QEMU we always store the currently active SP in regs[13], 517 * and the non-active SP for the current security state in 518 * v7m.other_sp. The stack pointers for the inactive security state 519 * are stored in other_ss_msp and other_ss_psp. 520 * switch_v7m_security_state() is responsible for rearranging them 521 * when we change security state. 522 */ 523 uint32_t other_sp; 524 uint32_t other_ss_msp; 525 uint32_t other_ss_psp; 526 uint32_t vecbase[M_REG_NUM_BANKS]; 527 uint32_t basepri[M_REG_NUM_BANKS]; 528 uint32_t control[M_REG_NUM_BANKS]; 529 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 530 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 531 uint32_t hfsr; /* HardFault Status */ 532 uint32_t dfsr; /* Debug Fault Status Register */ 533 uint32_t sfsr; /* Secure Fault Status Register */ 534 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 535 uint32_t bfar; /* BusFault Address */ 536 uint32_t sfar; /* Secure Fault Address Register */ 537 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 538 int exception; 539 uint32_t primask[M_REG_NUM_BANKS]; 540 uint32_t faultmask[M_REG_NUM_BANKS]; 541 uint32_t aircr; /* only holds r/w state if security extn implemented */ 542 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 543 uint32_t csselr[M_REG_NUM_BANKS]; 544 uint32_t scr[M_REG_NUM_BANKS]; 545 uint32_t msplim[M_REG_NUM_BANKS]; 546 uint32_t psplim[M_REG_NUM_BANKS]; 547 uint32_t fpcar[M_REG_NUM_BANKS]; 548 uint32_t fpccr[M_REG_NUM_BANKS]; 549 uint32_t fpdscr[M_REG_NUM_BANKS]; 550 uint32_t cpacr[M_REG_NUM_BANKS]; 551 uint32_t nsacr; 552 } v7m; 553 554 /* Information associated with an exception about to be taken: 555 * code which raises an exception must set cs->exception_index and 556 * the relevant parts of this structure; the cpu_do_interrupt function 557 * will then set the guest-visible registers as part of the exception 558 * entry process. 559 */ 560 struct { 561 uint32_t syndrome; /* AArch64 format syndrome register */ 562 uint32_t fsr; /* AArch32 format fault status register info */ 563 uint64_t vaddress; /* virtual addr associated with exception, if any */ 564 uint32_t target_el; /* EL the exception should be targeted for */ 565 /* If we implement EL2 we will also need to store information 566 * about the intermediate physical address for stage 2 faults. 567 */ 568 } exception; 569 570 /* Information associated with an SError */ 571 struct { 572 uint8_t pending; 573 uint8_t has_esr; 574 uint64_t esr; 575 } serror; 576 577 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 578 579 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 580 uint32_t irq_line_state; 581 582 /* Thumb-2 EE state. */ 583 uint32_t teecr; 584 uint32_t teehbr; 585 586 /* VFP coprocessor state. */ 587 struct { 588 ARMVectorReg zregs[32]; 589 590 #ifdef TARGET_AARCH64 591 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 592 #define FFR_PRED_NUM 16 593 ARMPredicateReg pregs[17]; 594 /* Scratch space for aa64 sve predicate temporary. */ 595 ARMPredicateReg preg_tmp; 596 #endif 597 598 /* We store these fpcsr fields separately for convenience. */ 599 uint32_t qc[4] QEMU_ALIGNED(16); 600 int vec_len; 601 int vec_stride; 602 603 uint32_t xregs[16]; 604 605 /* Scratch space for aa32 neon expansion. */ 606 uint32_t scratch[8]; 607 608 /* There are a number of distinct float control structures: 609 * 610 * fp_status: is the "normal" fp status. 611 * fp_status_fp16: used for half-precision calculations 612 * standard_fp_status : the ARM "Standard FPSCR Value" 613 * standard_fp_status_fp16 : used for half-precision 614 * calculations with the ARM "Standard FPSCR Value" 615 * 616 * Half-precision operations are governed by a separate 617 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 618 * status structure to control this. 619 * 620 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 621 * round-to-nearest and is used by any operations (generally 622 * Neon) which the architecture defines as controlled by the 623 * standard FPSCR value rather than the FPSCR. 624 * 625 * The "standard FPSCR but for fp16 ops" is needed because 626 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 627 * using a fixed value for it. 628 * 629 * To avoid having to transfer exception bits around, we simply 630 * say that the FPSCR cumulative exception flags are the logical 631 * OR of the flags in the four fp statuses. This relies on the 632 * only thing which needs to read the exception flags being 633 * an explicit FPSCR read. 634 */ 635 float_status fp_status; 636 float_status fp_status_f16; 637 float_status standard_fp_status; 638 float_status standard_fp_status_f16; 639 640 /* ZCR_EL[1-3] */ 641 uint64_t zcr_el[4]; 642 } vfp; 643 uint64_t exclusive_addr; 644 uint64_t exclusive_val; 645 uint64_t exclusive_high; 646 647 /* iwMMXt coprocessor state. */ 648 struct { 649 uint64_t regs[16]; 650 uint64_t val; 651 652 uint32_t cregs[16]; 653 } iwmmxt; 654 655 #ifdef TARGET_AARCH64 656 struct { 657 ARMPACKey apia; 658 ARMPACKey apib; 659 ARMPACKey apda; 660 ARMPACKey apdb; 661 ARMPACKey apga; 662 } keys; 663 #endif 664 665 #if defined(CONFIG_USER_ONLY) 666 /* For usermode syscall translation. */ 667 int eabi; 668 #endif 669 670 struct CPUBreakpoint *cpu_breakpoint[16]; 671 struct CPUWatchpoint *cpu_watchpoint[16]; 672 673 /* Fields up to this point are cleared by a CPU reset */ 674 struct {} end_reset_fields; 675 676 /* Fields after this point are preserved across CPU reset. */ 677 678 /* Internal CPU feature flags. */ 679 uint64_t features; 680 681 /* PMSAv7 MPU */ 682 struct { 683 uint32_t *drbar; 684 uint32_t *drsr; 685 uint32_t *dracr; 686 uint32_t rnr[M_REG_NUM_BANKS]; 687 } pmsav7; 688 689 /* PMSAv8 MPU */ 690 struct { 691 /* The PMSAv8 implementation also shares some PMSAv7 config 692 * and state: 693 * pmsav7.rnr (region number register) 694 * pmsav7_dregion (number of configured regions) 695 */ 696 uint32_t *rbar[M_REG_NUM_BANKS]; 697 uint32_t *rlar[M_REG_NUM_BANKS]; 698 uint32_t mair0[M_REG_NUM_BANKS]; 699 uint32_t mair1[M_REG_NUM_BANKS]; 700 } pmsav8; 701 702 /* v8M SAU */ 703 struct { 704 uint32_t *rbar; 705 uint32_t *rlar; 706 uint32_t rnr; 707 uint32_t ctrl; 708 } sau; 709 710 void *nvic; 711 const struct arm_boot_info *boot_info; 712 /* Store GICv3CPUState to access from this struct */ 713 void *gicv3state; 714 } CPUARMState; 715 716 static inline void set_feature(CPUARMState *env, int feature) 717 { 718 env->features |= 1ULL << feature; 719 } 720 721 static inline void unset_feature(CPUARMState *env, int feature) 722 { 723 env->features &= ~(1ULL << feature); 724 } 725 726 /** 727 * ARMELChangeHookFn: 728 * type of a function which can be registered via arm_register_el_change_hook() 729 * to get callbacks when the CPU changes its exception level or mode. 730 */ 731 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 732 typedef struct ARMELChangeHook ARMELChangeHook; 733 struct ARMELChangeHook { 734 ARMELChangeHookFn *hook; 735 void *opaque; 736 QLIST_ENTRY(ARMELChangeHook) node; 737 }; 738 739 /* These values map onto the return values for 740 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 741 typedef enum ARMPSCIState { 742 PSCI_ON = 0, 743 PSCI_OFF = 1, 744 PSCI_ON_PENDING = 2 745 } ARMPSCIState; 746 747 typedef struct ARMISARegisters ARMISARegisters; 748 749 /** 750 * ARMCPU: 751 * @env: #CPUARMState 752 * 753 * An ARM CPU core. 754 */ 755 struct ARMCPU { 756 /*< private >*/ 757 CPUState parent_obj; 758 /*< public >*/ 759 760 CPUNegativeOffsetState neg; 761 CPUARMState env; 762 763 /* Coprocessor information */ 764 GHashTable *cp_regs; 765 /* For marshalling (mostly coprocessor) register state between the 766 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 767 * we use these arrays. 768 */ 769 /* List of register indexes managed via these arrays; (full KVM style 770 * 64 bit indexes, not CPRegInfo 32 bit indexes) 771 */ 772 uint64_t *cpreg_indexes; 773 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 774 uint64_t *cpreg_values; 775 /* Length of the indexes, values, reset_values arrays */ 776 int32_t cpreg_array_len; 777 /* These are used only for migration: incoming data arrives in 778 * these fields and is sanity checked in post_load before copying 779 * to the working data structures above. 780 */ 781 uint64_t *cpreg_vmstate_indexes; 782 uint64_t *cpreg_vmstate_values; 783 int32_t cpreg_vmstate_array_len; 784 785 DynamicGDBXMLInfo dyn_sysreg_xml; 786 DynamicGDBXMLInfo dyn_svereg_xml; 787 788 /* Timers used by the generic (architected) timer */ 789 QEMUTimer *gt_timer[NUM_GTIMERS]; 790 /* 791 * Timer used by the PMU. Its state is restored after migration by 792 * pmu_op_finish() - it does not need other handling during migration 793 */ 794 QEMUTimer *pmu_timer; 795 /* GPIO outputs for generic timer */ 796 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 797 /* GPIO output for GICv3 maintenance interrupt signal */ 798 qemu_irq gicv3_maintenance_interrupt; 799 /* GPIO output for the PMU interrupt */ 800 qemu_irq pmu_interrupt; 801 802 /* MemoryRegion to use for secure physical accesses */ 803 MemoryRegion *secure_memory; 804 805 /* MemoryRegion to use for allocation tag accesses */ 806 MemoryRegion *tag_memory; 807 MemoryRegion *secure_tag_memory; 808 809 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 810 Object *idau; 811 812 /* 'compatible' string for this CPU for Linux device trees */ 813 const char *dtb_compatible; 814 815 /* PSCI version for this CPU 816 * Bits[31:16] = Major Version 817 * Bits[15:0] = Minor Version 818 */ 819 uint32_t psci_version; 820 821 /* Current power state, access guarded by BQL */ 822 ARMPSCIState power_state; 823 824 /* CPU has virtualization extension */ 825 bool has_el2; 826 /* CPU has security extension */ 827 bool has_el3; 828 /* CPU has PMU (Performance Monitor Unit) */ 829 bool has_pmu; 830 /* CPU has VFP */ 831 bool has_vfp; 832 /* CPU has Neon */ 833 bool has_neon; 834 /* CPU has M-profile DSP extension */ 835 bool has_dsp; 836 837 /* CPU has memory protection unit */ 838 bool has_mpu; 839 /* PMSAv7 MPU number of supported regions */ 840 uint32_t pmsav7_dregion; 841 /* v8M SAU number of supported regions */ 842 uint32_t sau_sregion; 843 844 /* PSCI conduit used to invoke PSCI methods 845 * 0 - disabled, 1 - smc, 2 - hvc 846 */ 847 uint32_t psci_conduit; 848 849 /* For v8M, initial value of the Secure VTOR */ 850 uint32_t init_svtor; 851 852 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 853 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 854 */ 855 uint32_t kvm_target; 856 857 /* KVM init features for this CPU */ 858 uint32_t kvm_init_features[7]; 859 860 /* KVM CPU state */ 861 862 /* KVM virtual time adjustment */ 863 bool kvm_adjvtime; 864 bool kvm_vtime_dirty; 865 uint64_t kvm_vtime; 866 867 /* KVM steal time */ 868 OnOffAuto kvm_steal_time; 869 870 /* Uniprocessor system with MP extensions */ 871 bool mp_is_up; 872 873 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 874 * and the probe failed (so we need to report the error in realize) 875 */ 876 bool host_cpu_probe_failed; 877 878 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 879 * register. 880 */ 881 int32_t core_count; 882 883 /* The instance init functions for implementation-specific subclasses 884 * set these fields to specify the implementation-dependent values of 885 * various constant registers and reset values of non-constant 886 * registers. 887 * Some of these might become QOM properties eventually. 888 * Field names match the official register names as defined in the 889 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 890 * is used for reset values of non-constant registers; no reset_ 891 * prefix means a constant register. 892 * Some of these registers are split out into a substructure that 893 * is shared with the translators to control the ISA. 894 * 895 * Note that if you add an ID register to the ARMISARegisters struct 896 * you need to also update the 32-bit and 64-bit versions of the 897 * kvm_arm_get_host_cpu_features() function to correctly populate the 898 * field by reading the value from the KVM vCPU. 899 */ 900 struct ARMISARegisters { 901 uint32_t id_isar0; 902 uint32_t id_isar1; 903 uint32_t id_isar2; 904 uint32_t id_isar3; 905 uint32_t id_isar4; 906 uint32_t id_isar5; 907 uint32_t id_isar6; 908 uint32_t id_mmfr0; 909 uint32_t id_mmfr1; 910 uint32_t id_mmfr2; 911 uint32_t id_mmfr3; 912 uint32_t id_mmfr4; 913 uint32_t id_pfr0; 914 uint32_t id_pfr1; 915 uint32_t mvfr0; 916 uint32_t mvfr1; 917 uint32_t mvfr2; 918 uint32_t id_dfr0; 919 uint32_t dbgdidr; 920 uint64_t id_aa64isar0; 921 uint64_t id_aa64isar1; 922 uint64_t id_aa64pfr0; 923 uint64_t id_aa64pfr1; 924 uint64_t id_aa64mmfr0; 925 uint64_t id_aa64mmfr1; 926 uint64_t id_aa64mmfr2; 927 uint64_t id_aa64dfr0; 928 uint64_t id_aa64dfr1; 929 } isar; 930 uint64_t midr; 931 uint32_t revidr; 932 uint32_t reset_fpsid; 933 uint32_t ctr; 934 uint32_t reset_sctlr; 935 uint64_t pmceid0; 936 uint64_t pmceid1; 937 uint32_t id_afr0; 938 uint64_t id_aa64afr0; 939 uint64_t id_aa64afr1; 940 uint32_t clidr; 941 uint64_t mp_affinity; /* MP ID without feature bits */ 942 /* The elements of this array are the CCSIDR values for each cache, 943 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 944 */ 945 uint64_t ccsidr[16]; 946 uint64_t reset_cbar; 947 uint32_t reset_auxcr; 948 bool reset_hivecs; 949 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 950 uint32_t dcz_blocksize; 951 uint64_t rvbar; 952 953 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 954 int gic_num_lrs; /* number of list registers */ 955 int gic_vpribits; /* number of virtual priority bits */ 956 int gic_vprebits; /* number of virtual preemption bits */ 957 958 /* Whether the cfgend input is high (i.e. this CPU should reset into 959 * big-endian mode). This setting isn't used directly: instead it modifies 960 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 961 * architecture version. 962 */ 963 bool cfgend; 964 965 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 966 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 967 968 int32_t node_id; /* NUMA node this CPU belongs to */ 969 970 /* Used to synchronize KVM and QEMU in-kernel device levels */ 971 uint8_t device_irq_level; 972 973 /* Used to set the maximum vector length the cpu will support. */ 974 uint32_t sve_max_vq; 975 976 /* 977 * In sve_vq_map each set bit is a supported vector length of 978 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 979 * length in quadwords. 980 * 981 * While processing properties during initialization, corresponding 982 * sve_vq_init bits are set for bits in sve_vq_map that have been 983 * set by properties. 984 */ 985 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 986 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 987 988 /* Generic timer counter frequency, in Hz */ 989 uint64_t gt_cntfrq_hz; 990 }; 991 992 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 993 994 void arm_cpu_post_init(Object *obj); 995 996 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 997 998 #ifndef CONFIG_USER_ONLY 999 extern const VMStateDescription vmstate_arm_cpu; 1000 #endif 1001 1002 void arm_cpu_do_interrupt(CPUState *cpu); 1003 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1004 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 1005 1006 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1007 MemTxAttrs *attrs); 1008 1009 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1010 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1011 1012 /* 1013 * Helpers to dynamically generates XML descriptions of the sysregs 1014 * and SVE registers. Returns the number of registers in each set. 1015 */ 1016 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1017 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1018 1019 /* Returns the dynamically generated XML for the gdb stub. 1020 * Returns a pointer to the XML contents for the specified XML file or NULL 1021 * if the XML name doesn't match the predefined one. 1022 */ 1023 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1024 1025 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1026 int cpuid, void *opaque); 1027 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1028 int cpuid, void *opaque); 1029 1030 #ifdef TARGET_AARCH64 1031 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1032 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1033 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1034 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1035 int new_el, bool el0_a64); 1036 void aarch64_add_sve_properties(Object *obj); 1037 1038 /* 1039 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1040 * The byte at offset i from the start of the in-memory representation contains 1041 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1042 * lowest offsets are stored in the lowest memory addresses, then that nearly 1043 * matches QEMU's representation, which is to use an array of host-endian 1044 * uint64_t's, where the lower offsets are at the lower indices. To complete 1045 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1046 */ 1047 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1048 { 1049 #ifdef HOST_WORDS_BIGENDIAN 1050 int i; 1051 1052 for (i = 0; i < nr; ++i) { 1053 dst[i] = bswap64(src[i]); 1054 } 1055 1056 return dst; 1057 #else 1058 return src; 1059 #endif 1060 } 1061 1062 #else 1063 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1064 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1065 int n, bool a) 1066 { } 1067 static inline void aarch64_add_sve_properties(Object *obj) { } 1068 #endif 1069 1070 #if !defined(CONFIG_TCG) 1071 static inline target_ulong do_arm_semihosting(CPUARMState *env) 1072 { 1073 g_assert_not_reached(); 1074 } 1075 #else 1076 target_ulong do_arm_semihosting(CPUARMState *env); 1077 #endif 1078 void aarch64_sync_32_to_64(CPUARMState *env); 1079 void aarch64_sync_64_to_32(CPUARMState *env); 1080 1081 int fp_exception_el(CPUARMState *env, int cur_el); 1082 int sve_exception_el(CPUARMState *env, int cur_el); 1083 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1084 1085 static inline bool is_a64(CPUARMState *env) 1086 { 1087 return env->aarch64; 1088 } 1089 1090 /* you can call this signal handler from your SIGBUS and SIGSEGV 1091 signal handlers to inform the virtual CPU of exceptions. non zero 1092 is returned if the signal was handled by the virtual CPU. */ 1093 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1094 void *puc); 1095 1096 /** 1097 * pmu_op_start/finish 1098 * @env: CPUARMState 1099 * 1100 * Convert all PMU counters between their delta form (the typical mode when 1101 * they are enabled) and the guest-visible values. These two calls must 1102 * surround any action which might affect the counters. 1103 */ 1104 void pmu_op_start(CPUARMState *env); 1105 void pmu_op_finish(CPUARMState *env); 1106 1107 /* 1108 * Called when a PMU counter is due to overflow 1109 */ 1110 void arm_pmu_timer_cb(void *opaque); 1111 1112 /** 1113 * Functions to register as EL change hooks for PMU mode filtering 1114 */ 1115 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1116 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1117 1118 /* 1119 * pmu_init 1120 * @cpu: ARMCPU 1121 * 1122 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1123 * for the current configuration 1124 */ 1125 void pmu_init(ARMCPU *cpu); 1126 1127 /* SCTLR bit meanings. Several bits have been reused in newer 1128 * versions of the architecture; in that case we define constants 1129 * for both old and new bit meanings. Code which tests against those 1130 * bits should probably check or otherwise arrange that the CPU 1131 * is the architectural version it expects. 1132 */ 1133 #define SCTLR_M (1U << 0) 1134 #define SCTLR_A (1U << 1) 1135 #define SCTLR_C (1U << 2) 1136 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1137 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1138 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1139 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1140 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1141 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1142 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1143 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1144 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1145 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1146 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1147 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1148 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1149 #define SCTLR_SED (1U << 8) /* v8 onward */ 1150 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1151 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1152 #define SCTLR_F (1U << 10) /* up to v6 */ 1153 #define SCTLR_SW (1U << 10) /* v7 */ 1154 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1155 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1156 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1157 #define SCTLR_I (1U << 12) 1158 #define SCTLR_V (1U << 13) /* AArch32 only */ 1159 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1160 #define SCTLR_RR (1U << 14) /* up to v7 */ 1161 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1162 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1163 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1164 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1165 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1166 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1167 #define SCTLR_BR (1U << 17) /* PMSA only */ 1168 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1169 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1170 #define SCTLR_WXN (1U << 19) 1171 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1172 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1173 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1174 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1175 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1176 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1177 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1178 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1179 #define SCTLR_VE (1U << 24) /* up to v7 */ 1180 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1181 #define SCTLR_EE (1U << 25) 1182 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1183 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1184 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1185 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1186 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1187 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1188 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1189 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1190 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1191 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1192 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1193 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1194 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1195 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1196 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1197 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1198 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1199 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1200 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1201 1202 #define CPTR_TCPAC (1U << 31) 1203 #define CPTR_TTA (1U << 20) 1204 #define CPTR_TFP (1U << 10) 1205 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1206 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1207 1208 #define MDCR_EPMAD (1U << 21) 1209 #define MDCR_EDAD (1U << 20) 1210 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1211 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1212 #define MDCR_SDD (1U << 16) 1213 #define MDCR_SPD (3U << 14) 1214 #define MDCR_TDRA (1U << 11) 1215 #define MDCR_TDOSA (1U << 10) 1216 #define MDCR_TDA (1U << 9) 1217 #define MDCR_TDE (1U << 8) 1218 #define MDCR_HPME (1U << 7) 1219 #define MDCR_TPM (1U << 6) 1220 #define MDCR_TPMCR (1U << 5) 1221 #define MDCR_HPMN (0x1fU) 1222 1223 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1224 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1225 1226 #define CPSR_M (0x1fU) 1227 #define CPSR_T (1U << 5) 1228 #define CPSR_F (1U << 6) 1229 #define CPSR_I (1U << 7) 1230 #define CPSR_A (1U << 8) 1231 #define CPSR_E (1U << 9) 1232 #define CPSR_IT_2_7 (0xfc00U) 1233 #define CPSR_GE (0xfU << 16) 1234 #define CPSR_IL (1U << 20) 1235 #define CPSR_PAN (1U << 22) 1236 #define CPSR_J (1U << 24) 1237 #define CPSR_IT_0_1 (3U << 25) 1238 #define CPSR_Q (1U << 27) 1239 #define CPSR_V (1U << 28) 1240 #define CPSR_C (1U << 29) 1241 #define CPSR_Z (1U << 30) 1242 #define CPSR_N (1U << 31) 1243 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1244 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1245 1246 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1247 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1248 | CPSR_NZCV) 1249 /* Bits writable in user mode. */ 1250 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1251 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1252 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1253 1254 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1255 #define XPSR_EXCP 0x1ffU 1256 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1257 #define XPSR_IT_2_7 CPSR_IT_2_7 1258 #define XPSR_GE CPSR_GE 1259 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1260 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1261 #define XPSR_IT_0_1 CPSR_IT_0_1 1262 #define XPSR_Q CPSR_Q 1263 #define XPSR_V CPSR_V 1264 #define XPSR_C CPSR_C 1265 #define XPSR_Z CPSR_Z 1266 #define XPSR_N CPSR_N 1267 #define XPSR_NZCV CPSR_NZCV 1268 #define XPSR_IT CPSR_IT 1269 1270 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1271 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1272 #define TTBCR_PD0 (1U << 4) 1273 #define TTBCR_PD1 (1U << 5) 1274 #define TTBCR_EPD0 (1U << 7) 1275 #define TTBCR_IRGN0 (3U << 8) 1276 #define TTBCR_ORGN0 (3U << 10) 1277 #define TTBCR_SH0 (3U << 12) 1278 #define TTBCR_T1SZ (3U << 16) 1279 #define TTBCR_A1 (1U << 22) 1280 #define TTBCR_EPD1 (1U << 23) 1281 #define TTBCR_IRGN1 (3U << 24) 1282 #define TTBCR_ORGN1 (3U << 26) 1283 #define TTBCR_SH1 (1U << 28) 1284 #define TTBCR_EAE (1U << 31) 1285 1286 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1287 * Only these are valid when in AArch64 mode; in 1288 * AArch32 mode SPSRs are basically CPSR-format. 1289 */ 1290 #define PSTATE_SP (1U) 1291 #define PSTATE_M (0xFU) 1292 #define PSTATE_nRW (1U << 4) 1293 #define PSTATE_F (1U << 6) 1294 #define PSTATE_I (1U << 7) 1295 #define PSTATE_A (1U << 8) 1296 #define PSTATE_D (1U << 9) 1297 #define PSTATE_BTYPE (3U << 10) 1298 #define PSTATE_IL (1U << 20) 1299 #define PSTATE_SS (1U << 21) 1300 #define PSTATE_PAN (1U << 22) 1301 #define PSTATE_UAO (1U << 23) 1302 #define PSTATE_TCO (1U << 25) 1303 #define PSTATE_V (1U << 28) 1304 #define PSTATE_C (1U << 29) 1305 #define PSTATE_Z (1U << 30) 1306 #define PSTATE_N (1U << 31) 1307 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1308 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1309 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1310 /* Mode values for AArch64 */ 1311 #define PSTATE_MODE_EL3h 13 1312 #define PSTATE_MODE_EL3t 12 1313 #define PSTATE_MODE_EL2h 9 1314 #define PSTATE_MODE_EL2t 8 1315 #define PSTATE_MODE_EL1h 5 1316 #define PSTATE_MODE_EL1t 4 1317 #define PSTATE_MODE_EL0t 0 1318 1319 /* Write a new value to v7m.exception, thus transitioning into or out 1320 * of Handler mode; this may result in a change of active stack pointer. 1321 */ 1322 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1323 1324 /* Map EL and handler into a PSTATE_MODE. */ 1325 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1326 { 1327 return (el << 2) | handler; 1328 } 1329 1330 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1331 * interprocessing, so we don't attempt to sync with the cpsr state used by 1332 * the 32 bit decoder. 1333 */ 1334 static inline uint32_t pstate_read(CPUARMState *env) 1335 { 1336 int ZF; 1337 1338 ZF = (env->ZF == 0); 1339 return (env->NF & 0x80000000) | (ZF << 30) 1340 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1341 | env->pstate | env->daif | (env->btype << 10); 1342 } 1343 1344 static inline void pstate_write(CPUARMState *env, uint32_t val) 1345 { 1346 env->ZF = (~val) & PSTATE_Z; 1347 env->NF = val; 1348 env->CF = (val >> 29) & 1; 1349 env->VF = (val << 3) & 0x80000000; 1350 env->daif = val & PSTATE_DAIF; 1351 env->btype = (val >> 10) & 3; 1352 env->pstate = val & ~CACHED_PSTATE_BITS; 1353 } 1354 1355 /* Return the current CPSR value. */ 1356 uint32_t cpsr_read(CPUARMState *env); 1357 1358 typedef enum CPSRWriteType { 1359 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1360 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1361 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1362 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1363 } CPSRWriteType; 1364 1365 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1366 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1367 CPSRWriteType write_type); 1368 1369 /* Return the current xPSR value. */ 1370 static inline uint32_t xpsr_read(CPUARMState *env) 1371 { 1372 int ZF; 1373 ZF = (env->ZF == 0); 1374 return (env->NF & 0x80000000) | (ZF << 30) 1375 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1376 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1377 | ((env->condexec_bits & 0xfc) << 8) 1378 | (env->GE << 16) 1379 | env->v7m.exception; 1380 } 1381 1382 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1383 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1384 { 1385 if (mask & XPSR_NZCV) { 1386 env->ZF = (~val) & XPSR_Z; 1387 env->NF = val; 1388 env->CF = (val >> 29) & 1; 1389 env->VF = (val << 3) & 0x80000000; 1390 } 1391 if (mask & XPSR_Q) { 1392 env->QF = ((val & XPSR_Q) != 0); 1393 } 1394 if (mask & XPSR_GE) { 1395 env->GE = (val & XPSR_GE) >> 16; 1396 } 1397 #ifndef CONFIG_USER_ONLY 1398 if (mask & XPSR_T) { 1399 env->thumb = ((val & XPSR_T) != 0); 1400 } 1401 if (mask & XPSR_IT_0_1) { 1402 env->condexec_bits &= ~3; 1403 env->condexec_bits |= (val >> 25) & 3; 1404 } 1405 if (mask & XPSR_IT_2_7) { 1406 env->condexec_bits &= 3; 1407 env->condexec_bits |= (val >> 8) & 0xfc; 1408 } 1409 if (mask & XPSR_EXCP) { 1410 /* Note that this only happens on exception exit */ 1411 write_v7m_exception(env, val & XPSR_EXCP); 1412 } 1413 #endif 1414 } 1415 1416 #define HCR_VM (1ULL << 0) 1417 #define HCR_SWIO (1ULL << 1) 1418 #define HCR_PTW (1ULL << 2) 1419 #define HCR_FMO (1ULL << 3) 1420 #define HCR_IMO (1ULL << 4) 1421 #define HCR_AMO (1ULL << 5) 1422 #define HCR_VF (1ULL << 6) 1423 #define HCR_VI (1ULL << 7) 1424 #define HCR_VSE (1ULL << 8) 1425 #define HCR_FB (1ULL << 9) 1426 #define HCR_BSU_MASK (3ULL << 10) 1427 #define HCR_DC (1ULL << 12) 1428 #define HCR_TWI (1ULL << 13) 1429 #define HCR_TWE (1ULL << 14) 1430 #define HCR_TID0 (1ULL << 15) 1431 #define HCR_TID1 (1ULL << 16) 1432 #define HCR_TID2 (1ULL << 17) 1433 #define HCR_TID3 (1ULL << 18) 1434 #define HCR_TSC (1ULL << 19) 1435 #define HCR_TIDCP (1ULL << 20) 1436 #define HCR_TACR (1ULL << 21) 1437 #define HCR_TSW (1ULL << 22) 1438 #define HCR_TPCP (1ULL << 23) 1439 #define HCR_TPU (1ULL << 24) 1440 #define HCR_TTLB (1ULL << 25) 1441 #define HCR_TVM (1ULL << 26) 1442 #define HCR_TGE (1ULL << 27) 1443 #define HCR_TDZ (1ULL << 28) 1444 #define HCR_HCD (1ULL << 29) 1445 #define HCR_TRVM (1ULL << 30) 1446 #define HCR_RW (1ULL << 31) 1447 #define HCR_CD (1ULL << 32) 1448 #define HCR_ID (1ULL << 33) 1449 #define HCR_E2H (1ULL << 34) 1450 #define HCR_TLOR (1ULL << 35) 1451 #define HCR_TERR (1ULL << 36) 1452 #define HCR_TEA (1ULL << 37) 1453 #define HCR_MIOCNCE (1ULL << 38) 1454 /* RES0 bit 39 */ 1455 #define HCR_APK (1ULL << 40) 1456 #define HCR_API (1ULL << 41) 1457 #define HCR_NV (1ULL << 42) 1458 #define HCR_NV1 (1ULL << 43) 1459 #define HCR_AT (1ULL << 44) 1460 #define HCR_NV2 (1ULL << 45) 1461 #define HCR_FWB (1ULL << 46) 1462 #define HCR_FIEN (1ULL << 47) 1463 /* RES0 bit 48 */ 1464 #define HCR_TID4 (1ULL << 49) 1465 #define HCR_TICAB (1ULL << 50) 1466 #define HCR_AMVOFFEN (1ULL << 51) 1467 #define HCR_TOCU (1ULL << 52) 1468 #define HCR_ENSCXT (1ULL << 53) 1469 #define HCR_TTLBIS (1ULL << 54) 1470 #define HCR_TTLBOS (1ULL << 55) 1471 #define HCR_ATA (1ULL << 56) 1472 #define HCR_DCT (1ULL << 57) 1473 #define HCR_TID5 (1ULL << 58) 1474 #define HCR_TWEDEN (1ULL << 59) 1475 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1476 1477 #define SCR_NS (1U << 0) 1478 #define SCR_IRQ (1U << 1) 1479 #define SCR_FIQ (1U << 2) 1480 #define SCR_EA (1U << 3) 1481 #define SCR_FW (1U << 4) 1482 #define SCR_AW (1U << 5) 1483 #define SCR_NET (1U << 6) 1484 #define SCR_SMD (1U << 7) 1485 #define SCR_HCE (1U << 8) 1486 #define SCR_SIF (1U << 9) 1487 #define SCR_RW (1U << 10) 1488 #define SCR_ST (1U << 11) 1489 #define SCR_TWI (1U << 12) 1490 #define SCR_TWE (1U << 13) 1491 #define SCR_TLOR (1U << 14) 1492 #define SCR_TERR (1U << 15) 1493 #define SCR_APK (1U << 16) 1494 #define SCR_API (1U << 17) 1495 #define SCR_EEL2 (1U << 18) 1496 #define SCR_EASE (1U << 19) 1497 #define SCR_NMEA (1U << 20) 1498 #define SCR_FIEN (1U << 21) 1499 #define SCR_ENSCXT (1U << 25) 1500 #define SCR_ATA (1U << 26) 1501 1502 /* Return the current FPSCR value. */ 1503 uint32_t vfp_get_fpscr(CPUARMState *env); 1504 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1505 1506 /* FPCR, Floating Point Control Register 1507 * FPSR, Floating Poiht Status Register 1508 * 1509 * For A64 the FPSCR is split into two logically distinct registers, 1510 * FPCR and FPSR. However since they still use non-overlapping bits 1511 * we store the underlying state in fpscr and just mask on read/write. 1512 */ 1513 #define FPSR_MASK 0xf800009f 1514 #define FPCR_MASK 0x07ff9f00 1515 1516 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1517 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1518 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1519 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1520 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1521 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1522 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1523 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1524 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1525 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1526 1527 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1528 { 1529 return vfp_get_fpscr(env) & FPSR_MASK; 1530 } 1531 1532 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1533 { 1534 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1535 vfp_set_fpscr(env, new_fpscr); 1536 } 1537 1538 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1539 { 1540 return vfp_get_fpscr(env) & FPCR_MASK; 1541 } 1542 1543 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1544 { 1545 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1546 vfp_set_fpscr(env, new_fpscr); 1547 } 1548 1549 enum arm_cpu_mode { 1550 ARM_CPU_MODE_USR = 0x10, 1551 ARM_CPU_MODE_FIQ = 0x11, 1552 ARM_CPU_MODE_IRQ = 0x12, 1553 ARM_CPU_MODE_SVC = 0x13, 1554 ARM_CPU_MODE_MON = 0x16, 1555 ARM_CPU_MODE_ABT = 0x17, 1556 ARM_CPU_MODE_HYP = 0x1a, 1557 ARM_CPU_MODE_UND = 0x1b, 1558 ARM_CPU_MODE_SYS = 0x1f 1559 }; 1560 1561 /* VFP system registers. */ 1562 #define ARM_VFP_FPSID 0 1563 #define ARM_VFP_FPSCR 1 1564 #define ARM_VFP_MVFR2 5 1565 #define ARM_VFP_MVFR1 6 1566 #define ARM_VFP_MVFR0 7 1567 #define ARM_VFP_FPEXC 8 1568 #define ARM_VFP_FPINST 9 1569 #define ARM_VFP_FPINST2 10 1570 1571 /* iwMMXt coprocessor control registers. */ 1572 #define ARM_IWMMXT_wCID 0 1573 #define ARM_IWMMXT_wCon 1 1574 #define ARM_IWMMXT_wCSSF 2 1575 #define ARM_IWMMXT_wCASF 3 1576 #define ARM_IWMMXT_wCGR0 8 1577 #define ARM_IWMMXT_wCGR1 9 1578 #define ARM_IWMMXT_wCGR2 10 1579 #define ARM_IWMMXT_wCGR3 11 1580 1581 /* V7M CCR bits */ 1582 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1583 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1584 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1585 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1586 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1587 FIELD(V7M_CCR, STKALIGN, 9, 1) 1588 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1589 FIELD(V7M_CCR, DC, 16, 1) 1590 FIELD(V7M_CCR, IC, 17, 1) 1591 FIELD(V7M_CCR, BP, 18, 1) 1592 1593 /* V7M SCR bits */ 1594 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1595 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1596 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1597 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1598 1599 /* V7M AIRCR bits */ 1600 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1601 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1602 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1603 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1604 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1605 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1606 FIELD(V7M_AIRCR, PRIS, 14, 1) 1607 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1608 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1609 1610 /* V7M CFSR bits for MMFSR */ 1611 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1612 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1613 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1614 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1615 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1616 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1617 1618 /* V7M CFSR bits for BFSR */ 1619 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1620 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1621 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1622 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1623 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1624 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1625 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1626 1627 /* V7M CFSR bits for UFSR */ 1628 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1629 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1630 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1631 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1632 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1633 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1634 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1635 1636 /* V7M CFSR bit masks covering all of the subregister bits */ 1637 FIELD(V7M_CFSR, MMFSR, 0, 8) 1638 FIELD(V7M_CFSR, BFSR, 8, 8) 1639 FIELD(V7M_CFSR, UFSR, 16, 16) 1640 1641 /* V7M HFSR bits */ 1642 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1643 FIELD(V7M_HFSR, FORCED, 30, 1) 1644 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1645 1646 /* V7M DFSR bits */ 1647 FIELD(V7M_DFSR, HALTED, 0, 1) 1648 FIELD(V7M_DFSR, BKPT, 1, 1) 1649 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1650 FIELD(V7M_DFSR, VCATCH, 3, 1) 1651 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1652 1653 /* V7M SFSR bits */ 1654 FIELD(V7M_SFSR, INVEP, 0, 1) 1655 FIELD(V7M_SFSR, INVIS, 1, 1) 1656 FIELD(V7M_SFSR, INVER, 2, 1) 1657 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1658 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1659 FIELD(V7M_SFSR, LSPERR, 5, 1) 1660 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1661 FIELD(V7M_SFSR, LSERR, 7, 1) 1662 1663 /* v7M MPU_CTRL bits */ 1664 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1665 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1666 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1667 1668 /* v7M CLIDR bits */ 1669 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1670 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1671 FIELD(V7M_CLIDR, LOC, 24, 3) 1672 FIELD(V7M_CLIDR, LOUU, 27, 3) 1673 FIELD(V7M_CLIDR, ICB, 30, 2) 1674 1675 FIELD(V7M_CSSELR, IND, 0, 1) 1676 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1677 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1678 * define a mask for this and check that it doesn't permit running off 1679 * the end of the array. 1680 */ 1681 FIELD(V7M_CSSELR, INDEX, 0, 4) 1682 1683 /* v7M FPCCR bits */ 1684 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1685 FIELD(V7M_FPCCR, USER, 1, 1) 1686 FIELD(V7M_FPCCR, S, 2, 1) 1687 FIELD(V7M_FPCCR, THREAD, 3, 1) 1688 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1689 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1690 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1691 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1692 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1693 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1694 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1695 FIELD(V7M_FPCCR, RES0, 11, 15) 1696 FIELD(V7M_FPCCR, TS, 26, 1) 1697 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1698 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1699 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1700 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1701 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1702 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1703 #define R_V7M_FPCCR_BANKED_MASK \ 1704 (R_V7M_FPCCR_LSPACT_MASK | \ 1705 R_V7M_FPCCR_USER_MASK | \ 1706 R_V7M_FPCCR_THREAD_MASK | \ 1707 R_V7M_FPCCR_MMRDY_MASK | \ 1708 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1709 R_V7M_FPCCR_UFRDY_MASK | \ 1710 R_V7M_FPCCR_ASPEN_MASK) 1711 1712 /* 1713 * System register ID fields. 1714 */ 1715 FIELD(MIDR_EL1, REVISION, 0, 4) 1716 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1717 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1718 FIELD(MIDR_EL1, VARIANT, 20, 4) 1719 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1720 1721 FIELD(ID_ISAR0, SWAP, 0, 4) 1722 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1723 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1724 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1725 FIELD(ID_ISAR0, COPROC, 16, 4) 1726 FIELD(ID_ISAR0, DEBUG, 20, 4) 1727 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1728 1729 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1730 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1731 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1732 FIELD(ID_ISAR1, EXTEND, 12, 4) 1733 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1734 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1735 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1736 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1737 1738 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1739 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1740 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1741 FIELD(ID_ISAR2, MULT, 12, 4) 1742 FIELD(ID_ISAR2, MULTS, 16, 4) 1743 FIELD(ID_ISAR2, MULTU, 20, 4) 1744 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1745 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1746 1747 FIELD(ID_ISAR3, SATURATE, 0, 4) 1748 FIELD(ID_ISAR3, SIMD, 4, 4) 1749 FIELD(ID_ISAR3, SVC, 8, 4) 1750 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1751 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1752 FIELD(ID_ISAR3, T32COPY, 20, 4) 1753 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1754 FIELD(ID_ISAR3, T32EE, 28, 4) 1755 1756 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1757 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1758 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1759 FIELD(ID_ISAR4, SMC, 12, 4) 1760 FIELD(ID_ISAR4, BARRIER, 16, 4) 1761 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1762 FIELD(ID_ISAR4, PSR_M, 24, 4) 1763 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1764 1765 FIELD(ID_ISAR5, SEVL, 0, 4) 1766 FIELD(ID_ISAR5, AES, 4, 4) 1767 FIELD(ID_ISAR5, SHA1, 8, 4) 1768 FIELD(ID_ISAR5, SHA2, 12, 4) 1769 FIELD(ID_ISAR5, CRC32, 16, 4) 1770 FIELD(ID_ISAR5, RDM, 24, 4) 1771 FIELD(ID_ISAR5, VCMA, 28, 4) 1772 1773 FIELD(ID_ISAR6, JSCVT, 0, 4) 1774 FIELD(ID_ISAR6, DP, 4, 4) 1775 FIELD(ID_ISAR6, FHM, 8, 4) 1776 FIELD(ID_ISAR6, SB, 12, 4) 1777 FIELD(ID_ISAR6, SPECRES, 16, 4) 1778 1779 FIELD(ID_MMFR0, VMSA, 0, 4) 1780 FIELD(ID_MMFR0, PMSA, 4, 4) 1781 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 1782 FIELD(ID_MMFR0, SHARELVL, 12, 4) 1783 FIELD(ID_MMFR0, TCM, 16, 4) 1784 FIELD(ID_MMFR0, AUXREG, 20, 4) 1785 FIELD(ID_MMFR0, FCSE, 24, 4) 1786 FIELD(ID_MMFR0, INNERSHR, 28, 4) 1787 1788 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 1789 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 1790 FIELD(ID_MMFR3, BPMAINT, 8, 4) 1791 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 1792 FIELD(ID_MMFR3, PAN, 16, 4) 1793 FIELD(ID_MMFR3, COHWALK, 20, 4) 1794 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 1795 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 1796 1797 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1798 FIELD(ID_MMFR4, AC2, 4, 4) 1799 FIELD(ID_MMFR4, XNX, 8, 4) 1800 FIELD(ID_MMFR4, CNP, 12, 4) 1801 FIELD(ID_MMFR4, HPDS, 16, 4) 1802 FIELD(ID_MMFR4, LSM, 20, 4) 1803 FIELD(ID_MMFR4, CCIDX, 24, 4) 1804 FIELD(ID_MMFR4, EVT, 28, 4) 1805 1806 FIELD(ID_PFR1, PROGMOD, 0, 4) 1807 FIELD(ID_PFR1, SECURITY, 4, 4) 1808 FIELD(ID_PFR1, MPROGMOD, 8, 4) 1809 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 1810 FIELD(ID_PFR1, GENTIMER, 16, 4) 1811 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 1812 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 1813 FIELD(ID_PFR1, GIC, 28, 4) 1814 1815 FIELD(ID_AA64ISAR0, AES, 4, 4) 1816 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1817 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1818 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1819 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1820 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1821 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1822 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1823 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1824 FIELD(ID_AA64ISAR0, DP, 44, 4) 1825 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1826 FIELD(ID_AA64ISAR0, TS, 52, 4) 1827 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1828 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1829 1830 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1831 FIELD(ID_AA64ISAR1, APA, 4, 4) 1832 FIELD(ID_AA64ISAR1, API, 8, 4) 1833 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1834 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1835 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1836 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1837 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1838 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1839 FIELD(ID_AA64ISAR1, SB, 36, 4) 1840 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1841 1842 FIELD(ID_AA64PFR0, EL0, 0, 4) 1843 FIELD(ID_AA64PFR0, EL1, 4, 4) 1844 FIELD(ID_AA64PFR0, EL2, 8, 4) 1845 FIELD(ID_AA64PFR0, EL3, 12, 4) 1846 FIELD(ID_AA64PFR0, FP, 16, 4) 1847 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1848 FIELD(ID_AA64PFR0, GIC, 24, 4) 1849 FIELD(ID_AA64PFR0, RAS, 28, 4) 1850 FIELD(ID_AA64PFR0, SVE, 32, 4) 1851 1852 FIELD(ID_AA64PFR1, BT, 0, 4) 1853 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1854 FIELD(ID_AA64PFR1, MTE, 8, 4) 1855 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1856 1857 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1858 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1859 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1860 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1861 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1862 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1863 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1864 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1865 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1866 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1867 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1868 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1869 1870 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1871 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1872 FIELD(ID_AA64MMFR1, VH, 8, 4) 1873 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1874 FIELD(ID_AA64MMFR1, LO, 16, 4) 1875 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1876 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1877 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1878 1879 FIELD(ID_AA64MMFR2, CNP, 0, 4) 1880 FIELD(ID_AA64MMFR2, UAO, 4, 4) 1881 FIELD(ID_AA64MMFR2, LSM, 8, 4) 1882 FIELD(ID_AA64MMFR2, IESB, 12, 4) 1883 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 1884 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 1885 FIELD(ID_AA64MMFR2, NV, 24, 4) 1886 FIELD(ID_AA64MMFR2, ST, 28, 4) 1887 FIELD(ID_AA64MMFR2, AT, 32, 4) 1888 FIELD(ID_AA64MMFR2, IDS, 36, 4) 1889 FIELD(ID_AA64MMFR2, FWB, 40, 4) 1890 FIELD(ID_AA64MMFR2, TTL, 48, 4) 1891 FIELD(ID_AA64MMFR2, BBM, 52, 4) 1892 FIELD(ID_AA64MMFR2, EVT, 56, 4) 1893 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 1894 1895 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 1896 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 1897 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 1898 FIELD(ID_AA64DFR0, BRPS, 12, 4) 1899 FIELD(ID_AA64DFR0, WRPS, 20, 4) 1900 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 1901 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 1902 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 1903 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 1904 1905 FIELD(ID_DFR0, COPDBG, 0, 4) 1906 FIELD(ID_DFR0, COPSDBG, 4, 4) 1907 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1908 FIELD(ID_DFR0, COPTRC, 12, 4) 1909 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1910 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1911 FIELD(ID_DFR0, PERFMON, 24, 4) 1912 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1913 1914 FIELD(DBGDIDR, SE_IMP, 12, 1) 1915 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 1916 FIELD(DBGDIDR, VERSION, 16, 4) 1917 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 1918 FIELD(DBGDIDR, BRPS, 24, 4) 1919 FIELD(DBGDIDR, WRPS, 28, 4) 1920 1921 FIELD(MVFR0, SIMDREG, 0, 4) 1922 FIELD(MVFR0, FPSP, 4, 4) 1923 FIELD(MVFR0, FPDP, 8, 4) 1924 FIELD(MVFR0, FPTRAP, 12, 4) 1925 FIELD(MVFR0, FPDIVIDE, 16, 4) 1926 FIELD(MVFR0, FPSQRT, 20, 4) 1927 FIELD(MVFR0, FPSHVEC, 24, 4) 1928 FIELD(MVFR0, FPROUND, 28, 4) 1929 1930 FIELD(MVFR1, FPFTZ, 0, 4) 1931 FIELD(MVFR1, FPDNAN, 4, 4) 1932 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 1933 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 1934 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 1935 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 1936 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 1937 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 1938 FIELD(MVFR1, FPHP, 24, 4) 1939 FIELD(MVFR1, SIMDFMAC, 28, 4) 1940 1941 FIELD(MVFR2, SIMDMISC, 0, 4) 1942 FIELD(MVFR2, FPMISC, 4, 4) 1943 1944 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1945 1946 /* If adding a feature bit which corresponds to a Linux ELF 1947 * HWCAP bit, remember to update the feature-bit-to-hwcap 1948 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1949 */ 1950 enum arm_features { 1951 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1952 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1953 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1954 ARM_FEATURE_V6, 1955 ARM_FEATURE_V6K, 1956 ARM_FEATURE_V7, 1957 ARM_FEATURE_THUMB2, 1958 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1959 ARM_FEATURE_NEON, 1960 ARM_FEATURE_M, /* Microcontroller profile. */ 1961 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1962 ARM_FEATURE_THUMB2EE, 1963 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1964 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1965 ARM_FEATURE_V4T, 1966 ARM_FEATURE_V5, 1967 ARM_FEATURE_STRONGARM, 1968 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1969 ARM_FEATURE_GENERIC_TIMER, 1970 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1971 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1972 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1973 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1974 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1975 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1976 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1977 ARM_FEATURE_V8, 1978 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1979 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1980 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1981 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1982 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1983 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1984 ARM_FEATURE_PMU, /* has PMU support */ 1985 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1986 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1987 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1988 }; 1989 1990 static inline int arm_feature(CPUARMState *env, int feature) 1991 { 1992 return (env->features & (1ULL << feature)) != 0; 1993 } 1994 1995 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 1996 1997 #if !defined(CONFIG_USER_ONLY) 1998 /* Return true if exception levels below EL3 are in secure state, 1999 * or would be following an exception return to that level. 2000 * Unlike arm_is_secure() (which is always a question about the 2001 * _current_ state of the CPU) this doesn't care about the current 2002 * EL or mode. 2003 */ 2004 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2005 { 2006 if (arm_feature(env, ARM_FEATURE_EL3)) { 2007 return !(env->cp15.scr_el3 & SCR_NS); 2008 } else { 2009 /* If EL3 is not supported then the secure state is implementation 2010 * defined, in which case QEMU defaults to non-secure. 2011 */ 2012 return false; 2013 } 2014 } 2015 2016 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2017 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2018 { 2019 if (arm_feature(env, ARM_FEATURE_EL3)) { 2020 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2021 /* CPU currently in AArch64 state and EL3 */ 2022 return true; 2023 } else if (!is_a64(env) && 2024 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2025 /* CPU currently in AArch32 state and monitor mode */ 2026 return true; 2027 } 2028 } 2029 return false; 2030 } 2031 2032 /* Return true if the processor is in secure state */ 2033 static inline bool arm_is_secure(CPUARMState *env) 2034 { 2035 if (arm_is_el3_or_mon(env)) { 2036 return true; 2037 } 2038 return arm_is_secure_below_el3(env); 2039 } 2040 2041 #else 2042 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2043 { 2044 return false; 2045 } 2046 2047 static inline bool arm_is_secure(CPUARMState *env) 2048 { 2049 return false; 2050 } 2051 #endif 2052 2053 /** 2054 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2055 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2056 * "for all purposes other than a direct read or write access of HCR_EL2." 2057 * Not included here is HCR_RW. 2058 */ 2059 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2060 2061 /* Return true if the specified exception level is running in AArch64 state. */ 2062 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2063 { 2064 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2065 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2066 */ 2067 assert(el >= 1 && el <= 3); 2068 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2069 2070 /* The highest exception level is always at the maximum supported 2071 * register width, and then lower levels have a register width controlled 2072 * by bits in the SCR or HCR registers. 2073 */ 2074 if (el == 3) { 2075 return aa64; 2076 } 2077 2078 if (arm_feature(env, ARM_FEATURE_EL3)) { 2079 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2080 } 2081 2082 if (el == 2) { 2083 return aa64; 2084 } 2085 2086 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 2087 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2088 } 2089 2090 return aa64; 2091 } 2092 2093 /* Function for determing whether guest cp register reads and writes should 2094 * access the secure or non-secure bank of a cp register. When EL3 is 2095 * operating in AArch32 state, the NS-bit determines whether the secure 2096 * instance of a cp register should be used. When EL3 is AArch64 (or if 2097 * it doesn't exist at all) then there is no register banking, and all 2098 * accesses are to the non-secure version. 2099 */ 2100 static inline bool access_secure_reg(CPUARMState *env) 2101 { 2102 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2103 !arm_el_is_aa64(env, 3) && 2104 !(env->cp15.scr_el3 & SCR_NS)); 2105 2106 return ret; 2107 } 2108 2109 /* Macros for accessing a specified CP register bank */ 2110 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2111 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2112 2113 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2114 do { \ 2115 if (_secure) { \ 2116 (_env)->cp15._regname##_s = (_val); \ 2117 } else { \ 2118 (_env)->cp15._regname##_ns = (_val); \ 2119 } \ 2120 } while (0) 2121 2122 /* Macros for automatically accessing a specific CP register bank depending on 2123 * the current secure state of the system. These macros are not intended for 2124 * supporting instruction translation reads/writes as these are dependent 2125 * solely on the SCR.NS bit and not the mode. 2126 */ 2127 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2128 A32_BANKED_REG_GET((_env), _regname, \ 2129 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2130 2131 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2132 A32_BANKED_REG_SET((_env), _regname, \ 2133 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2134 (_val)) 2135 2136 void arm_cpu_list(void); 2137 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2138 uint32_t cur_el, bool secure); 2139 2140 /* Interface between CPU and Interrupt controller. */ 2141 #ifndef CONFIG_USER_ONLY 2142 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2143 #else 2144 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2145 { 2146 return true; 2147 } 2148 #endif 2149 /** 2150 * armv7m_nvic_set_pending: mark the specified exception as pending 2151 * @opaque: the NVIC 2152 * @irq: the exception number to mark pending 2153 * @secure: false for non-banked exceptions or for the nonsecure 2154 * version of a banked exception, true for the secure version of a banked 2155 * exception. 2156 * 2157 * Marks the specified exception as pending. Note that we will assert() 2158 * if @secure is true and @irq does not specify one of the fixed set 2159 * of architecturally banked exceptions. 2160 */ 2161 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2162 /** 2163 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2164 * @opaque: the NVIC 2165 * @irq: the exception number to mark pending 2166 * @secure: false for non-banked exceptions or for the nonsecure 2167 * version of a banked exception, true for the secure version of a banked 2168 * exception. 2169 * 2170 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2171 * exceptions (exceptions generated in the course of trying to take 2172 * a different exception). 2173 */ 2174 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2175 /** 2176 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2177 * @opaque: the NVIC 2178 * @irq: the exception number to mark pending 2179 * @secure: false for non-banked exceptions or for the nonsecure 2180 * version of a banked exception, true for the secure version of a banked 2181 * exception. 2182 * 2183 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2184 * generated in the course of lazy stacking of FP registers. 2185 */ 2186 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2187 /** 2188 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2189 * exception, and whether it targets Secure state 2190 * @opaque: the NVIC 2191 * @pirq: set to pending exception number 2192 * @ptargets_secure: set to whether pending exception targets Secure 2193 * 2194 * This function writes the number of the highest priority pending 2195 * exception (the one which would be made active by 2196 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2197 * to true if the current highest priority pending exception should 2198 * be taken to Secure state, false for NS. 2199 */ 2200 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2201 bool *ptargets_secure); 2202 /** 2203 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2204 * @opaque: the NVIC 2205 * 2206 * Move the current highest priority pending exception from the pending 2207 * state to the active state, and update v7m.exception to indicate that 2208 * it is the exception currently being handled. 2209 */ 2210 void armv7m_nvic_acknowledge_irq(void *opaque); 2211 /** 2212 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2213 * @opaque: the NVIC 2214 * @irq: the exception number to complete 2215 * @secure: true if this exception was secure 2216 * 2217 * Returns: -1 if the irq was not active 2218 * 1 if completing this irq brought us back to base (no active irqs) 2219 * 0 if there is still an irq active after this one was completed 2220 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2221 */ 2222 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2223 /** 2224 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2225 * @opaque: the NVIC 2226 * @irq: the exception number to mark pending 2227 * @secure: false for non-banked exceptions or for the nonsecure 2228 * version of a banked exception, true for the secure version of a banked 2229 * exception. 2230 * 2231 * Return whether an exception is "ready", i.e. whether the exception is 2232 * enabled and is configured at a priority which would allow it to 2233 * interrupt the current execution priority. This controls whether the 2234 * RDY bit for it in the FPCCR is set. 2235 */ 2236 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2237 /** 2238 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2239 * @opaque: the NVIC 2240 * 2241 * Returns: the raw execution priority as defined by the v8M architecture. 2242 * This is the execution priority minus the effects of AIRCR.PRIS, 2243 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2244 * (v8M ARM ARM I_PKLD.) 2245 */ 2246 int armv7m_nvic_raw_execution_priority(void *opaque); 2247 /** 2248 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2249 * priority is negative for the specified security state. 2250 * @opaque: the NVIC 2251 * @secure: the security state to test 2252 * This corresponds to the pseudocode IsReqExecPriNeg(). 2253 */ 2254 #ifndef CONFIG_USER_ONLY 2255 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2256 #else 2257 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2258 { 2259 return false; 2260 } 2261 #endif 2262 2263 /* Interface for defining coprocessor registers. 2264 * Registers are defined in tables of arm_cp_reginfo structs 2265 * which are passed to define_arm_cp_regs(). 2266 */ 2267 2268 /* When looking up a coprocessor register we look for it 2269 * via an integer which encodes all of: 2270 * coprocessor number 2271 * Crn, Crm, opc1, opc2 fields 2272 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2273 * or via MRRC/MCRR?) 2274 * non-secure/secure bank (AArch32 only) 2275 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2276 * (In this case crn and opc2 should be zero.) 2277 * For AArch64, there is no 32/64 bit size distinction; 2278 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2279 * and 4 bit CRn and CRm. The encoding patterns are chosen 2280 * to be easy to convert to and from the KVM encodings, and also 2281 * so that the hashtable can contain both AArch32 and AArch64 2282 * registers (to allow for interprocessing where we might run 2283 * 32 bit code on a 64 bit core). 2284 */ 2285 /* This bit is private to our hashtable cpreg; in KVM register 2286 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2287 * in the upper bits of the 64 bit ID. 2288 */ 2289 #define CP_REG_AA64_SHIFT 28 2290 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2291 2292 /* To enable banking of coprocessor registers depending on ns-bit we 2293 * add a bit to distinguish between secure and non-secure cpregs in the 2294 * hashtable. 2295 */ 2296 #define CP_REG_NS_SHIFT 29 2297 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2298 2299 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2300 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2301 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2302 2303 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2304 (CP_REG_AA64_MASK | \ 2305 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2306 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2307 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2308 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2309 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2310 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2311 2312 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2313 * version used as a key for the coprocessor register hashtable 2314 */ 2315 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2316 { 2317 uint32_t cpregid = kvmid; 2318 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2319 cpregid |= CP_REG_AA64_MASK; 2320 } else { 2321 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2322 cpregid |= (1 << 15); 2323 } 2324 2325 /* KVM is always non-secure so add the NS flag on AArch32 register 2326 * entries. 2327 */ 2328 cpregid |= 1 << CP_REG_NS_SHIFT; 2329 } 2330 return cpregid; 2331 } 2332 2333 /* Convert a truncated 32 bit hashtable key into the full 2334 * 64 bit KVM register ID. 2335 */ 2336 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2337 { 2338 uint64_t kvmid; 2339 2340 if (cpregid & CP_REG_AA64_MASK) { 2341 kvmid = cpregid & ~CP_REG_AA64_MASK; 2342 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2343 } else { 2344 kvmid = cpregid & ~(1 << 15); 2345 if (cpregid & (1 << 15)) { 2346 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2347 } else { 2348 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2349 } 2350 } 2351 return kvmid; 2352 } 2353 2354 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2355 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2356 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2357 * TCG can assume the value to be constant (ie load at translate time) 2358 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2359 * indicates that the TB should not be ended after a write to this register 2360 * (the default is that the TB ends after cp writes). OVERRIDE permits 2361 * a register definition to override a previous definition for the 2362 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2363 * old must have the OVERRIDE bit set. 2364 * ALIAS indicates that this register is an alias view of some underlying 2365 * state which is also visible via another register, and that the other 2366 * register is handling migration and reset; registers marked ALIAS will not be 2367 * migrated but may have their state set by syncing of register state from KVM. 2368 * NO_RAW indicates that this register has no underlying state and does not 2369 * support raw access for state saving/loading; it will not be used for either 2370 * migration or KVM state synchronization. (Typically this is for "registers" 2371 * which are actually used as instructions for cache maintenance and so on.) 2372 * IO indicates that this register does I/O and therefore its accesses 2373 * need to be marked with gen_io_start() and also end the TB. In particular, 2374 * registers which implement clocks or timers require this. 2375 * RAISES_EXC is for when the read or write hook might raise an exception; 2376 * the generated code will synchronize the CPU state before calling the hook 2377 * so that it is safe for the hook to call raise_exception(). 2378 * NEWEL is for writes to registers that might change the exception 2379 * level - typically on older ARM chips. For those cases we need to 2380 * re-read the new el when recomputing the translation flags. 2381 */ 2382 #define ARM_CP_SPECIAL 0x0001 2383 #define ARM_CP_CONST 0x0002 2384 #define ARM_CP_64BIT 0x0004 2385 #define ARM_CP_SUPPRESS_TB_END 0x0008 2386 #define ARM_CP_OVERRIDE 0x0010 2387 #define ARM_CP_ALIAS 0x0020 2388 #define ARM_CP_IO 0x0040 2389 #define ARM_CP_NO_RAW 0x0080 2390 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2391 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2392 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2393 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2394 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2395 #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) 2396 #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) 2397 #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA 2398 #define ARM_CP_FPU 0x1000 2399 #define ARM_CP_SVE 0x2000 2400 #define ARM_CP_NO_GDB 0x4000 2401 #define ARM_CP_RAISES_EXC 0x8000 2402 #define ARM_CP_NEWEL 0x10000 2403 /* Used only as a terminator for ARMCPRegInfo lists */ 2404 #define ARM_CP_SENTINEL 0xfffff 2405 /* Mask of only the flag bits in a type field */ 2406 #define ARM_CP_FLAG_MASK 0x1f0ff 2407 2408 /* Valid values for ARMCPRegInfo state field, indicating which of 2409 * the AArch32 and AArch64 execution states this register is visible in. 2410 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2411 * If the reginfo is declared to be visible in both states then a second 2412 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2413 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2414 * Note that we rely on the values of these enums as we iterate through 2415 * the various states in some places. 2416 */ 2417 enum { 2418 ARM_CP_STATE_AA32 = 0, 2419 ARM_CP_STATE_AA64 = 1, 2420 ARM_CP_STATE_BOTH = 2, 2421 }; 2422 2423 /* ARM CP register secure state flags. These flags identify security state 2424 * attributes for a given CP register entry. 2425 * The existence of both or neither secure and non-secure flags indicates that 2426 * the register has both a secure and non-secure hash entry. A single one of 2427 * these flags causes the register to only be hashed for the specified 2428 * security state. 2429 * Although definitions may have any combination of the S/NS bits, each 2430 * registered entry will only have one to identify whether the entry is secure 2431 * or non-secure. 2432 */ 2433 enum { 2434 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2435 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2436 }; 2437 2438 /* Return true if cptype is a valid type field. This is used to try to 2439 * catch errors where the sentinel has been accidentally left off the end 2440 * of a list of registers. 2441 */ 2442 static inline bool cptype_valid(int cptype) 2443 { 2444 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2445 || ((cptype & ARM_CP_SPECIAL) && 2446 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2447 } 2448 2449 /* Access rights: 2450 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2451 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2452 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2453 * (ie any of the privileged modes in Secure state, or Monitor mode). 2454 * If a register is accessible in one privilege level it's always accessible 2455 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2456 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2457 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2458 * terminology a little and call this PL3. 2459 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2460 * with the ELx exception levels. 2461 * 2462 * If access permissions for a register are more complex than can be 2463 * described with these bits, then use a laxer set of restrictions, and 2464 * do the more restrictive/complex check inside a helper function. 2465 */ 2466 #define PL3_R 0x80 2467 #define PL3_W 0x40 2468 #define PL2_R (0x20 | PL3_R) 2469 #define PL2_W (0x10 | PL3_W) 2470 #define PL1_R (0x08 | PL2_R) 2471 #define PL1_W (0x04 | PL2_W) 2472 #define PL0_R (0x02 | PL1_R) 2473 #define PL0_W (0x01 | PL1_W) 2474 2475 /* 2476 * For user-mode some registers are accessible to EL0 via a kernel 2477 * trap-and-emulate ABI. In this case we define the read permissions 2478 * as actually being PL0_R. However some bits of any given register 2479 * may still be masked. 2480 */ 2481 #ifdef CONFIG_USER_ONLY 2482 #define PL0U_R PL0_R 2483 #else 2484 #define PL0U_R PL1_R 2485 #endif 2486 2487 #define PL3_RW (PL3_R | PL3_W) 2488 #define PL2_RW (PL2_R | PL2_W) 2489 #define PL1_RW (PL1_R | PL1_W) 2490 #define PL0_RW (PL0_R | PL0_W) 2491 2492 /* Return the highest implemented Exception Level */ 2493 static inline int arm_highest_el(CPUARMState *env) 2494 { 2495 if (arm_feature(env, ARM_FEATURE_EL3)) { 2496 return 3; 2497 } 2498 if (arm_feature(env, ARM_FEATURE_EL2)) { 2499 return 2; 2500 } 2501 return 1; 2502 } 2503 2504 /* Return true if a v7M CPU is in Handler mode */ 2505 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2506 { 2507 return env->v7m.exception != 0; 2508 } 2509 2510 /* Return the current Exception Level (as per ARMv8; note that this differs 2511 * from the ARMv7 Privilege Level). 2512 */ 2513 static inline int arm_current_el(CPUARMState *env) 2514 { 2515 if (arm_feature(env, ARM_FEATURE_M)) { 2516 return arm_v7m_is_handler_mode(env) || 2517 !(env->v7m.control[env->v7m.secure] & 1); 2518 } 2519 2520 if (is_a64(env)) { 2521 return extract32(env->pstate, 2, 2); 2522 } 2523 2524 switch (env->uncached_cpsr & 0x1f) { 2525 case ARM_CPU_MODE_USR: 2526 return 0; 2527 case ARM_CPU_MODE_HYP: 2528 return 2; 2529 case ARM_CPU_MODE_MON: 2530 return 3; 2531 default: 2532 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2533 /* If EL3 is 32-bit then all secure privileged modes run in 2534 * EL3 2535 */ 2536 return 3; 2537 } 2538 2539 return 1; 2540 } 2541 } 2542 2543 typedef struct ARMCPRegInfo ARMCPRegInfo; 2544 2545 typedef enum CPAccessResult { 2546 /* Access is permitted */ 2547 CP_ACCESS_OK = 0, 2548 /* Access fails due to a configurable trap or enable which would 2549 * result in a categorized exception syndrome giving information about 2550 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2551 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2552 * PL1 if in EL0, otherwise to the current EL). 2553 */ 2554 CP_ACCESS_TRAP = 1, 2555 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2556 * Note that this is not a catch-all case -- the set of cases which may 2557 * result in this failure is specifically defined by the architecture. 2558 */ 2559 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2560 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2561 CP_ACCESS_TRAP_EL2 = 3, 2562 CP_ACCESS_TRAP_EL3 = 4, 2563 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2564 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2565 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2566 /* Access fails and results in an exception syndrome for an FP access, 2567 * trapped directly to EL2 or EL3 2568 */ 2569 CP_ACCESS_TRAP_FP_EL2 = 7, 2570 CP_ACCESS_TRAP_FP_EL3 = 8, 2571 } CPAccessResult; 2572 2573 /* Access functions for coprocessor registers. These cannot fail and 2574 * may not raise exceptions. 2575 */ 2576 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2577 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2578 uint64_t value); 2579 /* Access permission check functions for coprocessor registers. */ 2580 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2581 const ARMCPRegInfo *opaque, 2582 bool isread); 2583 /* Hook function for register reset */ 2584 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2585 2586 #define CP_ANY 0xff 2587 2588 /* Definition of an ARM coprocessor register */ 2589 struct ARMCPRegInfo { 2590 /* Name of register (useful mainly for debugging, need not be unique) */ 2591 const char *name; 2592 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2593 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2594 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2595 * will be decoded to this register. The register read and write 2596 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2597 * used by the program, so it is possible to register a wildcard and 2598 * then behave differently on read/write if necessary. 2599 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2600 * must both be zero. 2601 * For AArch64-visible registers, opc0 is also used. 2602 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2603 * way to distinguish (for KVM's benefit) guest-visible system registers 2604 * from demuxed ones provided to preserve the "no side effects on 2605 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2606 * visible (to match KVM's encoding); cp==0 will be converted to 2607 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2608 */ 2609 uint8_t cp; 2610 uint8_t crn; 2611 uint8_t crm; 2612 uint8_t opc0; 2613 uint8_t opc1; 2614 uint8_t opc2; 2615 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2616 int state; 2617 /* Register type: ARM_CP_* bits/values */ 2618 int type; 2619 /* Access rights: PL*_[RW] */ 2620 int access; 2621 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2622 int secure; 2623 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2624 * this register was defined: can be used to hand data through to the 2625 * register read/write functions, since they are passed the ARMCPRegInfo*. 2626 */ 2627 void *opaque; 2628 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2629 * fieldoffset is non-zero, the reset value of the register. 2630 */ 2631 uint64_t resetvalue; 2632 /* Offset of the field in CPUARMState for this register. 2633 * 2634 * This is not needed if either: 2635 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2636 * 2. both readfn and writefn are specified 2637 */ 2638 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2639 2640 /* Offsets of the secure and non-secure fields in CPUARMState for the 2641 * register if it is banked. These fields are only used during the static 2642 * registration of a register. During hashing the bank associated 2643 * with a given security state is copied to fieldoffset which is used from 2644 * there on out. 2645 * 2646 * It is expected that register definitions use either fieldoffset or 2647 * bank_fieldoffsets in the definition but not both. It is also expected 2648 * that both bank offsets are set when defining a banked register. This 2649 * use indicates that a register is banked. 2650 */ 2651 ptrdiff_t bank_fieldoffsets[2]; 2652 2653 /* Function for making any access checks for this register in addition to 2654 * those specified by the 'access' permissions bits. If NULL, no extra 2655 * checks required. The access check is performed at runtime, not at 2656 * translate time. 2657 */ 2658 CPAccessFn *accessfn; 2659 /* Function for handling reads of this register. If NULL, then reads 2660 * will be done by loading from the offset into CPUARMState specified 2661 * by fieldoffset. 2662 */ 2663 CPReadFn *readfn; 2664 /* Function for handling writes of this register. If NULL, then writes 2665 * will be done by writing to the offset into CPUARMState specified 2666 * by fieldoffset. 2667 */ 2668 CPWriteFn *writefn; 2669 /* Function for doing a "raw" read; used when we need to copy 2670 * coprocessor state to the kernel for KVM or out for 2671 * migration. This only needs to be provided if there is also a 2672 * readfn and it has side effects (for instance clear-on-read bits). 2673 */ 2674 CPReadFn *raw_readfn; 2675 /* Function for doing a "raw" write; used when we need to copy KVM 2676 * kernel coprocessor state into userspace, or for inbound 2677 * migration. This only needs to be provided if there is also a 2678 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2679 * or similar behaviour. 2680 */ 2681 CPWriteFn *raw_writefn; 2682 /* Function for resetting the register. If NULL, then reset will be done 2683 * by writing resetvalue to the field specified in fieldoffset. If 2684 * fieldoffset is 0 then no reset will be done. 2685 */ 2686 CPResetFn *resetfn; 2687 2688 /* 2689 * "Original" writefn and readfn. 2690 * For ARMv8.1-VHE register aliases, we overwrite the read/write 2691 * accessor functions of various EL1/EL0 to perform the runtime 2692 * check for which sysreg should actually be modified, and then 2693 * forwards the operation. Before overwriting the accessors, 2694 * the original function is copied here, so that accesses that 2695 * really do go to the EL1/EL0 version proceed normally. 2696 * (The corresponding EL2 register is linked via opaque.) 2697 */ 2698 CPReadFn *orig_readfn; 2699 CPWriteFn *orig_writefn; 2700 }; 2701 2702 /* Macros which are lvalues for the field in CPUARMState for the 2703 * ARMCPRegInfo *ri. 2704 */ 2705 #define CPREG_FIELD32(env, ri) \ 2706 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2707 #define CPREG_FIELD64(env, ri) \ 2708 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2709 2710 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2711 2712 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2713 const ARMCPRegInfo *regs, void *opaque); 2714 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2715 const ARMCPRegInfo *regs, void *opaque); 2716 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2717 { 2718 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2719 } 2720 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2721 { 2722 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2723 } 2724 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2725 2726 /* 2727 * Definition of an ARM co-processor register as viewed from 2728 * userspace. This is used for presenting sanitised versions of 2729 * registers to userspace when emulating the Linux AArch64 CPU 2730 * ID/feature ABI (advertised as HWCAP_CPUID). 2731 */ 2732 typedef struct ARMCPRegUserSpaceInfo { 2733 /* Name of register */ 2734 const char *name; 2735 2736 /* Is the name actually a glob pattern */ 2737 bool is_glob; 2738 2739 /* Only some bits are exported to user space */ 2740 uint64_t exported_bits; 2741 2742 /* Fixed bits are applied after the mask */ 2743 uint64_t fixed_bits; 2744 } ARMCPRegUserSpaceInfo; 2745 2746 #define REGUSERINFO_SENTINEL { .name = NULL } 2747 2748 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2749 2750 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2751 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2752 uint64_t value); 2753 /* CPReadFn that can be used for read-as-zero behaviour */ 2754 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2755 2756 /* CPResetFn that does nothing, for use if no reset is required even 2757 * if fieldoffset is non zero. 2758 */ 2759 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2760 2761 /* Return true if this reginfo struct's field in the cpu state struct 2762 * is 64 bits wide. 2763 */ 2764 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2765 { 2766 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2767 } 2768 2769 static inline bool cp_access_ok(int current_el, 2770 const ARMCPRegInfo *ri, int isread) 2771 { 2772 return (ri->access >> ((current_el * 2) + isread)) & 1; 2773 } 2774 2775 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2776 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2777 2778 /** 2779 * write_list_to_cpustate 2780 * @cpu: ARMCPU 2781 * 2782 * For each register listed in the ARMCPU cpreg_indexes list, write 2783 * its value from the cpreg_values list into the ARMCPUState structure. 2784 * This updates TCG's working data structures from KVM data or 2785 * from incoming migration state. 2786 * 2787 * Returns: true if all register values were updated correctly, 2788 * false if some register was unknown or could not be written. 2789 * Note that we do not stop early on failure -- we will attempt 2790 * writing all registers in the list. 2791 */ 2792 bool write_list_to_cpustate(ARMCPU *cpu); 2793 2794 /** 2795 * write_cpustate_to_list: 2796 * @cpu: ARMCPU 2797 * @kvm_sync: true if this is for syncing back to KVM 2798 * 2799 * For each register listed in the ARMCPU cpreg_indexes list, write 2800 * its value from the ARMCPUState structure into the cpreg_values list. 2801 * This is used to copy info from TCG's working data structures into 2802 * KVM or for outbound migration. 2803 * 2804 * @kvm_sync is true if we are doing this in order to sync the 2805 * register state back to KVM. In this case we will only update 2806 * values in the list if the previous list->cpustate sync actually 2807 * successfully wrote the CPU state. Otherwise we will keep the value 2808 * that is in the list. 2809 * 2810 * Returns: true if all register values were read correctly, 2811 * false if some register was unknown or could not be read. 2812 * Note that we do not stop early on failure -- we will attempt 2813 * reading all registers in the list. 2814 */ 2815 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2816 2817 #define ARM_CPUID_TI915T 0x54029152 2818 #define ARM_CPUID_TI925T 0x54029252 2819 2820 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2821 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2822 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2823 2824 #define cpu_signal_handler cpu_arm_signal_handler 2825 #define cpu_list arm_cpu_list 2826 2827 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2828 * 2829 * If EL3 is 64-bit: 2830 * + NonSecure EL1 & 0 stage 1 2831 * + NonSecure EL1 & 0 stage 2 2832 * + NonSecure EL2 2833 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2834 * + Secure EL1 & 0 2835 * + Secure EL3 2836 * If EL3 is 32-bit: 2837 * + NonSecure PL1 & 0 stage 1 2838 * + NonSecure PL1 & 0 stage 2 2839 * + NonSecure PL2 2840 * + Secure PL0 2841 * + Secure PL1 2842 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2843 * 2844 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2845 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2846 * because they may differ in access permissions even if the VA->PA map is 2847 * the same 2848 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2849 * translation, which means that we have one mmu_idx that deals with two 2850 * concatenated translation regimes [this sort of combined s1+2 TLB is 2851 * architecturally permitted] 2852 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2853 * handling via the TLB. The only way to do a stage 1 translation without 2854 * the immediate stage 2 translation is via the ATS or AT system insns, 2855 * which can be slow-pathed and always do a page table walk. 2856 * The only use of stage 2 translations is either as part of an s1+2 2857 * lookup or when loading the descriptors during a stage 1 page table walk, 2858 * and in both those cases we don't use the TLB. 2859 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2860 * translation regimes, because they map reasonably well to each other 2861 * and they can't both be active at the same time. 2862 * 5. we want to be able to use the TLB for accesses done as part of a 2863 * stage1 page table walk, rather than having to walk the stage2 page 2864 * table over and over. 2865 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2866 * Never (PAN) bit within PSTATE. 2867 * 2868 * This gives us the following list of cases: 2869 * 2870 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 2871 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 2872 * NS EL1 EL1&0 stage 1+2 +PAN 2873 * NS EL0 EL2&0 2874 * NS EL2 EL2&0 2875 * NS EL2 EL2&0 +PAN 2876 * NS EL2 (aka NS PL2) 2877 * S EL0 EL1&0 (aka S PL0) 2878 * S EL1 EL1&0 (not used if EL3 is 32 bit) 2879 * S EL1 EL1&0 +PAN 2880 * S EL3 (aka S PL1) 2881 * 2882 * for a total of 11 different mmu_idx. 2883 * 2884 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2885 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2886 * NS EL2 if we ever model a Cortex-R52). 2887 * 2888 * M profile CPUs are rather different as they do not have a true MMU. 2889 * They have the following different MMU indexes: 2890 * User 2891 * Privileged 2892 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2893 * Privileged, execution priority negative (ditto) 2894 * If the CPU supports the v8M Security Extension then there are also: 2895 * Secure User 2896 * Secure Privileged 2897 * Secure User, execution priority negative 2898 * Secure Privileged, execution priority negative 2899 * 2900 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2901 * are not quite the same -- different CPU types (most notably M profile 2902 * vs A/R profile) would like to use MMU indexes with different semantics, 2903 * but since we don't ever need to use all of those in a single CPU we 2904 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2905 * modes + total number of M profile MMU modes". The lower bits of 2906 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2907 * the same for any particular CPU. 2908 * Variables of type ARMMUIdx are always full values, and the core 2909 * index values are in variables of type 'int'. 2910 * 2911 * Our enumeration includes at the end some entries which are not "true" 2912 * mmu_idx values in that they don't have corresponding TLBs and are only 2913 * valid for doing slow path page table walks. 2914 * 2915 * The constant names here are patterned after the general style of the names 2916 * of the AT/ATS operations. 2917 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2918 * For M profile we arrange them to have a bit for priv, a bit for negpri 2919 * and a bit for secure. 2920 */ 2921 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2922 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2923 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2924 2925 /* Meanings of the bits for M profile mmu idx values */ 2926 #define ARM_MMU_IDX_M_PRIV 0x1 2927 #define ARM_MMU_IDX_M_NEGPRI 0x2 2928 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2929 2930 #define ARM_MMU_IDX_TYPE_MASK \ 2931 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2932 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2933 2934 typedef enum ARMMMUIdx { 2935 /* 2936 * A-profile. 2937 */ 2938 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2939 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2940 2941 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2942 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A, 2943 2944 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A, 2945 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A, 2946 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A, 2947 2948 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A, 2949 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A, 2950 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A, 2951 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A, 2952 2953 /* 2954 * These are not allocated TLBs and are used only for AT system 2955 * instructions or for the first stage of an S12 page table walk. 2956 */ 2957 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2958 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2959 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2960 /* 2961 * Not allocated a TLB: used only for second stage of an S12 page 2962 * table walk, or for descriptor loads during first stage of an S1 2963 * page table walk. Note that if we ever want to have a TLB for this 2964 * then various TLB flush insns which currently are no-ops or flush 2965 * only stage 1 MMU indexes will need to change to flush stage 2. 2966 */ 2967 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB, 2968 2969 /* 2970 * M-profile. 2971 */ 2972 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2973 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2974 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2975 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2976 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2977 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2978 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2979 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2980 } ARMMMUIdx; 2981 2982 /* 2983 * Bit macros for the core-mmu-index values for each index, 2984 * for use when calling tlb_flush_by_mmuidx() and friends. 2985 */ 2986 #define TO_CORE_BIT(NAME) \ 2987 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2988 2989 typedef enum ARMMMUIdxBit { 2990 TO_CORE_BIT(E10_0), 2991 TO_CORE_BIT(E20_0), 2992 TO_CORE_BIT(E10_1), 2993 TO_CORE_BIT(E10_1_PAN), 2994 TO_CORE_BIT(E2), 2995 TO_CORE_BIT(E20_2), 2996 TO_CORE_BIT(E20_2_PAN), 2997 TO_CORE_BIT(SE10_0), 2998 TO_CORE_BIT(SE10_1), 2999 TO_CORE_BIT(SE10_1_PAN), 3000 TO_CORE_BIT(SE3), 3001 3002 TO_CORE_BIT(MUser), 3003 TO_CORE_BIT(MPriv), 3004 TO_CORE_BIT(MUserNegPri), 3005 TO_CORE_BIT(MPrivNegPri), 3006 TO_CORE_BIT(MSUser), 3007 TO_CORE_BIT(MSPriv), 3008 TO_CORE_BIT(MSUserNegPri), 3009 TO_CORE_BIT(MSPrivNegPri), 3010 } ARMMMUIdxBit; 3011 3012 #undef TO_CORE_BIT 3013 3014 #define MMU_USER_IDX 0 3015 3016 /* Indexes used when registering address spaces with cpu_address_space_init */ 3017 typedef enum ARMASIdx { 3018 ARMASIdx_NS = 0, 3019 ARMASIdx_S = 1, 3020 ARMASIdx_TagNS = 2, 3021 ARMASIdx_TagS = 3, 3022 } ARMASIdx; 3023 3024 /* Return the Exception Level targeted by debug exceptions. */ 3025 static inline int arm_debug_target_el(CPUARMState *env) 3026 { 3027 bool secure = arm_is_secure(env); 3028 bool route_to_el2 = false; 3029 3030 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 3031 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 3032 env->cp15.mdcr_el2 & MDCR_TDE; 3033 } 3034 3035 if (route_to_el2) { 3036 return 2; 3037 } else if (arm_feature(env, ARM_FEATURE_EL3) && 3038 !arm_el_is_aa64(env, 3) && secure) { 3039 return 3; 3040 } else { 3041 return 1; 3042 } 3043 } 3044 3045 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3046 { 3047 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3048 * CSSELR is RAZ/WI. 3049 */ 3050 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3051 } 3052 3053 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 3054 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 3055 { 3056 int cur_el = arm_current_el(env); 3057 int debug_el; 3058 3059 if (cur_el == 3) { 3060 return false; 3061 } 3062 3063 /* MDCR_EL3.SDD disables debug events from Secure state */ 3064 if (arm_is_secure_below_el3(env) 3065 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3066 return false; 3067 } 3068 3069 /* 3070 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3071 * while not masking the (D)ebug bit in DAIF. 3072 */ 3073 debug_el = arm_debug_target_el(env); 3074 3075 if (cur_el == debug_el) { 3076 return extract32(env->cp15.mdscr_el1, 13, 1) 3077 && !(env->daif & PSTATE_D); 3078 } 3079 3080 /* Otherwise the debug target needs to be a higher EL */ 3081 return debug_el > cur_el; 3082 } 3083 3084 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3085 { 3086 int el = arm_current_el(env); 3087 3088 if (el == 0 && arm_el_is_aa64(env, 1)) { 3089 return aa64_generate_debug_exceptions(env); 3090 } 3091 3092 if (arm_is_secure(env)) { 3093 int spd; 3094 3095 if (el == 0 && (env->cp15.sder & 1)) { 3096 /* SDER.SUIDEN means debug exceptions from Secure EL0 3097 * are always enabled. Otherwise they are controlled by 3098 * SDCR.SPD like those from other Secure ELs. 3099 */ 3100 return true; 3101 } 3102 3103 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3104 switch (spd) { 3105 case 1: 3106 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3107 case 0: 3108 /* For 0b00 we return true if external secure invasive debug 3109 * is enabled. On real hardware this is controlled by external 3110 * signals to the core. QEMU always permits debug, and behaves 3111 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3112 */ 3113 return true; 3114 case 2: 3115 return false; 3116 case 3: 3117 return true; 3118 } 3119 } 3120 3121 return el != 2; 3122 } 3123 3124 /* Return true if debugging exceptions are currently enabled. 3125 * This corresponds to what in ARM ARM pseudocode would be 3126 * if UsingAArch32() then 3127 * return AArch32.GenerateDebugExceptions() 3128 * else 3129 * return AArch64.GenerateDebugExceptions() 3130 * We choose to push the if() down into this function for clarity, 3131 * since the pseudocode has it at all callsites except for the one in 3132 * CheckSoftwareStep(), where it is elided because both branches would 3133 * always return the same value. 3134 */ 3135 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3136 { 3137 if (env->aarch64) { 3138 return aa64_generate_debug_exceptions(env); 3139 } else { 3140 return aa32_generate_debug_exceptions(env); 3141 } 3142 } 3143 3144 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3145 * implicitly means this always returns false in pre-v8 CPUs.) 3146 */ 3147 static inline bool arm_singlestep_active(CPUARMState *env) 3148 { 3149 return extract32(env->cp15.mdscr_el1, 0, 1) 3150 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3151 && arm_generate_debug_exceptions(env); 3152 } 3153 3154 static inline bool arm_sctlr_b(CPUARMState *env) 3155 { 3156 return 3157 /* We need not implement SCTLR.ITD in user-mode emulation, so 3158 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3159 * This lets people run BE32 binaries with "-cpu any". 3160 */ 3161 #ifndef CONFIG_USER_ONLY 3162 !arm_feature(env, ARM_FEATURE_V7) && 3163 #endif 3164 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3165 } 3166 3167 uint64_t arm_sctlr(CPUARMState *env, int el); 3168 3169 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3170 bool sctlr_b) 3171 { 3172 #ifdef CONFIG_USER_ONLY 3173 /* 3174 * In system mode, BE32 is modelled in line with the 3175 * architecture (as word-invariant big-endianness), where loads 3176 * and stores are done little endian but from addresses which 3177 * are adjusted by XORing with the appropriate constant. So the 3178 * endianness to use for the raw data access is not affected by 3179 * SCTLR.B. 3180 * In user mode, however, we model BE32 as byte-invariant 3181 * big-endianness (because user-only code cannot tell the 3182 * difference), and so we need to use a data access endianness 3183 * that depends on SCTLR.B. 3184 */ 3185 if (sctlr_b) { 3186 return true; 3187 } 3188 #endif 3189 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3190 return env->uncached_cpsr & CPSR_E; 3191 } 3192 3193 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3194 { 3195 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3196 } 3197 3198 /* Return true if the processor is in big-endian mode. */ 3199 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3200 { 3201 if (!is_a64(env)) { 3202 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3203 } else { 3204 int cur_el = arm_current_el(env); 3205 uint64_t sctlr = arm_sctlr(env, cur_el); 3206 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3207 } 3208 } 3209 3210 typedef CPUARMState CPUArchState; 3211 typedef ARMCPU ArchCPU; 3212 3213 #include "exec/cpu-all.h" 3214 3215 /* 3216 * Bit usage in the TB flags field: bit 31 indicates whether we are 3217 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3218 * We put flags which are shared between 32 and 64 bit mode at the top 3219 * of the word, and flags which apply to only one mode at the bottom. 3220 * 3221 * 31 20 18 14 9 0 3222 * +--------------+-----+-----+----------+--------------+ 3223 * | | | TBFLAG_A32 | | 3224 * | | +-----+----------+ TBFLAG_AM32 | 3225 * | TBFLAG_ANY | |TBFLAG_M32| | 3226 * | +-----------+----------+--------------| 3227 * | | TBFLAG_A64 | 3228 * +--------------+-------------------------------------+ 3229 * 31 20 0 3230 * 3231 * Unless otherwise noted, these bits are cached in env->hflags. 3232 */ 3233 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3234 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1) 3235 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */ 3236 FIELD(TBFLAG_ANY, BE_DATA, 28, 1) 3237 FIELD(TBFLAG_ANY, MMUIDX, 24, 4) 3238 /* Target EL if we take a floating-point-disabled exception */ 3239 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2) 3240 /* For A-profile only, target EL for debug exceptions. */ 3241 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2) 3242 3243 /* 3244 * Bit usage when in AArch32 state, both A- and M-profile. 3245 */ 3246 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */ 3247 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */ 3248 3249 /* 3250 * Bit usage when in AArch32 state, for A-profile only. 3251 */ 3252 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */ 3253 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */ 3254 /* 3255 * We store the bottom two bits of the CPAR as TB flags and handle 3256 * checks on the other bits at runtime. This shares the same bits as 3257 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3258 * Not cached, because VECLEN+VECSTRIDE are not cached. 3259 */ 3260 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2) 3261 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */ 3262 FIELD(TBFLAG_A32, SCTLR_B, 15, 1) 3263 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1) 3264 /* 3265 * Indicates whether cp register reads and writes by guest code should access 3266 * the secure or nonsecure bank of banked registers; note that this is not 3267 * the same thing as the current security state of the processor! 3268 */ 3269 FIELD(TBFLAG_A32, NS, 17, 1) 3270 3271 /* 3272 * Bit usage when in AArch32 state, for M-profile only. 3273 */ 3274 /* Handler (ie not Thread) mode */ 3275 FIELD(TBFLAG_M32, HANDLER, 9, 1) 3276 /* Whether we should generate stack-limit checks */ 3277 FIELD(TBFLAG_M32, STACKCHECK, 10, 1) 3278 /* Set if FPCCR.LSPACT is set */ 3279 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */ 3280 /* Set if we must create a new FP context */ 3281 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */ 3282 /* Set if FPCCR.S does not match current security state */ 3283 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */ 3284 3285 /* 3286 * Bit usage when in AArch64 state 3287 */ 3288 FIELD(TBFLAG_A64, TBII, 0, 2) 3289 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3290 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3291 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3292 FIELD(TBFLAG_A64, BT, 9, 1) 3293 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3294 FIELD(TBFLAG_A64, TBID, 12, 2) 3295 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3296 FIELD(TBFLAG_A64, ATA, 15, 1) 3297 FIELD(TBFLAG_A64, TCMA, 16, 2) 3298 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3299 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3300 3301 /** 3302 * cpu_mmu_index: 3303 * @env: The cpu environment 3304 * @ifetch: True for code access, false for data access. 3305 * 3306 * Return the core mmu index for the current translation regime. 3307 * This function is used by generic TCG code paths. 3308 */ 3309 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3310 { 3311 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX); 3312 } 3313 3314 static inline bool bswap_code(bool sctlr_b) 3315 { 3316 #ifdef CONFIG_USER_ONLY 3317 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3318 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3319 * would also end up as a mixed-endian mode with BE code, LE data. 3320 */ 3321 return 3322 #ifdef TARGET_WORDS_BIGENDIAN 3323 1 ^ 3324 #endif 3325 sctlr_b; 3326 #else 3327 /* All code access in ARM is little endian, and there are no loaders 3328 * doing swaps that need to be reversed 3329 */ 3330 return 0; 3331 #endif 3332 } 3333 3334 #ifdef CONFIG_USER_ONLY 3335 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3336 { 3337 return 3338 #ifdef TARGET_WORDS_BIGENDIAN 3339 1 ^ 3340 #endif 3341 arm_cpu_data_is_big_endian(env); 3342 } 3343 #endif 3344 3345 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3346 target_ulong *cs_base, uint32_t *flags); 3347 3348 enum { 3349 QEMU_PSCI_CONDUIT_DISABLED = 0, 3350 QEMU_PSCI_CONDUIT_SMC = 1, 3351 QEMU_PSCI_CONDUIT_HVC = 2, 3352 }; 3353 3354 #ifndef CONFIG_USER_ONLY 3355 /* Return the address space index to use for a memory access */ 3356 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3357 { 3358 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3359 } 3360 3361 /* Return the AddressSpace to use for a memory access 3362 * (which depends on whether the access is S or NS, and whether 3363 * the board gave us a separate AddressSpace for S accesses). 3364 */ 3365 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3366 { 3367 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3368 } 3369 #endif 3370 3371 /** 3372 * arm_register_pre_el_change_hook: 3373 * Register a hook function which will be called immediately before this 3374 * CPU changes exception level or mode. The hook function will be 3375 * passed a pointer to the ARMCPU and the opaque data pointer passed 3376 * to this function when the hook was registered. 3377 * 3378 * Note that if a pre-change hook is called, any registered post-change hooks 3379 * are guaranteed to subsequently be called. 3380 */ 3381 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3382 void *opaque); 3383 /** 3384 * arm_register_el_change_hook: 3385 * Register a hook function which will be called immediately after this 3386 * CPU changes exception level or mode. The hook function will be 3387 * passed a pointer to the ARMCPU and the opaque data pointer passed 3388 * to this function when the hook was registered. 3389 * 3390 * Note that any registered hooks registered here are guaranteed to be called 3391 * if pre-change hooks have been. 3392 */ 3393 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3394 *opaque); 3395 3396 /** 3397 * arm_rebuild_hflags: 3398 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3399 */ 3400 void arm_rebuild_hflags(CPUARMState *env); 3401 3402 /** 3403 * aa32_vfp_dreg: 3404 * Return a pointer to the Dn register within env in 32-bit mode. 3405 */ 3406 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3407 { 3408 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3409 } 3410 3411 /** 3412 * aa32_vfp_qreg: 3413 * Return a pointer to the Qn register within env in 32-bit mode. 3414 */ 3415 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3416 { 3417 return &env->vfp.zregs[regno].d[0]; 3418 } 3419 3420 /** 3421 * aa64_vfp_qreg: 3422 * Return a pointer to the Qn register within env in 64-bit mode. 3423 */ 3424 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3425 { 3426 return &env->vfp.zregs[regno].d[0]; 3427 } 3428 3429 /* Shared between translate-sve.c and sve_helper.c. */ 3430 extern const uint64_t pred_esz_masks[4]; 3431 3432 /* Helper for the macros below, validating the argument type. */ 3433 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) 3434 { 3435 return x; 3436 } 3437 3438 /* 3439 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. 3440 * Using these should be a bit more self-documenting than using the 3441 * generic target bits directly. 3442 */ 3443 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) 3444 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) 3445 3446 /* 3447 * Naming convention for isar_feature functions: 3448 * Functions which test 32-bit ID registers should have _aa32_ in 3449 * their name. Functions which test 64-bit ID registers should have 3450 * _aa64_ in their name. These must only be used in code where we 3451 * know for certain that the CPU has AArch32 or AArch64 respectively 3452 * or where the correct answer for a CPU which doesn't implement that 3453 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3454 * system registers that are specific to that CPU state, for "should 3455 * we let this system register bit be set" tests where the 32-bit 3456 * flavour of the register doesn't have the bit, and so on). 3457 * Functions which simply ask "does this feature exist at all" have 3458 * _any_ in their name, and always return the logical OR of the _aa64_ 3459 * and the _aa32_ function. 3460 */ 3461 3462 /* 3463 * 32-bit feature tests via id registers. 3464 */ 3465 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3466 { 3467 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3468 } 3469 3470 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3471 { 3472 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3473 } 3474 3475 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3476 { 3477 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3478 } 3479 3480 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3481 { 3482 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3483 } 3484 3485 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3486 { 3487 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3488 } 3489 3490 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3491 { 3492 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3493 } 3494 3495 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3496 { 3497 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3498 } 3499 3500 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3501 { 3502 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3503 } 3504 3505 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3506 { 3507 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3508 } 3509 3510 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3511 { 3512 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3513 } 3514 3515 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3516 { 3517 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3518 } 3519 3520 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3521 { 3522 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3523 } 3524 3525 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3526 { 3527 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3528 } 3529 3530 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3531 { 3532 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3533 } 3534 3535 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3536 { 3537 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3538 } 3539 3540 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3541 { 3542 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3543 } 3544 3545 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3546 { 3547 /* Sadly this is encoded differently for A-profile and M-profile */ 3548 if (isar_feature_aa32_mprofile(id)) { 3549 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3550 } else { 3551 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3552 } 3553 } 3554 3555 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3556 { 3557 /* 3558 * Return true if either VFP or SIMD is implemented. 3559 * In this case, a minimum of VFP w/ D0-D15. 3560 */ 3561 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3562 } 3563 3564 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3565 { 3566 /* Return true if D16-D31 are implemented */ 3567 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3568 } 3569 3570 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3571 { 3572 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3573 } 3574 3575 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3576 { 3577 /* Return true if CPU supports single precision floating point, VFPv2 */ 3578 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3579 } 3580 3581 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3582 { 3583 /* Return true if CPU supports single precision floating point, VFPv3 */ 3584 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3585 } 3586 3587 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3588 { 3589 /* Return true if CPU supports double precision floating point, VFPv2 */ 3590 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3591 } 3592 3593 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3594 { 3595 /* Return true if CPU supports double precision floating point, VFPv3 */ 3596 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3597 } 3598 3599 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3600 { 3601 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3602 } 3603 3604 /* 3605 * We always set the FP and SIMD FP16 fields to indicate identical 3606 * levels of support (assuming SIMD is implemented at all), so 3607 * we only need one set of accessors. 3608 */ 3609 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3610 { 3611 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3612 } 3613 3614 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3615 { 3616 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3617 } 3618 3619 /* 3620 * Note that this ID register field covers both VFP and Neon FMAC, 3621 * so should usually be tested in combination with some other 3622 * check that confirms the presence of whichever of VFP or Neon is 3623 * relevant, to avoid accidentally enabling a Neon feature on 3624 * a VFP-no-Neon core or vice-versa. 3625 */ 3626 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3627 { 3628 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3629 } 3630 3631 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3632 { 3633 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3634 } 3635 3636 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3637 { 3638 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3639 } 3640 3641 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3642 { 3643 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3644 } 3645 3646 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3647 { 3648 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3649 } 3650 3651 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3652 { 3653 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3654 } 3655 3656 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3657 { 3658 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3659 } 3660 3661 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3662 { 3663 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3664 } 3665 3666 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3667 { 3668 /* 0xf means "non-standard IMPDEF PMU" */ 3669 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3670 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3671 } 3672 3673 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3674 { 3675 /* 0xf means "non-standard IMPDEF PMU" */ 3676 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3677 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3678 } 3679 3680 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3681 { 3682 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3683 } 3684 3685 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3686 { 3687 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3688 } 3689 3690 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3691 { 3692 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3693 } 3694 3695 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3696 { 3697 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3698 } 3699 3700 /* 3701 * 64-bit feature tests via id registers. 3702 */ 3703 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3704 { 3705 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3706 } 3707 3708 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3709 { 3710 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3711 } 3712 3713 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3714 { 3715 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3716 } 3717 3718 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3719 { 3720 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3721 } 3722 3723 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3724 { 3725 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3726 } 3727 3728 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3729 { 3730 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3731 } 3732 3733 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3734 { 3735 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3736 } 3737 3738 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3739 { 3740 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3741 } 3742 3743 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3744 { 3745 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3746 } 3747 3748 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3749 { 3750 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3751 } 3752 3753 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3754 { 3755 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3756 } 3757 3758 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3759 { 3760 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3761 } 3762 3763 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3764 { 3765 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3766 } 3767 3768 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3769 { 3770 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3771 } 3772 3773 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3774 { 3775 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3776 } 3777 3778 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3779 { 3780 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3781 } 3782 3783 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3784 { 3785 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3786 } 3787 3788 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3789 { 3790 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3791 } 3792 3793 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3794 { 3795 /* 3796 * Note that while QEMU will only implement the architected algorithm 3797 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3798 * defined algorithms, and thus API+GPI, and this predicate controls 3799 * migration of the 128-bit keys. 3800 */ 3801 return (id->id_aa64isar1 & 3802 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3803 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3804 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3805 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3806 } 3807 3808 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3809 { 3810 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3811 } 3812 3813 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3814 { 3815 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3816 } 3817 3818 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3819 { 3820 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3821 } 3822 3823 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3824 { 3825 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3826 } 3827 3828 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3829 { 3830 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3831 } 3832 3833 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3834 { 3835 /* We always set the AdvSIMD and FP fields identically. */ 3836 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3837 } 3838 3839 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3840 { 3841 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3842 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3843 } 3844 3845 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3846 { 3847 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3848 } 3849 3850 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3851 { 3852 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3853 } 3854 3855 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3856 { 3857 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3858 } 3859 3860 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3861 { 3862 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3863 } 3864 3865 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3866 { 3867 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3868 } 3869 3870 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3871 { 3872 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3873 } 3874 3875 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 3876 { 3877 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 3878 } 3879 3880 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3881 { 3882 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3883 } 3884 3885 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 3886 { 3887 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 3888 } 3889 3890 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 3891 { 3892 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 3893 } 3894 3895 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 3896 { 3897 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 3898 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3899 } 3900 3901 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 3902 { 3903 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 3904 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3905 } 3906 3907 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 3908 { 3909 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 3910 } 3911 3912 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 3913 { 3914 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 3915 } 3916 3917 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 3918 { 3919 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 3920 } 3921 3922 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 3923 { 3924 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 3925 } 3926 3927 /* 3928 * Feature tests for "does this exist in either 32-bit or 64-bit?" 3929 */ 3930 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 3931 { 3932 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 3933 } 3934 3935 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 3936 { 3937 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 3938 } 3939 3940 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 3941 { 3942 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 3943 } 3944 3945 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 3946 { 3947 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 3948 } 3949 3950 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 3951 { 3952 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 3953 } 3954 3955 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 3956 { 3957 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 3958 } 3959 3960 /* 3961 * Forward to the above feature tests given an ARMCPU pointer. 3962 */ 3963 #define cpu_isar_feature(name, cpu) \ 3964 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3965 3966 #endif 3967