1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "qemu/cpu-float.h" 25 #include "hw/registerfields.h" 26 #include "cpu-qom.h" 27 #include "exec/cpu-defs.h" 28 #include "qapi/qapi-types-common.h" 29 30 /* ARM processors have a weak memory model */ 31 #define TCG_GUEST_DEFAULT_MO (0) 32 33 #ifdef TARGET_AARCH64 34 #define KVM_HAVE_MCE_INJECTION 1 35 #endif 36 37 #define EXCP_UDEF 1 /* undefined instruction */ 38 #define EXCP_SWI 2 /* software interrupt */ 39 #define EXCP_PREFETCH_ABORT 3 40 #define EXCP_DATA_ABORT 4 41 #define EXCP_IRQ 5 42 #define EXCP_FIQ 6 43 #define EXCP_BKPT 7 44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 46 #define EXCP_HVC 11 /* HyperVisor Call */ 47 #define EXCP_HYP_TRAP 12 48 #define EXCP_SMC 13 /* Secure Monitor Call */ 49 #define EXCP_VIRQ 14 50 #define EXCP_VFIQ 15 51 #define EXCP_SEMIHOST 16 /* semihosting call */ 52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ 59 #define EXCP_VSERR 24 60 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */ 61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 62 63 #define ARMV7M_EXCP_RESET 1 64 #define ARMV7M_EXCP_NMI 2 65 #define ARMV7M_EXCP_HARD 3 66 #define ARMV7M_EXCP_MEM 4 67 #define ARMV7M_EXCP_BUS 5 68 #define ARMV7M_EXCP_USAGE 6 69 #define ARMV7M_EXCP_SECURE 7 70 #define ARMV7M_EXCP_SVC 11 71 #define ARMV7M_EXCP_DEBUG 12 72 #define ARMV7M_EXCP_PENDSV 14 73 #define ARMV7M_EXCP_SYSTICK 15 74 75 /* For M profile, some registers are banked secure vs non-secure; 76 * these are represented as a 2-element array where the first element 77 * is the non-secure copy and the second is the secure copy. 78 * When the CPU does not have implement the security extension then 79 * only the first element is used. 80 * This means that the copy for the current security state can be 81 * accessed via env->registerfield[env->v7m.secure] (whether the security 82 * extension is implemented or not). 83 */ 84 enum { 85 M_REG_NS = 0, 86 M_REG_S = 1, 87 M_REG_NUM_BANKS = 2, 88 }; 89 90 /* ARM-specific interrupt pending bits. */ 91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 94 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0 95 96 /* The usual mapping for an AArch64 system register to its AArch32 97 * counterpart is for the 32 bit world to have access to the lower 98 * half only (with writes leaving the upper half untouched). It's 99 * therefore useful to be able to pass TCG the offset of the least 100 * significant half of a uint64_t struct member. 101 */ 102 #if HOST_BIG_ENDIAN 103 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 104 #define offsetofhigh32(S, M) offsetof(S, M) 105 #else 106 #define offsetoflow32(S, M) offsetof(S, M) 107 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 108 #endif 109 110 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 111 #define ARM_CPU_IRQ 0 112 #define ARM_CPU_FIQ 1 113 #define ARM_CPU_VIRQ 2 114 #define ARM_CPU_VFIQ 3 115 116 /* ARM-specific extra insn start words: 117 * 1: Conditional execution bits 118 * 2: Partial exception syndrome for data aborts 119 */ 120 #define TARGET_INSN_START_EXTRA_WORDS 2 121 122 /* The 2nd extra word holding syndrome info for data aborts does not use 123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 124 * help the sleb128 encoder do a better job. 125 * When restoring the CPU state, we shift it back up. 126 */ 127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 128 #define ARM_INSN_START_WORD2_SHIFT 14 129 130 /* We currently assume float and double are IEEE single and double 131 precision respectively. 132 Doing runtime conversions is tricky because VFP registers may contain 133 integer values (eg. as the result of a FTOSI instruction). 134 s<2n> maps to the least significant half of d<n> 135 s<2n+1> maps to the most significant half of d<n> 136 */ 137 138 /** 139 * DynamicGDBXMLInfo: 140 * @desc: Contains the XML descriptions. 141 * @num: Number of the registers in this XML seen by GDB. 142 * @data: A union with data specific to the set of registers 143 * @cpregs_keys: Array that contains the corresponding Key of 144 * a given cpreg with the same order of the cpreg 145 * in the XML description. 146 */ 147 typedef struct DynamicGDBXMLInfo { 148 char *desc; 149 int num; 150 union { 151 struct { 152 uint32_t *keys; 153 } cpregs; 154 } data; 155 } DynamicGDBXMLInfo; 156 157 /* CPU state for each instance of a generic timer (in cp15 c14) */ 158 typedef struct ARMGenericTimer { 159 uint64_t cval; /* Timer CompareValue register */ 160 uint64_t ctl; /* Timer Control register */ 161 } ARMGenericTimer; 162 163 #define GTIMER_PHYS 0 164 #define GTIMER_VIRT 1 165 #define GTIMER_HYP 2 166 #define GTIMER_SEC 3 167 #define GTIMER_HYPVIRT 4 168 #define NUM_GTIMERS 5 169 170 #define VTCR_NSW (1u << 29) 171 #define VTCR_NSA (1u << 30) 172 #define VSTCR_SW VTCR_NSW 173 #define VSTCR_SA VTCR_NSA 174 175 /* Define a maximum sized vector register. 176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 177 * For 64-bit, this is a 2048-bit SVE register. 178 * 179 * Note that the mapping between S, D, and Q views of the register bank 180 * differs between AArch64 and AArch32. 181 * In AArch32: 182 * Qn = regs[n].d[1]:regs[n].d[0] 183 * Dn = regs[n / 2].d[n & 1] 184 * Sn = regs[n / 4].d[n % 4 / 2], 185 * bits 31..0 for even n, and bits 63..32 for odd n 186 * (and regs[16] to regs[31] are inaccessible) 187 * In AArch64: 188 * Zn = regs[n].d[*] 189 * Qn = regs[n].d[1]:regs[n].d[0] 190 * Dn = regs[n].d[0] 191 * Sn = regs[n].d[0] bits 31..0 192 * Hn = regs[n].d[0] bits 15..0 193 * 194 * This corresponds to the architecturally defined mapping between 195 * the two execution states, and means we do not need to explicitly 196 * map these registers when changing states. 197 * 198 * Align the data for use with TCG host vector operations. 199 */ 200 201 #ifdef TARGET_AARCH64 202 # define ARM_MAX_VQ 16 203 #else 204 # define ARM_MAX_VQ 1 205 #endif 206 207 typedef struct ARMVectorReg { 208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 209 } ARMVectorReg; 210 211 #ifdef TARGET_AARCH64 212 /* In AArch32 mode, predicate registers do not exist at all. */ 213 typedef struct ARMPredicateReg { 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 215 } ARMPredicateReg; 216 217 /* In AArch32 mode, PAC keys do not exist at all. */ 218 typedef struct ARMPACKey { 219 uint64_t lo, hi; 220 } ARMPACKey; 221 #endif 222 223 /* See the commentary above the TBFLAG field definitions. */ 224 typedef struct CPUARMTBFlags { 225 uint32_t flags; 226 target_ulong flags2; 227 } CPUARMTBFlags; 228 229 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 230 231 typedef struct NVICState NVICState; 232 233 typedef struct CPUArchState { 234 /* Regs for current mode. */ 235 uint32_t regs[16]; 236 237 /* 32/64 switch only happens when taking and returning from 238 * exceptions so the overlap semantics are taken care of then 239 * instead of having a complicated union. 240 */ 241 /* Regs for A64 mode. */ 242 uint64_t xregs[32]; 243 uint64_t pc; 244 /* PSTATE isn't an architectural register for ARMv8. However, it is 245 * convenient for us to assemble the underlying state into a 32 bit format 246 * identical to the architectural format used for the SPSR. (This is also 247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 248 * 'pstate' register are.) Of the PSTATE bits: 249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 250 * semantics as for AArch32, as described in the comments on each field) 251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 252 * DAIF (exception masks) are kept in env->daif 253 * BTYPE is kept in env->btype 254 * SM and ZA are kept in env->svcr 255 * all other bits are stored in their correct places in env->pstate 256 */ 257 uint32_t pstate; 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */ 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */ 260 261 /* Cached TBFLAGS state. See below for which bits are included. */ 262 CPUARMTBFlags hflags; 263 264 /* Frequently accessed CPSR bits are stored separately for efficiency. 265 This contains all the other bits. Use cpsr_{read,write} to access 266 the whole CPSR. */ 267 uint32_t uncached_cpsr; 268 uint32_t spsr; 269 270 /* Banked registers. */ 271 uint64_t banked_spsr[8]; 272 uint32_t banked_r13[8]; 273 uint32_t banked_r14[8]; 274 275 /* These hold r8-r12. */ 276 uint32_t usr_regs[5]; 277 uint32_t fiq_regs[5]; 278 279 /* cpsr flag cache for faster execution */ 280 uint32_t CF; /* 0 or 1 */ 281 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 282 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 283 uint32_t ZF; /* Z set if zero. */ 284 uint32_t QF; /* 0 or 1 */ 285 uint32_t GE; /* cpsr[19:16] */ 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */ 290 291 uint64_t elr_el[4]; /* AArch64 exception link regs */ 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 293 294 /* System control coprocessor (cp15) */ 295 struct { 296 uint32_t c0_cpuid; 297 union { /* Cache size selection */ 298 struct { 299 uint64_t _unused_csselr0; 300 uint64_t csselr_ns; 301 uint64_t _unused_csselr1; 302 uint64_t csselr_s; 303 }; 304 uint64_t csselr_el[4]; 305 }; 306 union { /* System control register. */ 307 struct { 308 uint64_t _unused_sctlr; 309 uint64_t sctlr_ns; 310 uint64_t hsctlr; 311 uint64_t sctlr_s; 312 }; 313 uint64_t sctlr_el[4]; 314 }; 315 uint64_t vsctlr; /* Virtualization System control register. */ 316 uint64_t cpacr_el1; /* Architectural feature access control register */ 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 319 uint64_t sder; /* Secure debug enable register. */ 320 uint32_t nsacr; /* Non-secure access control register. */ 321 union { /* MMU translation table base 0. */ 322 struct { 323 uint64_t _unused_ttbr0_0; 324 uint64_t ttbr0_ns; 325 uint64_t _unused_ttbr0_1; 326 uint64_t ttbr0_s; 327 }; 328 uint64_t ttbr0_el[4]; 329 }; 330 union { /* MMU translation table base 1. */ 331 struct { 332 uint64_t _unused_ttbr1_0; 333 uint64_t ttbr1_ns; 334 uint64_t _unused_ttbr1_1; 335 uint64_t ttbr1_s; 336 }; 337 uint64_t ttbr1_el[4]; 338 }; 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ 341 /* MMU translation table base control. */ 342 uint64_t tcr_el[4]; 343 uint64_t vtcr_el2; /* Virtualization Translation Control. */ 344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */ 345 uint32_t c2_data; /* MPU data cacheable bits. */ 346 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 347 union { /* MMU domain access control register 348 * MPU write buffer control. 349 */ 350 struct { 351 uint64_t dacr_ns; 352 uint64_t dacr_s; 353 }; 354 struct { 355 uint64_t dacr32_el2; 356 }; 357 }; 358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 360 uint64_t hcr_el2; /* Hypervisor configuration register */ 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */ 362 uint64_t scr_el3; /* Secure configuration register. */ 363 union { /* Fault status registers. */ 364 struct { 365 uint64_t ifsr_ns; 366 uint64_t ifsr_s; 367 }; 368 struct { 369 uint64_t ifsr32_el2; 370 }; 371 }; 372 union { 373 struct { 374 uint64_t _unused_dfsr; 375 uint64_t dfsr_ns; 376 uint64_t hsr; 377 uint64_t dfsr_s; 378 }; 379 uint64_t esr_el[4]; 380 }; 381 uint32_t c6_region[8]; /* MPU base/size registers. */ 382 union { /* Fault address registers. */ 383 struct { 384 uint64_t _unused_far0; 385 #if HOST_BIG_ENDIAN 386 uint32_t ifar_ns; 387 uint32_t dfar_ns; 388 uint32_t ifar_s; 389 uint32_t dfar_s; 390 #else 391 uint32_t dfar_ns; 392 uint32_t ifar_ns; 393 uint32_t dfar_s; 394 uint32_t ifar_s; 395 #endif 396 uint64_t _unused_far3; 397 }; 398 uint64_t far_el[4]; 399 }; 400 uint64_t hpfar_el2; 401 uint64_t hstr_el2; 402 union { /* Translation result. */ 403 struct { 404 uint64_t _unused_par_0; 405 uint64_t par_ns; 406 uint64_t _unused_par_1; 407 uint64_t par_s; 408 }; 409 uint64_t par_el[4]; 410 }; 411 412 uint32_t c9_insn; /* Cache lockdown registers. */ 413 uint32_t c9_data; 414 uint64_t c9_pmcr; /* performance monitor control register */ 415 uint64_t c9_pmcnten; /* perf monitor counter enables */ 416 uint64_t c9_pmovsr; /* perf monitor overflow status */ 417 uint64_t c9_pmuserenr; /* perf monitor user enable */ 418 uint64_t c9_pmselr; /* perf monitor counter selection register */ 419 uint64_t c9_pminten; /* perf monitor interrupt enables */ 420 union { /* Memory attribute redirection */ 421 struct { 422 #if HOST_BIG_ENDIAN 423 uint64_t _unused_mair_0; 424 uint32_t mair1_ns; 425 uint32_t mair0_ns; 426 uint64_t _unused_mair_1; 427 uint32_t mair1_s; 428 uint32_t mair0_s; 429 #else 430 uint64_t _unused_mair_0; 431 uint32_t mair0_ns; 432 uint32_t mair1_ns; 433 uint64_t _unused_mair_1; 434 uint32_t mair0_s; 435 uint32_t mair1_s; 436 #endif 437 }; 438 uint64_t mair_el[4]; 439 }; 440 union { /* vector base address register */ 441 struct { 442 uint64_t _unused_vbar; 443 uint64_t vbar_ns; 444 uint64_t hvbar; 445 uint64_t vbar_s; 446 }; 447 uint64_t vbar_el[4]; 448 }; 449 uint32_t mvbar; /* (monitor) vector base address register */ 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */ 451 struct { /* FCSE PID. */ 452 uint32_t fcseidr_ns; 453 uint32_t fcseidr_s; 454 }; 455 union { /* Context ID. */ 456 struct { 457 uint64_t _unused_contextidr_0; 458 uint64_t contextidr_ns; 459 uint64_t _unused_contextidr_1; 460 uint64_t contextidr_s; 461 }; 462 uint64_t contextidr_el[4]; 463 }; 464 union { /* User RW Thread register. */ 465 struct { 466 uint64_t tpidrurw_ns; 467 uint64_t tpidrprw_ns; 468 uint64_t htpidr; 469 uint64_t _tpidr_el3; 470 }; 471 uint64_t tpidr_el[4]; 472 }; 473 uint64_t tpidr2_el0; 474 /* The secure banks of these registers don't map anywhere */ 475 uint64_t tpidrurw_s; 476 uint64_t tpidrprw_s; 477 uint64_t tpidruro_s; 478 479 union { /* User RO Thread register. */ 480 uint64_t tpidruro_ns; 481 uint64_t tpidrro_el[1]; 482 }; 483 uint64_t c14_cntfrq; /* Counter Frequency register */ 484 uint64_t c14_cntkctl; /* Timer Control register */ 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 487 ARMGenericTimer c14_timer[NUM_GTIMERS]; 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 489 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 492 uint32_t c15_threadid; /* TI debugger thread-ID. */ 493 uint32_t c15_config_base_address; /* SCU base address. */ 494 uint32_t c15_diagnostic; /* diagnostic register */ 495 uint32_t c15_power_diagnostic; 496 uint32_t c15_power_control; /* power control */ 497 uint64_t dbgbvr[16]; /* breakpoint value registers */ 498 uint64_t dbgbcr[16]; /* breakpoint control registers */ 499 uint64_t dbgwvr[16]; /* watchpoint value registers */ 500 uint64_t dbgwcr[16]; /* watchpoint control registers */ 501 uint64_t dbgclaim; /* DBGCLAIM bits */ 502 uint64_t mdscr_el1; 503 uint64_t oslsr_el1; /* OS Lock Status */ 504 uint64_t osdlr_el1; /* OS DoubleLock status */ 505 uint64_t mdcr_el2; 506 uint64_t mdcr_el3; 507 /* Stores the architectural value of the counter *the last time it was 508 * updated* by pmccntr_op_start. Accesses should always be surrounded 509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 510 * architecturally-correct value is being read/set. 511 */ 512 uint64_t c15_ccnt; 513 /* Stores the delta between the architectural value and the underlying 514 * cycle count during normal operation. It is used to update c15_ccnt 515 * to be the correct architectural value before accesses. During 516 * accesses, c15_ccnt_delta contains the underlying count being used 517 * for the access, after which it reverts to the delta value in 518 * pmccntr_op_finish. 519 */ 520 uint64_t c15_ccnt_delta; 521 uint64_t c14_pmevcntr[31]; 522 uint64_t c14_pmevcntr_delta[31]; 523 uint64_t c14_pmevtyper[31]; 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 528 uint64_t gcr_el1; 529 uint64_t rgsr_el1; 530 531 /* Minimal RAS registers */ 532 uint64_t disr_el1; 533 uint64_t vdisr_el2; 534 uint64_t vsesr_el2; 535 536 /* 537 * Fine-Grained Trap registers. We store these as arrays so the 538 * access checking code doesn't have to manually select 539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test. 540 * FEAT_FGT2 will add more elements to these arrays. 541 */ 542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */ 543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */ 544 uint64_t fgt_exec[1]; /* HFGITR */ 545 546 /* RME registers */ 547 uint64_t gpccr_el3; 548 uint64_t gptbr_el3; 549 uint64_t mfar_el3; 550 } cp15; 551 552 struct { 553 /* M profile has up to 4 stack pointers: 554 * a Main Stack Pointer and a Process Stack Pointer for each 555 * of the Secure and Non-Secure states. (If the CPU doesn't support 556 * the security extension then it has only two SPs.) 557 * In QEMU we always store the currently active SP in regs[13], 558 * and the non-active SP for the current security state in 559 * v7m.other_sp. The stack pointers for the inactive security state 560 * are stored in other_ss_msp and other_ss_psp. 561 * switch_v7m_security_state() is responsible for rearranging them 562 * when we change security state. 563 */ 564 uint32_t other_sp; 565 uint32_t other_ss_msp; 566 uint32_t other_ss_psp; 567 uint32_t vecbase[M_REG_NUM_BANKS]; 568 uint32_t basepri[M_REG_NUM_BANKS]; 569 uint32_t control[M_REG_NUM_BANKS]; 570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 572 uint32_t hfsr; /* HardFault Status */ 573 uint32_t dfsr; /* Debug Fault Status Register */ 574 uint32_t sfsr; /* Secure Fault Status Register */ 575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 576 uint32_t bfar; /* BusFault Address */ 577 uint32_t sfar; /* Secure Fault Address Register */ 578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 579 int exception; 580 uint32_t primask[M_REG_NUM_BANKS]; 581 uint32_t faultmask[M_REG_NUM_BANKS]; 582 uint32_t aircr; /* only holds r/w state if security extn implemented */ 583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 584 uint32_t csselr[M_REG_NUM_BANKS]; 585 uint32_t scr[M_REG_NUM_BANKS]; 586 uint32_t msplim[M_REG_NUM_BANKS]; 587 uint32_t psplim[M_REG_NUM_BANKS]; 588 uint32_t fpcar[M_REG_NUM_BANKS]; 589 uint32_t fpccr[M_REG_NUM_BANKS]; 590 uint32_t fpdscr[M_REG_NUM_BANKS]; 591 uint32_t cpacr[M_REG_NUM_BANKS]; 592 uint32_t nsacr; 593 uint32_t ltpsize; 594 uint32_t vpr; 595 } v7m; 596 597 /* Information associated with an exception about to be taken: 598 * code which raises an exception must set cs->exception_index and 599 * the relevant parts of this structure; the cpu_do_interrupt function 600 * will then set the guest-visible registers as part of the exception 601 * entry process. 602 */ 603 struct { 604 uint32_t syndrome; /* AArch64 format syndrome register */ 605 uint32_t fsr; /* AArch32 format fault status register info */ 606 uint64_t vaddress; /* virtual addr associated with exception, if any */ 607 uint32_t target_el; /* EL the exception should be targeted for */ 608 /* If we implement EL2 we will also need to store information 609 * about the intermediate physical address for stage 2 faults. 610 */ 611 } exception; 612 613 /* Information associated with an SError */ 614 struct { 615 uint8_t pending; 616 uint8_t has_esr; 617 uint64_t esr; 618 } serror; 619 620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 621 622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 623 uint32_t irq_line_state; 624 625 /* Thumb-2 EE state. */ 626 uint32_t teecr; 627 uint32_t teehbr; 628 629 /* VFP coprocessor state. */ 630 struct { 631 ARMVectorReg zregs[32]; 632 633 #ifdef TARGET_AARCH64 634 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 635 #define FFR_PRED_NUM 16 636 ARMPredicateReg pregs[17]; 637 /* Scratch space for aa64 sve predicate temporary. */ 638 ARMPredicateReg preg_tmp; 639 #endif 640 641 /* We store these fpcsr fields separately for convenience. */ 642 uint32_t qc[4] QEMU_ALIGNED(16); 643 int vec_len; 644 int vec_stride; 645 646 uint32_t xregs[16]; 647 648 /* Scratch space for aa32 neon expansion. */ 649 uint32_t scratch[8]; 650 651 /* There are a number of distinct float control structures: 652 * 653 * fp_status: is the "normal" fp status. 654 * fp_status_fp16: used for half-precision calculations 655 * standard_fp_status : the ARM "Standard FPSCR Value" 656 * standard_fp_status_fp16 : used for half-precision 657 * calculations with the ARM "Standard FPSCR Value" 658 * 659 * Half-precision operations are governed by a separate 660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 661 * status structure to control this. 662 * 663 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 664 * round-to-nearest and is used by any operations (generally 665 * Neon) which the architecture defines as controlled by the 666 * standard FPSCR value rather than the FPSCR. 667 * 668 * The "standard FPSCR but for fp16 ops" is needed because 669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 670 * using a fixed value for it. 671 * 672 * To avoid having to transfer exception bits around, we simply 673 * say that the FPSCR cumulative exception flags are the logical 674 * OR of the flags in the four fp statuses. This relies on the 675 * only thing which needs to read the exception flags being 676 * an explicit FPSCR read. 677 */ 678 float_status fp_status; 679 float_status fp_status_f16; 680 float_status standard_fp_status; 681 float_status standard_fp_status_f16; 682 683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ 684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ 685 } vfp; 686 687 uint64_t exclusive_addr; 688 uint64_t exclusive_val; 689 /* 690 * Contains the 'val' for the second 64-bit register of LDXP, which comes 691 * from the higher address, not the high part of a complete 128-bit value. 692 * In some ways it might be more convenient to record the exclusive value 693 * as the low and high halves of a 128 bit data value, but the current 694 * semantics of these fields are baked into the migration format. 695 */ 696 uint64_t exclusive_high; 697 698 /* iwMMXt coprocessor state. */ 699 struct { 700 uint64_t regs[16]; 701 uint64_t val; 702 703 uint32_t cregs[16]; 704 } iwmmxt; 705 706 #ifdef TARGET_AARCH64 707 struct { 708 ARMPACKey apia; 709 ARMPACKey apib; 710 ARMPACKey apda; 711 ARMPACKey apdb; 712 ARMPACKey apga; 713 } keys; 714 715 uint64_t scxtnum_el[4]; 716 717 /* 718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order, 719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA 720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N]. 721 * When SVL is less than the architectural maximum, the accessible 722 * storage is restricted, such that if the SVL is X bytes the guest can 723 * see only the bottom X elements of zarray[], and only the least 724 * significant X bytes of each element of the array. (In other words, 725 * the observable part is always square.) 726 * 727 * The ZA storage can also be considered as a set of square tiles of 728 * elements of different sizes. The mapping from tiles to the ZA array 729 * is architecturally defined, such that for tiles of elements of esz 730 * bytes, the Nth row (or "horizontal slice") of tile T is in 731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous 732 * in the ZA storage, because its rows are striped through the ZA array. 733 * 734 * Because this is so large, keep this toward the end of the reset area, 735 * to keep the offsets into the rest of the structure smaller. 736 */ 737 ARMVectorReg zarray[ARM_MAX_VQ * 16]; 738 #endif 739 740 struct CPUBreakpoint *cpu_breakpoint[16]; 741 struct CPUWatchpoint *cpu_watchpoint[16]; 742 743 /* Optional fault info across tlb lookup. */ 744 ARMMMUFaultInfo *tlb_fi; 745 746 /* Fields up to this point are cleared by a CPU reset */ 747 struct {} end_reset_fields; 748 749 /* Fields after this point are preserved across CPU reset. */ 750 751 /* Internal CPU feature flags. */ 752 uint64_t features; 753 754 /* PMSAv7 MPU */ 755 struct { 756 uint32_t *drbar; 757 uint32_t *drsr; 758 uint32_t *dracr; 759 uint32_t rnr[M_REG_NUM_BANKS]; 760 } pmsav7; 761 762 /* PMSAv8 MPU */ 763 struct { 764 /* The PMSAv8 implementation also shares some PMSAv7 config 765 * and state: 766 * pmsav7.rnr (region number register) 767 * pmsav7_dregion (number of configured regions) 768 */ 769 uint32_t *rbar[M_REG_NUM_BANKS]; 770 uint32_t *rlar[M_REG_NUM_BANKS]; 771 uint32_t *hprbar; 772 uint32_t *hprlar; 773 uint32_t mair0[M_REG_NUM_BANKS]; 774 uint32_t mair1[M_REG_NUM_BANKS]; 775 uint32_t hprselr; 776 } pmsav8; 777 778 /* v8M SAU */ 779 struct { 780 uint32_t *rbar; 781 uint32_t *rlar; 782 uint32_t rnr; 783 uint32_t ctrl; 784 } sau; 785 786 #if !defined(CONFIG_USER_ONLY) 787 NVICState *nvic; 788 const struct arm_boot_info *boot_info; 789 /* Store GICv3CPUState to access from this struct */ 790 void *gicv3state; 791 #else /* CONFIG_USER_ONLY */ 792 /* For usermode syscall translation. */ 793 bool eabi; 794 #endif /* CONFIG_USER_ONLY */ 795 796 #ifdef TARGET_TAGGED_ADDRESSES 797 /* Linux syscall tagged address support */ 798 bool tagged_addr_enable; 799 #endif 800 } CPUARMState; 801 802 static inline void set_feature(CPUARMState *env, int feature) 803 { 804 env->features |= 1ULL << feature; 805 } 806 807 static inline void unset_feature(CPUARMState *env, int feature) 808 { 809 env->features &= ~(1ULL << feature); 810 } 811 812 /** 813 * ARMELChangeHookFn: 814 * type of a function which can be registered via arm_register_el_change_hook() 815 * to get callbacks when the CPU changes its exception level or mode. 816 */ 817 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 818 typedef struct ARMELChangeHook ARMELChangeHook; 819 struct ARMELChangeHook { 820 ARMELChangeHookFn *hook; 821 void *opaque; 822 QLIST_ENTRY(ARMELChangeHook) node; 823 }; 824 825 /* These values map onto the return values for 826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 827 typedef enum ARMPSCIState { 828 PSCI_ON = 0, 829 PSCI_OFF = 1, 830 PSCI_ON_PENDING = 2 831 } ARMPSCIState; 832 833 typedef struct ARMISARegisters ARMISARegisters; 834 835 /* 836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16 837 * bytes, i.e. each bit number + 1 is the vector length in quadwords. 838 * 839 * While processing properties during initialization, corresponding init bits 840 * are set for bits in sve_vq_map that have been set by properties. 841 * 842 * Bits set in supported represent valid vector lengths for the CPU type. 843 */ 844 typedef struct { 845 uint32_t map, init, supported; 846 } ARMVQMap; 847 848 /** 849 * ARMCPU: 850 * @env: #CPUARMState 851 * 852 * An ARM CPU core. 853 */ 854 struct ArchCPU { 855 /*< private >*/ 856 CPUState parent_obj; 857 /*< public >*/ 858 859 CPUNegativeOffsetState neg; 860 CPUARMState env; 861 862 /* Coprocessor information */ 863 GHashTable *cp_regs; 864 /* For marshalling (mostly coprocessor) register state between the 865 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 866 * we use these arrays. 867 */ 868 /* List of register indexes managed via these arrays; (full KVM style 869 * 64 bit indexes, not CPRegInfo 32 bit indexes) 870 */ 871 uint64_t *cpreg_indexes; 872 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 873 uint64_t *cpreg_values; 874 /* Length of the indexes, values, reset_values arrays */ 875 int32_t cpreg_array_len; 876 /* These are used only for migration: incoming data arrives in 877 * these fields and is sanity checked in post_load before copying 878 * to the working data structures above. 879 */ 880 uint64_t *cpreg_vmstate_indexes; 881 uint64_t *cpreg_vmstate_values; 882 int32_t cpreg_vmstate_array_len; 883 884 DynamicGDBXMLInfo dyn_sysreg_xml; 885 DynamicGDBXMLInfo dyn_svereg_xml; 886 DynamicGDBXMLInfo dyn_m_systemreg_xml; 887 DynamicGDBXMLInfo dyn_m_secextreg_xml; 888 889 /* Timers used by the generic (architected) timer */ 890 QEMUTimer *gt_timer[NUM_GTIMERS]; 891 /* 892 * Timer used by the PMU. Its state is restored after migration by 893 * pmu_op_finish() - it does not need other handling during migration 894 */ 895 QEMUTimer *pmu_timer; 896 /* GPIO outputs for generic timer */ 897 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 898 /* GPIO output for GICv3 maintenance interrupt signal */ 899 qemu_irq gicv3_maintenance_interrupt; 900 /* GPIO output for the PMU interrupt */ 901 qemu_irq pmu_interrupt; 902 903 /* MemoryRegion to use for secure physical accesses */ 904 MemoryRegion *secure_memory; 905 906 /* MemoryRegion to use for allocation tag accesses */ 907 MemoryRegion *tag_memory; 908 MemoryRegion *secure_tag_memory; 909 910 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 911 Object *idau; 912 913 /* 'compatible' string for this CPU for Linux device trees */ 914 const char *dtb_compatible; 915 916 /* PSCI version for this CPU 917 * Bits[31:16] = Major Version 918 * Bits[15:0] = Minor Version 919 */ 920 uint32_t psci_version; 921 922 /* Current power state, access guarded by BQL */ 923 ARMPSCIState power_state; 924 925 /* CPU has virtualization extension */ 926 bool has_el2; 927 /* CPU has security extension */ 928 bool has_el3; 929 /* CPU has PMU (Performance Monitor Unit) */ 930 bool has_pmu; 931 /* CPU has VFP */ 932 bool has_vfp; 933 /* CPU has 32 VFP registers */ 934 bool has_vfp_d32; 935 /* CPU has Neon */ 936 bool has_neon; 937 /* CPU has M-profile DSP extension */ 938 bool has_dsp; 939 940 /* CPU has memory protection unit */ 941 bool has_mpu; 942 /* PMSAv7 MPU number of supported regions */ 943 uint32_t pmsav7_dregion; 944 /* PMSAv8 MPU number of supported hyp regions */ 945 uint32_t pmsav8r_hdregion; 946 /* v8M SAU number of supported regions */ 947 uint32_t sau_sregion; 948 949 /* PSCI conduit used to invoke PSCI methods 950 * 0 - disabled, 1 - smc, 2 - hvc 951 */ 952 uint32_t psci_conduit; 953 954 /* For v8M, initial value of the Secure VTOR */ 955 uint32_t init_svtor; 956 /* For v8M, initial value of the Non-secure VTOR */ 957 uint32_t init_nsvtor; 958 959 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 960 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 961 */ 962 uint32_t kvm_target; 963 964 /* KVM init features for this CPU */ 965 uint32_t kvm_init_features[7]; 966 967 /* KVM CPU state */ 968 969 /* KVM virtual time adjustment */ 970 bool kvm_adjvtime; 971 bool kvm_vtime_dirty; 972 uint64_t kvm_vtime; 973 974 /* KVM steal time */ 975 OnOffAuto kvm_steal_time; 976 977 /* Uniprocessor system with MP extensions */ 978 bool mp_is_up; 979 980 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 981 * and the probe failed (so we need to report the error in realize) 982 */ 983 bool host_cpu_probe_failed; 984 985 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 986 * register. 987 */ 988 int32_t core_count; 989 990 /* The instance init functions for implementation-specific subclasses 991 * set these fields to specify the implementation-dependent values of 992 * various constant registers and reset values of non-constant 993 * registers. 994 * Some of these might become QOM properties eventually. 995 * Field names match the official register names as defined in the 996 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 997 * is used for reset values of non-constant registers; no reset_ 998 * prefix means a constant register. 999 * Some of these registers are split out into a substructure that 1000 * is shared with the translators to control the ISA. 1001 * 1002 * Note that if you add an ID register to the ARMISARegisters struct 1003 * you need to also update the 32-bit and 64-bit versions of the 1004 * kvm_arm_get_host_cpu_features() function to correctly populate the 1005 * field by reading the value from the KVM vCPU. 1006 */ 1007 struct ARMISARegisters { 1008 uint32_t id_isar0; 1009 uint32_t id_isar1; 1010 uint32_t id_isar2; 1011 uint32_t id_isar3; 1012 uint32_t id_isar4; 1013 uint32_t id_isar5; 1014 uint32_t id_isar6; 1015 uint32_t id_mmfr0; 1016 uint32_t id_mmfr1; 1017 uint32_t id_mmfr2; 1018 uint32_t id_mmfr3; 1019 uint32_t id_mmfr4; 1020 uint32_t id_mmfr5; 1021 uint32_t id_pfr0; 1022 uint32_t id_pfr1; 1023 uint32_t id_pfr2; 1024 uint32_t mvfr0; 1025 uint32_t mvfr1; 1026 uint32_t mvfr2; 1027 uint32_t id_dfr0; 1028 uint32_t id_dfr1; 1029 uint32_t dbgdidr; 1030 uint32_t dbgdevid; 1031 uint32_t dbgdevid1; 1032 uint64_t id_aa64isar0; 1033 uint64_t id_aa64isar1; 1034 uint64_t id_aa64pfr0; 1035 uint64_t id_aa64pfr1; 1036 uint64_t id_aa64mmfr0; 1037 uint64_t id_aa64mmfr1; 1038 uint64_t id_aa64mmfr2; 1039 uint64_t id_aa64dfr0; 1040 uint64_t id_aa64dfr1; 1041 uint64_t id_aa64zfr0; 1042 uint64_t id_aa64smfr0; 1043 uint64_t reset_pmcr_el0; 1044 } isar; 1045 uint64_t midr; 1046 uint32_t revidr; 1047 uint32_t reset_fpsid; 1048 uint64_t ctr; 1049 uint32_t reset_sctlr; 1050 uint64_t pmceid0; 1051 uint64_t pmceid1; 1052 uint32_t id_afr0; 1053 uint64_t id_aa64afr0; 1054 uint64_t id_aa64afr1; 1055 uint64_t clidr; 1056 uint64_t mp_affinity; /* MP ID without feature bits */ 1057 /* The elements of this array are the CCSIDR values for each cache, 1058 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 1059 */ 1060 uint64_t ccsidr[16]; 1061 uint64_t reset_cbar; 1062 uint32_t reset_auxcr; 1063 bool reset_hivecs; 1064 uint8_t reset_l0gptsz; 1065 1066 /* 1067 * Intermediate values used during property parsing. 1068 * Once finalized, the values should be read from ID_AA64*. 1069 */ 1070 bool prop_pauth; 1071 bool prop_pauth_impdef; 1072 bool prop_lpa2; 1073 1074 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 1075 uint32_t dcz_blocksize; 1076 uint64_t rvbar_prop; /* Property/input signals. */ 1077 1078 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 1079 int gic_num_lrs; /* number of list registers */ 1080 int gic_vpribits; /* number of virtual priority bits */ 1081 int gic_vprebits; /* number of virtual preemption bits */ 1082 int gic_pribits; /* number of physical priority bits */ 1083 1084 /* Whether the cfgend input is high (i.e. this CPU should reset into 1085 * big-endian mode). This setting isn't used directly: instead it modifies 1086 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 1087 * architecture version. 1088 */ 1089 bool cfgend; 1090 1091 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 1092 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 1093 1094 int32_t node_id; /* NUMA node this CPU belongs to */ 1095 1096 /* Used to synchronize KVM and QEMU in-kernel device levels */ 1097 uint8_t device_irq_level; 1098 1099 /* Used to set the maximum vector length the cpu will support. */ 1100 uint32_t sve_max_vq; 1101 1102 #ifdef CONFIG_USER_ONLY 1103 /* Used to set the default vector length at process start. */ 1104 uint32_t sve_default_vq; 1105 uint32_t sme_default_vq; 1106 #endif 1107 1108 ARMVQMap sve_vq; 1109 ARMVQMap sme_vq; 1110 1111 /* Generic timer counter frequency, in Hz */ 1112 uint64_t gt_cntfrq_hz; 1113 }; 1114 1115 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 1116 1117 void arm_cpu_post_init(Object *obj); 1118 1119 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 1120 1121 #ifndef CONFIG_USER_ONLY 1122 extern const VMStateDescription vmstate_arm_cpu; 1123 1124 void arm_cpu_do_interrupt(CPUState *cpu); 1125 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1126 1127 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1128 MemTxAttrs *attrs); 1129 #endif /* !CONFIG_USER_ONLY */ 1130 1131 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1132 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1133 1134 /* Returns the dynamically generated XML for the gdb stub. 1135 * Returns a pointer to the XML contents for the specified XML file or NULL 1136 * if the XML name doesn't match the predefined one. 1137 */ 1138 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1139 1140 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1141 int cpuid, DumpState *s); 1142 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1143 int cpuid, DumpState *s); 1144 1145 #ifdef TARGET_AARCH64 1146 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1147 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1148 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1149 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1150 int new_el, bool el0_a64); 1151 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask); 1152 1153 /* 1154 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1155 * The byte at offset i from the start of the in-memory representation contains 1156 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1157 * lowest offsets are stored in the lowest memory addresses, then that nearly 1158 * matches QEMU's representation, which is to use an array of host-endian 1159 * uint64_t's, where the lower offsets are at the lower indices. To complete 1160 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1161 */ 1162 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1163 { 1164 #if HOST_BIG_ENDIAN 1165 int i; 1166 1167 for (i = 0; i < nr; ++i) { 1168 dst[i] = bswap64(src[i]); 1169 } 1170 1171 return dst; 1172 #else 1173 return src; 1174 #endif 1175 } 1176 1177 #else 1178 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1179 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1180 int n, bool a) 1181 { } 1182 #endif 1183 1184 void aarch64_sync_32_to_64(CPUARMState *env); 1185 void aarch64_sync_64_to_32(CPUARMState *env); 1186 1187 int fp_exception_el(CPUARMState *env, int cur_el); 1188 int sve_exception_el(CPUARMState *env, int cur_el); 1189 int sme_exception_el(CPUARMState *env, int cur_el); 1190 1191 /** 1192 * sve_vqm1_for_el_sm: 1193 * @env: CPUARMState 1194 * @el: exception level 1195 * @sm: streaming mode 1196 * 1197 * Compute the current vector length for @el & @sm, in units of 1198 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN. 1199 * If @sm, compute for SVL, otherwise NVL. 1200 */ 1201 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm); 1202 1203 /* Likewise, but using @sm = PSTATE.SM. */ 1204 uint32_t sve_vqm1_for_el(CPUARMState *env, int el); 1205 1206 static inline bool is_a64(CPUARMState *env) 1207 { 1208 return env->aarch64; 1209 } 1210 1211 /** 1212 * pmu_op_start/finish 1213 * @env: CPUARMState 1214 * 1215 * Convert all PMU counters between their delta form (the typical mode when 1216 * they are enabled) and the guest-visible values. These two calls must 1217 * surround any action which might affect the counters. 1218 */ 1219 void pmu_op_start(CPUARMState *env); 1220 void pmu_op_finish(CPUARMState *env); 1221 1222 /* 1223 * Called when a PMU counter is due to overflow 1224 */ 1225 void arm_pmu_timer_cb(void *opaque); 1226 1227 /** 1228 * Functions to register as EL change hooks for PMU mode filtering 1229 */ 1230 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1231 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1232 1233 /* 1234 * pmu_init 1235 * @cpu: ARMCPU 1236 * 1237 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1238 * for the current configuration 1239 */ 1240 void pmu_init(ARMCPU *cpu); 1241 1242 /* SCTLR bit meanings. Several bits have been reused in newer 1243 * versions of the architecture; in that case we define constants 1244 * for both old and new bit meanings. Code which tests against those 1245 * bits should probably check or otherwise arrange that the CPU 1246 * is the architectural version it expects. 1247 */ 1248 #define SCTLR_M (1U << 0) 1249 #define SCTLR_A (1U << 1) 1250 #define SCTLR_C (1U << 2) 1251 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1252 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1253 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1254 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1255 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1256 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1257 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1258 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1259 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1260 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */ 1261 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1262 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1263 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1264 #define SCTLR_SED (1U << 8) /* v8 onward */ 1265 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1266 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1267 #define SCTLR_F (1U << 10) /* up to v6 */ 1268 #define SCTLR_SW (1U << 10) /* v7 */ 1269 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1270 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1271 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1272 #define SCTLR_I (1U << 12) 1273 #define SCTLR_V (1U << 13) /* AArch32 only */ 1274 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1275 #define SCTLR_RR (1U << 14) /* up to v7 */ 1276 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1277 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1278 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1279 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1280 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1281 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1282 #define SCTLR_BR (1U << 17) /* PMSA only */ 1283 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1284 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1285 #define SCTLR_WXN (1U << 19) 1286 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1287 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1288 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */ 1289 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1290 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1291 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1292 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1293 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1294 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1295 #define SCTLR_VE (1U << 24) /* up to v7 */ 1296 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1297 #define SCTLR_EE (1U << 25) 1298 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1299 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1300 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1301 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1302 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1303 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1304 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1305 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1306 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1307 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1308 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1309 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ 1310 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1311 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1312 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1313 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1314 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1315 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1316 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1317 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ 1318 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */ 1319 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */ 1320 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */ 1321 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */ 1322 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */ 1323 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */ 1324 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */ 1325 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */ 1326 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */ 1327 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */ 1328 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */ 1329 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */ 1330 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */ 1331 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */ 1332 1333 /* Bit definitions for CPACR (AArch32 only) */ 1334 FIELD(CPACR, CP10, 20, 2) 1335 FIELD(CPACR, CP11, 22, 2) 1336 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */ 1337 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */ 1338 FIELD(CPACR, ASEDIS, 31, 1) 1339 1340 /* Bit definitions for CPACR_EL1 (AArch64 only) */ 1341 FIELD(CPACR_EL1, ZEN, 16, 2) 1342 FIELD(CPACR_EL1, FPEN, 20, 2) 1343 FIELD(CPACR_EL1, SMEN, 24, 2) 1344 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */ 1345 1346 /* Bit definitions for HCPTR (AArch32 only) */ 1347 FIELD(HCPTR, TCP10, 10, 1) 1348 FIELD(HCPTR, TCP11, 11, 1) 1349 FIELD(HCPTR, TASE, 15, 1) 1350 FIELD(HCPTR, TTA, 20, 1) 1351 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */ 1352 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */ 1353 1354 /* Bit definitions for CPTR_EL2 (AArch64 only) */ 1355 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */ 1356 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */ 1357 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */ 1358 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */ 1359 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */ 1360 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */ 1361 FIELD(CPTR_EL2, TTA, 28, 1) 1362 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */ 1363 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */ 1364 1365 /* Bit definitions for CPTR_EL3 (AArch64 only) */ 1366 FIELD(CPTR_EL3, EZ, 8, 1) 1367 FIELD(CPTR_EL3, TFP, 10, 1) 1368 FIELD(CPTR_EL3, ESM, 12, 1) 1369 FIELD(CPTR_EL3, TTA, 20, 1) 1370 FIELD(CPTR_EL3, TAM, 30, 1) 1371 FIELD(CPTR_EL3, TCPAC, 31, 1) 1372 1373 #define MDCR_MTPME (1U << 28) 1374 #define MDCR_TDCC (1U << 27) 1375 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */ 1376 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */ 1377 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */ 1378 #define MDCR_EPMAD (1U << 21) 1379 #define MDCR_EDAD (1U << 20) 1380 #define MDCR_TTRF (1U << 19) 1381 #define MDCR_STE (1U << 18) /* MDCR_EL3 */ 1382 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1383 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1384 #define MDCR_SDD (1U << 16) 1385 #define MDCR_SPD (3U << 14) 1386 #define MDCR_TDRA (1U << 11) 1387 #define MDCR_TDOSA (1U << 10) 1388 #define MDCR_TDA (1U << 9) 1389 #define MDCR_TDE (1U << 8) 1390 #define MDCR_HPME (1U << 7) 1391 #define MDCR_TPM (1U << 6) 1392 #define MDCR_TPMCR (1U << 5) 1393 #define MDCR_HPMN (0x1fU) 1394 1395 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1396 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \ 1397 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \ 1398 MDCR_STE | MDCR_SPME | MDCR_SPD) 1399 1400 #define CPSR_M (0x1fU) 1401 #define CPSR_T (1U << 5) 1402 #define CPSR_F (1U << 6) 1403 #define CPSR_I (1U << 7) 1404 #define CPSR_A (1U << 8) 1405 #define CPSR_E (1U << 9) 1406 #define CPSR_IT_2_7 (0xfc00U) 1407 #define CPSR_GE (0xfU << 16) 1408 #define CPSR_IL (1U << 20) 1409 #define CPSR_DIT (1U << 21) 1410 #define CPSR_PAN (1U << 22) 1411 #define CPSR_SSBS (1U << 23) 1412 #define CPSR_J (1U << 24) 1413 #define CPSR_IT_0_1 (3U << 25) 1414 #define CPSR_Q (1U << 27) 1415 #define CPSR_V (1U << 28) 1416 #define CPSR_C (1U << 29) 1417 #define CPSR_Z (1U << 30) 1418 #define CPSR_N (1U << 31) 1419 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1420 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1421 1422 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1423 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1424 | CPSR_NZCV) 1425 /* Bits writable in user mode. */ 1426 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1427 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1428 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1429 1430 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1431 #define XPSR_EXCP 0x1ffU 1432 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1433 #define XPSR_IT_2_7 CPSR_IT_2_7 1434 #define XPSR_GE CPSR_GE 1435 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1436 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1437 #define XPSR_IT_0_1 CPSR_IT_0_1 1438 #define XPSR_Q CPSR_Q 1439 #define XPSR_V CPSR_V 1440 #define XPSR_C CPSR_C 1441 #define XPSR_Z CPSR_Z 1442 #define XPSR_N CPSR_N 1443 #define XPSR_NZCV CPSR_NZCV 1444 #define XPSR_IT CPSR_IT 1445 1446 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1447 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1448 #define TTBCR_PD0 (1U << 4) 1449 #define TTBCR_PD1 (1U << 5) 1450 #define TTBCR_EPD0 (1U << 7) 1451 #define TTBCR_IRGN0 (3U << 8) 1452 #define TTBCR_ORGN0 (3U << 10) 1453 #define TTBCR_SH0 (3U << 12) 1454 #define TTBCR_T1SZ (3U << 16) 1455 #define TTBCR_A1 (1U << 22) 1456 #define TTBCR_EPD1 (1U << 23) 1457 #define TTBCR_IRGN1 (3U << 24) 1458 #define TTBCR_ORGN1 (3U << 26) 1459 #define TTBCR_SH1 (1U << 28) 1460 #define TTBCR_EAE (1U << 31) 1461 1462 FIELD(VTCR, T0SZ, 0, 6) 1463 FIELD(VTCR, SL0, 6, 2) 1464 FIELD(VTCR, IRGN0, 8, 2) 1465 FIELD(VTCR, ORGN0, 10, 2) 1466 FIELD(VTCR, SH0, 12, 2) 1467 FIELD(VTCR, TG0, 14, 2) 1468 FIELD(VTCR, PS, 16, 3) 1469 FIELD(VTCR, VS, 19, 1) 1470 FIELD(VTCR, HA, 21, 1) 1471 FIELD(VTCR, HD, 22, 1) 1472 FIELD(VTCR, HWU59, 25, 1) 1473 FIELD(VTCR, HWU60, 26, 1) 1474 FIELD(VTCR, HWU61, 27, 1) 1475 FIELD(VTCR, HWU62, 28, 1) 1476 FIELD(VTCR, NSW, 29, 1) 1477 FIELD(VTCR, NSA, 30, 1) 1478 FIELD(VTCR, DS, 32, 1) 1479 FIELD(VTCR, SL2, 33, 1) 1480 1481 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1482 * Only these are valid when in AArch64 mode; in 1483 * AArch32 mode SPSRs are basically CPSR-format. 1484 */ 1485 #define PSTATE_SP (1U) 1486 #define PSTATE_M (0xFU) 1487 #define PSTATE_nRW (1U << 4) 1488 #define PSTATE_F (1U << 6) 1489 #define PSTATE_I (1U << 7) 1490 #define PSTATE_A (1U << 8) 1491 #define PSTATE_D (1U << 9) 1492 #define PSTATE_BTYPE (3U << 10) 1493 #define PSTATE_SSBS (1U << 12) 1494 #define PSTATE_IL (1U << 20) 1495 #define PSTATE_SS (1U << 21) 1496 #define PSTATE_PAN (1U << 22) 1497 #define PSTATE_UAO (1U << 23) 1498 #define PSTATE_DIT (1U << 24) 1499 #define PSTATE_TCO (1U << 25) 1500 #define PSTATE_V (1U << 28) 1501 #define PSTATE_C (1U << 29) 1502 #define PSTATE_Z (1U << 30) 1503 #define PSTATE_N (1U << 31) 1504 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1505 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1506 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1507 /* Mode values for AArch64 */ 1508 #define PSTATE_MODE_EL3h 13 1509 #define PSTATE_MODE_EL3t 12 1510 #define PSTATE_MODE_EL2h 9 1511 #define PSTATE_MODE_EL2t 8 1512 #define PSTATE_MODE_EL1h 5 1513 #define PSTATE_MODE_EL1t 4 1514 #define PSTATE_MODE_EL0t 0 1515 1516 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */ 1517 FIELD(SVCR, SM, 0, 1) 1518 FIELD(SVCR, ZA, 1, 1) 1519 1520 /* Fields for SMCR_ELx. */ 1521 FIELD(SMCR, LEN, 0, 4) 1522 FIELD(SMCR, FA64, 31, 1) 1523 1524 /* Write a new value to v7m.exception, thus transitioning into or out 1525 * of Handler mode; this may result in a change of active stack pointer. 1526 */ 1527 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1528 1529 /* Map EL and handler into a PSTATE_MODE. */ 1530 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1531 { 1532 return (el << 2) | handler; 1533 } 1534 1535 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1536 * interprocessing, so we don't attempt to sync with the cpsr state used by 1537 * the 32 bit decoder. 1538 */ 1539 static inline uint32_t pstate_read(CPUARMState *env) 1540 { 1541 int ZF; 1542 1543 ZF = (env->ZF == 0); 1544 return (env->NF & 0x80000000) | (ZF << 30) 1545 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1546 | env->pstate | env->daif | (env->btype << 10); 1547 } 1548 1549 static inline void pstate_write(CPUARMState *env, uint32_t val) 1550 { 1551 env->ZF = (~val) & PSTATE_Z; 1552 env->NF = val; 1553 env->CF = (val >> 29) & 1; 1554 env->VF = (val << 3) & 0x80000000; 1555 env->daif = val & PSTATE_DAIF; 1556 env->btype = (val >> 10) & 3; 1557 env->pstate = val & ~CACHED_PSTATE_BITS; 1558 } 1559 1560 /* Return the current CPSR value. */ 1561 uint32_t cpsr_read(CPUARMState *env); 1562 1563 typedef enum CPSRWriteType { 1564 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1565 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1566 CPSRWriteRaw = 2, 1567 /* trust values, no reg bank switch, no hflags rebuild */ 1568 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1569 } CPSRWriteType; 1570 1571 /* 1572 * Set the CPSR. Note that some bits of mask must be all-set or all-clear. 1573 * This will do an arm_rebuild_hflags() if any of the bits in @mask 1574 * correspond to TB flags bits cached in the hflags, unless @write_type 1575 * is CPSRWriteRaw. 1576 */ 1577 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1578 CPSRWriteType write_type); 1579 1580 /* Return the current xPSR value. */ 1581 static inline uint32_t xpsr_read(CPUARMState *env) 1582 { 1583 int ZF; 1584 ZF = (env->ZF == 0); 1585 return (env->NF & 0x80000000) | (ZF << 30) 1586 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1587 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1588 | ((env->condexec_bits & 0xfc) << 8) 1589 | (env->GE << 16) 1590 | env->v7m.exception; 1591 } 1592 1593 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1594 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1595 { 1596 if (mask & XPSR_NZCV) { 1597 env->ZF = (~val) & XPSR_Z; 1598 env->NF = val; 1599 env->CF = (val >> 29) & 1; 1600 env->VF = (val << 3) & 0x80000000; 1601 } 1602 if (mask & XPSR_Q) { 1603 env->QF = ((val & XPSR_Q) != 0); 1604 } 1605 if (mask & XPSR_GE) { 1606 env->GE = (val & XPSR_GE) >> 16; 1607 } 1608 #ifndef CONFIG_USER_ONLY 1609 if (mask & XPSR_T) { 1610 env->thumb = ((val & XPSR_T) != 0); 1611 } 1612 if (mask & XPSR_IT_0_1) { 1613 env->condexec_bits &= ~3; 1614 env->condexec_bits |= (val >> 25) & 3; 1615 } 1616 if (mask & XPSR_IT_2_7) { 1617 env->condexec_bits &= 3; 1618 env->condexec_bits |= (val >> 8) & 0xfc; 1619 } 1620 if (mask & XPSR_EXCP) { 1621 /* Note that this only happens on exception exit */ 1622 write_v7m_exception(env, val & XPSR_EXCP); 1623 } 1624 #endif 1625 } 1626 1627 #define HCR_VM (1ULL << 0) 1628 #define HCR_SWIO (1ULL << 1) 1629 #define HCR_PTW (1ULL << 2) 1630 #define HCR_FMO (1ULL << 3) 1631 #define HCR_IMO (1ULL << 4) 1632 #define HCR_AMO (1ULL << 5) 1633 #define HCR_VF (1ULL << 6) 1634 #define HCR_VI (1ULL << 7) 1635 #define HCR_VSE (1ULL << 8) 1636 #define HCR_FB (1ULL << 9) 1637 #define HCR_BSU_MASK (3ULL << 10) 1638 #define HCR_DC (1ULL << 12) 1639 #define HCR_TWI (1ULL << 13) 1640 #define HCR_TWE (1ULL << 14) 1641 #define HCR_TID0 (1ULL << 15) 1642 #define HCR_TID1 (1ULL << 16) 1643 #define HCR_TID2 (1ULL << 17) 1644 #define HCR_TID3 (1ULL << 18) 1645 #define HCR_TSC (1ULL << 19) 1646 #define HCR_TIDCP (1ULL << 20) 1647 #define HCR_TACR (1ULL << 21) 1648 #define HCR_TSW (1ULL << 22) 1649 #define HCR_TPCP (1ULL << 23) 1650 #define HCR_TPU (1ULL << 24) 1651 #define HCR_TTLB (1ULL << 25) 1652 #define HCR_TVM (1ULL << 26) 1653 #define HCR_TGE (1ULL << 27) 1654 #define HCR_TDZ (1ULL << 28) 1655 #define HCR_HCD (1ULL << 29) 1656 #define HCR_TRVM (1ULL << 30) 1657 #define HCR_RW (1ULL << 31) 1658 #define HCR_CD (1ULL << 32) 1659 #define HCR_ID (1ULL << 33) 1660 #define HCR_E2H (1ULL << 34) 1661 #define HCR_TLOR (1ULL << 35) 1662 #define HCR_TERR (1ULL << 36) 1663 #define HCR_TEA (1ULL << 37) 1664 #define HCR_MIOCNCE (1ULL << 38) 1665 #define HCR_TME (1ULL << 39) 1666 #define HCR_APK (1ULL << 40) 1667 #define HCR_API (1ULL << 41) 1668 #define HCR_NV (1ULL << 42) 1669 #define HCR_NV1 (1ULL << 43) 1670 #define HCR_AT (1ULL << 44) 1671 #define HCR_NV2 (1ULL << 45) 1672 #define HCR_FWB (1ULL << 46) 1673 #define HCR_FIEN (1ULL << 47) 1674 #define HCR_GPF (1ULL << 48) 1675 #define HCR_TID4 (1ULL << 49) 1676 #define HCR_TICAB (1ULL << 50) 1677 #define HCR_AMVOFFEN (1ULL << 51) 1678 #define HCR_TOCU (1ULL << 52) 1679 #define HCR_ENSCXT (1ULL << 53) 1680 #define HCR_TTLBIS (1ULL << 54) 1681 #define HCR_TTLBOS (1ULL << 55) 1682 #define HCR_ATA (1ULL << 56) 1683 #define HCR_DCT (1ULL << 57) 1684 #define HCR_TID5 (1ULL << 58) 1685 #define HCR_TWEDEN (1ULL << 59) 1686 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1687 1688 #define HCRX_ENAS0 (1ULL << 0) 1689 #define HCRX_ENALS (1ULL << 1) 1690 #define HCRX_ENASR (1ULL << 2) 1691 #define HCRX_FNXS (1ULL << 3) 1692 #define HCRX_FGTNXS (1ULL << 4) 1693 #define HCRX_SMPME (1ULL << 5) 1694 #define HCRX_TALLINT (1ULL << 6) 1695 #define HCRX_VINMI (1ULL << 7) 1696 #define HCRX_VFNMI (1ULL << 8) 1697 #define HCRX_CMOW (1ULL << 9) 1698 #define HCRX_MCE2 (1ULL << 10) 1699 #define HCRX_MSCEN (1ULL << 11) 1700 1701 #define HPFAR_NS (1ULL << 63) 1702 1703 #define SCR_NS (1ULL << 0) 1704 #define SCR_IRQ (1ULL << 1) 1705 #define SCR_FIQ (1ULL << 2) 1706 #define SCR_EA (1ULL << 3) 1707 #define SCR_FW (1ULL << 4) 1708 #define SCR_AW (1ULL << 5) 1709 #define SCR_NET (1ULL << 6) 1710 #define SCR_SMD (1ULL << 7) 1711 #define SCR_HCE (1ULL << 8) 1712 #define SCR_SIF (1ULL << 9) 1713 #define SCR_RW (1ULL << 10) 1714 #define SCR_ST (1ULL << 11) 1715 #define SCR_TWI (1ULL << 12) 1716 #define SCR_TWE (1ULL << 13) 1717 #define SCR_TLOR (1ULL << 14) 1718 #define SCR_TERR (1ULL << 15) 1719 #define SCR_APK (1ULL << 16) 1720 #define SCR_API (1ULL << 17) 1721 #define SCR_EEL2 (1ULL << 18) 1722 #define SCR_EASE (1ULL << 19) 1723 #define SCR_NMEA (1ULL << 20) 1724 #define SCR_FIEN (1ULL << 21) 1725 #define SCR_ENSCXT (1ULL << 25) 1726 #define SCR_ATA (1ULL << 26) 1727 #define SCR_FGTEN (1ULL << 27) 1728 #define SCR_ECVEN (1ULL << 28) 1729 #define SCR_TWEDEN (1ULL << 29) 1730 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4) 1731 #define SCR_TME (1ULL << 34) 1732 #define SCR_AMVOFFEN (1ULL << 35) 1733 #define SCR_ENAS0 (1ULL << 36) 1734 #define SCR_ADEN (1ULL << 37) 1735 #define SCR_HXEN (1ULL << 38) 1736 #define SCR_TRNDR (1ULL << 40) 1737 #define SCR_ENTP2 (1ULL << 41) 1738 #define SCR_GPF (1ULL << 48) 1739 #define SCR_NSE (1ULL << 62) 1740 1741 #define HSTR_TTEE (1 << 16) 1742 #define HSTR_TJDBX (1 << 17) 1743 1744 /* Return the current FPSCR value. */ 1745 uint32_t vfp_get_fpscr(CPUARMState *env); 1746 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1747 1748 /* FPCR, Floating Point Control Register 1749 * FPSR, Floating Poiht Status Register 1750 * 1751 * For A64 the FPSCR is split into two logically distinct registers, 1752 * FPCR and FPSR. However since they still use non-overlapping bits 1753 * we store the underlying state in fpscr and just mask on read/write. 1754 */ 1755 #define FPSR_MASK 0xf800009f 1756 #define FPCR_MASK 0x07ff9f00 1757 1758 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1759 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1760 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1761 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1762 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1763 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1764 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1765 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1766 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1767 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1768 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1769 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1770 #define FPCR_V (1 << 28) /* FP overflow flag */ 1771 #define FPCR_C (1 << 29) /* FP carry flag */ 1772 #define FPCR_Z (1 << 30) /* FP zero flag */ 1773 #define FPCR_N (1 << 31) /* FP negative flag */ 1774 1775 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1776 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1777 #define FPCR_LTPSIZE_LENGTH 3 1778 1779 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) 1780 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) 1781 1782 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1783 { 1784 return vfp_get_fpscr(env) & FPSR_MASK; 1785 } 1786 1787 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1788 { 1789 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1790 vfp_set_fpscr(env, new_fpscr); 1791 } 1792 1793 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1794 { 1795 return vfp_get_fpscr(env) & FPCR_MASK; 1796 } 1797 1798 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1799 { 1800 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1801 vfp_set_fpscr(env, new_fpscr); 1802 } 1803 1804 enum arm_cpu_mode { 1805 ARM_CPU_MODE_USR = 0x10, 1806 ARM_CPU_MODE_FIQ = 0x11, 1807 ARM_CPU_MODE_IRQ = 0x12, 1808 ARM_CPU_MODE_SVC = 0x13, 1809 ARM_CPU_MODE_MON = 0x16, 1810 ARM_CPU_MODE_ABT = 0x17, 1811 ARM_CPU_MODE_HYP = 0x1a, 1812 ARM_CPU_MODE_UND = 0x1b, 1813 ARM_CPU_MODE_SYS = 0x1f 1814 }; 1815 1816 /* VFP system registers. */ 1817 #define ARM_VFP_FPSID 0 1818 #define ARM_VFP_FPSCR 1 1819 #define ARM_VFP_MVFR2 5 1820 #define ARM_VFP_MVFR1 6 1821 #define ARM_VFP_MVFR0 7 1822 #define ARM_VFP_FPEXC 8 1823 #define ARM_VFP_FPINST 9 1824 #define ARM_VFP_FPINST2 10 1825 /* These ones are M-profile only */ 1826 #define ARM_VFP_FPSCR_NZCVQC 2 1827 #define ARM_VFP_VPR 12 1828 #define ARM_VFP_P0 13 1829 #define ARM_VFP_FPCXT_NS 14 1830 #define ARM_VFP_FPCXT_S 15 1831 1832 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1833 #define QEMU_VFP_FPSCR_NZCV 0xffff 1834 1835 /* iwMMXt coprocessor control registers. */ 1836 #define ARM_IWMMXT_wCID 0 1837 #define ARM_IWMMXT_wCon 1 1838 #define ARM_IWMMXT_wCSSF 2 1839 #define ARM_IWMMXT_wCASF 3 1840 #define ARM_IWMMXT_wCGR0 8 1841 #define ARM_IWMMXT_wCGR1 9 1842 #define ARM_IWMMXT_wCGR2 10 1843 #define ARM_IWMMXT_wCGR3 11 1844 1845 /* V7M CCR bits */ 1846 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1847 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1848 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1849 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1850 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1851 FIELD(V7M_CCR, STKALIGN, 9, 1) 1852 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1853 FIELD(V7M_CCR, DC, 16, 1) 1854 FIELD(V7M_CCR, IC, 17, 1) 1855 FIELD(V7M_CCR, BP, 18, 1) 1856 FIELD(V7M_CCR, LOB, 19, 1) 1857 FIELD(V7M_CCR, TRD, 20, 1) 1858 1859 /* V7M SCR bits */ 1860 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1861 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1862 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1863 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1864 1865 /* V7M AIRCR bits */ 1866 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1867 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1868 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1869 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1870 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1871 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1872 FIELD(V7M_AIRCR, PRIS, 14, 1) 1873 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1874 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1875 1876 /* V7M CFSR bits for MMFSR */ 1877 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1878 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1879 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1880 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1881 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1882 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1883 1884 /* V7M CFSR bits for BFSR */ 1885 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1886 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1887 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1888 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1889 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1890 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1891 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1892 1893 /* V7M CFSR bits for UFSR */ 1894 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1895 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1896 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1897 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1898 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1899 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1900 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1901 1902 /* V7M CFSR bit masks covering all of the subregister bits */ 1903 FIELD(V7M_CFSR, MMFSR, 0, 8) 1904 FIELD(V7M_CFSR, BFSR, 8, 8) 1905 FIELD(V7M_CFSR, UFSR, 16, 16) 1906 1907 /* V7M HFSR bits */ 1908 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1909 FIELD(V7M_HFSR, FORCED, 30, 1) 1910 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1911 1912 /* V7M DFSR bits */ 1913 FIELD(V7M_DFSR, HALTED, 0, 1) 1914 FIELD(V7M_DFSR, BKPT, 1, 1) 1915 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1916 FIELD(V7M_DFSR, VCATCH, 3, 1) 1917 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1918 1919 /* V7M SFSR bits */ 1920 FIELD(V7M_SFSR, INVEP, 0, 1) 1921 FIELD(V7M_SFSR, INVIS, 1, 1) 1922 FIELD(V7M_SFSR, INVER, 2, 1) 1923 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1924 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1925 FIELD(V7M_SFSR, LSPERR, 5, 1) 1926 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1927 FIELD(V7M_SFSR, LSERR, 7, 1) 1928 1929 /* v7M MPU_CTRL bits */ 1930 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1931 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1932 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1933 1934 /* v7M CLIDR bits */ 1935 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1936 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1937 FIELD(V7M_CLIDR, LOC, 24, 3) 1938 FIELD(V7M_CLIDR, LOUU, 27, 3) 1939 FIELD(V7M_CLIDR, ICB, 30, 2) 1940 1941 FIELD(V7M_CSSELR, IND, 0, 1) 1942 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1943 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1944 * define a mask for this and check that it doesn't permit running off 1945 * the end of the array. 1946 */ 1947 FIELD(V7M_CSSELR, INDEX, 0, 4) 1948 1949 /* v7M FPCCR bits */ 1950 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1951 FIELD(V7M_FPCCR, USER, 1, 1) 1952 FIELD(V7M_FPCCR, S, 2, 1) 1953 FIELD(V7M_FPCCR, THREAD, 3, 1) 1954 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1955 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1956 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1957 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1958 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1959 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1960 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1961 FIELD(V7M_FPCCR, RES0, 11, 15) 1962 FIELD(V7M_FPCCR, TS, 26, 1) 1963 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1964 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1965 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1966 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1967 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1968 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1969 #define R_V7M_FPCCR_BANKED_MASK \ 1970 (R_V7M_FPCCR_LSPACT_MASK | \ 1971 R_V7M_FPCCR_USER_MASK | \ 1972 R_V7M_FPCCR_THREAD_MASK | \ 1973 R_V7M_FPCCR_MMRDY_MASK | \ 1974 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1975 R_V7M_FPCCR_UFRDY_MASK | \ 1976 R_V7M_FPCCR_ASPEN_MASK) 1977 1978 /* v7M VPR bits */ 1979 FIELD(V7M_VPR, P0, 0, 16) 1980 FIELD(V7M_VPR, MASK01, 16, 4) 1981 FIELD(V7M_VPR, MASK23, 20, 4) 1982 1983 /* 1984 * System register ID fields. 1985 */ 1986 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1987 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1988 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1989 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1990 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1991 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1992 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1993 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1994 FIELD(CLIDR_EL1, LOC, 24, 3) 1995 FIELD(CLIDR_EL1, LOUU, 27, 3) 1996 FIELD(CLIDR_EL1, ICB, 30, 3) 1997 1998 /* When FEAT_CCIDX is implemented */ 1999 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 2000 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 2001 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 2002 2003 /* When FEAT_CCIDX is not implemented */ 2004 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 2005 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 2006 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 2007 2008 FIELD(CTR_EL0, IMINLINE, 0, 4) 2009 FIELD(CTR_EL0, L1IP, 14, 2) 2010 FIELD(CTR_EL0, DMINLINE, 16, 4) 2011 FIELD(CTR_EL0, ERG, 20, 4) 2012 FIELD(CTR_EL0, CWG, 24, 4) 2013 FIELD(CTR_EL0, IDC, 28, 1) 2014 FIELD(CTR_EL0, DIC, 29, 1) 2015 FIELD(CTR_EL0, TMINLINE, 32, 6) 2016 2017 FIELD(MIDR_EL1, REVISION, 0, 4) 2018 FIELD(MIDR_EL1, PARTNUM, 4, 12) 2019 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 2020 FIELD(MIDR_EL1, VARIANT, 20, 4) 2021 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 2022 2023 FIELD(ID_ISAR0, SWAP, 0, 4) 2024 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 2025 FIELD(ID_ISAR0, BITFIELD, 8, 4) 2026 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 2027 FIELD(ID_ISAR0, COPROC, 16, 4) 2028 FIELD(ID_ISAR0, DEBUG, 20, 4) 2029 FIELD(ID_ISAR0, DIVIDE, 24, 4) 2030 2031 FIELD(ID_ISAR1, ENDIAN, 0, 4) 2032 FIELD(ID_ISAR1, EXCEPT, 4, 4) 2033 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 2034 FIELD(ID_ISAR1, EXTEND, 12, 4) 2035 FIELD(ID_ISAR1, IFTHEN, 16, 4) 2036 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 2037 FIELD(ID_ISAR1, INTERWORK, 24, 4) 2038 FIELD(ID_ISAR1, JAZELLE, 28, 4) 2039 2040 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 2041 FIELD(ID_ISAR2, MEMHINT, 4, 4) 2042 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 2043 FIELD(ID_ISAR2, MULT, 12, 4) 2044 FIELD(ID_ISAR2, MULTS, 16, 4) 2045 FIELD(ID_ISAR2, MULTU, 20, 4) 2046 FIELD(ID_ISAR2, PSR_AR, 24, 4) 2047 FIELD(ID_ISAR2, REVERSAL, 28, 4) 2048 2049 FIELD(ID_ISAR3, SATURATE, 0, 4) 2050 FIELD(ID_ISAR3, SIMD, 4, 4) 2051 FIELD(ID_ISAR3, SVC, 8, 4) 2052 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 2053 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 2054 FIELD(ID_ISAR3, T32COPY, 20, 4) 2055 FIELD(ID_ISAR3, TRUENOP, 24, 4) 2056 FIELD(ID_ISAR3, T32EE, 28, 4) 2057 2058 FIELD(ID_ISAR4, UNPRIV, 0, 4) 2059 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 2060 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 2061 FIELD(ID_ISAR4, SMC, 12, 4) 2062 FIELD(ID_ISAR4, BARRIER, 16, 4) 2063 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 2064 FIELD(ID_ISAR4, PSR_M, 24, 4) 2065 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 2066 2067 FIELD(ID_ISAR5, SEVL, 0, 4) 2068 FIELD(ID_ISAR5, AES, 4, 4) 2069 FIELD(ID_ISAR5, SHA1, 8, 4) 2070 FIELD(ID_ISAR5, SHA2, 12, 4) 2071 FIELD(ID_ISAR5, CRC32, 16, 4) 2072 FIELD(ID_ISAR5, RDM, 24, 4) 2073 FIELD(ID_ISAR5, VCMA, 28, 4) 2074 2075 FIELD(ID_ISAR6, JSCVT, 0, 4) 2076 FIELD(ID_ISAR6, DP, 4, 4) 2077 FIELD(ID_ISAR6, FHM, 8, 4) 2078 FIELD(ID_ISAR6, SB, 12, 4) 2079 FIELD(ID_ISAR6, SPECRES, 16, 4) 2080 FIELD(ID_ISAR6, BF16, 20, 4) 2081 FIELD(ID_ISAR6, I8MM, 24, 4) 2082 2083 FIELD(ID_MMFR0, VMSA, 0, 4) 2084 FIELD(ID_MMFR0, PMSA, 4, 4) 2085 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 2086 FIELD(ID_MMFR0, SHARELVL, 12, 4) 2087 FIELD(ID_MMFR0, TCM, 16, 4) 2088 FIELD(ID_MMFR0, AUXREG, 20, 4) 2089 FIELD(ID_MMFR0, FCSE, 24, 4) 2090 FIELD(ID_MMFR0, INNERSHR, 28, 4) 2091 2092 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 2093 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 2094 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 2095 FIELD(ID_MMFR1, L1UNISW, 12, 4) 2096 FIELD(ID_MMFR1, L1HVD, 16, 4) 2097 FIELD(ID_MMFR1, L1UNI, 20, 4) 2098 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 2099 FIELD(ID_MMFR1, BPRED, 28, 4) 2100 2101 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 2102 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 2103 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 2104 FIELD(ID_MMFR2, HVDTLB, 12, 4) 2105 FIELD(ID_MMFR2, UNITLB, 16, 4) 2106 FIELD(ID_MMFR2, MEMBARR, 20, 4) 2107 FIELD(ID_MMFR2, WFISTALL, 24, 4) 2108 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 2109 2110 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 2111 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 2112 FIELD(ID_MMFR3, BPMAINT, 8, 4) 2113 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 2114 FIELD(ID_MMFR3, PAN, 16, 4) 2115 FIELD(ID_MMFR3, COHWALK, 20, 4) 2116 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 2117 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 2118 2119 FIELD(ID_MMFR4, SPECSEI, 0, 4) 2120 FIELD(ID_MMFR4, AC2, 4, 4) 2121 FIELD(ID_MMFR4, XNX, 8, 4) 2122 FIELD(ID_MMFR4, CNP, 12, 4) 2123 FIELD(ID_MMFR4, HPDS, 16, 4) 2124 FIELD(ID_MMFR4, LSM, 20, 4) 2125 FIELD(ID_MMFR4, CCIDX, 24, 4) 2126 FIELD(ID_MMFR4, EVT, 28, 4) 2127 2128 FIELD(ID_MMFR5, ETS, 0, 4) 2129 FIELD(ID_MMFR5, NTLBPA, 4, 4) 2130 2131 FIELD(ID_PFR0, STATE0, 0, 4) 2132 FIELD(ID_PFR0, STATE1, 4, 4) 2133 FIELD(ID_PFR0, STATE2, 8, 4) 2134 FIELD(ID_PFR0, STATE3, 12, 4) 2135 FIELD(ID_PFR0, CSV2, 16, 4) 2136 FIELD(ID_PFR0, AMU, 20, 4) 2137 FIELD(ID_PFR0, DIT, 24, 4) 2138 FIELD(ID_PFR0, RAS, 28, 4) 2139 2140 FIELD(ID_PFR1, PROGMOD, 0, 4) 2141 FIELD(ID_PFR1, SECURITY, 4, 4) 2142 FIELD(ID_PFR1, MPROGMOD, 8, 4) 2143 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 2144 FIELD(ID_PFR1, GENTIMER, 16, 4) 2145 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 2146 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 2147 FIELD(ID_PFR1, GIC, 28, 4) 2148 2149 FIELD(ID_PFR2, CSV3, 0, 4) 2150 FIELD(ID_PFR2, SSBS, 4, 4) 2151 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 2152 2153 FIELD(ID_AA64ISAR0, AES, 4, 4) 2154 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 2155 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 2156 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 2157 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 2158 FIELD(ID_AA64ISAR0, RDM, 28, 4) 2159 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 2160 FIELD(ID_AA64ISAR0, SM3, 36, 4) 2161 FIELD(ID_AA64ISAR0, SM4, 40, 4) 2162 FIELD(ID_AA64ISAR0, DP, 44, 4) 2163 FIELD(ID_AA64ISAR0, FHM, 48, 4) 2164 FIELD(ID_AA64ISAR0, TS, 52, 4) 2165 FIELD(ID_AA64ISAR0, TLB, 56, 4) 2166 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 2167 2168 FIELD(ID_AA64ISAR1, DPB, 0, 4) 2169 FIELD(ID_AA64ISAR1, APA, 4, 4) 2170 FIELD(ID_AA64ISAR1, API, 8, 4) 2171 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 2172 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 2173 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 2174 FIELD(ID_AA64ISAR1, GPA, 24, 4) 2175 FIELD(ID_AA64ISAR1, GPI, 28, 4) 2176 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 2177 FIELD(ID_AA64ISAR1, SB, 36, 4) 2178 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 2179 FIELD(ID_AA64ISAR1, BF16, 44, 4) 2180 FIELD(ID_AA64ISAR1, DGH, 48, 4) 2181 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 2182 FIELD(ID_AA64ISAR1, XS, 56, 4) 2183 FIELD(ID_AA64ISAR1, LS64, 60, 4) 2184 2185 FIELD(ID_AA64ISAR2, WFXT, 0, 4) 2186 FIELD(ID_AA64ISAR2, RPRES, 4, 4) 2187 FIELD(ID_AA64ISAR2, GPA3, 8, 4) 2188 FIELD(ID_AA64ISAR2, APA3, 12, 4) 2189 FIELD(ID_AA64ISAR2, MOPS, 16, 4) 2190 FIELD(ID_AA64ISAR2, BC, 20, 4) 2191 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4) 2192 2193 FIELD(ID_AA64PFR0, EL0, 0, 4) 2194 FIELD(ID_AA64PFR0, EL1, 4, 4) 2195 FIELD(ID_AA64PFR0, EL2, 8, 4) 2196 FIELD(ID_AA64PFR0, EL3, 12, 4) 2197 FIELD(ID_AA64PFR0, FP, 16, 4) 2198 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 2199 FIELD(ID_AA64PFR0, GIC, 24, 4) 2200 FIELD(ID_AA64PFR0, RAS, 28, 4) 2201 FIELD(ID_AA64PFR0, SVE, 32, 4) 2202 FIELD(ID_AA64PFR0, SEL2, 36, 4) 2203 FIELD(ID_AA64PFR0, MPAM, 40, 4) 2204 FIELD(ID_AA64PFR0, AMU, 44, 4) 2205 FIELD(ID_AA64PFR0, DIT, 48, 4) 2206 FIELD(ID_AA64PFR0, RME, 52, 4) 2207 FIELD(ID_AA64PFR0, CSV2, 56, 4) 2208 FIELD(ID_AA64PFR0, CSV3, 60, 4) 2209 2210 FIELD(ID_AA64PFR1, BT, 0, 4) 2211 FIELD(ID_AA64PFR1, SSBS, 4, 4) 2212 FIELD(ID_AA64PFR1, MTE, 8, 4) 2213 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 2214 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 2215 FIELD(ID_AA64PFR1, SME, 24, 4) 2216 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4) 2217 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4) 2218 FIELD(ID_AA64PFR1, NMI, 36, 4) 2219 2220 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 2221 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 2222 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 2223 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 2224 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 2225 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 2226 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 2227 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 2228 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 2229 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 2230 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 2231 FIELD(ID_AA64MMFR0, EXS, 44, 4) 2232 FIELD(ID_AA64MMFR0, FGT, 56, 4) 2233 FIELD(ID_AA64MMFR0, ECV, 60, 4) 2234 2235 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 2236 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 2237 FIELD(ID_AA64MMFR1, VH, 8, 4) 2238 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 2239 FIELD(ID_AA64MMFR1, LO, 16, 4) 2240 FIELD(ID_AA64MMFR1, PAN, 20, 4) 2241 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 2242 FIELD(ID_AA64MMFR1, XNX, 28, 4) 2243 FIELD(ID_AA64MMFR1, TWED, 32, 4) 2244 FIELD(ID_AA64MMFR1, ETS, 36, 4) 2245 FIELD(ID_AA64MMFR1, HCX, 40, 4) 2246 FIELD(ID_AA64MMFR1, AFP, 44, 4) 2247 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4) 2248 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4) 2249 FIELD(ID_AA64MMFR1, CMOW, 56, 4) 2250 2251 FIELD(ID_AA64MMFR2, CNP, 0, 4) 2252 FIELD(ID_AA64MMFR2, UAO, 4, 4) 2253 FIELD(ID_AA64MMFR2, LSM, 8, 4) 2254 FIELD(ID_AA64MMFR2, IESB, 12, 4) 2255 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 2256 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 2257 FIELD(ID_AA64MMFR2, NV, 24, 4) 2258 FIELD(ID_AA64MMFR2, ST, 28, 4) 2259 FIELD(ID_AA64MMFR2, AT, 32, 4) 2260 FIELD(ID_AA64MMFR2, IDS, 36, 4) 2261 FIELD(ID_AA64MMFR2, FWB, 40, 4) 2262 FIELD(ID_AA64MMFR2, TTL, 48, 4) 2263 FIELD(ID_AA64MMFR2, BBM, 52, 4) 2264 FIELD(ID_AA64MMFR2, EVT, 56, 4) 2265 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 2266 2267 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2268 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2269 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2270 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2271 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2272 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2273 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2274 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2275 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2276 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4) 2277 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2278 FIELD(ID_AA64DFR0, BRBE, 52, 4) 2279 FIELD(ID_AA64DFR0, HPMN0, 60, 4) 2280 2281 FIELD(ID_AA64ZFR0, SVEVER, 0, 4) 2282 FIELD(ID_AA64ZFR0, AES, 4, 4) 2283 FIELD(ID_AA64ZFR0, BITPERM, 16, 4) 2284 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) 2285 FIELD(ID_AA64ZFR0, SHA3, 32, 4) 2286 FIELD(ID_AA64ZFR0, SM4, 40, 4) 2287 FIELD(ID_AA64ZFR0, I8MM, 44, 4) 2288 FIELD(ID_AA64ZFR0, F32MM, 52, 4) 2289 FIELD(ID_AA64ZFR0, F64MM, 56, 4) 2290 2291 FIELD(ID_AA64SMFR0, F32F32, 32, 1) 2292 FIELD(ID_AA64SMFR0, B16F32, 34, 1) 2293 FIELD(ID_AA64SMFR0, F16F32, 35, 1) 2294 FIELD(ID_AA64SMFR0, I8I32, 36, 4) 2295 FIELD(ID_AA64SMFR0, F64F64, 48, 1) 2296 FIELD(ID_AA64SMFR0, I16I64, 52, 4) 2297 FIELD(ID_AA64SMFR0, SMEVER, 56, 4) 2298 FIELD(ID_AA64SMFR0, FA64, 63, 1) 2299 2300 FIELD(ID_DFR0, COPDBG, 0, 4) 2301 FIELD(ID_DFR0, COPSDBG, 4, 4) 2302 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2303 FIELD(ID_DFR0, COPTRC, 12, 4) 2304 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2305 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2306 FIELD(ID_DFR0, PERFMON, 24, 4) 2307 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2308 2309 FIELD(ID_DFR1, MTPMU, 0, 4) 2310 FIELD(ID_DFR1, HPMN0, 4, 4) 2311 2312 FIELD(DBGDIDR, SE_IMP, 12, 1) 2313 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2314 FIELD(DBGDIDR, VERSION, 16, 4) 2315 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2316 FIELD(DBGDIDR, BRPS, 24, 4) 2317 FIELD(DBGDIDR, WRPS, 28, 4) 2318 2319 FIELD(DBGDEVID, PCSAMPLE, 0, 4) 2320 FIELD(DBGDEVID, WPADDRMASK, 4, 4) 2321 FIELD(DBGDEVID, BPADDRMASK, 8, 4) 2322 FIELD(DBGDEVID, VECTORCATCH, 12, 4) 2323 FIELD(DBGDEVID, VIRTEXTNS, 16, 4) 2324 FIELD(DBGDEVID, DOUBLELOCK, 20, 4) 2325 FIELD(DBGDEVID, AUXREGS, 24, 4) 2326 FIELD(DBGDEVID, CIDMASK, 28, 4) 2327 2328 FIELD(MVFR0, SIMDREG, 0, 4) 2329 FIELD(MVFR0, FPSP, 4, 4) 2330 FIELD(MVFR0, FPDP, 8, 4) 2331 FIELD(MVFR0, FPTRAP, 12, 4) 2332 FIELD(MVFR0, FPDIVIDE, 16, 4) 2333 FIELD(MVFR0, FPSQRT, 20, 4) 2334 FIELD(MVFR0, FPSHVEC, 24, 4) 2335 FIELD(MVFR0, FPROUND, 28, 4) 2336 2337 FIELD(MVFR1, FPFTZ, 0, 4) 2338 FIELD(MVFR1, FPDNAN, 4, 4) 2339 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2340 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2341 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2342 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2343 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2344 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2345 FIELD(MVFR1, FPHP, 24, 4) 2346 FIELD(MVFR1, SIMDFMAC, 28, 4) 2347 2348 FIELD(MVFR2, SIMDMISC, 0, 4) 2349 FIELD(MVFR2, FPMISC, 4, 4) 2350 2351 FIELD(GPCCR, PPS, 0, 3) 2352 FIELD(GPCCR, IRGN, 8, 2) 2353 FIELD(GPCCR, ORGN, 10, 2) 2354 FIELD(GPCCR, SH, 12, 2) 2355 FIELD(GPCCR, PGS, 14, 2) 2356 FIELD(GPCCR, GPC, 16, 1) 2357 FIELD(GPCCR, GPCP, 17, 1) 2358 FIELD(GPCCR, L0GPTSZ, 20, 4) 2359 2360 FIELD(MFAR, FPA, 12, 40) 2361 FIELD(MFAR, NSE, 62, 1) 2362 FIELD(MFAR, NS, 63, 1) 2363 2364 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2365 2366 /* If adding a feature bit which corresponds to a Linux ELF 2367 * HWCAP bit, remember to update the feature-bit-to-hwcap 2368 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2369 */ 2370 enum arm_features { 2371 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2372 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2373 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2374 ARM_FEATURE_V6, 2375 ARM_FEATURE_V6K, 2376 ARM_FEATURE_V7, 2377 ARM_FEATURE_THUMB2, 2378 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2379 ARM_FEATURE_NEON, 2380 ARM_FEATURE_M, /* Microcontroller profile. */ 2381 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2382 ARM_FEATURE_THUMB2EE, 2383 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2384 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2385 ARM_FEATURE_V4T, 2386 ARM_FEATURE_V5, 2387 ARM_FEATURE_STRONGARM, 2388 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2389 ARM_FEATURE_GENERIC_TIMER, 2390 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2391 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2392 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2393 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2394 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2395 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2396 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2397 ARM_FEATURE_V8, 2398 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2399 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2400 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2401 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2402 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2403 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2404 ARM_FEATURE_PMU, /* has PMU support */ 2405 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2406 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2407 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2408 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2409 }; 2410 2411 static inline int arm_feature(CPUARMState *env, int feature) 2412 { 2413 return (env->features & (1ULL << feature)) != 0; 2414 } 2415 2416 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2417 2418 /* 2419 * ARM v9 security states. 2420 * The ordering of the enumeration corresponds to the low 2 bits 2421 * of the GPI value, and (except for Root) the concat of NSE:NS. 2422 */ 2423 2424 typedef enum ARMSecuritySpace { 2425 ARMSS_Secure = 0, 2426 ARMSS_NonSecure = 1, 2427 ARMSS_Root = 2, 2428 ARMSS_Realm = 3, 2429 } ARMSecuritySpace; 2430 2431 /* Return true if @space is secure, in the pre-v9 sense. */ 2432 static inline bool arm_space_is_secure(ARMSecuritySpace space) 2433 { 2434 return space == ARMSS_Secure || space == ARMSS_Root; 2435 } 2436 2437 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */ 2438 static inline ARMSecuritySpace arm_secure_to_space(bool secure) 2439 { 2440 return secure ? ARMSS_Secure : ARMSS_NonSecure; 2441 } 2442 2443 #if !defined(CONFIG_USER_ONLY) 2444 /** 2445 * arm_security_space_below_el3: 2446 * @env: cpu context 2447 * 2448 * Return the security space of exception levels below EL3, following 2449 * an exception return to those levels. Unlike arm_security_space, 2450 * this doesn't care about the current EL. 2451 */ 2452 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env); 2453 2454 /** 2455 * arm_is_secure_below_el3: 2456 * @env: cpu context 2457 * 2458 * Return true if exception levels below EL3 are in secure state, 2459 * or would be following an exception return to those levels. 2460 */ 2461 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2462 { 2463 ARMSecuritySpace ss = arm_security_space_below_el3(env); 2464 return ss == ARMSS_Secure; 2465 } 2466 2467 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2468 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2469 { 2470 assert(!arm_feature(env, ARM_FEATURE_M)); 2471 if (arm_feature(env, ARM_FEATURE_EL3)) { 2472 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2473 /* CPU currently in AArch64 state and EL3 */ 2474 return true; 2475 } else if (!is_a64(env) && 2476 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2477 /* CPU currently in AArch32 state and monitor mode */ 2478 return true; 2479 } 2480 } 2481 return false; 2482 } 2483 2484 /** 2485 * arm_security_space: 2486 * @env: cpu context 2487 * 2488 * Return the current security space of the cpu. 2489 */ 2490 ARMSecuritySpace arm_security_space(CPUARMState *env); 2491 2492 /** 2493 * arm_is_secure: 2494 * @env: cpu context 2495 * 2496 * Return true if the processor is in secure state. 2497 */ 2498 static inline bool arm_is_secure(CPUARMState *env) 2499 { 2500 return arm_space_is_secure(arm_security_space(env)); 2501 } 2502 2503 /* 2504 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. 2505 * This corresponds to the pseudocode EL2Enabled() 2506 */ 2507 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure) 2508 { 2509 return arm_feature(env, ARM_FEATURE_EL2) 2510 && (!secure || (env->cp15.scr_el3 & SCR_EEL2)); 2511 } 2512 2513 static inline bool arm_is_el2_enabled(CPUARMState *env) 2514 { 2515 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env)); 2516 } 2517 2518 #else 2519 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 2520 { 2521 return ARMSS_NonSecure; 2522 } 2523 2524 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2525 { 2526 return false; 2527 } 2528 2529 static inline ARMSecuritySpace arm_security_space(CPUARMState *env) 2530 { 2531 return ARMSS_NonSecure; 2532 } 2533 2534 static inline bool arm_is_secure(CPUARMState *env) 2535 { 2536 return false; 2537 } 2538 2539 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure) 2540 { 2541 return false; 2542 } 2543 2544 static inline bool arm_is_el2_enabled(CPUARMState *env) 2545 { 2546 return false; 2547 } 2548 #endif 2549 2550 /** 2551 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2552 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2553 * "for all purposes other than a direct read or write access of HCR_EL2." 2554 * Not included here is HCR_RW. 2555 */ 2556 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure); 2557 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2558 uint64_t arm_hcrx_el2_eff(CPUARMState *env); 2559 2560 /* Return true if the specified exception level is running in AArch64 state. */ 2561 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2562 { 2563 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2564 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2565 */ 2566 assert(el >= 1 && el <= 3); 2567 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2568 2569 /* The highest exception level is always at the maximum supported 2570 * register width, and then lower levels have a register width controlled 2571 * by bits in the SCR or HCR registers. 2572 */ 2573 if (el == 3) { 2574 return aa64; 2575 } 2576 2577 if (arm_feature(env, ARM_FEATURE_EL3) && 2578 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { 2579 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2580 } 2581 2582 if (el == 2) { 2583 return aa64; 2584 } 2585 2586 if (arm_is_el2_enabled(env)) { 2587 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2588 } 2589 2590 return aa64; 2591 } 2592 2593 /* Function for determing whether guest cp register reads and writes should 2594 * access the secure or non-secure bank of a cp register. When EL3 is 2595 * operating in AArch32 state, the NS-bit determines whether the secure 2596 * instance of a cp register should be used. When EL3 is AArch64 (or if 2597 * it doesn't exist at all) then there is no register banking, and all 2598 * accesses are to the non-secure version. 2599 */ 2600 static inline bool access_secure_reg(CPUARMState *env) 2601 { 2602 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2603 !arm_el_is_aa64(env, 3) && 2604 !(env->cp15.scr_el3 & SCR_NS)); 2605 2606 return ret; 2607 } 2608 2609 /* Macros for accessing a specified CP register bank */ 2610 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2611 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2612 2613 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2614 do { \ 2615 if (_secure) { \ 2616 (_env)->cp15._regname##_s = (_val); \ 2617 } else { \ 2618 (_env)->cp15._regname##_ns = (_val); \ 2619 } \ 2620 } while (0) 2621 2622 /* Macros for automatically accessing a specific CP register bank depending on 2623 * the current secure state of the system. These macros are not intended for 2624 * supporting instruction translation reads/writes as these are dependent 2625 * solely on the SCR.NS bit and not the mode. 2626 */ 2627 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2628 A32_BANKED_REG_GET((_env), _regname, \ 2629 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2630 2631 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2632 A32_BANKED_REG_SET((_env), _regname, \ 2633 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2634 (_val)) 2635 2636 void arm_cpu_list(void); 2637 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2638 uint32_t cur_el, bool secure); 2639 2640 /* Return the highest implemented Exception Level */ 2641 static inline int arm_highest_el(CPUARMState *env) 2642 { 2643 if (arm_feature(env, ARM_FEATURE_EL3)) { 2644 return 3; 2645 } 2646 if (arm_feature(env, ARM_FEATURE_EL2)) { 2647 return 2; 2648 } 2649 return 1; 2650 } 2651 2652 /* Return true if a v7M CPU is in Handler mode */ 2653 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2654 { 2655 return env->v7m.exception != 0; 2656 } 2657 2658 /* Return the current Exception Level (as per ARMv8; note that this differs 2659 * from the ARMv7 Privilege Level). 2660 */ 2661 static inline int arm_current_el(CPUARMState *env) 2662 { 2663 if (arm_feature(env, ARM_FEATURE_M)) { 2664 return arm_v7m_is_handler_mode(env) || 2665 !(env->v7m.control[env->v7m.secure] & 1); 2666 } 2667 2668 if (is_a64(env)) { 2669 return extract32(env->pstate, 2, 2); 2670 } 2671 2672 switch (env->uncached_cpsr & 0x1f) { 2673 case ARM_CPU_MODE_USR: 2674 return 0; 2675 case ARM_CPU_MODE_HYP: 2676 return 2; 2677 case ARM_CPU_MODE_MON: 2678 return 3; 2679 default: 2680 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2681 /* If EL3 is 32-bit then all secure privileged modes run in 2682 * EL3 2683 */ 2684 return 3; 2685 } 2686 2687 return 1; 2688 } 2689 } 2690 2691 /** 2692 * write_list_to_cpustate 2693 * @cpu: ARMCPU 2694 * 2695 * For each register listed in the ARMCPU cpreg_indexes list, write 2696 * its value from the cpreg_values list into the ARMCPUState structure. 2697 * This updates TCG's working data structures from KVM data or 2698 * from incoming migration state. 2699 * 2700 * Returns: true if all register values were updated correctly, 2701 * false if some register was unknown or could not be written. 2702 * Note that we do not stop early on failure -- we will attempt 2703 * writing all registers in the list. 2704 */ 2705 bool write_list_to_cpustate(ARMCPU *cpu); 2706 2707 /** 2708 * write_cpustate_to_list: 2709 * @cpu: ARMCPU 2710 * @kvm_sync: true if this is for syncing back to KVM 2711 * 2712 * For each register listed in the ARMCPU cpreg_indexes list, write 2713 * its value from the ARMCPUState structure into the cpreg_values list. 2714 * This is used to copy info from TCG's working data structures into 2715 * KVM or for outbound migration. 2716 * 2717 * @kvm_sync is true if we are doing this in order to sync the 2718 * register state back to KVM. In this case we will only update 2719 * values in the list if the previous list->cpustate sync actually 2720 * successfully wrote the CPU state. Otherwise we will keep the value 2721 * that is in the list. 2722 * 2723 * Returns: true if all register values were read correctly, 2724 * false if some register was unknown or could not be read. 2725 * Note that we do not stop early on failure -- we will attempt 2726 * reading all registers in the list. 2727 */ 2728 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2729 2730 #define ARM_CPUID_TI915T 0x54029152 2731 #define ARM_CPUID_TI925T 0x54029252 2732 2733 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2734 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2735 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2736 2737 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU 2738 2739 #define cpu_list arm_cpu_list 2740 2741 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2742 * 2743 * If EL3 is 64-bit: 2744 * + NonSecure EL1 & 0 stage 1 2745 * + NonSecure EL1 & 0 stage 2 2746 * + NonSecure EL2 2747 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2748 * + Secure EL1 & 0 2749 * + Secure EL3 2750 * If EL3 is 32-bit: 2751 * + NonSecure PL1 & 0 stage 1 2752 * + NonSecure PL1 & 0 stage 2 2753 * + NonSecure PL2 2754 * + Secure PL0 2755 * + Secure PL1 2756 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2757 * 2758 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2759 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2760 * because they may differ in access permissions even if the VA->PA map is 2761 * the same 2762 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2763 * translation, which means that we have one mmu_idx that deals with two 2764 * concatenated translation regimes [this sort of combined s1+2 TLB is 2765 * architecturally permitted] 2766 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2767 * handling via the TLB. The only way to do a stage 1 translation without 2768 * the immediate stage 2 translation is via the ATS or AT system insns, 2769 * which can be slow-pathed and always do a page table walk. 2770 * The only use of stage 2 translations is either as part of an s1+2 2771 * lookup or when loading the descriptors during a stage 1 page table walk, 2772 * and in both those cases we don't use the TLB. 2773 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2774 * translation regimes, because they map reasonably well to each other 2775 * and they can't both be active at the same time. 2776 * 5. we want to be able to use the TLB for accesses done as part of a 2777 * stage1 page table walk, rather than having to walk the stage2 page 2778 * table over and over. 2779 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2780 * Never (PAN) bit within PSTATE. 2781 * 7. we fold together the secure and non-secure regimes for A-profile, 2782 * because there are no banked system registers for aarch64, so the 2783 * process of switching between secure and non-secure is 2784 * already heavyweight. 2785 * 2786 * This gives us the following list of cases: 2787 * 2788 * EL0 EL1&0 stage 1+2 (aka NS PL0) 2789 * EL1 EL1&0 stage 1+2 (aka NS PL1) 2790 * EL1 EL1&0 stage 1+2 +PAN 2791 * EL0 EL2&0 2792 * EL2 EL2&0 2793 * EL2 EL2&0 +PAN 2794 * EL2 (aka NS PL2) 2795 * EL3 (aka S PL1) 2796 * Physical (NS & S) 2797 * Stage2 (NS & S) 2798 * 2799 * for a total of 12 different mmu_idx. 2800 * 2801 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2802 * as A profile. They only need to distinguish EL0 and EL1 (and 2803 * EL2 if we ever model a Cortex-R52). 2804 * 2805 * M profile CPUs are rather different as they do not have a true MMU. 2806 * They have the following different MMU indexes: 2807 * User 2808 * Privileged 2809 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2810 * Privileged, execution priority negative (ditto) 2811 * If the CPU supports the v8M Security Extension then there are also: 2812 * Secure User 2813 * Secure Privileged 2814 * Secure User, execution priority negative 2815 * Secure Privileged, execution priority negative 2816 * 2817 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2818 * are not quite the same -- different CPU types (most notably M profile 2819 * vs A/R profile) would like to use MMU indexes with different semantics, 2820 * but since we don't ever need to use all of those in a single CPU we 2821 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2822 * modes + total number of M profile MMU modes". The lower bits of 2823 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2824 * the same for any particular CPU. 2825 * Variables of type ARMMUIdx are always full values, and the core 2826 * index values are in variables of type 'int'. 2827 * 2828 * Our enumeration includes at the end some entries which are not "true" 2829 * mmu_idx values in that they don't have corresponding TLBs and are only 2830 * valid for doing slow path page table walks. 2831 * 2832 * The constant names here are patterned after the general style of the names 2833 * of the AT/ATS operations. 2834 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2835 * For M profile we arrange them to have a bit for priv, a bit for negpri 2836 * and a bit for secure. 2837 */ 2838 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2839 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2840 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2841 2842 /* Meanings of the bits for M profile mmu idx values */ 2843 #define ARM_MMU_IDX_M_PRIV 0x1 2844 #define ARM_MMU_IDX_M_NEGPRI 0x2 2845 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2846 2847 #define ARM_MMU_IDX_TYPE_MASK \ 2848 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2849 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2850 2851 typedef enum ARMMMUIdx { 2852 /* 2853 * A-profile. 2854 */ 2855 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2856 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2857 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2858 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A, 2859 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A, 2860 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A, 2861 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A, 2862 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A, 2863 2864 /* 2865 * Used for second stage of an S12 page table walk, or for descriptor 2866 * loads during first stage of an S1 page table walk. Note that both 2867 * are in use simultaneously for SecureEL2: the security state for 2868 * the S2 ptw is selected by the NS bit from the S1 ptw. 2869 */ 2870 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A, 2871 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A, 2872 2873 /* TLBs with 1-1 mapping to the physical address spaces. */ 2874 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A, 2875 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A, 2876 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A, 2877 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A, 2878 2879 /* 2880 * These are not allocated TLBs and are used only for AT system 2881 * instructions or for the first stage of an S12 page table walk. 2882 */ 2883 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2884 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2885 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2886 2887 /* 2888 * M-profile. 2889 */ 2890 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2891 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2892 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2893 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2894 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2895 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2896 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2897 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2898 } ARMMMUIdx; 2899 2900 /* 2901 * Bit macros for the core-mmu-index values for each index, 2902 * for use when calling tlb_flush_by_mmuidx() and friends. 2903 */ 2904 #define TO_CORE_BIT(NAME) \ 2905 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2906 2907 typedef enum ARMMMUIdxBit { 2908 TO_CORE_BIT(E10_0), 2909 TO_CORE_BIT(E20_0), 2910 TO_CORE_BIT(E10_1), 2911 TO_CORE_BIT(E10_1_PAN), 2912 TO_CORE_BIT(E2), 2913 TO_CORE_BIT(E20_2), 2914 TO_CORE_BIT(E20_2_PAN), 2915 TO_CORE_BIT(E3), 2916 TO_CORE_BIT(Stage2), 2917 TO_CORE_BIT(Stage2_S), 2918 2919 TO_CORE_BIT(MUser), 2920 TO_CORE_BIT(MPriv), 2921 TO_CORE_BIT(MUserNegPri), 2922 TO_CORE_BIT(MPrivNegPri), 2923 TO_CORE_BIT(MSUser), 2924 TO_CORE_BIT(MSPriv), 2925 TO_CORE_BIT(MSUserNegPri), 2926 TO_CORE_BIT(MSPrivNegPri), 2927 } ARMMMUIdxBit; 2928 2929 #undef TO_CORE_BIT 2930 2931 #define MMU_USER_IDX 0 2932 2933 /* Indexes used when registering address spaces with cpu_address_space_init */ 2934 typedef enum ARMASIdx { 2935 ARMASIdx_NS = 0, 2936 ARMASIdx_S = 1, 2937 ARMASIdx_TagNS = 2, 2938 ARMASIdx_TagS = 3, 2939 } ARMASIdx; 2940 2941 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space) 2942 { 2943 /* Assert the relative order of the physical mmu indexes. */ 2944 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0); 2945 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure); 2946 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root); 2947 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm); 2948 2949 return ARMMMUIdx_Phys_S + space; 2950 } 2951 2952 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx) 2953 { 2954 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm); 2955 return idx - ARMMMUIdx_Phys_S; 2956 } 2957 2958 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 2959 { 2960 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 2961 * CSSELR is RAZ/WI. 2962 */ 2963 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 2964 } 2965 2966 static inline bool arm_sctlr_b(CPUARMState *env) 2967 { 2968 return 2969 /* We need not implement SCTLR.ITD in user-mode emulation, so 2970 * let linux-user ignore the fact that it conflicts with SCTLR_B. 2971 * This lets people run BE32 binaries with "-cpu any". 2972 */ 2973 #ifndef CONFIG_USER_ONLY 2974 !arm_feature(env, ARM_FEATURE_V7) && 2975 #endif 2976 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 2977 } 2978 2979 uint64_t arm_sctlr(CPUARMState *env, int el); 2980 2981 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 2982 bool sctlr_b) 2983 { 2984 #ifdef CONFIG_USER_ONLY 2985 /* 2986 * In system mode, BE32 is modelled in line with the 2987 * architecture (as word-invariant big-endianness), where loads 2988 * and stores are done little endian but from addresses which 2989 * are adjusted by XORing with the appropriate constant. So the 2990 * endianness to use for the raw data access is not affected by 2991 * SCTLR.B. 2992 * In user mode, however, we model BE32 as byte-invariant 2993 * big-endianness (because user-only code cannot tell the 2994 * difference), and so we need to use a data access endianness 2995 * that depends on SCTLR.B. 2996 */ 2997 if (sctlr_b) { 2998 return true; 2999 } 3000 #endif 3001 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3002 return env->uncached_cpsr & CPSR_E; 3003 } 3004 3005 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3006 { 3007 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3008 } 3009 3010 /* Return true if the processor is in big-endian mode. */ 3011 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3012 { 3013 if (!is_a64(env)) { 3014 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3015 } else { 3016 int cur_el = arm_current_el(env); 3017 uint64_t sctlr = arm_sctlr(env, cur_el); 3018 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3019 } 3020 } 3021 3022 #include "exec/cpu-all.h" 3023 3024 /* 3025 * We have more than 32-bits worth of state per TB, so we split the data 3026 * between tb->flags and tb->cs_base, which is otherwise unused for ARM. 3027 * We collect these two parts in CPUARMTBFlags where they are named 3028 * flags and flags2 respectively. 3029 * 3030 * The flags that are shared between all execution modes, TBFLAG_ANY, 3031 * are stored in flags. The flags that are specific to a given mode 3032 * are stores in flags2. Since cs_base is sized on the configured 3033 * address size, flags2 always has 64-bits for A64, and a minimum of 3034 * 32-bits for A32 and M32. 3035 * 3036 * The bits for 32-bit A-profile and M-profile partially overlap: 3037 * 3038 * 31 23 11 10 0 3039 * +-------------+----------+----------------+ 3040 * | | | TBFLAG_A32 | 3041 * | TBFLAG_AM32 | +-----+----------+ 3042 * | | |TBFLAG_M32| 3043 * +-------------+----------------+----------+ 3044 * 31 23 6 5 0 3045 * 3046 * Unless otherwise noted, these bits are cached in env->hflags. 3047 */ 3048 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) 3049 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) 3050 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ 3051 FIELD(TBFLAG_ANY, BE_DATA, 3, 1) 3052 FIELD(TBFLAG_ANY, MMUIDX, 4, 4) 3053 /* Target EL if we take a floating-point-disabled exception */ 3054 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) 3055 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ 3056 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1) 3057 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1) 3058 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1) 3059 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1) 3060 3061 /* 3062 * Bit usage when in AArch32 state, both A- and M-profile. 3063 */ 3064 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ 3065 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ 3066 3067 /* 3068 * Bit usage when in AArch32 state, for A-profile only. 3069 */ 3070 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ 3071 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ 3072 /* 3073 * We store the bottom two bits of the CPAR as TB flags and handle 3074 * checks on the other bits at runtime. This shares the same bits as 3075 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3076 * Not cached, because VECLEN+VECSTRIDE are not cached. 3077 */ 3078 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) 3079 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 3080 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ 3081 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) 3082 /* 3083 * Indicates whether cp register reads and writes by guest code should access 3084 * the secure or nonsecure bank of banked registers; note that this is not 3085 * the same thing as the current security state of the processor! 3086 */ 3087 FIELD(TBFLAG_A32, NS, 10, 1) 3088 /* 3089 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. 3090 * This requires an SME trap from AArch32 mode when using NEON. 3091 */ 3092 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1) 3093 3094 /* 3095 * Bit usage when in AArch32 state, for M-profile only. 3096 */ 3097 /* Handler (ie not Thread) mode */ 3098 FIELD(TBFLAG_M32, HANDLER, 0, 1) 3099 /* Whether we should generate stack-limit checks */ 3100 FIELD(TBFLAG_M32, STACKCHECK, 1, 1) 3101 /* Set if FPCCR.LSPACT is set */ 3102 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ 3103 /* Set if we must create a new FP context */ 3104 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ 3105 /* Set if FPCCR.S does not match current security state */ 3106 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ 3107 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ 3108 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ 3109 /* Set if in secure mode */ 3110 FIELD(TBFLAG_M32, SECURE, 6, 1) 3111 3112 /* 3113 * Bit usage when in AArch64 state 3114 */ 3115 FIELD(TBFLAG_A64, TBII, 0, 2) 3116 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3117 /* The current vector length, either NVL or SVL. */ 3118 FIELD(TBFLAG_A64, VL, 4, 4) 3119 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3120 FIELD(TBFLAG_A64, BT, 9, 1) 3121 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3122 FIELD(TBFLAG_A64, TBID, 12, 2) 3123 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3124 FIELD(TBFLAG_A64, ATA, 15, 1) 3125 FIELD(TBFLAG_A64, TCMA, 16, 2) 3126 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3127 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3128 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2) 3129 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1) 3130 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1) 3131 FIELD(TBFLAG_A64, SVL, 24, 4) 3132 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */ 3133 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1) 3134 FIELD(TBFLAG_A64, FGT_ERET, 29, 1) 3135 FIELD(TBFLAG_A64, NAA, 30, 1) 3136 3137 /* 3138 * Helpers for using the above. 3139 */ 3140 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ 3141 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) 3142 #define DP_TBFLAG_A64(DST, WHICH, VAL) \ 3143 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL)) 3144 #define DP_TBFLAG_A32(DST, WHICH, VAL) \ 3145 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) 3146 #define DP_TBFLAG_M32(DST, WHICH, VAL) \ 3147 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) 3148 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ 3149 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) 3150 3151 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) 3152 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH) 3153 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) 3154 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) 3155 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) 3156 3157 /** 3158 * cpu_mmu_index: 3159 * @env: The cpu environment 3160 * @ifetch: True for code access, false for data access. 3161 * 3162 * Return the core mmu index for the current translation regime. 3163 * This function is used by generic TCG code paths. 3164 */ 3165 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3166 { 3167 return EX_TBFLAG_ANY(env->hflags, MMUIDX); 3168 } 3169 3170 /** 3171 * sve_vq 3172 * @env: the cpu context 3173 * 3174 * Return the VL cached within env->hflags, in units of quadwords. 3175 */ 3176 static inline int sve_vq(CPUARMState *env) 3177 { 3178 return EX_TBFLAG_A64(env->hflags, VL) + 1; 3179 } 3180 3181 /** 3182 * sme_vq 3183 * @env: the cpu context 3184 * 3185 * Return the SVL cached within env->hflags, in units of quadwords. 3186 */ 3187 static inline int sme_vq(CPUARMState *env) 3188 { 3189 return EX_TBFLAG_A64(env->hflags, SVL) + 1; 3190 } 3191 3192 static inline bool bswap_code(bool sctlr_b) 3193 { 3194 #ifdef CONFIG_USER_ONLY 3195 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian. 3196 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0 3197 * would also end up as a mixed-endian mode with BE code, LE data. 3198 */ 3199 return 3200 #if TARGET_BIG_ENDIAN 3201 1 ^ 3202 #endif 3203 sctlr_b; 3204 #else 3205 /* All code access in ARM is little endian, and there are no loaders 3206 * doing swaps that need to be reversed 3207 */ 3208 return 0; 3209 #endif 3210 } 3211 3212 #ifdef CONFIG_USER_ONLY 3213 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3214 { 3215 return 3216 #if TARGET_BIG_ENDIAN 3217 1 ^ 3218 #endif 3219 arm_cpu_data_is_big_endian(env); 3220 } 3221 #endif 3222 3223 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 3224 uint64_t *cs_base, uint32_t *flags); 3225 3226 enum { 3227 QEMU_PSCI_CONDUIT_DISABLED = 0, 3228 QEMU_PSCI_CONDUIT_SMC = 1, 3229 QEMU_PSCI_CONDUIT_HVC = 2, 3230 }; 3231 3232 #ifndef CONFIG_USER_ONLY 3233 /* Return the address space index to use for a memory access */ 3234 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3235 { 3236 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3237 } 3238 3239 /* Return the AddressSpace to use for a memory access 3240 * (which depends on whether the access is S or NS, and whether 3241 * the board gave us a separate AddressSpace for S accesses). 3242 */ 3243 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3244 { 3245 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3246 } 3247 #endif 3248 3249 /** 3250 * arm_register_pre_el_change_hook: 3251 * Register a hook function which will be called immediately before this 3252 * CPU changes exception level or mode. The hook function will be 3253 * passed a pointer to the ARMCPU and the opaque data pointer passed 3254 * to this function when the hook was registered. 3255 * 3256 * Note that if a pre-change hook is called, any registered post-change hooks 3257 * are guaranteed to subsequently be called. 3258 */ 3259 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3260 void *opaque); 3261 /** 3262 * arm_register_el_change_hook: 3263 * Register a hook function which will be called immediately after this 3264 * CPU changes exception level or mode. The hook function will be 3265 * passed a pointer to the ARMCPU and the opaque data pointer passed 3266 * to this function when the hook was registered. 3267 * 3268 * Note that any registered hooks registered here are guaranteed to be called 3269 * if pre-change hooks have been. 3270 */ 3271 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3272 *opaque); 3273 3274 /** 3275 * arm_rebuild_hflags: 3276 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3277 */ 3278 void arm_rebuild_hflags(CPUARMState *env); 3279 3280 /** 3281 * aa32_vfp_dreg: 3282 * Return a pointer to the Dn register within env in 32-bit mode. 3283 */ 3284 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3285 { 3286 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3287 } 3288 3289 /** 3290 * aa32_vfp_qreg: 3291 * Return a pointer to the Qn register within env in 32-bit mode. 3292 */ 3293 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3294 { 3295 return &env->vfp.zregs[regno].d[0]; 3296 } 3297 3298 /** 3299 * aa64_vfp_qreg: 3300 * Return a pointer to the Qn register within env in 64-bit mode. 3301 */ 3302 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3303 { 3304 return &env->vfp.zregs[regno].d[0]; 3305 } 3306 3307 /* Shared between translate-sve.c and sve_helper.c. */ 3308 extern const uint64_t pred_esz_masks[5]; 3309 3310 /* 3311 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3312 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect 3313 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR. 3314 */ 3315 #define PAGE_BTI PAGE_TARGET_1 3316 #define PAGE_MTE PAGE_TARGET_2 3317 #define PAGE_TARGET_STICKY PAGE_MTE 3318 3319 /* We associate one allocation tag per 16 bytes, the minimum. */ 3320 #define LOG2_TAG_GRANULE 4 3321 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 3322 3323 #ifdef CONFIG_USER_ONLY 3324 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1)) 3325 #endif 3326 3327 #ifdef TARGET_TAGGED_ADDRESSES 3328 /** 3329 * cpu_untagged_addr: 3330 * @cs: CPU context 3331 * @x: tagged address 3332 * 3333 * Remove any address tag from @x. This is explicitly related to the 3334 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. 3335 * 3336 * There should be a better place to put this, but we need this in 3337 * include/exec/cpu_ldst.h, and not some place linux-user specific. 3338 */ 3339 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) 3340 { 3341 ARMCPU *cpu = ARM_CPU(cs); 3342 if (cpu->env.tagged_addr_enable) { 3343 /* 3344 * TBI is enabled for userspace but not kernelspace addresses. 3345 * Only clear the tag if bit 55 is clear. 3346 */ 3347 x &= sextract64(x, 0, 56); 3348 } 3349 return x; 3350 } 3351 #endif 3352 3353 /* 3354 * Naming convention for isar_feature functions: 3355 * Functions which test 32-bit ID registers should have _aa32_ in 3356 * their name. Functions which test 64-bit ID registers should have 3357 * _aa64_ in their name. These must only be used in code where we 3358 * know for certain that the CPU has AArch32 or AArch64 respectively 3359 * or where the correct answer for a CPU which doesn't implement that 3360 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3361 * system registers that are specific to that CPU state, for "should 3362 * we let this system register bit be set" tests where the 32-bit 3363 * flavour of the register doesn't have the bit, and so on). 3364 * Functions which simply ask "does this feature exist at all" have 3365 * _any_ in their name, and always return the logical OR of the _aa64_ 3366 * and the _aa32_ function. 3367 */ 3368 3369 /* 3370 * 32-bit feature tests via id registers. 3371 */ 3372 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3373 { 3374 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3375 } 3376 3377 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3378 { 3379 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3380 } 3381 3382 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) 3383 { 3384 /* (M-profile) low-overhead loops and branch future */ 3385 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; 3386 } 3387 3388 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3389 { 3390 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3391 } 3392 3393 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3394 { 3395 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3396 } 3397 3398 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3399 { 3400 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3401 } 3402 3403 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3404 { 3405 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3406 } 3407 3408 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3409 { 3410 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3411 } 3412 3413 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3414 { 3415 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3416 } 3417 3418 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3419 { 3420 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3421 } 3422 3423 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3424 { 3425 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3426 } 3427 3428 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3429 { 3430 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3431 } 3432 3433 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3434 { 3435 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3436 } 3437 3438 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3439 { 3440 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3441 } 3442 3443 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3444 { 3445 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3446 } 3447 3448 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3449 { 3450 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3451 } 3452 3453 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id) 3454 { 3455 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0; 3456 } 3457 3458 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id) 3459 { 3460 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0; 3461 } 3462 3463 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) 3464 { 3465 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; 3466 } 3467 3468 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3469 { 3470 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3471 } 3472 3473 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) 3474 { 3475 /* 3476 * Return true if M-profile state handling insns 3477 * (VSCCLRM, CLRM, FPCTX access insns) are implemented 3478 */ 3479 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; 3480 } 3481 3482 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3483 { 3484 /* Sadly this is encoded differently for A-profile and M-profile */ 3485 if (isar_feature_aa32_mprofile(id)) { 3486 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3487 } else { 3488 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3489 } 3490 } 3491 3492 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id) 3493 { 3494 /* 3495 * Return true if MVE is supported (either integer or floating point). 3496 * We must check for M-profile as the MVFR1 field means something 3497 * else for A-profile. 3498 */ 3499 return isar_feature_aa32_mprofile(id) && 3500 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0; 3501 } 3502 3503 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id) 3504 { 3505 /* 3506 * Return true if MVE is supported (either integer or floating point). 3507 * We must check for M-profile as the MVFR1 field means something 3508 * else for A-profile. 3509 */ 3510 return isar_feature_aa32_mprofile(id) && 3511 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2; 3512 } 3513 3514 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3515 { 3516 /* 3517 * Return true if either VFP or SIMD is implemented. 3518 * In this case, a minimum of VFP w/ D0-D15. 3519 */ 3520 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3521 } 3522 3523 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3524 { 3525 /* Return true if D16-D31 are implemented */ 3526 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3527 } 3528 3529 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3530 { 3531 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3532 } 3533 3534 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3535 { 3536 /* Return true if CPU supports single precision floating point, VFPv2 */ 3537 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3538 } 3539 3540 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3541 { 3542 /* Return true if CPU supports single precision floating point, VFPv3 */ 3543 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3544 } 3545 3546 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3547 { 3548 /* Return true if CPU supports double precision floating point, VFPv2 */ 3549 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3550 } 3551 3552 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3553 { 3554 /* Return true if CPU supports double precision floating point, VFPv3 */ 3555 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3556 } 3557 3558 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3559 { 3560 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3561 } 3562 3563 /* 3564 * We always set the FP and SIMD FP16 fields to indicate identical 3565 * levels of support (assuming SIMD is implemented at all), so 3566 * we only need one set of accessors. 3567 */ 3568 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3569 { 3570 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3571 } 3572 3573 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3574 { 3575 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3576 } 3577 3578 /* 3579 * Note that this ID register field covers both VFP and Neon FMAC, 3580 * so should usually be tested in combination with some other 3581 * check that confirms the presence of whichever of VFP or Neon is 3582 * relevant, to avoid accidentally enabling a Neon feature on 3583 * a VFP-no-Neon core or vice-versa. 3584 */ 3585 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3586 { 3587 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3588 } 3589 3590 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3591 { 3592 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3593 } 3594 3595 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3596 { 3597 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3598 } 3599 3600 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3601 { 3602 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3603 } 3604 3605 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3606 { 3607 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3608 } 3609 3610 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3611 { 3612 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3613 } 3614 3615 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3616 { 3617 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3618 } 3619 3620 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3621 { 3622 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3623 } 3624 3625 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id) 3626 { 3627 /* 0xf means "non-standard IMPDEF PMU" */ 3628 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3629 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3630 } 3631 3632 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id) 3633 { 3634 /* 0xf means "non-standard IMPDEF PMU" */ 3635 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3636 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3637 } 3638 3639 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id) 3640 { 3641 /* 0xf means "non-standard IMPDEF PMU" */ 3642 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 && 3643 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3644 } 3645 3646 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3647 { 3648 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3649 } 3650 3651 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3652 { 3653 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3654 } 3655 3656 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3657 { 3658 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3659 } 3660 3661 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3662 { 3663 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3664 } 3665 3666 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id) 3667 { 3668 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1; 3669 } 3670 3671 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id) 3672 { 3673 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2; 3674 } 3675 3676 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id) 3677 { 3678 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0; 3679 } 3680 3681 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id) 3682 { 3683 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0; 3684 } 3685 3686 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id) 3687 { 3688 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5; 3689 } 3690 3691 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id) 3692 { 3693 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8; 3694 } 3695 3696 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id) 3697 { 3698 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0; 3699 } 3700 3701 /* 3702 * 64-bit feature tests via id registers. 3703 */ 3704 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3705 { 3706 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3707 } 3708 3709 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3710 { 3711 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3712 } 3713 3714 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3715 { 3716 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3717 } 3718 3719 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3720 { 3721 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3722 } 3723 3724 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3725 { 3726 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3727 } 3728 3729 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3730 { 3731 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3732 } 3733 3734 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3735 { 3736 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3737 } 3738 3739 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3740 { 3741 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3742 } 3743 3744 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3745 { 3746 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3747 } 3748 3749 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3750 { 3751 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3752 } 3753 3754 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3755 { 3756 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3757 } 3758 3759 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3760 { 3761 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3762 } 3763 3764 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3765 { 3766 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3767 } 3768 3769 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3770 { 3771 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3772 } 3773 3774 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3775 { 3776 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3777 } 3778 3779 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3780 { 3781 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3782 } 3783 3784 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3785 { 3786 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3787 } 3788 3789 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3790 { 3791 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3792 } 3793 3794 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3795 { 3796 /* 3797 * Return true if any form of pauth is enabled, as this 3798 * predicate controls migration of the 128-bit keys. 3799 */ 3800 return (id->id_aa64isar1 & 3801 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3802 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3803 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3804 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3805 } 3806 3807 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id) 3808 { 3809 /* 3810 * Return true if pauth is enabled with the architected QARMA algorithm. 3811 * QEMU will always set APA+GPA to the same value. 3812 */ 3813 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0; 3814 } 3815 3816 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id) 3817 { 3818 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2; 3819 } 3820 3821 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id) 3822 { 3823 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0; 3824 } 3825 3826 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3827 { 3828 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3829 } 3830 3831 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3832 { 3833 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3834 } 3835 3836 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3837 { 3838 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3839 } 3840 3841 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3842 { 3843 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3844 } 3845 3846 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3847 { 3848 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3849 } 3850 3851 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id) 3852 { 3853 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0; 3854 } 3855 3856 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3857 { 3858 /* We always set the AdvSIMD and FP fields identically. */ 3859 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3860 } 3861 3862 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3863 { 3864 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3865 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3866 } 3867 3868 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3869 { 3870 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3871 } 3872 3873 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id) 3874 { 3875 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2; 3876 } 3877 3878 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id) 3879 { 3880 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2; 3881 } 3882 3883 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id) 3884 { 3885 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0; 3886 } 3887 3888 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id) 3889 { 3890 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2; 3891 } 3892 3893 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3894 { 3895 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3896 } 3897 3898 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id) 3899 { 3900 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0; 3901 } 3902 3903 static inline bool isar_feature_aa64_rme(const ARMISARegisters *id) 3904 { 3905 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0; 3906 } 3907 3908 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3909 { 3910 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3911 } 3912 3913 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3914 { 3915 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3916 } 3917 3918 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3919 { 3920 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3921 } 3922 3923 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3924 { 3925 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3926 } 3927 3928 static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id) 3929 { 3930 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3; 3931 } 3932 3933 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id) 3934 { 3935 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0; 3936 } 3937 3938 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 3939 { 3940 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 3941 } 3942 3943 static inline bool isar_feature_aa64_st(const ARMISARegisters *id) 3944 { 3945 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; 3946 } 3947 3948 static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id) 3949 { 3950 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0; 3951 } 3952 3953 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id) 3954 { 3955 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0; 3956 } 3957 3958 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id) 3959 { 3960 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0; 3961 } 3962 3963 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id) 3964 { 3965 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1; 3966 } 3967 3968 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id) 3969 { 3970 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2; 3971 } 3972 3973 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3974 { 3975 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3976 } 3977 3978 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 3979 { 3980 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 3981 } 3982 3983 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 3984 { 3985 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 3986 } 3987 3988 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id) 3989 { 3990 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0; 3991 } 3992 3993 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id) 3994 { 3995 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 3996 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3997 } 3998 3999 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id) 4000 { 4001 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 4002 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4003 } 4004 4005 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id) 4006 { 4007 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 && 4008 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4009 } 4010 4011 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 4012 { 4013 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 4014 } 4015 4016 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 4017 { 4018 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 4019 } 4020 4021 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id) 4022 { 4023 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0; 4024 } 4025 4026 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id) 4027 { 4028 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1; 4029 } 4030 4031 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id) 4032 { 4033 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); 4034 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id)); 4035 } 4036 4037 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id) 4038 { 4039 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2; 4040 } 4041 4042 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id) 4043 { 4044 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); 4045 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id)); 4046 } 4047 4048 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id) 4049 { 4050 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0; 4051 } 4052 4053 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id) 4054 { 4055 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1; 4056 } 4057 4058 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id) 4059 { 4060 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0; 4061 } 4062 4063 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id) 4064 { 4065 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); 4066 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id)); 4067 } 4068 4069 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id) 4070 { 4071 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); 4072 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id)); 4073 } 4074 4075 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id) 4076 { 4077 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2); 4078 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id)); 4079 } 4080 4081 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id) 4082 { 4083 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0; 4084 } 4085 4086 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 4087 { 4088 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 4089 } 4090 4091 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id) 4092 { 4093 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0; 4094 } 4095 4096 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id) 4097 { 4098 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0; 4099 } 4100 4101 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id) 4102 { 4103 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0; 4104 } 4105 4106 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id) 4107 { 4108 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2; 4109 } 4110 4111 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 4112 { 4113 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 4114 } 4115 4116 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id) 4117 { 4118 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0; 4119 } 4120 4121 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id) 4122 { 4123 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2); 4124 if (key >= 2) { 4125 return true; /* FEAT_CSV2_2 */ 4126 } 4127 if (key == 1) { 4128 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC); 4129 return key >= 2; /* FEAT_CSV2_1p2 */ 4130 } 4131 return false; 4132 } 4133 4134 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id) 4135 { 4136 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0; 4137 } 4138 4139 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id) 4140 { 4141 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8; 4142 } 4143 4144 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id) 4145 { 4146 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0; 4147 } 4148 4149 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id) 4150 { 4151 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0; 4152 } 4153 4154 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id) 4155 { 4156 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2; 4157 } 4158 4159 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id) 4160 { 4161 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0; 4162 } 4163 4164 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id) 4165 { 4166 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0; 4167 } 4168 4169 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id) 4170 { 4171 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0; 4172 } 4173 4174 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id) 4175 { 4176 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0; 4177 } 4178 4179 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id) 4180 { 4181 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0; 4182 } 4183 4184 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id) 4185 { 4186 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0; 4187 } 4188 4189 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id) 4190 { 4191 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0; 4192 } 4193 4194 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id) 4195 { 4196 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64); 4197 } 4198 4199 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id) 4200 { 4201 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf; 4202 } 4203 4204 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id) 4205 { 4206 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64); 4207 } 4208 4209 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id) 4210 { 4211 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0; 4212 } 4213 4214 /* 4215 * Feature tests for "does this exist in either 32-bit or 64-bit?" 4216 */ 4217 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 4218 { 4219 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 4220 } 4221 4222 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 4223 { 4224 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 4225 } 4226 4227 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id) 4228 { 4229 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id); 4230 } 4231 4232 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id) 4233 { 4234 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id); 4235 } 4236 4237 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id) 4238 { 4239 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id); 4240 } 4241 4242 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 4243 { 4244 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 4245 } 4246 4247 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 4248 { 4249 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 4250 } 4251 4252 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id) 4253 { 4254 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id); 4255 } 4256 4257 static inline bool isar_feature_any_ras(const ARMISARegisters *id) 4258 { 4259 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id); 4260 } 4261 4262 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id) 4263 { 4264 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id); 4265 } 4266 4267 static inline bool isar_feature_any_evt(const ARMISARegisters *id) 4268 { 4269 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id); 4270 } 4271 4272 /* 4273 * Forward to the above feature tests given an ARMCPU pointer. 4274 */ 4275 #define cpu_isar_feature(name, cpu) \ 4276 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 4277 4278 #endif 4279