xref: /openbmc/qemu/target/arm/cpu.h (revision de799beb)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 typedef struct {
170     uint64_t raw_tcr;
171     uint32_t mask;
172     uint32_t base_mask;
173 } TCR;
174 
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
179 
180 /* Define a maximum sized vector register.
181  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182  * For 64-bit, this is a 2048-bit SVE register.
183  *
184  * Note that the mapping between S, D, and Q views of the register bank
185  * differs between AArch64 and AArch32.
186  * In AArch32:
187  *  Qn = regs[n].d[1]:regs[n].d[0]
188  *  Dn = regs[n / 2].d[n & 1]
189  *  Sn = regs[n / 4].d[n % 4 / 2],
190  *       bits 31..0 for even n, and bits 63..32 for odd n
191  *       (and regs[16] to regs[31] are inaccessible)
192  * In AArch64:
193  *  Zn = regs[n].d[*]
194  *  Qn = regs[n].d[1]:regs[n].d[0]
195  *  Dn = regs[n].d[0]
196  *  Sn = regs[n].d[0] bits 31..0
197  *  Hn = regs[n].d[0] bits 15..0
198  *
199  * This corresponds to the architecturally defined mapping between
200  * the two execution states, and means we do not need to explicitly
201  * map these registers when changing states.
202  *
203  * Align the data for use with TCG host vector operations.
204  */
205 
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ    16
208 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
209 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
210 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
211 #else
212 # define ARM_MAX_VQ    1
213 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
214 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
215 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
216 #endif
217 
218 typedef struct ARMVectorReg {
219     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220 } ARMVectorReg;
221 
222 #ifdef TARGET_AARCH64
223 /* In AArch32 mode, predicate registers do not exist at all.  */
224 typedef struct ARMPredicateReg {
225     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
226 } ARMPredicateReg;
227 
228 /* In AArch32 mode, PAC keys do not exist at all.  */
229 typedef struct ARMPACKey {
230     uint64_t lo, hi;
231 } ARMPACKey;
232 #endif
233 
234 /* See the commentary above the TBFLAG field definitions.  */
235 typedef struct CPUARMTBFlags {
236     uint32_t flags;
237     target_ulong flags2;
238 } CPUARMTBFlags;
239 
240 typedef struct CPUArchState {
241     /* Regs for current mode.  */
242     uint32_t regs[16];
243 
244     /* 32/64 switch only happens when taking and returning from
245      * exceptions so the overlap semantics are taken care of then
246      * instead of having a complicated union.
247      */
248     /* Regs for A64 mode.  */
249     uint64_t xregs[32];
250     uint64_t pc;
251     /* PSTATE isn't an architectural register for ARMv8. However, it is
252      * convenient for us to assemble the underlying state into a 32 bit format
253      * identical to the architectural format used for the SPSR. (This is also
254      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255      * 'pstate' register are.) Of the PSTATE bits:
256      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257      *    semantics as for AArch32, as described in the comments on each field)
258      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
259      *  DAIF (exception masks) are kept in env->daif
260      *  BTYPE is kept in env->btype
261      *  all other bits are stored in their correct places in env->pstate
262      */
263     uint32_t pstate;
264     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
265     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
266 
267     /* Cached TBFLAGS state.  See below for which bits are included.  */
268     CPUARMTBFlags hflags;
269 
270     /* Frequently accessed CPSR bits are stored separately for efficiency.
271        This contains all the other bits.  Use cpsr_{read,write} to access
272        the whole CPSR.  */
273     uint32_t uncached_cpsr;
274     uint32_t spsr;
275 
276     /* Banked registers.  */
277     uint64_t banked_spsr[8];
278     uint32_t banked_r13[8];
279     uint32_t banked_r14[8];
280 
281     /* These hold r8-r12.  */
282     uint32_t usr_regs[5];
283     uint32_t fiq_regs[5];
284 
285     /* cpsr flag cache for faster execution */
286     uint32_t CF; /* 0 or 1 */
287     uint32_t VF; /* V is the bit 31. All other bits are undefined */
288     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
289     uint32_t ZF; /* Z set if zero.  */
290     uint32_t QF; /* 0 or 1 */
291     uint32_t GE; /* cpsr[19:16] */
292     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
293     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
294     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
295 
296     uint64_t elr_el[4]; /* AArch64 exception link regs  */
297     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
298 
299     /* System control coprocessor (cp15) */
300     struct {
301         uint32_t c0_cpuid;
302         union { /* Cache size selection */
303             struct {
304                 uint64_t _unused_csselr0;
305                 uint64_t csselr_ns;
306                 uint64_t _unused_csselr1;
307                 uint64_t csselr_s;
308             };
309             uint64_t csselr_el[4];
310         };
311         union { /* System control register. */
312             struct {
313                 uint64_t _unused_sctlr;
314                 uint64_t sctlr_ns;
315                 uint64_t hsctlr;
316                 uint64_t sctlr_s;
317             };
318             uint64_t sctlr_el[4];
319         };
320         uint64_t cpacr_el1; /* Architectural feature access control register */
321         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
322         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
323         uint64_t sder; /* Secure debug enable register. */
324         uint32_t nsacr; /* Non-secure access control register. */
325         union { /* MMU translation table base 0. */
326             struct {
327                 uint64_t _unused_ttbr0_0;
328                 uint64_t ttbr0_ns;
329                 uint64_t _unused_ttbr0_1;
330                 uint64_t ttbr0_s;
331             };
332             uint64_t ttbr0_el[4];
333         };
334         union { /* MMU translation table base 1. */
335             struct {
336                 uint64_t _unused_ttbr1_0;
337                 uint64_t ttbr1_ns;
338                 uint64_t _unused_ttbr1_1;
339                 uint64_t ttbr1_s;
340             };
341             uint64_t ttbr1_el[4];
342         };
343         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
344         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
345         /* MMU translation table base control. */
346         TCR tcr_el[4];
347         TCR vtcr_el2; /* Virtualization Translation Control.  */
348         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
349         uint32_t c2_data; /* MPU data cacheable bits.  */
350         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
351         union { /* MMU domain access control register
352                  * MPU write buffer control.
353                  */
354             struct {
355                 uint64_t dacr_ns;
356                 uint64_t dacr_s;
357             };
358             struct {
359                 uint64_t dacr32_el2;
360             };
361         };
362         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
364         uint64_t hcr_el2; /* Hypervisor configuration register */
365         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
366         uint64_t scr_el3; /* Secure configuration register.  */
367         union { /* Fault status registers.  */
368             struct {
369                 uint64_t ifsr_ns;
370                 uint64_t ifsr_s;
371             };
372             struct {
373                 uint64_t ifsr32_el2;
374             };
375         };
376         union {
377             struct {
378                 uint64_t _unused_dfsr;
379                 uint64_t dfsr_ns;
380                 uint64_t hsr;
381                 uint64_t dfsr_s;
382             };
383             uint64_t esr_el[4];
384         };
385         uint32_t c6_region[8]; /* MPU base/size registers.  */
386         union { /* Fault address registers. */
387             struct {
388                 uint64_t _unused_far0;
389 #if HOST_BIG_ENDIAN
390                 uint32_t ifar_ns;
391                 uint32_t dfar_ns;
392                 uint32_t ifar_s;
393                 uint32_t dfar_s;
394 #else
395                 uint32_t dfar_ns;
396                 uint32_t ifar_ns;
397                 uint32_t dfar_s;
398                 uint32_t ifar_s;
399 #endif
400                 uint64_t _unused_far3;
401             };
402             uint64_t far_el[4];
403         };
404         uint64_t hpfar_el2;
405         uint64_t hstr_el2;
406         union { /* Translation result. */
407             struct {
408                 uint64_t _unused_par_0;
409                 uint64_t par_ns;
410                 uint64_t _unused_par_1;
411                 uint64_t par_s;
412             };
413             uint64_t par_el[4];
414         };
415 
416         uint32_t c9_insn; /* Cache lockdown registers.  */
417         uint32_t c9_data;
418         uint64_t c9_pmcr; /* performance monitor control register */
419         uint64_t c9_pmcnten; /* perf monitor counter enables */
420         uint64_t c9_pmovsr; /* perf monitor overflow status */
421         uint64_t c9_pmuserenr; /* perf monitor user enable */
422         uint64_t c9_pmselr; /* perf monitor counter selection register */
423         uint64_t c9_pminten; /* perf monitor interrupt enables */
424         union { /* Memory attribute redirection */
425             struct {
426 #if HOST_BIG_ENDIAN
427                 uint64_t _unused_mair_0;
428                 uint32_t mair1_ns;
429                 uint32_t mair0_ns;
430                 uint64_t _unused_mair_1;
431                 uint32_t mair1_s;
432                 uint32_t mair0_s;
433 #else
434                 uint64_t _unused_mair_0;
435                 uint32_t mair0_ns;
436                 uint32_t mair1_ns;
437                 uint64_t _unused_mair_1;
438                 uint32_t mair0_s;
439                 uint32_t mair1_s;
440 #endif
441             };
442             uint64_t mair_el[4];
443         };
444         union { /* vector base address register */
445             struct {
446                 uint64_t _unused_vbar;
447                 uint64_t vbar_ns;
448                 uint64_t hvbar;
449                 uint64_t vbar_s;
450             };
451             uint64_t vbar_el[4];
452         };
453         uint32_t mvbar; /* (monitor) vector base address register */
454         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
455         struct { /* FCSE PID. */
456             uint32_t fcseidr_ns;
457             uint32_t fcseidr_s;
458         };
459         union { /* Context ID. */
460             struct {
461                 uint64_t _unused_contextidr_0;
462                 uint64_t contextidr_ns;
463                 uint64_t _unused_contextidr_1;
464                 uint64_t contextidr_s;
465             };
466             uint64_t contextidr_el[4];
467         };
468         union { /* User RW Thread register. */
469             struct {
470                 uint64_t tpidrurw_ns;
471                 uint64_t tpidrprw_ns;
472                 uint64_t htpidr;
473                 uint64_t _tpidr_el3;
474             };
475             uint64_t tpidr_el[4];
476         };
477         /* The secure banks of these registers don't map anywhere */
478         uint64_t tpidrurw_s;
479         uint64_t tpidrprw_s;
480         uint64_t tpidruro_s;
481 
482         union { /* User RO Thread register. */
483             uint64_t tpidruro_ns;
484             uint64_t tpidrro_el[1];
485         };
486         uint64_t c14_cntfrq; /* Counter Frequency register */
487         uint64_t c14_cntkctl; /* Timer Control register */
488         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
489         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
490         ARMGenericTimer c14_timer[NUM_GTIMERS];
491         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
492         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
493         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
494         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
495         uint32_t c15_threadid; /* TI debugger thread-ID.  */
496         uint32_t c15_config_base_address; /* SCU base address.  */
497         uint32_t c15_diagnostic; /* diagnostic register */
498         uint32_t c15_power_diagnostic;
499         uint32_t c15_power_control; /* power control */
500         uint64_t dbgbvr[16]; /* breakpoint value registers */
501         uint64_t dbgbcr[16]; /* breakpoint control registers */
502         uint64_t dbgwvr[16]; /* watchpoint value registers */
503         uint64_t dbgwcr[16]; /* watchpoint control registers */
504         uint64_t mdscr_el1;
505         uint64_t oslsr_el1; /* OS Lock Status */
506         uint64_t mdcr_el2;
507         uint64_t mdcr_el3;
508         /* Stores the architectural value of the counter *the last time it was
509          * updated* by pmccntr_op_start. Accesses should always be surrounded
510          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
511          * architecturally-correct value is being read/set.
512          */
513         uint64_t c15_ccnt;
514         /* Stores the delta between the architectural value and the underlying
515          * cycle count during normal operation. It is used to update c15_ccnt
516          * to be the correct architectural value before accesses. During
517          * accesses, c15_ccnt_delta contains the underlying count being used
518          * for the access, after which it reverts to the delta value in
519          * pmccntr_op_finish.
520          */
521         uint64_t c15_ccnt_delta;
522         uint64_t c14_pmevcntr[31];
523         uint64_t c14_pmevcntr_delta[31];
524         uint64_t c14_pmevtyper[31];
525         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
526         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
527         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
528         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
529         uint64_t gcr_el1;
530         uint64_t rgsr_el1;
531 
532         /* Minimal RAS registers */
533         uint64_t disr_el1;
534         uint64_t vdisr_el2;
535         uint64_t vsesr_el2;
536     } cp15;
537 
538     struct {
539         /* M profile has up to 4 stack pointers:
540          * a Main Stack Pointer and a Process Stack Pointer for each
541          * of the Secure and Non-Secure states. (If the CPU doesn't support
542          * the security extension then it has only two SPs.)
543          * In QEMU we always store the currently active SP in regs[13],
544          * and the non-active SP for the current security state in
545          * v7m.other_sp. The stack pointers for the inactive security state
546          * are stored in other_ss_msp and other_ss_psp.
547          * switch_v7m_security_state() is responsible for rearranging them
548          * when we change security state.
549          */
550         uint32_t other_sp;
551         uint32_t other_ss_msp;
552         uint32_t other_ss_psp;
553         uint32_t vecbase[M_REG_NUM_BANKS];
554         uint32_t basepri[M_REG_NUM_BANKS];
555         uint32_t control[M_REG_NUM_BANKS];
556         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
557         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
558         uint32_t hfsr; /* HardFault Status */
559         uint32_t dfsr; /* Debug Fault Status Register */
560         uint32_t sfsr; /* Secure Fault Status Register */
561         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
562         uint32_t bfar; /* BusFault Address */
563         uint32_t sfar; /* Secure Fault Address Register */
564         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
565         int exception;
566         uint32_t primask[M_REG_NUM_BANKS];
567         uint32_t faultmask[M_REG_NUM_BANKS];
568         uint32_t aircr; /* only holds r/w state if security extn implemented */
569         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
570         uint32_t csselr[M_REG_NUM_BANKS];
571         uint32_t scr[M_REG_NUM_BANKS];
572         uint32_t msplim[M_REG_NUM_BANKS];
573         uint32_t psplim[M_REG_NUM_BANKS];
574         uint32_t fpcar[M_REG_NUM_BANKS];
575         uint32_t fpccr[M_REG_NUM_BANKS];
576         uint32_t fpdscr[M_REG_NUM_BANKS];
577         uint32_t cpacr[M_REG_NUM_BANKS];
578         uint32_t nsacr;
579         uint32_t ltpsize;
580         uint32_t vpr;
581     } v7m;
582 
583     /* Information associated with an exception about to be taken:
584      * code which raises an exception must set cs->exception_index and
585      * the relevant parts of this structure; the cpu_do_interrupt function
586      * will then set the guest-visible registers as part of the exception
587      * entry process.
588      */
589     struct {
590         uint32_t syndrome; /* AArch64 format syndrome register */
591         uint32_t fsr; /* AArch32 format fault status register info */
592         uint64_t vaddress; /* virtual addr associated with exception, if any */
593         uint32_t target_el; /* EL the exception should be targeted for */
594         /* If we implement EL2 we will also need to store information
595          * about the intermediate physical address for stage 2 faults.
596          */
597     } exception;
598 
599     /* Information associated with an SError */
600     struct {
601         uint8_t pending;
602         uint8_t has_esr;
603         uint64_t esr;
604     } serror;
605 
606     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
607 
608     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
609     uint32_t irq_line_state;
610 
611     /* Thumb-2 EE state.  */
612     uint32_t teecr;
613     uint32_t teehbr;
614 
615     /* VFP coprocessor state.  */
616     struct {
617         ARMVectorReg zregs[32];
618 
619 #ifdef TARGET_AARCH64
620         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
621 #define FFR_PRED_NUM 16
622         ARMPredicateReg pregs[17];
623         /* Scratch space for aa64 sve predicate temporary.  */
624         ARMPredicateReg preg_tmp;
625 #endif
626 
627         /* We store these fpcsr fields separately for convenience.  */
628         uint32_t qc[4] QEMU_ALIGNED(16);
629         int vec_len;
630         int vec_stride;
631 
632         uint32_t xregs[16];
633 
634         /* Scratch space for aa32 neon expansion.  */
635         uint32_t scratch[8];
636 
637         /* There are a number of distinct float control structures:
638          *
639          *  fp_status: is the "normal" fp status.
640          *  fp_status_fp16: used for half-precision calculations
641          *  standard_fp_status : the ARM "Standard FPSCR Value"
642          *  standard_fp_status_fp16 : used for half-precision
643          *       calculations with the ARM "Standard FPSCR Value"
644          *
645          * Half-precision operations are governed by a separate
646          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
647          * status structure to control this.
648          *
649          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
650          * round-to-nearest and is used by any operations (generally
651          * Neon) which the architecture defines as controlled by the
652          * standard FPSCR value rather than the FPSCR.
653          *
654          * The "standard FPSCR but for fp16 ops" is needed because
655          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
656          * using a fixed value for it.
657          *
658          * To avoid having to transfer exception bits around, we simply
659          * say that the FPSCR cumulative exception flags are the logical
660          * OR of the flags in the four fp statuses. This relies on the
661          * only thing which needs to read the exception flags being
662          * an explicit FPSCR read.
663          */
664         float_status fp_status;
665         float_status fp_status_f16;
666         float_status standard_fp_status;
667         float_status standard_fp_status_f16;
668 
669         /* ZCR_EL[1-3] */
670         uint64_t zcr_el[4];
671     } vfp;
672     uint64_t exclusive_addr;
673     uint64_t exclusive_val;
674     uint64_t exclusive_high;
675 
676     /* iwMMXt coprocessor state.  */
677     struct {
678         uint64_t regs[16];
679         uint64_t val;
680 
681         uint32_t cregs[16];
682     } iwmmxt;
683 
684 #ifdef TARGET_AARCH64
685     struct {
686         ARMPACKey apia;
687         ARMPACKey apib;
688         ARMPACKey apda;
689         ARMPACKey apdb;
690         ARMPACKey apga;
691     } keys;
692 
693     uint64_t scxtnum_el[4];
694 #endif
695 
696 #if defined(CONFIG_USER_ONLY)
697     /* For usermode syscall translation.  */
698     int eabi;
699 #endif
700 
701     struct CPUBreakpoint *cpu_breakpoint[16];
702     struct CPUWatchpoint *cpu_watchpoint[16];
703 
704     /* Fields up to this point are cleared by a CPU reset */
705     struct {} end_reset_fields;
706 
707     /* Fields after this point are preserved across CPU reset. */
708 
709     /* Internal CPU feature flags.  */
710     uint64_t features;
711 
712     /* PMSAv7 MPU */
713     struct {
714         uint32_t *drbar;
715         uint32_t *drsr;
716         uint32_t *dracr;
717         uint32_t rnr[M_REG_NUM_BANKS];
718     } pmsav7;
719 
720     /* PMSAv8 MPU */
721     struct {
722         /* The PMSAv8 implementation also shares some PMSAv7 config
723          * and state:
724          *  pmsav7.rnr (region number register)
725          *  pmsav7_dregion (number of configured regions)
726          */
727         uint32_t *rbar[M_REG_NUM_BANKS];
728         uint32_t *rlar[M_REG_NUM_BANKS];
729         uint32_t mair0[M_REG_NUM_BANKS];
730         uint32_t mair1[M_REG_NUM_BANKS];
731     } pmsav8;
732 
733     /* v8M SAU */
734     struct {
735         uint32_t *rbar;
736         uint32_t *rlar;
737         uint32_t rnr;
738         uint32_t ctrl;
739     } sau;
740 
741     void *nvic;
742     const struct arm_boot_info *boot_info;
743     /* Store GICv3CPUState to access from this struct */
744     void *gicv3state;
745 
746 #ifdef TARGET_TAGGED_ADDRESSES
747     /* Linux syscall tagged address support */
748     bool tagged_addr_enable;
749 #endif
750 } CPUARMState;
751 
752 static inline void set_feature(CPUARMState *env, int feature)
753 {
754     env->features |= 1ULL << feature;
755 }
756 
757 static inline void unset_feature(CPUARMState *env, int feature)
758 {
759     env->features &= ~(1ULL << feature);
760 }
761 
762 /**
763  * ARMELChangeHookFn:
764  * type of a function which can be registered via arm_register_el_change_hook()
765  * to get callbacks when the CPU changes its exception level or mode.
766  */
767 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
768 typedef struct ARMELChangeHook ARMELChangeHook;
769 struct ARMELChangeHook {
770     ARMELChangeHookFn *hook;
771     void *opaque;
772     QLIST_ENTRY(ARMELChangeHook) node;
773 };
774 
775 /* These values map onto the return values for
776  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
777 typedef enum ARMPSCIState {
778     PSCI_ON = 0,
779     PSCI_OFF = 1,
780     PSCI_ON_PENDING = 2
781 } ARMPSCIState;
782 
783 typedef struct ARMISARegisters ARMISARegisters;
784 
785 /**
786  * ARMCPU:
787  * @env: #CPUARMState
788  *
789  * An ARM CPU core.
790  */
791 struct ArchCPU {
792     /*< private >*/
793     CPUState parent_obj;
794     /*< public >*/
795 
796     CPUNegativeOffsetState neg;
797     CPUARMState env;
798 
799     /* Coprocessor information */
800     GHashTable *cp_regs;
801     /* For marshalling (mostly coprocessor) register state between the
802      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
803      * we use these arrays.
804      */
805     /* List of register indexes managed via these arrays; (full KVM style
806      * 64 bit indexes, not CPRegInfo 32 bit indexes)
807      */
808     uint64_t *cpreg_indexes;
809     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
810     uint64_t *cpreg_values;
811     /* Length of the indexes, values, reset_values arrays */
812     int32_t cpreg_array_len;
813     /* These are used only for migration: incoming data arrives in
814      * these fields and is sanity checked in post_load before copying
815      * to the working data structures above.
816      */
817     uint64_t *cpreg_vmstate_indexes;
818     uint64_t *cpreg_vmstate_values;
819     int32_t cpreg_vmstate_array_len;
820 
821     DynamicGDBXMLInfo dyn_sysreg_xml;
822     DynamicGDBXMLInfo dyn_svereg_xml;
823 
824     /* Timers used by the generic (architected) timer */
825     QEMUTimer *gt_timer[NUM_GTIMERS];
826     /*
827      * Timer used by the PMU. Its state is restored after migration by
828      * pmu_op_finish() - it does not need other handling during migration
829      */
830     QEMUTimer *pmu_timer;
831     /* GPIO outputs for generic timer */
832     qemu_irq gt_timer_outputs[NUM_GTIMERS];
833     /* GPIO output for GICv3 maintenance interrupt signal */
834     qemu_irq gicv3_maintenance_interrupt;
835     /* GPIO output for the PMU interrupt */
836     qemu_irq pmu_interrupt;
837 
838     /* MemoryRegion to use for secure physical accesses */
839     MemoryRegion *secure_memory;
840 
841     /* MemoryRegion to use for allocation tag accesses */
842     MemoryRegion *tag_memory;
843     MemoryRegion *secure_tag_memory;
844 
845     /* For v8M, pointer to the IDAU interface provided by board/SoC */
846     Object *idau;
847 
848     /* 'compatible' string for this CPU for Linux device trees */
849     const char *dtb_compatible;
850 
851     /* PSCI version for this CPU
852      * Bits[31:16] = Major Version
853      * Bits[15:0] = Minor Version
854      */
855     uint32_t psci_version;
856 
857     /* Current power state, access guarded by BQL */
858     ARMPSCIState power_state;
859 
860     /* CPU has virtualization extension */
861     bool has_el2;
862     /* CPU has security extension */
863     bool has_el3;
864     /* CPU has PMU (Performance Monitor Unit) */
865     bool has_pmu;
866     /* CPU has VFP */
867     bool has_vfp;
868     /* CPU has Neon */
869     bool has_neon;
870     /* CPU has M-profile DSP extension */
871     bool has_dsp;
872 
873     /* CPU has memory protection unit */
874     bool has_mpu;
875     /* PMSAv7 MPU number of supported regions */
876     uint32_t pmsav7_dregion;
877     /* v8M SAU number of supported regions */
878     uint32_t sau_sregion;
879 
880     /* PSCI conduit used to invoke PSCI methods
881      * 0 - disabled, 1 - smc, 2 - hvc
882      */
883     uint32_t psci_conduit;
884 
885     /* For v8M, initial value of the Secure VTOR */
886     uint32_t init_svtor;
887     /* For v8M, initial value of the Non-secure VTOR */
888     uint32_t init_nsvtor;
889 
890     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
891      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
892      */
893     uint32_t kvm_target;
894 
895     /* KVM init features for this CPU */
896     uint32_t kvm_init_features[7];
897 
898     /* KVM CPU state */
899 
900     /* KVM virtual time adjustment */
901     bool kvm_adjvtime;
902     bool kvm_vtime_dirty;
903     uint64_t kvm_vtime;
904 
905     /* KVM steal time */
906     OnOffAuto kvm_steal_time;
907 
908     /* Uniprocessor system with MP extensions */
909     bool mp_is_up;
910 
911     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
912      * and the probe failed (so we need to report the error in realize)
913      */
914     bool host_cpu_probe_failed;
915 
916     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
917      * register.
918      */
919     int32_t core_count;
920 
921     /* The instance init functions for implementation-specific subclasses
922      * set these fields to specify the implementation-dependent values of
923      * various constant registers and reset values of non-constant
924      * registers.
925      * Some of these might become QOM properties eventually.
926      * Field names match the official register names as defined in the
927      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
928      * is used for reset values of non-constant registers; no reset_
929      * prefix means a constant register.
930      * Some of these registers are split out into a substructure that
931      * is shared with the translators to control the ISA.
932      *
933      * Note that if you add an ID register to the ARMISARegisters struct
934      * you need to also update the 32-bit and 64-bit versions of the
935      * kvm_arm_get_host_cpu_features() function to correctly populate the
936      * field by reading the value from the KVM vCPU.
937      */
938     struct ARMISARegisters {
939         uint32_t id_isar0;
940         uint32_t id_isar1;
941         uint32_t id_isar2;
942         uint32_t id_isar3;
943         uint32_t id_isar4;
944         uint32_t id_isar5;
945         uint32_t id_isar6;
946         uint32_t id_mmfr0;
947         uint32_t id_mmfr1;
948         uint32_t id_mmfr2;
949         uint32_t id_mmfr3;
950         uint32_t id_mmfr4;
951         uint32_t id_pfr0;
952         uint32_t id_pfr1;
953         uint32_t id_pfr2;
954         uint32_t mvfr0;
955         uint32_t mvfr1;
956         uint32_t mvfr2;
957         uint32_t id_dfr0;
958         uint32_t dbgdidr;
959         uint64_t id_aa64isar0;
960         uint64_t id_aa64isar1;
961         uint64_t id_aa64pfr0;
962         uint64_t id_aa64pfr1;
963         uint64_t id_aa64mmfr0;
964         uint64_t id_aa64mmfr1;
965         uint64_t id_aa64mmfr2;
966         uint64_t id_aa64dfr0;
967         uint64_t id_aa64dfr1;
968         uint64_t id_aa64zfr0;
969         uint64_t id_aa64smfr0;
970         uint64_t reset_pmcr_el0;
971     } isar;
972     uint64_t midr;
973     uint32_t revidr;
974     uint32_t reset_fpsid;
975     uint64_t ctr;
976     uint32_t reset_sctlr;
977     uint64_t pmceid0;
978     uint64_t pmceid1;
979     uint32_t id_afr0;
980     uint64_t id_aa64afr0;
981     uint64_t id_aa64afr1;
982     uint64_t clidr;
983     uint64_t mp_affinity; /* MP ID without feature bits */
984     /* The elements of this array are the CCSIDR values for each cache,
985      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
986      */
987     uint64_t ccsidr[16];
988     uint64_t reset_cbar;
989     uint32_t reset_auxcr;
990     bool reset_hivecs;
991 
992     /*
993      * Intermediate values used during property parsing.
994      * Once finalized, the values should be read from ID_AA64*.
995      */
996     bool prop_pauth;
997     bool prop_pauth_impdef;
998     bool prop_lpa2;
999 
1000     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1001     uint32_t dcz_blocksize;
1002     uint64_t rvbar_prop; /* Property/input signals.  */
1003 
1004     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1005     int gic_num_lrs; /* number of list registers */
1006     int gic_vpribits; /* number of virtual priority bits */
1007     int gic_vprebits; /* number of virtual preemption bits */
1008     int gic_pribits; /* number of physical priority bits */
1009 
1010     /* Whether the cfgend input is high (i.e. this CPU should reset into
1011      * big-endian mode).  This setting isn't used directly: instead it modifies
1012      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1013      * architecture version.
1014      */
1015     bool cfgend;
1016 
1017     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1018     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1019 
1020     int32_t node_id; /* NUMA node this CPU belongs to */
1021 
1022     /* Used to synchronize KVM and QEMU in-kernel device levels */
1023     uint8_t device_irq_level;
1024 
1025     /* Used to set the maximum vector length the cpu will support.  */
1026     uint32_t sve_max_vq;
1027 
1028 #ifdef CONFIG_USER_ONLY
1029     /* Used to set the default vector length at process start. */
1030     uint32_t sve_default_vq;
1031 #endif
1032 
1033     /*
1034      * In sve_vq_map each set bit is a supported vector length of
1035      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1036      * length in quadwords.
1037      *
1038      * While processing properties during initialization, corresponding
1039      * sve_vq_init bits are set for bits in sve_vq_map that have been
1040      * set by properties.
1041      *
1042      * Bits set in sve_vq_supported represent valid vector lengths for
1043      * the CPU type.
1044      */
1045     uint32_t sve_vq_map;
1046     uint32_t sve_vq_init;
1047     uint32_t sve_vq_supported;
1048 
1049     /* Generic timer counter frequency, in Hz */
1050     uint64_t gt_cntfrq_hz;
1051 };
1052 
1053 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1054 
1055 void arm_cpu_post_init(Object *obj);
1056 
1057 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1058 
1059 #ifndef CONFIG_USER_ONLY
1060 extern const VMStateDescription vmstate_arm_cpu;
1061 
1062 void arm_cpu_do_interrupt(CPUState *cpu);
1063 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1064 #endif /* !CONFIG_USER_ONLY */
1065 
1066 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1067                                          MemTxAttrs *attrs);
1068 
1069 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1070 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1071 
1072 /*
1073  * Helpers to dynamically generates XML descriptions of the sysregs
1074  * and SVE registers. Returns the number of registers in each set.
1075  */
1076 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1077 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1078 
1079 /* Returns the dynamically generated XML for the gdb stub.
1080  * Returns a pointer to the XML contents for the specified XML file or NULL
1081  * if the XML name doesn't match the predefined one.
1082  */
1083 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1084 
1085 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1086                              int cpuid, void *opaque);
1087 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1088                              int cpuid, void *opaque);
1089 
1090 #ifdef TARGET_AARCH64
1091 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1092 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1093 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1094 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1095                            int new_el, bool el0_a64);
1096 void aarch64_add_sve_properties(Object *obj);
1097 void aarch64_add_pauth_properties(Object *obj);
1098 
1099 /*
1100  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1101  * The byte at offset i from the start of the in-memory representation contains
1102  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1103  * lowest offsets are stored in the lowest memory addresses, then that nearly
1104  * matches QEMU's representation, which is to use an array of host-endian
1105  * uint64_t's, where the lower offsets are at the lower indices. To complete
1106  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1107  */
1108 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1109 {
1110 #if HOST_BIG_ENDIAN
1111     int i;
1112 
1113     for (i = 0; i < nr; ++i) {
1114         dst[i] = bswap64(src[i]);
1115     }
1116 
1117     return dst;
1118 #else
1119     return src;
1120 #endif
1121 }
1122 
1123 #else
1124 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1125 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1126                                          int n, bool a)
1127 { }
1128 static inline void aarch64_add_sve_properties(Object *obj) { }
1129 #endif
1130 
1131 void aarch64_sync_32_to_64(CPUARMState *env);
1132 void aarch64_sync_64_to_32(CPUARMState *env);
1133 
1134 int fp_exception_el(CPUARMState *env, int cur_el);
1135 int sve_exception_el(CPUARMState *env, int cur_el);
1136 
1137 /**
1138  * sve_vqm1_for_el:
1139  * @env: CPUARMState
1140  * @el: exception level
1141  *
1142  * Compute the current SVE vector length for @el, in units of
1143  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1144  */
1145 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1146 
1147 static inline bool is_a64(CPUARMState *env)
1148 {
1149     return env->aarch64;
1150 }
1151 
1152 /**
1153  * pmu_op_start/finish
1154  * @env: CPUARMState
1155  *
1156  * Convert all PMU counters between their delta form (the typical mode when
1157  * they are enabled) and the guest-visible values. These two calls must
1158  * surround any action which might affect the counters.
1159  */
1160 void pmu_op_start(CPUARMState *env);
1161 void pmu_op_finish(CPUARMState *env);
1162 
1163 /*
1164  * Called when a PMU counter is due to overflow
1165  */
1166 void arm_pmu_timer_cb(void *opaque);
1167 
1168 /**
1169  * Functions to register as EL change hooks for PMU mode filtering
1170  */
1171 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1172 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1173 
1174 /*
1175  * pmu_init
1176  * @cpu: ARMCPU
1177  *
1178  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1179  * for the current configuration
1180  */
1181 void pmu_init(ARMCPU *cpu);
1182 
1183 /* SCTLR bit meanings. Several bits have been reused in newer
1184  * versions of the architecture; in that case we define constants
1185  * for both old and new bit meanings. Code which tests against those
1186  * bits should probably check or otherwise arrange that the CPU
1187  * is the architectural version it expects.
1188  */
1189 #define SCTLR_M       (1U << 0)
1190 #define SCTLR_A       (1U << 1)
1191 #define SCTLR_C       (1U << 2)
1192 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1193 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1194 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1195 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1196 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1197 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1198 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1199 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1200 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1201 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1202 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1203 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1204 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1205 #define SCTLR_SED     (1U << 8) /* v8 onward */
1206 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1207 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1208 #define SCTLR_F       (1U << 10) /* up to v6 */
1209 #define SCTLR_SW      (1U << 10) /* v7 */
1210 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1211 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1212 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1213 #define SCTLR_I       (1U << 12)
1214 #define SCTLR_V       (1U << 13) /* AArch32 only */
1215 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1216 #define SCTLR_RR      (1U << 14) /* up to v7 */
1217 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1218 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1219 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1220 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1221 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1222 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1223 #define SCTLR_BR      (1U << 17) /* PMSA only */
1224 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1225 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1226 #define SCTLR_WXN     (1U << 19)
1227 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1228 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1229 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1230 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1231 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1232 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1233 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1234 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1235 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1236 #define SCTLR_VE      (1U << 24) /* up to v7 */
1237 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1238 #define SCTLR_EE      (1U << 25)
1239 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1240 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1241 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1242 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1243 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1244 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1245 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1246 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1247 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1248 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1249 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1250 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1251 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1252 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1253 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1254 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1255 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1256 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1257 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1258 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1259 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1260 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1261 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1262 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1263 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1264 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1265 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1266 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1267 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1268 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1269 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1270 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1271 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1272 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1273 
1274 /* Bit definitions for CPACR (AArch32 only) */
1275 FIELD(CPACR, CP10, 20, 2)
1276 FIELD(CPACR, CP11, 22, 2)
1277 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1278 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1279 FIELD(CPACR, ASEDIS, 31, 1)
1280 
1281 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1282 FIELD(CPACR_EL1, ZEN, 16, 2)
1283 FIELD(CPACR_EL1, FPEN, 20, 2)
1284 FIELD(CPACR_EL1, SMEN, 24, 2)
1285 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1286 
1287 /* Bit definitions for HCPTR (AArch32 only) */
1288 FIELD(HCPTR, TCP10, 10, 1)
1289 FIELD(HCPTR, TCP11, 11, 1)
1290 FIELD(HCPTR, TASE, 15, 1)
1291 FIELD(HCPTR, TTA, 20, 1)
1292 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1293 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1294 
1295 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1296 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1297 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1298 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1299 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1300 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1301 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1302 FIELD(CPTR_EL2, TTA, 28, 1)
1303 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1304 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1305 
1306 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1307 FIELD(CPTR_EL3, EZ, 8, 1)
1308 FIELD(CPTR_EL3, TFP, 10, 1)
1309 FIELD(CPTR_EL3, ESM, 12, 1)
1310 FIELD(CPTR_EL3, TTA, 20, 1)
1311 FIELD(CPTR_EL3, TAM, 30, 1)
1312 FIELD(CPTR_EL3, TCPAC, 31, 1)
1313 
1314 #define MDCR_EPMAD    (1U << 21)
1315 #define MDCR_EDAD     (1U << 20)
1316 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1317 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1318 #define MDCR_SDD      (1U << 16)
1319 #define MDCR_SPD      (3U << 14)
1320 #define MDCR_TDRA     (1U << 11)
1321 #define MDCR_TDOSA    (1U << 10)
1322 #define MDCR_TDA      (1U << 9)
1323 #define MDCR_TDE      (1U << 8)
1324 #define MDCR_HPME     (1U << 7)
1325 #define MDCR_TPM      (1U << 6)
1326 #define MDCR_TPMCR    (1U << 5)
1327 #define MDCR_HPMN     (0x1fU)
1328 
1329 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1330 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1331 
1332 #define CPSR_M (0x1fU)
1333 #define CPSR_T (1U << 5)
1334 #define CPSR_F (1U << 6)
1335 #define CPSR_I (1U << 7)
1336 #define CPSR_A (1U << 8)
1337 #define CPSR_E (1U << 9)
1338 #define CPSR_IT_2_7 (0xfc00U)
1339 #define CPSR_GE (0xfU << 16)
1340 #define CPSR_IL (1U << 20)
1341 #define CPSR_DIT (1U << 21)
1342 #define CPSR_PAN (1U << 22)
1343 #define CPSR_SSBS (1U << 23)
1344 #define CPSR_J (1U << 24)
1345 #define CPSR_IT_0_1 (3U << 25)
1346 #define CPSR_Q (1U << 27)
1347 #define CPSR_V (1U << 28)
1348 #define CPSR_C (1U << 29)
1349 #define CPSR_Z (1U << 30)
1350 #define CPSR_N (1U << 31)
1351 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1352 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1353 
1354 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1355 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1356     | CPSR_NZCV)
1357 /* Bits writable in user mode.  */
1358 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1359 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1360 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1361 
1362 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1363 #define XPSR_EXCP 0x1ffU
1364 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1365 #define XPSR_IT_2_7 CPSR_IT_2_7
1366 #define XPSR_GE CPSR_GE
1367 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1368 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1369 #define XPSR_IT_0_1 CPSR_IT_0_1
1370 #define XPSR_Q CPSR_Q
1371 #define XPSR_V CPSR_V
1372 #define XPSR_C CPSR_C
1373 #define XPSR_Z CPSR_Z
1374 #define XPSR_N CPSR_N
1375 #define XPSR_NZCV CPSR_NZCV
1376 #define XPSR_IT CPSR_IT
1377 
1378 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1379 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1380 #define TTBCR_PD0    (1U << 4)
1381 #define TTBCR_PD1    (1U << 5)
1382 #define TTBCR_EPD0   (1U << 7)
1383 #define TTBCR_IRGN0  (3U << 8)
1384 #define TTBCR_ORGN0  (3U << 10)
1385 #define TTBCR_SH0    (3U << 12)
1386 #define TTBCR_T1SZ   (3U << 16)
1387 #define TTBCR_A1     (1U << 22)
1388 #define TTBCR_EPD1   (1U << 23)
1389 #define TTBCR_IRGN1  (3U << 24)
1390 #define TTBCR_ORGN1  (3U << 26)
1391 #define TTBCR_SH1    (1U << 28)
1392 #define TTBCR_EAE    (1U << 31)
1393 
1394 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1395  * Only these are valid when in AArch64 mode; in
1396  * AArch32 mode SPSRs are basically CPSR-format.
1397  */
1398 #define PSTATE_SP (1U)
1399 #define PSTATE_M (0xFU)
1400 #define PSTATE_nRW (1U << 4)
1401 #define PSTATE_F (1U << 6)
1402 #define PSTATE_I (1U << 7)
1403 #define PSTATE_A (1U << 8)
1404 #define PSTATE_D (1U << 9)
1405 #define PSTATE_BTYPE (3U << 10)
1406 #define PSTATE_SSBS (1U << 12)
1407 #define PSTATE_IL (1U << 20)
1408 #define PSTATE_SS (1U << 21)
1409 #define PSTATE_PAN (1U << 22)
1410 #define PSTATE_UAO (1U << 23)
1411 #define PSTATE_DIT (1U << 24)
1412 #define PSTATE_TCO (1U << 25)
1413 #define PSTATE_V (1U << 28)
1414 #define PSTATE_C (1U << 29)
1415 #define PSTATE_Z (1U << 30)
1416 #define PSTATE_N (1U << 31)
1417 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1418 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1419 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1420 /* Mode values for AArch64 */
1421 #define PSTATE_MODE_EL3h 13
1422 #define PSTATE_MODE_EL3t 12
1423 #define PSTATE_MODE_EL2h 9
1424 #define PSTATE_MODE_EL2t 8
1425 #define PSTATE_MODE_EL1h 5
1426 #define PSTATE_MODE_EL1t 4
1427 #define PSTATE_MODE_EL0t 0
1428 
1429 /* Write a new value to v7m.exception, thus transitioning into or out
1430  * of Handler mode; this may result in a change of active stack pointer.
1431  */
1432 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1433 
1434 /* Map EL and handler into a PSTATE_MODE.  */
1435 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1436 {
1437     return (el << 2) | handler;
1438 }
1439 
1440 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1441  * interprocessing, so we don't attempt to sync with the cpsr state used by
1442  * the 32 bit decoder.
1443  */
1444 static inline uint32_t pstate_read(CPUARMState *env)
1445 {
1446     int ZF;
1447 
1448     ZF = (env->ZF == 0);
1449     return (env->NF & 0x80000000) | (ZF << 30)
1450         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1451         | env->pstate | env->daif | (env->btype << 10);
1452 }
1453 
1454 static inline void pstate_write(CPUARMState *env, uint32_t val)
1455 {
1456     env->ZF = (~val) & PSTATE_Z;
1457     env->NF = val;
1458     env->CF = (val >> 29) & 1;
1459     env->VF = (val << 3) & 0x80000000;
1460     env->daif = val & PSTATE_DAIF;
1461     env->btype = (val >> 10) & 3;
1462     env->pstate = val & ~CACHED_PSTATE_BITS;
1463 }
1464 
1465 /* Return the current CPSR value.  */
1466 uint32_t cpsr_read(CPUARMState *env);
1467 
1468 typedef enum CPSRWriteType {
1469     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1470     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1471     CPSRWriteRaw = 2,
1472         /* trust values, no reg bank switch, no hflags rebuild */
1473     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1474 } CPSRWriteType;
1475 
1476 /*
1477  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1478  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1479  * correspond to TB flags bits cached in the hflags, unless @write_type
1480  * is CPSRWriteRaw.
1481  */
1482 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1483                 CPSRWriteType write_type);
1484 
1485 /* Return the current xPSR value.  */
1486 static inline uint32_t xpsr_read(CPUARMState *env)
1487 {
1488     int ZF;
1489     ZF = (env->ZF == 0);
1490     return (env->NF & 0x80000000) | (ZF << 30)
1491         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1492         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1493         | ((env->condexec_bits & 0xfc) << 8)
1494         | (env->GE << 16)
1495         | env->v7m.exception;
1496 }
1497 
1498 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1499 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1500 {
1501     if (mask & XPSR_NZCV) {
1502         env->ZF = (~val) & XPSR_Z;
1503         env->NF = val;
1504         env->CF = (val >> 29) & 1;
1505         env->VF = (val << 3) & 0x80000000;
1506     }
1507     if (mask & XPSR_Q) {
1508         env->QF = ((val & XPSR_Q) != 0);
1509     }
1510     if (mask & XPSR_GE) {
1511         env->GE = (val & XPSR_GE) >> 16;
1512     }
1513 #ifndef CONFIG_USER_ONLY
1514     if (mask & XPSR_T) {
1515         env->thumb = ((val & XPSR_T) != 0);
1516     }
1517     if (mask & XPSR_IT_0_1) {
1518         env->condexec_bits &= ~3;
1519         env->condexec_bits |= (val >> 25) & 3;
1520     }
1521     if (mask & XPSR_IT_2_7) {
1522         env->condexec_bits &= 3;
1523         env->condexec_bits |= (val >> 8) & 0xfc;
1524     }
1525     if (mask & XPSR_EXCP) {
1526         /* Note that this only happens on exception exit */
1527         write_v7m_exception(env, val & XPSR_EXCP);
1528     }
1529 #endif
1530 }
1531 
1532 #define HCR_VM        (1ULL << 0)
1533 #define HCR_SWIO      (1ULL << 1)
1534 #define HCR_PTW       (1ULL << 2)
1535 #define HCR_FMO       (1ULL << 3)
1536 #define HCR_IMO       (1ULL << 4)
1537 #define HCR_AMO       (1ULL << 5)
1538 #define HCR_VF        (1ULL << 6)
1539 #define HCR_VI        (1ULL << 7)
1540 #define HCR_VSE       (1ULL << 8)
1541 #define HCR_FB        (1ULL << 9)
1542 #define HCR_BSU_MASK  (3ULL << 10)
1543 #define HCR_DC        (1ULL << 12)
1544 #define HCR_TWI       (1ULL << 13)
1545 #define HCR_TWE       (1ULL << 14)
1546 #define HCR_TID0      (1ULL << 15)
1547 #define HCR_TID1      (1ULL << 16)
1548 #define HCR_TID2      (1ULL << 17)
1549 #define HCR_TID3      (1ULL << 18)
1550 #define HCR_TSC       (1ULL << 19)
1551 #define HCR_TIDCP     (1ULL << 20)
1552 #define HCR_TACR      (1ULL << 21)
1553 #define HCR_TSW       (1ULL << 22)
1554 #define HCR_TPCP      (1ULL << 23)
1555 #define HCR_TPU       (1ULL << 24)
1556 #define HCR_TTLB      (1ULL << 25)
1557 #define HCR_TVM       (1ULL << 26)
1558 #define HCR_TGE       (1ULL << 27)
1559 #define HCR_TDZ       (1ULL << 28)
1560 #define HCR_HCD       (1ULL << 29)
1561 #define HCR_TRVM      (1ULL << 30)
1562 #define HCR_RW        (1ULL << 31)
1563 #define HCR_CD        (1ULL << 32)
1564 #define HCR_ID        (1ULL << 33)
1565 #define HCR_E2H       (1ULL << 34)
1566 #define HCR_TLOR      (1ULL << 35)
1567 #define HCR_TERR      (1ULL << 36)
1568 #define HCR_TEA       (1ULL << 37)
1569 #define HCR_MIOCNCE   (1ULL << 38)
1570 /* RES0 bit 39 */
1571 #define HCR_APK       (1ULL << 40)
1572 #define HCR_API       (1ULL << 41)
1573 #define HCR_NV        (1ULL << 42)
1574 #define HCR_NV1       (1ULL << 43)
1575 #define HCR_AT        (1ULL << 44)
1576 #define HCR_NV2       (1ULL << 45)
1577 #define HCR_FWB       (1ULL << 46)
1578 #define HCR_FIEN      (1ULL << 47)
1579 /* RES0 bit 48 */
1580 #define HCR_TID4      (1ULL << 49)
1581 #define HCR_TICAB     (1ULL << 50)
1582 #define HCR_AMVOFFEN  (1ULL << 51)
1583 #define HCR_TOCU      (1ULL << 52)
1584 #define HCR_ENSCXT    (1ULL << 53)
1585 #define HCR_TTLBIS    (1ULL << 54)
1586 #define HCR_TTLBOS    (1ULL << 55)
1587 #define HCR_ATA       (1ULL << 56)
1588 #define HCR_DCT       (1ULL << 57)
1589 #define HCR_TID5      (1ULL << 58)
1590 #define HCR_TWEDEN    (1ULL << 59)
1591 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1592 
1593 #define HCRX_ENAS0    (1ULL << 0)
1594 #define HCRX_ENALS    (1ULL << 1)
1595 #define HCRX_ENASR    (1ULL << 2)
1596 #define HCRX_FNXS     (1ULL << 3)
1597 #define HCRX_FGTNXS   (1ULL << 4)
1598 #define HCRX_SMPME    (1ULL << 5)
1599 #define HCRX_TALLINT  (1ULL << 6)
1600 #define HCRX_VINMI    (1ULL << 7)
1601 #define HCRX_VFNMI    (1ULL << 8)
1602 #define HCRX_CMOW     (1ULL << 9)
1603 #define HCRX_MCE2     (1ULL << 10)
1604 #define HCRX_MSCEN    (1ULL << 11)
1605 
1606 #define HPFAR_NS      (1ULL << 63)
1607 
1608 #define SCR_NS                (1U << 0)
1609 #define SCR_IRQ               (1U << 1)
1610 #define SCR_FIQ               (1U << 2)
1611 #define SCR_EA                (1U << 3)
1612 #define SCR_FW                (1U << 4)
1613 #define SCR_AW                (1U << 5)
1614 #define SCR_NET               (1U << 6)
1615 #define SCR_SMD               (1U << 7)
1616 #define SCR_HCE               (1U << 8)
1617 #define SCR_SIF               (1U << 9)
1618 #define SCR_RW                (1U << 10)
1619 #define SCR_ST                (1U << 11)
1620 #define SCR_TWI               (1U << 12)
1621 #define SCR_TWE               (1U << 13)
1622 #define SCR_TLOR              (1U << 14)
1623 #define SCR_TERR              (1U << 15)
1624 #define SCR_APK               (1U << 16)
1625 #define SCR_API               (1U << 17)
1626 #define SCR_EEL2              (1U << 18)
1627 #define SCR_EASE              (1U << 19)
1628 #define SCR_NMEA              (1U << 20)
1629 #define SCR_FIEN              (1U << 21)
1630 #define SCR_ENSCXT            (1U << 25)
1631 #define SCR_ATA               (1U << 26)
1632 #define SCR_FGTEN             (1U << 27)
1633 #define SCR_ECVEN             (1U << 28)
1634 #define SCR_TWEDEN            (1U << 29)
1635 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1636 #define SCR_TME               (1ULL << 34)
1637 #define SCR_AMVOFFEN          (1ULL << 35)
1638 #define SCR_ENAS0             (1ULL << 36)
1639 #define SCR_ADEN              (1ULL << 37)
1640 #define SCR_HXEN              (1ULL << 38)
1641 #define SCR_TRNDR             (1ULL << 40)
1642 #define SCR_ENTP2             (1ULL << 41)
1643 #define SCR_GPF               (1ULL << 48)
1644 
1645 #define HSTR_TTEE (1 << 16)
1646 #define HSTR_TJDBX (1 << 17)
1647 
1648 /* Return the current FPSCR value.  */
1649 uint32_t vfp_get_fpscr(CPUARMState *env);
1650 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1651 
1652 /* FPCR, Floating Point Control Register
1653  * FPSR, Floating Poiht Status Register
1654  *
1655  * For A64 the FPSCR is split into two logically distinct registers,
1656  * FPCR and FPSR. However since they still use non-overlapping bits
1657  * we store the underlying state in fpscr and just mask on read/write.
1658  */
1659 #define FPSR_MASK 0xf800009f
1660 #define FPCR_MASK 0x07ff9f00
1661 
1662 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1663 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1664 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1665 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1666 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1667 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1668 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1669 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1670 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1671 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1672 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1673 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1674 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1675 #define FPCR_C      (1 << 29)   /* FP carry flag */
1676 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1677 #define FPCR_N      (1 << 31)   /* FP negative flag */
1678 
1679 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1680 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1681 #define FPCR_LTPSIZE_LENGTH 3
1682 
1683 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1684 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1685 
1686 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1687 {
1688     return vfp_get_fpscr(env) & FPSR_MASK;
1689 }
1690 
1691 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1692 {
1693     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1694     vfp_set_fpscr(env, new_fpscr);
1695 }
1696 
1697 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1698 {
1699     return vfp_get_fpscr(env) & FPCR_MASK;
1700 }
1701 
1702 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1703 {
1704     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1705     vfp_set_fpscr(env, new_fpscr);
1706 }
1707 
1708 enum arm_cpu_mode {
1709   ARM_CPU_MODE_USR = 0x10,
1710   ARM_CPU_MODE_FIQ = 0x11,
1711   ARM_CPU_MODE_IRQ = 0x12,
1712   ARM_CPU_MODE_SVC = 0x13,
1713   ARM_CPU_MODE_MON = 0x16,
1714   ARM_CPU_MODE_ABT = 0x17,
1715   ARM_CPU_MODE_HYP = 0x1a,
1716   ARM_CPU_MODE_UND = 0x1b,
1717   ARM_CPU_MODE_SYS = 0x1f
1718 };
1719 
1720 /* VFP system registers.  */
1721 #define ARM_VFP_FPSID   0
1722 #define ARM_VFP_FPSCR   1
1723 #define ARM_VFP_MVFR2   5
1724 #define ARM_VFP_MVFR1   6
1725 #define ARM_VFP_MVFR0   7
1726 #define ARM_VFP_FPEXC   8
1727 #define ARM_VFP_FPINST  9
1728 #define ARM_VFP_FPINST2 10
1729 /* These ones are M-profile only */
1730 #define ARM_VFP_FPSCR_NZCVQC 2
1731 #define ARM_VFP_VPR 12
1732 #define ARM_VFP_P0 13
1733 #define ARM_VFP_FPCXT_NS 14
1734 #define ARM_VFP_FPCXT_S 15
1735 
1736 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1737 #define QEMU_VFP_FPSCR_NZCV 0xffff
1738 
1739 /* iwMMXt coprocessor control registers.  */
1740 #define ARM_IWMMXT_wCID  0
1741 #define ARM_IWMMXT_wCon  1
1742 #define ARM_IWMMXT_wCSSF 2
1743 #define ARM_IWMMXT_wCASF 3
1744 #define ARM_IWMMXT_wCGR0 8
1745 #define ARM_IWMMXT_wCGR1 9
1746 #define ARM_IWMMXT_wCGR2 10
1747 #define ARM_IWMMXT_wCGR3 11
1748 
1749 /* V7M CCR bits */
1750 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1751 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1752 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1753 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1754 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1755 FIELD(V7M_CCR, STKALIGN, 9, 1)
1756 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1757 FIELD(V7M_CCR, DC, 16, 1)
1758 FIELD(V7M_CCR, IC, 17, 1)
1759 FIELD(V7M_CCR, BP, 18, 1)
1760 FIELD(V7M_CCR, LOB, 19, 1)
1761 FIELD(V7M_CCR, TRD, 20, 1)
1762 
1763 /* V7M SCR bits */
1764 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1765 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1766 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1767 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1768 
1769 /* V7M AIRCR bits */
1770 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1771 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1772 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1773 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1774 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1775 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1776 FIELD(V7M_AIRCR, PRIS, 14, 1)
1777 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1778 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1779 
1780 /* V7M CFSR bits for MMFSR */
1781 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1782 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1783 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1784 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1785 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1786 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1787 
1788 /* V7M CFSR bits for BFSR */
1789 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1790 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1791 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1792 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1793 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1794 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1795 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1796 
1797 /* V7M CFSR bits for UFSR */
1798 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1799 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1800 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1801 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1802 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1803 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1804 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1805 
1806 /* V7M CFSR bit masks covering all of the subregister bits */
1807 FIELD(V7M_CFSR, MMFSR, 0, 8)
1808 FIELD(V7M_CFSR, BFSR, 8, 8)
1809 FIELD(V7M_CFSR, UFSR, 16, 16)
1810 
1811 /* V7M HFSR bits */
1812 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1813 FIELD(V7M_HFSR, FORCED, 30, 1)
1814 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1815 
1816 /* V7M DFSR bits */
1817 FIELD(V7M_DFSR, HALTED, 0, 1)
1818 FIELD(V7M_DFSR, BKPT, 1, 1)
1819 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1820 FIELD(V7M_DFSR, VCATCH, 3, 1)
1821 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1822 
1823 /* V7M SFSR bits */
1824 FIELD(V7M_SFSR, INVEP, 0, 1)
1825 FIELD(V7M_SFSR, INVIS, 1, 1)
1826 FIELD(V7M_SFSR, INVER, 2, 1)
1827 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1828 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1829 FIELD(V7M_SFSR, LSPERR, 5, 1)
1830 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1831 FIELD(V7M_SFSR, LSERR, 7, 1)
1832 
1833 /* v7M MPU_CTRL bits */
1834 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1835 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1836 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1837 
1838 /* v7M CLIDR bits */
1839 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1840 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1841 FIELD(V7M_CLIDR, LOC, 24, 3)
1842 FIELD(V7M_CLIDR, LOUU, 27, 3)
1843 FIELD(V7M_CLIDR, ICB, 30, 2)
1844 
1845 FIELD(V7M_CSSELR, IND, 0, 1)
1846 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1847 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1848  * define a mask for this and check that it doesn't permit running off
1849  * the end of the array.
1850  */
1851 FIELD(V7M_CSSELR, INDEX, 0, 4)
1852 
1853 /* v7M FPCCR bits */
1854 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1855 FIELD(V7M_FPCCR, USER, 1, 1)
1856 FIELD(V7M_FPCCR, S, 2, 1)
1857 FIELD(V7M_FPCCR, THREAD, 3, 1)
1858 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1859 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1860 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1861 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1862 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1863 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1864 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1865 FIELD(V7M_FPCCR, RES0, 11, 15)
1866 FIELD(V7M_FPCCR, TS, 26, 1)
1867 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1868 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1869 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1870 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1871 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1872 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1873 #define R_V7M_FPCCR_BANKED_MASK                 \
1874     (R_V7M_FPCCR_LSPACT_MASK |                  \
1875      R_V7M_FPCCR_USER_MASK |                    \
1876      R_V7M_FPCCR_THREAD_MASK |                  \
1877      R_V7M_FPCCR_MMRDY_MASK |                   \
1878      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1879      R_V7M_FPCCR_UFRDY_MASK |                   \
1880      R_V7M_FPCCR_ASPEN_MASK)
1881 
1882 /* v7M VPR bits */
1883 FIELD(V7M_VPR, P0, 0, 16)
1884 FIELD(V7M_VPR, MASK01, 16, 4)
1885 FIELD(V7M_VPR, MASK23, 20, 4)
1886 
1887 /*
1888  * System register ID fields.
1889  */
1890 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1891 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1892 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1893 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1894 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1895 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1896 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1897 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1898 FIELD(CLIDR_EL1, LOC, 24, 3)
1899 FIELD(CLIDR_EL1, LOUU, 27, 3)
1900 FIELD(CLIDR_EL1, ICB, 30, 3)
1901 
1902 /* When FEAT_CCIDX is implemented */
1903 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1904 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1905 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1906 
1907 /* When FEAT_CCIDX is not implemented */
1908 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1909 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1910 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1911 
1912 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1913 FIELD(CTR_EL0,  L1IP, 14, 2)
1914 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1915 FIELD(CTR_EL0,  ERG, 20, 4)
1916 FIELD(CTR_EL0,  CWG, 24, 4)
1917 FIELD(CTR_EL0,  IDC, 28, 1)
1918 FIELD(CTR_EL0,  DIC, 29, 1)
1919 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1920 
1921 FIELD(MIDR_EL1, REVISION, 0, 4)
1922 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1923 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1924 FIELD(MIDR_EL1, VARIANT, 20, 4)
1925 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1926 
1927 FIELD(ID_ISAR0, SWAP, 0, 4)
1928 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1929 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1930 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1931 FIELD(ID_ISAR0, COPROC, 16, 4)
1932 FIELD(ID_ISAR0, DEBUG, 20, 4)
1933 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1934 
1935 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1936 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1937 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1938 FIELD(ID_ISAR1, EXTEND, 12, 4)
1939 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1940 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1941 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1942 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1943 
1944 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1945 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1946 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1947 FIELD(ID_ISAR2, MULT, 12, 4)
1948 FIELD(ID_ISAR2, MULTS, 16, 4)
1949 FIELD(ID_ISAR2, MULTU, 20, 4)
1950 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1951 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1952 
1953 FIELD(ID_ISAR3, SATURATE, 0, 4)
1954 FIELD(ID_ISAR3, SIMD, 4, 4)
1955 FIELD(ID_ISAR3, SVC, 8, 4)
1956 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1957 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1958 FIELD(ID_ISAR3, T32COPY, 20, 4)
1959 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1960 FIELD(ID_ISAR3, T32EE, 28, 4)
1961 
1962 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1963 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1964 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1965 FIELD(ID_ISAR4, SMC, 12, 4)
1966 FIELD(ID_ISAR4, BARRIER, 16, 4)
1967 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1968 FIELD(ID_ISAR4, PSR_M, 24, 4)
1969 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1970 
1971 FIELD(ID_ISAR5, SEVL, 0, 4)
1972 FIELD(ID_ISAR5, AES, 4, 4)
1973 FIELD(ID_ISAR5, SHA1, 8, 4)
1974 FIELD(ID_ISAR5, SHA2, 12, 4)
1975 FIELD(ID_ISAR5, CRC32, 16, 4)
1976 FIELD(ID_ISAR5, RDM, 24, 4)
1977 FIELD(ID_ISAR5, VCMA, 28, 4)
1978 
1979 FIELD(ID_ISAR6, JSCVT, 0, 4)
1980 FIELD(ID_ISAR6, DP, 4, 4)
1981 FIELD(ID_ISAR6, FHM, 8, 4)
1982 FIELD(ID_ISAR6, SB, 12, 4)
1983 FIELD(ID_ISAR6, SPECRES, 16, 4)
1984 FIELD(ID_ISAR6, BF16, 20, 4)
1985 FIELD(ID_ISAR6, I8MM, 24, 4)
1986 
1987 FIELD(ID_MMFR0, VMSA, 0, 4)
1988 FIELD(ID_MMFR0, PMSA, 4, 4)
1989 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1990 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1991 FIELD(ID_MMFR0, TCM, 16, 4)
1992 FIELD(ID_MMFR0, AUXREG, 20, 4)
1993 FIELD(ID_MMFR0, FCSE, 24, 4)
1994 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1995 
1996 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1997 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1998 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1999 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2000 FIELD(ID_MMFR1, L1HVD, 16, 4)
2001 FIELD(ID_MMFR1, L1UNI, 20, 4)
2002 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2003 FIELD(ID_MMFR1, BPRED, 28, 4)
2004 
2005 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2006 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2007 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2008 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2009 FIELD(ID_MMFR2, UNITLB, 16, 4)
2010 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2011 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2012 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2013 
2014 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2015 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2016 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2017 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2018 FIELD(ID_MMFR3, PAN, 16, 4)
2019 FIELD(ID_MMFR3, COHWALK, 20, 4)
2020 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2021 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2022 
2023 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2024 FIELD(ID_MMFR4, AC2, 4, 4)
2025 FIELD(ID_MMFR4, XNX, 8, 4)
2026 FIELD(ID_MMFR4, CNP, 12, 4)
2027 FIELD(ID_MMFR4, HPDS, 16, 4)
2028 FIELD(ID_MMFR4, LSM, 20, 4)
2029 FIELD(ID_MMFR4, CCIDX, 24, 4)
2030 FIELD(ID_MMFR4, EVT, 28, 4)
2031 
2032 FIELD(ID_MMFR5, ETS, 0, 4)
2033 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2034 
2035 FIELD(ID_PFR0, STATE0, 0, 4)
2036 FIELD(ID_PFR0, STATE1, 4, 4)
2037 FIELD(ID_PFR0, STATE2, 8, 4)
2038 FIELD(ID_PFR0, STATE3, 12, 4)
2039 FIELD(ID_PFR0, CSV2, 16, 4)
2040 FIELD(ID_PFR0, AMU, 20, 4)
2041 FIELD(ID_PFR0, DIT, 24, 4)
2042 FIELD(ID_PFR0, RAS, 28, 4)
2043 
2044 FIELD(ID_PFR1, PROGMOD, 0, 4)
2045 FIELD(ID_PFR1, SECURITY, 4, 4)
2046 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2047 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2048 FIELD(ID_PFR1, GENTIMER, 16, 4)
2049 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2050 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2051 FIELD(ID_PFR1, GIC, 28, 4)
2052 
2053 FIELD(ID_PFR2, CSV3, 0, 4)
2054 FIELD(ID_PFR2, SSBS, 4, 4)
2055 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2056 
2057 FIELD(ID_AA64ISAR0, AES, 4, 4)
2058 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2059 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2060 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2061 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2062 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2063 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2064 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2065 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2066 FIELD(ID_AA64ISAR0, DP, 44, 4)
2067 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2068 FIELD(ID_AA64ISAR0, TS, 52, 4)
2069 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2070 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2071 
2072 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2073 FIELD(ID_AA64ISAR1, APA, 4, 4)
2074 FIELD(ID_AA64ISAR1, API, 8, 4)
2075 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2076 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2077 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2078 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2079 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2080 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2081 FIELD(ID_AA64ISAR1, SB, 36, 4)
2082 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2083 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2084 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2085 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2086 FIELD(ID_AA64ISAR1, XS, 56, 4)
2087 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2088 
2089 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2090 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2091 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2092 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2093 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2094 FIELD(ID_AA64ISAR2, BC, 20, 4)
2095 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2096 
2097 FIELD(ID_AA64PFR0, EL0, 0, 4)
2098 FIELD(ID_AA64PFR0, EL1, 4, 4)
2099 FIELD(ID_AA64PFR0, EL2, 8, 4)
2100 FIELD(ID_AA64PFR0, EL3, 12, 4)
2101 FIELD(ID_AA64PFR0, FP, 16, 4)
2102 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2103 FIELD(ID_AA64PFR0, GIC, 24, 4)
2104 FIELD(ID_AA64PFR0, RAS, 28, 4)
2105 FIELD(ID_AA64PFR0, SVE, 32, 4)
2106 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2107 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2108 FIELD(ID_AA64PFR0, AMU, 44, 4)
2109 FIELD(ID_AA64PFR0, DIT, 48, 4)
2110 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2111 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2112 
2113 FIELD(ID_AA64PFR1, BT, 0, 4)
2114 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2115 FIELD(ID_AA64PFR1, MTE, 8, 4)
2116 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2117 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2118 FIELD(ID_AA64PFR1, SME, 24, 4)
2119 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2120 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2121 FIELD(ID_AA64PFR1, NMI, 36, 4)
2122 
2123 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2124 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2125 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2126 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2127 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2128 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2129 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2130 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2131 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2132 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2133 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2134 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2135 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2136 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2137 
2138 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2139 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2140 FIELD(ID_AA64MMFR1, VH, 8, 4)
2141 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2142 FIELD(ID_AA64MMFR1, LO, 16, 4)
2143 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2144 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2145 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2146 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2147 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2148 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2149 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2150 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2151 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2152 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2153 
2154 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2155 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2156 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2157 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2158 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2159 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2160 FIELD(ID_AA64MMFR2, NV, 24, 4)
2161 FIELD(ID_AA64MMFR2, ST, 28, 4)
2162 FIELD(ID_AA64MMFR2, AT, 32, 4)
2163 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2164 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2165 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2166 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2167 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2168 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2169 
2170 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2171 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2172 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2173 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2174 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2175 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2176 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2177 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2178 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2179 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2180 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2181 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2182 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2183 
2184 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2185 FIELD(ID_AA64ZFR0, AES, 4, 4)
2186 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2187 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2188 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2189 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2190 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2191 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2192 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2193 
2194 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2195 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2196 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2197 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2198 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2199 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2200 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2201 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2202 
2203 FIELD(ID_DFR0, COPDBG, 0, 4)
2204 FIELD(ID_DFR0, COPSDBG, 4, 4)
2205 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2206 FIELD(ID_DFR0, COPTRC, 12, 4)
2207 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2208 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2209 FIELD(ID_DFR0, PERFMON, 24, 4)
2210 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2211 
2212 FIELD(ID_DFR1, MTPMU, 0, 4)
2213 FIELD(ID_DFR1, HPMN0, 4, 4)
2214 
2215 FIELD(DBGDIDR, SE_IMP, 12, 1)
2216 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2217 FIELD(DBGDIDR, VERSION, 16, 4)
2218 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2219 FIELD(DBGDIDR, BRPS, 24, 4)
2220 FIELD(DBGDIDR, WRPS, 28, 4)
2221 
2222 FIELD(MVFR0, SIMDREG, 0, 4)
2223 FIELD(MVFR0, FPSP, 4, 4)
2224 FIELD(MVFR0, FPDP, 8, 4)
2225 FIELD(MVFR0, FPTRAP, 12, 4)
2226 FIELD(MVFR0, FPDIVIDE, 16, 4)
2227 FIELD(MVFR0, FPSQRT, 20, 4)
2228 FIELD(MVFR0, FPSHVEC, 24, 4)
2229 FIELD(MVFR0, FPROUND, 28, 4)
2230 
2231 FIELD(MVFR1, FPFTZ, 0, 4)
2232 FIELD(MVFR1, FPDNAN, 4, 4)
2233 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2234 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2235 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2236 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2237 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2238 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2239 FIELD(MVFR1, FPHP, 24, 4)
2240 FIELD(MVFR1, SIMDFMAC, 28, 4)
2241 
2242 FIELD(MVFR2, SIMDMISC, 0, 4)
2243 FIELD(MVFR2, FPMISC, 4, 4)
2244 
2245 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2246 
2247 /* If adding a feature bit which corresponds to a Linux ELF
2248  * HWCAP bit, remember to update the feature-bit-to-hwcap
2249  * mapping in linux-user/elfload.c:get_elf_hwcap().
2250  */
2251 enum arm_features {
2252     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2253     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2254     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2255     ARM_FEATURE_V6,
2256     ARM_FEATURE_V6K,
2257     ARM_FEATURE_V7,
2258     ARM_FEATURE_THUMB2,
2259     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2260     ARM_FEATURE_NEON,
2261     ARM_FEATURE_M, /* Microcontroller profile.  */
2262     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2263     ARM_FEATURE_THUMB2EE,
2264     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2265     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2266     ARM_FEATURE_V4T,
2267     ARM_FEATURE_V5,
2268     ARM_FEATURE_STRONGARM,
2269     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2270     ARM_FEATURE_GENERIC_TIMER,
2271     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2272     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2273     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2274     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2275     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2276     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2277     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2278     ARM_FEATURE_V8,
2279     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2280     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2281     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2282     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2283     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2284     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2285     ARM_FEATURE_PMU, /* has PMU support */
2286     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2287     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2288     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2289     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2290 };
2291 
2292 static inline int arm_feature(CPUARMState *env, int feature)
2293 {
2294     return (env->features & (1ULL << feature)) != 0;
2295 }
2296 
2297 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2298 
2299 #if !defined(CONFIG_USER_ONLY)
2300 /* Return true if exception levels below EL3 are in secure state,
2301  * or would be following an exception return to that level.
2302  * Unlike arm_is_secure() (which is always a question about the
2303  * _current_ state of the CPU) this doesn't care about the current
2304  * EL or mode.
2305  */
2306 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2307 {
2308     if (arm_feature(env, ARM_FEATURE_EL3)) {
2309         return !(env->cp15.scr_el3 & SCR_NS);
2310     } else {
2311         /* If EL3 is not supported then the secure state is implementation
2312          * defined, in which case QEMU defaults to non-secure.
2313          */
2314         return false;
2315     }
2316 }
2317 
2318 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2319 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2320 {
2321     if (arm_feature(env, ARM_FEATURE_EL3)) {
2322         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2323             /* CPU currently in AArch64 state and EL3 */
2324             return true;
2325         } else if (!is_a64(env) &&
2326                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2327             /* CPU currently in AArch32 state and monitor mode */
2328             return true;
2329         }
2330     }
2331     return false;
2332 }
2333 
2334 /* Return true if the processor is in secure state */
2335 static inline bool arm_is_secure(CPUARMState *env)
2336 {
2337     if (arm_is_el3_or_mon(env)) {
2338         return true;
2339     }
2340     return arm_is_secure_below_el3(env);
2341 }
2342 
2343 /*
2344  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2345  * This corresponds to the pseudocode EL2Enabled()
2346  */
2347 static inline bool arm_is_el2_enabled(CPUARMState *env)
2348 {
2349     if (arm_feature(env, ARM_FEATURE_EL2)) {
2350         if (arm_is_secure_below_el3(env)) {
2351             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2352         }
2353         return true;
2354     }
2355     return false;
2356 }
2357 
2358 #else
2359 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2360 {
2361     return false;
2362 }
2363 
2364 static inline bool arm_is_secure(CPUARMState *env)
2365 {
2366     return false;
2367 }
2368 
2369 static inline bool arm_is_el2_enabled(CPUARMState *env)
2370 {
2371     return false;
2372 }
2373 #endif
2374 
2375 /**
2376  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2377  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2378  * "for all purposes other than a direct read or write access of HCR_EL2."
2379  * Not included here is HCR_RW.
2380  */
2381 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2382 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2383 
2384 /* Return true if the specified exception level is running in AArch64 state. */
2385 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2386 {
2387     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2388      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2389      */
2390     assert(el >= 1 && el <= 3);
2391     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2392 
2393     /* The highest exception level is always at the maximum supported
2394      * register width, and then lower levels have a register width controlled
2395      * by bits in the SCR or HCR registers.
2396      */
2397     if (el == 3) {
2398         return aa64;
2399     }
2400 
2401     if (arm_feature(env, ARM_FEATURE_EL3) &&
2402         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2403         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2404     }
2405 
2406     if (el == 2) {
2407         return aa64;
2408     }
2409 
2410     if (arm_is_el2_enabled(env)) {
2411         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2412     }
2413 
2414     return aa64;
2415 }
2416 
2417 /* Function for determing whether guest cp register reads and writes should
2418  * access the secure or non-secure bank of a cp register.  When EL3 is
2419  * operating in AArch32 state, the NS-bit determines whether the secure
2420  * instance of a cp register should be used. When EL3 is AArch64 (or if
2421  * it doesn't exist at all) then there is no register banking, and all
2422  * accesses are to the non-secure version.
2423  */
2424 static inline bool access_secure_reg(CPUARMState *env)
2425 {
2426     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2427                 !arm_el_is_aa64(env, 3) &&
2428                 !(env->cp15.scr_el3 & SCR_NS));
2429 
2430     return ret;
2431 }
2432 
2433 /* Macros for accessing a specified CP register bank */
2434 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2435     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2436 
2437 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2438     do {                                                \
2439         if (_secure) {                                   \
2440             (_env)->cp15._regname##_s = (_val);            \
2441         } else {                                        \
2442             (_env)->cp15._regname##_ns = (_val);           \
2443         }                                               \
2444     } while (0)
2445 
2446 /* Macros for automatically accessing a specific CP register bank depending on
2447  * the current secure state of the system.  These macros are not intended for
2448  * supporting instruction translation reads/writes as these are dependent
2449  * solely on the SCR.NS bit and not the mode.
2450  */
2451 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2452     A32_BANKED_REG_GET((_env), _regname,                \
2453                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2454 
2455 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2456     A32_BANKED_REG_SET((_env), _regname,                                    \
2457                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2458                        (_val))
2459 
2460 void arm_cpu_list(void);
2461 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2462                                  uint32_t cur_el, bool secure);
2463 
2464 /* Interface between CPU and Interrupt controller.  */
2465 #ifndef CONFIG_USER_ONLY
2466 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2467 #else
2468 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2469 {
2470     return true;
2471 }
2472 #endif
2473 /**
2474  * armv7m_nvic_set_pending: mark the specified exception as pending
2475  * @opaque: the NVIC
2476  * @irq: the exception number to mark pending
2477  * @secure: false for non-banked exceptions or for the nonsecure
2478  * version of a banked exception, true for the secure version of a banked
2479  * exception.
2480  *
2481  * Marks the specified exception as pending. Note that we will assert()
2482  * if @secure is true and @irq does not specify one of the fixed set
2483  * of architecturally banked exceptions.
2484  */
2485 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2486 /**
2487  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2488  * @opaque: the NVIC
2489  * @irq: the exception number to mark pending
2490  * @secure: false for non-banked exceptions or for the nonsecure
2491  * version of a banked exception, true for the secure version of a banked
2492  * exception.
2493  *
2494  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2495  * exceptions (exceptions generated in the course of trying to take
2496  * a different exception).
2497  */
2498 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2499 /**
2500  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2501  * @opaque: the NVIC
2502  * @irq: the exception number to mark pending
2503  * @secure: false for non-banked exceptions or for the nonsecure
2504  * version of a banked exception, true for the secure version of a banked
2505  * exception.
2506  *
2507  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2508  * generated in the course of lazy stacking of FP registers.
2509  */
2510 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2511 /**
2512  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2513  *    exception, and whether it targets Secure state
2514  * @opaque: the NVIC
2515  * @pirq: set to pending exception number
2516  * @ptargets_secure: set to whether pending exception targets Secure
2517  *
2518  * This function writes the number of the highest priority pending
2519  * exception (the one which would be made active by
2520  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2521  * to true if the current highest priority pending exception should
2522  * be taken to Secure state, false for NS.
2523  */
2524 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2525                                       bool *ptargets_secure);
2526 /**
2527  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2528  * @opaque: the NVIC
2529  *
2530  * Move the current highest priority pending exception from the pending
2531  * state to the active state, and update v7m.exception to indicate that
2532  * it is the exception currently being handled.
2533  */
2534 void armv7m_nvic_acknowledge_irq(void *opaque);
2535 /**
2536  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2537  * @opaque: the NVIC
2538  * @irq: the exception number to complete
2539  * @secure: true if this exception was secure
2540  *
2541  * Returns: -1 if the irq was not active
2542  *           1 if completing this irq brought us back to base (no active irqs)
2543  *           0 if there is still an irq active after this one was completed
2544  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2545  */
2546 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2547 /**
2548  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2549  * @opaque: the NVIC
2550  * @irq: the exception number to mark pending
2551  * @secure: false for non-banked exceptions or for the nonsecure
2552  * version of a banked exception, true for the secure version of a banked
2553  * exception.
2554  *
2555  * Return whether an exception is "ready", i.e. whether the exception is
2556  * enabled and is configured at a priority which would allow it to
2557  * interrupt the current execution priority. This controls whether the
2558  * RDY bit for it in the FPCCR is set.
2559  */
2560 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2561 /**
2562  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2563  * @opaque: the NVIC
2564  *
2565  * Returns: the raw execution priority as defined by the v8M architecture.
2566  * This is the execution priority minus the effects of AIRCR.PRIS,
2567  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2568  * (v8M ARM ARM I_PKLD.)
2569  */
2570 int armv7m_nvic_raw_execution_priority(void *opaque);
2571 /**
2572  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2573  * priority is negative for the specified security state.
2574  * @opaque: the NVIC
2575  * @secure: the security state to test
2576  * This corresponds to the pseudocode IsReqExecPriNeg().
2577  */
2578 #ifndef CONFIG_USER_ONLY
2579 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2580 #else
2581 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2582 {
2583     return false;
2584 }
2585 #endif
2586 
2587 /* Interface for defining coprocessor registers.
2588  * Registers are defined in tables of arm_cp_reginfo structs
2589  * which are passed to define_arm_cp_regs().
2590  */
2591 
2592 /* When looking up a coprocessor register we look for it
2593  * via an integer which encodes all of:
2594  *  coprocessor number
2595  *  Crn, Crm, opc1, opc2 fields
2596  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2597  *    or via MRRC/MCRR?)
2598  *  non-secure/secure bank (AArch32 only)
2599  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2600  * (In this case crn and opc2 should be zero.)
2601  * For AArch64, there is no 32/64 bit size distinction;
2602  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2603  * and 4 bit CRn and CRm. The encoding patterns are chosen
2604  * to be easy to convert to and from the KVM encodings, and also
2605  * so that the hashtable can contain both AArch32 and AArch64
2606  * registers (to allow for interprocessing where we might run
2607  * 32 bit code on a 64 bit core).
2608  */
2609 /* This bit is private to our hashtable cpreg; in KVM register
2610  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2611  * in the upper bits of the 64 bit ID.
2612  */
2613 #define CP_REG_AA64_SHIFT 28
2614 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2615 
2616 /* To enable banking of coprocessor registers depending on ns-bit we
2617  * add a bit to distinguish between secure and non-secure cpregs in the
2618  * hashtable.
2619  */
2620 #define CP_REG_NS_SHIFT 29
2621 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2622 
2623 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2624     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2625      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2626 
2627 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2628     (CP_REG_AA64_MASK |                                 \
2629      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2630      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2631      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2632      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2633      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2634      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2635 
2636 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2637  * version used as a key for the coprocessor register hashtable
2638  */
2639 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2640 {
2641     uint32_t cpregid = kvmid;
2642     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2643         cpregid |= CP_REG_AA64_MASK;
2644     } else {
2645         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2646             cpregid |= (1 << 15);
2647         }
2648 
2649         /* KVM is always non-secure so add the NS flag on AArch32 register
2650          * entries.
2651          */
2652          cpregid |= 1 << CP_REG_NS_SHIFT;
2653     }
2654     return cpregid;
2655 }
2656 
2657 /* Convert a truncated 32 bit hashtable key into the full
2658  * 64 bit KVM register ID.
2659  */
2660 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2661 {
2662     uint64_t kvmid;
2663 
2664     if (cpregid & CP_REG_AA64_MASK) {
2665         kvmid = cpregid & ~CP_REG_AA64_MASK;
2666         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2667     } else {
2668         kvmid = cpregid & ~(1 << 15);
2669         if (cpregid & (1 << 15)) {
2670             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2671         } else {
2672             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2673         }
2674     }
2675     return kvmid;
2676 }
2677 
2678 /* Return the highest implemented Exception Level */
2679 static inline int arm_highest_el(CPUARMState *env)
2680 {
2681     if (arm_feature(env, ARM_FEATURE_EL3)) {
2682         return 3;
2683     }
2684     if (arm_feature(env, ARM_FEATURE_EL2)) {
2685         return 2;
2686     }
2687     return 1;
2688 }
2689 
2690 /* Return true if a v7M CPU is in Handler mode */
2691 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2692 {
2693     return env->v7m.exception != 0;
2694 }
2695 
2696 /* Return the current Exception Level (as per ARMv8; note that this differs
2697  * from the ARMv7 Privilege Level).
2698  */
2699 static inline int arm_current_el(CPUARMState *env)
2700 {
2701     if (arm_feature(env, ARM_FEATURE_M)) {
2702         return arm_v7m_is_handler_mode(env) ||
2703             !(env->v7m.control[env->v7m.secure] & 1);
2704     }
2705 
2706     if (is_a64(env)) {
2707         return extract32(env->pstate, 2, 2);
2708     }
2709 
2710     switch (env->uncached_cpsr & 0x1f) {
2711     case ARM_CPU_MODE_USR:
2712         return 0;
2713     case ARM_CPU_MODE_HYP:
2714         return 2;
2715     case ARM_CPU_MODE_MON:
2716         return 3;
2717     default:
2718         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2719             /* If EL3 is 32-bit then all secure privileged modes run in
2720              * EL3
2721              */
2722             return 3;
2723         }
2724 
2725         return 1;
2726     }
2727 }
2728 
2729 /**
2730  * write_list_to_cpustate
2731  * @cpu: ARMCPU
2732  *
2733  * For each register listed in the ARMCPU cpreg_indexes list, write
2734  * its value from the cpreg_values list into the ARMCPUState structure.
2735  * This updates TCG's working data structures from KVM data or
2736  * from incoming migration state.
2737  *
2738  * Returns: true if all register values were updated correctly,
2739  * false if some register was unknown or could not be written.
2740  * Note that we do not stop early on failure -- we will attempt
2741  * writing all registers in the list.
2742  */
2743 bool write_list_to_cpustate(ARMCPU *cpu);
2744 
2745 /**
2746  * write_cpustate_to_list:
2747  * @cpu: ARMCPU
2748  * @kvm_sync: true if this is for syncing back to KVM
2749  *
2750  * For each register listed in the ARMCPU cpreg_indexes list, write
2751  * its value from the ARMCPUState structure into the cpreg_values list.
2752  * This is used to copy info from TCG's working data structures into
2753  * KVM or for outbound migration.
2754  *
2755  * @kvm_sync is true if we are doing this in order to sync the
2756  * register state back to KVM. In this case we will only update
2757  * values in the list if the previous list->cpustate sync actually
2758  * successfully wrote the CPU state. Otherwise we will keep the value
2759  * that is in the list.
2760  *
2761  * Returns: true if all register values were read correctly,
2762  * false if some register was unknown or could not be read.
2763  * Note that we do not stop early on failure -- we will attempt
2764  * reading all registers in the list.
2765  */
2766 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2767 
2768 #define ARM_CPUID_TI915T      0x54029152
2769 #define ARM_CPUID_TI925T      0x54029252
2770 
2771 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2772 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2773 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2774 
2775 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2776 
2777 #define cpu_list arm_cpu_list
2778 
2779 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2780  *
2781  * If EL3 is 64-bit:
2782  *  + NonSecure EL1 & 0 stage 1
2783  *  + NonSecure EL1 & 0 stage 2
2784  *  + NonSecure EL2
2785  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2786  *  + Secure EL1 & 0
2787  *  + Secure EL3
2788  * If EL3 is 32-bit:
2789  *  + NonSecure PL1 & 0 stage 1
2790  *  + NonSecure PL1 & 0 stage 2
2791  *  + NonSecure PL2
2792  *  + Secure PL0
2793  *  + Secure PL1
2794  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2795  *
2796  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2797  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2798  *     because they may differ in access permissions even if the VA->PA map is
2799  *     the same
2800  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2801  *     translation, which means that we have one mmu_idx that deals with two
2802  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2803  *     architecturally permitted]
2804  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2805  *     handling via the TLB. The only way to do a stage 1 translation without
2806  *     the immediate stage 2 translation is via the ATS or AT system insns,
2807  *     which can be slow-pathed and always do a page table walk.
2808  *     The only use of stage 2 translations is either as part of an s1+2
2809  *     lookup or when loading the descriptors during a stage 1 page table walk,
2810  *     and in both those cases we don't use the TLB.
2811  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2812  *     translation regimes, because they map reasonably well to each other
2813  *     and they can't both be active at the same time.
2814  *  5. we want to be able to use the TLB for accesses done as part of a
2815  *     stage1 page table walk, rather than having to walk the stage2 page
2816  *     table over and over.
2817  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2818  *     Never (PAN) bit within PSTATE.
2819  *
2820  * This gives us the following list of cases:
2821  *
2822  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2823  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2824  * NS EL1 EL1&0 stage 1+2 +PAN
2825  * NS EL0 EL2&0
2826  * NS EL2 EL2&0
2827  * NS EL2 EL2&0 +PAN
2828  * NS EL2 (aka NS PL2)
2829  * S EL0 EL1&0 (aka S PL0)
2830  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2831  * S EL1 EL1&0 +PAN
2832  * S EL3 (aka S PL1)
2833  *
2834  * for a total of 11 different mmu_idx.
2835  *
2836  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2837  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2838  * NS EL2 if we ever model a Cortex-R52).
2839  *
2840  * M profile CPUs are rather different as they do not have a true MMU.
2841  * They have the following different MMU indexes:
2842  *  User
2843  *  Privileged
2844  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2845  *  Privileged, execution priority negative (ditto)
2846  * If the CPU supports the v8M Security Extension then there are also:
2847  *  Secure User
2848  *  Secure Privileged
2849  *  Secure User, execution priority negative
2850  *  Secure Privileged, execution priority negative
2851  *
2852  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2853  * are not quite the same -- different CPU types (most notably M profile
2854  * vs A/R profile) would like to use MMU indexes with different semantics,
2855  * but since we don't ever need to use all of those in a single CPU we
2856  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2857  * modes + total number of M profile MMU modes". The lower bits of
2858  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2859  * the same for any particular CPU.
2860  * Variables of type ARMMUIdx are always full values, and the core
2861  * index values are in variables of type 'int'.
2862  *
2863  * Our enumeration includes at the end some entries which are not "true"
2864  * mmu_idx values in that they don't have corresponding TLBs and are only
2865  * valid for doing slow path page table walks.
2866  *
2867  * The constant names here are patterned after the general style of the names
2868  * of the AT/ATS operations.
2869  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2870  * For M profile we arrange them to have a bit for priv, a bit for negpri
2871  * and a bit for secure.
2872  */
2873 #define ARM_MMU_IDX_A     0x10  /* A profile */
2874 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2875 #define ARM_MMU_IDX_M     0x40  /* M profile */
2876 
2877 /* Meanings of the bits for A profile mmu idx values */
2878 #define ARM_MMU_IDX_A_NS     0x8
2879 
2880 /* Meanings of the bits for M profile mmu idx values */
2881 #define ARM_MMU_IDX_M_PRIV   0x1
2882 #define ARM_MMU_IDX_M_NEGPRI 0x2
2883 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2884 
2885 #define ARM_MMU_IDX_TYPE_MASK \
2886     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2887 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2888 
2889 typedef enum ARMMMUIdx {
2890     /*
2891      * A-profile.
2892      */
2893     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
2894     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
2895     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
2896     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
2897     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
2898     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
2899     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
2900     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
2901 
2902     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2903     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2904     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2905     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2906     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2907     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2908     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2909 
2910     /*
2911      * These are not allocated TLBs and are used only for AT system
2912      * instructions or for the first stage of an S12 page table walk.
2913      */
2914     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2915     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2916     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2917     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2918     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2919     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2920     /*
2921      * Not allocated a TLB: used only for second stage of an S12 page
2922      * table walk, or for descriptor loads during first stage of an S1
2923      * page table walk. Note that if we ever want to have a TLB for this
2924      * then various TLB flush insns which currently are no-ops or flush
2925      * only stage 1 MMU indexes will need to change to flush stage 2.
2926      */
2927     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
2928     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
2929 
2930     /*
2931      * M-profile.
2932      */
2933     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2934     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2935     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2936     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2937     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2938     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2939     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2940     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2941 } ARMMMUIdx;
2942 
2943 /*
2944  * Bit macros for the core-mmu-index values for each index,
2945  * for use when calling tlb_flush_by_mmuidx() and friends.
2946  */
2947 #define TO_CORE_BIT(NAME) \
2948     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2949 
2950 typedef enum ARMMMUIdxBit {
2951     TO_CORE_BIT(E10_0),
2952     TO_CORE_BIT(E20_0),
2953     TO_CORE_BIT(E10_1),
2954     TO_CORE_BIT(E10_1_PAN),
2955     TO_CORE_BIT(E2),
2956     TO_CORE_BIT(E20_2),
2957     TO_CORE_BIT(E20_2_PAN),
2958     TO_CORE_BIT(SE10_0),
2959     TO_CORE_BIT(SE20_0),
2960     TO_CORE_BIT(SE10_1),
2961     TO_CORE_BIT(SE20_2),
2962     TO_CORE_BIT(SE10_1_PAN),
2963     TO_CORE_BIT(SE20_2_PAN),
2964     TO_CORE_BIT(SE2),
2965     TO_CORE_BIT(SE3),
2966 
2967     TO_CORE_BIT(MUser),
2968     TO_CORE_BIT(MPriv),
2969     TO_CORE_BIT(MUserNegPri),
2970     TO_CORE_BIT(MPrivNegPri),
2971     TO_CORE_BIT(MSUser),
2972     TO_CORE_BIT(MSPriv),
2973     TO_CORE_BIT(MSUserNegPri),
2974     TO_CORE_BIT(MSPrivNegPri),
2975 } ARMMMUIdxBit;
2976 
2977 #undef TO_CORE_BIT
2978 
2979 #define MMU_USER_IDX 0
2980 
2981 /* Indexes used when registering address spaces with cpu_address_space_init */
2982 typedef enum ARMASIdx {
2983     ARMASIdx_NS = 0,
2984     ARMASIdx_S = 1,
2985     ARMASIdx_TagNS = 2,
2986     ARMASIdx_TagS = 3,
2987 } ARMASIdx;
2988 
2989 /* Return the Exception Level targeted by debug exceptions. */
2990 static inline int arm_debug_target_el(CPUARMState *env)
2991 {
2992     bool secure = arm_is_secure(env);
2993     bool route_to_el2 = false;
2994 
2995     if (arm_is_el2_enabled(env)) {
2996         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2997                        env->cp15.mdcr_el2 & MDCR_TDE;
2998     }
2999 
3000     if (route_to_el2) {
3001         return 2;
3002     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3003                !arm_el_is_aa64(env, 3) && secure) {
3004         return 3;
3005     } else {
3006         return 1;
3007     }
3008 }
3009 
3010 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3011 {
3012     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3013      * CSSELR is RAZ/WI.
3014      */
3015     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3016 }
3017 
3018 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3019 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3020 {
3021     int cur_el = arm_current_el(env);
3022     int debug_el;
3023 
3024     if (cur_el == 3) {
3025         return false;
3026     }
3027 
3028     /* MDCR_EL3.SDD disables debug events from Secure state */
3029     if (arm_is_secure_below_el3(env)
3030         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3031         return false;
3032     }
3033 
3034     /*
3035      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3036      * while not masking the (D)ebug bit in DAIF.
3037      */
3038     debug_el = arm_debug_target_el(env);
3039 
3040     if (cur_el == debug_el) {
3041         return extract32(env->cp15.mdscr_el1, 13, 1)
3042             && !(env->daif & PSTATE_D);
3043     }
3044 
3045     /* Otherwise the debug target needs to be a higher EL */
3046     return debug_el > cur_el;
3047 }
3048 
3049 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3050 {
3051     int el = arm_current_el(env);
3052 
3053     if (el == 0 && arm_el_is_aa64(env, 1)) {
3054         return aa64_generate_debug_exceptions(env);
3055     }
3056 
3057     if (arm_is_secure(env)) {
3058         int spd;
3059 
3060         if (el == 0 && (env->cp15.sder & 1)) {
3061             /* SDER.SUIDEN means debug exceptions from Secure EL0
3062              * are always enabled. Otherwise they are controlled by
3063              * SDCR.SPD like those from other Secure ELs.
3064              */
3065             return true;
3066         }
3067 
3068         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3069         switch (spd) {
3070         case 1:
3071             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3072         case 0:
3073             /* For 0b00 we return true if external secure invasive debug
3074              * is enabled. On real hardware this is controlled by external
3075              * signals to the core. QEMU always permits debug, and behaves
3076              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3077              */
3078             return true;
3079         case 2:
3080             return false;
3081         case 3:
3082             return true;
3083         }
3084     }
3085 
3086     return el != 2;
3087 }
3088 
3089 /* Return true if debugging exceptions are currently enabled.
3090  * This corresponds to what in ARM ARM pseudocode would be
3091  *    if UsingAArch32() then
3092  *        return AArch32.GenerateDebugExceptions()
3093  *    else
3094  *        return AArch64.GenerateDebugExceptions()
3095  * We choose to push the if() down into this function for clarity,
3096  * since the pseudocode has it at all callsites except for the one in
3097  * CheckSoftwareStep(), where it is elided because both branches would
3098  * always return the same value.
3099  */
3100 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3101 {
3102     if (env->aarch64) {
3103         return aa64_generate_debug_exceptions(env);
3104     } else {
3105         return aa32_generate_debug_exceptions(env);
3106     }
3107 }
3108 
3109 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3110  * implicitly means this always returns false in pre-v8 CPUs.)
3111  */
3112 static inline bool arm_singlestep_active(CPUARMState *env)
3113 {
3114     return extract32(env->cp15.mdscr_el1, 0, 1)
3115         && arm_el_is_aa64(env, arm_debug_target_el(env))
3116         && arm_generate_debug_exceptions(env);
3117 }
3118 
3119 static inline bool arm_sctlr_b(CPUARMState *env)
3120 {
3121     return
3122         /* We need not implement SCTLR.ITD in user-mode emulation, so
3123          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3124          * This lets people run BE32 binaries with "-cpu any".
3125          */
3126 #ifndef CONFIG_USER_ONLY
3127         !arm_feature(env, ARM_FEATURE_V7) &&
3128 #endif
3129         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3130 }
3131 
3132 uint64_t arm_sctlr(CPUARMState *env, int el);
3133 
3134 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3135                                                   bool sctlr_b)
3136 {
3137 #ifdef CONFIG_USER_ONLY
3138     /*
3139      * In system mode, BE32 is modelled in line with the
3140      * architecture (as word-invariant big-endianness), where loads
3141      * and stores are done little endian but from addresses which
3142      * are adjusted by XORing with the appropriate constant. So the
3143      * endianness to use for the raw data access is not affected by
3144      * SCTLR.B.
3145      * In user mode, however, we model BE32 as byte-invariant
3146      * big-endianness (because user-only code cannot tell the
3147      * difference), and so we need to use a data access endianness
3148      * that depends on SCTLR.B.
3149      */
3150     if (sctlr_b) {
3151         return true;
3152     }
3153 #endif
3154     /* In 32bit endianness is determined by looking at CPSR's E bit */
3155     return env->uncached_cpsr & CPSR_E;
3156 }
3157 
3158 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3159 {
3160     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3161 }
3162 
3163 /* Return true if the processor is in big-endian mode. */
3164 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3165 {
3166     if (!is_a64(env)) {
3167         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3168     } else {
3169         int cur_el = arm_current_el(env);
3170         uint64_t sctlr = arm_sctlr(env, cur_el);
3171         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3172     }
3173 }
3174 
3175 #include "exec/cpu-all.h"
3176 
3177 /*
3178  * We have more than 32-bits worth of state per TB, so we split the data
3179  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3180  * We collect these two parts in CPUARMTBFlags where they are named
3181  * flags and flags2 respectively.
3182  *
3183  * The flags that are shared between all execution modes, TBFLAG_ANY,
3184  * are stored in flags.  The flags that are specific to a given mode
3185  * are stores in flags2.  Since cs_base is sized on the configured
3186  * address size, flags2 always has 64-bits for A64, and a minimum of
3187  * 32-bits for A32 and M32.
3188  *
3189  * The bits for 32-bit A-profile and M-profile partially overlap:
3190  *
3191  *  31         23         11 10             0
3192  * +-------------+----------+----------------+
3193  * |             |          |   TBFLAG_A32   |
3194  * | TBFLAG_AM32 |          +-----+----------+
3195  * |             |                |TBFLAG_M32|
3196  * +-------------+----------------+----------+
3197  *  31         23                6 5        0
3198  *
3199  * Unless otherwise noted, these bits are cached in env->hflags.
3200  */
3201 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3202 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3203 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3204 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3205 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3206 /* Target EL if we take a floating-point-disabled exception */
3207 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3208 /* For A-profile only, target EL for debug exceptions.  */
3209 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3210 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3211 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3212 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3213 
3214 /*
3215  * Bit usage when in AArch32 state, both A- and M-profile.
3216  */
3217 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3218 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3219 
3220 /*
3221  * Bit usage when in AArch32 state, for A-profile only.
3222  */
3223 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3224 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3225 /*
3226  * We store the bottom two bits of the CPAR as TB flags and handle
3227  * checks on the other bits at runtime. This shares the same bits as
3228  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3229  * Not cached, because VECLEN+VECSTRIDE are not cached.
3230  */
3231 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3232 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3233 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3234 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3235 /*
3236  * Indicates whether cp register reads and writes by guest code should access
3237  * the secure or nonsecure bank of banked registers; note that this is not
3238  * the same thing as the current security state of the processor!
3239  */
3240 FIELD(TBFLAG_A32, NS, 10, 1)
3241 
3242 /*
3243  * Bit usage when in AArch32 state, for M-profile only.
3244  */
3245 /* Handler (ie not Thread) mode */
3246 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3247 /* Whether we should generate stack-limit checks */
3248 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3249 /* Set if FPCCR.LSPACT is set */
3250 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3251 /* Set if we must create a new FP context */
3252 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3253 /* Set if FPCCR.S does not match current security state */
3254 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3255 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3256 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3257 
3258 /*
3259  * Bit usage when in AArch64 state
3260  */
3261 FIELD(TBFLAG_A64, TBII, 0, 2)
3262 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3263 /* The current vector length, either NVL or SVL. */
3264 FIELD(TBFLAG_A64, VL, 4, 4)
3265 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3266 FIELD(TBFLAG_A64, BT, 9, 1)
3267 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3268 FIELD(TBFLAG_A64, TBID, 12, 2)
3269 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3270 FIELD(TBFLAG_A64, ATA, 15, 1)
3271 FIELD(TBFLAG_A64, TCMA, 16, 2)
3272 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3273 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3274 
3275 /*
3276  * Helpers for using the above.
3277  */
3278 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3279     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3280 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3281     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3282 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3283     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3284 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3285     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3286 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3287     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3288 
3289 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3290 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3291 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3292 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3293 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3294 
3295 /**
3296  * cpu_mmu_index:
3297  * @env: The cpu environment
3298  * @ifetch: True for code access, false for data access.
3299  *
3300  * Return the core mmu index for the current translation regime.
3301  * This function is used by generic TCG code paths.
3302  */
3303 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3304 {
3305     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3306 }
3307 
3308 /**
3309  * sve_vq
3310  * @env: the cpu context
3311  *
3312  * Return the VL cached within env->hflags, in units of quadwords.
3313  */
3314 static inline int sve_vq(CPUARMState *env)
3315 {
3316     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3317 }
3318 
3319 static inline bool bswap_code(bool sctlr_b)
3320 {
3321 #ifdef CONFIG_USER_ONLY
3322     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3323      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3324      * would also end up as a mixed-endian mode with BE code, LE data.
3325      */
3326     return
3327 #if TARGET_BIG_ENDIAN
3328         1 ^
3329 #endif
3330         sctlr_b;
3331 #else
3332     /* All code access in ARM is little endian, and there are no loaders
3333      * doing swaps that need to be reversed
3334      */
3335     return 0;
3336 #endif
3337 }
3338 
3339 #ifdef CONFIG_USER_ONLY
3340 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3341 {
3342     return
3343 #if TARGET_BIG_ENDIAN
3344        1 ^
3345 #endif
3346        arm_cpu_data_is_big_endian(env);
3347 }
3348 #endif
3349 
3350 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3351                           target_ulong *cs_base, uint32_t *flags);
3352 
3353 enum {
3354     QEMU_PSCI_CONDUIT_DISABLED = 0,
3355     QEMU_PSCI_CONDUIT_SMC = 1,
3356     QEMU_PSCI_CONDUIT_HVC = 2,
3357 };
3358 
3359 #ifndef CONFIG_USER_ONLY
3360 /* Return the address space index to use for a memory access */
3361 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3362 {
3363     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3364 }
3365 
3366 /* Return the AddressSpace to use for a memory access
3367  * (which depends on whether the access is S or NS, and whether
3368  * the board gave us a separate AddressSpace for S accesses).
3369  */
3370 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3371 {
3372     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3373 }
3374 #endif
3375 
3376 /**
3377  * arm_register_pre_el_change_hook:
3378  * Register a hook function which will be called immediately before this
3379  * CPU changes exception level or mode. The hook function will be
3380  * passed a pointer to the ARMCPU and the opaque data pointer passed
3381  * to this function when the hook was registered.
3382  *
3383  * Note that if a pre-change hook is called, any registered post-change hooks
3384  * are guaranteed to subsequently be called.
3385  */
3386 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3387                                  void *opaque);
3388 /**
3389  * arm_register_el_change_hook:
3390  * Register a hook function which will be called immediately after this
3391  * CPU changes exception level or mode. The hook function will be
3392  * passed a pointer to the ARMCPU and the opaque data pointer passed
3393  * to this function when the hook was registered.
3394  *
3395  * Note that any registered hooks registered here are guaranteed to be called
3396  * if pre-change hooks have been.
3397  */
3398 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3399         *opaque);
3400 
3401 /**
3402  * arm_rebuild_hflags:
3403  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3404  */
3405 void arm_rebuild_hflags(CPUARMState *env);
3406 
3407 /**
3408  * aa32_vfp_dreg:
3409  * Return a pointer to the Dn register within env in 32-bit mode.
3410  */
3411 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3412 {
3413     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3414 }
3415 
3416 /**
3417  * aa32_vfp_qreg:
3418  * Return a pointer to the Qn register within env in 32-bit mode.
3419  */
3420 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3421 {
3422     return &env->vfp.zregs[regno].d[0];
3423 }
3424 
3425 /**
3426  * aa64_vfp_qreg:
3427  * Return a pointer to the Qn register within env in 64-bit mode.
3428  */
3429 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3430 {
3431     return &env->vfp.zregs[regno].d[0];
3432 }
3433 
3434 /* Shared between translate-sve.c and sve_helper.c.  */
3435 extern const uint64_t pred_esz_masks[4];
3436 
3437 /* Helper for the macros below, validating the argument type. */
3438 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3439 {
3440     return x;
3441 }
3442 
3443 /*
3444  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3445  * Using these should be a bit more self-documenting than using the
3446  * generic target bits directly.
3447  */
3448 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3449 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3450 
3451 /*
3452  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3453  */
3454 #define PAGE_BTI  PAGE_TARGET_1
3455 #define PAGE_MTE  PAGE_TARGET_2
3456 
3457 #ifdef TARGET_TAGGED_ADDRESSES
3458 /**
3459  * cpu_untagged_addr:
3460  * @cs: CPU context
3461  * @x: tagged address
3462  *
3463  * Remove any address tag from @x.  This is explicitly related to the
3464  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3465  *
3466  * There should be a better place to put this, but we need this in
3467  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3468  */
3469 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3470 {
3471     ARMCPU *cpu = ARM_CPU(cs);
3472     if (cpu->env.tagged_addr_enable) {
3473         /*
3474          * TBI is enabled for userspace but not kernelspace addresses.
3475          * Only clear the tag if bit 55 is clear.
3476          */
3477         x &= sextract64(x, 0, 56);
3478     }
3479     return x;
3480 }
3481 #endif
3482 
3483 /*
3484  * Naming convention for isar_feature functions:
3485  * Functions which test 32-bit ID registers should have _aa32_ in
3486  * their name. Functions which test 64-bit ID registers should have
3487  * _aa64_ in their name. These must only be used in code where we
3488  * know for certain that the CPU has AArch32 or AArch64 respectively
3489  * or where the correct answer for a CPU which doesn't implement that
3490  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3491  * system registers that are specific to that CPU state, for "should
3492  * we let this system register bit be set" tests where the 32-bit
3493  * flavour of the register doesn't have the bit, and so on).
3494  * Functions which simply ask "does this feature exist at all" have
3495  * _any_ in their name, and always return the logical OR of the _aa64_
3496  * and the _aa32_ function.
3497  */
3498 
3499 /*
3500  * 32-bit feature tests via id registers.
3501  */
3502 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3503 {
3504     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3505 }
3506 
3507 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3510 }
3511 
3512 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3513 {
3514     /* (M-profile) low-overhead loops and branch future */
3515     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3516 }
3517 
3518 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3519 {
3520     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3521 }
3522 
3523 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3524 {
3525     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3526 }
3527 
3528 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3529 {
3530     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3531 }
3532 
3533 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3534 {
3535     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3536 }
3537 
3538 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3539 {
3540     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3541 }
3542 
3543 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3544 {
3545     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3546 }
3547 
3548 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3549 {
3550     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3551 }
3552 
3553 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3554 {
3555     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3556 }
3557 
3558 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3559 {
3560     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3561 }
3562 
3563 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3564 {
3565     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3566 }
3567 
3568 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3569 {
3570     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3571 }
3572 
3573 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3574 {
3575     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3576 }
3577 
3578 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3579 {
3580     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3581 }
3582 
3583 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3584 {
3585     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3586 }
3587 
3588 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3589 {
3590     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3591 }
3592 
3593 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3594 {
3595     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3596 }
3597 
3598 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3599 {
3600     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3601 }
3602 
3603 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3604 {
3605     /*
3606      * Return true if M-profile state handling insns
3607      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3608      */
3609     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3610 }
3611 
3612 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3613 {
3614     /* Sadly this is encoded differently for A-profile and M-profile */
3615     if (isar_feature_aa32_mprofile(id)) {
3616         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3617     } else {
3618         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3619     }
3620 }
3621 
3622 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3623 {
3624     /*
3625      * Return true if MVE is supported (either integer or floating point).
3626      * We must check for M-profile as the MVFR1 field means something
3627      * else for A-profile.
3628      */
3629     return isar_feature_aa32_mprofile(id) &&
3630         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3631 }
3632 
3633 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3634 {
3635     /*
3636      * Return true if MVE is supported (either integer or floating point).
3637      * We must check for M-profile as the MVFR1 field means something
3638      * else for A-profile.
3639      */
3640     return isar_feature_aa32_mprofile(id) &&
3641         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3642 }
3643 
3644 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3645 {
3646     /*
3647      * Return true if either VFP or SIMD is implemented.
3648      * In this case, a minimum of VFP w/ D0-D15.
3649      */
3650     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3651 }
3652 
3653 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3654 {
3655     /* Return true if D16-D31 are implemented */
3656     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3657 }
3658 
3659 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3660 {
3661     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3662 }
3663 
3664 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3665 {
3666     /* Return true if CPU supports single precision floating point, VFPv2 */
3667     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3668 }
3669 
3670 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3671 {
3672     /* Return true if CPU supports single precision floating point, VFPv3 */
3673     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3674 }
3675 
3676 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3677 {
3678     /* Return true if CPU supports double precision floating point, VFPv2 */
3679     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3680 }
3681 
3682 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3683 {
3684     /* Return true if CPU supports double precision floating point, VFPv3 */
3685     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3686 }
3687 
3688 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3689 {
3690     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3691 }
3692 
3693 /*
3694  * We always set the FP and SIMD FP16 fields to indicate identical
3695  * levels of support (assuming SIMD is implemented at all), so
3696  * we only need one set of accessors.
3697  */
3698 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3699 {
3700     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3701 }
3702 
3703 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3704 {
3705     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3706 }
3707 
3708 /*
3709  * Note that this ID register field covers both VFP and Neon FMAC,
3710  * so should usually be tested in combination with some other
3711  * check that confirms the presence of whichever of VFP or Neon is
3712  * relevant, to avoid accidentally enabling a Neon feature on
3713  * a VFP-no-Neon core or vice-versa.
3714  */
3715 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3716 {
3717     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3718 }
3719 
3720 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3721 {
3722     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3723 }
3724 
3725 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3726 {
3727     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3728 }
3729 
3730 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3731 {
3732     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3733 }
3734 
3735 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3736 {
3737     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3738 }
3739 
3740 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3741 {
3742     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3743 }
3744 
3745 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3746 {
3747     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3748 }
3749 
3750 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3751 {
3752     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3753 }
3754 
3755 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3756 {
3757     /* 0xf means "non-standard IMPDEF PMU" */
3758     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3759         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3760 }
3761 
3762 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3763 {
3764     /* 0xf means "non-standard IMPDEF PMU" */
3765     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3766         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3767 }
3768 
3769 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3770 {
3771     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3772 }
3773 
3774 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3775 {
3776     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3777 }
3778 
3779 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3780 {
3781     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3782 }
3783 
3784 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3785 {
3786     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3787 }
3788 
3789 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3790 {
3791     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3792 }
3793 
3794 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3795 {
3796     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3797 }
3798 
3799 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3800 {
3801     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3802 }
3803 
3804 /*
3805  * 64-bit feature tests via id registers.
3806  */
3807 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3808 {
3809     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3810 }
3811 
3812 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3813 {
3814     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3815 }
3816 
3817 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3818 {
3819     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3820 }
3821 
3822 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3823 {
3824     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3825 }
3826 
3827 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3828 {
3829     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3830 }
3831 
3832 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3833 {
3834     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3835 }
3836 
3837 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3838 {
3839     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3840 }
3841 
3842 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3843 {
3844     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3845 }
3846 
3847 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3848 {
3849     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3850 }
3851 
3852 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3853 {
3854     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3855 }
3856 
3857 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3858 {
3859     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3860 }
3861 
3862 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3863 {
3864     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3865 }
3866 
3867 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3868 {
3869     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3870 }
3871 
3872 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3873 {
3874     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3875 }
3876 
3877 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3878 {
3879     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3880 }
3881 
3882 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3883 {
3884     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3885 }
3886 
3887 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3888 {
3889     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3890 }
3891 
3892 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3893 {
3894     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3895 }
3896 
3897 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3898 {
3899     /*
3900      * Return true if any form of pauth is enabled, as this
3901      * predicate controls migration of the 128-bit keys.
3902      */
3903     return (id->id_aa64isar1 &
3904             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3905              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3906              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3907              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3908 }
3909 
3910 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3911 {
3912     /*
3913      * Return true if pauth is enabled with the architected QARMA algorithm.
3914      * QEMU will always set APA+GPA to the same value.
3915      */
3916     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3917 }
3918 
3919 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3920 {
3921     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3922 }
3923 
3924 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3925 {
3926     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3927 }
3928 
3929 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3930 {
3931     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3932 }
3933 
3934 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3935 {
3936     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3937 }
3938 
3939 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3940 {
3941     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3942 }
3943 
3944 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3945 {
3946     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3947 }
3948 
3949 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3950 {
3951     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3952 }
3953 
3954 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3955 {
3956     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3957 }
3958 
3959 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3960 {
3961     /* We always set the AdvSIMD and FP fields identically.  */
3962     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3963 }
3964 
3965 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3966 {
3967     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3968     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3969 }
3970 
3971 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3972 {
3973     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3974 }
3975 
3976 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3977 {
3978     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3979 }
3980 
3981 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3982 {
3983     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3984 }
3985 
3986 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3987 {
3988     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3989 }
3990 
3991 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3992 {
3993     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3994 }
3995 
3996 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3997 {
3998     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3999 }
4000 
4001 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4002 {
4003     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4004 }
4005 
4006 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4007 {
4008     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4009 }
4010 
4011 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4012 {
4013     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4014 }
4015 
4016 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4017 {
4018     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4019 }
4020 
4021 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
4022 {
4023     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
4024 }
4025 
4026 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4027 {
4028     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4029 }
4030 
4031 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4032 {
4033     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4034 }
4035 
4036 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4037 {
4038     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4039 }
4040 
4041 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4042 {
4043     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4044 }
4045 
4046 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4047 {
4048     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4049 }
4050 
4051 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4052 {
4053     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4054 }
4055 
4056 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4057 {
4058     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4059 }
4060 
4061 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4062 {
4063     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4064 }
4065 
4066 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4067 {
4068     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4069         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4070 }
4071 
4072 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4073 {
4074     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4075         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4076 }
4077 
4078 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4079 {
4080     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4081 }
4082 
4083 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4084 {
4085     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4086 }
4087 
4088 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4089 {
4090     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4091 }
4092 
4093 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4094 {
4095     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4096 }
4097 
4098 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4099 {
4100     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4101     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4102 }
4103 
4104 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4105 {
4106     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4107 }
4108 
4109 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4110 {
4111     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4112     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4113 }
4114 
4115 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4116 {
4117     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4118 }
4119 
4120 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4121 {
4122     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4123 }
4124 
4125 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4126 {
4127     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4128 }
4129 
4130 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4131 {
4132     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4133 }
4134 
4135 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4136 {
4137     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4138     if (key >= 2) {
4139         return true;      /* FEAT_CSV2_2 */
4140     }
4141     if (key == 1) {
4142         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4143         return key >= 2;  /* FEAT_CSV2_1p2 */
4144     }
4145     return false;
4146 }
4147 
4148 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4149 {
4150     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4151 }
4152 
4153 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4154 {
4155     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4156 }
4157 
4158 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4159 {
4160     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4161 }
4162 
4163 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4164 {
4165     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4166 }
4167 
4168 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4169 {
4170     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4171 }
4172 
4173 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4174 {
4175     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4176 }
4177 
4178 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4179 {
4180     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4181 }
4182 
4183 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4184 {
4185     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4186 }
4187 
4188 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4189 {
4190     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4191 }
4192 
4193 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4194 {
4195     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4196 }
4197 
4198 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4199 {
4200     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4201 }
4202 
4203 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4204 {
4205     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4206 }
4207 
4208 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4209 {
4210     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4211 }
4212 
4213 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4214 {
4215     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4216 }
4217 
4218 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4219 {
4220     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4221 }
4222 
4223 /*
4224  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4225  */
4226 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4227 {
4228     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4229 }
4230 
4231 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4232 {
4233     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4234 }
4235 
4236 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4237 {
4238     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4239 }
4240 
4241 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4242 {
4243     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4244 }
4245 
4246 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4247 {
4248     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4249 }
4250 
4251 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4252 {
4253     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4254 }
4255 
4256 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4257 {
4258     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4259 }
4260 
4261 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4262 {
4263     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4264 }
4265 
4266 /*
4267  * Forward to the above feature tests given an ARMCPU pointer.
4268  */
4269 #define cpu_isar_feature(name, cpu) \
4270     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4271 
4272 #endif
4273