xref: /openbmc/qemu/target/arm/cpu.h (revision e6b5a071)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_HVC            11   /* HyperVisor Call */
46 #define EXCP_HYP_TRAP       12
47 #define EXCP_SMC            13   /* Secure Monitor Call */
48 #define EXCP_VIRQ           14
49 #define EXCP_VFIQ           15
50 #define EXCP_SEMIHOST       16   /* semihosting call */
51 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
58 
59 #define ARMV7M_EXCP_RESET   1
60 #define ARMV7M_EXCP_NMI     2
61 #define ARMV7M_EXCP_HARD    3
62 #define ARMV7M_EXCP_MEM     4
63 #define ARMV7M_EXCP_BUS     5
64 #define ARMV7M_EXCP_USAGE   6
65 #define ARMV7M_EXCP_SECURE  7
66 #define ARMV7M_EXCP_SVC     11
67 #define ARMV7M_EXCP_DEBUG   12
68 #define ARMV7M_EXCP_PENDSV  14
69 #define ARMV7M_EXCP_SYSTICK 15
70 
71 /* For M profile, some registers are banked secure vs non-secure;
72  * these are represented as a 2-element array where the first element
73  * is the non-secure copy and the second is the secure copy.
74  * When the CPU does not have implement the security extension then
75  * only the first element is used.
76  * This means that the copy for the current security state can be
77  * accessed via env->registerfield[env->v7m.secure] (whether the security
78  * extension is implemented or not).
79  */
80 enum {
81     M_REG_NS = 0,
82     M_REG_S = 1,
83     M_REG_NUM_BANKS = 2,
84 };
85 
86 /* ARM-specific interrupt pending bits.  */
87 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
88 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
89 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
90 
91 /* The usual mapping for an AArch64 system register to its AArch32
92  * counterpart is for the 32 bit world to have access to the lower
93  * half only (with writes leaving the upper half untouched). It's
94  * therefore useful to be able to pass TCG the offset of the least
95  * significant half of a uint64_t struct member.
96  */
97 #ifdef HOST_WORDS_BIGENDIAN
98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #define offsetofhigh32(S, M) offsetof(S, M)
100 #else
101 #define offsetoflow32(S, M) offsetof(S, M)
102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #endif
104 
105 /* Meanings of the ARMCPU object's four inbound GPIO lines */
106 #define ARM_CPU_IRQ 0
107 #define ARM_CPU_FIQ 1
108 #define ARM_CPU_VIRQ 2
109 #define ARM_CPU_VFIQ 3
110 
111 /* ARM-specific extra insn start words:
112  * 1: Conditional execution bits
113  * 2: Partial exception syndrome for data aborts
114  */
115 #define TARGET_INSN_START_EXTRA_WORDS 2
116 
117 /* The 2nd extra word holding syndrome info for data aborts does not use
118  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119  * help the sleb128 encoder do a better job.
120  * When restoring the CPU state, we shift it back up.
121  */
122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123 #define ARM_INSN_START_WORD2_SHIFT 14
124 
125 /* We currently assume float and double are IEEE single and double
126    precision respectively.
127    Doing runtime conversions is tricky because VFP registers may contain
128    integer values (eg. as the result of a FTOSI instruction).
129    s<2n> maps to the least significant half of d<n>
130    s<2n+1> maps to the most significant half of d<n>
131  */
132 
133 /**
134  * DynamicGDBXMLInfo:
135  * @desc: Contains the XML descriptions.
136  * @num: Number of the registers in this XML seen by GDB.
137  * @data: A union with data specific to the set of registers
138  *    @cpregs_keys: Array that contains the corresponding Key of
139  *                  a given cpreg with the same order of the cpreg
140  *                  in the XML description.
141  */
142 typedef struct DynamicGDBXMLInfo {
143     char *desc;
144     int num;
145     union {
146         struct {
147             uint32_t *keys;
148         } cpregs;
149     } data;
150 } DynamicGDBXMLInfo;
151 
152 /* CPU state for each instance of a generic timer (in cp15 c14) */
153 typedef struct ARMGenericTimer {
154     uint64_t cval; /* Timer CompareValue register */
155     uint64_t ctl; /* Timer Control register */
156 } ARMGenericTimer;
157 
158 #define GTIMER_PHYS     0
159 #define GTIMER_VIRT     1
160 #define GTIMER_HYP      2
161 #define GTIMER_SEC      3
162 #define GTIMER_HYPVIRT  4
163 #define NUM_GTIMERS     5
164 
165 typedef struct {
166     uint64_t raw_tcr;
167     uint32_t mask;
168     uint32_t base_mask;
169 } TCR;
170 
171 /* Define a maximum sized vector register.
172  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
173  * For 64-bit, this is a 2048-bit SVE register.
174  *
175  * Note that the mapping between S, D, and Q views of the register bank
176  * differs between AArch64 and AArch32.
177  * In AArch32:
178  *  Qn = regs[n].d[1]:regs[n].d[0]
179  *  Dn = regs[n / 2].d[n & 1]
180  *  Sn = regs[n / 4].d[n % 4 / 2],
181  *       bits 31..0 for even n, and bits 63..32 for odd n
182  *       (and regs[16] to regs[31] are inaccessible)
183  * In AArch64:
184  *  Zn = regs[n].d[*]
185  *  Qn = regs[n].d[1]:regs[n].d[0]
186  *  Dn = regs[n].d[0]
187  *  Sn = regs[n].d[0] bits 31..0
188  *  Hn = regs[n].d[0] bits 15..0
189  *
190  * This corresponds to the architecturally defined mapping between
191  * the two execution states, and means we do not need to explicitly
192  * map these registers when changing states.
193  *
194  * Align the data for use with TCG host vector operations.
195  */
196 
197 #ifdef TARGET_AARCH64
198 # define ARM_MAX_VQ    16
199 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
200 #else
201 # define ARM_MAX_VQ    1
202 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
203 #endif
204 
205 typedef struct ARMVectorReg {
206     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
207 } ARMVectorReg;
208 
209 #ifdef TARGET_AARCH64
210 /* In AArch32 mode, predicate registers do not exist at all.  */
211 typedef struct ARMPredicateReg {
212     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
213 } ARMPredicateReg;
214 
215 /* In AArch32 mode, PAC keys do not exist at all.  */
216 typedef struct ARMPACKey {
217     uint64_t lo, hi;
218 } ARMPACKey;
219 #endif
220 
221 
222 typedef struct CPUARMState {
223     /* Regs for current mode.  */
224     uint32_t regs[16];
225 
226     /* 32/64 switch only happens when taking and returning from
227      * exceptions so the overlap semantics are taken care of then
228      * instead of having a complicated union.
229      */
230     /* Regs for A64 mode.  */
231     uint64_t xregs[32];
232     uint64_t pc;
233     /* PSTATE isn't an architectural register for ARMv8. However, it is
234      * convenient for us to assemble the underlying state into a 32 bit format
235      * identical to the architectural format used for the SPSR. (This is also
236      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
237      * 'pstate' register are.) Of the PSTATE bits:
238      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
239      *    semantics as for AArch32, as described in the comments on each field)
240      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
241      *  DAIF (exception masks) are kept in env->daif
242      *  BTYPE is kept in env->btype
243      *  all other bits are stored in their correct places in env->pstate
244      */
245     uint32_t pstate;
246     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
247 
248     /* Cached TBFLAGS state.  See below for which bits are included.  */
249     uint32_t hflags;
250 
251     /* Frequently accessed CPSR bits are stored separately for efficiency.
252        This contains all the other bits.  Use cpsr_{read,write} to access
253        the whole CPSR.  */
254     uint32_t uncached_cpsr;
255     uint32_t spsr;
256 
257     /* Banked registers.  */
258     uint64_t banked_spsr[8];
259     uint32_t banked_r13[8];
260     uint32_t banked_r14[8];
261 
262     /* These hold r8-r12.  */
263     uint32_t usr_regs[5];
264     uint32_t fiq_regs[5];
265 
266     /* cpsr flag cache for faster execution */
267     uint32_t CF; /* 0 or 1 */
268     uint32_t VF; /* V is the bit 31. All other bits are undefined */
269     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
270     uint32_t ZF; /* Z set if zero.  */
271     uint32_t QF; /* 0 or 1 */
272     uint32_t GE; /* cpsr[19:16] */
273     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
274     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
275     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
276     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
277 
278     uint64_t elr_el[4]; /* AArch64 exception link regs  */
279     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
280 
281     /* System control coprocessor (cp15) */
282     struct {
283         uint32_t c0_cpuid;
284         union { /* Cache size selection */
285             struct {
286                 uint64_t _unused_csselr0;
287                 uint64_t csselr_ns;
288                 uint64_t _unused_csselr1;
289                 uint64_t csselr_s;
290             };
291             uint64_t csselr_el[4];
292         };
293         union { /* System control register. */
294             struct {
295                 uint64_t _unused_sctlr;
296                 uint64_t sctlr_ns;
297                 uint64_t hsctlr;
298                 uint64_t sctlr_s;
299             };
300             uint64_t sctlr_el[4];
301         };
302         uint64_t cpacr_el1; /* Architectural feature access control register */
303         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
304         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
305         uint64_t sder; /* Secure debug enable register. */
306         uint32_t nsacr; /* Non-secure access control register. */
307         union { /* MMU translation table base 0. */
308             struct {
309                 uint64_t _unused_ttbr0_0;
310                 uint64_t ttbr0_ns;
311                 uint64_t _unused_ttbr0_1;
312                 uint64_t ttbr0_s;
313             };
314             uint64_t ttbr0_el[4];
315         };
316         union { /* MMU translation table base 1. */
317             struct {
318                 uint64_t _unused_ttbr1_0;
319                 uint64_t ttbr1_ns;
320                 uint64_t _unused_ttbr1_1;
321                 uint64_t ttbr1_s;
322             };
323             uint64_t ttbr1_el[4];
324         };
325         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
326         /* MMU translation table base control. */
327         TCR tcr_el[4];
328         TCR vtcr_el2; /* Virtualization Translation Control.  */
329         uint32_t c2_data; /* MPU data cacheable bits.  */
330         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
331         union { /* MMU domain access control register
332                  * MPU write buffer control.
333                  */
334             struct {
335                 uint64_t dacr_ns;
336                 uint64_t dacr_s;
337             };
338             struct {
339                 uint64_t dacr32_el2;
340             };
341         };
342         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
343         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
344         uint64_t hcr_el2; /* Hypervisor configuration register */
345         uint64_t scr_el3; /* Secure configuration register.  */
346         union { /* Fault status registers.  */
347             struct {
348                 uint64_t ifsr_ns;
349                 uint64_t ifsr_s;
350             };
351             struct {
352                 uint64_t ifsr32_el2;
353             };
354         };
355         union {
356             struct {
357                 uint64_t _unused_dfsr;
358                 uint64_t dfsr_ns;
359                 uint64_t hsr;
360                 uint64_t dfsr_s;
361             };
362             uint64_t esr_el[4];
363         };
364         uint32_t c6_region[8]; /* MPU base/size registers.  */
365         union { /* Fault address registers. */
366             struct {
367                 uint64_t _unused_far0;
368 #ifdef HOST_WORDS_BIGENDIAN
369                 uint32_t ifar_ns;
370                 uint32_t dfar_ns;
371                 uint32_t ifar_s;
372                 uint32_t dfar_s;
373 #else
374                 uint32_t dfar_ns;
375                 uint32_t ifar_ns;
376                 uint32_t dfar_s;
377                 uint32_t ifar_s;
378 #endif
379                 uint64_t _unused_far3;
380             };
381             uint64_t far_el[4];
382         };
383         uint64_t hpfar_el2;
384         uint64_t hstr_el2;
385         union { /* Translation result. */
386             struct {
387                 uint64_t _unused_par_0;
388                 uint64_t par_ns;
389                 uint64_t _unused_par_1;
390                 uint64_t par_s;
391             };
392             uint64_t par_el[4];
393         };
394 
395         uint32_t c9_insn; /* Cache lockdown registers.  */
396         uint32_t c9_data;
397         uint64_t c9_pmcr; /* performance monitor control register */
398         uint64_t c9_pmcnten; /* perf monitor counter enables */
399         uint64_t c9_pmovsr; /* perf monitor overflow status */
400         uint64_t c9_pmuserenr; /* perf monitor user enable */
401         uint64_t c9_pmselr; /* perf monitor counter selection register */
402         uint64_t c9_pminten; /* perf monitor interrupt enables */
403         union { /* Memory attribute redirection */
404             struct {
405 #ifdef HOST_WORDS_BIGENDIAN
406                 uint64_t _unused_mair_0;
407                 uint32_t mair1_ns;
408                 uint32_t mair0_ns;
409                 uint64_t _unused_mair_1;
410                 uint32_t mair1_s;
411                 uint32_t mair0_s;
412 #else
413                 uint64_t _unused_mair_0;
414                 uint32_t mair0_ns;
415                 uint32_t mair1_ns;
416                 uint64_t _unused_mair_1;
417                 uint32_t mair0_s;
418                 uint32_t mair1_s;
419 #endif
420             };
421             uint64_t mair_el[4];
422         };
423         union { /* vector base address register */
424             struct {
425                 uint64_t _unused_vbar;
426                 uint64_t vbar_ns;
427                 uint64_t hvbar;
428                 uint64_t vbar_s;
429             };
430             uint64_t vbar_el[4];
431         };
432         uint32_t mvbar; /* (monitor) vector base address register */
433         struct { /* FCSE PID. */
434             uint32_t fcseidr_ns;
435             uint32_t fcseidr_s;
436         };
437         union { /* Context ID. */
438             struct {
439                 uint64_t _unused_contextidr_0;
440                 uint64_t contextidr_ns;
441                 uint64_t _unused_contextidr_1;
442                 uint64_t contextidr_s;
443             };
444             uint64_t contextidr_el[4];
445         };
446         union { /* User RW Thread register. */
447             struct {
448                 uint64_t tpidrurw_ns;
449                 uint64_t tpidrprw_ns;
450                 uint64_t htpidr;
451                 uint64_t _tpidr_el3;
452             };
453             uint64_t tpidr_el[4];
454         };
455         /* The secure banks of these registers don't map anywhere */
456         uint64_t tpidrurw_s;
457         uint64_t tpidrprw_s;
458         uint64_t tpidruro_s;
459 
460         union { /* User RO Thread register. */
461             uint64_t tpidruro_ns;
462             uint64_t tpidrro_el[1];
463         };
464         uint64_t c14_cntfrq; /* Counter Frequency register */
465         uint64_t c14_cntkctl; /* Timer Control register */
466         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
467         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
468         ARMGenericTimer c14_timer[NUM_GTIMERS];
469         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
470         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
471         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
472         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
473         uint32_t c15_threadid; /* TI debugger thread-ID.  */
474         uint32_t c15_config_base_address; /* SCU base address.  */
475         uint32_t c15_diagnostic; /* diagnostic register */
476         uint32_t c15_power_diagnostic;
477         uint32_t c15_power_control; /* power control */
478         uint64_t dbgbvr[16]; /* breakpoint value registers */
479         uint64_t dbgbcr[16]; /* breakpoint control registers */
480         uint64_t dbgwvr[16]; /* watchpoint value registers */
481         uint64_t dbgwcr[16]; /* watchpoint control registers */
482         uint64_t mdscr_el1;
483         uint64_t oslsr_el1; /* OS Lock Status */
484         uint64_t mdcr_el2;
485         uint64_t mdcr_el3;
486         /* Stores the architectural value of the counter *the last time it was
487          * updated* by pmccntr_op_start. Accesses should always be surrounded
488          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
489          * architecturally-correct value is being read/set.
490          */
491         uint64_t c15_ccnt;
492         /* Stores the delta between the architectural value and the underlying
493          * cycle count during normal operation. It is used to update c15_ccnt
494          * to be the correct architectural value before accesses. During
495          * accesses, c15_ccnt_delta contains the underlying count being used
496          * for the access, after which it reverts to the delta value in
497          * pmccntr_op_finish.
498          */
499         uint64_t c15_ccnt_delta;
500         uint64_t c14_pmevcntr[31];
501         uint64_t c14_pmevcntr_delta[31];
502         uint64_t c14_pmevtyper[31];
503         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
504         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
505         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
506         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
507         uint64_t gcr_el1;
508         uint64_t rgsr_el1;
509     } cp15;
510 
511     struct {
512         /* M profile has up to 4 stack pointers:
513          * a Main Stack Pointer and a Process Stack Pointer for each
514          * of the Secure and Non-Secure states. (If the CPU doesn't support
515          * the security extension then it has only two SPs.)
516          * In QEMU we always store the currently active SP in regs[13],
517          * and the non-active SP for the current security state in
518          * v7m.other_sp. The stack pointers for the inactive security state
519          * are stored in other_ss_msp and other_ss_psp.
520          * switch_v7m_security_state() is responsible for rearranging them
521          * when we change security state.
522          */
523         uint32_t other_sp;
524         uint32_t other_ss_msp;
525         uint32_t other_ss_psp;
526         uint32_t vecbase[M_REG_NUM_BANKS];
527         uint32_t basepri[M_REG_NUM_BANKS];
528         uint32_t control[M_REG_NUM_BANKS];
529         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
530         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
531         uint32_t hfsr; /* HardFault Status */
532         uint32_t dfsr; /* Debug Fault Status Register */
533         uint32_t sfsr; /* Secure Fault Status Register */
534         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
535         uint32_t bfar; /* BusFault Address */
536         uint32_t sfar; /* Secure Fault Address Register */
537         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
538         int exception;
539         uint32_t primask[M_REG_NUM_BANKS];
540         uint32_t faultmask[M_REG_NUM_BANKS];
541         uint32_t aircr; /* only holds r/w state if security extn implemented */
542         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
543         uint32_t csselr[M_REG_NUM_BANKS];
544         uint32_t scr[M_REG_NUM_BANKS];
545         uint32_t msplim[M_REG_NUM_BANKS];
546         uint32_t psplim[M_REG_NUM_BANKS];
547         uint32_t fpcar[M_REG_NUM_BANKS];
548         uint32_t fpccr[M_REG_NUM_BANKS];
549         uint32_t fpdscr[M_REG_NUM_BANKS];
550         uint32_t cpacr[M_REG_NUM_BANKS];
551         uint32_t nsacr;
552     } v7m;
553 
554     /* Information associated with an exception about to be taken:
555      * code which raises an exception must set cs->exception_index and
556      * the relevant parts of this structure; the cpu_do_interrupt function
557      * will then set the guest-visible registers as part of the exception
558      * entry process.
559      */
560     struct {
561         uint32_t syndrome; /* AArch64 format syndrome register */
562         uint32_t fsr; /* AArch32 format fault status register info */
563         uint64_t vaddress; /* virtual addr associated with exception, if any */
564         uint32_t target_el; /* EL the exception should be targeted for */
565         /* If we implement EL2 we will also need to store information
566          * about the intermediate physical address for stage 2 faults.
567          */
568     } exception;
569 
570     /* Information associated with an SError */
571     struct {
572         uint8_t pending;
573         uint8_t has_esr;
574         uint64_t esr;
575     } serror;
576 
577     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
578 
579     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
580     uint32_t irq_line_state;
581 
582     /* Thumb-2 EE state.  */
583     uint32_t teecr;
584     uint32_t teehbr;
585 
586     /* VFP coprocessor state.  */
587     struct {
588         ARMVectorReg zregs[32];
589 
590 #ifdef TARGET_AARCH64
591         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
592 #define FFR_PRED_NUM 16
593         ARMPredicateReg pregs[17];
594         /* Scratch space for aa64 sve predicate temporary.  */
595         ARMPredicateReg preg_tmp;
596 #endif
597 
598         /* We store these fpcsr fields separately for convenience.  */
599         uint32_t qc[4] QEMU_ALIGNED(16);
600         int vec_len;
601         int vec_stride;
602 
603         uint32_t xregs[16];
604 
605         /* Scratch space for aa32 neon expansion.  */
606         uint32_t scratch[8];
607 
608         /* There are a number of distinct float control structures:
609          *
610          *  fp_status: is the "normal" fp status.
611          *  fp_status_fp16: used for half-precision calculations
612          *  standard_fp_status : the ARM "Standard FPSCR Value"
613          *  standard_fp_status_fp16 : used for half-precision
614          *       calculations with the ARM "Standard FPSCR Value"
615          *
616          * Half-precision operations are governed by a separate
617          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
618          * status structure to control this.
619          *
620          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
621          * round-to-nearest and is used by any operations (generally
622          * Neon) which the architecture defines as controlled by the
623          * standard FPSCR value rather than the FPSCR.
624          *
625          * The "standard FPSCR but for fp16 ops" is needed because
626          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
627          * using a fixed value for it.
628          *
629          * To avoid having to transfer exception bits around, we simply
630          * say that the FPSCR cumulative exception flags are the logical
631          * OR of the flags in the four fp statuses. This relies on the
632          * only thing which needs to read the exception flags being
633          * an explicit FPSCR read.
634          */
635         float_status fp_status;
636         float_status fp_status_f16;
637         float_status standard_fp_status;
638         float_status standard_fp_status_f16;
639 
640         /* ZCR_EL[1-3] */
641         uint64_t zcr_el[4];
642     } vfp;
643     uint64_t exclusive_addr;
644     uint64_t exclusive_val;
645     uint64_t exclusive_high;
646 
647     /* iwMMXt coprocessor state.  */
648     struct {
649         uint64_t regs[16];
650         uint64_t val;
651 
652         uint32_t cregs[16];
653     } iwmmxt;
654 
655 #ifdef TARGET_AARCH64
656     struct {
657         ARMPACKey apia;
658         ARMPACKey apib;
659         ARMPACKey apda;
660         ARMPACKey apdb;
661         ARMPACKey apga;
662     } keys;
663 #endif
664 
665 #if defined(CONFIG_USER_ONLY)
666     /* For usermode syscall translation.  */
667     int eabi;
668 #endif
669 
670     struct CPUBreakpoint *cpu_breakpoint[16];
671     struct CPUWatchpoint *cpu_watchpoint[16];
672 
673     /* Fields up to this point are cleared by a CPU reset */
674     struct {} end_reset_fields;
675 
676     /* Fields after this point are preserved across CPU reset. */
677 
678     /* Internal CPU feature flags.  */
679     uint64_t features;
680 
681     /* PMSAv7 MPU */
682     struct {
683         uint32_t *drbar;
684         uint32_t *drsr;
685         uint32_t *dracr;
686         uint32_t rnr[M_REG_NUM_BANKS];
687     } pmsav7;
688 
689     /* PMSAv8 MPU */
690     struct {
691         /* The PMSAv8 implementation also shares some PMSAv7 config
692          * and state:
693          *  pmsav7.rnr (region number register)
694          *  pmsav7_dregion (number of configured regions)
695          */
696         uint32_t *rbar[M_REG_NUM_BANKS];
697         uint32_t *rlar[M_REG_NUM_BANKS];
698         uint32_t mair0[M_REG_NUM_BANKS];
699         uint32_t mair1[M_REG_NUM_BANKS];
700     } pmsav8;
701 
702     /* v8M SAU */
703     struct {
704         uint32_t *rbar;
705         uint32_t *rlar;
706         uint32_t rnr;
707         uint32_t ctrl;
708     } sau;
709 
710     void *nvic;
711     const struct arm_boot_info *boot_info;
712     /* Store GICv3CPUState to access from this struct */
713     void *gicv3state;
714 } CPUARMState;
715 
716 static inline void set_feature(CPUARMState *env, int feature)
717 {
718     env->features |= 1ULL << feature;
719 }
720 
721 static inline void unset_feature(CPUARMState *env, int feature)
722 {
723     env->features &= ~(1ULL << feature);
724 }
725 
726 /**
727  * ARMELChangeHookFn:
728  * type of a function which can be registered via arm_register_el_change_hook()
729  * to get callbacks when the CPU changes its exception level or mode.
730  */
731 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
732 typedef struct ARMELChangeHook ARMELChangeHook;
733 struct ARMELChangeHook {
734     ARMELChangeHookFn *hook;
735     void *opaque;
736     QLIST_ENTRY(ARMELChangeHook) node;
737 };
738 
739 /* These values map onto the return values for
740  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
741 typedef enum ARMPSCIState {
742     PSCI_ON = 0,
743     PSCI_OFF = 1,
744     PSCI_ON_PENDING = 2
745 } ARMPSCIState;
746 
747 typedef struct ARMISARegisters ARMISARegisters;
748 
749 /**
750  * ARMCPU:
751  * @env: #CPUARMState
752  *
753  * An ARM CPU core.
754  */
755 struct ARMCPU {
756     /*< private >*/
757     CPUState parent_obj;
758     /*< public >*/
759 
760     CPUNegativeOffsetState neg;
761     CPUARMState env;
762 
763     /* Coprocessor information */
764     GHashTable *cp_regs;
765     /* For marshalling (mostly coprocessor) register state between the
766      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
767      * we use these arrays.
768      */
769     /* List of register indexes managed via these arrays; (full KVM style
770      * 64 bit indexes, not CPRegInfo 32 bit indexes)
771      */
772     uint64_t *cpreg_indexes;
773     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
774     uint64_t *cpreg_values;
775     /* Length of the indexes, values, reset_values arrays */
776     int32_t cpreg_array_len;
777     /* These are used only for migration: incoming data arrives in
778      * these fields and is sanity checked in post_load before copying
779      * to the working data structures above.
780      */
781     uint64_t *cpreg_vmstate_indexes;
782     uint64_t *cpreg_vmstate_values;
783     int32_t cpreg_vmstate_array_len;
784 
785     DynamicGDBXMLInfo dyn_sysreg_xml;
786     DynamicGDBXMLInfo dyn_svereg_xml;
787 
788     /* Timers used by the generic (architected) timer */
789     QEMUTimer *gt_timer[NUM_GTIMERS];
790     /*
791      * Timer used by the PMU. Its state is restored after migration by
792      * pmu_op_finish() - it does not need other handling during migration
793      */
794     QEMUTimer *pmu_timer;
795     /* GPIO outputs for generic timer */
796     qemu_irq gt_timer_outputs[NUM_GTIMERS];
797     /* GPIO output for GICv3 maintenance interrupt signal */
798     qemu_irq gicv3_maintenance_interrupt;
799     /* GPIO output for the PMU interrupt */
800     qemu_irq pmu_interrupt;
801 
802     /* MemoryRegion to use for secure physical accesses */
803     MemoryRegion *secure_memory;
804 
805     /* MemoryRegion to use for allocation tag accesses */
806     MemoryRegion *tag_memory;
807     MemoryRegion *secure_tag_memory;
808 
809     /* For v8M, pointer to the IDAU interface provided by board/SoC */
810     Object *idau;
811 
812     /* 'compatible' string for this CPU for Linux device trees */
813     const char *dtb_compatible;
814 
815     /* PSCI version for this CPU
816      * Bits[31:16] = Major Version
817      * Bits[15:0] = Minor Version
818      */
819     uint32_t psci_version;
820 
821     /* Current power state, access guarded by BQL */
822     ARMPSCIState power_state;
823 
824     /* CPU has virtualization extension */
825     bool has_el2;
826     /* CPU has security extension */
827     bool has_el3;
828     /* CPU has PMU (Performance Monitor Unit) */
829     bool has_pmu;
830     /* CPU has VFP */
831     bool has_vfp;
832     /* CPU has Neon */
833     bool has_neon;
834     /* CPU has M-profile DSP extension */
835     bool has_dsp;
836 
837     /* CPU has memory protection unit */
838     bool has_mpu;
839     /* PMSAv7 MPU number of supported regions */
840     uint32_t pmsav7_dregion;
841     /* v8M SAU number of supported regions */
842     uint32_t sau_sregion;
843 
844     /* PSCI conduit used to invoke PSCI methods
845      * 0 - disabled, 1 - smc, 2 - hvc
846      */
847     uint32_t psci_conduit;
848 
849     /* For v8M, initial value of the Secure VTOR */
850     uint32_t init_svtor;
851 
852     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
853      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
854      */
855     uint32_t kvm_target;
856 
857     /* KVM init features for this CPU */
858     uint32_t kvm_init_features[7];
859 
860     /* KVM CPU state */
861 
862     /* KVM virtual time adjustment */
863     bool kvm_adjvtime;
864     bool kvm_vtime_dirty;
865     uint64_t kvm_vtime;
866 
867     /* KVM steal time */
868     OnOffAuto kvm_steal_time;
869 
870     /* Uniprocessor system with MP extensions */
871     bool mp_is_up;
872 
873     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
874      * and the probe failed (so we need to report the error in realize)
875      */
876     bool host_cpu_probe_failed;
877 
878     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
879      * register.
880      */
881     int32_t core_count;
882 
883     /* The instance init functions for implementation-specific subclasses
884      * set these fields to specify the implementation-dependent values of
885      * various constant registers and reset values of non-constant
886      * registers.
887      * Some of these might become QOM properties eventually.
888      * Field names match the official register names as defined in the
889      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
890      * is used for reset values of non-constant registers; no reset_
891      * prefix means a constant register.
892      * Some of these registers are split out into a substructure that
893      * is shared with the translators to control the ISA.
894      *
895      * Note that if you add an ID register to the ARMISARegisters struct
896      * you need to also update the 32-bit and 64-bit versions of the
897      * kvm_arm_get_host_cpu_features() function to correctly populate the
898      * field by reading the value from the KVM vCPU.
899      */
900     struct ARMISARegisters {
901         uint32_t id_isar0;
902         uint32_t id_isar1;
903         uint32_t id_isar2;
904         uint32_t id_isar3;
905         uint32_t id_isar4;
906         uint32_t id_isar5;
907         uint32_t id_isar6;
908         uint32_t id_mmfr0;
909         uint32_t id_mmfr1;
910         uint32_t id_mmfr2;
911         uint32_t id_mmfr3;
912         uint32_t id_mmfr4;
913         uint32_t id_pfr0;
914         uint32_t id_pfr1;
915         uint32_t mvfr0;
916         uint32_t mvfr1;
917         uint32_t mvfr2;
918         uint32_t id_dfr0;
919         uint32_t dbgdidr;
920         uint64_t id_aa64isar0;
921         uint64_t id_aa64isar1;
922         uint64_t id_aa64pfr0;
923         uint64_t id_aa64pfr1;
924         uint64_t id_aa64mmfr0;
925         uint64_t id_aa64mmfr1;
926         uint64_t id_aa64mmfr2;
927         uint64_t id_aa64dfr0;
928         uint64_t id_aa64dfr1;
929     } isar;
930     uint64_t midr;
931     uint32_t revidr;
932     uint32_t reset_fpsid;
933     uint32_t ctr;
934     uint32_t reset_sctlr;
935     uint64_t pmceid0;
936     uint64_t pmceid1;
937     uint32_t id_afr0;
938     uint64_t id_aa64afr0;
939     uint64_t id_aa64afr1;
940     uint32_t clidr;
941     uint64_t mp_affinity; /* MP ID without feature bits */
942     /* The elements of this array are the CCSIDR values for each cache,
943      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
944      */
945     uint64_t ccsidr[16];
946     uint64_t reset_cbar;
947     uint32_t reset_auxcr;
948     bool reset_hivecs;
949     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
950     uint32_t dcz_blocksize;
951     uint64_t rvbar;
952 
953     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
954     int gic_num_lrs; /* number of list registers */
955     int gic_vpribits; /* number of virtual priority bits */
956     int gic_vprebits; /* number of virtual preemption bits */
957 
958     /* Whether the cfgend input is high (i.e. this CPU should reset into
959      * big-endian mode).  This setting isn't used directly: instead it modifies
960      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
961      * architecture version.
962      */
963     bool cfgend;
964 
965     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
966     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
967 
968     int32_t node_id; /* NUMA node this CPU belongs to */
969 
970     /* Used to synchronize KVM and QEMU in-kernel device levels */
971     uint8_t device_irq_level;
972 
973     /* Used to set the maximum vector length the cpu will support.  */
974     uint32_t sve_max_vq;
975 
976     /*
977      * In sve_vq_map each set bit is a supported vector length of
978      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
979      * length in quadwords.
980      *
981      * While processing properties during initialization, corresponding
982      * sve_vq_init bits are set for bits in sve_vq_map that have been
983      * set by properties.
984      */
985     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
986     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
987 
988     /* Generic timer counter frequency, in Hz */
989     uint64_t gt_cntfrq_hz;
990 };
991 
992 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
993 
994 void arm_cpu_post_init(Object *obj);
995 
996 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
997 
998 #ifndef CONFIG_USER_ONLY
999 extern const VMStateDescription vmstate_arm_cpu;
1000 #endif
1001 
1002 void arm_cpu_do_interrupt(CPUState *cpu);
1003 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1004 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1005 
1006 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1007                                          MemTxAttrs *attrs);
1008 
1009 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1010 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1011 
1012 /*
1013  * Helpers to dynamically generates XML descriptions of the sysregs
1014  * and SVE registers. Returns the number of registers in each set.
1015  */
1016 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1017 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1018 
1019 /* Returns the dynamically generated XML for the gdb stub.
1020  * Returns a pointer to the XML contents for the specified XML file or NULL
1021  * if the XML name doesn't match the predefined one.
1022  */
1023 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1024 
1025 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1026                              int cpuid, void *opaque);
1027 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1028                              int cpuid, void *opaque);
1029 
1030 #ifdef TARGET_AARCH64
1031 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1032 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1033 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1034 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1035                            int new_el, bool el0_a64);
1036 void aarch64_add_sve_properties(Object *obj);
1037 
1038 /*
1039  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1040  * The byte at offset i from the start of the in-memory representation contains
1041  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1042  * lowest offsets are stored in the lowest memory addresses, then that nearly
1043  * matches QEMU's representation, which is to use an array of host-endian
1044  * uint64_t's, where the lower offsets are at the lower indices. To complete
1045  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1046  */
1047 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1048 {
1049 #ifdef HOST_WORDS_BIGENDIAN
1050     int i;
1051 
1052     for (i = 0; i < nr; ++i) {
1053         dst[i] = bswap64(src[i]);
1054     }
1055 
1056     return dst;
1057 #else
1058     return src;
1059 #endif
1060 }
1061 
1062 #else
1063 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1064 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1065                                          int n, bool a)
1066 { }
1067 static inline void aarch64_add_sve_properties(Object *obj) { }
1068 #endif
1069 
1070 #if !defined(CONFIG_TCG)
1071 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1072 {
1073     g_assert_not_reached();
1074 }
1075 #else
1076 target_ulong do_arm_semihosting(CPUARMState *env);
1077 #endif
1078 void aarch64_sync_32_to_64(CPUARMState *env);
1079 void aarch64_sync_64_to_32(CPUARMState *env);
1080 
1081 int fp_exception_el(CPUARMState *env, int cur_el);
1082 int sve_exception_el(CPUARMState *env, int cur_el);
1083 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1084 
1085 static inline bool is_a64(CPUARMState *env)
1086 {
1087     return env->aarch64;
1088 }
1089 
1090 /* you can call this signal handler from your SIGBUS and SIGSEGV
1091    signal handlers to inform the virtual CPU of exceptions. non zero
1092    is returned if the signal was handled by the virtual CPU.  */
1093 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1094                            void *puc);
1095 
1096 /**
1097  * pmu_op_start/finish
1098  * @env: CPUARMState
1099  *
1100  * Convert all PMU counters between their delta form (the typical mode when
1101  * they are enabled) and the guest-visible values. These two calls must
1102  * surround any action which might affect the counters.
1103  */
1104 void pmu_op_start(CPUARMState *env);
1105 void pmu_op_finish(CPUARMState *env);
1106 
1107 /*
1108  * Called when a PMU counter is due to overflow
1109  */
1110 void arm_pmu_timer_cb(void *opaque);
1111 
1112 /**
1113  * Functions to register as EL change hooks for PMU mode filtering
1114  */
1115 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1116 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1117 
1118 /*
1119  * pmu_init
1120  * @cpu: ARMCPU
1121  *
1122  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1123  * for the current configuration
1124  */
1125 void pmu_init(ARMCPU *cpu);
1126 
1127 /* SCTLR bit meanings. Several bits have been reused in newer
1128  * versions of the architecture; in that case we define constants
1129  * for both old and new bit meanings. Code which tests against those
1130  * bits should probably check or otherwise arrange that the CPU
1131  * is the architectural version it expects.
1132  */
1133 #define SCTLR_M       (1U << 0)
1134 #define SCTLR_A       (1U << 1)
1135 #define SCTLR_C       (1U << 2)
1136 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1137 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1138 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1139 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1140 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1141 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1142 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1143 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1144 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1145 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1146 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1147 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1148 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1149 #define SCTLR_SED     (1U << 8) /* v8 onward */
1150 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1151 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1152 #define SCTLR_F       (1U << 10) /* up to v6 */
1153 #define SCTLR_SW      (1U << 10) /* v7 */
1154 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1155 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1156 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1157 #define SCTLR_I       (1U << 12)
1158 #define SCTLR_V       (1U << 13) /* AArch32 only */
1159 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1160 #define SCTLR_RR      (1U << 14) /* up to v7 */
1161 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1162 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1163 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1164 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1165 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1166 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1167 #define SCTLR_BR      (1U << 17) /* PMSA only */
1168 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1169 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1170 #define SCTLR_WXN     (1U << 19)
1171 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1172 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1173 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1174 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1175 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1176 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1177 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1178 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1179 #define SCTLR_VE      (1U << 24) /* up to v7 */
1180 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1181 #define SCTLR_EE      (1U << 25)
1182 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1183 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1184 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1185 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1186 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1187 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1188 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1189 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1190 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1191 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1192 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1193 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1194 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1195 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1196 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1197 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1198 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1199 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1200 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1201 
1202 #define CPTR_TCPAC    (1U << 31)
1203 #define CPTR_TTA      (1U << 20)
1204 #define CPTR_TFP      (1U << 10)
1205 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1206 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1207 
1208 #define MDCR_EPMAD    (1U << 21)
1209 #define MDCR_EDAD     (1U << 20)
1210 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1211 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1212 #define MDCR_SDD      (1U << 16)
1213 #define MDCR_SPD      (3U << 14)
1214 #define MDCR_TDRA     (1U << 11)
1215 #define MDCR_TDOSA    (1U << 10)
1216 #define MDCR_TDA      (1U << 9)
1217 #define MDCR_TDE      (1U << 8)
1218 #define MDCR_HPME     (1U << 7)
1219 #define MDCR_TPM      (1U << 6)
1220 #define MDCR_TPMCR    (1U << 5)
1221 #define MDCR_HPMN     (0x1fU)
1222 
1223 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1224 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1225 
1226 #define CPSR_M (0x1fU)
1227 #define CPSR_T (1U << 5)
1228 #define CPSR_F (1U << 6)
1229 #define CPSR_I (1U << 7)
1230 #define CPSR_A (1U << 8)
1231 #define CPSR_E (1U << 9)
1232 #define CPSR_IT_2_7 (0xfc00U)
1233 #define CPSR_GE (0xfU << 16)
1234 #define CPSR_IL (1U << 20)
1235 #define CPSR_PAN (1U << 22)
1236 #define CPSR_J (1U << 24)
1237 #define CPSR_IT_0_1 (3U << 25)
1238 #define CPSR_Q (1U << 27)
1239 #define CPSR_V (1U << 28)
1240 #define CPSR_C (1U << 29)
1241 #define CPSR_Z (1U << 30)
1242 #define CPSR_N (1U << 31)
1243 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1244 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1245 
1246 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1247 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1248     | CPSR_NZCV)
1249 /* Bits writable in user mode.  */
1250 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1251 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1252 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1253 
1254 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1255 #define XPSR_EXCP 0x1ffU
1256 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1257 #define XPSR_IT_2_7 CPSR_IT_2_7
1258 #define XPSR_GE CPSR_GE
1259 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1260 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1261 #define XPSR_IT_0_1 CPSR_IT_0_1
1262 #define XPSR_Q CPSR_Q
1263 #define XPSR_V CPSR_V
1264 #define XPSR_C CPSR_C
1265 #define XPSR_Z CPSR_Z
1266 #define XPSR_N CPSR_N
1267 #define XPSR_NZCV CPSR_NZCV
1268 #define XPSR_IT CPSR_IT
1269 
1270 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1271 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1272 #define TTBCR_PD0    (1U << 4)
1273 #define TTBCR_PD1    (1U << 5)
1274 #define TTBCR_EPD0   (1U << 7)
1275 #define TTBCR_IRGN0  (3U << 8)
1276 #define TTBCR_ORGN0  (3U << 10)
1277 #define TTBCR_SH0    (3U << 12)
1278 #define TTBCR_T1SZ   (3U << 16)
1279 #define TTBCR_A1     (1U << 22)
1280 #define TTBCR_EPD1   (1U << 23)
1281 #define TTBCR_IRGN1  (3U << 24)
1282 #define TTBCR_ORGN1  (3U << 26)
1283 #define TTBCR_SH1    (1U << 28)
1284 #define TTBCR_EAE    (1U << 31)
1285 
1286 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1287  * Only these are valid when in AArch64 mode; in
1288  * AArch32 mode SPSRs are basically CPSR-format.
1289  */
1290 #define PSTATE_SP (1U)
1291 #define PSTATE_M (0xFU)
1292 #define PSTATE_nRW (1U << 4)
1293 #define PSTATE_F (1U << 6)
1294 #define PSTATE_I (1U << 7)
1295 #define PSTATE_A (1U << 8)
1296 #define PSTATE_D (1U << 9)
1297 #define PSTATE_BTYPE (3U << 10)
1298 #define PSTATE_IL (1U << 20)
1299 #define PSTATE_SS (1U << 21)
1300 #define PSTATE_PAN (1U << 22)
1301 #define PSTATE_UAO (1U << 23)
1302 #define PSTATE_TCO (1U << 25)
1303 #define PSTATE_V (1U << 28)
1304 #define PSTATE_C (1U << 29)
1305 #define PSTATE_Z (1U << 30)
1306 #define PSTATE_N (1U << 31)
1307 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1308 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1309 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1310 /* Mode values for AArch64 */
1311 #define PSTATE_MODE_EL3h 13
1312 #define PSTATE_MODE_EL3t 12
1313 #define PSTATE_MODE_EL2h 9
1314 #define PSTATE_MODE_EL2t 8
1315 #define PSTATE_MODE_EL1h 5
1316 #define PSTATE_MODE_EL1t 4
1317 #define PSTATE_MODE_EL0t 0
1318 
1319 /* Write a new value to v7m.exception, thus transitioning into or out
1320  * of Handler mode; this may result in a change of active stack pointer.
1321  */
1322 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1323 
1324 /* Map EL and handler into a PSTATE_MODE.  */
1325 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1326 {
1327     return (el << 2) | handler;
1328 }
1329 
1330 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1331  * interprocessing, so we don't attempt to sync with the cpsr state used by
1332  * the 32 bit decoder.
1333  */
1334 static inline uint32_t pstate_read(CPUARMState *env)
1335 {
1336     int ZF;
1337 
1338     ZF = (env->ZF == 0);
1339     return (env->NF & 0x80000000) | (ZF << 30)
1340         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1341         | env->pstate | env->daif | (env->btype << 10);
1342 }
1343 
1344 static inline void pstate_write(CPUARMState *env, uint32_t val)
1345 {
1346     env->ZF = (~val) & PSTATE_Z;
1347     env->NF = val;
1348     env->CF = (val >> 29) & 1;
1349     env->VF = (val << 3) & 0x80000000;
1350     env->daif = val & PSTATE_DAIF;
1351     env->btype = (val >> 10) & 3;
1352     env->pstate = val & ~CACHED_PSTATE_BITS;
1353 }
1354 
1355 /* Return the current CPSR value.  */
1356 uint32_t cpsr_read(CPUARMState *env);
1357 
1358 typedef enum CPSRWriteType {
1359     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1360     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1361     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1362     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1363 } CPSRWriteType;
1364 
1365 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1366 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1367                 CPSRWriteType write_type);
1368 
1369 /* Return the current xPSR value.  */
1370 static inline uint32_t xpsr_read(CPUARMState *env)
1371 {
1372     int ZF;
1373     ZF = (env->ZF == 0);
1374     return (env->NF & 0x80000000) | (ZF << 30)
1375         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1376         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1377         | ((env->condexec_bits & 0xfc) << 8)
1378         | (env->GE << 16)
1379         | env->v7m.exception;
1380 }
1381 
1382 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1383 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1384 {
1385     if (mask & XPSR_NZCV) {
1386         env->ZF = (~val) & XPSR_Z;
1387         env->NF = val;
1388         env->CF = (val >> 29) & 1;
1389         env->VF = (val << 3) & 0x80000000;
1390     }
1391     if (mask & XPSR_Q) {
1392         env->QF = ((val & XPSR_Q) != 0);
1393     }
1394     if (mask & XPSR_GE) {
1395         env->GE = (val & XPSR_GE) >> 16;
1396     }
1397 #ifndef CONFIG_USER_ONLY
1398     if (mask & XPSR_T) {
1399         env->thumb = ((val & XPSR_T) != 0);
1400     }
1401     if (mask & XPSR_IT_0_1) {
1402         env->condexec_bits &= ~3;
1403         env->condexec_bits |= (val >> 25) & 3;
1404     }
1405     if (mask & XPSR_IT_2_7) {
1406         env->condexec_bits &= 3;
1407         env->condexec_bits |= (val >> 8) & 0xfc;
1408     }
1409     if (mask & XPSR_EXCP) {
1410         /* Note that this only happens on exception exit */
1411         write_v7m_exception(env, val & XPSR_EXCP);
1412     }
1413 #endif
1414 }
1415 
1416 #define HCR_VM        (1ULL << 0)
1417 #define HCR_SWIO      (1ULL << 1)
1418 #define HCR_PTW       (1ULL << 2)
1419 #define HCR_FMO       (1ULL << 3)
1420 #define HCR_IMO       (1ULL << 4)
1421 #define HCR_AMO       (1ULL << 5)
1422 #define HCR_VF        (1ULL << 6)
1423 #define HCR_VI        (1ULL << 7)
1424 #define HCR_VSE       (1ULL << 8)
1425 #define HCR_FB        (1ULL << 9)
1426 #define HCR_BSU_MASK  (3ULL << 10)
1427 #define HCR_DC        (1ULL << 12)
1428 #define HCR_TWI       (1ULL << 13)
1429 #define HCR_TWE       (1ULL << 14)
1430 #define HCR_TID0      (1ULL << 15)
1431 #define HCR_TID1      (1ULL << 16)
1432 #define HCR_TID2      (1ULL << 17)
1433 #define HCR_TID3      (1ULL << 18)
1434 #define HCR_TSC       (1ULL << 19)
1435 #define HCR_TIDCP     (1ULL << 20)
1436 #define HCR_TACR      (1ULL << 21)
1437 #define HCR_TSW       (1ULL << 22)
1438 #define HCR_TPCP      (1ULL << 23)
1439 #define HCR_TPU       (1ULL << 24)
1440 #define HCR_TTLB      (1ULL << 25)
1441 #define HCR_TVM       (1ULL << 26)
1442 #define HCR_TGE       (1ULL << 27)
1443 #define HCR_TDZ       (1ULL << 28)
1444 #define HCR_HCD       (1ULL << 29)
1445 #define HCR_TRVM      (1ULL << 30)
1446 #define HCR_RW        (1ULL << 31)
1447 #define HCR_CD        (1ULL << 32)
1448 #define HCR_ID        (1ULL << 33)
1449 #define HCR_E2H       (1ULL << 34)
1450 #define HCR_TLOR      (1ULL << 35)
1451 #define HCR_TERR      (1ULL << 36)
1452 #define HCR_TEA       (1ULL << 37)
1453 #define HCR_MIOCNCE   (1ULL << 38)
1454 /* RES0 bit 39 */
1455 #define HCR_APK       (1ULL << 40)
1456 #define HCR_API       (1ULL << 41)
1457 #define HCR_NV        (1ULL << 42)
1458 #define HCR_NV1       (1ULL << 43)
1459 #define HCR_AT        (1ULL << 44)
1460 #define HCR_NV2       (1ULL << 45)
1461 #define HCR_FWB       (1ULL << 46)
1462 #define HCR_FIEN      (1ULL << 47)
1463 /* RES0 bit 48 */
1464 #define HCR_TID4      (1ULL << 49)
1465 #define HCR_TICAB     (1ULL << 50)
1466 #define HCR_AMVOFFEN  (1ULL << 51)
1467 #define HCR_TOCU      (1ULL << 52)
1468 #define HCR_ENSCXT    (1ULL << 53)
1469 #define HCR_TTLBIS    (1ULL << 54)
1470 #define HCR_TTLBOS    (1ULL << 55)
1471 #define HCR_ATA       (1ULL << 56)
1472 #define HCR_DCT       (1ULL << 57)
1473 #define HCR_TID5      (1ULL << 58)
1474 #define HCR_TWEDEN    (1ULL << 59)
1475 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1476 
1477 #define SCR_NS                (1U << 0)
1478 #define SCR_IRQ               (1U << 1)
1479 #define SCR_FIQ               (1U << 2)
1480 #define SCR_EA                (1U << 3)
1481 #define SCR_FW                (1U << 4)
1482 #define SCR_AW                (1U << 5)
1483 #define SCR_NET               (1U << 6)
1484 #define SCR_SMD               (1U << 7)
1485 #define SCR_HCE               (1U << 8)
1486 #define SCR_SIF               (1U << 9)
1487 #define SCR_RW                (1U << 10)
1488 #define SCR_ST                (1U << 11)
1489 #define SCR_TWI               (1U << 12)
1490 #define SCR_TWE               (1U << 13)
1491 #define SCR_TLOR              (1U << 14)
1492 #define SCR_TERR              (1U << 15)
1493 #define SCR_APK               (1U << 16)
1494 #define SCR_API               (1U << 17)
1495 #define SCR_EEL2              (1U << 18)
1496 #define SCR_EASE              (1U << 19)
1497 #define SCR_NMEA              (1U << 20)
1498 #define SCR_FIEN              (1U << 21)
1499 #define SCR_ENSCXT            (1U << 25)
1500 #define SCR_ATA               (1U << 26)
1501 
1502 /* Return the current FPSCR value.  */
1503 uint32_t vfp_get_fpscr(CPUARMState *env);
1504 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1505 
1506 /* FPCR, Floating Point Control Register
1507  * FPSR, Floating Poiht Status Register
1508  *
1509  * For A64 the FPSCR is split into two logically distinct registers,
1510  * FPCR and FPSR. However since they still use non-overlapping bits
1511  * we store the underlying state in fpscr and just mask on read/write.
1512  */
1513 #define FPSR_MASK 0xf800009f
1514 #define FPCR_MASK 0x07ff9f00
1515 
1516 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1517 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1518 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1519 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1520 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1521 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1522 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1523 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1524 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1525 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1526 
1527 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1528 {
1529     return vfp_get_fpscr(env) & FPSR_MASK;
1530 }
1531 
1532 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1533 {
1534     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1535     vfp_set_fpscr(env, new_fpscr);
1536 }
1537 
1538 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1539 {
1540     return vfp_get_fpscr(env) & FPCR_MASK;
1541 }
1542 
1543 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1544 {
1545     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1546     vfp_set_fpscr(env, new_fpscr);
1547 }
1548 
1549 enum arm_cpu_mode {
1550   ARM_CPU_MODE_USR = 0x10,
1551   ARM_CPU_MODE_FIQ = 0x11,
1552   ARM_CPU_MODE_IRQ = 0x12,
1553   ARM_CPU_MODE_SVC = 0x13,
1554   ARM_CPU_MODE_MON = 0x16,
1555   ARM_CPU_MODE_ABT = 0x17,
1556   ARM_CPU_MODE_HYP = 0x1a,
1557   ARM_CPU_MODE_UND = 0x1b,
1558   ARM_CPU_MODE_SYS = 0x1f
1559 };
1560 
1561 /* VFP system registers.  */
1562 #define ARM_VFP_FPSID   0
1563 #define ARM_VFP_FPSCR   1
1564 #define ARM_VFP_MVFR2   5
1565 #define ARM_VFP_MVFR1   6
1566 #define ARM_VFP_MVFR0   7
1567 #define ARM_VFP_FPEXC   8
1568 #define ARM_VFP_FPINST  9
1569 #define ARM_VFP_FPINST2 10
1570 
1571 /* iwMMXt coprocessor control registers.  */
1572 #define ARM_IWMMXT_wCID  0
1573 #define ARM_IWMMXT_wCon  1
1574 #define ARM_IWMMXT_wCSSF 2
1575 #define ARM_IWMMXT_wCASF 3
1576 #define ARM_IWMMXT_wCGR0 8
1577 #define ARM_IWMMXT_wCGR1 9
1578 #define ARM_IWMMXT_wCGR2 10
1579 #define ARM_IWMMXT_wCGR3 11
1580 
1581 /* V7M CCR bits */
1582 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1583 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1584 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1585 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1586 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1587 FIELD(V7M_CCR, STKALIGN, 9, 1)
1588 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1589 FIELD(V7M_CCR, DC, 16, 1)
1590 FIELD(V7M_CCR, IC, 17, 1)
1591 FIELD(V7M_CCR, BP, 18, 1)
1592 
1593 /* V7M SCR bits */
1594 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1595 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1596 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1597 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1598 
1599 /* V7M AIRCR bits */
1600 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1601 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1602 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1603 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1604 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1605 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1606 FIELD(V7M_AIRCR, PRIS, 14, 1)
1607 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1608 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1609 
1610 /* V7M CFSR bits for MMFSR */
1611 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1612 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1613 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1614 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1615 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1616 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1617 
1618 /* V7M CFSR bits for BFSR */
1619 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1620 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1621 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1622 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1623 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1624 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1625 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1626 
1627 /* V7M CFSR bits for UFSR */
1628 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1629 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1630 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1631 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1632 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1633 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1634 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1635 
1636 /* V7M CFSR bit masks covering all of the subregister bits */
1637 FIELD(V7M_CFSR, MMFSR, 0, 8)
1638 FIELD(V7M_CFSR, BFSR, 8, 8)
1639 FIELD(V7M_CFSR, UFSR, 16, 16)
1640 
1641 /* V7M HFSR bits */
1642 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1643 FIELD(V7M_HFSR, FORCED, 30, 1)
1644 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1645 
1646 /* V7M DFSR bits */
1647 FIELD(V7M_DFSR, HALTED, 0, 1)
1648 FIELD(V7M_DFSR, BKPT, 1, 1)
1649 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1650 FIELD(V7M_DFSR, VCATCH, 3, 1)
1651 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1652 
1653 /* V7M SFSR bits */
1654 FIELD(V7M_SFSR, INVEP, 0, 1)
1655 FIELD(V7M_SFSR, INVIS, 1, 1)
1656 FIELD(V7M_SFSR, INVER, 2, 1)
1657 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1658 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1659 FIELD(V7M_SFSR, LSPERR, 5, 1)
1660 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1661 FIELD(V7M_SFSR, LSERR, 7, 1)
1662 
1663 /* v7M MPU_CTRL bits */
1664 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1665 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1666 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1667 
1668 /* v7M CLIDR bits */
1669 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1670 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1671 FIELD(V7M_CLIDR, LOC, 24, 3)
1672 FIELD(V7M_CLIDR, LOUU, 27, 3)
1673 FIELD(V7M_CLIDR, ICB, 30, 2)
1674 
1675 FIELD(V7M_CSSELR, IND, 0, 1)
1676 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1677 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1678  * define a mask for this and check that it doesn't permit running off
1679  * the end of the array.
1680  */
1681 FIELD(V7M_CSSELR, INDEX, 0, 4)
1682 
1683 /* v7M FPCCR bits */
1684 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1685 FIELD(V7M_FPCCR, USER, 1, 1)
1686 FIELD(V7M_FPCCR, S, 2, 1)
1687 FIELD(V7M_FPCCR, THREAD, 3, 1)
1688 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1689 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1690 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1691 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1692 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1693 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1694 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1695 FIELD(V7M_FPCCR, RES0, 11, 15)
1696 FIELD(V7M_FPCCR, TS, 26, 1)
1697 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1698 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1699 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1700 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1701 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1702 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1703 #define R_V7M_FPCCR_BANKED_MASK                 \
1704     (R_V7M_FPCCR_LSPACT_MASK |                  \
1705      R_V7M_FPCCR_USER_MASK |                    \
1706      R_V7M_FPCCR_THREAD_MASK |                  \
1707      R_V7M_FPCCR_MMRDY_MASK |                   \
1708      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1709      R_V7M_FPCCR_UFRDY_MASK |                   \
1710      R_V7M_FPCCR_ASPEN_MASK)
1711 
1712 /*
1713  * System register ID fields.
1714  */
1715 FIELD(MIDR_EL1, REVISION, 0, 4)
1716 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1717 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1718 FIELD(MIDR_EL1, VARIANT, 20, 4)
1719 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1720 
1721 FIELD(ID_ISAR0, SWAP, 0, 4)
1722 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1723 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1724 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1725 FIELD(ID_ISAR0, COPROC, 16, 4)
1726 FIELD(ID_ISAR0, DEBUG, 20, 4)
1727 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1728 
1729 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1730 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1731 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1732 FIELD(ID_ISAR1, EXTEND, 12, 4)
1733 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1734 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1735 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1736 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1737 
1738 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1739 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1740 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1741 FIELD(ID_ISAR2, MULT, 12, 4)
1742 FIELD(ID_ISAR2, MULTS, 16, 4)
1743 FIELD(ID_ISAR2, MULTU, 20, 4)
1744 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1745 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1746 
1747 FIELD(ID_ISAR3, SATURATE, 0, 4)
1748 FIELD(ID_ISAR3, SIMD, 4, 4)
1749 FIELD(ID_ISAR3, SVC, 8, 4)
1750 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1751 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1752 FIELD(ID_ISAR3, T32COPY, 20, 4)
1753 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1754 FIELD(ID_ISAR3, T32EE, 28, 4)
1755 
1756 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1757 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1758 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1759 FIELD(ID_ISAR4, SMC, 12, 4)
1760 FIELD(ID_ISAR4, BARRIER, 16, 4)
1761 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1762 FIELD(ID_ISAR4, PSR_M, 24, 4)
1763 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1764 
1765 FIELD(ID_ISAR5, SEVL, 0, 4)
1766 FIELD(ID_ISAR5, AES, 4, 4)
1767 FIELD(ID_ISAR5, SHA1, 8, 4)
1768 FIELD(ID_ISAR5, SHA2, 12, 4)
1769 FIELD(ID_ISAR5, CRC32, 16, 4)
1770 FIELD(ID_ISAR5, RDM, 24, 4)
1771 FIELD(ID_ISAR5, VCMA, 28, 4)
1772 
1773 FIELD(ID_ISAR6, JSCVT, 0, 4)
1774 FIELD(ID_ISAR6, DP, 4, 4)
1775 FIELD(ID_ISAR6, FHM, 8, 4)
1776 FIELD(ID_ISAR6, SB, 12, 4)
1777 FIELD(ID_ISAR6, SPECRES, 16, 4)
1778 
1779 FIELD(ID_MMFR0, VMSA, 0, 4)
1780 FIELD(ID_MMFR0, PMSA, 4, 4)
1781 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1782 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1783 FIELD(ID_MMFR0, TCM, 16, 4)
1784 FIELD(ID_MMFR0, AUXREG, 20, 4)
1785 FIELD(ID_MMFR0, FCSE, 24, 4)
1786 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1787 
1788 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1789 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1790 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1791 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1792 FIELD(ID_MMFR3, PAN, 16, 4)
1793 FIELD(ID_MMFR3, COHWALK, 20, 4)
1794 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1795 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1796 
1797 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1798 FIELD(ID_MMFR4, AC2, 4, 4)
1799 FIELD(ID_MMFR4, XNX, 8, 4)
1800 FIELD(ID_MMFR4, CNP, 12, 4)
1801 FIELD(ID_MMFR4, HPDS, 16, 4)
1802 FIELD(ID_MMFR4, LSM, 20, 4)
1803 FIELD(ID_MMFR4, CCIDX, 24, 4)
1804 FIELD(ID_MMFR4, EVT, 28, 4)
1805 
1806 FIELD(ID_PFR1, PROGMOD, 0, 4)
1807 FIELD(ID_PFR1, SECURITY, 4, 4)
1808 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1809 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1810 FIELD(ID_PFR1, GENTIMER, 16, 4)
1811 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1812 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1813 FIELD(ID_PFR1, GIC, 28, 4)
1814 
1815 FIELD(ID_AA64ISAR0, AES, 4, 4)
1816 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1817 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1818 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1819 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1820 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1821 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1822 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1823 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1824 FIELD(ID_AA64ISAR0, DP, 44, 4)
1825 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1826 FIELD(ID_AA64ISAR0, TS, 52, 4)
1827 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1828 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1829 
1830 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1831 FIELD(ID_AA64ISAR1, APA, 4, 4)
1832 FIELD(ID_AA64ISAR1, API, 8, 4)
1833 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1834 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1835 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1836 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1837 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1838 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1839 FIELD(ID_AA64ISAR1, SB, 36, 4)
1840 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1841 
1842 FIELD(ID_AA64PFR0, EL0, 0, 4)
1843 FIELD(ID_AA64PFR0, EL1, 4, 4)
1844 FIELD(ID_AA64PFR0, EL2, 8, 4)
1845 FIELD(ID_AA64PFR0, EL3, 12, 4)
1846 FIELD(ID_AA64PFR0, FP, 16, 4)
1847 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1848 FIELD(ID_AA64PFR0, GIC, 24, 4)
1849 FIELD(ID_AA64PFR0, RAS, 28, 4)
1850 FIELD(ID_AA64PFR0, SVE, 32, 4)
1851 
1852 FIELD(ID_AA64PFR1, BT, 0, 4)
1853 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1854 FIELD(ID_AA64PFR1, MTE, 8, 4)
1855 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1856 
1857 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1858 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1859 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1860 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1861 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1862 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1863 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1864 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1865 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1866 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1867 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1868 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1869 
1870 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1871 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1872 FIELD(ID_AA64MMFR1, VH, 8, 4)
1873 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1874 FIELD(ID_AA64MMFR1, LO, 16, 4)
1875 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1876 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1877 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1878 
1879 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1880 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1881 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1882 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1883 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1884 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1885 FIELD(ID_AA64MMFR2, NV, 24, 4)
1886 FIELD(ID_AA64MMFR2, ST, 28, 4)
1887 FIELD(ID_AA64MMFR2, AT, 32, 4)
1888 FIELD(ID_AA64MMFR2, IDS, 36, 4)
1889 FIELD(ID_AA64MMFR2, FWB, 40, 4)
1890 FIELD(ID_AA64MMFR2, TTL, 48, 4)
1891 FIELD(ID_AA64MMFR2, BBM, 52, 4)
1892 FIELD(ID_AA64MMFR2, EVT, 56, 4)
1893 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1894 
1895 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1896 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1897 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1898 FIELD(ID_AA64DFR0, BRPS, 12, 4)
1899 FIELD(ID_AA64DFR0, WRPS, 20, 4)
1900 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1901 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1902 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1903 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1904 
1905 FIELD(ID_DFR0, COPDBG, 0, 4)
1906 FIELD(ID_DFR0, COPSDBG, 4, 4)
1907 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1908 FIELD(ID_DFR0, COPTRC, 12, 4)
1909 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1910 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1911 FIELD(ID_DFR0, PERFMON, 24, 4)
1912 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1913 
1914 FIELD(DBGDIDR, SE_IMP, 12, 1)
1915 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1916 FIELD(DBGDIDR, VERSION, 16, 4)
1917 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1918 FIELD(DBGDIDR, BRPS, 24, 4)
1919 FIELD(DBGDIDR, WRPS, 28, 4)
1920 
1921 FIELD(MVFR0, SIMDREG, 0, 4)
1922 FIELD(MVFR0, FPSP, 4, 4)
1923 FIELD(MVFR0, FPDP, 8, 4)
1924 FIELD(MVFR0, FPTRAP, 12, 4)
1925 FIELD(MVFR0, FPDIVIDE, 16, 4)
1926 FIELD(MVFR0, FPSQRT, 20, 4)
1927 FIELD(MVFR0, FPSHVEC, 24, 4)
1928 FIELD(MVFR0, FPROUND, 28, 4)
1929 
1930 FIELD(MVFR1, FPFTZ, 0, 4)
1931 FIELD(MVFR1, FPDNAN, 4, 4)
1932 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
1933 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
1934 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
1935 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
1936 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
1937 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
1938 FIELD(MVFR1, FPHP, 24, 4)
1939 FIELD(MVFR1, SIMDFMAC, 28, 4)
1940 
1941 FIELD(MVFR2, SIMDMISC, 0, 4)
1942 FIELD(MVFR2, FPMISC, 4, 4)
1943 
1944 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1945 
1946 /* If adding a feature bit which corresponds to a Linux ELF
1947  * HWCAP bit, remember to update the feature-bit-to-hwcap
1948  * mapping in linux-user/elfload.c:get_elf_hwcap().
1949  */
1950 enum arm_features {
1951     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1952     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1953     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1954     ARM_FEATURE_V6,
1955     ARM_FEATURE_V6K,
1956     ARM_FEATURE_V7,
1957     ARM_FEATURE_THUMB2,
1958     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1959     ARM_FEATURE_NEON,
1960     ARM_FEATURE_M, /* Microcontroller profile.  */
1961     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1962     ARM_FEATURE_THUMB2EE,
1963     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1964     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1965     ARM_FEATURE_V4T,
1966     ARM_FEATURE_V5,
1967     ARM_FEATURE_STRONGARM,
1968     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1969     ARM_FEATURE_GENERIC_TIMER,
1970     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1971     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1972     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1973     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1974     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1975     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1976     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1977     ARM_FEATURE_V8,
1978     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1979     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1980     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1981     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1982     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1983     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1984     ARM_FEATURE_PMU, /* has PMU support */
1985     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1986     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1987     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1988 };
1989 
1990 static inline int arm_feature(CPUARMState *env, int feature)
1991 {
1992     return (env->features & (1ULL << feature)) != 0;
1993 }
1994 
1995 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1996 
1997 #if !defined(CONFIG_USER_ONLY)
1998 /* Return true if exception levels below EL3 are in secure state,
1999  * or would be following an exception return to that level.
2000  * Unlike arm_is_secure() (which is always a question about the
2001  * _current_ state of the CPU) this doesn't care about the current
2002  * EL or mode.
2003  */
2004 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2005 {
2006     if (arm_feature(env, ARM_FEATURE_EL3)) {
2007         return !(env->cp15.scr_el3 & SCR_NS);
2008     } else {
2009         /* If EL3 is not supported then the secure state is implementation
2010          * defined, in which case QEMU defaults to non-secure.
2011          */
2012         return false;
2013     }
2014 }
2015 
2016 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2017 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2018 {
2019     if (arm_feature(env, ARM_FEATURE_EL3)) {
2020         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2021             /* CPU currently in AArch64 state and EL3 */
2022             return true;
2023         } else if (!is_a64(env) &&
2024                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2025             /* CPU currently in AArch32 state and monitor mode */
2026             return true;
2027         }
2028     }
2029     return false;
2030 }
2031 
2032 /* Return true if the processor is in secure state */
2033 static inline bool arm_is_secure(CPUARMState *env)
2034 {
2035     if (arm_is_el3_or_mon(env)) {
2036         return true;
2037     }
2038     return arm_is_secure_below_el3(env);
2039 }
2040 
2041 #else
2042 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2043 {
2044     return false;
2045 }
2046 
2047 static inline bool arm_is_secure(CPUARMState *env)
2048 {
2049     return false;
2050 }
2051 #endif
2052 
2053 /**
2054  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2055  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2056  * "for all purposes other than a direct read or write access of HCR_EL2."
2057  * Not included here is HCR_RW.
2058  */
2059 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2060 
2061 /* Return true if the specified exception level is running in AArch64 state. */
2062 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2063 {
2064     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2065      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2066      */
2067     assert(el >= 1 && el <= 3);
2068     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2069 
2070     /* The highest exception level is always at the maximum supported
2071      * register width, and then lower levels have a register width controlled
2072      * by bits in the SCR or HCR registers.
2073      */
2074     if (el == 3) {
2075         return aa64;
2076     }
2077 
2078     if (arm_feature(env, ARM_FEATURE_EL3)) {
2079         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2080     }
2081 
2082     if (el == 2) {
2083         return aa64;
2084     }
2085 
2086     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2087         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2088     }
2089 
2090     return aa64;
2091 }
2092 
2093 /* Function for determing whether guest cp register reads and writes should
2094  * access the secure or non-secure bank of a cp register.  When EL3 is
2095  * operating in AArch32 state, the NS-bit determines whether the secure
2096  * instance of a cp register should be used. When EL3 is AArch64 (or if
2097  * it doesn't exist at all) then there is no register banking, and all
2098  * accesses are to the non-secure version.
2099  */
2100 static inline bool access_secure_reg(CPUARMState *env)
2101 {
2102     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2103                 !arm_el_is_aa64(env, 3) &&
2104                 !(env->cp15.scr_el3 & SCR_NS));
2105 
2106     return ret;
2107 }
2108 
2109 /* Macros for accessing a specified CP register bank */
2110 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2111     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2112 
2113 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2114     do {                                                \
2115         if (_secure) {                                   \
2116             (_env)->cp15._regname##_s = (_val);            \
2117         } else {                                        \
2118             (_env)->cp15._regname##_ns = (_val);           \
2119         }                                               \
2120     } while (0)
2121 
2122 /* Macros for automatically accessing a specific CP register bank depending on
2123  * the current secure state of the system.  These macros are not intended for
2124  * supporting instruction translation reads/writes as these are dependent
2125  * solely on the SCR.NS bit and not the mode.
2126  */
2127 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2128     A32_BANKED_REG_GET((_env), _regname,                \
2129                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2130 
2131 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2132     A32_BANKED_REG_SET((_env), _regname,                                    \
2133                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2134                        (_val))
2135 
2136 void arm_cpu_list(void);
2137 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2138                                  uint32_t cur_el, bool secure);
2139 
2140 /* Interface between CPU and Interrupt controller.  */
2141 #ifndef CONFIG_USER_ONLY
2142 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2143 #else
2144 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2145 {
2146     return true;
2147 }
2148 #endif
2149 /**
2150  * armv7m_nvic_set_pending: mark the specified exception as pending
2151  * @opaque: the NVIC
2152  * @irq: the exception number to mark pending
2153  * @secure: false for non-banked exceptions or for the nonsecure
2154  * version of a banked exception, true for the secure version of a banked
2155  * exception.
2156  *
2157  * Marks the specified exception as pending. Note that we will assert()
2158  * if @secure is true and @irq does not specify one of the fixed set
2159  * of architecturally banked exceptions.
2160  */
2161 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2162 /**
2163  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2164  * @opaque: the NVIC
2165  * @irq: the exception number to mark pending
2166  * @secure: false for non-banked exceptions or for the nonsecure
2167  * version of a banked exception, true for the secure version of a banked
2168  * exception.
2169  *
2170  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2171  * exceptions (exceptions generated in the course of trying to take
2172  * a different exception).
2173  */
2174 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2175 /**
2176  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2177  * @opaque: the NVIC
2178  * @irq: the exception number to mark pending
2179  * @secure: false for non-banked exceptions or for the nonsecure
2180  * version of a banked exception, true for the secure version of a banked
2181  * exception.
2182  *
2183  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2184  * generated in the course of lazy stacking of FP registers.
2185  */
2186 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2187 /**
2188  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2189  *    exception, and whether it targets Secure state
2190  * @opaque: the NVIC
2191  * @pirq: set to pending exception number
2192  * @ptargets_secure: set to whether pending exception targets Secure
2193  *
2194  * This function writes the number of the highest priority pending
2195  * exception (the one which would be made active by
2196  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2197  * to true if the current highest priority pending exception should
2198  * be taken to Secure state, false for NS.
2199  */
2200 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2201                                       bool *ptargets_secure);
2202 /**
2203  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2204  * @opaque: the NVIC
2205  *
2206  * Move the current highest priority pending exception from the pending
2207  * state to the active state, and update v7m.exception to indicate that
2208  * it is the exception currently being handled.
2209  */
2210 void armv7m_nvic_acknowledge_irq(void *opaque);
2211 /**
2212  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2213  * @opaque: the NVIC
2214  * @irq: the exception number to complete
2215  * @secure: true if this exception was secure
2216  *
2217  * Returns: -1 if the irq was not active
2218  *           1 if completing this irq brought us back to base (no active irqs)
2219  *           0 if there is still an irq active after this one was completed
2220  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2221  */
2222 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2223 /**
2224  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2225  * @opaque: the NVIC
2226  * @irq: the exception number to mark pending
2227  * @secure: false for non-banked exceptions or for the nonsecure
2228  * version of a banked exception, true for the secure version of a banked
2229  * exception.
2230  *
2231  * Return whether an exception is "ready", i.e. whether the exception is
2232  * enabled and is configured at a priority which would allow it to
2233  * interrupt the current execution priority. This controls whether the
2234  * RDY bit for it in the FPCCR is set.
2235  */
2236 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2237 /**
2238  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2239  * @opaque: the NVIC
2240  *
2241  * Returns: the raw execution priority as defined by the v8M architecture.
2242  * This is the execution priority minus the effects of AIRCR.PRIS,
2243  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2244  * (v8M ARM ARM I_PKLD.)
2245  */
2246 int armv7m_nvic_raw_execution_priority(void *opaque);
2247 /**
2248  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2249  * priority is negative for the specified security state.
2250  * @opaque: the NVIC
2251  * @secure: the security state to test
2252  * This corresponds to the pseudocode IsReqExecPriNeg().
2253  */
2254 #ifndef CONFIG_USER_ONLY
2255 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2256 #else
2257 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2258 {
2259     return false;
2260 }
2261 #endif
2262 
2263 /* Interface for defining coprocessor registers.
2264  * Registers are defined in tables of arm_cp_reginfo structs
2265  * which are passed to define_arm_cp_regs().
2266  */
2267 
2268 /* When looking up a coprocessor register we look for it
2269  * via an integer which encodes all of:
2270  *  coprocessor number
2271  *  Crn, Crm, opc1, opc2 fields
2272  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2273  *    or via MRRC/MCRR?)
2274  *  non-secure/secure bank (AArch32 only)
2275  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2276  * (In this case crn and opc2 should be zero.)
2277  * For AArch64, there is no 32/64 bit size distinction;
2278  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2279  * and 4 bit CRn and CRm. The encoding patterns are chosen
2280  * to be easy to convert to and from the KVM encodings, and also
2281  * so that the hashtable can contain both AArch32 and AArch64
2282  * registers (to allow for interprocessing where we might run
2283  * 32 bit code on a 64 bit core).
2284  */
2285 /* This bit is private to our hashtable cpreg; in KVM register
2286  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2287  * in the upper bits of the 64 bit ID.
2288  */
2289 #define CP_REG_AA64_SHIFT 28
2290 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2291 
2292 /* To enable banking of coprocessor registers depending on ns-bit we
2293  * add a bit to distinguish between secure and non-secure cpregs in the
2294  * hashtable.
2295  */
2296 #define CP_REG_NS_SHIFT 29
2297 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2298 
2299 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2300     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2301      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2302 
2303 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2304     (CP_REG_AA64_MASK |                                 \
2305      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2306      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2307      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2308      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2309      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2310      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2311 
2312 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2313  * version used as a key for the coprocessor register hashtable
2314  */
2315 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2316 {
2317     uint32_t cpregid = kvmid;
2318     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2319         cpregid |= CP_REG_AA64_MASK;
2320     } else {
2321         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2322             cpregid |= (1 << 15);
2323         }
2324 
2325         /* KVM is always non-secure so add the NS flag on AArch32 register
2326          * entries.
2327          */
2328          cpregid |= 1 << CP_REG_NS_SHIFT;
2329     }
2330     return cpregid;
2331 }
2332 
2333 /* Convert a truncated 32 bit hashtable key into the full
2334  * 64 bit KVM register ID.
2335  */
2336 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2337 {
2338     uint64_t kvmid;
2339 
2340     if (cpregid & CP_REG_AA64_MASK) {
2341         kvmid = cpregid & ~CP_REG_AA64_MASK;
2342         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2343     } else {
2344         kvmid = cpregid & ~(1 << 15);
2345         if (cpregid & (1 << 15)) {
2346             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2347         } else {
2348             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2349         }
2350     }
2351     return kvmid;
2352 }
2353 
2354 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2355  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2356  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2357  * TCG can assume the value to be constant (ie load at translate time)
2358  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2359  * indicates that the TB should not be ended after a write to this register
2360  * (the default is that the TB ends after cp writes). OVERRIDE permits
2361  * a register definition to override a previous definition for the
2362  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2363  * old must have the OVERRIDE bit set.
2364  * ALIAS indicates that this register is an alias view of some underlying
2365  * state which is also visible via another register, and that the other
2366  * register is handling migration and reset; registers marked ALIAS will not be
2367  * migrated but may have their state set by syncing of register state from KVM.
2368  * NO_RAW indicates that this register has no underlying state and does not
2369  * support raw access for state saving/loading; it will not be used for either
2370  * migration or KVM state synchronization. (Typically this is for "registers"
2371  * which are actually used as instructions for cache maintenance and so on.)
2372  * IO indicates that this register does I/O and therefore its accesses
2373  * need to be marked with gen_io_start() and also end the TB. In particular,
2374  * registers which implement clocks or timers require this.
2375  * RAISES_EXC is for when the read or write hook might raise an exception;
2376  * the generated code will synchronize the CPU state before calling the hook
2377  * so that it is safe for the hook to call raise_exception().
2378  * NEWEL is for writes to registers that might change the exception
2379  * level - typically on older ARM chips. For those cases we need to
2380  * re-read the new el when recomputing the translation flags.
2381  */
2382 #define ARM_CP_SPECIAL           0x0001
2383 #define ARM_CP_CONST             0x0002
2384 #define ARM_CP_64BIT             0x0004
2385 #define ARM_CP_SUPPRESS_TB_END   0x0008
2386 #define ARM_CP_OVERRIDE          0x0010
2387 #define ARM_CP_ALIAS             0x0020
2388 #define ARM_CP_IO                0x0040
2389 #define ARM_CP_NO_RAW            0x0080
2390 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2391 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2392 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2393 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2394 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2395 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2396 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2397 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2398 #define ARM_CP_FPU               0x1000
2399 #define ARM_CP_SVE               0x2000
2400 #define ARM_CP_NO_GDB            0x4000
2401 #define ARM_CP_RAISES_EXC        0x8000
2402 #define ARM_CP_NEWEL             0x10000
2403 /* Used only as a terminator for ARMCPRegInfo lists */
2404 #define ARM_CP_SENTINEL          0xfffff
2405 /* Mask of only the flag bits in a type field */
2406 #define ARM_CP_FLAG_MASK         0x1f0ff
2407 
2408 /* Valid values for ARMCPRegInfo state field, indicating which of
2409  * the AArch32 and AArch64 execution states this register is visible in.
2410  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2411  * If the reginfo is declared to be visible in both states then a second
2412  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2413  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2414  * Note that we rely on the values of these enums as we iterate through
2415  * the various states in some places.
2416  */
2417 enum {
2418     ARM_CP_STATE_AA32 = 0,
2419     ARM_CP_STATE_AA64 = 1,
2420     ARM_CP_STATE_BOTH = 2,
2421 };
2422 
2423 /* ARM CP register secure state flags.  These flags identify security state
2424  * attributes for a given CP register entry.
2425  * The existence of both or neither secure and non-secure flags indicates that
2426  * the register has both a secure and non-secure hash entry.  A single one of
2427  * these flags causes the register to only be hashed for the specified
2428  * security state.
2429  * Although definitions may have any combination of the S/NS bits, each
2430  * registered entry will only have one to identify whether the entry is secure
2431  * or non-secure.
2432  */
2433 enum {
2434     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2435     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2436 };
2437 
2438 /* Return true if cptype is a valid type field. This is used to try to
2439  * catch errors where the sentinel has been accidentally left off the end
2440  * of a list of registers.
2441  */
2442 static inline bool cptype_valid(int cptype)
2443 {
2444     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2445         || ((cptype & ARM_CP_SPECIAL) &&
2446             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2447 }
2448 
2449 /* Access rights:
2450  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2451  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2452  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2453  * (ie any of the privileged modes in Secure state, or Monitor mode).
2454  * If a register is accessible in one privilege level it's always accessible
2455  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2456  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2457  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2458  * terminology a little and call this PL3.
2459  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2460  * with the ELx exception levels.
2461  *
2462  * If access permissions for a register are more complex than can be
2463  * described with these bits, then use a laxer set of restrictions, and
2464  * do the more restrictive/complex check inside a helper function.
2465  */
2466 #define PL3_R 0x80
2467 #define PL3_W 0x40
2468 #define PL2_R (0x20 | PL3_R)
2469 #define PL2_W (0x10 | PL3_W)
2470 #define PL1_R (0x08 | PL2_R)
2471 #define PL1_W (0x04 | PL2_W)
2472 #define PL0_R (0x02 | PL1_R)
2473 #define PL0_W (0x01 | PL1_W)
2474 
2475 /*
2476  * For user-mode some registers are accessible to EL0 via a kernel
2477  * trap-and-emulate ABI. In this case we define the read permissions
2478  * as actually being PL0_R. However some bits of any given register
2479  * may still be masked.
2480  */
2481 #ifdef CONFIG_USER_ONLY
2482 #define PL0U_R PL0_R
2483 #else
2484 #define PL0U_R PL1_R
2485 #endif
2486 
2487 #define PL3_RW (PL3_R | PL3_W)
2488 #define PL2_RW (PL2_R | PL2_W)
2489 #define PL1_RW (PL1_R | PL1_W)
2490 #define PL0_RW (PL0_R | PL0_W)
2491 
2492 /* Return the highest implemented Exception Level */
2493 static inline int arm_highest_el(CPUARMState *env)
2494 {
2495     if (arm_feature(env, ARM_FEATURE_EL3)) {
2496         return 3;
2497     }
2498     if (arm_feature(env, ARM_FEATURE_EL2)) {
2499         return 2;
2500     }
2501     return 1;
2502 }
2503 
2504 /* Return true if a v7M CPU is in Handler mode */
2505 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2506 {
2507     return env->v7m.exception != 0;
2508 }
2509 
2510 /* Return the current Exception Level (as per ARMv8; note that this differs
2511  * from the ARMv7 Privilege Level).
2512  */
2513 static inline int arm_current_el(CPUARMState *env)
2514 {
2515     if (arm_feature(env, ARM_FEATURE_M)) {
2516         return arm_v7m_is_handler_mode(env) ||
2517             !(env->v7m.control[env->v7m.secure] & 1);
2518     }
2519 
2520     if (is_a64(env)) {
2521         return extract32(env->pstate, 2, 2);
2522     }
2523 
2524     switch (env->uncached_cpsr & 0x1f) {
2525     case ARM_CPU_MODE_USR:
2526         return 0;
2527     case ARM_CPU_MODE_HYP:
2528         return 2;
2529     case ARM_CPU_MODE_MON:
2530         return 3;
2531     default:
2532         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2533             /* If EL3 is 32-bit then all secure privileged modes run in
2534              * EL3
2535              */
2536             return 3;
2537         }
2538 
2539         return 1;
2540     }
2541 }
2542 
2543 typedef struct ARMCPRegInfo ARMCPRegInfo;
2544 
2545 typedef enum CPAccessResult {
2546     /* Access is permitted */
2547     CP_ACCESS_OK = 0,
2548     /* Access fails due to a configurable trap or enable which would
2549      * result in a categorized exception syndrome giving information about
2550      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2551      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2552      * PL1 if in EL0, otherwise to the current EL).
2553      */
2554     CP_ACCESS_TRAP = 1,
2555     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2556      * Note that this is not a catch-all case -- the set of cases which may
2557      * result in this failure is specifically defined by the architecture.
2558      */
2559     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2560     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2561     CP_ACCESS_TRAP_EL2 = 3,
2562     CP_ACCESS_TRAP_EL3 = 4,
2563     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2564     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2565     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2566     /* Access fails and results in an exception syndrome for an FP access,
2567      * trapped directly to EL2 or EL3
2568      */
2569     CP_ACCESS_TRAP_FP_EL2 = 7,
2570     CP_ACCESS_TRAP_FP_EL3 = 8,
2571 } CPAccessResult;
2572 
2573 /* Access functions for coprocessor registers. These cannot fail and
2574  * may not raise exceptions.
2575  */
2576 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2577 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2578                        uint64_t value);
2579 /* Access permission check functions for coprocessor registers. */
2580 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2581                                   const ARMCPRegInfo *opaque,
2582                                   bool isread);
2583 /* Hook function for register reset */
2584 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2585 
2586 #define CP_ANY 0xff
2587 
2588 /* Definition of an ARM coprocessor register */
2589 struct ARMCPRegInfo {
2590     /* Name of register (useful mainly for debugging, need not be unique) */
2591     const char *name;
2592     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2593      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2594      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2595      * will be decoded to this register. The register read and write
2596      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2597      * used by the program, so it is possible to register a wildcard and
2598      * then behave differently on read/write if necessary.
2599      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2600      * must both be zero.
2601      * For AArch64-visible registers, opc0 is also used.
2602      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2603      * way to distinguish (for KVM's benefit) guest-visible system registers
2604      * from demuxed ones provided to preserve the "no side effects on
2605      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2606      * visible (to match KVM's encoding); cp==0 will be converted to
2607      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2608      */
2609     uint8_t cp;
2610     uint8_t crn;
2611     uint8_t crm;
2612     uint8_t opc0;
2613     uint8_t opc1;
2614     uint8_t opc2;
2615     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2616     int state;
2617     /* Register type: ARM_CP_* bits/values */
2618     int type;
2619     /* Access rights: PL*_[RW] */
2620     int access;
2621     /* Security state: ARM_CP_SECSTATE_* bits/values */
2622     int secure;
2623     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2624      * this register was defined: can be used to hand data through to the
2625      * register read/write functions, since they are passed the ARMCPRegInfo*.
2626      */
2627     void *opaque;
2628     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2629      * fieldoffset is non-zero, the reset value of the register.
2630      */
2631     uint64_t resetvalue;
2632     /* Offset of the field in CPUARMState for this register.
2633      *
2634      * This is not needed if either:
2635      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2636      *  2. both readfn and writefn are specified
2637      */
2638     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2639 
2640     /* Offsets of the secure and non-secure fields in CPUARMState for the
2641      * register if it is banked.  These fields are only used during the static
2642      * registration of a register.  During hashing the bank associated
2643      * with a given security state is copied to fieldoffset which is used from
2644      * there on out.
2645      *
2646      * It is expected that register definitions use either fieldoffset or
2647      * bank_fieldoffsets in the definition but not both.  It is also expected
2648      * that both bank offsets are set when defining a banked register.  This
2649      * use indicates that a register is banked.
2650      */
2651     ptrdiff_t bank_fieldoffsets[2];
2652 
2653     /* Function for making any access checks for this register in addition to
2654      * those specified by the 'access' permissions bits. If NULL, no extra
2655      * checks required. The access check is performed at runtime, not at
2656      * translate time.
2657      */
2658     CPAccessFn *accessfn;
2659     /* Function for handling reads of this register. If NULL, then reads
2660      * will be done by loading from the offset into CPUARMState specified
2661      * by fieldoffset.
2662      */
2663     CPReadFn *readfn;
2664     /* Function for handling writes of this register. If NULL, then writes
2665      * will be done by writing to the offset into CPUARMState specified
2666      * by fieldoffset.
2667      */
2668     CPWriteFn *writefn;
2669     /* Function for doing a "raw" read; used when we need to copy
2670      * coprocessor state to the kernel for KVM or out for
2671      * migration. This only needs to be provided if there is also a
2672      * readfn and it has side effects (for instance clear-on-read bits).
2673      */
2674     CPReadFn *raw_readfn;
2675     /* Function for doing a "raw" write; used when we need to copy KVM
2676      * kernel coprocessor state into userspace, or for inbound
2677      * migration. This only needs to be provided if there is also a
2678      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2679      * or similar behaviour.
2680      */
2681     CPWriteFn *raw_writefn;
2682     /* Function for resetting the register. If NULL, then reset will be done
2683      * by writing resetvalue to the field specified in fieldoffset. If
2684      * fieldoffset is 0 then no reset will be done.
2685      */
2686     CPResetFn *resetfn;
2687 
2688     /*
2689      * "Original" writefn and readfn.
2690      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2691      * accessor functions of various EL1/EL0 to perform the runtime
2692      * check for which sysreg should actually be modified, and then
2693      * forwards the operation.  Before overwriting the accessors,
2694      * the original function is copied here, so that accesses that
2695      * really do go to the EL1/EL0 version proceed normally.
2696      * (The corresponding EL2 register is linked via opaque.)
2697      */
2698     CPReadFn *orig_readfn;
2699     CPWriteFn *orig_writefn;
2700 };
2701 
2702 /* Macros which are lvalues for the field in CPUARMState for the
2703  * ARMCPRegInfo *ri.
2704  */
2705 #define CPREG_FIELD32(env, ri) \
2706     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2707 #define CPREG_FIELD64(env, ri) \
2708     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2709 
2710 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2711 
2712 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2713                                     const ARMCPRegInfo *regs, void *opaque);
2714 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2715                                        const ARMCPRegInfo *regs, void *opaque);
2716 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2717 {
2718     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2719 }
2720 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2721 {
2722     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2723 }
2724 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2725 
2726 /*
2727  * Definition of an ARM co-processor register as viewed from
2728  * userspace. This is used for presenting sanitised versions of
2729  * registers to userspace when emulating the Linux AArch64 CPU
2730  * ID/feature ABI (advertised as HWCAP_CPUID).
2731  */
2732 typedef struct ARMCPRegUserSpaceInfo {
2733     /* Name of register */
2734     const char *name;
2735 
2736     /* Is the name actually a glob pattern */
2737     bool is_glob;
2738 
2739     /* Only some bits are exported to user space */
2740     uint64_t exported_bits;
2741 
2742     /* Fixed bits are applied after the mask */
2743     uint64_t fixed_bits;
2744 } ARMCPRegUserSpaceInfo;
2745 
2746 #define REGUSERINFO_SENTINEL { .name = NULL }
2747 
2748 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2749 
2750 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2751 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2752                          uint64_t value);
2753 /* CPReadFn that can be used for read-as-zero behaviour */
2754 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2755 
2756 /* CPResetFn that does nothing, for use if no reset is required even
2757  * if fieldoffset is non zero.
2758  */
2759 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2760 
2761 /* Return true if this reginfo struct's field in the cpu state struct
2762  * is 64 bits wide.
2763  */
2764 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2765 {
2766     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2767 }
2768 
2769 static inline bool cp_access_ok(int current_el,
2770                                 const ARMCPRegInfo *ri, int isread)
2771 {
2772     return (ri->access >> ((current_el * 2) + isread)) & 1;
2773 }
2774 
2775 /* Raw read of a coprocessor register (as needed for migration, etc) */
2776 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2777 
2778 /**
2779  * write_list_to_cpustate
2780  * @cpu: ARMCPU
2781  *
2782  * For each register listed in the ARMCPU cpreg_indexes list, write
2783  * its value from the cpreg_values list into the ARMCPUState structure.
2784  * This updates TCG's working data structures from KVM data or
2785  * from incoming migration state.
2786  *
2787  * Returns: true if all register values were updated correctly,
2788  * false if some register was unknown or could not be written.
2789  * Note that we do not stop early on failure -- we will attempt
2790  * writing all registers in the list.
2791  */
2792 bool write_list_to_cpustate(ARMCPU *cpu);
2793 
2794 /**
2795  * write_cpustate_to_list:
2796  * @cpu: ARMCPU
2797  * @kvm_sync: true if this is for syncing back to KVM
2798  *
2799  * For each register listed in the ARMCPU cpreg_indexes list, write
2800  * its value from the ARMCPUState structure into the cpreg_values list.
2801  * This is used to copy info from TCG's working data structures into
2802  * KVM or for outbound migration.
2803  *
2804  * @kvm_sync is true if we are doing this in order to sync the
2805  * register state back to KVM. In this case we will only update
2806  * values in the list if the previous list->cpustate sync actually
2807  * successfully wrote the CPU state. Otherwise we will keep the value
2808  * that is in the list.
2809  *
2810  * Returns: true if all register values were read correctly,
2811  * false if some register was unknown or could not be read.
2812  * Note that we do not stop early on failure -- we will attempt
2813  * reading all registers in the list.
2814  */
2815 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2816 
2817 #define ARM_CPUID_TI915T      0x54029152
2818 #define ARM_CPUID_TI925T      0x54029252
2819 
2820 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2821 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2822 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2823 
2824 #define cpu_signal_handler cpu_arm_signal_handler
2825 #define cpu_list arm_cpu_list
2826 
2827 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2828  *
2829  * If EL3 is 64-bit:
2830  *  + NonSecure EL1 & 0 stage 1
2831  *  + NonSecure EL1 & 0 stage 2
2832  *  + NonSecure EL2
2833  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2834  *  + Secure EL1 & 0
2835  *  + Secure EL3
2836  * If EL3 is 32-bit:
2837  *  + NonSecure PL1 & 0 stage 1
2838  *  + NonSecure PL1 & 0 stage 2
2839  *  + NonSecure PL2
2840  *  + Secure PL0
2841  *  + Secure PL1
2842  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2843  *
2844  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2845  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2846  *     because they may differ in access permissions even if the VA->PA map is
2847  *     the same
2848  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2849  *     translation, which means that we have one mmu_idx that deals with two
2850  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2851  *     architecturally permitted]
2852  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2853  *     handling via the TLB. The only way to do a stage 1 translation without
2854  *     the immediate stage 2 translation is via the ATS or AT system insns,
2855  *     which can be slow-pathed and always do a page table walk.
2856  *     The only use of stage 2 translations is either as part of an s1+2
2857  *     lookup or when loading the descriptors during a stage 1 page table walk,
2858  *     and in both those cases we don't use the TLB.
2859  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2860  *     translation regimes, because they map reasonably well to each other
2861  *     and they can't both be active at the same time.
2862  *  5. we want to be able to use the TLB for accesses done as part of a
2863  *     stage1 page table walk, rather than having to walk the stage2 page
2864  *     table over and over.
2865  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2866  *     Never (PAN) bit within PSTATE.
2867  *
2868  * This gives us the following list of cases:
2869  *
2870  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2871  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2872  * NS EL1 EL1&0 stage 1+2 +PAN
2873  * NS EL0 EL2&0
2874  * NS EL2 EL2&0
2875  * NS EL2 EL2&0 +PAN
2876  * NS EL2 (aka NS PL2)
2877  * S EL0 EL1&0 (aka S PL0)
2878  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2879  * S EL1 EL1&0 +PAN
2880  * S EL3 (aka S PL1)
2881  *
2882  * for a total of 11 different mmu_idx.
2883  *
2884  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2885  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2886  * NS EL2 if we ever model a Cortex-R52).
2887  *
2888  * M profile CPUs are rather different as they do not have a true MMU.
2889  * They have the following different MMU indexes:
2890  *  User
2891  *  Privileged
2892  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2893  *  Privileged, execution priority negative (ditto)
2894  * If the CPU supports the v8M Security Extension then there are also:
2895  *  Secure User
2896  *  Secure Privileged
2897  *  Secure User, execution priority negative
2898  *  Secure Privileged, execution priority negative
2899  *
2900  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2901  * are not quite the same -- different CPU types (most notably M profile
2902  * vs A/R profile) would like to use MMU indexes with different semantics,
2903  * but since we don't ever need to use all of those in a single CPU we
2904  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2905  * modes + total number of M profile MMU modes". The lower bits of
2906  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2907  * the same for any particular CPU.
2908  * Variables of type ARMMUIdx are always full values, and the core
2909  * index values are in variables of type 'int'.
2910  *
2911  * Our enumeration includes at the end some entries which are not "true"
2912  * mmu_idx values in that they don't have corresponding TLBs and are only
2913  * valid for doing slow path page table walks.
2914  *
2915  * The constant names here are patterned after the general style of the names
2916  * of the AT/ATS operations.
2917  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2918  * For M profile we arrange them to have a bit for priv, a bit for negpri
2919  * and a bit for secure.
2920  */
2921 #define ARM_MMU_IDX_A     0x10  /* A profile */
2922 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2923 #define ARM_MMU_IDX_M     0x40  /* M profile */
2924 
2925 /* Meanings of the bits for M profile mmu idx values */
2926 #define ARM_MMU_IDX_M_PRIV   0x1
2927 #define ARM_MMU_IDX_M_NEGPRI 0x2
2928 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2929 
2930 #define ARM_MMU_IDX_TYPE_MASK \
2931     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2932 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2933 
2934 typedef enum ARMMMUIdx {
2935     /*
2936      * A-profile.
2937      */
2938     ARMMMUIdx_E10_0      =  0 | ARM_MMU_IDX_A,
2939     ARMMMUIdx_E20_0      =  1 | ARM_MMU_IDX_A,
2940 
2941     ARMMMUIdx_E10_1      =  2 | ARM_MMU_IDX_A,
2942     ARMMMUIdx_E10_1_PAN  =  3 | ARM_MMU_IDX_A,
2943 
2944     ARMMMUIdx_E2         =  4 | ARM_MMU_IDX_A,
2945     ARMMMUIdx_E20_2      =  5 | ARM_MMU_IDX_A,
2946     ARMMMUIdx_E20_2_PAN  =  6 | ARM_MMU_IDX_A,
2947 
2948     ARMMMUIdx_SE10_0     = 7 | ARM_MMU_IDX_A,
2949     ARMMMUIdx_SE10_1     = 8 | ARM_MMU_IDX_A,
2950     ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2951     ARMMMUIdx_SE3        = 10 | ARM_MMU_IDX_A,
2952 
2953     /*
2954      * These are not allocated TLBs and are used only for AT system
2955      * instructions or for the first stage of an S12 page table walk.
2956      */
2957     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2958     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2959     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2960     /*
2961      * Not allocated a TLB: used only for second stage of an S12 page
2962      * table walk, or for descriptor loads during first stage of an S1
2963      * page table walk. Note that if we ever want to have a TLB for this
2964      * then various TLB flush insns which currently are no-ops or flush
2965      * only stage 1 MMU indexes will need to change to flush stage 2.
2966      */
2967     ARMMMUIdx_Stage2     = 3 | ARM_MMU_IDX_NOTLB,
2968 
2969     /*
2970      * M-profile.
2971      */
2972     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2973     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2974     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2975     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2976     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2977     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2978     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2979     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2980 } ARMMMUIdx;
2981 
2982 /*
2983  * Bit macros for the core-mmu-index values for each index,
2984  * for use when calling tlb_flush_by_mmuidx() and friends.
2985  */
2986 #define TO_CORE_BIT(NAME) \
2987     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2988 
2989 typedef enum ARMMMUIdxBit {
2990     TO_CORE_BIT(E10_0),
2991     TO_CORE_BIT(E20_0),
2992     TO_CORE_BIT(E10_1),
2993     TO_CORE_BIT(E10_1_PAN),
2994     TO_CORE_BIT(E2),
2995     TO_CORE_BIT(E20_2),
2996     TO_CORE_BIT(E20_2_PAN),
2997     TO_CORE_BIT(SE10_0),
2998     TO_CORE_BIT(SE10_1),
2999     TO_CORE_BIT(SE10_1_PAN),
3000     TO_CORE_BIT(SE3),
3001 
3002     TO_CORE_BIT(MUser),
3003     TO_CORE_BIT(MPriv),
3004     TO_CORE_BIT(MUserNegPri),
3005     TO_CORE_BIT(MPrivNegPri),
3006     TO_CORE_BIT(MSUser),
3007     TO_CORE_BIT(MSPriv),
3008     TO_CORE_BIT(MSUserNegPri),
3009     TO_CORE_BIT(MSPrivNegPri),
3010 } ARMMMUIdxBit;
3011 
3012 #undef TO_CORE_BIT
3013 
3014 #define MMU_USER_IDX 0
3015 
3016 /* Indexes used when registering address spaces with cpu_address_space_init */
3017 typedef enum ARMASIdx {
3018     ARMASIdx_NS = 0,
3019     ARMASIdx_S = 1,
3020     ARMASIdx_TagNS = 2,
3021     ARMASIdx_TagS = 3,
3022 } ARMASIdx;
3023 
3024 /* Return the Exception Level targeted by debug exceptions. */
3025 static inline int arm_debug_target_el(CPUARMState *env)
3026 {
3027     bool secure = arm_is_secure(env);
3028     bool route_to_el2 = false;
3029 
3030     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3031         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3032                        env->cp15.mdcr_el2 & MDCR_TDE;
3033     }
3034 
3035     if (route_to_el2) {
3036         return 2;
3037     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3038                !arm_el_is_aa64(env, 3) && secure) {
3039         return 3;
3040     } else {
3041         return 1;
3042     }
3043 }
3044 
3045 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3046 {
3047     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3048      * CSSELR is RAZ/WI.
3049      */
3050     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3051 }
3052 
3053 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3054 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3055 {
3056     int cur_el = arm_current_el(env);
3057     int debug_el;
3058 
3059     if (cur_el == 3) {
3060         return false;
3061     }
3062 
3063     /* MDCR_EL3.SDD disables debug events from Secure state */
3064     if (arm_is_secure_below_el3(env)
3065         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3066         return false;
3067     }
3068 
3069     /*
3070      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3071      * while not masking the (D)ebug bit in DAIF.
3072      */
3073     debug_el = arm_debug_target_el(env);
3074 
3075     if (cur_el == debug_el) {
3076         return extract32(env->cp15.mdscr_el1, 13, 1)
3077             && !(env->daif & PSTATE_D);
3078     }
3079 
3080     /* Otherwise the debug target needs to be a higher EL */
3081     return debug_el > cur_el;
3082 }
3083 
3084 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3085 {
3086     int el = arm_current_el(env);
3087 
3088     if (el == 0 && arm_el_is_aa64(env, 1)) {
3089         return aa64_generate_debug_exceptions(env);
3090     }
3091 
3092     if (arm_is_secure(env)) {
3093         int spd;
3094 
3095         if (el == 0 && (env->cp15.sder & 1)) {
3096             /* SDER.SUIDEN means debug exceptions from Secure EL0
3097              * are always enabled. Otherwise they are controlled by
3098              * SDCR.SPD like those from other Secure ELs.
3099              */
3100             return true;
3101         }
3102 
3103         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3104         switch (spd) {
3105         case 1:
3106             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3107         case 0:
3108             /* For 0b00 we return true if external secure invasive debug
3109              * is enabled. On real hardware this is controlled by external
3110              * signals to the core. QEMU always permits debug, and behaves
3111              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3112              */
3113             return true;
3114         case 2:
3115             return false;
3116         case 3:
3117             return true;
3118         }
3119     }
3120 
3121     return el != 2;
3122 }
3123 
3124 /* Return true if debugging exceptions are currently enabled.
3125  * This corresponds to what in ARM ARM pseudocode would be
3126  *    if UsingAArch32() then
3127  *        return AArch32.GenerateDebugExceptions()
3128  *    else
3129  *        return AArch64.GenerateDebugExceptions()
3130  * We choose to push the if() down into this function for clarity,
3131  * since the pseudocode has it at all callsites except for the one in
3132  * CheckSoftwareStep(), where it is elided because both branches would
3133  * always return the same value.
3134  */
3135 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3136 {
3137     if (env->aarch64) {
3138         return aa64_generate_debug_exceptions(env);
3139     } else {
3140         return aa32_generate_debug_exceptions(env);
3141     }
3142 }
3143 
3144 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3145  * implicitly means this always returns false in pre-v8 CPUs.)
3146  */
3147 static inline bool arm_singlestep_active(CPUARMState *env)
3148 {
3149     return extract32(env->cp15.mdscr_el1, 0, 1)
3150         && arm_el_is_aa64(env, arm_debug_target_el(env))
3151         && arm_generate_debug_exceptions(env);
3152 }
3153 
3154 static inline bool arm_sctlr_b(CPUARMState *env)
3155 {
3156     return
3157         /* We need not implement SCTLR.ITD in user-mode emulation, so
3158          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3159          * This lets people run BE32 binaries with "-cpu any".
3160          */
3161 #ifndef CONFIG_USER_ONLY
3162         !arm_feature(env, ARM_FEATURE_V7) &&
3163 #endif
3164         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3165 }
3166 
3167 uint64_t arm_sctlr(CPUARMState *env, int el);
3168 
3169 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3170                                                   bool sctlr_b)
3171 {
3172 #ifdef CONFIG_USER_ONLY
3173     /*
3174      * In system mode, BE32 is modelled in line with the
3175      * architecture (as word-invariant big-endianness), where loads
3176      * and stores are done little endian but from addresses which
3177      * are adjusted by XORing with the appropriate constant. So the
3178      * endianness to use for the raw data access is not affected by
3179      * SCTLR.B.
3180      * In user mode, however, we model BE32 as byte-invariant
3181      * big-endianness (because user-only code cannot tell the
3182      * difference), and so we need to use a data access endianness
3183      * that depends on SCTLR.B.
3184      */
3185     if (sctlr_b) {
3186         return true;
3187     }
3188 #endif
3189     /* In 32bit endianness is determined by looking at CPSR's E bit */
3190     return env->uncached_cpsr & CPSR_E;
3191 }
3192 
3193 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3194 {
3195     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3196 }
3197 
3198 /* Return true if the processor is in big-endian mode. */
3199 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3200 {
3201     if (!is_a64(env)) {
3202         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3203     } else {
3204         int cur_el = arm_current_el(env);
3205         uint64_t sctlr = arm_sctlr(env, cur_el);
3206         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3207     }
3208 }
3209 
3210 typedef CPUARMState CPUArchState;
3211 typedef ARMCPU ArchCPU;
3212 
3213 #include "exec/cpu-all.h"
3214 
3215 /*
3216  * Bit usage in the TB flags field: bit 31 indicates whether we are
3217  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3218  * We put flags which are shared between 32 and 64 bit mode at the top
3219  * of the word, and flags which apply to only one mode at the bottom.
3220  *
3221  *  31          20    18    14          9              0
3222  * +--------------+-----+-----+----------+--------------+
3223  * |              |     |   TBFLAG_A32   |              |
3224  * |              |     +-----+----------+  TBFLAG_AM32 |
3225  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3226  * |              +-----------+----------+--------------|
3227  * |              |            TBFLAG_A64               |
3228  * +--------------+-------------------------------------+
3229  *  31          20                                     0
3230  *
3231  * Unless otherwise noted, these bits are cached in env->hflags.
3232  */
3233 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3234 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3235 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3236 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3237 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3238 /* Target EL if we take a floating-point-disabled exception */
3239 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3240 /* For A-profile only, target EL for debug exceptions.  */
3241 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3242 
3243 /*
3244  * Bit usage when in AArch32 state, both A- and M-profile.
3245  */
3246 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3247 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3248 
3249 /*
3250  * Bit usage when in AArch32 state, for A-profile only.
3251  */
3252 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3253 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3254 /*
3255  * We store the bottom two bits of the CPAR as TB flags and handle
3256  * checks on the other bits at runtime. This shares the same bits as
3257  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3258  * Not cached, because VECLEN+VECSTRIDE are not cached.
3259  */
3260 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3261 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3262 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3263 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3264 /*
3265  * Indicates whether cp register reads and writes by guest code should access
3266  * the secure or nonsecure bank of banked registers; note that this is not
3267  * the same thing as the current security state of the processor!
3268  */
3269 FIELD(TBFLAG_A32, NS, 17, 1)
3270 
3271 /*
3272  * Bit usage when in AArch32 state, for M-profile only.
3273  */
3274 /* Handler (ie not Thread) mode */
3275 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3276 /* Whether we should generate stack-limit checks */
3277 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3278 /* Set if FPCCR.LSPACT is set */
3279 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3280 /* Set if we must create a new FP context */
3281 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3282 /* Set if FPCCR.S does not match current security state */
3283 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3284 
3285 /*
3286  * Bit usage when in AArch64 state
3287  */
3288 FIELD(TBFLAG_A64, TBII, 0, 2)
3289 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3290 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3291 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3292 FIELD(TBFLAG_A64, BT, 9, 1)
3293 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3294 FIELD(TBFLAG_A64, TBID, 12, 2)
3295 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3296 FIELD(TBFLAG_A64, ATA, 15, 1)
3297 FIELD(TBFLAG_A64, TCMA, 16, 2)
3298 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3299 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3300 
3301 /**
3302  * cpu_mmu_index:
3303  * @env: The cpu environment
3304  * @ifetch: True for code access, false for data access.
3305  *
3306  * Return the core mmu index for the current translation regime.
3307  * This function is used by generic TCG code paths.
3308  */
3309 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3310 {
3311     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3312 }
3313 
3314 static inline bool bswap_code(bool sctlr_b)
3315 {
3316 #ifdef CONFIG_USER_ONLY
3317     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3318      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3319      * would also end up as a mixed-endian mode with BE code, LE data.
3320      */
3321     return
3322 #ifdef TARGET_WORDS_BIGENDIAN
3323         1 ^
3324 #endif
3325         sctlr_b;
3326 #else
3327     /* All code access in ARM is little endian, and there are no loaders
3328      * doing swaps that need to be reversed
3329      */
3330     return 0;
3331 #endif
3332 }
3333 
3334 #ifdef CONFIG_USER_ONLY
3335 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3336 {
3337     return
3338 #ifdef TARGET_WORDS_BIGENDIAN
3339        1 ^
3340 #endif
3341        arm_cpu_data_is_big_endian(env);
3342 }
3343 #endif
3344 
3345 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3346                           target_ulong *cs_base, uint32_t *flags);
3347 
3348 enum {
3349     QEMU_PSCI_CONDUIT_DISABLED = 0,
3350     QEMU_PSCI_CONDUIT_SMC = 1,
3351     QEMU_PSCI_CONDUIT_HVC = 2,
3352 };
3353 
3354 #ifndef CONFIG_USER_ONLY
3355 /* Return the address space index to use for a memory access */
3356 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3357 {
3358     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3359 }
3360 
3361 /* Return the AddressSpace to use for a memory access
3362  * (which depends on whether the access is S or NS, and whether
3363  * the board gave us a separate AddressSpace for S accesses).
3364  */
3365 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3366 {
3367     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3368 }
3369 #endif
3370 
3371 /**
3372  * arm_register_pre_el_change_hook:
3373  * Register a hook function which will be called immediately before this
3374  * CPU changes exception level or mode. The hook function will be
3375  * passed a pointer to the ARMCPU and the opaque data pointer passed
3376  * to this function when the hook was registered.
3377  *
3378  * Note that if a pre-change hook is called, any registered post-change hooks
3379  * are guaranteed to subsequently be called.
3380  */
3381 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3382                                  void *opaque);
3383 /**
3384  * arm_register_el_change_hook:
3385  * Register a hook function which will be called immediately after this
3386  * CPU changes exception level or mode. The hook function will be
3387  * passed a pointer to the ARMCPU and the opaque data pointer passed
3388  * to this function when the hook was registered.
3389  *
3390  * Note that any registered hooks registered here are guaranteed to be called
3391  * if pre-change hooks have been.
3392  */
3393 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3394         *opaque);
3395 
3396 /**
3397  * arm_rebuild_hflags:
3398  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3399  */
3400 void arm_rebuild_hflags(CPUARMState *env);
3401 
3402 /**
3403  * aa32_vfp_dreg:
3404  * Return a pointer to the Dn register within env in 32-bit mode.
3405  */
3406 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3407 {
3408     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3409 }
3410 
3411 /**
3412  * aa32_vfp_qreg:
3413  * Return a pointer to the Qn register within env in 32-bit mode.
3414  */
3415 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3416 {
3417     return &env->vfp.zregs[regno].d[0];
3418 }
3419 
3420 /**
3421  * aa64_vfp_qreg:
3422  * Return a pointer to the Qn register within env in 64-bit mode.
3423  */
3424 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3425 {
3426     return &env->vfp.zregs[regno].d[0];
3427 }
3428 
3429 /* Shared between translate-sve.c and sve_helper.c.  */
3430 extern const uint64_t pred_esz_masks[4];
3431 
3432 /* Helper for the macros below, validating the argument type. */
3433 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3434 {
3435     return x;
3436 }
3437 
3438 /*
3439  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3440  * Using these should be a bit more self-documenting than using the
3441  * generic target bits directly.
3442  */
3443 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3444 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3445 
3446 /*
3447  * Naming convention for isar_feature functions:
3448  * Functions which test 32-bit ID registers should have _aa32_ in
3449  * their name. Functions which test 64-bit ID registers should have
3450  * _aa64_ in their name. These must only be used in code where we
3451  * know for certain that the CPU has AArch32 or AArch64 respectively
3452  * or where the correct answer for a CPU which doesn't implement that
3453  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3454  * system registers that are specific to that CPU state, for "should
3455  * we let this system register bit be set" tests where the 32-bit
3456  * flavour of the register doesn't have the bit, and so on).
3457  * Functions which simply ask "does this feature exist at all" have
3458  * _any_ in their name, and always return the logical OR of the _aa64_
3459  * and the _aa32_ function.
3460  */
3461 
3462 /*
3463  * 32-bit feature tests via id registers.
3464  */
3465 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3466 {
3467     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3468 }
3469 
3470 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3471 {
3472     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3473 }
3474 
3475 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3476 {
3477     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3478 }
3479 
3480 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3481 {
3482     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3483 }
3484 
3485 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3486 {
3487     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3488 }
3489 
3490 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3491 {
3492     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3493 }
3494 
3495 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3496 {
3497     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3498 }
3499 
3500 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3501 {
3502     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3503 }
3504 
3505 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3506 {
3507     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3508 }
3509 
3510 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3511 {
3512     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3513 }
3514 
3515 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3516 {
3517     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3518 }
3519 
3520 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3521 {
3522     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3523 }
3524 
3525 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3526 {
3527     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3528 }
3529 
3530 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3531 {
3532     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3533 }
3534 
3535 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3536 {
3537     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3538 }
3539 
3540 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3541 {
3542     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3543 }
3544 
3545 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3546 {
3547     /* Sadly this is encoded differently for A-profile and M-profile */
3548     if (isar_feature_aa32_mprofile(id)) {
3549         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3550     } else {
3551         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3552     }
3553 }
3554 
3555 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3556 {
3557     /*
3558      * Return true if either VFP or SIMD is implemented.
3559      * In this case, a minimum of VFP w/ D0-D15.
3560      */
3561     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3562 }
3563 
3564 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3565 {
3566     /* Return true if D16-D31 are implemented */
3567     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3568 }
3569 
3570 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3571 {
3572     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3573 }
3574 
3575 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3576 {
3577     /* Return true if CPU supports single precision floating point, VFPv2 */
3578     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3579 }
3580 
3581 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3582 {
3583     /* Return true if CPU supports single precision floating point, VFPv3 */
3584     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3585 }
3586 
3587 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3588 {
3589     /* Return true if CPU supports double precision floating point, VFPv2 */
3590     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3591 }
3592 
3593 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3594 {
3595     /* Return true if CPU supports double precision floating point, VFPv3 */
3596     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3597 }
3598 
3599 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3600 {
3601     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3602 }
3603 
3604 /*
3605  * We always set the FP and SIMD FP16 fields to indicate identical
3606  * levels of support (assuming SIMD is implemented at all), so
3607  * we only need one set of accessors.
3608  */
3609 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3610 {
3611     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3612 }
3613 
3614 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3615 {
3616     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3617 }
3618 
3619 /*
3620  * Note that this ID register field covers both VFP and Neon FMAC,
3621  * so should usually be tested in combination with some other
3622  * check that confirms the presence of whichever of VFP or Neon is
3623  * relevant, to avoid accidentally enabling a Neon feature on
3624  * a VFP-no-Neon core or vice-versa.
3625  */
3626 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3627 {
3628     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3629 }
3630 
3631 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3632 {
3633     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3634 }
3635 
3636 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3637 {
3638     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3639 }
3640 
3641 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3642 {
3643     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3644 }
3645 
3646 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3647 {
3648     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3649 }
3650 
3651 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3652 {
3653     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3654 }
3655 
3656 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3657 {
3658     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3659 }
3660 
3661 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3662 {
3663     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3664 }
3665 
3666 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3667 {
3668     /* 0xf means "non-standard IMPDEF PMU" */
3669     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3670         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3671 }
3672 
3673 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3674 {
3675     /* 0xf means "non-standard IMPDEF PMU" */
3676     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3677         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3678 }
3679 
3680 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3681 {
3682     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3683 }
3684 
3685 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3686 {
3687     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3688 }
3689 
3690 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3691 {
3692     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3693 }
3694 
3695 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3696 {
3697     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3698 }
3699 
3700 /*
3701  * 64-bit feature tests via id registers.
3702  */
3703 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3704 {
3705     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3706 }
3707 
3708 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3709 {
3710     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3711 }
3712 
3713 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3714 {
3715     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3716 }
3717 
3718 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3719 {
3720     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3721 }
3722 
3723 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3724 {
3725     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3726 }
3727 
3728 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3729 {
3730     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3731 }
3732 
3733 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3734 {
3735     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3736 }
3737 
3738 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3739 {
3740     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3741 }
3742 
3743 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3744 {
3745     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3746 }
3747 
3748 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3749 {
3750     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3751 }
3752 
3753 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3754 {
3755     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3756 }
3757 
3758 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3759 {
3760     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3761 }
3762 
3763 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3764 {
3765     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3766 }
3767 
3768 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3769 {
3770     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3771 }
3772 
3773 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3774 {
3775     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3776 }
3777 
3778 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3779 {
3780     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3781 }
3782 
3783 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3784 {
3785     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3786 }
3787 
3788 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3789 {
3790     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3791 }
3792 
3793 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3794 {
3795     /*
3796      * Note that while QEMU will only implement the architected algorithm
3797      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3798      * defined algorithms, and thus API+GPI, and this predicate controls
3799      * migration of the 128-bit keys.
3800      */
3801     return (id->id_aa64isar1 &
3802             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3803              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3804              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3805              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3806 }
3807 
3808 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3809 {
3810     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3811 }
3812 
3813 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3814 {
3815     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3816 }
3817 
3818 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3819 {
3820     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3821 }
3822 
3823 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3824 {
3825     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3826 }
3827 
3828 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3829 {
3830     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3831 }
3832 
3833 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3834 {
3835     /* We always set the AdvSIMD and FP fields identically.  */
3836     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3837 }
3838 
3839 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3840 {
3841     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3842     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3843 }
3844 
3845 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3846 {
3847     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3848 }
3849 
3850 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3851 {
3852     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3853 }
3854 
3855 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3856 {
3857     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3858 }
3859 
3860 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3861 {
3862     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3863 }
3864 
3865 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3866 {
3867     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3868 }
3869 
3870 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3871 {
3872     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3873 }
3874 
3875 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3876 {
3877     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3878 }
3879 
3880 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3881 {
3882     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3883 }
3884 
3885 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3886 {
3887     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3888 }
3889 
3890 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3891 {
3892     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3893 }
3894 
3895 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3896 {
3897     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3898         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3899 }
3900 
3901 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3902 {
3903     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3904         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3905 }
3906 
3907 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3908 {
3909     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3910 }
3911 
3912 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3913 {
3914     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3915 }
3916 
3917 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3918 {
3919     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3920 }
3921 
3922 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3923 {
3924     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3925 }
3926 
3927 /*
3928  * Feature tests for "does this exist in either 32-bit or 64-bit?"
3929  */
3930 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3931 {
3932     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3933 }
3934 
3935 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3936 {
3937     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3938 }
3939 
3940 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3941 {
3942     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3943 }
3944 
3945 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3946 {
3947     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3948 }
3949 
3950 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3951 {
3952     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3953 }
3954 
3955 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3956 {
3957     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3958 }
3959 
3960 /*
3961  * Forward to the above feature tests given an ARMCPU pointer.
3962  */
3963 #define cpu_isar_feature(name, cpu) \
3964     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3965 
3966 #endif
3967