xref: /openbmc/qemu/target/arm/cpu.h (revision e6ae5981ea4b0f6feb223009a5108582e7644f8f)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* ARM-specific interrupt pending bits.  */
75 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
76 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
77 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
78 
79 /* The usual mapping for an AArch64 system register to its AArch32
80  * counterpart is for the 32 bit world to have access to the lower
81  * half only (with writes leaving the upper half untouched). It's
82  * therefore useful to be able to pass TCG the offset of the least
83  * significant half of a uint64_t struct member.
84  */
85 #ifdef HOST_WORDS_BIGENDIAN
86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
87 #define offsetofhigh32(S, M) offsetof(S, M)
88 #else
89 #define offsetoflow32(S, M) offsetof(S, M)
90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
91 #endif
92 
93 /* Meanings of the ARMCPU object's four inbound GPIO lines */
94 #define ARM_CPU_IRQ 0
95 #define ARM_CPU_FIQ 1
96 #define ARM_CPU_VIRQ 2
97 #define ARM_CPU_VFIQ 3
98 
99 #define NB_MMU_MODES 7
100 /* ARM-specific extra insn start words:
101  * 1: Conditional execution bits
102  * 2: Partial exception syndrome for data aborts
103  */
104 #define TARGET_INSN_START_EXTRA_WORDS 2
105 
106 /* The 2nd extra word holding syndrome info for data aborts does not use
107  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
108  * help the sleb128 encoder do a better job.
109  * When restoring the CPU state, we shift it back up.
110  */
111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
112 #define ARM_INSN_START_WORD2_SHIFT 14
113 
114 /* We currently assume float and double are IEEE single and double
115    precision respectively.
116    Doing runtime conversions is tricky because VFP registers may contain
117    integer values (eg. as the result of a FTOSI instruction).
118    s<2n> maps to the least significant half of d<n>
119    s<2n+1> maps to the most significant half of d<n>
120  */
121 
122 /* CPU state for each instance of a generic timer (in cp15 c14) */
123 typedef struct ARMGenericTimer {
124     uint64_t cval; /* Timer CompareValue register */
125     uint64_t ctl; /* Timer Control register */
126 } ARMGenericTimer;
127 
128 #define GTIMER_PHYS 0
129 #define GTIMER_VIRT 1
130 #define GTIMER_HYP  2
131 #define GTIMER_SEC  3
132 #define NUM_GTIMERS 4
133 
134 typedef struct {
135     uint64_t raw_tcr;
136     uint32_t mask;
137     uint32_t base_mask;
138 } TCR;
139 
140 typedef struct CPUARMState {
141     /* Regs for current mode.  */
142     uint32_t regs[16];
143 
144     /* 32/64 switch only happens when taking and returning from
145      * exceptions so the overlap semantics are taken care of then
146      * instead of having a complicated union.
147      */
148     /* Regs for A64 mode.  */
149     uint64_t xregs[32];
150     uint64_t pc;
151     /* PSTATE isn't an architectural register for ARMv8. However, it is
152      * convenient for us to assemble the underlying state into a 32 bit format
153      * identical to the architectural format used for the SPSR. (This is also
154      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
155      * 'pstate' register are.) Of the PSTATE bits:
156      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
157      *    semantics as for AArch32, as described in the comments on each field)
158      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
159      *  DAIF (exception masks) are kept in env->daif
160      *  all other bits are stored in their correct places in env->pstate
161      */
162     uint32_t pstate;
163     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
164 
165     /* Frequently accessed CPSR bits are stored separately for efficiency.
166        This contains all the other bits.  Use cpsr_{read,write} to access
167        the whole CPSR.  */
168     uint32_t uncached_cpsr;
169     uint32_t spsr;
170 
171     /* Banked registers.  */
172     uint64_t banked_spsr[8];
173     uint32_t banked_r13[8];
174     uint32_t banked_r14[8];
175 
176     /* These hold r8-r12.  */
177     uint32_t usr_regs[5];
178     uint32_t fiq_regs[5];
179 
180     /* cpsr flag cache for faster execution */
181     uint32_t CF; /* 0 or 1 */
182     uint32_t VF; /* V is the bit 31. All other bits are undefined */
183     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
184     uint32_t ZF; /* Z set if zero.  */
185     uint32_t QF; /* 0 or 1 */
186     uint32_t GE; /* cpsr[19:16] */
187     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
188     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
189     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
190 
191     uint64_t elr_el[4]; /* AArch64 exception link regs  */
192     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
193 
194     /* System control coprocessor (cp15) */
195     struct {
196         uint32_t c0_cpuid;
197         union { /* Cache size selection */
198             struct {
199                 uint64_t _unused_csselr0;
200                 uint64_t csselr_ns;
201                 uint64_t _unused_csselr1;
202                 uint64_t csselr_s;
203             };
204             uint64_t csselr_el[4];
205         };
206         union { /* System control register. */
207             struct {
208                 uint64_t _unused_sctlr;
209                 uint64_t sctlr_ns;
210                 uint64_t hsctlr;
211                 uint64_t sctlr_s;
212             };
213             uint64_t sctlr_el[4];
214         };
215         uint64_t cpacr_el1; /* Architectural feature access control register */
216         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
217         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
218         uint64_t sder; /* Secure debug enable register. */
219         uint32_t nsacr; /* Non-secure access control register. */
220         union { /* MMU translation table base 0. */
221             struct {
222                 uint64_t _unused_ttbr0_0;
223                 uint64_t ttbr0_ns;
224                 uint64_t _unused_ttbr0_1;
225                 uint64_t ttbr0_s;
226             };
227             uint64_t ttbr0_el[4];
228         };
229         union { /* MMU translation table base 1. */
230             struct {
231                 uint64_t _unused_ttbr1_0;
232                 uint64_t ttbr1_ns;
233                 uint64_t _unused_ttbr1_1;
234                 uint64_t ttbr1_s;
235             };
236             uint64_t ttbr1_el[4];
237         };
238         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
239         /* MMU translation table base control. */
240         TCR tcr_el[4];
241         TCR vtcr_el2; /* Virtualization Translation Control.  */
242         uint32_t c2_data; /* MPU data cacheable bits.  */
243         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
244         union { /* MMU domain access control register
245                  * MPU write buffer control.
246                  */
247             struct {
248                 uint64_t dacr_ns;
249                 uint64_t dacr_s;
250             };
251             struct {
252                 uint64_t dacr32_el2;
253             };
254         };
255         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
256         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
257         uint64_t hcr_el2; /* Hypervisor configuration register */
258         uint64_t scr_el3; /* Secure configuration register.  */
259         union { /* Fault status registers.  */
260             struct {
261                 uint64_t ifsr_ns;
262                 uint64_t ifsr_s;
263             };
264             struct {
265                 uint64_t ifsr32_el2;
266             };
267         };
268         union {
269             struct {
270                 uint64_t _unused_dfsr;
271                 uint64_t dfsr_ns;
272                 uint64_t hsr;
273                 uint64_t dfsr_s;
274             };
275             uint64_t esr_el[4];
276         };
277         uint32_t c6_region[8]; /* MPU base/size registers.  */
278         union { /* Fault address registers. */
279             struct {
280                 uint64_t _unused_far0;
281 #ifdef HOST_WORDS_BIGENDIAN
282                 uint32_t ifar_ns;
283                 uint32_t dfar_ns;
284                 uint32_t ifar_s;
285                 uint32_t dfar_s;
286 #else
287                 uint32_t dfar_ns;
288                 uint32_t ifar_ns;
289                 uint32_t dfar_s;
290                 uint32_t ifar_s;
291 #endif
292                 uint64_t _unused_far3;
293             };
294             uint64_t far_el[4];
295         };
296         uint64_t hpfar_el2;
297         uint64_t hstr_el2;
298         union { /* Translation result. */
299             struct {
300                 uint64_t _unused_par_0;
301                 uint64_t par_ns;
302                 uint64_t _unused_par_1;
303                 uint64_t par_s;
304             };
305             uint64_t par_el[4];
306         };
307 
308         uint32_t c9_insn; /* Cache lockdown registers.  */
309         uint32_t c9_data;
310         uint64_t c9_pmcr; /* performance monitor control register */
311         uint64_t c9_pmcnten; /* perf monitor counter enables */
312         uint32_t c9_pmovsr; /* perf monitor overflow status */
313         uint32_t c9_pmuserenr; /* perf monitor user enable */
314         uint64_t c9_pmselr; /* perf monitor counter selection register */
315         uint64_t c9_pminten; /* perf monitor interrupt enables */
316         union { /* Memory attribute redirection */
317             struct {
318 #ifdef HOST_WORDS_BIGENDIAN
319                 uint64_t _unused_mair_0;
320                 uint32_t mair1_ns;
321                 uint32_t mair0_ns;
322                 uint64_t _unused_mair_1;
323                 uint32_t mair1_s;
324                 uint32_t mair0_s;
325 #else
326                 uint64_t _unused_mair_0;
327                 uint32_t mair0_ns;
328                 uint32_t mair1_ns;
329                 uint64_t _unused_mair_1;
330                 uint32_t mair0_s;
331                 uint32_t mair1_s;
332 #endif
333             };
334             uint64_t mair_el[4];
335         };
336         union { /* vector base address register */
337             struct {
338                 uint64_t _unused_vbar;
339                 uint64_t vbar_ns;
340                 uint64_t hvbar;
341                 uint64_t vbar_s;
342             };
343             uint64_t vbar_el[4];
344         };
345         uint32_t mvbar; /* (monitor) vector base address register */
346         struct { /* FCSE PID. */
347             uint32_t fcseidr_ns;
348             uint32_t fcseidr_s;
349         };
350         union { /* Context ID. */
351             struct {
352                 uint64_t _unused_contextidr_0;
353                 uint64_t contextidr_ns;
354                 uint64_t _unused_contextidr_1;
355                 uint64_t contextidr_s;
356             };
357             uint64_t contextidr_el[4];
358         };
359         union { /* User RW Thread register. */
360             struct {
361                 uint64_t tpidrurw_ns;
362                 uint64_t tpidrprw_ns;
363                 uint64_t htpidr;
364                 uint64_t _tpidr_el3;
365             };
366             uint64_t tpidr_el[4];
367         };
368         /* The secure banks of these registers don't map anywhere */
369         uint64_t tpidrurw_s;
370         uint64_t tpidrprw_s;
371         uint64_t tpidruro_s;
372 
373         union { /* User RO Thread register. */
374             uint64_t tpidruro_ns;
375             uint64_t tpidrro_el[1];
376         };
377         uint64_t c14_cntfrq; /* Counter Frequency register */
378         uint64_t c14_cntkctl; /* Timer Control register */
379         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
380         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
381         ARMGenericTimer c14_timer[NUM_GTIMERS];
382         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
383         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
384         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
385         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
386         uint32_t c15_threadid; /* TI debugger thread-ID.  */
387         uint32_t c15_config_base_address; /* SCU base address.  */
388         uint32_t c15_diagnostic; /* diagnostic register */
389         uint32_t c15_power_diagnostic;
390         uint32_t c15_power_control; /* power control */
391         uint64_t dbgbvr[16]; /* breakpoint value registers */
392         uint64_t dbgbcr[16]; /* breakpoint control registers */
393         uint64_t dbgwvr[16]; /* watchpoint value registers */
394         uint64_t dbgwcr[16]; /* watchpoint control registers */
395         uint64_t mdscr_el1;
396         uint64_t oslsr_el1; /* OS Lock Status */
397         uint64_t mdcr_el2;
398         uint64_t mdcr_el3;
399         /* If the counter is enabled, this stores the last time the counter
400          * was reset. Otherwise it stores the counter value
401          */
402         uint64_t c15_ccnt;
403         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
404         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
405         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
406     } cp15;
407 
408     struct {
409         uint32_t other_sp;
410         uint32_t vecbase;
411         uint32_t basepri;
412         uint32_t control;
413         uint32_t ccr; /* Configuration and Control */
414         uint32_t cfsr; /* Configurable Fault Status */
415         uint32_t hfsr; /* HardFault Status */
416         uint32_t dfsr; /* Debug Fault Status Register */
417         uint32_t mmfar; /* MemManage Fault Address */
418         uint32_t bfar; /* BusFault Address */
419         unsigned mpu_ctrl; /* MPU_CTRL */
420         int exception;
421         uint32_t primask;
422         uint32_t faultmask;
423     } v7m;
424 
425     /* Information associated with an exception about to be taken:
426      * code which raises an exception must set cs->exception_index and
427      * the relevant parts of this structure; the cpu_do_interrupt function
428      * will then set the guest-visible registers as part of the exception
429      * entry process.
430      */
431     struct {
432         uint32_t syndrome; /* AArch64 format syndrome register */
433         uint32_t fsr; /* AArch32 format fault status register info */
434         uint64_t vaddress; /* virtual addr associated with exception, if any */
435         uint32_t target_el; /* EL the exception should be targeted for */
436         /* If we implement EL2 we will also need to store information
437          * about the intermediate physical address for stage 2 faults.
438          */
439     } exception;
440 
441     /* Thumb-2 EE state.  */
442     uint32_t teecr;
443     uint32_t teehbr;
444 
445     /* VFP coprocessor state.  */
446     struct {
447         /* VFP/Neon register state. Note that the mapping between S, D and Q
448          * views of the register bank differs between AArch64 and AArch32:
449          * In AArch32:
450          *  Qn = regs[2n+1]:regs[2n]
451          *  Dn = regs[n]
452          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
453          * (and regs[32] to regs[63] are inaccessible)
454          * In AArch64:
455          *  Qn = regs[2n+1]:regs[2n]
456          *  Dn = regs[2n]
457          *  Sn = regs[2n] bits 31..0
458          * This corresponds to the architecturally defined mapping between
459          * the two execution states, and means we do not need to explicitly
460          * map these registers when changing states.
461          */
462         float64 regs[64];
463 
464         uint32_t xregs[16];
465         /* We store these fpcsr fields separately for convenience.  */
466         int vec_len;
467         int vec_stride;
468 
469         /* scratch space when Tn are not sufficient.  */
470         uint32_t scratch[8];
471 
472         /* fp_status is the "normal" fp status. standard_fp_status retains
473          * values corresponding to the ARM "Standard FPSCR Value", ie
474          * default-NaN, flush-to-zero, round-to-nearest and is used by
475          * any operations (generally Neon) which the architecture defines
476          * as controlled by the standard FPSCR value rather than the FPSCR.
477          *
478          * To avoid having to transfer exception bits around, we simply
479          * say that the FPSCR cumulative exception flags are the logical
480          * OR of the flags in the two fp statuses. This relies on the
481          * only thing which needs to read the exception flags being
482          * an explicit FPSCR read.
483          */
484         float_status fp_status;
485         float_status standard_fp_status;
486     } vfp;
487     uint64_t exclusive_addr;
488     uint64_t exclusive_val;
489     uint64_t exclusive_high;
490 
491     /* iwMMXt coprocessor state.  */
492     struct {
493         uint64_t regs[16];
494         uint64_t val;
495 
496         uint32_t cregs[16];
497     } iwmmxt;
498 
499 #if defined(CONFIG_USER_ONLY)
500     /* For usermode syscall translation.  */
501     int eabi;
502 #endif
503 
504     struct CPUBreakpoint *cpu_breakpoint[16];
505     struct CPUWatchpoint *cpu_watchpoint[16];
506 
507     /* Fields up to this point are cleared by a CPU reset */
508     struct {} end_reset_fields;
509 
510     CPU_COMMON
511 
512     /* Fields after CPU_COMMON are preserved across CPU reset. */
513 
514     /* Internal CPU feature flags.  */
515     uint64_t features;
516 
517     /* PMSAv7 MPU */
518     struct {
519         uint32_t *drbar;
520         uint32_t *drsr;
521         uint32_t *dracr;
522         uint32_t rnr;
523     } pmsav7;
524 
525     void *nvic;
526     const struct arm_boot_info *boot_info;
527     /* Store GICv3CPUState to access from this struct */
528     void *gicv3state;
529 } CPUARMState;
530 
531 /**
532  * ARMELChangeHook:
533  * type of a function which can be registered via arm_register_el_change_hook()
534  * to get callbacks when the CPU changes its exception level or mode.
535  */
536 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
537 
538 
539 /* These values map onto the return values for
540  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
541 typedef enum ARMPSCIState {
542     PSCI_ON = 0,
543     PSCI_OFF = 1,
544     PSCI_ON_PENDING = 2
545 } ARMPSCIState;
546 
547 /**
548  * ARMCPU:
549  * @env: #CPUARMState
550  *
551  * An ARM CPU core.
552  */
553 struct ARMCPU {
554     /*< private >*/
555     CPUState parent_obj;
556     /*< public >*/
557 
558     CPUARMState env;
559 
560     /* Coprocessor information */
561     GHashTable *cp_regs;
562     /* For marshalling (mostly coprocessor) register state between the
563      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
564      * we use these arrays.
565      */
566     /* List of register indexes managed via these arrays; (full KVM style
567      * 64 bit indexes, not CPRegInfo 32 bit indexes)
568      */
569     uint64_t *cpreg_indexes;
570     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
571     uint64_t *cpreg_values;
572     /* Length of the indexes, values, reset_values arrays */
573     int32_t cpreg_array_len;
574     /* These are used only for migration: incoming data arrives in
575      * these fields and is sanity checked in post_load before copying
576      * to the working data structures above.
577      */
578     uint64_t *cpreg_vmstate_indexes;
579     uint64_t *cpreg_vmstate_values;
580     int32_t cpreg_vmstate_array_len;
581 
582     /* Timers used by the generic (architected) timer */
583     QEMUTimer *gt_timer[NUM_GTIMERS];
584     /* GPIO outputs for generic timer */
585     qemu_irq gt_timer_outputs[NUM_GTIMERS];
586     /* GPIO output for GICv3 maintenance interrupt signal */
587     qemu_irq gicv3_maintenance_interrupt;
588 
589     /* MemoryRegion to use for secure physical accesses */
590     MemoryRegion *secure_memory;
591 
592     /* 'compatible' string for this CPU for Linux device trees */
593     const char *dtb_compatible;
594 
595     /* PSCI version for this CPU
596      * Bits[31:16] = Major Version
597      * Bits[15:0] = Minor Version
598      */
599     uint32_t psci_version;
600 
601     /* Should CPU start in PSCI powered-off state? */
602     bool start_powered_off;
603 
604     /* Current power state, access guarded by BQL */
605     ARMPSCIState power_state;
606 
607     /* CPU has virtualization extension */
608     bool has_el2;
609     /* CPU has security extension */
610     bool has_el3;
611     /* CPU has PMU (Performance Monitor Unit) */
612     bool has_pmu;
613 
614     /* CPU has memory protection unit */
615     bool has_mpu;
616     /* PMSAv7 MPU number of supported regions */
617     uint32_t pmsav7_dregion;
618 
619     /* PSCI conduit used to invoke PSCI methods
620      * 0 - disabled, 1 - smc, 2 - hvc
621      */
622     uint32_t psci_conduit;
623 
624     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
625      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
626      */
627     uint32_t kvm_target;
628 
629     /* KVM init features for this CPU */
630     uint32_t kvm_init_features[7];
631 
632     /* Uniprocessor system with MP extensions */
633     bool mp_is_up;
634 
635     /* The instance init functions for implementation-specific subclasses
636      * set these fields to specify the implementation-dependent values of
637      * various constant registers and reset values of non-constant
638      * registers.
639      * Some of these might become QOM properties eventually.
640      * Field names match the official register names as defined in the
641      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
642      * is used for reset values of non-constant registers; no reset_
643      * prefix means a constant register.
644      */
645     uint32_t midr;
646     uint32_t revidr;
647     uint32_t reset_fpsid;
648     uint32_t mvfr0;
649     uint32_t mvfr1;
650     uint32_t mvfr2;
651     uint32_t ctr;
652     uint32_t reset_sctlr;
653     uint32_t id_pfr0;
654     uint32_t id_pfr1;
655     uint32_t id_dfr0;
656     uint32_t pmceid0;
657     uint32_t pmceid1;
658     uint32_t id_afr0;
659     uint32_t id_mmfr0;
660     uint32_t id_mmfr1;
661     uint32_t id_mmfr2;
662     uint32_t id_mmfr3;
663     uint32_t id_mmfr4;
664     uint32_t id_isar0;
665     uint32_t id_isar1;
666     uint32_t id_isar2;
667     uint32_t id_isar3;
668     uint32_t id_isar4;
669     uint32_t id_isar5;
670     uint64_t id_aa64pfr0;
671     uint64_t id_aa64pfr1;
672     uint64_t id_aa64dfr0;
673     uint64_t id_aa64dfr1;
674     uint64_t id_aa64afr0;
675     uint64_t id_aa64afr1;
676     uint64_t id_aa64isar0;
677     uint64_t id_aa64isar1;
678     uint64_t id_aa64mmfr0;
679     uint64_t id_aa64mmfr1;
680     uint32_t dbgdidr;
681     uint32_t clidr;
682     uint64_t mp_affinity; /* MP ID without feature bits */
683     /* The elements of this array are the CCSIDR values for each cache,
684      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
685      */
686     uint32_t ccsidr[16];
687     uint64_t reset_cbar;
688     uint32_t reset_auxcr;
689     bool reset_hivecs;
690     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
691     uint32_t dcz_blocksize;
692     uint64_t rvbar;
693 
694     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
695     int gic_num_lrs; /* number of list registers */
696     int gic_vpribits; /* number of virtual priority bits */
697     int gic_vprebits; /* number of virtual preemption bits */
698 
699     /* Whether the cfgend input is high (i.e. this CPU should reset into
700      * big-endian mode).  This setting isn't used directly: instead it modifies
701      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
702      * architecture version.
703      */
704     bool cfgend;
705 
706     ARMELChangeHook *el_change_hook;
707     void *el_change_hook_opaque;
708 
709     int32_t node_id; /* NUMA node this CPU belongs to */
710 
711     /* Used to synchronize KVM and QEMU in-kernel device levels */
712     uint8_t device_irq_level;
713 };
714 
715 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
716 {
717     return container_of(env, ARMCPU, env);
718 }
719 
720 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
721 
722 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
723 
724 #define ENV_OFFSET offsetof(ARMCPU, env)
725 
726 #ifndef CONFIG_USER_ONLY
727 extern const struct VMStateDescription vmstate_arm_cpu;
728 #endif
729 
730 void arm_cpu_do_interrupt(CPUState *cpu);
731 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
732 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
733 
734 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
735                         int flags);
736 
737 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
738                                          MemTxAttrs *attrs);
739 
740 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
741 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
742 
743 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
744                              int cpuid, void *opaque);
745 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
746                              int cpuid, void *opaque);
747 
748 #ifdef TARGET_AARCH64
749 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
750 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
751 #endif
752 
753 target_ulong do_arm_semihosting(CPUARMState *env);
754 void aarch64_sync_32_to_64(CPUARMState *env);
755 void aarch64_sync_64_to_32(CPUARMState *env);
756 
757 static inline bool is_a64(CPUARMState *env)
758 {
759     return env->aarch64;
760 }
761 
762 /* you can call this signal handler from your SIGBUS and SIGSEGV
763    signal handlers to inform the virtual CPU of exceptions. non zero
764    is returned if the signal was handled by the virtual CPU.  */
765 int cpu_arm_signal_handler(int host_signum, void *pinfo,
766                            void *puc);
767 
768 /**
769  * pmccntr_sync
770  * @env: CPUARMState
771  *
772  * Synchronises the counter in the PMCCNTR. This must always be called twice,
773  * once before any action that might affect the timer and again afterwards.
774  * The function is used to swap the state of the register if required.
775  * This only happens when not in user mode (!CONFIG_USER_ONLY)
776  */
777 void pmccntr_sync(CPUARMState *env);
778 
779 /* SCTLR bit meanings. Several bits have been reused in newer
780  * versions of the architecture; in that case we define constants
781  * for both old and new bit meanings. Code which tests against those
782  * bits should probably check or otherwise arrange that the CPU
783  * is the architectural version it expects.
784  */
785 #define SCTLR_M       (1U << 0)
786 #define SCTLR_A       (1U << 1)
787 #define SCTLR_C       (1U << 2)
788 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
789 #define SCTLR_SA      (1U << 3)
790 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
791 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
792 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
793 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
794 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
795 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
796 #define SCTLR_ITD     (1U << 7) /* v8 onward */
797 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
798 #define SCTLR_SED     (1U << 8) /* v8 onward */
799 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
800 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
801 #define SCTLR_F       (1U << 10) /* up to v6 */
802 #define SCTLR_SW      (1U << 10) /* v7 onward */
803 #define SCTLR_Z       (1U << 11)
804 #define SCTLR_I       (1U << 12)
805 #define SCTLR_V       (1U << 13)
806 #define SCTLR_RR      (1U << 14) /* up to v7 */
807 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
808 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
809 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
810 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
811 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
812 #define SCTLR_HA      (1U << 17)
813 #define SCTLR_BR      (1U << 17) /* PMSA only */
814 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
815 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
816 #define SCTLR_WXN     (1U << 19)
817 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
818 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
819 #define SCTLR_FI      (1U << 21)
820 #define SCTLR_U       (1U << 22)
821 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
822 #define SCTLR_VE      (1U << 24) /* up to v7 */
823 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
824 #define SCTLR_EE      (1U << 25)
825 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
826 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
827 #define SCTLR_NMFI    (1U << 27)
828 #define SCTLR_TRE     (1U << 28)
829 #define SCTLR_AFE     (1U << 29)
830 #define SCTLR_TE      (1U << 30)
831 
832 #define CPTR_TCPAC    (1U << 31)
833 #define CPTR_TTA      (1U << 20)
834 #define CPTR_TFP      (1U << 10)
835 
836 #define MDCR_EPMAD    (1U << 21)
837 #define MDCR_EDAD     (1U << 20)
838 #define MDCR_SPME     (1U << 17)
839 #define MDCR_SDD      (1U << 16)
840 #define MDCR_SPD      (3U << 14)
841 #define MDCR_TDRA     (1U << 11)
842 #define MDCR_TDOSA    (1U << 10)
843 #define MDCR_TDA      (1U << 9)
844 #define MDCR_TDE      (1U << 8)
845 #define MDCR_HPME     (1U << 7)
846 #define MDCR_TPM      (1U << 6)
847 #define MDCR_TPMCR    (1U << 5)
848 
849 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
850 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
851 
852 #define CPSR_M (0x1fU)
853 #define CPSR_T (1U << 5)
854 #define CPSR_F (1U << 6)
855 #define CPSR_I (1U << 7)
856 #define CPSR_A (1U << 8)
857 #define CPSR_E (1U << 9)
858 #define CPSR_IT_2_7 (0xfc00U)
859 #define CPSR_GE (0xfU << 16)
860 #define CPSR_IL (1U << 20)
861 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
862  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
863  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
864  * where it is live state but not accessible to the AArch32 code.
865  */
866 #define CPSR_RESERVED (0x7U << 21)
867 #define CPSR_J (1U << 24)
868 #define CPSR_IT_0_1 (3U << 25)
869 #define CPSR_Q (1U << 27)
870 #define CPSR_V (1U << 28)
871 #define CPSR_C (1U << 29)
872 #define CPSR_Z (1U << 30)
873 #define CPSR_N (1U << 31)
874 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
875 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
876 
877 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
878 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
879     | CPSR_NZCV)
880 /* Bits writable in user mode.  */
881 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
882 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
883 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
884 /* Mask of bits which may be set by exception return copying them from SPSR */
885 #define CPSR_ERET_MASK (~CPSR_RESERVED)
886 
887 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
888 #define XPSR_EXCP 0x1ffU
889 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
890 #define XPSR_IT_2_7 CPSR_IT_2_7
891 #define XPSR_GE CPSR_GE
892 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
893 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
894 #define XPSR_IT_0_1 CPSR_IT_0_1
895 #define XPSR_Q CPSR_Q
896 #define XPSR_V CPSR_V
897 #define XPSR_C CPSR_C
898 #define XPSR_Z CPSR_Z
899 #define XPSR_N CPSR_N
900 #define XPSR_NZCV CPSR_NZCV
901 #define XPSR_IT CPSR_IT
902 
903 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
904 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
905 #define TTBCR_PD0    (1U << 4)
906 #define TTBCR_PD1    (1U << 5)
907 #define TTBCR_EPD0   (1U << 7)
908 #define TTBCR_IRGN0  (3U << 8)
909 #define TTBCR_ORGN0  (3U << 10)
910 #define TTBCR_SH0    (3U << 12)
911 #define TTBCR_T1SZ   (3U << 16)
912 #define TTBCR_A1     (1U << 22)
913 #define TTBCR_EPD1   (1U << 23)
914 #define TTBCR_IRGN1  (3U << 24)
915 #define TTBCR_ORGN1  (3U << 26)
916 #define TTBCR_SH1    (1U << 28)
917 #define TTBCR_EAE    (1U << 31)
918 
919 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
920  * Only these are valid when in AArch64 mode; in
921  * AArch32 mode SPSRs are basically CPSR-format.
922  */
923 #define PSTATE_SP (1U)
924 #define PSTATE_M (0xFU)
925 #define PSTATE_nRW (1U << 4)
926 #define PSTATE_F (1U << 6)
927 #define PSTATE_I (1U << 7)
928 #define PSTATE_A (1U << 8)
929 #define PSTATE_D (1U << 9)
930 #define PSTATE_IL (1U << 20)
931 #define PSTATE_SS (1U << 21)
932 #define PSTATE_V (1U << 28)
933 #define PSTATE_C (1U << 29)
934 #define PSTATE_Z (1U << 30)
935 #define PSTATE_N (1U << 31)
936 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
937 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
938 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
939 /* Mode values for AArch64 */
940 #define PSTATE_MODE_EL3h 13
941 #define PSTATE_MODE_EL3t 12
942 #define PSTATE_MODE_EL2h 9
943 #define PSTATE_MODE_EL2t 8
944 #define PSTATE_MODE_EL1h 5
945 #define PSTATE_MODE_EL1t 4
946 #define PSTATE_MODE_EL0t 0
947 
948 /* Map EL and handler into a PSTATE_MODE.  */
949 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
950 {
951     return (el << 2) | handler;
952 }
953 
954 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
955  * interprocessing, so we don't attempt to sync with the cpsr state used by
956  * the 32 bit decoder.
957  */
958 static inline uint32_t pstate_read(CPUARMState *env)
959 {
960     int ZF;
961 
962     ZF = (env->ZF == 0);
963     return (env->NF & 0x80000000) | (ZF << 30)
964         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
965         | env->pstate | env->daif;
966 }
967 
968 static inline void pstate_write(CPUARMState *env, uint32_t val)
969 {
970     env->ZF = (~val) & PSTATE_Z;
971     env->NF = val;
972     env->CF = (val >> 29) & 1;
973     env->VF = (val << 3) & 0x80000000;
974     env->daif = val & PSTATE_DAIF;
975     env->pstate = val & ~CACHED_PSTATE_BITS;
976 }
977 
978 /* Return the current CPSR value.  */
979 uint32_t cpsr_read(CPUARMState *env);
980 
981 typedef enum CPSRWriteType {
982     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
983     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
984     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
985     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
986 } CPSRWriteType;
987 
988 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
989 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
990                 CPSRWriteType write_type);
991 
992 /* Return the current xPSR value.  */
993 static inline uint32_t xpsr_read(CPUARMState *env)
994 {
995     int ZF;
996     ZF = (env->ZF == 0);
997     return (env->NF & 0x80000000) | (ZF << 30)
998         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
999         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1000         | ((env->condexec_bits & 0xfc) << 8)
1001         | env->v7m.exception;
1002 }
1003 
1004 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1005 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1006 {
1007     if (mask & XPSR_NZCV) {
1008         env->ZF = (~val) & XPSR_Z;
1009         env->NF = val;
1010         env->CF = (val >> 29) & 1;
1011         env->VF = (val << 3) & 0x80000000;
1012     }
1013     if (mask & XPSR_Q) {
1014         env->QF = ((val & XPSR_Q) != 0);
1015     }
1016     if (mask & XPSR_T) {
1017         env->thumb = ((val & XPSR_T) != 0);
1018     }
1019     if (mask & XPSR_IT_0_1) {
1020         env->condexec_bits &= ~3;
1021         env->condexec_bits |= (val >> 25) & 3;
1022     }
1023     if (mask & XPSR_IT_2_7) {
1024         env->condexec_bits &= 3;
1025         env->condexec_bits |= (val >> 8) & 0xfc;
1026     }
1027     if (mask & XPSR_EXCP) {
1028         env->v7m.exception = val & XPSR_EXCP;
1029     }
1030 }
1031 
1032 #define HCR_VM        (1ULL << 0)
1033 #define HCR_SWIO      (1ULL << 1)
1034 #define HCR_PTW       (1ULL << 2)
1035 #define HCR_FMO       (1ULL << 3)
1036 #define HCR_IMO       (1ULL << 4)
1037 #define HCR_AMO       (1ULL << 5)
1038 #define HCR_VF        (1ULL << 6)
1039 #define HCR_VI        (1ULL << 7)
1040 #define HCR_VSE       (1ULL << 8)
1041 #define HCR_FB        (1ULL << 9)
1042 #define HCR_BSU_MASK  (3ULL << 10)
1043 #define HCR_DC        (1ULL << 12)
1044 #define HCR_TWI       (1ULL << 13)
1045 #define HCR_TWE       (1ULL << 14)
1046 #define HCR_TID0      (1ULL << 15)
1047 #define HCR_TID1      (1ULL << 16)
1048 #define HCR_TID2      (1ULL << 17)
1049 #define HCR_TID3      (1ULL << 18)
1050 #define HCR_TSC       (1ULL << 19)
1051 #define HCR_TIDCP     (1ULL << 20)
1052 #define HCR_TACR      (1ULL << 21)
1053 #define HCR_TSW       (1ULL << 22)
1054 #define HCR_TPC       (1ULL << 23)
1055 #define HCR_TPU       (1ULL << 24)
1056 #define HCR_TTLB      (1ULL << 25)
1057 #define HCR_TVM       (1ULL << 26)
1058 #define HCR_TGE       (1ULL << 27)
1059 #define HCR_TDZ       (1ULL << 28)
1060 #define HCR_HCD       (1ULL << 29)
1061 #define HCR_TRVM      (1ULL << 30)
1062 #define HCR_RW        (1ULL << 31)
1063 #define HCR_CD        (1ULL << 32)
1064 #define HCR_ID        (1ULL << 33)
1065 #define HCR_MASK      ((1ULL << 34) - 1)
1066 
1067 #define SCR_NS                (1U << 0)
1068 #define SCR_IRQ               (1U << 1)
1069 #define SCR_FIQ               (1U << 2)
1070 #define SCR_EA                (1U << 3)
1071 #define SCR_FW                (1U << 4)
1072 #define SCR_AW                (1U << 5)
1073 #define SCR_NET               (1U << 6)
1074 #define SCR_SMD               (1U << 7)
1075 #define SCR_HCE               (1U << 8)
1076 #define SCR_SIF               (1U << 9)
1077 #define SCR_RW                (1U << 10)
1078 #define SCR_ST                (1U << 11)
1079 #define SCR_TWI               (1U << 12)
1080 #define SCR_TWE               (1U << 13)
1081 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1082 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1083 
1084 /* Return the current FPSCR value.  */
1085 uint32_t vfp_get_fpscr(CPUARMState *env);
1086 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1087 
1088 /* For A64 the FPSCR is split into two logically distinct registers,
1089  * FPCR and FPSR. However since they still use non-overlapping bits
1090  * we store the underlying state in fpscr and just mask on read/write.
1091  */
1092 #define FPSR_MASK 0xf800009f
1093 #define FPCR_MASK 0x07f79f00
1094 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1095 {
1096     return vfp_get_fpscr(env) & FPSR_MASK;
1097 }
1098 
1099 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1100 {
1101     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1102     vfp_set_fpscr(env, new_fpscr);
1103 }
1104 
1105 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1106 {
1107     return vfp_get_fpscr(env) & FPCR_MASK;
1108 }
1109 
1110 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1111 {
1112     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1113     vfp_set_fpscr(env, new_fpscr);
1114 }
1115 
1116 enum arm_cpu_mode {
1117   ARM_CPU_MODE_USR = 0x10,
1118   ARM_CPU_MODE_FIQ = 0x11,
1119   ARM_CPU_MODE_IRQ = 0x12,
1120   ARM_CPU_MODE_SVC = 0x13,
1121   ARM_CPU_MODE_MON = 0x16,
1122   ARM_CPU_MODE_ABT = 0x17,
1123   ARM_CPU_MODE_HYP = 0x1a,
1124   ARM_CPU_MODE_UND = 0x1b,
1125   ARM_CPU_MODE_SYS = 0x1f
1126 };
1127 
1128 /* VFP system registers.  */
1129 #define ARM_VFP_FPSID   0
1130 #define ARM_VFP_FPSCR   1
1131 #define ARM_VFP_MVFR2   5
1132 #define ARM_VFP_MVFR1   6
1133 #define ARM_VFP_MVFR0   7
1134 #define ARM_VFP_FPEXC   8
1135 #define ARM_VFP_FPINST  9
1136 #define ARM_VFP_FPINST2 10
1137 
1138 /* iwMMXt coprocessor control registers.  */
1139 #define ARM_IWMMXT_wCID		0
1140 #define ARM_IWMMXT_wCon		1
1141 #define ARM_IWMMXT_wCSSF	2
1142 #define ARM_IWMMXT_wCASF	3
1143 #define ARM_IWMMXT_wCGR0	8
1144 #define ARM_IWMMXT_wCGR1	9
1145 #define ARM_IWMMXT_wCGR2	10
1146 #define ARM_IWMMXT_wCGR3	11
1147 
1148 /* V7M CCR bits */
1149 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1150 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1151 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1152 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1153 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1154 FIELD(V7M_CCR, STKALIGN, 9, 1)
1155 FIELD(V7M_CCR, DC, 16, 1)
1156 FIELD(V7M_CCR, IC, 17, 1)
1157 
1158 /* V7M CFSR bits for MMFSR */
1159 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1160 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1161 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1162 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1163 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1164 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1165 
1166 /* V7M CFSR bits for BFSR */
1167 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1168 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1169 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1170 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1171 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1172 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1173 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1174 
1175 /* V7M CFSR bits for UFSR */
1176 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1177 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1178 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1179 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1180 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1181 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1182 
1183 /* V7M HFSR bits */
1184 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1185 FIELD(V7M_HFSR, FORCED, 30, 1)
1186 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1187 
1188 /* V7M DFSR bits */
1189 FIELD(V7M_DFSR, HALTED, 0, 1)
1190 FIELD(V7M_DFSR, BKPT, 1, 1)
1191 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1192 FIELD(V7M_DFSR, VCATCH, 3, 1)
1193 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1194 
1195 /* v7M MPU_CTRL bits */
1196 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1197 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1198 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1199 
1200 /* If adding a feature bit which corresponds to a Linux ELF
1201  * HWCAP bit, remember to update the feature-bit-to-hwcap
1202  * mapping in linux-user/elfload.c:get_elf_hwcap().
1203  */
1204 enum arm_features {
1205     ARM_FEATURE_VFP,
1206     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1207     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1208     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1209     ARM_FEATURE_V6,
1210     ARM_FEATURE_V6K,
1211     ARM_FEATURE_V7,
1212     ARM_FEATURE_THUMB2,
1213     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1214     ARM_FEATURE_VFP3,
1215     ARM_FEATURE_VFP_FP16,
1216     ARM_FEATURE_NEON,
1217     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1218     ARM_FEATURE_M, /* Microcontroller profile.  */
1219     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1220     ARM_FEATURE_THUMB2EE,
1221     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1222     ARM_FEATURE_V4T,
1223     ARM_FEATURE_V5,
1224     ARM_FEATURE_STRONGARM,
1225     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1226     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1227     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1228     ARM_FEATURE_GENERIC_TIMER,
1229     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1230     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1231     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1232     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1233     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1234     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1235     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1236     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1237     ARM_FEATURE_V8,
1238     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1239     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1240     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1241     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1242     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1243     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1244     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1245     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1246     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1247     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1248     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1249     ARM_FEATURE_PMU, /* has PMU support */
1250     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1251 };
1252 
1253 static inline int arm_feature(CPUARMState *env, int feature)
1254 {
1255     return (env->features & (1ULL << feature)) != 0;
1256 }
1257 
1258 #if !defined(CONFIG_USER_ONLY)
1259 /* Return true if exception levels below EL3 are in secure state,
1260  * or would be following an exception return to that level.
1261  * Unlike arm_is_secure() (which is always a question about the
1262  * _current_ state of the CPU) this doesn't care about the current
1263  * EL or mode.
1264  */
1265 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1266 {
1267     if (arm_feature(env, ARM_FEATURE_EL3)) {
1268         return !(env->cp15.scr_el3 & SCR_NS);
1269     } else {
1270         /* If EL3 is not supported then the secure state is implementation
1271          * defined, in which case QEMU defaults to non-secure.
1272          */
1273         return false;
1274     }
1275 }
1276 
1277 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1278 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1279 {
1280     if (arm_feature(env, ARM_FEATURE_EL3)) {
1281         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1282             /* CPU currently in AArch64 state and EL3 */
1283             return true;
1284         } else if (!is_a64(env) &&
1285                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1286             /* CPU currently in AArch32 state and monitor mode */
1287             return true;
1288         }
1289     }
1290     return false;
1291 }
1292 
1293 /* Return true if the processor is in secure state */
1294 static inline bool arm_is_secure(CPUARMState *env)
1295 {
1296     if (arm_is_el3_or_mon(env)) {
1297         return true;
1298     }
1299     return arm_is_secure_below_el3(env);
1300 }
1301 
1302 #else
1303 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1304 {
1305     return false;
1306 }
1307 
1308 static inline bool arm_is_secure(CPUARMState *env)
1309 {
1310     return false;
1311 }
1312 #endif
1313 
1314 /* Return true if the specified exception level is running in AArch64 state. */
1315 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1316 {
1317     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1318      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1319      */
1320     assert(el >= 1 && el <= 3);
1321     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1322 
1323     /* The highest exception level is always at the maximum supported
1324      * register width, and then lower levels have a register width controlled
1325      * by bits in the SCR or HCR registers.
1326      */
1327     if (el == 3) {
1328         return aa64;
1329     }
1330 
1331     if (arm_feature(env, ARM_FEATURE_EL3)) {
1332         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1333     }
1334 
1335     if (el == 2) {
1336         return aa64;
1337     }
1338 
1339     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1340         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1341     }
1342 
1343     return aa64;
1344 }
1345 
1346 /* Function for determing whether guest cp register reads and writes should
1347  * access the secure or non-secure bank of a cp register.  When EL3 is
1348  * operating in AArch32 state, the NS-bit determines whether the secure
1349  * instance of a cp register should be used. When EL3 is AArch64 (or if
1350  * it doesn't exist at all) then there is no register banking, and all
1351  * accesses are to the non-secure version.
1352  */
1353 static inline bool access_secure_reg(CPUARMState *env)
1354 {
1355     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1356                 !arm_el_is_aa64(env, 3) &&
1357                 !(env->cp15.scr_el3 & SCR_NS));
1358 
1359     return ret;
1360 }
1361 
1362 /* Macros for accessing a specified CP register bank */
1363 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1364     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1365 
1366 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1367     do {                                                \
1368         if (_secure) {                                   \
1369             (_env)->cp15._regname##_s = (_val);            \
1370         } else {                                        \
1371             (_env)->cp15._regname##_ns = (_val);           \
1372         }                                               \
1373     } while (0)
1374 
1375 /* Macros for automatically accessing a specific CP register bank depending on
1376  * the current secure state of the system.  These macros are not intended for
1377  * supporting instruction translation reads/writes as these are dependent
1378  * solely on the SCR.NS bit and not the mode.
1379  */
1380 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1381     A32_BANKED_REG_GET((_env), _regname,                \
1382                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1383 
1384 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1385     A32_BANKED_REG_SET((_env), _regname,                                    \
1386                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1387                        (_val))
1388 
1389 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1390 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1391                                  uint32_t cur_el, bool secure);
1392 
1393 /* Interface between CPU and Interrupt controller.  */
1394 #ifndef CONFIG_USER_ONLY
1395 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1396 #else
1397 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1398 {
1399     return true;
1400 }
1401 #endif
1402 void armv7m_nvic_set_pending(void *opaque, int irq);
1403 void armv7m_nvic_acknowledge_irq(void *opaque);
1404 /**
1405  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1406  * @opaque: the NVIC
1407  * @irq: the exception number to complete
1408  *
1409  * Returns: -1 if the irq was not active
1410  *           1 if completing this irq brought us back to base (no active irqs)
1411  *           0 if there is still an irq active after this one was completed
1412  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1413  */
1414 int armv7m_nvic_complete_irq(void *opaque, int irq);
1415 
1416 /* Interface for defining coprocessor registers.
1417  * Registers are defined in tables of arm_cp_reginfo structs
1418  * which are passed to define_arm_cp_regs().
1419  */
1420 
1421 /* When looking up a coprocessor register we look for it
1422  * via an integer which encodes all of:
1423  *  coprocessor number
1424  *  Crn, Crm, opc1, opc2 fields
1425  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1426  *    or via MRRC/MCRR?)
1427  *  non-secure/secure bank (AArch32 only)
1428  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1429  * (In this case crn and opc2 should be zero.)
1430  * For AArch64, there is no 32/64 bit size distinction;
1431  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1432  * and 4 bit CRn and CRm. The encoding patterns are chosen
1433  * to be easy to convert to and from the KVM encodings, and also
1434  * so that the hashtable can contain both AArch32 and AArch64
1435  * registers (to allow for interprocessing where we might run
1436  * 32 bit code on a 64 bit core).
1437  */
1438 /* This bit is private to our hashtable cpreg; in KVM register
1439  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1440  * in the upper bits of the 64 bit ID.
1441  */
1442 #define CP_REG_AA64_SHIFT 28
1443 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1444 
1445 /* To enable banking of coprocessor registers depending on ns-bit we
1446  * add a bit to distinguish between secure and non-secure cpregs in the
1447  * hashtable.
1448  */
1449 #define CP_REG_NS_SHIFT 29
1450 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1451 
1452 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1453     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1454      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1455 
1456 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1457     (CP_REG_AA64_MASK |                                 \
1458      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1459      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1460      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1461      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1462      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1463      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1464 
1465 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1466  * version used as a key for the coprocessor register hashtable
1467  */
1468 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1469 {
1470     uint32_t cpregid = kvmid;
1471     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1472         cpregid |= CP_REG_AA64_MASK;
1473     } else {
1474         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1475             cpregid |= (1 << 15);
1476         }
1477 
1478         /* KVM is always non-secure so add the NS flag on AArch32 register
1479          * entries.
1480          */
1481          cpregid |= 1 << CP_REG_NS_SHIFT;
1482     }
1483     return cpregid;
1484 }
1485 
1486 /* Convert a truncated 32 bit hashtable key into the full
1487  * 64 bit KVM register ID.
1488  */
1489 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1490 {
1491     uint64_t kvmid;
1492 
1493     if (cpregid & CP_REG_AA64_MASK) {
1494         kvmid = cpregid & ~CP_REG_AA64_MASK;
1495         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1496     } else {
1497         kvmid = cpregid & ~(1 << 15);
1498         if (cpregid & (1 << 15)) {
1499             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1500         } else {
1501             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1502         }
1503     }
1504     return kvmid;
1505 }
1506 
1507 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1508  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1509  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1510  * TCG can assume the value to be constant (ie load at translate time)
1511  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1512  * indicates that the TB should not be ended after a write to this register
1513  * (the default is that the TB ends after cp writes). OVERRIDE permits
1514  * a register definition to override a previous definition for the
1515  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1516  * old must have the OVERRIDE bit set.
1517  * ALIAS indicates that this register is an alias view of some underlying
1518  * state which is also visible via another register, and that the other
1519  * register is handling migration and reset; registers marked ALIAS will not be
1520  * migrated but may have their state set by syncing of register state from KVM.
1521  * NO_RAW indicates that this register has no underlying state and does not
1522  * support raw access for state saving/loading; it will not be used for either
1523  * migration or KVM state synchronization. (Typically this is for "registers"
1524  * which are actually used as instructions for cache maintenance and so on.)
1525  * IO indicates that this register does I/O and therefore its accesses
1526  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1527  * registers which implement clocks or timers require this.
1528  */
1529 #define ARM_CP_SPECIAL 1
1530 #define ARM_CP_CONST 2
1531 #define ARM_CP_64BIT 4
1532 #define ARM_CP_SUPPRESS_TB_END 8
1533 #define ARM_CP_OVERRIDE 16
1534 #define ARM_CP_ALIAS 32
1535 #define ARM_CP_IO 64
1536 #define ARM_CP_NO_RAW 128
1537 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1538 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1539 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1540 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1541 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1542 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1543 /* Used only as a terminator for ARMCPRegInfo lists */
1544 #define ARM_CP_SENTINEL 0xffff
1545 /* Mask of only the flag bits in a type field */
1546 #define ARM_CP_FLAG_MASK 0xff
1547 
1548 /* Valid values for ARMCPRegInfo state field, indicating which of
1549  * the AArch32 and AArch64 execution states this register is visible in.
1550  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1551  * If the reginfo is declared to be visible in both states then a second
1552  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1553  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1554  * Note that we rely on the values of these enums as we iterate through
1555  * the various states in some places.
1556  */
1557 enum {
1558     ARM_CP_STATE_AA32 = 0,
1559     ARM_CP_STATE_AA64 = 1,
1560     ARM_CP_STATE_BOTH = 2,
1561 };
1562 
1563 /* ARM CP register secure state flags.  These flags identify security state
1564  * attributes for a given CP register entry.
1565  * The existence of both or neither secure and non-secure flags indicates that
1566  * the register has both a secure and non-secure hash entry.  A single one of
1567  * these flags causes the register to only be hashed for the specified
1568  * security state.
1569  * Although definitions may have any combination of the S/NS bits, each
1570  * registered entry will only have one to identify whether the entry is secure
1571  * or non-secure.
1572  */
1573 enum {
1574     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1575     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1576 };
1577 
1578 /* Return true if cptype is a valid type field. This is used to try to
1579  * catch errors where the sentinel has been accidentally left off the end
1580  * of a list of registers.
1581  */
1582 static inline bool cptype_valid(int cptype)
1583 {
1584     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1585         || ((cptype & ARM_CP_SPECIAL) &&
1586             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1587 }
1588 
1589 /* Access rights:
1590  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1591  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1592  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1593  * (ie any of the privileged modes in Secure state, or Monitor mode).
1594  * If a register is accessible in one privilege level it's always accessible
1595  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1596  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1597  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1598  * terminology a little and call this PL3.
1599  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1600  * with the ELx exception levels.
1601  *
1602  * If access permissions for a register are more complex than can be
1603  * described with these bits, then use a laxer set of restrictions, and
1604  * do the more restrictive/complex check inside a helper function.
1605  */
1606 #define PL3_R 0x80
1607 #define PL3_W 0x40
1608 #define PL2_R (0x20 | PL3_R)
1609 #define PL2_W (0x10 | PL3_W)
1610 #define PL1_R (0x08 | PL2_R)
1611 #define PL1_W (0x04 | PL2_W)
1612 #define PL0_R (0x02 | PL1_R)
1613 #define PL0_W (0x01 | PL1_W)
1614 
1615 #define PL3_RW (PL3_R | PL3_W)
1616 #define PL2_RW (PL2_R | PL2_W)
1617 #define PL1_RW (PL1_R | PL1_W)
1618 #define PL0_RW (PL0_R | PL0_W)
1619 
1620 /* Return the highest implemented Exception Level */
1621 static inline int arm_highest_el(CPUARMState *env)
1622 {
1623     if (arm_feature(env, ARM_FEATURE_EL3)) {
1624         return 3;
1625     }
1626     if (arm_feature(env, ARM_FEATURE_EL2)) {
1627         return 2;
1628     }
1629     return 1;
1630 }
1631 
1632 /* Return the current Exception Level (as per ARMv8; note that this differs
1633  * from the ARMv7 Privilege Level).
1634  */
1635 static inline int arm_current_el(CPUARMState *env)
1636 {
1637     if (arm_feature(env, ARM_FEATURE_M)) {
1638         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1639     }
1640 
1641     if (is_a64(env)) {
1642         return extract32(env->pstate, 2, 2);
1643     }
1644 
1645     switch (env->uncached_cpsr & 0x1f) {
1646     case ARM_CPU_MODE_USR:
1647         return 0;
1648     case ARM_CPU_MODE_HYP:
1649         return 2;
1650     case ARM_CPU_MODE_MON:
1651         return 3;
1652     default:
1653         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1654             /* If EL3 is 32-bit then all secure privileged modes run in
1655              * EL3
1656              */
1657             return 3;
1658         }
1659 
1660         return 1;
1661     }
1662 }
1663 
1664 typedef struct ARMCPRegInfo ARMCPRegInfo;
1665 
1666 typedef enum CPAccessResult {
1667     /* Access is permitted */
1668     CP_ACCESS_OK = 0,
1669     /* Access fails due to a configurable trap or enable which would
1670      * result in a categorized exception syndrome giving information about
1671      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1672      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1673      * PL1 if in EL0, otherwise to the current EL).
1674      */
1675     CP_ACCESS_TRAP = 1,
1676     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1677      * Note that this is not a catch-all case -- the set of cases which may
1678      * result in this failure is specifically defined by the architecture.
1679      */
1680     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1681     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1682     CP_ACCESS_TRAP_EL2 = 3,
1683     CP_ACCESS_TRAP_EL3 = 4,
1684     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1685     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1686     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1687     /* Access fails and results in an exception syndrome for an FP access,
1688      * trapped directly to EL2 or EL3
1689      */
1690     CP_ACCESS_TRAP_FP_EL2 = 7,
1691     CP_ACCESS_TRAP_FP_EL3 = 8,
1692 } CPAccessResult;
1693 
1694 /* Access functions for coprocessor registers. These cannot fail and
1695  * may not raise exceptions.
1696  */
1697 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1698 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1699                        uint64_t value);
1700 /* Access permission check functions for coprocessor registers. */
1701 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1702                                   const ARMCPRegInfo *opaque,
1703                                   bool isread);
1704 /* Hook function for register reset */
1705 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1706 
1707 #define CP_ANY 0xff
1708 
1709 /* Definition of an ARM coprocessor register */
1710 struct ARMCPRegInfo {
1711     /* Name of register (useful mainly for debugging, need not be unique) */
1712     const char *name;
1713     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1714      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1715      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1716      * will be decoded to this register. The register read and write
1717      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1718      * used by the program, so it is possible to register a wildcard and
1719      * then behave differently on read/write if necessary.
1720      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1721      * must both be zero.
1722      * For AArch64-visible registers, opc0 is also used.
1723      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1724      * way to distinguish (for KVM's benefit) guest-visible system registers
1725      * from demuxed ones provided to preserve the "no side effects on
1726      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1727      * visible (to match KVM's encoding); cp==0 will be converted to
1728      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1729      */
1730     uint8_t cp;
1731     uint8_t crn;
1732     uint8_t crm;
1733     uint8_t opc0;
1734     uint8_t opc1;
1735     uint8_t opc2;
1736     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1737     int state;
1738     /* Register type: ARM_CP_* bits/values */
1739     int type;
1740     /* Access rights: PL*_[RW] */
1741     int access;
1742     /* Security state: ARM_CP_SECSTATE_* bits/values */
1743     int secure;
1744     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1745      * this register was defined: can be used to hand data through to the
1746      * register read/write functions, since they are passed the ARMCPRegInfo*.
1747      */
1748     void *opaque;
1749     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1750      * fieldoffset is non-zero, the reset value of the register.
1751      */
1752     uint64_t resetvalue;
1753     /* Offset of the field in CPUARMState for this register.
1754      *
1755      * This is not needed if either:
1756      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1757      *  2. both readfn and writefn are specified
1758      */
1759     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1760 
1761     /* Offsets of the secure and non-secure fields in CPUARMState for the
1762      * register if it is banked.  These fields are only used during the static
1763      * registration of a register.  During hashing the bank associated
1764      * with a given security state is copied to fieldoffset which is used from
1765      * there on out.
1766      *
1767      * It is expected that register definitions use either fieldoffset or
1768      * bank_fieldoffsets in the definition but not both.  It is also expected
1769      * that both bank offsets are set when defining a banked register.  This
1770      * use indicates that a register is banked.
1771      */
1772     ptrdiff_t bank_fieldoffsets[2];
1773 
1774     /* Function for making any access checks for this register in addition to
1775      * those specified by the 'access' permissions bits. If NULL, no extra
1776      * checks required. The access check is performed at runtime, not at
1777      * translate time.
1778      */
1779     CPAccessFn *accessfn;
1780     /* Function for handling reads of this register. If NULL, then reads
1781      * will be done by loading from the offset into CPUARMState specified
1782      * by fieldoffset.
1783      */
1784     CPReadFn *readfn;
1785     /* Function for handling writes of this register. If NULL, then writes
1786      * will be done by writing to the offset into CPUARMState specified
1787      * by fieldoffset.
1788      */
1789     CPWriteFn *writefn;
1790     /* Function for doing a "raw" read; used when we need to copy
1791      * coprocessor state to the kernel for KVM or out for
1792      * migration. This only needs to be provided if there is also a
1793      * readfn and it has side effects (for instance clear-on-read bits).
1794      */
1795     CPReadFn *raw_readfn;
1796     /* Function for doing a "raw" write; used when we need to copy KVM
1797      * kernel coprocessor state into userspace, or for inbound
1798      * migration. This only needs to be provided if there is also a
1799      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1800      * or similar behaviour.
1801      */
1802     CPWriteFn *raw_writefn;
1803     /* Function for resetting the register. If NULL, then reset will be done
1804      * by writing resetvalue to the field specified in fieldoffset. If
1805      * fieldoffset is 0 then no reset will be done.
1806      */
1807     CPResetFn *resetfn;
1808 };
1809 
1810 /* Macros which are lvalues for the field in CPUARMState for the
1811  * ARMCPRegInfo *ri.
1812  */
1813 #define CPREG_FIELD32(env, ri) \
1814     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1815 #define CPREG_FIELD64(env, ri) \
1816     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1817 
1818 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1819 
1820 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1821                                     const ARMCPRegInfo *regs, void *opaque);
1822 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1823                                        const ARMCPRegInfo *regs, void *opaque);
1824 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1825 {
1826     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1827 }
1828 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1829 {
1830     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1831 }
1832 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1833 
1834 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1835 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1836                          uint64_t value);
1837 /* CPReadFn that can be used for read-as-zero behaviour */
1838 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1839 
1840 /* CPResetFn that does nothing, for use if no reset is required even
1841  * if fieldoffset is non zero.
1842  */
1843 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1844 
1845 /* Return true if this reginfo struct's field in the cpu state struct
1846  * is 64 bits wide.
1847  */
1848 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1849 {
1850     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1851 }
1852 
1853 static inline bool cp_access_ok(int current_el,
1854                                 const ARMCPRegInfo *ri, int isread)
1855 {
1856     return (ri->access >> ((current_el * 2) + isread)) & 1;
1857 }
1858 
1859 /* Raw read of a coprocessor register (as needed for migration, etc) */
1860 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1861 
1862 /**
1863  * write_list_to_cpustate
1864  * @cpu: ARMCPU
1865  *
1866  * For each register listed in the ARMCPU cpreg_indexes list, write
1867  * its value from the cpreg_values list into the ARMCPUState structure.
1868  * This updates TCG's working data structures from KVM data or
1869  * from incoming migration state.
1870  *
1871  * Returns: true if all register values were updated correctly,
1872  * false if some register was unknown or could not be written.
1873  * Note that we do not stop early on failure -- we will attempt
1874  * writing all registers in the list.
1875  */
1876 bool write_list_to_cpustate(ARMCPU *cpu);
1877 
1878 /**
1879  * write_cpustate_to_list:
1880  * @cpu: ARMCPU
1881  *
1882  * For each register listed in the ARMCPU cpreg_indexes list, write
1883  * its value from the ARMCPUState structure into the cpreg_values list.
1884  * This is used to copy info from TCG's working data structures into
1885  * KVM or for outbound migration.
1886  *
1887  * Returns: true if all register values were read correctly,
1888  * false if some register was unknown or could not be read.
1889  * Note that we do not stop early on failure -- we will attempt
1890  * reading all registers in the list.
1891  */
1892 bool write_cpustate_to_list(ARMCPU *cpu);
1893 
1894 #define ARM_CPUID_TI915T      0x54029152
1895 #define ARM_CPUID_TI925T      0x54029252
1896 
1897 #if defined(CONFIG_USER_ONLY)
1898 #define TARGET_PAGE_BITS 12
1899 #else
1900 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1901  * have to support 1K tiny pages.
1902  */
1903 #define TARGET_PAGE_BITS_VARY
1904 #define TARGET_PAGE_BITS_MIN 10
1905 #endif
1906 
1907 #if defined(TARGET_AARCH64)
1908 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1909 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1910 #else
1911 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1912 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1913 #endif
1914 
1915 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1916                                      unsigned int target_el)
1917 {
1918     CPUARMState *env = cs->env_ptr;
1919     unsigned int cur_el = arm_current_el(env);
1920     bool secure = arm_is_secure(env);
1921     bool pstate_unmasked;
1922     int8_t unmasked = 0;
1923 
1924     /* Don't take exceptions if they target a lower EL.
1925      * This check should catch any exceptions that would not be taken but left
1926      * pending.
1927      */
1928     if (cur_el > target_el) {
1929         return false;
1930     }
1931 
1932     switch (excp_idx) {
1933     case EXCP_FIQ:
1934         pstate_unmasked = !(env->daif & PSTATE_F);
1935         break;
1936 
1937     case EXCP_IRQ:
1938         pstate_unmasked = !(env->daif & PSTATE_I);
1939         break;
1940 
1941     case EXCP_VFIQ:
1942         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1943             /* VFIQs are only taken when hypervized and non-secure.  */
1944             return false;
1945         }
1946         return !(env->daif & PSTATE_F);
1947     case EXCP_VIRQ:
1948         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1949             /* VIRQs are only taken when hypervized and non-secure.  */
1950             return false;
1951         }
1952         return !(env->daif & PSTATE_I);
1953     default:
1954         g_assert_not_reached();
1955     }
1956 
1957     /* Use the target EL, current execution state and SCR/HCR settings to
1958      * determine whether the corresponding CPSR bit is used to mask the
1959      * interrupt.
1960      */
1961     if ((target_el > cur_el) && (target_el != 1)) {
1962         /* Exceptions targeting a higher EL may not be maskable */
1963         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1964             /* 64-bit masking rules are simple: exceptions to EL3
1965              * can't be masked, and exceptions to EL2 can only be
1966              * masked from Secure state. The HCR and SCR settings
1967              * don't affect the masking logic, only the interrupt routing.
1968              */
1969             if (target_el == 3 || !secure) {
1970                 unmasked = 1;
1971             }
1972         } else {
1973             /* The old 32-bit-only environment has a more complicated
1974              * masking setup. HCR and SCR bits not only affect interrupt
1975              * routing but also change the behaviour of masking.
1976              */
1977             bool hcr, scr;
1978 
1979             switch (excp_idx) {
1980             case EXCP_FIQ:
1981                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1982                  * we override the CPSR.F in determining if the exception is
1983                  * masked or not. If neither of these are set then we fall back
1984                  * to the CPSR.F setting otherwise we further assess the state
1985                  * below.
1986                  */
1987                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1988                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1989 
1990                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1991                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1992                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1993                  * when non-secure but only when FIQs are only routed to EL3.
1994                  */
1995                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1996                 break;
1997             case EXCP_IRQ:
1998                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1999                  * we may override the CPSR.I masking when in non-secure state.
2000                  * The SCR.IRQ setting has already been taken into consideration
2001                  * when setting the target EL, so it does not have a further
2002                  * affect here.
2003                  */
2004                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2005                 scr = false;
2006                 break;
2007             default:
2008                 g_assert_not_reached();
2009             }
2010 
2011             if ((scr || hcr) && !secure) {
2012                 unmasked = 1;
2013             }
2014         }
2015     }
2016 
2017     /* The PSTATE bits only mask the interrupt if we have not overriden the
2018      * ability above.
2019      */
2020     return unmasked || pstate_unmasked;
2021 }
2022 
2023 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2024 
2025 #define cpu_signal_handler cpu_arm_signal_handler
2026 #define cpu_list arm_cpu_list
2027 
2028 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2029  *
2030  * If EL3 is 64-bit:
2031  *  + NonSecure EL1 & 0 stage 1
2032  *  + NonSecure EL1 & 0 stage 2
2033  *  + NonSecure EL2
2034  *  + Secure EL1 & EL0
2035  *  + Secure EL3
2036  * If EL3 is 32-bit:
2037  *  + NonSecure PL1 & 0 stage 1
2038  *  + NonSecure PL1 & 0 stage 2
2039  *  + NonSecure PL2
2040  *  + Secure PL0 & PL1
2041  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2042  *
2043  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2044  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2045  *     may differ in access permissions even if the VA->PA map is the same
2046  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2047  *     translation, which means that we have one mmu_idx that deals with two
2048  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2049  *     architecturally permitted]
2050  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2051  *     handling via the TLB. The only way to do a stage 1 translation without
2052  *     the immediate stage 2 translation is via the ATS or AT system insns,
2053  *     which can be slow-pathed and always do a page table walk.
2054  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2055  *     translation regimes, because they map reasonably well to each other
2056  *     and they can't both be active at the same time.
2057  * This gives us the following list of mmu_idx values:
2058  *
2059  * NS EL0 (aka NS PL0) stage 1+2
2060  * NS EL1 (aka NS PL1) stage 1+2
2061  * NS EL2 (aka NS PL2)
2062  * S EL3 (aka S PL1)
2063  * S EL0 (aka S PL0)
2064  * S EL1 (not used if EL3 is 32 bit)
2065  * NS EL0+1 stage 2
2066  *
2067  * (The last of these is an mmu_idx because we want to be able to use the TLB
2068  * for the accesses done as part of a stage 1 page table walk, rather than
2069  * having to walk the stage 2 page table over and over.)
2070  *
2071  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2072  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2073  * NS EL2 if we ever model a Cortex-R52).
2074  *
2075  * M profile CPUs are rather different as they do not have a true MMU.
2076  * They have the following different MMU indexes:
2077  *  User
2078  *  Privileged
2079  *  Execution priority negative (this is like privileged, but the
2080  *  MPU HFNMIENA bit means that it may have different access permission
2081  *  check results to normal privileged code, so can't share a TLB).
2082  *
2083  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2084  * are not quite the same -- different CPU types (most notably M profile
2085  * vs A/R profile) would like to use MMU indexes with different semantics,
2086  * but since we don't ever need to use all of those in a single CPU we
2087  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2088  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2089  * the same for any particular CPU.
2090  * Variables of type ARMMUIdx are always full values, and the core
2091  * index values are in variables of type 'int'.
2092  *
2093  * Our enumeration includes at the end some entries which are not "true"
2094  * mmu_idx values in that they don't have corresponding TLBs and are only
2095  * valid for doing slow path page table walks.
2096  *
2097  * The constant names here are patterned after the general style of the names
2098  * of the AT/ATS operations.
2099  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2100  */
2101 #define ARM_MMU_IDX_A 0x10 /* A profile */
2102 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2103 #define ARM_MMU_IDX_M 0x40 /* M profile */
2104 
2105 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2106 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2107 
2108 typedef enum ARMMMUIdx {
2109     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2110     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2111     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2112     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2113     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2114     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2115     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2116     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2117     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2118     ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2119     /* Indexes below here don't have TLBs and are used only for AT system
2120      * instructions or for the first stage of an S12 page table walk.
2121      */
2122     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2123     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2124 } ARMMMUIdx;
2125 
2126 /* Bit macros for the core-mmu-index values for each index,
2127  * for use when calling tlb_flush_by_mmuidx() and friends.
2128  */
2129 typedef enum ARMMMUIdxBit {
2130     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2131     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2132     ARMMMUIdxBit_S1E2 = 1 << 2,
2133     ARMMMUIdxBit_S1E3 = 1 << 3,
2134     ARMMMUIdxBit_S1SE0 = 1 << 4,
2135     ARMMMUIdxBit_S1SE1 = 1 << 5,
2136     ARMMMUIdxBit_S2NS = 1 << 6,
2137     ARMMMUIdxBit_MUser = 1 << 0,
2138     ARMMMUIdxBit_MPriv = 1 << 1,
2139     ARMMMUIdxBit_MNegPri = 1 << 2,
2140 } ARMMMUIdxBit;
2141 
2142 #define MMU_USER_IDX 0
2143 
2144 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2145 {
2146     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2147 }
2148 
2149 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2150 {
2151     if (arm_feature(env, ARM_FEATURE_M)) {
2152         return mmu_idx | ARM_MMU_IDX_M;
2153     } else {
2154         return mmu_idx | ARM_MMU_IDX_A;
2155     }
2156 }
2157 
2158 /* Return the exception level we're running at if this is our mmu_idx */
2159 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2160 {
2161     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2162     case ARM_MMU_IDX_A:
2163         return mmu_idx & 3;
2164     case ARM_MMU_IDX_M:
2165         return mmu_idx == ARMMMUIdx_MUser ? 0 : 1;
2166     default:
2167         g_assert_not_reached();
2168     }
2169 }
2170 
2171 /* Determine the current mmu_idx to use for normal loads/stores */
2172 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2173 {
2174     int el = arm_current_el(env);
2175 
2176     if (arm_feature(env, ARM_FEATURE_M)) {
2177         ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2178 
2179         /* Execution priority is negative if FAULTMASK is set or
2180          * we're in a HardFault or NMI handler.
2181          */
2182         if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2183             || env->v7m.faultmask) {
2184             return arm_to_core_mmu_idx(ARMMMUIdx_MNegPri);
2185         }
2186 
2187         return arm_to_core_mmu_idx(mmu_idx);
2188     }
2189 
2190     if (el < 2 && arm_is_secure_below_el3(env)) {
2191         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2192     }
2193     return el;
2194 }
2195 
2196 /* Indexes used when registering address spaces with cpu_address_space_init */
2197 typedef enum ARMASIdx {
2198     ARMASIdx_NS = 0,
2199     ARMASIdx_S = 1,
2200 } ARMASIdx;
2201 
2202 /* Return the Exception Level targeted by debug exceptions. */
2203 static inline int arm_debug_target_el(CPUARMState *env)
2204 {
2205     bool secure = arm_is_secure(env);
2206     bool route_to_el2 = false;
2207 
2208     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2209         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2210                        env->cp15.mdcr_el2 & (1 << 8);
2211     }
2212 
2213     if (route_to_el2) {
2214         return 2;
2215     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2216                !arm_el_is_aa64(env, 3) && secure) {
2217         return 3;
2218     } else {
2219         return 1;
2220     }
2221 }
2222 
2223 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2224 {
2225     if (arm_is_secure(env)) {
2226         /* MDCR_EL3.SDD disables debug events from Secure state */
2227         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2228             || arm_current_el(env) == 3) {
2229             return false;
2230         }
2231     }
2232 
2233     if (arm_current_el(env) == arm_debug_target_el(env)) {
2234         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2235             || (env->daif & PSTATE_D)) {
2236             return false;
2237         }
2238     }
2239     return true;
2240 }
2241 
2242 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2243 {
2244     int el = arm_current_el(env);
2245 
2246     if (el == 0 && arm_el_is_aa64(env, 1)) {
2247         return aa64_generate_debug_exceptions(env);
2248     }
2249 
2250     if (arm_is_secure(env)) {
2251         int spd;
2252 
2253         if (el == 0 && (env->cp15.sder & 1)) {
2254             /* SDER.SUIDEN means debug exceptions from Secure EL0
2255              * are always enabled. Otherwise they are controlled by
2256              * SDCR.SPD like those from other Secure ELs.
2257              */
2258             return true;
2259         }
2260 
2261         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2262         switch (spd) {
2263         case 1:
2264             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2265         case 0:
2266             /* For 0b00 we return true if external secure invasive debug
2267              * is enabled. On real hardware this is controlled by external
2268              * signals to the core. QEMU always permits debug, and behaves
2269              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2270              */
2271             return true;
2272         case 2:
2273             return false;
2274         case 3:
2275             return true;
2276         }
2277     }
2278 
2279     return el != 2;
2280 }
2281 
2282 /* Return true if debugging exceptions are currently enabled.
2283  * This corresponds to what in ARM ARM pseudocode would be
2284  *    if UsingAArch32() then
2285  *        return AArch32.GenerateDebugExceptions()
2286  *    else
2287  *        return AArch64.GenerateDebugExceptions()
2288  * We choose to push the if() down into this function for clarity,
2289  * since the pseudocode has it at all callsites except for the one in
2290  * CheckSoftwareStep(), where it is elided because both branches would
2291  * always return the same value.
2292  *
2293  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2294  * don't yet implement those exception levels or their associated trap bits.
2295  */
2296 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2297 {
2298     if (env->aarch64) {
2299         return aa64_generate_debug_exceptions(env);
2300     } else {
2301         return aa32_generate_debug_exceptions(env);
2302     }
2303 }
2304 
2305 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2306  * implicitly means this always returns false in pre-v8 CPUs.)
2307  */
2308 static inline bool arm_singlestep_active(CPUARMState *env)
2309 {
2310     return extract32(env->cp15.mdscr_el1, 0, 1)
2311         && arm_el_is_aa64(env, arm_debug_target_el(env))
2312         && arm_generate_debug_exceptions(env);
2313 }
2314 
2315 static inline bool arm_sctlr_b(CPUARMState *env)
2316 {
2317     return
2318         /* We need not implement SCTLR.ITD in user-mode emulation, so
2319          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2320          * This lets people run BE32 binaries with "-cpu any".
2321          */
2322 #ifndef CONFIG_USER_ONLY
2323         !arm_feature(env, ARM_FEATURE_V7) &&
2324 #endif
2325         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2326 }
2327 
2328 /* Return true if the processor is in big-endian mode. */
2329 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2330 {
2331     int cur_el;
2332 
2333     /* In 32bit endianness is determined by looking at CPSR's E bit */
2334     if (!is_a64(env)) {
2335         return
2336 #ifdef CONFIG_USER_ONLY
2337             /* In system mode, BE32 is modelled in line with the
2338              * architecture (as word-invariant big-endianness), where loads
2339              * and stores are done little endian but from addresses which
2340              * are adjusted by XORing with the appropriate constant. So the
2341              * endianness to use for the raw data access is not affected by
2342              * SCTLR.B.
2343              * In user mode, however, we model BE32 as byte-invariant
2344              * big-endianness (because user-only code cannot tell the
2345              * difference), and so we need to use a data access endianness
2346              * that depends on SCTLR.B.
2347              */
2348             arm_sctlr_b(env) ||
2349 #endif
2350                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2351     }
2352 
2353     cur_el = arm_current_el(env);
2354 
2355     if (cur_el == 0) {
2356         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2357     }
2358 
2359     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2360 }
2361 
2362 #include "exec/cpu-all.h"
2363 
2364 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2365  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2366  * We put flags which are shared between 32 and 64 bit mode at the top
2367  * of the word, and flags which apply to only one mode at the bottom.
2368  */
2369 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2370 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2371 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2372 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2373 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2374 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2375 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2376 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2377 /* Target EL if we take a floating-point-disabled exception */
2378 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2379 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2380 
2381 /* Bit usage when in AArch32 state: */
2382 #define ARM_TBFLAG_THUMB_SHIFT      0
2383 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2384 #define ARM_TBFLAG_VECLEN_SHIFT     1
2385 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2386 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2387 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2388 #define ARM_TBFLAG_VFPEN_SHIFT      7
2389 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2390 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2391 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2392 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2393 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2394 /* We store the bottom two bits of the CPAR as TB flags and handle
2395  * checks on the other bits at runtime
2396  */
2397 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2398 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2399 /* Indicates whether cp register reads and writes by guest code should access
2400  * the secure or nonsecure bank of banked registers; note that this is not
2401  * the same thing as the current security state of the processor!
2402  */
2403 #define ARM_TBFLAG_NS_SHIFT         19
2404 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2405 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2406 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2407 /* For M profile only, Handler (ie not Thread) mode */
2408 #define ARM_TBFLAG_HANDLER_SHIFT    21
2409 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2410 
2411 /* Bit usage when in AArch64 state */
2412 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2413 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2414 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2415 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2416 
2417 /* some convenience accessor macros */
2418 #define ARM_TBFLAG_AARCH64_STATE(F) \
2419     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2420 #define ARM_TBFLAG_MMUIDX(F) \
2421     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2422 #define ARM_TBFLAG_SS_ACTIVE(F) \
2423     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2424 #define ARM_TBFLAG_PSTATE_SS(F) \
2425     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2426 #define ARM_TBFLAG_FPEXC_EL(F) \
2427     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2428 #define ARM_TBFLAG_THUMB(F) \
2429     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2430 #define ARM_TBFLAG_VECLEN(F) \
2431     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2432 #define ARM_TBFLAG_VECSTRIDE(F) \
2433     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2434 #define ARM_TBFLAG_VFPEN(F) \
2435     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2436 #define ARM_TBFLAG_CONDEXEC(F) \
2437     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2438 #define ARM_TBFLAG_SCTLR_B(F) \
2439     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2440 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2441     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2442 #define ARM_TBFLAG_NS(F) \
2443     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2444 #define ARM_TBFLAG_BE_DATA(F) \
2445     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2446 #define ARM_TBFLAG_HANDLER(F) \
2447     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2448 #define ARM_TBFLAG_TBI0(F) \
2449     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2450 #define ARM_TBFLAG_TBI1(F) \
2451     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2452 
2453 static inline bool bswap_code(bool sctlr_b)
2454 {
2455 #ifdef CONFIG_USER_ONLY
2456     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2457      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2458      * would also end up as a mixed-endian mode with BE code, LE data.
2459      */
2460     return
2461 #ifdef TARGET_WORDS_BIGENDIAN
2462         1 ^
2463 #endif
2464         sctlr_b;
2465 #else
2466     /* All code access in ARM is little endian, and there are no loaders
2467      * doing swaps that need to be reversed
2468      */
2469     return 0;
2470 #endif
2471 }
2472 
2473 /* Return the exception level to which FP-disabled exceptions should
2474  * be taken, or 0 if FP is enabled.
2475  */
2476 static inline int fp_exception_el(CPUARMState *env)
2477 {
2478     int fpen;
2479     int cur_el = arm_current_el(env);
2480 
2481     /* CPACR and the CPTR registers don't exist before v6, so FP is
2482      * always accessible
2483      */
2484     if (!arm_feature(env, ARM_FEATURE_V6)) {
2485         return 0;
2486     }
2487 
2488     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2489      * 0, 2 : trap EL0 and EL1/PL1 accesses
2490      * 1    : trap only EL0 accesses
2491      * 3    : trap no accesses
2492      */
2493     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2494     switch (fpen) {
2495     case 0:
2496     case 2:
2497         if (cur_el == 0 || cur_el == 1) {
2498             /* Trap to PL1, which might be EL1 or EL3 */
2499             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2500                 return 3;
2501             }
2502             return 1;
2503         }
2504         if (cur_el == 3 && !is_a64(env)) {
2505             /* Secure PL1 running at EL3 */
2506             return 3;
2507         }
2508         break;
2509     case 1:
2510         if (cur_el == 0) {
2511             return 1;
2512         }
2513         break;
2514     case 3:
2515         break;
2516     }
2517 
2518     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2519      * check because zero bits in the registers mean "don't trap".
2520      */
2521 
2522     /* CPTR_EL2 : present in v7VE or v8 */
2523     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2524         && !arm_is_secure_below_el3(env)) {
2525         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2526         return 2;
2527     }
2528 
2529     /* CPTR_EL3 : present in v8 */
2530     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2531         /* Trap all FP ops to EL3 */
2532         return 3;
2533     }
2534 
2535     return 0;
2536 }
2537 
2538 #ifdef CONFIG_USER_ONLY
2539 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2540 {
2541     return
2542 #ifdef TARGET_WORDS_BIGENDIAN
2543        1 ^
2544 #endif
2545        arm_cpu_data_is_big_endian(env);
2546 }
2547 #endif
2548 
2549 #ifndef CONFIG_USER_ONLY
2550 /**
2551  * arm_regime_tbi0:
2552  * @env: CPUARMState
2553  * @mmu_idx: MMU index indicating required translation regime
2554  *
2555  * Extracts the TBI0 value from the appropriate TCR for the current EL
2556  *
2557  * Returns: the TBI0 value.
2558  */
2559 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2560 
2561 /**
2562  * arm_regime_tbi1:
2563  * @env: CPUARMState
2564  * @mmu_idx: MMU index indicating required translation regime
2565  *
2566  * Extracts the TBI1 value from the appropriate TCR for the current EL
2567  *
2568  * Returns: the TBI1 value.
2569  */
2570 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2571 #else
2572 /* We can't handle tagged addresses properly in user-only mode */
2573 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2574 {
2575     return 0;
2576 }
2577 
2578 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2579 {
2580     return 0;
2581 }
2582 #endif
2583 
2584 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2585                                         target_ulong *cs_base, uint32_t *flags)
2586 {
2587     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2588     if (is_a64(env)) {
2589         *pc = env->pc;
2590         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2591         /* Get control bits for tagged addresses */
2592         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2593         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2594     } else {
2595         *pc = env->regs[15];
2596         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2597             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2598             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2599             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2600             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2601         if (!(access_secure_reg(env))) {
2602             *flags |= ARM_TBFLAG_NS_MASK;
2603         }
2604         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2605             || arm_el_is_aa64(env, 1)) {
2606             *flags |= ARM_TBFLAG_VFPEN_MASK;
2607         }
2608         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2609                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2610     }
2611 
2612     *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2613 
2614     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2615      * states defined in the ARM ARM for software singlestep:
2616      *  SS_ACTIVE   PSTATE.SS   State
2617      *     0            x       Inactive (the TB flag for SS is always 0)
2618      *     1            0       Active-pending
2619      *     1            1       Active-not-pending
2620      */
2621     if (arm_singlestep_active(env)) {
2622         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2623         if (is_a64(env)) {
2624             if (env->pstate & PSTATE_SS) {
2625                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2626             }
2627         } else {
2628             if (env->uncached_cpsr & PSTATE_SS) {
2629                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2630             }
2631         }
2632     }
2633     if (arm_cpu_data_is_big_endian(env)) {
2634         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2635     }
2636     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2637 
2638     if (env->v7m.exception != 0) {
2639         *flags |= ARM_TBFLAG_HANDLER_MASK;
2640     }
2641 
2642     *cs_base = 0;
2643 }
2644 
2645 enum {
2646     QEMU_PSCI_CONDUIT_DISABLED = 0,
2647     QEMU_PSCI_CONDUIT_SMC = 1,
2648     QEMU_PSCI_CONDUIT_HVC = 2,
2649 };
2650 
2651 #ifndef CONFIG_USER_ONLY
2652 /* Return the address space index to use for a memory access */
2653 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2654 {
2655     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2656 }
2657 
2658 /* Return the AddressSpace to use for a memory access
2659  * (which depends on whether the access is S or NS, and whether
2660  * the board gave us a separate AddressSpace for S accesses).
2661  */
2662 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2663 {
2664     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2665 }
2666 #endif
2667 
2668 /**
2669  * arm_register_el_change_hook:
2670  * Register a hook function which will be called back whenever this
2671  * CPU changes exception level or mode. The hook function will be
2672  * passed a pointer to the ARMCPU and the opaque data pointer passed
2673  * to this function when the hook was registered.
2674  *
2675  * Note that we currently only support registering a single hook function,
2676  * and will assert if this function is called twice.
2677  * This facility is intended for the use of the GICv3 emulation.
2678  */
2679 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2680                                  void *opaque);
2681 
2682 /**
2683  * arm_get_el_change_hook_opaque:
2684  * Return the opaque data that will be used by the el_change_hook
2685  * for this CPU.
2686  */
2687 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2688 {
2689     return cpu->el_change_hook_opaque;
2690 }
2691 
2692 #endif
2693